Learning Method Comparison

@ Neural Networks before deep learning
@ SVM - logistic regression; with a non-linear transform. that worstens

scalability.

Characteristic Neural SVM Trees MARS k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v
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Ensemble Methods

@ To improve the predictive power of a decision tree, we combine the results
from a bag of trees.
o Common methods
e Random forest (+ Bagging)
e Boosting

@ Adaboost - classification
o Gradient boosting - regression and classification

e Stacking
o MARS (=earth).

Original Tree b=1
xa<oms x1<0855 xz<0208

b
x2<0285 xa<oses xa<13

T

o

b=a b=s

-3
Lo

1o
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Bootstrap

Select elements with replacement.

We have N data samples, we select with
replacement N samples — some are selected

more than one, some are not selected at all.

The not selected are used for testing.

The probability of not-selecting a sample is
(1- )" ~et=0368

Selected samples used to learn a model
(usually a tree).

These are used for the OutOfBag error
computation.

All today models are implemented in

sklearn.ensemble
sklearn.inspection

hine Learning Ensamble Methods 6

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets
Z*, b =1,...,B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training
set, and the values S(Z*), ..., 8 S(Z*P) are used to as-
sess the statistical accuracy of S(Z).
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Random Forest for Regression or Classification

1: procedure RANDOM FOREST:( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4 repeat > Grow a random forest tree T,
5: Select m variables at random from p variables. > ! crucial
6 Pick the best variable/split—point among the m

7 Split the node into two children nodes.

8 until the minimum node size n,,;, is reached.

9 end for

10:  Output the ensemble of trees { T }5.

11: end procedure > usually no pruning

To make a prediction at a new point x:
o Regression: F8(x) = 37, Tp(x).
o Classification: Let Eb(x) be the class prediction of the bth random—forest
tree.
o Predict CZ(x) = majority vote {Cp(x)}%.
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Bagging (Bootstrap aggregating)

@ It is a Random Forest, where we use all predictors, that is m = p.
@ both regression and classification.
e Training data Z = {(x1, y1), (x2,¥2),- .-, (xn, yn)}

B
) 1 s,
frag(x) = 5 D 778(x).
b=1

@ Bagging adds the
smoothness in predicted
values.

@ Left: constant prediction at * .
tree leafs. :

o Average over different trees DY
adds smoothness. a4 A

@ Random forest selects a
subset of attributes to

increase the diversity of e e R
trees.
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Behind Random Forest

The variance of the random forest estimate Var(f2(x)) = E(f(x) — Ef(x))? is

@ iid data variables, independent features, each with variance ¢2:
1

4] EU
o id identically distributed data, each with variance o2 with positive pairwise
correlation p:
° pO' + 1— p 2
@ The second part is addressed by bagging.
@ The idea behind random random forest is to address the first part of the
formula.
o Before each split, select m < p variables as candidates for splitting.
o m < ,/p for regression, even as low as 1. £ for classification.
@ Bagging does not change linear estimates, such as the sample mean

e The pairwise correlation between bootstrapped means is about 50%.
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Bagging for Classification

@ Training data Z =
{(xa,81): (%2, 82), - (xv, gn) }
o for each bootstrap sample,
b=1,2,...,B, we fit our model,

A 2 Consensus
giving prediction £*°(x). . J-z - @
@ Take either o |
i . 3 &) Bagged Trees
e predict probabilities of classes B, | e v
and find the class with the Ec
highest predicted probability over <
the bootstrap samples g
Q . Bwes .
B s L T T T T
~ ’\*b 0 50 100 150 200
G(x) = argmaxi § £77(x)
b=1
o predict class and
Gag(x) = majority vote { G*?(x)}5
bag - 1/ y b=1-
Machine Learning Ensamble Methods 6 1-33 March 28, 2025
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OOB Error

Definition (Out of bag error (OOB)) @ An OOB error estimate is almost
identical to that obtained by N-fold
crossvalidation.

For each observation z; = (x;, y;),
construct is random forest predictor by

averaging only those trees @ Unlike many other nonlinear
corresponding to bootstrap samples in e.stllmators, random forests can be
which z; did not appear. fit in one sequence.

0.075
I

OB Error
N Test Error

Misclassification Error
0.065
I

0.055
I

0.045
I

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees
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Feature Importance Mean Decrease in Impurity

e Variable Importance of a predictor Xy in a single
tree T is

B(T) =iy 2 1(v(t) = 0)
e For each mternal node t of the tree, we calculate
the Gini or RSS gain
o where 77 is the Gini/RSS improvement of the
predictor in the inner node t.
o Gini Pi(t)(1 — p(t)) before and after the split
o for K goal classes, a separate tree for each class
against others
o weighted by the probability of reaching the node
t.

@ For a set of trees, we average over M all trees
2 __ 1 M 2
I7 = 3 2221 17 (Tm).

@ Usually scaled to the interval (0,100).

Machine Le Ensamble Methods 6 1-33

Gini
table l

vecewe ——
ema\\ —
wm —
mlemex —
1999

Variable Importance
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Feature Importance based on Feature Permutation

OOB Variable Importance

1: procedure OOBN VARIMPORTANCE:(data)

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4: Grow a random forest tree Tp Alternative Variable

5 Calculate accuracy on OOB samples Importance

6 for j=1,2,...,pdo

7: permute the values for the jth vari- "t e e
able randomly in the OOB samples

8: Calculate the decrease in the accu-
racy

9: end for

10: end for

11 Output average accuracy gain for each j =
1,2,....p.

12: end procedure

@ The randomization voids the effect of a variable.
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Proximity plot

Proximity plot

1. procedure PROXIMITY PLOT( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4 Grow a random forest tree T}

5: Calculate prediction accuracy on OOB samples

6 for any pair of OOB samples sharing the same leaf do
7 increase the proximity by one.

8: end for

9: end for

10: end procedure

@ Distinct samples usually come from
the pure regions

Dimension 2

@ Samples in the 'star center’ are
close to the decision boundary.

Dimension 1 X1
Machine Learning Ensamble Methods 6 1-33 March 28, 2025 11 /33




Overfitting

@ Though the random forest cannot overfit the limit distribution
fr(x) =EeT(x;0) = lim £(x)
B—oo

o the limit distribution (the average of fully grown trees) may overfit the data.

@ Small number of relevant variables with many irrelevant hurts the random
forest approach.

= With higher number of relevant variables RF is quite robust.

@ 6 relevant and 100 noisy variables, ® Seldom the pruning improves

m=+/6+ 100 ~ 10 the random forest result
@ usually, fully grown trees are

@ probability of a relevant variable being used
selected at any split is 0.46. o Two additive vars, 10 noisy,

| mmas

yyyyyyyyyyyyyyyyy

T
@5 (@2 (25 (2100 (2150

Number of (Relevant, Noise) Variables FIGURE 15.8. The effect of tree size on the e
Machine Learning Ensamble Methods 6 1-33 14 March 28, 2025
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Random Forest Experiments

Spam example misclassification error California housing data
H [
° bagging 5.4% @ Random forests stabilize at about

o random forest 4.88% 200 trees, while at 1000 trees
e gradient boosting 4.5%. boosting continues to improve.
e Boosting is slowed down by the
shrinkage
o the trees are much smaller
Nested Spheres in RIO, 2500 trees, the (decision stumps’ interaction
number selected by 10—fold crossvalida- depth=1 or 2).
tion

@ Boosting outperforms random
Nested Spheres forests here.

GBM depth=4
o GBM depth=6

000
s
T
032 034 036
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Boosting

I Use a week classifier as a decision stump (a decision
tree with the depth=1). e Two class problem

AdaBoost.M1 with encoding

Y e{-1,1}

1: procedure ADABOOST CLASSIFIER( X, G) R T
2 Initialize the observation weights w; + .. N o
3: for m=1,2,..., M do ““‘"“"‘*”‘\'[”‘“ ,
4 Fit a classifier Gp(x) to the training ey [Shleson
data using weights w; . e Gla)
5: compute erry, Zﬂ*ﬁf’”(m :
=1
6: compute ap, /og(ler%’") e Gye)
7: Set w; « w; - e/(iFGm06))-am T
8: (normalize weights) e @0
o: end for T

10:  Output G(x) = sign[M_, amGm(x)]. > -

11: end procedure
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Nested Spheres Example

@ The features X, ..., Xjo are standard independent Gaussian

@ deterministic target
o Y =1iff ) X7 > x3(0.5) = 9.34,
e Y = —1 otherwise.

2000 training cases

10000 test observations.

@ Decision stumps.

w
° Single Stump

0.4

03
I

244 Node Tree

Test Error

0.2

0.1

T T T T T
0 100 200 300 400

Boosting lterations
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Additive Model

@ We encode the binary goal by Y € {—1,+1}.
@ Boosting fits an additive model:

M
F(x) =D Bmb(x;Ym)
m=1
@ where 3, for m=1,..., M are the expansion coefficients

@ b(x;v) € R are usually simple functions of the multivariate argument x
o characterized by a set of parameters ~.
o For trees, v parametrizes the split variables and split points at the internal
nodes, and the predictions at the terminal nodes.
o Forward stagewise Additive Modeling sequentially adds one new basis function
without adjusting the parameters and coefficients of the previously fitted.
@ For squared—error loss

L(y, f(x)) = (v — f(x))?,
we have
L(yi, fn-1(X) + Bmb(xi;7m)) = (Vi — f—1(X) — Bmb(xi; Ym))?
(Fim — Bmb(xi: ¥m))?
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Exponential Loss and AdaBoost

o Let us use the Y € {—1,1} encoding and the exponential loss
L(y, f(x)) = et

@ We have to solve

N
= i [—yi(fn—1(x)+BG(xi)]
(Bm> Gm) arg rg,lg;e

N
- i [—yi(fm—1(x))] p[—¥iBG(x)]
= argmin e e
gﬁl’G;
. (m)
= i m) o[- G()]
= argmin w: e

@ where W,.(m) = el=Yifn-1(4)] does not depend on /3 nor G(x).

@ this weight depends on f,,_1(x;) and change with each iteration m.

Machine Learning Ensamble Methods 6 1-33 March 28, 2025
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Exponential Loss and AdaBoost

@ From
N
(Bm, Gm) = argmme ) el=yiBG(xi)]

i=1
— . B . (m) -8 (m)
= argmin |e Z wip e Z w;

yi# () ¥=G(x)
N ) )
= argmin Wlml i £ G(x;) +e b Wm
B 2w # 60)) z

@ For any /3 > 0 the solution for Gp,(x;7) is

G = argmin _ w™ I(yi # G(xi7)),
argm’ylniz:;w, (vi # G(xi;7))

@ Recall the error definition:
Sl w™I(y; # ()
ZN ) W(m)

Machine Learning Ensamble Methods 6 1-33 March 28, 2025
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Adaboost Update

-8 B .
arg min e W i £ G(x;)) +e” w;
gﬁ ) E I(y, ( ?1

@ The minimum w.r.t. 5, is:

1 1-—
Bm = */Ogﬂ

2 errm

@ The approximation is updated
fn(X) = fmn—1(X) + Bm Gim(x)

@ which causes the weights for the next iteration to be:

Wim+1 — Wim . efﬁm)’icm(xi)'

@ using the fact —y;Gn(x;) =2 I(yi # Gm(x;)) — 1 we get

wmtl — Wim . eMiF#GCm(xi)) | o= Bm

Machine Learning Ensamble Methods 6 1-33 March 28, 2025
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Why exponential loss?

@ The population minimizer is

_ B 1, P(Y=1[x)
o VI = Zjog—n— 2
f*(x) = arg ?EL?EY\X(G ) 5log P(Y = —1|x)

o therefore 1
1+ e—2f*(x)’
@ The same function *(x) minimizes also deviance (cross—entropy, binomial
negative log—likelihood)
e interpreting f* as the logit transform. Let:

P(Y = 1|x) =

*(x)
e 1
p(x) = P(Y = l\x) =

e () 1 ef () T lie 2
o and define Y/ = (Y 4 1)/2 € {0,1}. Log-likelihood is

(Y. p(x)) = Y'log p(x) + (1 — Y log(1 — p(x))
e or equivalently the deviance:
—U(Y, f(x)) = log (1+ e >")).

@ Exponential loss decreases long after misclassification loss is
stable at zero.

Machine Learning Ensamble Methods 6 1-33 March 28, 2025

20 / 33



Forward Stagewise Additive Modeling

@ A general iterative fitting approach.

@ In each step, we select the best function from the dictionary b(x;; ), fit its
parameters v and the weight of this basis function 5.

@ Stagewise approximation is often faster then iterative fitting of the full model.

Forward Stagewise Additive Modeling

1: procedure FORWARD STAGEWISE ADDITIVE MODELING( L, X, Y, b)
2 Initialize fy < 0.

3 for m=1,2....Mdo

4: Compute (Bm, Ym) <— argming Z,N:1 L(y;, fm—1(x:) + Bb(xi; 7).
5: Set fin(x) < fm_1(Xx) + Bmb(xi; Ym)

6 end for

7: end procedure

@ For example, our basis functions are decision trees, v represents the splits and
fitted values T (x;7)).

@ For square error loss, any new tree T (x;) is the best tree fitting residuals
ri=Yi — fm—1(x).
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Gradient Tree Boosting Algorithm

Gradient Tree Boosting Algorithm

1: procedure GRADIENT TREE BOOSTING ALGORITHM( X, Y, L)
2 Initialize f5(x) <— arg min, Z,N:1 L(yi, ).
3: for m=1,2,...,M do
4 for i=1,2,...,Ndo
| 9Ly f () —[ . — :
5 compute rj, = [ OF () ]f(X’_):le(Xi) =My — fo1(x)
6 end for
7 Fit reg. tree to the target rim giving regions {Rjm}j=1,... 4,
8: for j=1,2,...,J,do
0: Compute 7jm < arg min, Zieij L(yi, fm—1(x:) + ).
10: end for
11: Set fon(x) < Fn—1(x) + X771 Yim /(X € Rim).
12: end for

13: Output 7(x) = fu(x).
14: end procedure

[¥] for square error loss.
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Regularization: Shrinkage, Subsampling

o Shrinkage adds the shrinkage parameter 0 < v < 1 to the model
construction at line 11:

JIm
fn(X) = Fn1(X) + v > Yml(x € Rim)
j=1
@ This slows down the the learning; this may be both an advantage and an
disadvantage.
@ Subsampling select without replacement only n = % of data samples in each
step.

0.5C
I

14

0.45
I

o Figure: Nested sphere ~
example

1.0

No shrinkage
Shrink=0.1

— Sample=0.5

— Shrink=0.1 Sample=0.5

0.40
I

@ Left: binomial deviance

0.8
I

Test Set Deviance
Test Set Absolute Error

) 8
fit o | s
3
L o
@ Right: square error. < | 8 \_’d/f
@ Shrinkage avoids T T T T T T T T
. . 0 200 400 600 800 1000 0 200 400 600 800 1000
OVerflttl ng' Boosting Iterations Boosting Iterations
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Stacking

@ Over a set of models (possibly different types) learn a simple model (like a
linear regression)

@ Assume predictions 1Af1(x)7 ?2(x), cey ?M(x) under square error loss
@ Predictors trained without ith example are denoted
o f'(x), 1t '(x),... ' (x)

@ we can seek weights w = (wy, ..., wp,,) such that

N M 2

W = arg min Z Vi — Z Wt ' (x)

i=1 m=1

@ The final prediction is

M
Fr(x) = > witfm(x).
m=1

o Using cross—validated predictions #,'(x) stacking avoids giving unfairly high
weight to models with higher complexity

o Better results can be obtained by restricting the weights to be nonnegative
and to sum to 1.
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Decision Rules from Decision Trees

@ We can represent a tree as a set of rules
e one rule for each leaf.
@ These rules may be improved by testing each attribute in each rule

o Has the rule without this test a better precision than with the test?
o Use validation data
e May be time consuming.

@ These rules are sorted by (decreasing) precision.
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Patient Rule Induction Method PRIM = Bump Hunting

@ Rule induction method

@ We iteratively search regions with
the high Y values

e for each region, a rule is created.

@ CART runs of data after
aproximately log,(N) — 1 cuts.

log(N

@ PRIM can affort — % . FIGURE 9.7. lllustration of PRIM algorithm. There
_ are two classes, indicated by the blue (class 0) and red
For N — 128 data Samples a nd (class 1) points. The procedure starts with a rectangle
F . broken black lines) surrounding all of the data, and
o = 0' 1 It IS 6 and 46 respeCtlver L(hen peels away pozﬁlls along mleg edge gy a prespecified
H amount in order to maximize the mean of the points
29’ since the n umber Of remaining in the box. Starting at the top left panel, the
ObSerVatiOnS must be a Whole sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number

number. is indicated at the top of each panel.
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PRIM Patient Rule induction Algorithm

Consider the whole space and all data. Set o = 0.05 or 0.10.

Find X; and its upper or lower boundary such that the cut of .- 100%
observations leads to the maximal mean of the remaining data.

Repeat until less then 10 observations left.

@ Enlarge the region in any direction that increases the mean value.

Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.

Denote the best region B;.

Create a rule that describes B;.

Remove all data in B; from the dataset.

Repeat 2-5, create B, continue until final condition met.
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CART Weaknesses

@ the high variance
o the tree may be very different for very similar datasets
e ensemble learning addresses this issue
@ the cuts are perpendicular to the axis
@ the result is not smooth but stepwise.
e MARS (Multivariate Adaptive Regression Splines) addresses this issue.
o it is difficult to capture an additive structure

Y = C1/(X1 < tl) + C2/(X2 < t2) + ...+ Ck/(Xk < tk) +e€

o MARS (Multivariate Adaptive Regression Splines) addresses this issue.

b

Ensamble Methods
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART

@ for each feature and each data point we create a reflected pair of basis
functions
@ (x — t)4 and (t — x)+ where + denotes non—negative part, minimum is zero.

we have the set of functions

C= {()<J - t)+, (t - )<j)+}f€{><1,j7X2,j,-»-,XN,j},j:172,-»-~,P

@ that is 2Np functions for non—duplicated data points.

(t—=z)+ (x—t)¢

Basis Function

00 01 02 03 04 05
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MARS - continuation

@ our model is in the form
M
F(X)=Bo+ D Bmhm(X)
m=1

where hp,(X) is a function from C or a product of any amount of functions
from C

o for a fixed set of h,,'s we calculate coefficients 3, by usual linear regression
(minimizing RSS)

@ the set of functions h,, is selected iteratively.
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MARS - basis selections

@ We start with hg = 1, we put this / - \ /_/_/_/_/\
function into the model M = {ho}. ( Constat

@ We consider the product of any member \ )
he € M with any pair from C, I

B (X0 0) b XM e-) [ \ (GG

we select the one minimizing training
error RSS (for any product candidate, we

estimate /3). P IN
@ Repeat until predefined number of 4//"" = wEsdnd sl w )
functions in M \ """"" / \/J///
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MARS — model pruning

@ The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f, for
different numbers of parameters \.

o (we want to speed—up cross-validation for computational reasons)
o we select A (and the model) minimizing generalized cross-validation

_ XL = AP
VN =T Moy

@ where M() is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K, the authors suggest to multiply
K by 3: M(\) =r + 3K.
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MARS is a generalization of CART

@ We select piecewise constant functions /(x —t > 0) and /(x — t < 0)

o If h,, uses multiplication we remove this function from the candidate list. It
cannot be used any more.

e This guarantees binary split.

o Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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curse of dimensionality, (LARS)
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kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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