
Unsupervised Learning
No goal class (either Y nor G).
We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,
Segmentation)
k-means
hierarchical clustering
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)

Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) later

Other The Elements of Statistical Learning Chapter 14
SOM Self Organizing Maps
PCA Principal Component Analysis Linear Algebra; k linear

combinations of features minimizing reconstruction error (=
first k principal components).
Principal Curves and Surfaces, Kernel and Spare Principal
Components

ICA Independent Component Analysis.
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Clustering Example

We have unlabeled train data.
We want to assign same cluster/color to nearby points.
You may not be able to recover the true data origin if the mixture
components overlap.
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K – means !

K–means

1: procedure K–means:(X data, K the number of clusters )
2: select randomly K centers of clusters µk
3: # either random data points or random points in the feature space
4: repeat
5: for each data record do
6: C(xi)← argmink∈{1,...,K}d(xi , µk)
7: end for
8: for each cluster k do # find new centers µk
9: µk =

∑
xi :C(xi )=k

xi
|C(k)| .

10: end for
11: until no chance in assignment
12: end procedure
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K – means

K–means

The t iterations of K–means algorithm take O(tKpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.
May not be robust to data sampling.

We may generate datasets by bootstrap method.
The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).
Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance measures:
Euclidian d(xi , xj) =

√∑p
r=1(xir − xjr )2

Hamming (Manhattan) d(xi , xj) =
∑p

r=1 |xir − xjr |

overlap (překrytí)
categorical variables d(xi , xj) =

∑p
r=1 I(xir ̸= xjr )

cosine similarity s(xi , xj) =
∑p

r=1
(xir ·xjr )√∑p

r=1
(xjr ·xjr )·

∑p
r=1

(xir ·xir )

cosine distance d(xi , xj) = 1−
∑p

r=1
(xir ·xjr )√∑p

r=1
(xjr ·xjr )·

∑p
r=1

(xir ·xir )
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Other Distance Measures

Correlation Proximity
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Variable Index

Observation 1

Observation 2

Observation 3

1
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3

Euclidian distance: Observations 1 and 3 are close.
Correlation distance: 1 and 2 look very similar.

ρX ,Y = corr(X , Y ) = cov(X , Y )
σX σY

= E [(X − µX )(Y − µY )]
σX σY
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Distance – key issue, application dependent

The result depends on the choice of distance measure d(xi , µk).
The choice is application dependent.
Scaling of the data is recommended.
Weights for equally important attributes j are: wj = 1

d̂ j where

d̂j = 1
N2

N∑
i1=1

N∑
i2=1

dj(xi1 , xi2) = 1
N2

N∑
i1=1

N∑
i2=1

(xi1 [j]− xi2 [j])2

Total distance as a weighted sum of attribute distances.
Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi , xℓ) ≤ d(xi , xr ) + d(xr , xℓ).
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Alternative Ideas

Scaling may remove natural clusters
Weighting Attributes

Consider internet shop offering socks and computers.
Compare: number of sales, standardized data, $
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Number of Clusters
We may focus on the Within cluster variation measure:

W (C) = 1
2

K∑
k=1

∑
C(i)=k

∑
C(i|)=k

d(xi , xi|)

Notice that W (C) is decreasing also for uniformly distributed data.
We look for small drop of W (C) as a function of K or maximal difference
between W (C) on our data and on the uniform data.
Total cluster variation is the sum of between cluster variation and within
cluster variation

T (C) = 1
2

N∑
i,i|=1

d(xi , xi|) = W (C) + B(C)

= 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|)=k

d(xi , xi|)) + 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|) ̸=k

d(xi , xi|))
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GAP function for Number of Clusters
denote Wk the expected W for uniformly distributed data and k clusters, the
average over 20 runs
GAP is expected log(Wk) minus observed log(W (k))

K∗ = argmin{k|G(k) ≥ G(k + 1)− s |
k+1}

s |
k = sk

√
1 + 1

20 where sk is the standard deviation of log(Wk)
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Silhouette

For each data sample xi we define
a(i) = 1

|Ci |−1
∑

j∈Ci ,i ̸=j d(i , j) if |Ci | > 1

b(i) = mink ̸=i
1

|Ck |
∑

j∈Ck
d(i , j)

Definition (Silhouette)
Silhouette s is defined

s(i) = b(i)−a(i)
max{a(i),b(i)} if |Ci | > 1

s(i) = 0 for |Ci | = 1.

Optimal number of clusters k
may be selected by the SC.

Definition (Silhouette
Score)
The Silhouette score is
1
N

∑N
i s(i).

Silhouette is always between
−1 ≤ s(i) ≤ 1.
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The visualization of the clustered data.
Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Note: One cluster (−1, 1), (1, 1),
other cluster (0, −1.2), (0, −1.1),
the point (0, 0) is assigned to the
first cluster but has a negative sil-
houette. https://stackoverflow.com/a/66751204
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Country Similarity Example

Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.
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K–medoids

1: procedure K–medoids:( X data, K the number of clusters )
2: select randomly K data samples to be centroids of clusters
3: repeat
4: for each data record do
5: assign to the closest cluster
6: end for
7: for each cluster k do # find new centroids i∗

k ∈ Ck
8: i∗

k ← argmin{i :C(i)=k}
∑

C(i|)=k d(xi , xi|)
9: end for

10: until no chance in assignment
11: end procedure

To find a centroid requires quadratic time compared to linear k–means.
We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K–medoids take O(tkpN2).
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Clusters of Countries
Survey of country dissimilarities.
Left: dissimilarities

Reordered and blocked according to 3-medoid clustering.
Heat map is coded from most similar (dark red) to least similar (bright red).

Right: Two-dimensional multidimensional scaling plot
with 3-medoid clusters indicated by different colors.
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Multidimensional Scaling

The right figure on previous slide was done by Multidimesional scaling.
We know only distances of countries, not a metric space.
We try to keep proximity of countries (least squares scaling).
We choose the number of dimensions p.

Definition (Multidimensional Scaling)
For a given data x1, . . . , xN with their distance matrix d , we search
(z1, . . . , zN) ∈ Rp projections of data minimizing stress function

SD(z1, . . . , zN) =

∑
i ̸=ℓ

(d [xi , xℓ]− ∥zi − zℓ∥)2

 1
2

.

It is evaluated gradiently.

Note: Spectral clustering.
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Hierarchical clustering – Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

closest points (single linkage)
maximally distant points (complete linkage)
average linkage, dGA(CA, CB) = 1

|CA|·|CB |
∑

xi ∈CA,xj ∈CB
d(xi , xj)

Ward distance minimizes the sum of squared differences within all clusters.

Ward(CA, CB) =
∑

i∈CA∪CB

d(xi , µA∪B)2 −
∑
i∈CA

d(xi , µA)2 −
∑
i∈CB

d(xi , µB)2

= |CA| · |CB |
|CA|+ |CB |

· d(µA, µB)2

where µ are the centers of clusters (A, B and joined cluster).
It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

Dendrogram is the result plot of a hierarchical clustering.
Cutting the tree of a fixed high splits samples at leaves into clusters.

The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage
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Interpretation of Dendrograms – 2 and 9 are NOT close
Samples fused at very bottom are close each other.
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Gaussian Mixture Model

Assume the data come from a set of k gaussian distributions
each with

prior probability πk
mean µk
covariance matrix Σk

ϕµk ,Σk (x) = 1√
(2π)p |Σk |

e− 1
2 (x−µk )T Σ−1

k (x−µk ).

We want to find the maximum likelihood estimate of the model parameters.
We use (more general) EM algorithm.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.5. Mixture example. (Left panel:) His-
togram of data. (Right panel:) Maximum likelihood
fit of Gaussian densities (solid red) and responsibility
(dotted green) of the left component density for obser-
vation y, as a function of y.
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EM learning of Mixture of K Gaussians !
Model parameters π1, . . . , πk , µ1, . . . , µk , Σ1, . . . , Σk such that

∑K
k=1 πk = 1.

Expectation: weights of unobserved ’fill–ins’ k of variable C :

pik = P(C = k|xi) = α · P(xi |Ci = k) · P(Ci = k)

= πkϕθk (xi)∑K
l=1 πlϕθl (xi)

pk =
N∑

i=1
pik

Maximize: mean, variance and cluster ’prior’ for each cluster k:

µk ←
∑

i

pik
pk

xi

Σk ←
∑

i

pik
pk

(xi − µk)(xi − µk)T

πk ← pk∑K
l=1 pl

.
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Dirichlet Process mixture modeling×
Li Y, Schofield E, Gönen M. A tutorial on Dirichlet Process mixture modeling.
J Math Psychol. 2019 https://pmc.ncbi.nlm.nih.gov/articles/PMC6583910/
How many clusters?

Always some probability of a new cluster.
Decreases with the current number of clusters.
Represented as Dirichlet process (or the Quasi-Bernoulli) Stick-breaking
Process

Finite Mixture Model (fitted by EM algorithm)
K clusters with its means µk , covariance matrices Σk and prior probabilities
πk . Here,

∑
πk = 1.

The likelihood of the model is defined as a mixture of Gaussian distributions

p(yi |µ1, . . . , µK , Σ1, . . . , Σk , π1, . . . , πK ) =
K∑

k=1

πkN(xi ; µk , Σk))

Dirichlet process prior
we introduce the concentration parameter α
The (prior) probability of a new cluster K + 1 is α

N−1+α

The probabilities of a cluster k is: p(ci |c−i , α) = n−i,k
N−1+α

where the assignment c−i of all samples except the i-th is known and n−i,k is
the number of samples in the cluster k where the sample i does not count.
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Dirichlet Process mixture priors
We also add prior on the mean of a new cluster N(µ0, Σ0)
and a prior on the variance of the new cluster
actually, on the concentration Σ−1 that has the Wishard distribution and its
one-dimensional version is denoted by τ .
and we assume the irreducible noise on x to be known σ2

x .
Inside each cluster, the posterior mean is:

µk =
∑

i∈k xiτk + µ0τ0

nkτk + τ0

the posterior variance is

σ2
k = 1

nkτk + τ0
+ σ2

x .

With large amount of data nk the prior µ0 has minimal influence.
The probability of a sample i being from the cluster k is:

p(ci |c−i , µk , τk , α) = n−i,k
N − 1 + α

N
(

xi ;
∑

i∈k xiτk + µ0τ0

nkτk + τ0
,

1
nkτk + τ0

+ σ2
x

)
.
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MCMC re-assignment
To make the clustering ordering independent, we iteratively re-assign the
samples to a new cluster for predefined number of iterations.

when only the first few customers are seated. The probability of being assigned to tables 1, 

2, and 3 may be roughly comparable. The order of the table assignment can take on a 

different permutation and the overall probability distributions are not affected. These few 

initial observation may run into a problem that resembles the well-known label switching 
problem in Bayesian mixture models (Stephens, 2000; Jasra et al., 2005; Richardson & 

Green, 1997). However, this becomes less likely later on, when more customers go through 

the CRP. The PPDs offer additional stability. Obviously, a meager sample size aggravates the 

problem. Then the problem is really due to insufficient data and not an inherent limitation in 

the algorithm.

5. Implementation of DPMM Computation

5.1. R Program Line-by-Line

Appendix B shows how algorithm 1 can be implemented in R, modified from example 7 

given by Broderick (2017). Variable names in the original program are changed to match our 

notation. The point of this exercise is to make the equations concrete and explicit. It also 

shows how computer programming complements methodology development. We will thus 

focus on the most sub-stantively important lines of code. Annotations added throughout this 

example should make the programming code easier to follow.

Li et al. Page 16

J Math Psychol. Author manuscript; available in PMC 2020 August 01.
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Kernel Density Estimation
Kernel Density Estimation is an unsupervised procedure
We smooth the density estimate in the neighbourhood N (x0) with
lengthscale λ

f̂X (x0) = #xi ∈ N (x0)
Nλ

by the Parzen kernel estimate

f̂X (x0) = 1
Nλ

N∑
i=1

Kλ(x0, xi),

Popular choice for Kλ is the Gaussian kernel density ϕλ.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.13. A kernel density estimate for systolic
blood pressure (for the CHD group). The density es-
timate at each point is the average contribution from
each of the kernels at that point. We have scaled the
kernels down by a factor of 10 to make the graph read-
able.
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Kernel Density Classification

We may estimate Kernel Density for each target class k = 1, . . . , K , estimate
class priors πk and use Bayes’ theorem:

P̂r(G = k|X = x0) = πk f̂k(x0)∑K
j=1 πj f̂k(x0)

.

by the Parzen kernel estimate

f̂X (x0) = 1
Nλ

N∑
i=1

Kλ(x0, xi),

Popular choice for Kλ is the Gaussian kernel density ϕλ.
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FIGURE 6.14. The left panel shows the two separate
density estimates for systolic blood pressure in the CHD
versus no-CHD groups, using a Gaussian kernel density
estimate in each. The right panel shows the estimated
posterior probabilities for CHD, using (6.25).
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Radial Basis Functions and Kernels for Regression
The kernels do not have to be placed at all observation points.
We may select (fit) prototype parameters ξj and scale patameters λj to place
pre-defined number of kernels Kλj (ξj , x), j ∈ 1, . . . , M, λj ∈ R, ξj ∈ X .
and then fit the density as a linear function of kernels as basis

f (x) =
M∑

j=1
Kλj (ξj , x)βj ,

We should either fit the lengthscale parameters λj or re-normalize the radial
basis functions. Otherwise, the RBF can leave holes (upper figure,
re-normalized down).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.16. Gaussian radial basis functions in IR
with fixed width can leave holes (top panel). Renormal-
ized Gaussian radial basis functions avoid this problem,
and produce basis functions similar in some respects to
B-splines.
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Mixuture Models for Density Estimation and Classification
One RBF kernel was fitted for each class
The data sample is classified according the more probable label (let kernels
vote).
If the covariance matrices are constrained to be scalar Σm = σmI, we actually
fit the naive Bayes model.
In this case, this method was as good as logistic regression.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.17. Application of mixtures to the heart
disease risk-factor study. (Top row:) Histograms of Age
for the no CHD and CHD groups separately, and com-
bined. (Bottom row:) estimated component densities
from a Gaussian mixture model, (bottom left, bottom
middle); (bottom right:) Estimated component densi-
ties (blue and orange) along with the estimated mixture
density (green). The orange density has a very large
standard deviation, and approximates a uniform den-
sity.

Machine Learning Clustering 8 1 - 30 April 11, 2025 28 / 30



Summary

K-means clustering - the basic one
the number of clusters:
GAP
Silhouette

The distance is crucial.
Consider standardization or weighting the features.

K-medoids - does need metric, just a distance
hierarchical clustering

different distance measures
dendrogram

other approaches (mixture of Gaussians, Dirichlet Process Mixture Model,
mean shift clustering, Self Organizing Maps, Spectral Clustering).
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Mean Shift Clustering (from here just notes)

Mean Shift Clustering

1: procedure Mean Shift Clustering:(X data, K (·) the kernel, λ the
bandwidth )

2: C ← ∅
3: for each data record do
4: repeat # shift each mean x to the weighted average

5: m(x)←
∑N

i=1
K(xi −x)xi∑N

i=1
K(xi −x)

6: until no chance in assignment
7: add the new m(x) to C
8: end for
9: return prunned C

10: end procedure

Kernels:
flat kernel λ ball
Gaussian kernel K (xi − x) = e

∥xi −x∥2

λ2
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List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).
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List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).
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