Unsupervised Learning

@ No goal class (either Y nor G).
@ We are interested in relations in the data:
Clustering Are the data organized in natural clusters? (Clustering,
Segmentation)
k-means
hierarchical clustering
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)
Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) /ater
Other The Elements of Statistical Learning Chapter 14

SOM Self Organizing Maps
PCA Principal Component Analysis Linear Algebra; k linear

combinations of features minimizing reconstruction error (=

first k principal components).
o Principal Curves and Surfaces, Kernel and Spare Principal
Components
ICA Independent Component Analysis.

Machine Learning Clustering 8 1-30 April 11, 2025

1/30



Clustering Example

@ We have unlabeled train data.
o We want to assign same cluster/color to nearby points.

@ You may not be able to recover the true data origin if the mixture
components overlap.

3 clusters, k-means
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K — means !

K—means

1: procedure K—MEANS:(X data, K the number of clusters )
2 select randomly K centers of clusters juy

3 # either random data points or random points in the feature space
4 repeat

5: for each data record do

6 C(xi) < argmingeqa,.. kyd(xi, pik)

7 end for

8 for each cluster k do # find new centers

9 He = D iClx) =k \ch)\

10: end for

11: until no chance in assignment

12: end procedure
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K — means

K—means

The t iterations of K—means algorithm take O(tKpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.

May not be robust to data sampling.

o We may generate datasets by bootstrap method.
o The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).

@ Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance

measures:

= /0 e = )2

Euclidian d(x:, x;)
Hamming (Manhattan) | d(xi,x;) = > o, [xir — X;r|
overlap (prekryti) Y . .
categorical variables 06, 5) = 2or—y 10xr # X5r)
L > (i)
cosine similarit s(x;, x
y ( ! J) \/Zr 1 Xﬂ le) Z (X/r Xl’
cosine distance d(xi,x;)=1-— Z'*l(x" )

\/Zle(Xjf'Xj')'Zle(Xir‘Xr’r)
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Other Distance Measures

20
1

Observation 1
= Observation 2
Observation 3

15

10

Variable Index

Correlation Proximity
o Euclidian distance: Observations 1 and 3 are close.
o Correlation distance: 1 and 2 look very similar.

px,y = corr(X,Y) = cov(X, Y) _ E[(X — pux)(Y — py)]

OXx0y OX0y
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Distance — key issue, application dependent

The result depends on the choice of distance measure d(x;, fk).
The choice is application dependent.

Scaling of the data is recommended.

Weights for equally important attributes j are: w; = aij where

N N
7 2 ) = gz 2 Dl = 1)
i1: :

Total distance as a weighted sum of attribute distances.

Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi,xe) < d(xi, %) + d(xr, x¢)-
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Alternative ldeas

@ Scaling may remove natural clusters S« S x
o Weighting Attributes

o Consider internet shop offering socks and computers.
o Compare: number of sales, standardized data, $

1500

1000

m . .

Socks  Computers Socks  Computers Socks  Computers
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l

o Notice that W(C) is decreasing also for uniformly distributed data.

@ We look for small drop of W(C) as a function of K or maximal difference
between W(C) on our data and on the uniform data.

o Total cluster variation is the sum of between cluster variation and within
cluster variation

N
> d(xi, x) = W(C) + B(C)

iil=1

DD IS DICEN D DI DN DICR )

k=1 C(i)=k C(il)=k k=1 C(i)=k C(il)k

T =

I\JM—l

l\)\l—l
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GAP function for Number of Clusters

o denote W the expected W for uniformly distributed data and k clusters, the
average over 20 runs

o GAP is expected log(Wj) minus observed log(W (k))

K* = argmin{k|G(k) > G(k+1) — S,LH}

1
S,L = s/1+ 20 where s is the standard deviation of log( W)

log W

Machine Learning
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Silhouette

For each data sample x; we define Optimal number of clusters k
e a(i) = ﬁ eCizi d(i,j) if |G| > 1 may be selected by the SC.

e b(i) = ml'nk;éiﬁ ZjeCk d(i,j)

Definition (Silhouette
Score)

Definition (Silhouette) The Silhouette score is

N .
Silhouette s is defined % > s(i)-
N — _b)—ald) o
o s(i) = max{a(i),b(i)} if ]Gl > 1 ilhouette is always between

e s(i) =0 for |G| =1. ;
i o —1<s(i)<1.
Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.
0.8

e Note: One cluster (—1,1),(1,1),
other cluster (0,—1.2),(0,—1.1),
the point (0,0) is assigned to the
first cluster but has a negative sil-

Cluster label
Feature space for the 2nd feature

houette. https:/ /stackoverflow.com/a /66751204

0100 02 04 06 08 10 -02 00 02 04 06 08
The silhouette coefficient values Feature space for the 1st feature
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Country Similarity Example

o Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG
BRA | 5.58
CHI | 7.00 6.50
CUB | 7.08 7.00 3.83
EGY | 4.83 5.08 8.17 5.83
FRA | 217 5.75 6.67 6.92 4.92
IND |6.42 5.00 558 6.00 4.67 6.42
ISR | 342 550 6.42 6.42 5.00 3.92 6.17
USA | 250 4.92 6.25 7.33 4.50 225 6.33 2.75
USS | 6.08 6.67 4.25 267 6.00 6.17 6.17 692 6.17
YUG | 525 6.83 450 3.75 575 542 6.08 583 6.67 3.67
ZAL |4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 567 6.50 6.92
Machine Lear Clustering 8 1-30 April 11, 2025
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1: procedure K-MEDOIDS:( X data, K the number of clusters )
2 select randomly K data samples to be centroids of clusters
3 repeat

4 for each data record do

5: assign to the closest cluster

6 end for

7 for each cluster k do # find new centroids iy € Cj

8 Iy 4= argming;.c(iy=k} Zc(n):k d(xi, x;1)

9 end for

10: until no chance in assignment

11: end procedure

@ To find a centroid requires quadratic time compared to linear k—means.
@ We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K—-medoids take O(tkpN?).
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Clusters of Countries

@ Survey of country dissimilarities.
o Left: dissimilarities

o Reordered and blocked according to 3-medoid clustering.

o Heat map is coded from most similar (dark red) to least similar (bright red).
@ Right: Two-dimensional multidimensional scaling plot

e with 3-medoid clusters indicated by different colors.
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Multidimensional Scaling

@ The right figure on previous slide was done by Multidimesional scaling.
@ We know only distances of countries, not a metric space.
o We try to keep proximity of countries (least squares scaling).

@ We choose the number of dimensions p.

Definition (Multidimensional Scaling)

For a given data xi, ..., xy with their distance matrix d, we search
(z1,...,2zn) € RP projections of data minimizing stress function

1

2

So(z,- .y zn) = | >_(dlxi, xe] — |1z — z|)?

il

o It is evaluated gradiently.

@ Note: Spectral clustering.
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

o closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = 11T Loxecanecs 4% %)

@ Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paus)® — > d(xi, pa)* = Y d(xi, pg)?

i€CaUCg i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)

o where 1 are the centers of clusters (A, B and joined cluster).
e It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

@ Dendrogram is the result plot of a hierarchical clustering.

o Cutting the tree of a fixed high splits samples at leaves into clusters.

e The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage

.
i

— —]
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Interpretation of Dendrograms — 2 and 9 are NOT close

Samples fused at very bottom are close each other.

Machine Leal
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Gaussian Mixture Model

@ Assume the data come from a set of k gaussian distributions

@ each with
e prior probability
e mean pik
e covariance matrix X
_ 1 =3 =) TE T =)
° X) = —F/———e 2 k .
¢Nk:zk( ) )P 1ohl

@ We want to find the maximum likelihood estimate of the model parameters.

@ We use (more general) EM algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
density

00 02 04 06 08 10

VNN

IIIIII IIIIIII
0 2 4 6

y y

0 2 4 6
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EM learning of Mixture of K Gaussians !

o Model parameters 7y, . .., Tk, fi1, - - -, flk, 21, - - -, L such that S5 7 = 1.

@ Expectation: weights of unobserved 'fill-ins' k of variable C:

pix = P(C=klx))=a-P(x|C = k) P(C;= k)
_ TkPa(xi)
Z;(:l 7T/¢0/ (Xi)

N
Pk = Zpik
i=1

@ Maximize: mean, variance and cluster 'prior’ for each cluster k:

273 Z %XI

plk
Yo E — )"
Pk
Tk < K .
Z/:1 Pi
[V Gl Clustering 8 1-30 April 11, 2025
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Dirichlet Process mixture modeling x

o LiY, Schofield E, Gonen M. A tutorial on Dirichlet Process mixture modeling.
J Math Psychol. 2019 https://pmc.ncbi.nlm.nih.gov/articles/PMC6583910/
@ How many clusters?
o Always some probability of a new cluster.
o Decreases with the current number of clusters.
o Represented as Dirichlet process (or the Quasi-Bernoulli) Stick-breaking
Process
o Finite Mixture Model (fitted by EM algorithm)
o K clusters with its means i, covariance matrices X and prior probabilities
mk. Here, Y me=1.
o The likelihood of the model is defined as a mixture of Gaussian distributions

K
p(_yi|/,61,...7/.,LK,217...,Z}(77F1,...,7I'K) = Zﬂ'kN(Xi;,LLk,z;())
k=1

@ Dirichlet process prior
e we introduce the concentration parameter o
o The (prior) probability of a new cluster K + 1 is 5=

n_jk

o The probabilities of a cluster k is: p(cilc—i, @) = g5
where the assignment c_; of all samples except the i-th is known and n_; « is
the number of samples in the cluster k where the sample i does not count.
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Dirichlet Process mixture priors

@ We also add prior on the mean of a new cluster N(1ug, Xo)
@ and a prior on the variance of the new cluster

@ actually, on the concentration Y1 that has the Wishard distribution and its

one-dimensional version is denoted by 7.
2

x*

@ and we assume the irreducible noise on x to be known o
@ Inside each cluster, the posterior mean is:

Ziek XiTk + HoTo
N7k + To

Mo =

@ the posterior variance is

1
21 2
NgTk + To
o With large amount of data ny the prior pp has minimal influence.

@ The probability of a sample i being from the cluster k is:

Mok (x Z’EkX'Tk+M°T°, L »2).
N-1+a NTk + To NgTk + To

p(ci‘c—ia#vakaa) =
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MCMC re-assignment

@ To make the clustering ordering independent, we iteratively re-assign the
samples to a new cluster for predefined number of iterations.
Algorithm 1: DPMM Algorithm

input : o, g, 0f. 02 (eg., o =001, gy =008 = I;- 3,02 = I, 1%,

where I'is an identity matrix of d = 2), 7y = 1/od, 7, = 1 /0.
output: a MCMC chain of simulated values of ¢,
1 Given the concentration parameter o and the state of the Markov
chain {p}’ N T Y 1) sample a new set of {7V} and !9
z for ¢ « 1 to mariter do
3 for i + 1 to n do

4 Remove y; from cluster o; because we are going to draw a new

sample of ¢; for ;.

5 If the previous step canses a cluster to becomes empty, then
remove the cluster, its corresponding parameters, and
rearrange the order of the clusters into contiguous 1.2, ..., Fig
l)m\\‘ cile_;, i from:
Clustering 8 1-30 April 11, 2025
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[ Draw e;|e_;, y from:
T for b« 1to K +1do
8 Caleulate the probability of ¢; = k using
] ple; = Ele_ ) =
Moik  ar (l- : Iy Ty + oo 1

n—14+a ) nmETe T TR+ 70
10 Calculate the probability of ¢; = & + 1 using
11 pleg # ep Wi # dleg, ) x ﬁg\,"(gf,:u...aﬁ + 03).
12 if ¢; = k for some j # ¢ then
13 Update gy, ng, 7 according to e; = k.
14 else
15 ;= K + 1, a new cluster has been created. Append

16 end

17 end

18 Set elt) = ¢,
19 end

20 return ¢

Qg 6 Ty

this new cluster to the vector of non-empty clusters,
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Kernel Density Estimation

o Kernel Density Estimation is an unsupervised procedure
@ We smooth the density estimate in the neighbourhood A (xg) with

lengthscale A
A #x; € N(x
x() NX )

@ by the Parzen kernel estimate

N

N 1

fx(x0) = N E Kx(xo, xi),
i=1

@ Popular choice for K is the Gaussian kernel density ¢, .

Density Estimate
0.005 0.010 0.015 0.020

0.0

i f i 1
100 120 140 160 180 200 220

Qustalic Rlnnd Pressiire (for CHD arnin)
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Kernel Density Classification

@ We may estimate Kernel Density for each target class k = 1,..., K, estimate
class priors m, and use Bayes' theorem:

7T/<7%/<(X0)

PAr(G:k‘X:X()): =K -, <
Zj:l 7 fi(%0)

@ by the Parzen kernel estimate
T
fx(XO) = m ; K)\(Xo,X,'),

@ Popular choice for Ky is the Gaussian kernel density ¢, .

. s S0 . 2
g g g
E s £,
i ge
z g o Y
£ S 3
8 é «
S o0
=3 = .
° ° FIGURE 6.15. The population class densities may
100 140 180 220 100 140 180 220 - ) ;
Systoll Blood Pressure Systolic Biood Pressare have interesting structure (left) that disappears when

the posterior probabilities are formed (right).
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Radial Basis Functions and Kernels for Regression

@ The kernels do not have to be placed at all observation points.

@ We may select (fit) prototype parameters £ and scale patameters \; to place
pre-defined number of kernels Ky (§;,x), j€1,...,M,\; e R, § € X.

@ and then fit the density as a linear function of kernels as basis

M
Fx) = 2 Ko (G: )8,
j=1
@ We should either fit the lengthscale parameters ); or re-normalize the radial

basis functions. Otherwise, the RBF can leave holes (upper figure,
re-normalized down).

@
©
°
@
S

\
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Mixuture Models for Density Estimation and Classification

@ One RBF kernel was fitted for each class

@ The data sample is classified according the more probable label (let kernels
vote).

@ If the covariance matrices are constrained to be scalar ¥, = o,/, we actually
fit the naive Bayes model.

@ In this case, this method was as good as logistic regression.

No CHD CHD Combined
20 3 40 S0 6 0 3 4 50 60 20 3 4 50 60
Age Age Age

0.0025

0.0015

Mixture Estimate
Mixture Estimate

00 0005 0010 0015 0.020 0025
Mixture Estimate

00 0005 0010 0015 0.020 0025

/

00 0.0005

20 30 40 S0 60 20 3 40 50 60 20 30 40 50 60
Age Age Age
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Summary

@ K-means clustering - the basic one

o the number of clusters:
o GAP
o Silhouette

The distance is crucial.
o Consider standardization or weighting the features.

K-medoids - does need metric, just a distance

hierarchical clustering

o different distance measures
e dendrogram

other approaches (mixture of Gaussians, Dirichlet Process Mixture Model,
mean shift clustering, Self Organizing Maps, Spectral Clustering).
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Mean Shift Clustering (from here just notes)

Mean Shift Clustering

1: procedure MEAN SHIFT CLUSTERING:(X data, K(-) the kernel, A the

bandwidth )
22 C+0
3: for each data record do
4: repeat # shift Atlaach mean x to the weighted average
5 m(x) + Z'ﬁvl MO

Zi:l e =)

6 until no chance in assignment
7 add the new m(x) to C
8 end for
9: return prunned C

10: end procedure

Kernels:
o flat kernel A\ ball

llx =12
o Gaussian kernel K(x; —x) =e 2
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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