Linear and k-NN Methods for Classification and Their
Extensions

@ likelihood example
@ logistic regression
ext. logistic regression with L; penalty, elastic net penalty
@ linear and quadratic discriminant analysis
ext. regularized discriminant analysis
ext. reduced rank discriminant analysis
ext. diagonal discriminant analysis
@ Nearest-neighbor methods
o k-NN
o Local likelihood (local logistic regression)
ext. Discriminating Adaptive NN methods (DANN)

? Support Vector Machines
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Probability of the data given the model

@ Assume we have 15 red balls and 5 blue balls in a bag.
@ Repeat 5x:
o select a ball
e put it back.
@ The probability of the sequence red, blue, blue,red, red is % . % . % . % . %.

The logarithm log, of the probability is ~ —04 —2—-2—0.4—0.4=-5.2
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Likelihood of the model given the data

@ Assume we do not know the probabilities, let # be the probability of red. We
have following probabilities of data for different 6.
0 | red blue blue red red

3 1 1 3 3 33

3
4 4 4 4 4 4 45

o Take the logy of the probabilities:

0 red blue blue red red
i -1 -1 -1 -1 -1 -5
P 074 -132 -132 -074 -0.74 | —4.86
3 04 -2 -2 -04 —04 | 52
@ Probability of the data given model is called likelihood of the model # given
the data.

@ Maximum likelihood 8 estimate is in our case %

@ Predicting probabilities, maximum likelihood estimate is the same as
maximum log-likelihood estimate.
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(Log)likelihood

train data prediction likelihood loglik

Xi  8i P(green|x;)  P(blue|x;)  P(yellow|x;)

1 green % 0 % % -1

1 yellow 3 0 3 3 -1

2 green % % 0 % /ng%

2 green 2 3 0 2 log»3

2 blue % % 0 % —log»3

3 blue 0 1 0 1 0
—2 — log>3
+2/og2%

o loglik logarithm with base e of likelihood function is defined as:

N
o) = Z loge(P(G = gilxi,0))

o Logistic regression uses:
P(G =gk X =x)=

.
eﬁk0+[3k x

ﬁ/o*’ﬁlrx :
i,k
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Logistic Function

@ With more than two classes, the linear
regression to the class identifier may
suffer the masking problem.
o Some class is masked due to the -
linearity constraint (the blue class in
the figure right).
e Quadratic fit to the identifier
function solves this case.
o Logistic regression, LDA, SVM, k-NN /s
solve this case naturally. “

Linear Regression Linear Discriminant Analysis

B
LY

X X

Degree = 1; Error = 033 Degree = 2; Error = 0.04

Probability should be from the interval
Linear prediction is transformed by
logistic function (sigmoid) with the
maximum L. i

i L
|0gl5tlc m .

Inverse function is called logit.

Balance Balance

logit log ﬁ,
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Logistic Regression

o For K- class classification we estimate (p + 1) x (K — 1) parameters

0= {BlOaﬂ]Ta e aﬁ(Kfl)(hﬁ;—l}'

PG=alXx=x _ ,
gP(G:gK|X:X) o 610+B1X

P(G = g2|X = x)

lo = + B8] x
gP(G:gK|X:x) Boo + B,

P(G = gk-1|X = x)
P(G = gk|X = x)

Bik-1)0 + Br_1x

that is
eﬁko+5kTX
T4+ ket efoth]x
1
T4+> 00 ko1 efn+hx

pr(x;0) + P(G =gl X =x) =

pr(x;0) +— P(G =gk|X =x) =
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Fitting Logistic Regression Two class

@ This model is estimated iteratively maximizing conditional likelihood of G
given X.

N
U0) =3 _log py(xi; )

@ Two class model: g; encoded via a 0/1 response y;; y; = 1 iff gx = g1.
Let p(x; 8) = p1(x;0), pa(x;0) =1 — p(x;0). Then:
N
> (vilog p(xi; B) + (1 — yi) log(L — p(xi: )
i=1
N

> (BT — log(1+ 7))

i=1

€(0)

@ Set derivatives to zero:

N
oLp
U5 ™ s — plxis B)) = 0,
op i=1
@ which is p + 1 nonlinear equations in 3.
o First component: x; = 1 specifies >.,_; yi = Z,N:1 p(x;; B) the expected
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Newton—Raphson Algorithm

@ We use Newton—Raphson Algorithm to solve the system of equations
S = in()/i — p(xi; 8)) =0,
i=1

@ we need the second—derivative or Hessian matrix

o*(B
aBaBT = ZX’X p(X’ ( 6))

e Starting with 3° a single Newton—Raphson update is

820(8) \ " 9u(B)
%%T) o’

6new — BOld . (

@ where the derivatives are evaluated at 3°.
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Newton—Raphson Algorithm in Matrix Notation

Let us denote:

y the vector of y;
X N x (p+1) data matrix x;
p the vector of fitted probabilities with ith element p(x;; 3°)
W  diagonal matrix with weights p(x;; 3°9)(1 — p(x;; 5°'))
ae
28(6[5) = XT(Y -p)
o°4(B) __ T
36057 = —X"WX
The Newton—Raphson step is (3° < 0)

e = 57 (XTWX) X (y — )

— (XTWX) XWX+ Wy — p))
(XTWX)"1X "Wz
z = XB°% +W-l(y—p) adjusted response

@ p, W,z change each step
This algorithm is reffered to as iteratively reweighted least squares IRLS

B+ arg mﬁin(z — XB)TW(z — Xp)
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South African Heart Disease

@ Analyzing the risk factors of myocardian infarction Ml
o (Note: prevalence 5.1%, in the data 160 positive 302 controls, the controls
are underrepresented, consider weighting the data.)

TABLE 4.2. Results from a logistic regression fit to the South African heart

disease data.

Coefficient  Std. Error ~ Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034
1dl 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity -0.035 0.029 —1.187
alcohol 0.001 0.004 0.136
age 0.043 0.010 4.184

o Wald test: Z score |Z

disease data.

> 2 is significant at at the 5% level.

TABLE 4.3. Resulls from stepwise logistic regression fit to South African heart

Coefficient ~ Std. Error  Z score
(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16
1d1 0.168 0.054 3.09
famhist 0.924 0.223 4.14
age 0.044 0.010 4.52
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South African Heart Disease

o Wald test: Z score |Z| > 2 is significant at at the 5% level.

TABLE 4.3. Results from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error  Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16
1dl 0.168 0.054 3.09
famhist 0.924 0.223 4.14
age 0.044 0.010 4.52
o P(M/‘X,-, 9) _ @ 4+204--0.081x¢ o pacco+0- 168X(g+0. 924X st +0-044xage

1+(e74.204+0,OSlxtobaCCO+O.168xId/ +0.924X,—amh,-st+0,044xage)

o Interval estimate odds;opacco = €2-0812%0:026 — (1.03,1.14) increase of odds
of Ml based of the increase of Xtopacco-
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L, regularization 'Lasso’-like

N

P
argmaxg, g (Z(yi(ﬂo + B7x;) — log(1 + e(ﬂ°+ﬂTX'))) —A Z 5j|>
j=1

i=1

@ Newton—Raphson Algorithm or nonlinear programming.
@ )\ = 0 standard logistic regression.
@ A\ — oo moves coefficients towards O.
@ [y is not included into the penalty.
g el
//
3 / F Bhaceo
2 +
E ,-“:V /_,_.... - sbp
T T T T I7 ovesty
Bl
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Linear Discriminant Analysis

@ LDA assumes multivariate gaussian distribution of each class with a common
covariance matrix.

B(K) = e emm)TE x)

Nariox

e Under this assumptions it provides bayes optimal estimate.

@ Different covariance matrix for each class leads to Quadratic Discriminant
Analysis.

@ Let us denote N, number of training data in the class Gy.

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
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Linear Discriminant Analysis

The LDA model parameters: the mean and probability of each class {u;, 7},
and the common covariance matrix ¥ can be evaluated directly.

N N
=N

~ o Z{X;:G(x,-):gk} Xi
Hie = Ny

K o i — T
s - Z Z (xi ?&)(K)Mk)

dr(x) = N(ue, X
P(G=gulX=x) =

To classify new instance x we predict the G with
maximal d:

wib A
/

Sk(x) =x"x Hk—i,u ¢k + log.
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Quadratic Discriminant Analysis

Quadratic discriminant analysis estimates the covariance matrix for each class
independently. The rest is the same as for the LDA.

.M
Tk — N
ﬁ _ Z{x,-:G(x,-):gk} Xi
k Nk
T
A Xj — Xj —
T
{xi:G(xi)=gx}
fi(x) = N(p, Zk)
fk(X)ﬂ'k

P(G=glX=x) = —f/———

Z?:l fo(x)me

To classify new instance x we predict the Gx with maximal d:
1

_ 1
Ox(x) = fi(x - uk)TZkl(x — pk) — 5 log |Xk| + log .
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Quadratic and Regularized Discriminant Analysis

@ QDA has substantially more parameters. It is questionable whether it is
worth to increase the model complexity.

o LDA parameters: (K —1) x (p+1)

Misclassification Rate

o QDA parameters: (K —
@ Regularized discriminant analysis takes a weighted average of LDA and

1) x (282 4 1),

QDA to tune the model complexity.

02 03 04 05

0.0 01

Regularized Discriminant Analysis on the Vowel Data

Test Data N
Train Data

0.0

0.2

0.4

Linear Methods for Classification 3

[e%

0.6

0.8

1.0

FIGURE 4.6. Two methods for fitting quadratic
boundaries.  The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained using LDA in the five-dimensional space
X1, X2, X1 X2, X}, X2).  The right plot shows the
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Computations for LDA

Linear and Quadratic Discriminant Analysis

e O(N3), often O(N?37°)
@ QDA and LDA may be computed using matrix decomposition:
o Compute the eigendecomposition for each
(¢ = ) T (x = i) = UL (x = )] "D UF (x — )]
e log |)ik| = Ze log de.
@ Using this decomposition, LDA classifier can be implemented by the
following pair of steps:
o Sphere the data with respect to the common covariance estimate PX
X* <~ D 3UT X, where ¥ = UDU”.
The common covariance estimate of X™ will now be the identity.
o Classify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities 7.
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Reduced—Rank Linear Discriminant Analysis

Finding the sequence of optimal subspaces for LDA:

@ compute the K x p matrix of class centroids M and the common covariance
matrix W (within—class covariance);
@ compute M* = MW 2 using the eigen—decomposition of W,
@ compute B* between—class covariance, the covariance matrix of M* and its
eigen—decomposition B* = V*DgV*T.
e order Dg in the decreasing order

e v, of V* in sequence define the coordinates of the optimal subspaces
o Zy = v/ X with v, = W_%v;.
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Vovel Example
Example Vovel data ESL:

e X e R:

@ k =11 classes.

LDA and Dimension Reduction on the Vowel Data

06 o7

train  test

Linear regression 0.48 0.67

Linear discriminant analysis 0.32  0.56 3
Quadratic discriminant analysis 0.01  0.53

Logistic regression 0.22  0.51 2 ) ‘ ’ M

Dimension

0s

Coordinate 3
Coordinate 3

Classifcation in Reduced Subspace

Caordinate 7
Coordinate 10
o
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Diagonal Linear Discriminant Analysis

o With really many dimensions the even reduced rank does not work.
o Gene expression experiment

e 2308 genes (columns)

o 63 samples (rows), from a set of
microarray experiments.

o The samples arose from small, round
blue-cell tumors (SRBCT) found in
children, and are classified into four major
types:

o BL (Burkitt lymphoma),

e EWS (Ewing's sarcoma),

e NB (neuroblastoma),

e and RMS (rhabdomyosarcoma).

o There is an additional test data set of 20

q obslervations. LDA
@ diagonal-covariance P .. )2
: ) = =3 L 4 2togm)
K\ X - 52 Oog\ Tk
j=1 J

@ s; is the pooled within-class standard deviation of the jth gene

_ Xjj
@ Xjk = ZIEQ Nii
® % = (Xik,- -+ Xjks - -+ Xpk) | is the k class centroid.
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Linear Regression with Elastic Net Penalty

o Elastic net penalty

max (g, gereyr | Y108 P(gilx) = A | DD (alByl + (1 — )5y)

N K p
i=1 k=

1j=1

Number of Genes

2308 2050 1223 508 284 150 81 43 23 15 10 5 1 -

S Training o
10-fold CV pooe @ r
s o] — Tet ) ]
& g =
i3 ) = =
381 -
: Lo |

Amount of Shrinkage A —_—
T

T T T T T T
10 05 00 05 10 -10 -05 00 05 10 -10 05 00 05 10 -10 -05 00 05 10

Centroids: Average Expression Centered at Overall Centroid
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Nearest-Neighbor Methods

@ The nearest-neighbor methods use those
observations in the training set 7 closest in e

N

the input space to x to form f.

&(x) = majority,,c n, (& (xi) /\\
‘ 5o
@ nice, but suffers the curse of dimensionality. /
E A
° N
% 3 o) (6}
3 0
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Disciminang Adaptive Nearest-Neighbor Methods (DANN)

@ The metric at a query point is defined by
D(x,x0) = (x — XO)T):(X - X0)

@ where X ) ) X
Y=WT2[W2BW™2 +€l|W™2

@ where € = 1 adjusts the neighbourhood and

@ W, B are within and between class covariance fitted at the neighbourhood.

@ Close to the class boundary,
the X shrinks out of the
boundary

@ in the interior it remains
circular.
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Local Likelihood and other methods

@ Logistic and log-linear models involve the covariates in a linear fashion.
o We fit the model locally at xy and weight the loglik by the kernel ky
@ and center the estimate at xg.

N

UBy) = Zk,\(xoaxi)f(}/i,(x*Xo)Tﬁxo)

i=1

N
= Z kx(x0, x;) {y,ﬂ)z(;(x,- —xp) — log(1+ eﬁxro(x"_x"))}
i=1

o <

3 3

o o
a ° a ©°
5 o 5 o Note: Increased prevalence for
@ o (] o
e £ small values due to retrospec-
s = s . .
s ° s ° tive data: some people with
a a .

3 3 diagnosed CHD started more

o | o healthy life.

o Il 1T o NI Il

100 140 180 220 15 25 35 45
Systolic Blood Pressure Obesity
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Generalized Additive Model (gam)

o Each feature X; is approximated by a natural spline.
@ The overall model is:

logit[P(CHD|X)] = 0o + h1(X1) 701 + ha(X2) "0z + ... + hy(X,) 76,

@ 0; are vectors of coefficients multiplying their associated vector of natural
spline basis functions h;

o four basis functions (three inner knots) per spline in this example.

@ binary familyhist with a single coefficient.

@ Combine all p vectors of basic functions into one big vector h(X),
df =1+377 , df;

@ each basis function is evaluated at each of the N samples

@ resulting in a N x df basis matrix H.

@ and use 'standard’ logistic regression.
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South African Heart Disease continued

o
- O
- B g°
@ Alcohol not significant by @ S -
= £
AIC test ° B
@ covariance Cov(0) is "L e
estimated by O N
Y = (HTWH)~ i
o W the diagonal weight :’ EN
matrix S E
@ variance of a single variable - =,
Jis: L AT B —_ _
o (X)) = Var[£(X))] = R 7 fambisw
re
hi(X;) " xiihi(X;) - )
@ error bounds = e
A w" 0
X;) £ 2/vi(X;). 5. G
&= =
TEETE gone [ S
o esrcy age
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Summary

o likelihood example
@ logistic regression
ext. logistic regression with L; penalty, elastic net penalty
@ linear and quadratic discriminant analysis
ext. regularized discriminant analysis
ext. reduced rank discriminant analysis
ext. diagonal discriminant analysis
@ Nearest-neighbor methods
o k-NN
o Local likelihood (local logistic regression)
ext. Discriminating Adaptive NN methods (DANN)

? Support Vector Machines
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Separating hyperplane, Optimal separating hyperplane

Classification, we encode the goal class by —1 and 1, respectively.
separate the space X by a hyperplane

Linear Discriminant Analysis LDA is not necessary optimal.
Logistic regression finds one if it exists.

Perceptron (a neural network with one neuron) finds separating hyperplane
if it exists.

o The exact position depends on initial parameters.

FIGURE 4.16. The same data as in Figure §.14.

i The shaded region delineates the mazimum margin sep-
FIGURE 4.14. A toy example with two classes sep-

arable by a hyperplanc. The orange line is the least
squares solution, which misclassifics one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with

arating the two classes. There are three support points
indicated, which lic on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using
logistic regression (red line), which is very close to the
optimal separating hyperplane (sce Section 12.3.3).

different random starts.
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Optimal Separating Hyperplane (separble case)

We define Optimal Separating Hyperplane as a separating hyperplane with

maximal free space M without any data point around the hyperplane.
Formally:

max
8,80, 118]1=1

subject to y;(x” B+ Bo) > M forall i=1,... N.

de—

Bo+ATz=0

YEETE  Support Vector Machines 14 28 - 46 March 8, 2024
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Formally:
max M
B.,80,118]I=1

subject to y;(x B+ Bo) > M foralli=1,... N.
We re-define: ||3]| = 1 can be moved to the condition (and redefine 3p):

Hﬁ”y’(x B+ Bo) >

Since for any 8 and 3y satisfying these inequalities, any positively scaled multiple
satisfies them too, we can set ||3|| = 7 and we get:

2
min — /3
58,50 2” ”

subject to y;(x” B+ Bo) > 1proi=1,...,N.
This is a convex optimization problem. The Lagrange function, we look for the
saddle point w.r.t. 8 and So:

N
= 18I = eulyi o7+ o) 1.
i=1
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N
Lo = JI817 ~ 3 eul78 + o) — 1.
i=1

Setting the derivatives to zero, we obtain:

N
5 = Z Q;yiXi
i=1
N
0= Z QY
i=1

Substituing these in Lp we obtain the so—called Wolfe dual:

subject to a; > 0
The solution is obtained by maximizing Lp in the positive orthant, for which
standard software can be used.

P  Support Vector Machines 14 28 - 46 March 8, 2024
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N N N
.
Lp = E o — E E QGOLYiYEX; Xk
i=1 i=1 k=1

subject to a; > 0.

In addition the solution must satisfy the Karush—Kuhn—Tucker conditions:

ailyi(x” B+ Bo) —1] =0

for any i, therefore for any a; > 0 must [y;(x;' 8+ Bo) — 1] = 0, that means x; is

on the boundary and for all x; outside the boundary is a; = 0.

The boundary is defined by x; with a; > 0 — so called support vectors.

We classify new observations

~

G(x) = sign(xTﬂ + Bo)

@ where = Z,N:l Qi yiXi,
o o =ys — x] 3 for any support
vector ag > 0.

Ll Support Vector Machines 14 28 - 46
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Optimal Separating Hyperplane (nonseparble case)

@ We have to accept incorrectly classified instances in a non—separable case.
@ We limit the number of incorrectly classified examples.
We define slack ¢ for each data point (&1, ...,&n) = £ as follows:
o & is the distance of x; from the boundary for x; at the wrong side of the
margin
e and & =0, for x; at the correct side.
We require Z,N:1 & < K.
We solve the optimization problem

max
BBo;118]1=1

subject to:
yi(x' B+ Bo) = M(1— &) m

where Viis & >0a 1 & < K.
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Optimal Separating Hyperplane (nonseparble case)

Again, we omit replace the condition || 3| by defining M = ﬁ and optimize

: : yi(xT B+ fo) > (1 - &)Vi
min || 3] subject to { & >0, & < constant

We replace the constant by a multiplicative parameter v and solve

N
1

min — + i

min 3115 wgg

subject to & > 0 and yi(x" B+ o) > (1 - &).
@ We can set v = oo for the separable case.
@ Large v: a complex boundary, fewer support vectors.
@ Small v: a smooth boundary, a robust model, many support vectors.

@  usually set by crossvalidation.
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We solve
1 N
. 2
min = + i
min 2Hﬂll Y ;:1 3

subject to & > 0 and y;(x,” B+ Bo) > (1 — &).
Lagrange multipliers again for «;, u;:

N
||/3H2+725, Za,[y,Xﬂ+Bo) 1—&) =D s
i=1

i=1

Setting the derivative = 0 we get:

N
= Z Q;jyiXj
i=1
N
0= Z a;y;i
i=1

Qj =7 — Hi.
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Substitute to get Wolfe dual:

N N

N
Lp = Z o — Z Z QO YiYiX; Xk
i=1 1 k=1

and maximize Lp subject to 0 < a; <y a Z,N:l a;y; = 0.
Solution satisfies:
ailyi" B+ o) —(1—&) = 0
i
vilx"B+Bo)—(1-&)] > 0

|
o

@ The solution is ﬁA = Z,N:l Q;Yix;i.
@ support points with nonzero coefficients &; are
e points at the boundary
o & =0 (therefore 0 < a; < 7),
e and points on the wrong side of the margin
e & >0 (and o = 7).
@ Any point with £ = 0 can be used to calculate [, typically an average.
e [ for a boundary point a; > 0, & = 0:

5 =
o [(xTB+ Bo) — (1-0)] =0
I Eiiiﬁiﬁﬁi ai iffﬂprl hv tiinino (craccvalidatinp)
Support Vector Machines 14 28 - 46 March 8, 2024
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SVM Solution

.. oa N 4 .
@ The solution is 8 =Y "._; &iyix;. %1 ’
@ support points with nonzero .|
coefficients &; are Tl @) =
e points at the boundary o
°l f@ =0 I /18l

° g = 0 (therefore 0 < ar < v), m ~
e and points on the wrong side of 34
the margin PR

°§>0(ando7,-:7)_ 2 R S

@ Any point with £ = 0 can be used = |
to calculate [y, typically an average. 05 o o 1o L

° ,[% for a boundary point & = 0:
@i [yi(TB+ Bo) — (1 0)] =0

o a=¢& =0 for points 1,4,8,9,11
e a >0, =0 for points 2,6,8

. . 04 05 08 10
° oints 3.5. e
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Support Vector Machines

Let us have the training data (x;, y;)Y;, x; € RP, y; in {—1,1}. We define a
hyperplane

{x:f(x)=x"B+ Bo =0} (1)
where [|3]| = 1.
We classify according to

G(x) = sign [XTB + ﬂo]
where f(x) is a signed distance of x from the hyperplane.

Support vector machines replace the scalar product (x;, x) by a kernel
function.

f(x) = Bx+ Bo
N
F) = D iy x+ fo

k=1

N
?(X) = Zé\é,‘y,'<X,',X + 3

?(X) = ZO‘)/I Xn +ﬁ0
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SVM Example

@ kernel functions are function to replace scalar
product with a scalar product in a transformed

space.

SVM - Degree-4 Polynomial in Feature Space

dth Degree polynomial:

K(x,x‘) =(1+ <x,x|))d

Radial basis

2

K(x,x!) = exp(=270)

Neural network

K(x,x1) = tanh(k1(x, x1) + ko)

@ For example a degree 2 with two dimensional input:
K(x,x') = (1+ (x,x))? =
(1 + 2x1x] + 2x0x5 + (x1x1)? + (x2x5)? + 2x1x] X2X5)
o thatis M =6, hi(x) = 1, ha(x) = v2xq,
h3(x) = V2x2, ha(x) = x2, hs(x) = x3,

hG(X) = \/§X1X2.

The classification function

F(x) = h(x)TB+Bo = Sy aiyi{h(x), h(x;)) + o

does not need evaluation of h(i), only the scalar

product (h(x), h(x;)).
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String Kernels and Protein Classification

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK

o Consider all possible sequences of length m.

@ We define a feature map

Om(x) = {da(x)}aca,

@ The kernel function is the inner product:

Kin(x1,%2) = (®m(x1), Pm(x2)).
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SVM as a Penalization Method

o We fit a linear function wrt. basis

{hi(x)}: f(x)=hTB+ po. e

—— Hinge Loss

—— Class Huber

Binomial Deviance
Squared Error

o Consider the loss function i
Lly,f) =[1 - yfl+ e
o The optimization problem 2
. N 2
mingo,s Y i [1—yfle +AIBIT o]
@ is equivalent to SVM = 2 a0 1z o3
H 1 2 N yf
° mlanﬁO 5”6” + ry Zi:l gf
o subject to f,‘ 2 0 and Loss Function| Lly, f(2)] Minimizing Function
T
yilx "B+ Bo) = (1 - &). P
@ is similar to smoothing splines g ol o B
penalty: SVM Hinge 1—yf(@))+ f(z) = sign[Pr(Y = +1[z) — 4
) N T Loss
® MiNa, Zi:l[l - yf]+ + Ao’ Ka Squared | [y~ f@)f = [1 - yf (@) Fla) = 2Pr(Y = +1]a)— 1

Error

o where o’ Ka = J(f) is the —
smoothing penalty. Square

Hinge Loss

—dyf(z) yf(w) <-1

1—yf(z))2 otherwise

fla) =2Pr(Y = +1jz) - 1

S (s 4E)
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SVM and Kernel Dimsension

@ The first Simulated example
o 100 observations of each class
o First class: four standard normal
independent features

X1, X2, X3, Xa.
e Second class conditioned on
9 < Z )(12 < 16. Test Error (SE)
Method No Noise Features Six Noise Features
@ Second example SV Classifier 0 150 (0.003) 0.472 (0.003)
. . SVM/poly 2 0.078 (0.003) 0.152 (0.004)
o The first one augmented with an /) 105 0.180 (0.004) 0.370 (0.004)
additional six standard Gaussian SVM/poly 10 | 0.230 (0.003) 0.434 (0.002)
. BRUTO 0.084 (0.003) 0.090 (0.003)
noise features. MARS 0.156 (0.004) 0.173 (0.005)

e BRUTTO: Additive spline model.

@ BRUTTO and MARS has the ability
to ignore noisy features.

@ We can see the overfitting of SVM.
The degree 2 polynomial kernel is
the best since the decision boundary
is quadratic.
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SVM

SVM Complexity

The SVM complexity is m® 4+ mN + mpN, where m is the number of support

vectors.

Parameter tuning for different radial basis lengthscale ~.

¥y=5 vy=1 v=0.5 v=0.1
8
5
m-w’
4
o / o
[ & rs \
o §f o
/ / ™
4
] \
r
Q
° \&/‘
e
e e e e
&
° T T T T T T T T T T T T
1le-01 le+01 1e+03 le-01 le+01 1e+03 le-01 1le+01 1e+03 le-01 le+01 1e+03
C
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SVM for Regression

e In regression, we fit a function: f(x) = x"3 + o
@ We consider error function V. (left figure)

if
V() = {0 if [r| <,

|r| — €, otherwise.

@ and minimize:

N
A
H(B, Bo) =D _ Velyi — () + 51181
i=1
(]
< ! o | i //
= . | =N
- iy o S
4 2 0 2 4 -4 2 [¢) 2 4
T T

YEETE  Support Vector Machines 14 28 - 46 March 8, 2024 44 / 46



SVM for Regression 2

@ The solution has the form: &;,&f > 0

A N
B = Z(@Zf — &y)y,
A ZJ—VI
flx) = (& — &q)(x, zi) + Bo,
=1

@ and solve the quadratlc programming problem
N

1
nnn EZ aj + ;) Zyl o — ;) +3 Z (o — ;) (0 — o) (@i, )
o i—1

0,4’ =1

@ subject to the constraints
0<ay, of <1/A,

N
5070&77

aa; =0.
@ Support vectors are those with nonzero (a - a,)
@ With scaled response y, you may use the default €
@ A is tuned by cross-validation.
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SVR

sklearn.svm.SVR

Support Vector Regression

—— RBF model —— Linear model — Polynomial model
O RBF support vectors 5 Linear support vectors ©  Polynomial support vectors
O other training data O other training data © other training data

target

0 1 2

3
— EmETE ] s

4 5 0 1

2 3 4 5
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