Version Space Search

- Version space search is one of the first Machine Learning algorithms.
- For us, an introduction to Inductive Logic Programming.
- Our (Tom Mitchell's) toy data:

Example (Tennis Dataset)						
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Overcast	Mild	High	Weak	Yes	
D5	Overcast	Mild	High	Strong	Yes	
D6	Overcast	Hot	Normal	Weak	Yes	
D7	Rain	Mild	High	Strong	No	

Version Space Search

- Our hypothesis is a conjunction of attribute tests that imply PlayTennis = ves.
 - $h = \langle ?, Cold, High, ?, ?, ? \rangle$ represents the hypothesis Temperature = cold & Humidity = high \Rightarrow PlayTennis = ves.
 - ? is satisfied by any value
 - Ø cannot be satisfied
 - \bullet For binary attributes, we have $3^{|\#attributes|} + 1$ hypotheses
 - hypotheses with \emptyset are not satisfiable, therefore they are equivalent.
 - We perform a systematic search.
 - The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)

- The hypothesis h_g is more general than the hypothesis $h_g \succeq h_s$ iff any sample that satisfies h_s satisfies also h_{φ} .
- In the above case, the hypothesis h_s , $h_g \succeq h_s$ is called more specific that h_g .
 - $\langle ?,?,?,? \rangle$ is more general than $\langle Sunny, \ldots, Same \rangle$.
 - The most general hypothesis $\langle ?, ?, ?, ? \rangle$ is satisfied by all data.
 - The most specific hypothesis $\langle \emptyset, \ldots \rangle$ is not satisfied by any data.
 - The hypothesis space for a lattice partially ordered by the 'more general' relation.

Find-S

 We search for a hypothesis satisfied by all positive examples and no negative example.

Find-S (to be improved)

```
1: procedure FIND-S:(X dataset with the goal attritute yes/no)
        h \leftarrow \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle \# the most specific hypothesis
2.
        for each positive data sample x_i do
3:
            for each attribute condition X_i = x_{i,j} in h do
4:
                 if x_i does not satisfy X_i = x_{i,j} then
 5:
                     replace the condition by
6:
                            a closest more general condition satisfied by x_i
 7:
                 end if
8:
            end for
9:
10:
        end for
     return h
11:
12: end procedure
```

Version Space Search

Examp	Example (Tennis Dataset)						
Day	Outlook	Temperature	Humidity	Wind	PlayTennis		
D1	Sunny	Hot	High	Weak	No		
D2	Sunny	Hot	High	Strong	No		
D3	Overcast	Hot	High	Weak	Yes		
D4	Overcast	Mild	High	Weak	Yes		
D5	Overcast	Mild	High	Strong	Yes		
D6	Overcast	Hot	Normal	Weak	Yes		
D7	Rain	Mild	High	Strong	No		

Version Space

Now we look for all hypotheses consistent with the data.

Definition (Version Space)

• The version space for the hypothesis space H and the data X is a subset of H that is consistent with X

$$VS(H,X) = \{h \in H | Consistent(h,X)\}.$$

- The version space is characterized by the most general and the most specific boundary.
- Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)

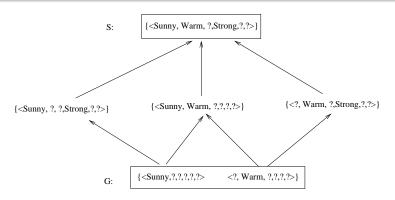
• The general boundary for the hypothesis space H and the data X is a set of most general hypothesis from H that are consistent with X

$$\textit{G}(\textit{H},\textit{X}) = \{\textit{g} \in \textit{H} | \textit{Consistent}(\textit{g},\textit{X}) \& (\nexists \textit{g}_1 \in \textit{H}) [\textit{g}_1 \succ \textit{g} \& \textit{Consistent}(\textit{g}_1,\textit{X})] \}.$$

Definition (Specific Boundary)

• The specific boundary for the hypothesis space H and the data X is a set of most specific hypothesis from H that are consistent with X

$$S(H,X) = \{s \in H | \textit{Consistent}(s,X) \& (\nexists s_1 \in H) [s \succ s_1 \& \textit{Consistent}(s_1,X)] \}.$$



 We search for a hypothesis satisfied by all positive examples and no negative example.

```
1: procedure CANDIDATE-ELIMINATION: (X data, the goal att. yes/no)
         G \leftarrow \{\langle ?, ?, ?, ? \rangle\}, S \leftarrow \{\langle \emptyset, \emptyset, \emptyset, \emptyset \rangle\} \# \text{ general,specific}
 2:
         for each data sample x_i do
 3:
             if x_i is positive then
 4:
                  remove from G all h inconsistent with x_i
 5:
                  for each s \in S inconsistent with x_i do
 6:
 7:
                       add to S all minimal generalizations h
                       Consistent (h, x_i) \& (\exists g \in G)(g \succeq h)
 8:
                       remove from S \{s | (\exists s_1 \in S)(s \succ s_1)\} \# \text{ not most specific} \}
 9:
                  end for
10:
             else x_i is negative example
11:
                  remove from S all h inconsistent with x_i
12.
                  for each g \in G inconsistent with x_i do
13:
                       add to G all minimal specifications h
14.
                       Consistent(h, X)&(\exists s \in S)(h \succ s)
15:
                       remove from G \{g | (\exists g_1 \in G)(g_1 \succ g)\} \# \text{ not most gen.}
16.
                  end for
17.
18:
             end if
         end for
19:
         return G, S
20:
21: end procedure
```

Literature

- A. Cropper and S. Dumancic. Inductive logic programming at 30: A New Introduction CoRR, abs/2008.07912, 2020.
- S. Muggleton & all.: Meta-interpretive learning: application to grammatical inference, http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf
- Patsantzis, S., Muggleton, S.H. Top program construction and reduction for polynomial time Meta-Interpretive learning. Mach Learn 110, 755–778 (2021).
- $\bullet \ https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html \\$
- https://github.com/stassa/louise
- https://github.com/logic-and-learning-lab/Popper
- http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf
- Olga Štěpánková, Luboš Popelínský: Induktivní logické programování https://www.fi.muni.cz/popel/lectures/DK-ILP3-fixed.pdf

Predicate Logic

- Recall the predicate logic.
- CNF, DNF the conjunctive and disjunctive normal form
- clause: a disjunction of literals $father(X, Y) \vee \neg parent(X, Y) \vee \neg male(X)$
- Horn clauses with at most one positive literal, written as a rule
 - **definite clause** father(X, Y) : -male(X), parent(X, Y).
 - fact no negative literal male(adam).
 - goal clause no positive literal false : -father(X, bob).
- Ground term, clause a term, a clause without variables.
- We have our data in the form of a set of clauses B, E^+ , E^- ,
 - the background knowledge B is a set of (Horn) clauses,
 - the positive and examples E^+ , E^- are sets of ground literals (facts).

Example

$$B = \begin{cases} lego_builder(alice). \\ enjoys_lego(A) : -lego_builder(A). \\ estate_agent(dave). \\ enjoys_lego(alice). \\ enjoys_lego(claire). \end{cases}$$

$$E^{+} = \{happy(alice).\}$$

$$E^{-} = \{happy(bob). \\ happy(claire). \\ happy(dave). \}$$

Substitution, Subsumption

- Clauses ale implicitly generally quantified.
- They should not have a variable with the same name.

Definition (Substitution, Subsumption)

- Given a substitution $\theta = \{v_i/t_i\}$ and formula F. $F\theta$ is formed by replacing every variable v_i in F by t_i .
- Substitution θ unifies atom A and B in the case $A\theta = B\theta$.
- Atom A subsumes atom B, $A \succeq B$, iff there exists a substitution θ such that $A\theta = B$.
- Clause C subsumes clause D, $C \succeq D$, iff there exists a substitution θ such that $C\theta \subseteq D$.

Example

- $C_1 = f(A, B) : -head(A, B)$.
- $C_2 = f(X, Y) : -head(X, Y), empty(Y)$.
- C_1 subsumes C_2 since $C_1\theta \subseteq C_2$ with $\theta = \{A/X, B/Y\}$.

Definition (Generalisation)

- Clause C is more general than clause D, iff $C \models D$.
- Clause C is more general than clause D with respect to B, iff $B, C \models D$.
 - B is the background knowledge.

Example

- Statement A: Daffy Duck can fly. can_fly(daffy)
- Statement B: All ducks can fly. $can_fly(X) \succeq can_fly(daffy)$.

Example

- Statement C: Marek lives in London.
- Statement D: Marek lives in England.
- lives(marek, london)
- lives(marek, england)
- Background knowledge lives(x, england) : -lives(x, london).
- $B, C \models D, C$ is more general than D with respect to B'.
- $C \succeq D$ with respect to B.
- http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf

ILP general logical setting

Definition (Hypothesis Properies)

The background knowledge B and the hypothesis H should entail E, that is:

```
Necessity B \not\models E^+ we need H
```

Sufficiency, Completeness $B \& H \models E^+$ H explains positive examplesWeak consistency $B \& H \not\models \bot$ H does not contradict B

(Strong) consistency $B \& H \& E^- \not\models \bot$... neither negative examples

Definition (ILP task)

ILP task is

- Given
 - B background knowledge (logic program)
 - E⁺, E⁻ examples sets of ground unit clauses
- Given B, E find a logic program H such that is necessary, sufficient and consistent.
- Often, we assume noisy data and accept some errors, but we try to minimize them.

Example

```
lego_builder(alice).
B = \begin{cases} lego\_builder(bob), \\ lego\_builder(bob), \\ estate\_agent(claire), \\ enjoys\_lego(alice), \\ enjoys\_lego(claire), \\ \end{cases}
```

$$E^{+} = ig\{ happy(alice). ig\}$$
 $E^{-} = egin{cases} happy(bob). \ happy(claire). \ happy(dave). \end{cases}$

Our hypothesis space:

```
h_1: happy(A): -lego\_builder(A).
                                      h_2: happy(A): -estate\_agent(A).
\mathcal{H} = \begin{cases} h_3: \ happy(A): -enjoys\_lego(A). \\ h_4: \ happy(A): -lego\_builder(A), estate\_agent(A). \\ h_5: \ happy(A): -lego\_builder(A), enjoys\_lego(A). \\ h_6: \ happy(A): -estate\_agent(A), enjoys\_lego(A). \end{cases}
```

- $B \cup h_1 \models happy(bob)$ therefore h_1 is inconsistent.
- $B \cup h_2 \nvDash happy(alice)$ therefore h_2 is incomplete.
- $B \cup h_3 \models happy(claire)$ therefore h_3 is inconsistent.
- $B \cup h_4 \nvDash happy(alice)$ therefore h_4 is incomplete.
- h₅ is both complete and consistent.
- $B \cup h_6 \nvDash happy(alice)$ therefore h_1 in incomplete.

Hypothesis Space

• To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)

Mode declarations denote which literals may appear in the head/body of a rule. A mode declaration is of the form:

$$mode(recall, pred(m_1, m_2, \ldots, m_a))$$

where *recall* is the maximum number of occurrences of the predicate m_i are the argument types and they may be assigned as input +, output -, constant #.

Example

```
\label{eq:modeb} \begin{split} & \mathsf{modeb}(2,\mathsf{parent}(+\mathsf{person},-\mathsf{person})). \\ & \mathsf{modeh}(1,\mathsf{happy}(+\mathsf{person})). \\ & \mathsf{modeb}(*,\mathsf{member}(+\mathsf{list},-\mathsf{element})). \\ & \mathsf{modeb}(1,\mathsf{head}(+\mathsf{list},-\mathsf{element})). \end{split}
```

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.

Inductive Logic Programming 10

Non-monotonic reasoning

• In Prolog, there is negation as a failure.

Example

$$Program = \begin{cases} sunny. \\ happy : -sunny, not weekday. \end{cases}$$

- Prolog tries to prove weekday.
- It does not prove it, therefore it concludes *happy*.
- With additional knowledge weekday some of entailments are not true any more.

Definition (Normal logic program)

Normal logic programs may include negated literals in the body of a clause, e.g.

$$h: -b_1, \ldots, b_n, \text{ not } b_{n+1}, \ldots, \text{ not } b_m.$$

Aleph ILP system (based on Progol)

- Given
 - A set of mode declaration M
 - Background knowledge B in the form of a normal program allows negation, with the semantics negation as a failure
 - Positive E^+ and negative E^- examples as a set of ground facts
- Return: A normal program hypothesis *H* that:
 - H is consistent with M
 - $\forall e \in E^+$, $H \cup B \models e \ (H \text{ is complete})$
 - $\forall e \in E^-$, $H \cup B \nvDash e$ (H is consistent).

Aleph

- 1. Select a positive example to generalize.
- 2. Construct the most specific clause consistent with M that entails the example (the bottom clause).
- 3. Search for the 'best' clause more general than the bottom clause.
- 4. Add the clause to the hypothesis and remove all examples covered.
- 5. If a positive example left, return to step 1.

Bottom Clause Construction

Definition (Bottom clause)

Let H be a clausal hypothesis and C be a clause. The bottom clause $\bot(C)$ is the most specific clause such that:

$$H \cup \bot(C) \models C$$
.

- The purpose is to bound the search in the step in 3.
- Without mode declarations, the bottom clause may have infinite cardinality.

Example (Bottom clause)

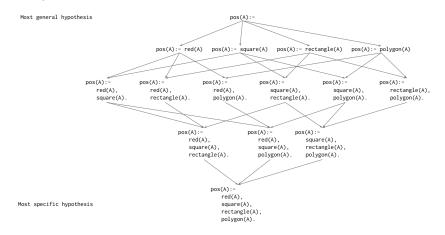
$$M = \left\{ \begin{array}{l} : -modeh(*,pos(+shape)). \\ : -modeb(*,red(+shape)). \\ : -modeb(*,square(+shape)). \\ : -modeb(*,triangle(+shape)). \\ : -modeb(*,polygon(+shape)). \end{array} \right\} B = \left\{ \begin{array}{l} red(s1). \\ blue(s2). \\ square(s1). \\ triange(s2). \\ polygon(A): -rectangle(A). \\ rectangle(A): -square(A). \end{array} \right\}$$

Let e be the positive example pos(s1). Then:

$$\perp$$
(e) = $pos(A)$: $-red(A)$, $square(A)$, $rectangle(A)$, $polygon(A)$.

Clause Search

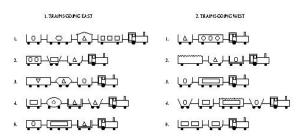
- Aleph performs a bounded-breadth-first search to enumerate the shorter clauses before the longer ones.
- The search is bounded by several parameters (max. clause size, max. proof depth).



1 - 39

Example (Luboš Popelínský & all.)

East-West Trains (1)



Predicate logic representation

East-West Trains (2)

```
eastbound(east1). % eastbound train 1
eastbound(east2). short(car_12). closed(car_12).
eastbound(east3). long(car_11). open_car(car_11).
eastbound(east4). ...
eastbound(east5). shape(car_11,rectangle). shape(car_12,rectangle).
...
eastbound(west6). load(car_11,rectangle,3). load(car_12,triangle,1).
eastbound(west7). ...
eastbound(west8). wheels(car_11,2). wheels(car_12,2).
```

Bottom clause, Mode Declarations, Search

East-West Trains (4)

```
To H & H THOUGH
```

[bottom clause][literals] [25][saturation time] [0.01] eastbound(A):-

```
has_car(A,B), has_car(A,C), has_car(A,D), has_car(A,E), short(B), short(D), closed(D), long(C), long(E), open_car(B), open_car(C), open_car(E), shape(B,rectangle), shape(C,rectangle), shape(D,rectangle), shape(E,rectangle), wheels(B,2), wheels(C,3), wheels(D,2), wheels(E,2).
```

load(B,circle,1), load(C,hexagon,1), load(D,triangle,1), load(E,rectangle,3).

```
[reduce]
eastbound(A). [5/5]
eastbound(A):- has_car(A,B). [5/5]
eastbound(A):- has_car(A,B), short(B). [5/5]
...
eastbound(A):- has_car(A,B), wheels(B,3). [3/1]
eastbound(A):- has_car(A,B), closed(B). [5/2]
eastbound(A):- has_car(A,B), load(B, triangle,1). [5/2]
```

```
:- modeh(1,eastbound(+train)).
```

:- modeb(*,has_car(+train,-car)).

:- modeb(1,short(+car)).

:- modeb(1,load(+car,#shape,#int)).

Aleph 2, Popper, FlexFringe

- Aleph default evaluation function is **coverage** defined as P N,
 - P is the number of positive examples covered by the clause
 - ullet N is the number of negative examples covered by the clause
 - that means it accepts some noise.
- It starts from the most general one pos(A): —.
- It tries to specialize the clause
 - by adding literals to the body of it, which it selects from the bottom clause
- or by instantiating variables.
- Each specialization is called refinement.
- Aleph Advantages
 - one Prolog file, easy to download and use.
 - $\bullet \ \ https://www.cs.ox.ac.uk/activities/program induction/Aleph/aleph.html \\$
 - It has good empirical performance.
 - Allows numerical reasoning, user defined cost functions, handles noisy data.
- Aleph Disadvantages
 - It has many parameters to tune.
 - It struggles to learn recursive programs and optimal programs
 - since it learns only a single clause a time.

Metagol

- Given
 - A set of metarules M
 - Background knowledge B in the form of a normal program
 - Positive E^+ and negative E^- examples as a set of facts (atoms).
- Return: A definite program hypothesis *H* that:
 - H is consistent with M
 - $\forall e \in E^+$, $H \cup B \models e$ (H is complete)
 - $\forall e \in E^-$, $H \cup B \not\vDash e$ (H is consistent)
 - $\forall h \in H$, $\exists m \in M$ such that $h = m\theta$
 - where θ is a substitution that grounds all the existentially quantified variables in m.

Example (Metarule)

- An example is the **chain** metarule $P(A, B) \leftarrow Q(A, C), R(C, B)$
- that allows Metagol to induce programs such as

$$f(A, B) : - tail(A, C), tail(C, B).$$

 $grandparent(A, B) : - parent(A, C), parent(C, B).$

Metagol

Metagol is a form of ILP besed on a Prolog meta-interpreter.

Metagol

- 1. Select a positive example to generalize.
 - If none exists, test the hypothesis on the negative examples.
 - If the hypothesis does not entail any negative example stop and return the hypothesis.
 - otherwise backtrack to a choice point at step 2 and continue.
- 2. Try to prove the atom by:
 - using given BK or an already induced clauses
 - unifying the atom with the head of a metarule
 - binding the variables in the metarule to symbols in the predicate and constant signatures
 - save the substitution
 - try to prove the body of the metarule
 by treating the body atoms as examples and applying step 2 to them.

Recursion

• Metagol can learn recursive programs.

Example (Reachability)

Consider learning the concept of *reachability* in a graph. Without recursion, with the maximal depth 4 we could learn:

```
reachable(A, B) : - edge(A, B).
reachable(A, B) : - edge(A, C), edge(C, B).
reachable(A, B) : - edge(A, C), edge(C, D), edge(D, B).
reachable(A, B) : - edge(A, C), edge(C, D), edge(D, E), edge(E, B).
```

With recursion, we can learn:

```
reachable(A, B) : - edge(A, B).

reachable(A, B) : - edge(A, C), reachable(C, B).
```

Iterative deepening

iterative deepening

- Metagol uses iterative deepening to search for hypotheses.
 - ullet at depth d=1, at most one metasub.
 - ullet at iteration d, it introduces d-1 new predicate symbols and is allowed to use d clauses.

Metagol Example

Example (Kinship example)

```
B = \begin{cases} mother(ann, amy).mother(ann, andy).\\ mother(amy, amelia), mother(amy, bob).\\ mother(linda, gavin).\\ father(steve, amy).father(steve, andy).\\ father(andy, sponegebob).father(gavin, amelia). \end{cases}
```

metarule(ident, [P, Q], [P, A, B], [[Q, A, B]]). metarule(chain, [P, Q, R], [P, A, B], [[Q, A, C], [R, C, B]]).

$$E^{+} = \begin{cases} grandparent(ann, amelia). \\ grandparent(steve, amelia). \\ grandparent(ann, spongebob). \\ grandparent(linda, amelia). \end{cases}$$
$$E^{-} = \{ grandparent(amy, amelia). \}$$

May 2, 2025

Tracing Metagol

- It select the first example to generalize grandparent(ann, amelia).
- It tries to prove it from BK and induced clauses. It fails.
- Metagol tries to use the first metarule:

$$grandparent(ann, amelia) : -Q(ann, amelia).$$

stores sub(ident, [grandparent, Q])

- and tries to unify Q, but fails.
- Metagol tries to use the second metarule:

$$grandparent(ann, amelia) : -Q(ann, C), R(C, amelia).$$

stores sub(chain, [grandparent, Q, R])

- and recursively tries to prove Q(ann, C) and R(C, amelia).
- It succeedes with the metasum sub(chain, [grandparent, mother, mother])
- and induces the first clause;

$$grandparent(A, B) : -mother(A, C), mother(C, B).$$

Metagol Trace 2

- Then, it select the second example to generalize grandparent(steve, amelia).
- It tries to prove it from BK and induced clauses. It fails.
- Metagol can again use the second metarule with another substitution: stores sub(chain, [grandparent, father, mother])
- and induces the second clause;

$$grandparent(A, B) : -father(A, C), mother(C, B).$$

 Given no bound on the program size, the Metagol would prove the other two examples the same way and form the program:

```
grandparent(A, B) :- mother(A, C), mother(C, B).

grandparent(A, B) :- father(A, C), mother(C, B).

grandparent(A, B) :- father(A, C), father(C, B).

grandparent(A, B) :- mother(A, C), father(C, B).
```

With predicate invention, it learns:

```
grandparent(A, B) : - grandparent_1(A, C), grandparent_1(C, B).

grandparent_1(A, B) : - father(A, B).

grandparent_1(A, B) : - mother(A, B).
```

29 / 39

Tail Recursive Metarule

Example (Tail Recursive Metarule)

- An example is the **tail recursive** metarule $P(A, B) \leftarrow Q(A, C), P(C, B)$
- Metagol can also learn mutually recursive programs, such:

```
even(0).

even(A) : - successor(A, B), even_1(B).

even_1(A) : - successor(A, B), even(B).
```

We even do not have to provide the concept of an odd number. We can let the Metagol to invent such predicate (even_1).

Automata Example

	Finite acceptor	Production rules	Definite Clause Grammar (DCG)	
(a)		$\begin{array}{ccccc} q_0 & \to & & \\ q_0 & \to & 0 q_0 \\ q_0 & \to & 1 q_1 \\ q_1 & \to & 0 q_1 \\ q_1 & \to & 1 q_0 \end{array}$	$\begin{array}{lll} q_0([],[]) & \leftarrow \\ q_0([0 A],B) & \leftarrow q_0(A,B) \\ q_0([1 A],B) & \leftarrow q_1(A,B) \\ q_1([0 A],B) & \leftarrow q_1(A,B) \\ q_1([1 A],B) & \leftarrow q_0(A,B) \end{array}$	

	E^+	E^-	Meta-interpreter	Ground facts
(b)	λ 0 00 11 000 011 101	1 01 10 001 010 100 111	$parse(S) \leftarrow parse(q0, S, []).$ $parse(Q, [], []) \leftarrow acceptor(Q).$ $parse(Q, [C X], Y) \leftarrow$ delta1(Q, C, P), parse(P, X, Y).	$\begin{aligned} &acceptor(q0) \leftarrow \\ &delta1(q0,0,q0) \leftarrow \\ &delta1(q0,1,q1) \leftarrow \\ &delta1(q1,0,q1) \leftarrow \\ &delta1(q1,1,q0) \leftarrow \end{aligned}$

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E^+) and negative examples (E^-) , Meta-interpreter and ground facts representing the Parity grammar

 $http://www.doc.ic.ac.uk/\sim shm/FLOC_ILP/Paper03.pdf$

Louise Example Grammar Learning

Example (Module)

```
:-module(anbn, [background_knowledge/2
   ,metarules/2
   ,positive_example/2
   ,negative_example/2
   ,a/2
   ,b/2
]).
```

Example (Background knowledge)

```
background_knowledge(s/2,[a/2,b/2]).
a([a|T],T).
b([b|T],T).
```

Example (Metarules)

```
metarules(s/2,[chain]). % (Chain) \exists.P,Q,R \forall.x,y,z: P(x,y) \leftarrow Q(x,z),R(z,y)
```

Louise Example Continued

Example (Positive Examples)

```
positive_example(s/2,E):-
 member(E, [%s([a,b],[])
  s([a,a,b,b],[])
  1).
```

Example (Negative Examples)

```
negative_example(s/2,E):-
 member(E,[s([a,a],[])
   s([b,b],[])
   ,s([a,a,b],[])
   ,s([a,b,b],[])
  ]).
```

Example (Parameter Tuning)

- auxiliaries:set_configuration_option(clause_limit, [3]). auxiliaries:set configuration option(max invented, [1]).
- auxiliaries:set configuration option(reduction, [none]).

Louise Example Continued 2

Example (Learned Program)

```
'$1'(A,B):-a(A,C),a(C,B).
'$1'(A,B):-a(A,C),s(C,B).
'$1'(A,B):-b(A,C),b(C,B).
'$1'(A,B):-s(A,C),b(C,B).
s(A,B):-'$1'(A,C),'$1'(C,B).
s(A,B):-'$1'(A,C),b(C,B).
s(A,B):-a(A,C),'$1'(C,B).
s(A,B):-a(A,C),b(C,B).
true.
```

Example (Learned Program)

```
?- auxiliaries:set_configuration_option(unfold_invented, [true]).
?-make.
?- learn(s/2).
s(A,B):-a(A,C),b(C,B).
s(A,B):-a(A,C),s(C,D),b(D,B).
true.
```

ASPAL algorithm

- ASPAL uses Answer Set Programming.
- ASP program can have one, many, or none models (answer sets).
- Computation in ASP is the process of finding models.
- We may specify the range of the number of clauses from a set beeing true. $0\{sunny., weekday., happy(A) : -lego_builder(A)\}3$
- We may specify an evaluation function to optimize (like to minimize the number of 'true' clauses, e.g. the size of the hypothesis.

ASPAL

- Generate all possible rules consistent with the given mode declarations.
 Assign each rule a unique identifier and add an guessable atom in each rule.
- Use an ASP solver to find a minimal subset of the rules by formulating the problem as an ASP optimization problem.

Example (ASPAL)

$$B = \begin{cases} bird(alice). \\ bird(betty). \\ can(alice, fly). \\ can(betty, swim). \\ ability(fly). \\ ability(swim). \end{cases} M = \begin{cases} modeh(1, penguin(+bird)). \\ modeb(1, bird(+bird)). \\ modeb(*, not can(+bird, \#ability)). \end{cases}$$

$$E^{+} = \{penguin(betty).\}$$

$$E^{-} = \{penguin(alice).\}$$

Given the modes, the possible rules are:

```
penguin(X) : - bird(X).
```

penguin(X) : - bird(X), not can(X, swim).

penguin(X) : - bird(X), not can(X, fly).

penguin(X) : - bird(X), not can(X, swim), not can(X, fly).

ASPAL replaces constants and adds extra literal:

```
penguin(X) : - bird(X), rule(r1).
```

penguin(X) : - bird(X), not can(X, C1), rule(r2, C1).

penguin(X) : - bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).

```
ASPAL passes to an ASP solver:
      bird(alice).
      bird(betty).
      can(alice, fly).
      can(betty, swim).
      ability(fly).
      ability(swim).
      penguin(X) : -bird(X), rule(r1).
      penguin(X) : -bird(X), not can(X, C1), rule(r2, C1).
      penguin(X) : -bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).
      0{rule(r1), rule(r2, fly), rule(r2, swim), rule(r3, fly, swim)}4
      goal : - penguin(betty), not penguin(alice).
      : -not goal.
```

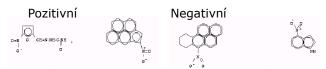
- The answer is: rule(r2, c(fly))
- Which is translated to a program:

penguin(A) : -bird(A), not can(A, fly).

ILP applications

Bioinformatics

- ILP can make predictions based on the (sub)structured biological data.
- Predict mutagenic activity of molecules and alert the causes of chemical cancers
- learning protein folding signatures.



Robot scientist.

- BK knowledge represents the relationship between protein-coding sequences, enzymes, and metbolites in pathway.
- Automatically generates hypotheses, runs experiments, and iterates results.

Games

- Sokoban
- Bridge
- Checkers.

Computer Game Application (Luboš Popelínský & all.)

? Differentiate the friendly agent (4 left) from the enemies (4 right).

přátelští

List of topics

- Linear, ridge, lasso regression, k-neares neighbours, (formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- Oscillation Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- decision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Olustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

40 - 40

May 2, 2025

List of topics

- Linear, ridge, lasso regression, k-neares neighbours, (formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- Oscillation Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- decision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Olustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

Machine Learning Summary 15 41 - 42

Table of Contens

- Overview of Supervised Learning
- 2 Kernel Methods, Basis Expansion and regularization
- 3 Linear Methods for Classification
- Model Assessment and Selection
- 5 Additive Models, Trees, and Related Methods
- 6 Ensamble Methods
- Bayesian learning, EM algorithm
- 8 Clustering
- Association Rules, Apriori
- Inductive Logic Programming
- 11 Undirected Graphical Models
- Gaussian Processes
- Support Vector Machines
- (PCA Extensions, Independent CA)

Machine Learning Summary 15 41 - 42 May 2, 2025 39 / 39