Ensemble Methods

- Random forest (+ Bagging)
- Boosting
- Adaboost - classification
- Gradient boosting - regression and classification
- Stacking
- MARS (=earth).

Bootstrap

- Select elements with replacement.
- We have N data samples, we select with replacement N samples - some are selected more than one, some are not selected at all. The not selected are used for testing.
- The probability of not-selecting a sample is $\left(1-\frac{1}{N}\right)^{N} \approx e^{-1}=0.368$.
- Selected samples used to learn a model (usually a tree).
- These are used for the OutOfBag error computation.

Boptstrap
Peplications

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the statistical accuracy of a quantity $S(\mathbf{Z})$ computed from our dataset. B training sets $\mathbf{Z}^{* b}, b=1, \ldots, B$ each of size N are drawn with replacement from the original dataset. The quantity of interest $S(\mathbf{Z})$ is computed from each bootstrap training set, and the values $S\left(\mathbf{Z}^{* 1}\right), \ldots, S\left(\mathbf{Z}^{* B}\right)$ are used to assess the statistical accuracy of $S(\mathbf{Z})$.

Random Forest for Regression or Classification

1: procedure Random Forest: $(X, y$ training data $)$
2: \quad for $b=1,2, \ldots, B$ do
3: \quad Draw a bootstrap sample \mathbf{Z}^{*} of size N
4: \quad Grow a random forest tree T_{b}
5: repeat
6:
7:
8: \quad Split the node into two daughter nodes.
9: until the minimum node size $n_{\min }$ is reached.
10: end for
11: \quad Output the ensamble of trees $\left\{T_{b}\right\}_{1}^{B}$.
12: end procedure

To make a prediction at a new point x :

- Regression: $\hat{f}_{r f}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x)$.
- Classification: Let $\widehat{C}_{b}(x)$ be the class prediction of the b th random-forest tree.
- Predict $\widehat{C}_{r f}^{B}(x)=$ majority vote $\left\{\widehat{C}_{b}(x)\right\}_{1}^{B}$.

Bagging (Bootstrap aggregating)

- It is a Random Forest, where we use all predictors, that is $m=p$.
- both regression and classification.
- Training data $\mathbf{Z}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

$$
\hat{f}_{\text {bag }}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{f}^{* b}(x) .
$$

Bagging for Classification

- Training data $\mathbf{Z}=$ $\left\{\left(x_{1}, g_{1}\right),\left(x_{2}, g_{2}\right), \ldots,\left(x_{N}, g_{N}\right)\right\}$
- for each bootstrap sample, $b=1,2, \ldots, B$, we fit our model, giving prediction $\hat{f}^{* b}(x)$.
- Take either
- predict probabilities of classes and find the class with the highest predicted probability over the bootstrap samples

$$
\hat{G}(x)=\operatorname{argmax}_{k} \sum_{b=1}^{B} \hat{f}^{* b}(x)
$$

- predict class and

$$
\hat{G}_{\text {bag }}(x)=\text { majority vote }\left\{\hat{G}^{* b}(x)\right\}_{b=1}^{B} .
$$

Behind Random Forest

The variance of the random forest estimate $\operatorname{Var}\left(\hat{f}_{r f}^{B}(x)\right)=\mathbb{E}(\hat{f}(x)-\mathbb{E} \hat{f}(x))^{2}$ is

- iid data variables, independent features, each with variance σ^{2} :
- $\frac{1}{B} \sigma^{2}$
- id identically distributed data, each with variance σ^{2} with positive pairwise correlation ρ :
- $\rho \sigma^{2}+\frac{1-\rho}{B} \sigma^{2}$.
- The second part is addressed by bagging.
- The idea behind random random forest is to address the first part of the formula.
- Before each split, select $m \leq p$ variables as candidates for splitting.
- $m \leftarrow \sqrt{p}$ for regression, even as low as 1 . $\frac{p}{3}$ for classification.
- For boot-strapped trees
- ρ is typically small (0.05 or lower)
- σ^{2} is not much larger than for the original tree.
- Bagging does not change linear estimates, such as the sample mean
- The pairwise correlation between bootstrapped means is about 50%.

Random Forest Experiments

Spam example misclassification error

- bagging 5.4\%
- random forest 4.88%
- gradient boosting 4.5%

Nested spheres in $\mathbb{R}^{10}, 2500$ trees, the number selected by 10 -fold crossvalidation

California housing data

- Random forests stabilize at about 200 trees, while at 1000 trees boosting continues to improve.
- Boosting is slowed down by the shrinkage
- the trees are much smaller (decision stumps, interaction depth=1 or 2).
- Boosting outperforms random forests here.

Nested Spheres

California Housing Data

OOB Error

Definition (Out of bag error (OOB))

For each observation $z_{i}=\left(x_{i}, y_{i}\right)$, construct is random forest predictor by averaging only those trees corresponding to bootstrap samples in which z_{i} did not appear.

- An OOB error estimate is almost identical to that obtained by N -fold crossvalidation.
- Unlike many other nonlinear estimators, random forests can be fit in one sequence.

Variable Importance (Gini, RSS)

- Variable Importance of a predictor X_{ℓ} in a single tree T is
$I_{\ell}^{2}(T)=\sum_{t=1}^{J} \hat{i}_{t}^{2} \cdot I(v(t)=\ell)$
- For each internal node t of the tree, we calculate the Gini or RSS gain
- where \hat{i}_{t}^{2} is the Gini/RSS improvement of the predictor in the inner node t.
- Gini $\hat{p}_{k}(t)\left(1-\hat{p}_{k}(t)\right)$ before and after the split
- for K goal classes, a separate tree for each class against others
- weighted by the probability of reaching the node t.
- For a set of trees, we average over M all trees $I_{\ell}^{2}=\frac{1}{M} \sum_{i=1}^{M} I_{\ell}^{2}\left(T_{m}\right)$.
- Usually scaled to the interval $(0,100)$.

Gini

OOB Variable Importance

OOB Variable Importance

1: procedure OOBN VarImportance:(data)
2: \quad for $b=1,2, \ldots, B$ do
3: \quad Draw a bootstrap sample \mathbf{Z}^{*} of size N
4: \quad Grow a random forest tree T_{b}
5: \quad Calculate accuracy on OOB samples
6: \quad for $j=1,2, \ldots, p$ do
7: \quad permute the values for the j th variable randomly in the OOB samples

Calculate the decrease in the accuracy
9: end for
10: end for
11: Output average accuracy gain for each $j=$ $1,2, \ldots, p$.
12: end procedure

Alternative Variable Importance
with quite different results

- The randomization voids the effect of a variable.

Proximity plot

Proximity plot

1: procedure Proximity plot $(X, y$ training data $)$
2: \quad for $b=1,2, \ldots, B$ do
3: \quad Draw a bootstrap sample \mathbf{Z}^{*} of size N
4: \quad Grow a random forest tree T_{b}
5: \quad Calculate prediction accuracy on OOB samples
6: \quad for any pair of OOB samples sharing the same leaf do
7: increase the proximity by one.
8: \quad end for
9: end for
10: end procedure

- Distinct samples usually come from the pure regions
- Samples in the 'star center' are close to the decision boundary.

Dimension 1

Overfitting

- Though the random forest cannot overfit the limit distribution

$$
\hat{f}_{r f}(x)=\mathbb{E}_{\Theta} T(x ; \Theta)=\lim _{B \rightarrow \infty} \hat{f}_{r f}^{B}(x)
$$

- the limit distribution (the average of fully grown trees) may overfit the data.
- Small number of relevant variables with many irrelevant hurts the random forest approach.
- With higher number of relevant variables RF is quite robust.
- 6 relevant and 100 noisy variables, $m=\sqrt{6+100} \sim 10$
- probability of a relevant variable being selected at any split is 0.46 .

- Seldom the pruning improves the random forest result
- usually, fully grown trees are used.
- Two additive vars, 10 noisy,
- plus additive Gaussian noise.

FIGURE 15.8. The effect of tree size on the erro

Boosting

! Use a week classifier as a decision stump (a decision tree with the depth $=1$).

AdaBoost.M1

1: procedure Adaboost Classifier (X, G)
2: \quad Initialize the observation weights $w_{i} \leftarrow \frac{1}{N}$.
3: for $m=1,2, \ldots, M$ do
4: \quad Fit a classifier $G_{m}(x)$ to the training data using weights w_{i}
5: \quad compute $\operatorname{err}_{m} \leftarrow \frac{\sum_{i=1}^{N} w_{i} l\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{N} w_{i}}$
6: \quad compute $\alpha_{m} \leftarrow \log \frac{\left(1-e r r_{m}\right)}{e r r_{m}}$
7: \quad Set $w_{i} \leftarrow w_{i} \cdot e^{l\left(y_{i} \neq G_{m}\left(x_{i}\right)\right) \cdot \alpha_{m}}$
8: (normalize weights)

9: end for

10: \quad Output $G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]$.

11: end procedure

- Two class problem with encoding $Y \in\{-1,1\}$
- $\overline{\text { err }}=\frac{1}{N} \sum_{i=1}^{N}{ }^{N}\left(y_{i} \neq G\left(x_{i}\right)\right)$.

Final Classifier

$$
G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{n}\right.
$$

Woighted Sample …. $G_{M}(x)$

Nested Spheres Example

- The features X_{1}, \ldots, X_{10} are standard independent Gaussian
- deterministic target
- $Y=1$ iff $\sum_{j=1}^{10} X_{j}^{2}>\chi_{10}^{2}(0.5)=9.34$,
- $Y=-1$ otherwise.
- 2000 training cases
- 10000 test observations.
- Decision stumps.

Additive Model

- We encode the binary goal by $Y \in\{-1,+1\}$.
- Boosting fits an additive model:

$$
f(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right)
$$

- where β_{m} for $m=1, \ldots, M$ are the expansion coefficients
- $b(x ; \gamma) \in \mathbb{R}$ are usually simple functions of the multivariate argument x
- characterized by a set of parameters γ.
- For trees, γ parametrizes the split variables and split points at the internal nodes, and the predictions at the terminal nodes.
- Forward stagewise Additive Modeling sequentially adds one new basis function without adjusting the parameters and coefficients of the previously fitted.
- For squared-error loss

$$
L(y, f(x))=(y-f(x))^{2},
$$

we have

$$
\begin{aligned}
L\left(y_{i}, f_{m-1}(x)+\beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right) & =\left(y_{i}-f_{m-1}(x)-\beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right)^{2} \\
& =\left(r_{i m}-\beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right)^{2}
\end{aligned}
$$

Exponential Loss and AdaBoost

- Let us use the $Y \in\{-1,1\}$ encoding and the exponential loss

$$
L(y, f(x))=e^{-y f(x)}
$$

- We have to solve

$$
\begin{aligned}
\left(\beta_{m}, G_{m}\right) & =\arg \min _{\beta, G} \sum_{i=1}^{N} e^{\left[-y_{i}\left(f_{m-1}\left(x_{i}\right)+\beta G\left(x_{i}\right)\right]\right.} \\
& =\arg \min _{\beta, G} \sum_{i=1}^{N} e^{\left[-y_{i}\left(f_{m-1}\left(x_{i}\right)\right]\right.} e^{\left[-y_{i} \beta G\left(x_{i}\right)\right]} \\
& =\arg \min _{\beta, G} \sum_{i=1}^{N} w_{i}^{(m)} e^{\left[-y_{i} \beta G\left(x_{i}\right)\right]}
\end{aligned}
$$

- where $w_{i}^{(m)}=e^{\left[-y_{i} f_{m-1}\left(x_{i}\right)\right]}$ does not depend on β nor $G(x)$.
- this weight depends on $f_{m-1}\left(x_{i}\right)$ and change with each iteration m.

Exponential Loss and AdaBoost

- For any $\beta>0$ the solution for $G_{m}(x ; \gamma)$ is

$$
\begin{array}{r}
G_{m}=\arg \min _{\gamma} \sum_{i=1}^{N} w_{i}^{(m)} l\left(y_{i} \neq G\left(x_{i} ; \gamma\right)\right) \\
\quad e r r_{m}=\frac{\sum_{i=1}^{N} w_{i}^{(m)} I\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{N} w_{i}^{(m)}}
\end{array}
$$

- since

$$
\begin{aligned}
\left(\beta_{m}, G_{m}\right) & =\arg \min _{\beta, G} \sum_{i=1}^{N} w_{i}^{(m)} e^{\left[-y_{i} \beta G\left(x_{i}\right)\right]} \\
& =\arg \min _{\beta, G}\left[e^{-\beta} \cdot \sum_{y_{i}=G\left(x_{i}\right)} w_{i}^{(m)}+e^{\beta} \cdot \sum_{y_{i} \neq G\left(x_{i}\right)} w_{i}^{(m)}\right] \\
& =\arg \min _{\beta, G}\left[\left(e^{\beta}-e^{-\beta}\right) \cdot \sum_{i=1}^{N} w_{i}^{(m)} I\left(y_{i} \neq G\left(x_{i}\right)\right)+e^{-\beta} \cdot \sum_{i=1}^{N} w_{i}^{(m)}\right]
\end{aligned}
$$

Adaboost Update

- Solving previous equation for β_{m} gives:

$$
\beta_{m}=\frac{1}{2} \log \frac{1-e r r_{m}}{e r r_{m}}
$$

- The approximation is updated

$$
f_{m}(x)=f_{m-1}(x)+\beta_{m} G_{m}(x)
$$

- which causes the weights for the next iteration to be:

$$
w_{i}^{m+1}=w_{i}^{m} \cdot e^{-\beta_{m} y_{i} G_{m}\left(x_{i}\right)}
$$

- using the fact $-y_{i} G_{m}\left(x_{i}\right)=2 \cdot I\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)-1$ we get

$$
w_{i}^{m+1}=w_{i}^{m} \cdot e^{\alpha l\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)} \cdot e^{-\beta_{m}} .
$$

Why exponential loss?

- The population minimizer is

$$
f^{*}(x)=\arg \min _{f(x)} \mathbb{E}_{Y \mid x}\left(e^{-Y f(x)}\right)=\frac{1}{2} \log \frac{P(Y=1 \mid x)}{P(Y=-1 \mid x)} .
$$

- therefore

$$
P(Y=1 \mid x)=\frac{1}{1+e^{-2 f^{*}(x)}}
$$

- The same function $f^{*}(x)$ minimizes also deviance (cross-entropy, binomial negative log-likelihood)
- interpreting f^{*} as the logit transform. Let:

$$
p(x)=P(Y=1 \mid x)=\frac{e^{f^{*}(x)}}{e^{-f^{*}(x)}+e^{f^{*}(x)}}=\frac{1}{1+e^{-2 f^{*}(x)}} .
$$

- and define $Y^{\mid}=(Y+1) / 2 \in\{0,1\}$. Log-likelihood is

$$
\ell(Y, p(x))=Y^{\dagger} \log p(x)+\left(1-Y^{\dagger}\right) \log (1-p(x))
$$

- or equivalently the deviance:

$$
-\ell(Y, f(x))=\log \left(1+e^{-2 Y f(x)}\right) .
$$

- Exponential loss decreases long after misclassification loss is
 stable at zero.

Forward Stagewise Additive Modeling

- A general iterative fitting approach.
- In each step, we select the best function from the dictionary $b\left(x_{i} ; \gamma\right)$, fit its parameters γ and the weight of this basis function β_{m}.
- Stagewise approximation is often faster then iterative fitting of the full model.

Forward Stagewise Additive Modeling

1: procedure Forward Stagewise Additive Modeling($L, X, Y, b)$
2: \quad Initialize $f_{0} \leftarrow 0$.
3: for $m=1,2, \ldots, M$ do
4: \quad Compute $\left(\beta_{m}, \gamma_{m}\right) \leftarrow \arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right)$.
5: \quad Set $f_{m}(x) \leftarrow f_{m-1}(x)+\beta_{m} b\left(x_{i} ; \gamma_{m}\right)$
6: end for
7: end procedure

- For example, our basis functions are decision trees, γ represents the splits and fitted values $T(* ; \gamma)$).
- For square error loss, any new tree $T(* ; \gamma)$ is the best tree fitting residuals $r_{i}=y_{i}-f_{m-1}\left(x_{i}\right)$.

Gradient Tree Boosting Algorithm

Gradient Tree Boosting Algorithm

1: procedure Gradient Tree Boosting Algorithm (X, Y, L)
2: \quad Initialize $f_{0}(x) \leftarrow \arg \min _{\gamma} \sum_{i=1}^{N} L\left(y_{i}, \gamma\right)$.
3: for $m=1,2, \ldots, M$ do
4: \quad for $i=1,2, \ldots, N$ do
5: \quad compute $r_{i m}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f\left(x_{i}\right)=f_{m-1}\left(x_{i}\right)}{ }^{[*]} y_{i}-f_{m-1}\left(x_{i}\right)$
end for
Fit reg. tree to the target $r_{i m}$ giving regions $\left\{R_{j m}\right\}_{j=1, \ldots, J_{m}}$. for $j=1,2, \ldots, J_{m}$ do

Compute $\gamma_{j m} \leftarrow \arg \min _{\gamma} \sum_{i \in R_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma\right)$.
end for
Set $f_{m}(x) \leftarrow f_{m-1}(x)+\sum_{j=1}^{J_{m}} \gamma_{j m} I\left(x \in R_{j m}\right)$.
end for
13: \quad Output $\hat{f}(x)=f_{M}(x)$.
14: end procedure
[*] for square error loss.

Stacking

- Over a set of models (possibly different types) learn a simple model (like a linear regression)
- Assume predictions $\hat{f}_{1}(x), \hat{f}_{2}(x), \ldots, \hat{f}_{M}(x)$ under square error loss
- Predictors trained without i th example are denoted
- $\hat{f}_{1}^{-i}(x), \hat{f}_{2}^{-i}(x), \ldots, \hat{f}_{M}^{-i}(x)$
- we can seek weights $w=\left(w_{1}, \ldots, w_{m}\right)$ such that

$$
\hat{w}^{s t}=\arg \min _{w} \sum_{i=1}^{N}\left[y_{i}-\sum_{m=1}^{M} w_{m} \hat{f}_{m}^{-i}(x)\right]^{2}
$$

- The final prediction is

$$
\hat{f}^{s t}(x)=\sum_{m=1}^{M} w_{m}^{s t} \hat{f}_{m}(x) .
$$

- Using cross-validated predictions $\hat{f}_{m}^{-i}(x)$ stacking avoids giving unfairly high weight to models with higher complexity
- Better results can be obtained by restricting the weights to be nonnegative and to sum to 1 .

Decision Rules from Decision Trees

- We can represent a tree as a set of rules
- one rule for each leaf.
- These rules may be improved by testing each attribute in each rule
- Has the rule without this test a better precision than with the test?
- Use validation data
- May be time consuming.
- These rules are sorted by (decreasing) precision.

Patient Rule Induction Method PRIM = Bump Hunting

- Rule induction method
- We iteratively search regions with the high Y values
- for each region, a rule is created.
- CART runs of data after aproximately $\log _{2}(N)-1$ cuts.
- PRIM can affort $-\frac{\log (N)}{\log (1-\alpha)}$.

For $N=128$ data samples and $\alpha=0.1$ it is 6 and 46 respectively 29 , since the number of observations must be a whole number.

FIGURE 9.7. Illustration of PRIM algorithm. There are two classes, indicated by the blue (class 0) and red (class 1) points. The procedure starts with a rectangle (broken black lines) surrounding all of the data, and then peels away points along one edge by a prespecified amount in order to maximize the mean of the points remaining in the box. Starting at the top left panel, the sequence of peelings is shown, until a pure red region is isolated in the bottom right panel. The iteration number is indicated at the top of each panel.

PRIM Patient Rule induction Algorithm

PRIM

- Consider the whole space and all data. Set $\alpha=0.05$ or 0.10 .
- Find X_{j} and its upper or lower boundary such that the cut of $\alpha \cdot 100 \%$ observations leads to the maximal mean of the remaining data.
- Repeat until less then 10 observations left.
- Enlarge the region in any direction that increases the mean value.
- Select the number of regions by the crossvalidation. All regions generated 1-4 are considered.
- Denote the best region B_{1}.
- Create a rule that describes B_{1}.
- Remove all data in B_{1} from the dataset.
- Repeat 2-5, create B_{2} continue until final condition met.

CART Weaknesses

- the high variance
- the tree may be very different for very similar datasets
- ensemble learning addresses this issue
- the cuts are perpendicular to the axis
- the result is not smooth but stepwise.
- MARS (Multivariate Adaptive Regression Splines) addresses this issue.
- it is difficult to capture an additive structure

$$
Y=c_{1} I\left(X_{1}<t_{1}\right)+c_{2} I\left(X_{2}<t_{2}\right)+\ldots+c_{k} I\left(X_{k}<t_{k}\right)+\epsilon
$$

- MARS (Multivariate Adaptive Regression Splines) addresses this issue.

MARS Multivariate Adaptive Regression Splines

- generalization of linear regression and decision trees CART
- for each feature and each data point we create a reflected pair of basis functions
- $(x-t)_{+}$and $(t-x)_{+}$where + denotes non-negative part, minimum is zero.
- we have the set of functions

$$
\mathcal{C}=\left\{\left(X_{j}-t\right)_{+},\left(t-X_{j}\right)_{+}\right\}_{t \in\left\{x_{1, j}, x_{2, j}, \ldots, x_{N, j}\right\}, j=1,2, \ldots, p}
$$

- that is $2 N p$ functions for non-duplicated data points.

MARS - continuation

- our model is in the form

$$
f(X)=\beta_{0}+\sum_{m=1}^{M} \beta_{m} h_{m}(X)
$$

where $h_{m}(X)$ is a function from \mathcal{C} or a product of any amount of functions from \mathcal{C}

- for a fixed set of h_{m} 's we calculate coefficients β_{m} by usual linear regression (minimizing RSS)
- the set of functions h_{m} is selected iteratively.

MARS - basis selections

- We start with $h_{0}=1$, we put this function into the model $\mathcal{M}=\left\{h_{0}\right\}$.
- We consider the product of any member $h_{\ell} \in \mathcal{M}$ with any pair from \mathcal{C},
$\hat{\beta}_{M+1} h_{\ell}(X) \cdot\left(X_{j}-t\right)_{+}+\hat{\beta}_{M+2} h_{\ell}(X) \cdot\left(t-X_{j}\right)_{+}$
we select the one minimizing training
error RSS (for any product candidate, we
we select the one minimizing training
error RSS (for any product candidate, we estimate $\hat{\beta}$).
- Repeat until predefined number of functions in \mathcal{M}

MARS - model pruning

- The model is usually overfitted. We select (remove) iteratively the one minimizing the increase of training RSS. We have a sequence of models \hat{f}_{λ} for different numbers of parameters λ.
- (we want to speed-up cross-validation for computational reasons)
- we select λ (and the model) minimizing generalized cross-validation

$$
\operatorname{GCV}(\lambda)=\frac{\sum_{i=1}^{N}\left(y_{i}-\hat{f}_{\lambda}\left(x_{i}\right)\right)^{2}}{(1-M(\lambda) / N)^{2}}
$$

- where $M(\lambda)$ is the number of effective parameters, the number of function h_{m} (denoted r) plus the number of knots K, the authors suggest to multiply K by 3: $M(\lambda)=r+3 K$.

MARS is a generalization of CART

- We select piecewise constant functions $I(x-t>0)$ and $I(x-t \leq 0)$
- If h_{m} uses multiplication we remove this function from the candidate list. It cannot be used any more.
- This guarantees binary split.
- Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html https://contrib.scikit-learn.org/py-earth/auto_examples/index.html

Table of Contens

(1) Overview of Supervised Learning
(2) Kernel Methods, Basis Expansion and regularization
(3) Linear Methods for Classification
(4) Model Assessment and Selection
(5) Additive Models, Trees, and Related Methods
(6) Ensamble Methods
(7) Clustering
(8) Bayesian learning, EM algorithm
(9) Association Rules, Apriori
(10) Inductive Logic Programming
(11) Undirected (Pairwise Continuous) Graphical Models
(12) Gaussian Processes
(13) PCA Extensions, Independent CA
(14) Support Vector Machines

