# Learning Method Comparison

- Neural Networks before deep learning
- SVM logistic regression; with a non-linear transform. that worstens scalability.

| Characteristic                                        | Neural | $_{\rm SVM}$ | Trees    | MARS    | k-NN,    |
|-------------------------------------------------------|--------|--------------|----------|---------|----------|
|                                                       | Nets   |              |          |         | Kernels  |
| Natural handling of data of "mixed" type              | •      | ▼            | <b>A</b> | <b></b> | •        |
| Handling of missing values                            | ▼      | ▼            |          |         |          |
| Robustness to outliers in input space                 | •      | ▼            | <b>A</b> | •       | <b>A</b> |
| Insensitive to monotone<br>transformations of inputs  | •      | ▼            |          | •       | •        |
| Computational scalability (large $N$ )                | •      | ▼            | <b>A</b> | <b></b> | •        |
| Ability to deal with irrel-<br>evant inputs           | •      | ▼            | <b>A</b> |         | •        |
| Ability to extract linear<br>combinations of features |        | <b>A</b>     | •        | •       | •        |
| Interpretability                                      | •      | ▼            | •        |         | •        |
| Predictive power                                      |        |              | ▼        | •       | <b>A</b> |

### **Ensemble Methods**

- To improve the predictive power of a decision tree, we combine the results from a bag of trees.
- Common methods
  - Random forest (+ Bagging)
  - Boosting
    - Adaboost classification
    - Gradient boosting regression and classification
  - Stacking
  - MARS (=earth).







![](_page_1_Figure_12.jpeg)

#### Bootstrap

- Select elements with replacement.
- We have N data samples, we select with replacement N samples some are selected more than one, some are not selected at all. The not selected are used for testing.
- The probability of not-selecting a sample is  $\left(1-\frac{1}{N}\right)^N \approx e^{-1} = 0.368.$
- Selected samples used to learn a model (usually a tree).
- These are used for the OutOfBag error computation.
- All today models are implemented in

sklearn.ensemble sklearn.inspection

![](_page_2_Figure_8.jpeg)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the statistical accuracy of a quantity  $S(\mathbf{Z})$  computed from our dataset. B training sets  $\mathbf{Z}^{(h)}$  be = 1, ..., B each of size N are draum with replacement from the original dataset. The quantity of interest  $S(\mathbf{Z})$  is computed from each bootstrap training set, and the values  $S(\mathbf{Z}^{(1)}), ..., S(\mathbf{Z}^{(n)})$  are used to assess the statistical accuracy of  $S(\mathbf{Z})$ .

#### Random Forest for Regression or Classification

1: **procedure** RANDOM FOREST:( X, y training data ) 2: for b = 1, 2, ..., B do Draw a bootstrap sample  $\mathbf{Z}^*$  of size N 3:  $\triangleright$  Grow a random forest tree  $T_b$ repeat 4: Select *m* variables at random from *p* variables.  $\triangleright$  ! crucial 5: Pick the best variable/split-point among the m6: Split the node into two children nodes. 7. **until** the minimum node size *n<sub>min</sub>* is reached. 8. end for g٠ Output the ensemble of trees  $\{T_b\}_{1}^{B}$ .  $10 \cdot$ 11: end procedure  $\triangleright$  usually no pruning

To make a prediction at a new point x:

- Regression:  $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$ .
- Classification: Let  $\widehat{C}_b(x)$  be the class prediction of the *b*th random-forest tree.
  - Predict  $\widehat{C}^{B}_{rf}(x) = majority \ vote \ \{\widehat{C}_{b}(x)\}^{B}_{1}$ .

# Bagging (Bootstrap aggregating)

- It is a Random Forest, where we use all predictors, that is m = p.
- both regression and classification.
- Training data  $\mathbf{Z} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

- Bagging adds the smoothness in predicted values.
- Left: constant prediction at tree leafs.
- Average over different trees adds smoothness.
- Random forest selects a subset of attributes to increase the diversity of trees.

![](_page_4_Figure_9.jpeg)

The variance of the random forest estimate  $Var(\hat{f}^B_{rf}(x)) = \mathbb{E}(\hat{f}(x) - \mathbb{E}\hat{f}(x))^2$  is

- iid data variables, independent features, each with variance  $\sigma^2$ :
  - $\frac{1}{B}\sigma^2$
- id identically distributed data, each with variance  $\sigma^2$  with positive pairwise correlation  $\rho$ :
  - $\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ .
- The second part is addressed by bagging.
- The idea behind random random forest is to address the first part of the formula.
  - Before each split, select  $m \le p$  variables as candidates for splitting.
  - $m \leftarrow \sqrt{p}$  for regression, even as low as 1.  $\frac{p}{3}$  for classification.
- Bagging does not change linear estimates, such as the sample mean
  - The pairwise correlation between bootstrapped means is about 50%.

# Bagging for Classification

- Training data  $\mathbf{Z} = \{(x_1, g_1), (x_2, g_2), \dots, (x_N, g_N)\}$
- for each bootstrap sample,
   b = 1, 2, ..., B, we fit our model,
   giving prediction f<sup>\*b</sup>(x).
- Take either
  - predict probabilities of classes and find the class with the highest predicted probability over the bootstrap samples

$$\hat{G}(x) = \operatorname{argmax}_k \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

predict class and

$$\hat{G}_{bag}(x) = majority \ vote \ \{\hat{G}^{*b}(x)\}_{b=1}^{B}$$

![](_page_6_Figure_8.jpeg)

# **OOB** Error

#### Definition (Out of bag error (OOB))

For each observation  $z_i = (x_i, y_i)$ , construct is random forest predictor by averaging only those trees corresponding to bootstrap samples in which  $z_i$  did not appear.

- An OOB error estimate is almost identical to that obtained by *N*-fold crossvalidation.
- Unlike many other nonlinear estimators, random forests can be fit in one sequence.

![](_page_7_Figure_5.jpeg)

# Feature Importance Mean Decrease in Impurity

# Variable Importance of a predictor X<sub>ℓ</sub> in a single tree T is

$$J_\ell^2(T) = \sum_{t=1}^J \hat{i}_t^2 \cdot I(v(t) = \ell)$$

- For each internal node t of the tree, we calculate the *Gini* or *RSS* gain
- where  $\hat{i}_t^2$  is the Gini/RSS improvement of the predictor in the inner node t.
  - Gini  $\hat{p}_k(t)(1-\hat{p}_k(t))$  before and after the split
  - for K goal classes, a separate tree for each class against others
  - weighted by the probability of reaching the node *t*.
- For a set of trees, we average over M all trees  $I_{\ell}^2 = \frac{1}{M} \sum_{i=1}^{M} I_{\ell}^2(T_m).$
- $\bullet$  Usually scaled to the interval (0, 100).

![](_page_8_Figure_10.jpeg)

# Feature Importance based on Feature Permutation

#### **OOB** Variable Importance

| 1:  | procedure OOBN VARIMPORTANCE:(data)          |
|-----|----------------------------------------------|
| 2:  | for $b = 1, 2,, B$ do                        |
| 3:  | Draw a bootstrap sample $Z^*$ of size N      |
| 4:  | Grow a random forest tree $T_b$              |
| 5:  | Calculate accuracy on OOB samples            |
| 6:  | for $j = 1, 2,, p$ do                        |
| 7:  | permute the values for the <i>j</i> th vari- |
|     | able randomly in the OOB samples             |
| 8:  | Calculate the decrease in the accu-          |
|     | racy                                         |
| 9:  | end for                                      |
| 10: | end for                                      |
| 11: | Output average accuracy gain for each $j =$  |
|     | 1,2,, <i>p</i> .                             |
| 12: | end procedure                                |

#### Alternative Variable Importance

with quite different results

![](_page_9_Figure_5.jpeg)

• The randomization voids the effect of a variable.

# Proximity plot

#### Proximity plot

- 1: **procedure** PROXIMITY PLOT( X, y training data )
- for b = 1, 2, ..., B do 2:
- Draw a bootstrap sample  $\mathbf{Z}^*$  of size N 3:
- Grow a random forest tree  $T_h$ 4:
- 5: Calculate prediction accuracy on OOB samples
- for any pair of OOB samples sharing the same leaf do 6: 7:
  - increase the proximity by one.
- end for 8:
- end for g٠

10: end procedure

Machine Learning

 Distinct samples usually come from the pure regions

Ensamble Methods 6

• Samples in the 'star center' are close to the decision boundary.

![](_page_10_Figure_14.jpeg)

# Overfitting

• Though the random forest cannot overfit the limit distribution

$$\hat{f}_{rf}(x) = \mathbb{E}_{\Theta} T(x; \Theta) = \lim_{B \to \infty} \hat{f}^B_{rf}(x)$$

- the limit distribution (the average of fully grown trees) may overfit the data.
- Small number of relevant variables with many irrelevant hurts the random forest approach.
- $\Rightarrow$  With higher number of relevant variables RF is quite robust.
  - 6 relevant and 100 noisy variables,  $m=\sqrt{6+100}\sim 10$
  - probability of a relevant variable being selected at any split is 0.46.

![](_page_11_Figure_8.jpeg)

- Seldom the pruning improves the random forest result
- usually, fully grown trees are used.
  - Two additive vars, 10 noisy,
  - plus additive Gaussian noise.

![](_page_11_Figure_13.jpeg)

1 - 33

The effect of tree size on the error

March 28, 2025

12 / 33

### Random Forest Experiments

Spam example misclassification error

- bagging 5.4%
- random forest 4.88%
- gradient boosting 4.5%.

Nested spheres in  $\mathbb{R}^{10},$  2500 trees, the number selected by 10–fold crossvalidation

![](_page_12_Figure_6.jpeg)

California housing data

- Random forests stabilize at about 200 trees, while at 1000 trees boosting continues to improve.
  - Boosting is slowed down by the shrinkage
  - the trees are much smaller (decision stumps, interaction depth=1 or 2).
- Boosting outperforms random forests here.

![](_page_12_Figure_12.jpeg)

# Boosting

! Use a week classifier as a decision stump (a decision tree with the depth= 1).

#### AdaBoost.M1

- 1: procedure ADABOOST CLASSIFIER (X, G)Initialize the observation weights  $w_i \leftarrow \frac{1}{N}$ . 2: 3: for m = 1, 2, ..., M do Fit a classifier  $G_m(x)$  to the training 4: data using weights w<sub>i</sub> compute  $err_m \leftarrow \frac{\sum_{i=1}^N w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i}$ 5: compute  $\alpha_m \leftarrow \log \frac{(1 - err_m)}{err}$ 6. Set  $w_i \leftarrow w_i \cdot e^{I(y_i \neq G_m(x_i)) \cdot \alpha_m}$ 7. (normalize weights) 8. end for g٠ Output  $G(x) = sign[\sum_{m=1}^{M} \alpha_m G_m(x)].$ 10: 11: end procedure
- Two class problem with encoding  $Y \in \{-1, 1\}$ •  $\overline{err} = \frac{1}{N} \sum_{i=1}^{N} I(y_i \neq G(x_i)).$ FINAL CLASSIFIER  $G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_n\right]$ Weighted Sample  $\cdots \bullet G_M(x)$ Weighted Sample  $\cdots \bullet G_3(x)$ Weighted Sample  $\dots \rightarrow G_2(x)$ Training Sample  $\dots G_1(x)$

### Nested Spheres Example

- The features  $X_1, \ldots, X_{10}$  are standard independent Gaussian
- deterministic target

• 
$$Y = 1$$
 iff  $\sum_{j=1}^{10} X_j^2 > \chi_{10}^2(0.5) = 9.34$ ,

- Y = −1 otherwise.
- 2000 training cases
- 10000 test observations.
- Decision stumps.

![](_page_14_Figure_8.jpeg)

### Additive Model

- We encode the binary goal by  $Y \in \{-1, +1\}$ .
- Boosting fits an additive model:

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$

- where  $\beta_m$  for  $m = 1, \ldots, M$  are the expansion coefficients
- b(x; γ) ∈ ℝ are usually simple functions of the multivariate argument x
  characterized by a set of parameters γ.
- For trees,  $\gamma$  parametrizes the split variables and split points at the internal nodes, and the predictions at the terminal nodes.
- Forward stagewise Additive Modeling sequentially adds one new basis function without adjusting the parameters and coefficients of the previously fitted.
- For squared-error loss

$$L(y, f(x)) = (y - f(x))^2,$$

we have

$$L(y_i, f_{m-1}(x) + \beta_m b(x_i; \gamma_m)) = (y_i - f_{m-1}(x) - \beta_m b(x_i; \gamma_m))^2 = (r_{im} - \beta_m b(x_i; \gamma_m))^2$$

r

### Exponential Loss and AdaBoost

 $\bullet$  Let us use the  $Y \in \{-1,1\}$  encoding and the exponential loss

$$L(y,f(x))=e^{-yf(x)}.$$

• We have to solve

$$\begin{aligned} (\beta_m, G_m) &= \arg \min_{\beta, G} \sum_{i=1}^N e^{[-y_i(f_{m-1}(x_i) + \beta G(x_i)]} \\ &= \arg \min_{\beta, G} \sum_{i=1}^N e^{[-y_i(f_{m-1}(x_i)]} e^{[-y_i \beta G(x_i)]} \\ &= \arg \min_{\beta, G} \sum_{i=1}^N w_i^{(m)} e^{[-y_i \beta G(x_i)]} \end{aligned}$$

• where  $w_i^{(m)} = e^{[-y_i f_{m-1}(x_i)]}$  does not depend on  $\beta$  nor G(x).

• this weight depends on  $f_{m-1}(x_i)$  and change with each iteration m.

### Exponential Loss and AdaBoost

• From

$$(\beta_m, G_m) = \arg \min_{\beta, G} \sum_{i=1}^N w_i^{(m)} e^{[-y_i \beta G(x_i)]}$$

$$= \arg \min_{\beta, G} \left[ e^{\beta} \cdot \sum_{y_i \neq G(x_i)} w_i^{(m)} + e^{-\beta} \cdot \sum_{y_i = G(x_i)} w_i^{(m)} \right]$$

$$= \arg \min_{\beta, G} \left[ (e^{\beta} - e^{-\beta}) \cdot \sum_{i=1}^N w_i^{(m)} I(y_i \neq G(x_i)) + e^{-\beta} \cdot \sum_{i=1}^N w_i^{(m)} \right]$$

• For any  $\beta > 0$  the solution for  $G_m(x; \gamma)$  is

$$G_m = \arg\min_{\gamma} \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G(x_i; \gamma)),$$

• Recall the error definition:

$$err_{m} = \frac{\sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}^{(m)}}$$

#### Adaboost Update

$$\arg\min_{\beta,G}\left[(e^{\beta}-e^{-\beta})\cdot\sum_{i=1}^{N}w_{i}^{(m)}I(y_{i}\neq G(x_{i}))+e^{-\beta}\cdot\sum_{i=1}^{N}w_{i}^{(m)}\right]$$

• The minimum w.r.t.  $\beta_m$  is:

$$\beta_m = \frac{1}{2} \log \frac{1 - err_m}{err_m}$$

• The approximation is updated

$$f_m(x) = f_{m-1}(x) + \beta_m G_m(x)$$

• which causes the weights for the next iteration to be:

$$w_i^{m+1} = w_i^m \cdot e^{-\beta_m y_i G_m(x_i)}.$$

• using the fact  $-y_i G_m(x_i) = 2 \cdot I(y_i \neq G_m(x_i)) - 1$  we get

$$w_i^{m+1} = w_i^m \cdot e^{lpha I(y_i 
eq G_m(x_i))} \cdot e^{-eta_m}$$

# Why exponential loss?

• The population minimizer is

$$f^*(x) = \arg\min_{f(x)} \mathbb{E}_{Y|x}(e^{-Yf(x)}) = \frac{1}{2}\log\frac{P(Y=1|x)}{P(Y=-1|x)}$$

• therefore

$$P(Y = 1|x) = \frac{1}{1 + e^{-2f^*(x)}}.$$

- The same function f\*(x) minimizes also deviance (cross-entropy, binomial negative log-likelihood)
  - interpreting  $f^*$  as the logit transform. Let:

$$p(x) = P(Y = 1|x) = rac{e^{f^*(x)}}{e^{-f^*(x)} + e^{f^*(x)}} = rac{1}{1 + e^{-2f^*(x)}}.$$

 $\bullet$  and define  $Y^{|}=(Y+1)/2\in\{0,1\}.$  Log–likelihood is

$$\ell(Y, p(x)) = Y^{|} \log p(x) + (1 - Y^{|}) \log(1 - p(x))$$

• or equivalently the deviance:

$$-\ell(Y,f(x)) = \log\left(1+e^{-2Yf(x)}\right).$$

• Exponential loss decreases long after misclassification loss is stable at zero.

and loose

# Forward Stagewise Additive Modeling

- A general iterative fitting approach.
- In each step, we select the best function from the dictionary  $b(x_i; \gamma)$ , fit its parameters  $\gamma$  and the weight of this basis function  $\beta_m$ .
- Stagewise approximation is often faster then iterative fitting of the full model.

#### Forward Stagewise Additive Modeling

- 1: procedure Forward Stagewise Additive Modeling(L, X, Y, b)
- 2: Initialize  $f_0 \leftarrow 0$ .
- 3: **for** m = 1, 2, ..., M **do**
- 4: Compute  $(\beta_m, \gamma_m) \leftarrow \arg \min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$
- 5: Set  $f_m(x) \leftarrow f_{m-1}(x) + \beta_m b(x_i; \gamma_m)$
- 6: end for
- 7: end procedure
- For example, our basis functions are decision trees, γ represents the splits and fitted values T(\*; γ)).
- For square error loss, any new tree  $T(*; \gamma)$  is the best tree fitting residuals  $r_i = y_i f_{m-1}(x_i)$ .

1 - 33

#### Gradient Tree Boosting Algorithm

1: procedure GRADIENT TREE BOOSTING ALGORITHM( 
$$X, Y, L$$
)  
2: Initialize  $f_0(x) \leftarrow \arg \min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$ .  
3: for  $m = 1, 2, ..., M$  do  
4: for  $i = 1, 2, ..., N$  do  
5: compute  $r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i)=f_{m-1}(x_i)} =^{[*]} y_i - f_{m-1}(x_i)$   
6: end for  
7: Fit reg. tree to the target  $r_{im}$  giving regions  $\{R_{jm}\}_{j=1,...,J_m}$ .  
8: for  $j = 1, 2, ..., J_m$  do  
9: Compute  $\gamma_{jm} \leftarrow \arg \min_{\gamma} \sum_{i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$ .  
10: end for  
11: Set  $f_m(x) \leftarrow f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$ .  
12: end for  
13: Output  $\hat{f}(x) = f_M(x)$ .

#### [\*] for square error loss.

# Regularization: Shrinkage, Subsampling

• Shrinkage adds the shrinkage parameter  $0 < \nu < 1$  to the model construction at line 11:

$$f_m(x) \leftarrow f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

- This slows down the the learning; this may be both an advantage and an disadvantage.
- Subsampling select without replacement only  $\eta = \frac{1}{2}$  of data samples in each step.

![](_page_22_Figure_5.jpeg)

# Stacking

- Over a set of models (possibly different types) learn a simple model (like a linear regression)
- Assume predictions  $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x)$  under square error loss
- Predictors trained without *i*th example are denoted

• 
$$\hat{f}_1^{-i}(x), \hat{f}_2^{-i}(x), \dots, \hat{f}_M^{-i}(x)$$

• we can seek weights  $w = (w_1, \ldots, w_m)$  such that

$$\hat{w}^{st} = \arg\min_{w} \sum_{i=1}^{N} \left[ y_i - \sum_{m=1}^{M} w_m \hat{f}_m^{-i}(x) \right]^2.$$

• The final prediction is

$$\hat{f}^{st}(x) = \sum_{m=1}^{M} w_m^{st} \hat{f}_m(x).$$

- Using cross-validated predictions  $\hat{f}_m^{-i}(x)$  stacking avoids giving unfairly high weight to models with higher complexity
- Better results can be obtained by restricting the weights to be nonnegative and to sum to 1.

- We can represent a tree as a set of rules
  - one rule for each leaf.
- These rules may be improved by testing each attribute in each rule
  - Has the rule without this test a better precision than with the test?
  - Use validation data
  - May be time consuming.
- These rules are sorted by (decreasing) precision.

# Patient Rule Induction Method PRIM = Bump Hunting

- Rule induction method
- We iteratively search regions with the high Y values
  - for each region, a rule is created.
- CART runs of data after aproximately log<sub>2</sub>(N) 1 cuts.
- PRIM can affort log(N)/log(1-α).
   For N = 128 data samples and α = 0.1 it is 6 and 46 respectively 29, since the number of observations must be a whole number.

![](_page_25_Figure_6.jpeg)

FIGURE 9.7. Illustration of PRIM algorithm. There are two classes, indicated by the blue (class 0) and red (class 1) points. The procedure starts with a rectangle (broken black lines) surrounding all of the data, and then peels away points along one edge by a prespecified amount in order to maximize the mean of the points remaining in the box. Starting at the top left panel, the sequence of peelings is shown, until a pure red region is isolated in the bottom right panel. The iteration number is indicated at the top of each panel.

# PRIM Patient Rule induction Algorithm

#### PRIM

- Consider the whole space and all data. Set  $\alpha = 0.05$  or 0.10.
- Find  $X_j$  and its upper or lower boundary such that the cut of  $\alpha \cdot 100\%$  observations leads to the maximal mean of the remaining data.
- Repeat until less then 10 observations left.
- Enlarge the region in any direction that increases the mean value.
- Select the number of regions by the crossvalidation. All regions generated 1-4 are considered.
- Denote the best region  $B_1$ .
- Create a rule that describes  $B_1$ .
- Remove all data in  $B_1$  from the dataset.
- Repeat 2-5, create  $B_2$  continue until final condition met.

![](_page_26_Picture_11.jpeg)

### **CART** Weaknesses

- the high variance
  - the tree may be very different for very similar datasets
  - ensemble learning addresses this issue
- the cuts are perpendicular to the axis
- the result is not smooth but stepwise.
  - MARS (Multivariate Adaptive Regression Splines) addresses this issue.
- it is difficult to capture an additive structure

$$Y = c_1 I(X_1 < t_1) + c_2 I(X_2 < t_2) + \ldots + c_k I(X_k < t_k) + \epsilon$$

• MARS (Multivariate Adaptive Regression Splines) addresses this issue.

![](_page_27_Figure_10.jpeg)

FIGURE 8.7. Top Row: A two-dimensional classification example in which the true decision boundary is linear, and is indicated by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a de-

![](_page_27_Figure_12.jpeg)

### MARS Multivariate Adaptive Regression Splines

- generalization of linear regression and decision trees CART
- for each feature and each data point we create a **reflected pair** of basis functions
- $(x t)_+$  and  $(t x)_+$  where + denotes non-negative part, minimum is zero.
- we have the set of functions

$$\mathcal{C} = \{(X_j - t)_+, (t - X_j)_+\}_{t \in \{x_{1,j}, x_{2,j}, \dots, x_{N,j}\}, j=1,2,\dots, p}$$

• that is 2Np functions for non-duplicated data points.

![](_page_28_Figure_7.jpeg)

### MARS – continuation

• our model is in the form

$$f(X) = \beta_0 + \sum_{m=1}^M \beta_m h_m(X)$$

where  $h_m(X)$  is a function from  $\mathcal C$  or a product of any amount of functions from  $\mathcal C$ 

- for a fixed set of  $h_m$ 's we calculate coefficients  $\beta_m$  by usual linear regression (minimizing RSS)
- the set of functions  $h_m$  is selected iteratively.

![](_page_29_Figure_6.jpeg)

### MARS – basis selections

- We start with  $h_0 = 1$ , we put this function into the model  $\mathcal{M} = \{h_0\}$ .
- We consider the product of any member  $h_{\ell} \in \mathcal{M}$  with any pair from  $\mathcal{C}$ ,

$$\hat{eta}_{M+1}h_\ell(X){\cdot}(X_j{-}t)_+{+}\hat{eta}_{M+2}h_\ell(X){\cdot}(t{-}X_j)_+$$

we select the one minimizing training error RSS (for any product candidate, we estimate  $\hat{\beta}$ ).

• Repeat until predefined number of functions in  $\ensuremath{\mathcal{M}}$ 

![](_page_30_Figure_6.jpeg)

- The model is usually overfitted. We select (remove) iteratively the one minimizing the increase of training RSS. We have a sequence of models f
  <sub>λ</sub> for different numbers of parameters λ.
- (we want to speed-up cross-validation for computational reasons)
- $\bullet$  we select  $\lambda$  (and the model) minimizing generalized cross-validation

$$GCV(\lambda) = \frac{\sum_{i=1}^{N} (y_i - \hat{f}_{\lambda}(x_i))^2}{(1 - M(\lambda)/N)^2}.$$

• where  $M(\lambda)$  is the number of effective parameters, the number of function  $h_m$  (denoted r) plus the number of knots K, the authors suggest to multiply K by 3:  $M(\lambda) = r + 3K$ .

# MARS is a generalization of CART

- We select piecewise constant functions I(x t > 0) and  $I(x t \le 0)$
- If  $h_m$  uses multiplication we remove this function from the candidate list. It cannot be used any more.
  - This guarantees binary split.
- Its CART.

![](_page_32_Picture_5.jpeg)

https://contrib.scikit-learn.org/py-earth/auto\_examples/plot\_classifier\_comp.html https://contrib.scikit-learn.org/py-earth/auto\_examples/index.html

# List of topics

- Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- **O** Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- Idecision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking, MARS,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Sclustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

# List of topics

- Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- **O** Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- Idecision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking, MARS,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Sclustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

# Table of Contens

- Overview of Supervised Learning
- Kernel Methods, Basis Expansion and regularization
- 3 Linear Methods for Classification
- 4 Model Assessment and Selection
- 5 Additive Models, Trees, and Related Methods
- 6 Ensamble Methods
- 🕖 Bayesian learning, EM algorithm
- 8 Clustering
- 9 Association Rules, Apriori
- Inductive Logic Programming
- 1 Undirected Graphical Models
- 12 Gaussian Processes
- 13 Support Vector Machines
- (PCA Extensions, Independent CA)