
Learning Method Comparison
Neural Networks before deep learning
SVM - logistic regression; with a non-linear transform. that worstens
scalability.

10.7 “Off-the-Shelf” Procedures for Data Mining 351

TABLE 10.1. Some characteristics of different learning methods. Key: ▲= good,
◆=fair, and ▼=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

▼ ▼ ▲ ▲ ▼

Handling of missing values ▼ ▼ ▲ ▲ ▲

Robustness to outliers in
input space

▼ ▼ ▲ ▼ ▲

Insensitive to monotone
transformations of inputs

▼ ▼ ▲ ▼ ▼

Computational scalability
(large N)

▼ ▼ ▲ ▲ ▼

Ability to deal with irrel-
evant inputs

▼ ▼ ▲ ▲ ▼

Ability to extract linear
combinations of features

▲ ▲ ▼ ▼ ◆

Interpretability ▼ ▼ ◆ ▲ ▼

Predictive power ▲ ▲ ▼ ◆ ▲

siderations play an important role. Also, the data are usually messy: the
inputs tend to be mixtures of quantitative, binary, and categorical vari-
ables, the latter often with many levels. There are generally many missing
values, complete observations being rare. Distributions of numeric predic-
tor and response variables are often long-tailed and highly skewed. This
is the case for the spam data (Section 9.1.2); when fitting a generalized
additive model, we first log-transformed each of the predictors in order to
get a reasonable fit. In addition they usually contain a substantial fraction
of gross mis-measurements (outliers). The predictor variables are generally
measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship
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Ensemble Methods

To improve the predictive power of a decision tree, we combine the results
from a bag of trees.
Common methods

Random forest (+ Bagging)
Boosting

Adaboost - classification
Gradient boosting - regression and classification

Stacking
MARS (=earth).
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Bootstrap

Bootstrap

replications

samples

sampleTrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).
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FIGURE 8.9. Bagging trees on simulated dataset.
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Bootstrap

Select elements with replacement.
We have N data samples, we select with
replacement N samples – some are selected
more than one, some are not selected at all.
The not selected are used for testing.
The probability of not-selecting a sample is(
1− 1

N
)N ≈ e−1 = 0.368.

Selected samples used to learn a model
(usually a tree).
These are used for the OutOfBag error
computation.
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Bootstrap

Bootstrap

replications

samples

sampleTrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).

All today models are implemented in

sklearn.ensemble
sklearn.inspection
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Random Forest for Regression or Classification !

1: procedure Random Forest:( X , y training data )
2: for b = 1, 2, . . . , B do
3: Draw a bootstrap sample Z∗ of size N
4: repeat ▷ Grow a random forest tree Tb
5: Select m variables at random from p variables. ▷ ! crucial
6: Pick the best variable/split–point among the m
7: Split the node into two children nodes.
8: until the minimum node size nmin is reached.
9: end for

10: Output the ensemble of trees {Tb}B
1 .

11: end procedure ▷ usually no pruning

To make a prediction at a new point x :
Regression: f̂ B

rf (x) = 1
B

∑B
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random–forest
tree.

Predict ĈB
rf (x) = majority vote {Ĉb(x)}B

1 .
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Bagging (Bootstrap aggregating)
It is a Random Forest, where we use all predictors, that is m = p.
both regression and classification.
Training data Z = {(x1, y1), (x2, y2), . . . , (xN , yN)}

f̂bag (x) = 1
B

B∑
b=1

f̂ ∗b(x).

Bagging adds the
smoothness in predicted
values.
Left: constant prediction at
tree leafs.
Average over different trees
adds smoothness.
Random forest selects a
subset of attributes to
increase the diversity of
trees.
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Behind Random Forest

The variance of the random forest estimate Var(f̂ B
rf (x)) = E(f̂ (x)− Ef̂ (x))2 is

iid data variables, independent features, each with variance σ2:
1
B σ2

id identically distributed data, each with variance σ2 with positive pairwise
correlation ρ:

ρσ2 + 1−ρ
B σ2.

The second part is addressed by bagging.
The idea behind random random forest is to address the first part of the
formula.

Before each split, select m ≤ p variables as candidates for splitting.
m← √p for regression, even as low as 1. p

3 for classification.
Bagging does not change linear estimates, such as the sample mean

The pairwise correlation between bootstrapped means is about 50%.
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Bagging for Classification

Training data Z =
{(x1, g1), (x2, g2), . . . , (xN , gN)}
for each bootstrap sample,
b = 1, 2, . . . , B, we fit our model,
giving prediction f̂ ∗b(x).
Take either

predict probabilities of classes
and find the class with the
highest predicted probability over
the bootstrap samples

Ĝ(x) = argmaxk

B∑
b=1

f̂ ∗b(x)

predict class and

Ĝbag (x) = majority vote {Ĝ∗b(x)}B
b=1.
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tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the
consensus vote, while the green points average the prob-
abilities.
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OOB Error

Definition (Out of bag error (OOB))
For each observation zi = (xi , yi),
construct is random forest predictor by
averaging only those trees
corresponding to bootstrap samples in
which zi did not appear.

An OOB error estimate is almost
identical to that obtained by N-fold
crossvalidation.
Unlike many other nonlinear
estimators, random forests can be
fit in one sequence.
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Feature Importance Mean Decrease in Impurity

Variable Importance of a predictor Xℓ in a single
tree T is
I2
ℓ (T ) =

∑J
t=1 î2

t · I(v(t) = ℓ)
For each internal node t of the tree, we calculate
the Gini or RSS gain
where î2

t is the Gini/RSS improvement of the
predictor in the inner node t.

Gini p̂k(t)(1 − p̂k(t)) before and after the split
for K goal classes, a separate tree for each class
against others
weighted by the probability of reaching the node
t.

For a set of trees, we average over M all trees
I2
ℓ = 1

M
∑M

i=1 I2
ℓ (Tm).

Usually scaled to the interval (0, 100).
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Feature Importance based on Feature Permutation
OOB Variable Importance

1: procedure OOBN VarImportance:(data)
2: for b = 1, 2, . . . , B do
3: Draw a bootstrap sample Z∗ of size N
4: Grow a random forest tree Tb
5: Calculate accuracy on OOB samples
6: for j = 1, 2, . . . , p do
7: permute the values for the jth vari-

able randomly in the OOB samples
8: Calculate the decrease in the accu-

racy
9: end for

10: end for
11: Output average accuracy gain for each j =

1, 2, . . . , p.
12: end procedure

The randomization voids the effect of a variable.
This does not measure the effect on prediction
where this variable not available, because if the
model was refitted without the variable, other
variables could be used as surrogates.

Alternative Variable
Importance

with quite different results
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FIGURE 15.5. Variable importance plots for a classi-
fication random forest grown on the spam data. The left
plot bases the importance on the Gini splitting index, as
in gradient boosting. The rankings compare well with
the rankings produced by gradient boosting (Figure 10.6
on page 316). The right plot uses oob randomization
to compute variable importances, and tends to spread
the importances more uniformly.
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Proximity plot

Proximity plot

1: procedure Proximity plot( X , y training data )
2: for b = 1, 2, . . . , B do
3: Draw a bootstrap sample Z∗ of size N
4: Grow a random forest tree Tb
5: Calculate prediction accuracy on OOB samples
6: for any pair of OOB samples sharing the same leaf do
7: increase the proximity by one.
8: end for
9: end for

10: end procedure

Distinct samples usually come from
the pure regions
Samples in the ’star center’ are
close to the decision boundary.
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forest classifier grown to the mixture data. (Right):
Decision boundary and training data for random forest
on mixture data. Six points have been identified in each
plot.
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Overfitting
Though the random forest cannot overfit the limit distribution

f̂rf (x) = EΘT (x ; Θ) = lim
B→∞

f̂ B
rf (x)

the limit distribution (the average of fully grown trees) may overfit the data.
Small number of relevant variables with many irrelevant hurts the random
forest approach.

⇒ With higher number of relevant variables RF is quite robust.
6 relevant and 100 noisy variables,
m =

√
6 + 100 ∼ 10

probability of a relevant variable being
selected at any split is 0.46.
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FIGURE 15.7. A comparison of random forests and
gradient boosting on problems with increasing numbers
of noise variables. In each case the true decision bound-
ary depends on two variables, and an increasing num-
ber of noise variables are included. Random forests
uses its default value m =

√
p. At the top of each

pair is the probability that one of the relevant variables
is chosen at any split. The results are based on 50 sim-
ulations for each pair, with a training sample of 300,
and a test sample of 500.

Seldom the pruning improves
the random forest result
usually, fully grown trees are
used.

Two additive vars, 10 noisy,
plus additive Gaussian noise.
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Random Forest Experiments
Spam example misclassification error

bagging 5.4%
random forest 4.88%
gradient boosting 4.5%.

Nested spheres in R10, 2500 trees, the
number selected by 10–fold crossvalida-
tion
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FIGURE 15.2. The results of 50 simulations from
the “nested spheres” model in IR10. The Bayes decision
boundary is the surface of a sphere (additive). “RF-3”
refers to a random forest with m = 3, and “GBM-6” a
gradient boosted model with interaction order six; simi-
larly for “RF-1” and “GBM-1.” The training sets were
of size 2000, and the test sets 10, 000.

California housing data
Random forests stabilize at about
200 trees, while at 1000 trees
boosting continues to improve.

Boosting is slowed down by the
shrinkage
the trees are much smaller
(decision stumps, interaction
depth=1 or 2).

Boosting outperforms random
forests here.
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FIGURE 15.3. Random forests compared to gradient
boosting on the California housing data. The curves
represent mean absolute error on the test data as a
function of the number of trees in the models. Two ran-
dom forests are shown, with m = 2 and m = 6. The
two gradient boosted models use a shrinkage parameter
ν = 0.05 in (10.41), and have interaction depths of 4
and 6. The boosted models outperform random forests.
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Boosting
! Use a week classifier as a decision stump (a decision

tree with the depth= 1).

AdaBoost.M1

1: procedure Adaboost Classifier( X , G)
2: Initialize the observation weights wi ← 1

N .
3: for m = 1, 2, . . . , M do
4: Fit a classifier Gm(x) to the training

data using weights wi

5: compute errm ←
∑N

i=1
wi I(yi ̸=Gm(xi ))∑N

i=1
wi

6: compute αm ← log (1−errm)
errm

7: Set wi ← wi · eI(yi ̸=Gm(xi ))·αm

8: (normalize weights)
9: end for

10: Output G(x) = sign[
∑M

m=1 αmGm(x)].
11: end procedure

Two class problem
with encoding
Y ∈ {−1, 1}
err = 1

N

∑N
i=1

I(yi ̸= G(xi )).
338 10. Boosting and Additive Trees
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FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the dataset, and then combined to produce a final prediction.

The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction:

G(x) = sign

(
M∑

m=1

αmGm(x)

)
. (10.1)

Here α1, α2, . . . , αM are computed by the boosting algorithm, and weight
the contribution of each respective Gm(x). Their effect is to give higher
influence to the more accurate classifiers in the sequence. Figure 10.1 shows
a schematic of the AdaBoost procedure.

The data modifications at each boosting step consist of applying weights
w1, w2, . . . , wN to each of the training observations (xi, yi), i = 1, 2, . . . , N .
Initially all of the weights are set to wi = 1/N , so that the first step simply
trains the classifier on the data in the usual manner. For each successive
iteration m = 2, 3, . . . ,M the observation weights are individually modi-
fied and the classification algorithm is reapplied to the weighted observa-
tions. At step m, those observations that were misclassified by the classifier
Gm−1(x) induced at the previous step have their weights increased, whereas
the weights are decreased for those that were classified correctly. Thus as
iterations proceed, observations that are difficult to classify correctly re-
ceive ever-increasing influence. Each successive classifier is thereby forced
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Nested Spheres Example
The features X1, . . . , X10 are standard independent Gaussian
deterministic target

Y = 1 iff
∑10

j=1 X 2
j > χ2

10(0.5) = 9.34,
Y = −1 otherwise.

2000 training cases
10000 test observations.
Decision stumps.
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FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps,
as a function of the number of iterations. Also shown are the test error rate for
a single stump, and a 244-node classification tree.

random guessing. However, as boosting iterations proceed the error rate
steadily decreases, reaching 5.8% after 400 iterations. Thus, boosting this
simple very weak classifier reduces its prediction error rate by almost a
factor of four. It also outperforms a single large classification tree (error
rate 24.7%). Since its introduction, much has been written to explain the
success of AdaBoost in producing accurate classifiers. Most of this work
has centered on using classification trees as the “base learner” G(x), where
improvements are often most dramatic. In fact, Breiman (NIPS Workshop,
1996) referred to AdaBoost with trees as the “best off-the-shelf classifier in
the world” (see also Breiman (1998)). This is especially the case for data-
mining applications, as discussed more fully in Section 10.7 later in this
chapter.

10.1.1 Outline of This Chapter

Here is an outline of the developments in this chapter:

• We show that AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function. This loss function is
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Additive Model
We encode the binary goal by Y ∈ {−1, +1}.
Boosting fits an additive model:

f (x) =
M∑

m=1
βmb(x ; γm)

where βm for m = 1, . . . , M are the expansion coefficients
b(x ; γ) ∈ R are usually simple functions of the multivariate argument x

characterized by a set of parameters γ.
For trees, γ parametrizes the split variables and split points at the internal
nodes, and the predictions at the terminal nodes.
Forward stagewise Additive Modeling sequentially adds one new basis function
without adjusting the parameters and coefficients of the previously fitted.
For squared–error loss

L(y , f (x)) = (y − f (x))2,

we have
L(yi , fm−1(x) + βmb(xi ; γm)) = (yi − fm−1(x)− βmb(xi ; γm))2

= (rim − βmb(xi ; γm))2

where rim = (yi − fm−1(x)) is the residual of the current model on the ith
observation.
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Exponential Loss and AdaBoost

Let us use the Y ∈ {−1, 1} encoding and the exponential loss

L(y , f (x)) = e−yf (x).

We have to solve

(βm, Gm) = arg min
β,G

N∑
i=1

e[−yi (fm−1(xi )+βG(xi )]

= arg min
β,G

N∑
i=1

e[−yi (fm−1(xi )]e[−yi βG(xi )]

= arg min
β,G

N∑
i=1

w (m)
i e[−yi βG(xi )]

where w (m)
i = e[−yi fm−1(xi )] does not depend on β nor G(x).

this weight depends on fm−1(xi) and change with each iteration m.
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Exponential Loss and AdaBoost
From

(βm, Gm) = arg min
β,G

N∑
i=1

w (m)
i e[−yi βG(xi )]

= arg min
β,G

eβ ·
∑

yi ̸=G(xi )

w (m)
i + e−β ·

∑
yi =G(xi )

w (m)
i


= arg min

β,G

[
(eβ − e−β) ·

N∑
i=1

w (m)
i I(yi ̸= G(xi)) + e−β ·

N∑
i=1

w (m)
i

]
For any β > 0 the solution for Gm(x ; γ) is

Gm = arg min
γ

N∑
i=1

w (m)
i I(yi ̸= G(xi ; γ)),

Recall the error definition:

errm =
∑N

i=1 w (m)
i I(yi ̸= Gm(xi))∑N

i=1 w (m)
i
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Adaboost Update

arg min
β,G

[
(eβ − e−β) ·

N∑
i=1

w (m)
i I(yi ̸= G(xi)) + e−β ·

N∑
i=1

w (m)
i

]

The minimum w.r.t. βm is:

βm = 1
2 log 1− errm

errm

The approximation is updated

fm(x) = fm−1(x) + βmGm(x)

which causes the weights for the next iteration to be:

wm+1
i = wm

i · e−βmyi Gm(xi ).

using the fact −yiGm(xi) = 2 · I(yi ̸= Gm(xi))− 1 we get

wm+1
i = wm

i · eαI(yi ̸=Gm(xi )) · e−βm .
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Why exponential loss?
The population minimizer is

f ∗(x) = arg min
f (x)

EY |x (e−Yf (x)) = 1
2 log P(Y = 1|x)

P(Y = −1|x) .

therefore
P(Y = 1|x) = 1

1 + e−2f ∗(x) .

The same function f ∗(x) minimizes also deviance (cross–entropy, binomial
negative log–likelihood)

interpreting f ∗ as the logit transform. Let:

p(x) = P(Y = 1|x) = ef ∗(x)

e−f ∗(x) + ef ∗(x) = 1
1 + e−2f ∗(x) .

and define Y | = (Y + 1)/2 ∈ {0, 1}. Log–likelihood is

ℓ(Y , p(x)) = Y | log p(x) + (1− Y |) log(1− p(x))
or equivalently the deviance:

−ℓ(Y , f (x)) = log
(
1 + e−2Yf (x)) .

Exponential loss decreases long after misclassification loss is
stable at zero.

10.5 Why Exponential Loss? 345
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FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

∑N
i=1 exp(−yif(xi)).

After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only
discovered five years after its inception. By studying the properties of the
exponential loss criterion, one can gain insight into the procedure and dis-
cover ways it might be improved.

The principal attraction of exponential loss in the context of additive
modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.

It is easy to show (Friedman et al., 2000) that

f∗(x) = arg min
f(x)

EY |x(e−Y f(x)) =
1

2
log

Pr(Y = 1|x)
Pr(Y = −1|x) , (10.16)
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Forward Stagewise Additive Modeling
A general iterative fitting approach.
In each step, we select the best function from the dictionary b(xi ; γ), fit its
parameters γ and the weight of this basis function βm.
Stagewise approximation is often faster then iterative fitting of the full model.

Forward Stagewise Additive Modeling

1: procedure Forward Stagewise Additive Modeling( L, X , Y , b)
2: Initialize f0 ← 0.
3: for m = 1, 2, . . . , M do
4: Compute (βm, γm)← arg minβ,γ

∑N
i=1 L(yi , fm−1(xi) + βb(xi ; γ)).

5: Set fm(x)← fm−1(x) + βmb(xi ; γm)
6: end for
7: end procedure

For example, our basis functions are decision trees, γ represents the splits and
fitted values T (∗; γ)).
For square error loss, any new tree T (∗; γ) is the best tree fitting residuals
ri = yi − fm−1(xi).
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Gradient Tree Boosting Algorithm

Gradient Tree Boosting Algorithm

1: procedure Gradient Tree Boosting Algorithm( X , Y , L )
2: Initialize f0(x)← arg minγ

∑N
i=1 L(yi , γ).

3: for m = 1, 2, . . . , M do
4: for i = 1, 2, . . . , N do
5: compute rim = −

[
∂L(yi ,f (xi ))

∂f (xi )

]
f (xi )=fm−1(xi )

=[∗] yi − fm−1(xi)
6: end for
7: Fit reg. tree to the target rim giving regions {Rjm}j=1,...,Jm .
8: for j = 1, 2, . . . , Jm do
9: Compute γjm ← arg minγ

∑
i∈Rjm

L(yi , fm−1(xi) + γ).
10: end for
11: Set fm(x)← fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm).

12: end for
13: Output f̂ (x) = fM(x).
14: end procedure

[*] for square error loss.
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Regularization: Shrinkage, Subsampling
Shrinkage adds the shrinkage parameter 0 < ν < 1 to the model
construction at line 11:

fm(x)← fm−1(x) + ν

Jm∑
j=1

γjmI(x ∈ Rjm)

This slows down the the learning; this may be both an advantage and an
disadvantage.
Subsampling select without replacement only η = 1

2 of data samples in each
step.

Figure: Nested sphere
example
Left: binomial deviance
fit
Right: square error.
Shrinkage avoids
overfitting.
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using a binomial deviance loss function; in the right–
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Stacking
Over a set of models (possibly different types) learn a simple model (like a
linear regression)
Assume predictions f̂1(x), f̂2(x), . . . , f̂M(x) under square error loss
Predictors trained without ith example are denoted

f̂ −i
1 (x), f̂ −i

2 (x), . . . , f̂ −i
M (x)

we can seek weights w = (w1, . . . , wm) such that

ŵ st = arg min
w

N∑
i=1

[
yi −

M∑
m=1

wm f̂ −i
m (x)

]2

.

The final prediction is

f̂ st(x) =
M∑

m=1
w st

m f̂m(x).

Using cross–validated predictions f̂ −i
m (x) stacking avoids giving unfairly high

weight to models with higher complexity
Better results can be obtained by restricting the weights to be nonnegative
and to sum to 1.
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Decision Rules from Decision Trees

We can represent a tree as a set of rules
one rule for each leaf.

These rules may be improved by testing each attribute in each rule
Has the rule without this test a better precision than with the test?
Use validation data
May be time consuming.

These rules are sorted by (decreasing) precision.
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Patient Rule Induction Method PRIM = Bump Hunting

Rule induction method
We iteratively search regions with
the high Y values

for each region, a rule is created.
CART runs of data after
aproximately log2(N)− 1 cuts.
PRIM can affort − log(N)

log(1−α) .
For N = 128 data samples and
α = 0.1 it is 6 and 46 respectively
29, since the number of
observations must be a whole
number.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.7. Illustration of PRIM algorithm. There
are two classes, indicated by the blue (class 0) and red
(class 1) points. The procedure starts with a rectangle
(broken black lines) surrounding all of the data, and
then peels away points along one edge by a prespecified
amount in order to maximize the mean of the points
remaining in the box. Starting at the top left panel, the
sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number
is indicated at the top of each panel.
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PRIM Patient Rule induction Algorithm

PRIM

Consider the whole space and all data. Set α = 0.05 or 0.10.
Find Xj and its upper or lower boundary such that the cut of α · 100%
observations leads to the maximal mean of the remaining data.
Repeat until less then 10 observations left.
Enlarge the region in any direction that increases the mean value.
Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.
Denote the best region B1.
Create a rule that describes B1.
Remove all data in B1 from the dataset.
Repeat 2-5, create B2 continue until final condition met.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.8. Box mean as a function of number of
observations in the box.
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CART Weaknesses
the high variance

the tree may be very different for very similar datasets
ensemble learning addresses this issue

the cuts are perpendicular to the axis
the result is not smooth but stepwise.

MARS (Multivariate Adaptive Regression Splines) addresses this issue.
it is difficult to capture an additive structure

Y = c1I(X1 < t1) + c2I(X2 < t2) + . . . + ck I(Xk < tk) + ϵ

MARS (Multivariate Adaptive Regression Splines) addresses this issue.8.1 The Basics of Decision Trees 315
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FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART
for each feature and each data point we create a reflected pair of basis
functions
(x − t)+ and (t − x)+ where + denotes non–negative part, minimum is zero.
we have the set of functions

C = {(Xj − t)+, (t − Xj)+}t∈{x1,j ,x2,j ,...,xN,j },j=1,2,...,p

that is 2Np functions for non–duplicated data points.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.9. The basis functions (x − t)+ (solid
orange) and (t − x)+ (broken blue) used by MARS.
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MARS – continuation

our model is in the form

f (X ) = β0 +
M∑

m=1
βmhm(X )

where hm(X ) is a function from C or a product of any amount of functions
from C
for a fixed set of hm’s we calculate coefficients βm by usual linear regression
(minimizing RSS)
the set of functions hm is selected iteratively.
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MARS – basis selections

We start with h0 = 1, we put this
function into the model M = {h0}.
We consider the product of any member
hℓ ∈M with any pair from C,

β̂M+1hℓ(X )·(Xj−t)++β̂M+2hℓ(X )·(t−Xj)+

we select the one minimizing training
error RSS (for any product candidate, we
estimate β̂).
Repeat until predefined number of
functions in M
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MARS – model pruning

The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f̂λ for
different numbers of parameters λ.
(we want to speed–up cross-validation for computational reasons)
we select λ (and the model) minimizing generalized cross-validation

GCV (λ) =
∑N

i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2 .

where M(λ) is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K , the authors suggest to multiply
K by 3: M(λ) = r + 3K .
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MARS is a generalization of CART

We select piecewise constant functions I(x − t > 0) and I(x − t ≤ 0)
If hm uses multiplication we remove this function from the candidate list. It
cannot be used any more.

This guarantees binary split.
Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html
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List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).
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