Rule Learning

@ supervised learning
o rules from decision trees (or the Sequential covering algorithm)
e PRIM (Bump hunting)

@ unsupervised learning

e association rules
e version space search for rules
o Inductive Logic Programming (ILP, MIL)
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Association Rules, Market Basket Analysis Application

For very large datasets, p ~ 10* N ~ 108; in unit ball is the distance to the
nearest neighbor ~ 0.9981.

We search for frequent itemsets (high density areas)
We test on feature X either equal to a specific value or no restriction at all,

the value 1 is more important for as than 0,

We select combinations of items with a higher number of occurences
(support) than predefined threshold t.

@ We select all combinations fulfilling conditions above.
o Categorical variables may be codded by dummy variables in advance (if not
too many).

e OneHotEncoder for each class g, a new variable Xy = [X == g]
without dropping any value.
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Apriori Algorithm

1: procedure APRIORI:(X dataset, t threshold for support )

2 i1

3 Generate list of candidates of the length f

4 while Candidate set not empty do

5: for each data sample do

6 for each candidate do

7 if all items of candidate appear in the data sample then
8 increase the candidate counter by 1

9

: end if
10: end for
11: end for
12: i<—i+1
13: Discard candidates with support less than t.
14: Generate list of candidates of the length i
15: Join any two candidates from previous step having i — 2
elements common. (More pruning possible.)
16: end while

17: end procedure
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Example: Apriori Algorithm

i=2
ab=2
ac=8
o t=02 =2 i=3
o txN=2= af=2 abc=2
020410 =1 2g=5 24 =4 .
e Data a=8 bc=2 2;;2 abce=2
—Sbcefo  b=2 bd=0 abcf=2
c=8 be=2 abg=0 abef=2
Z ,c & d=2 bf=2 aCdfg abeg=0
acdeg e=8 bg=0 22::2 acef=2
acegl f=2 cd=2 B aceg=4
e g=5 ce=6 azg:li) adeg=1
abcefp i=j=l=0=1 cf=2 :d]f:_o aefg=0
acd p=m=n=1 cg=>5 adg—1
acegm de=1 aeg—4
acegn df=0
dg=1

af—92
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Properties of the Apriori Algorithm

Applicable for very large data (with high threshold t).

The key idea:

o Only few of 2% combinations have high support > t,
o subset of high—support combination has also high support.

The number of passes through the data is equal to the size of the longest
supported combination. The data do not need to be in memory
simultaneously.

FPgrowth algorithm needs only two passes through the data.
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Association Rules !

@ From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A = B where:
e A, B are disjoint and AUB =K
o Ais called antecedent
e B is called consequent.

@ Support of the rule T(A = B) is defined as normalized support of the
itemset K, that is normalized support of the conjunction A&B.

|datax|
T(K) =
(K) |datal
T(A= B) — |9atance|
|data|
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Rule Confidence and Lift

There are two important measures for a rule A = B:
o Confidence (predictability, pfesnost)
T(A= B)
C(A=B)= "7~/
(A= B) T0A)
that is an estimate of P(B|A),
@ Support T(B) is an estimate of P(B),
o Lift is the ration of confidence and expected precision:

C(A= B)
that is an estimate of %.

o Leverage is the difference of supports:
leverage(A= B) = T(A= B) - T(A)- T(B)

@ Conviction is the ratio:

. 1-T(B
conviction(A = B) = #
1-C(A=B)
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Association Rule Example

ESL book example:
Association rule 2: Support 13.4%, confidence 80.8%, and Lft 2.13.

language in home = English
householder status = own
occupation = {professional/managerial}
1

income > $40,000

e K = {English, own, prof/man, income>$40000},

@ 13.4% people has all four properties,

@ 80.8% of people with {English, own, prof/man} have income> $40000,
e T(income > $40000) = 37.94%, therefore Lift = 2.13.
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The Goal of Apriori Algorithm !

Apriori finds all rules with high support.

Frequently, it finds many of rules.

We usually select lower threshold ¢ on confidence, that is we select rules with
T(A= B)>tand C(A= B) > c.

@ Conversion of itemsets to rules is usually relatively fast compared to search of

itemsets.
@ See lispMiner for user interface and a lot of more.
@ Python Apriori library:

from mlixtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules
from mlixtend.frequent_ patterns import fpgrowth,fpmax

from mlixtend.frequent__patterns import hmine
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Demographical Data ESL Example

Feature Demographic # Values Type
1 Sex 2 Categorical
2 Mamntal status 5] Categorical
3 Age 7 Ordinal
4 Education & Ordinal
H Occupation 9 Categorical
6 Income 9 Ordinal
7 Years in Bay Area 5 Ordinal
8 Dual incomes 3 Categorical
9 Number in household 9 Ordinal
10 Number of children 9 Ordinal
11 Householder status 3 Categorical
12 Type of home 5] Categorical
13 Fthnic clagsification 8 Categorical
14 Language in home 3 Categorical
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Demographical Example — Continuing

@ N = 9409 questionnaires, the ESL authors selected the 14 questions.
@ Preprocessing:

e na.omit() remove records with missing values,

o ordinal features cut by median to binary,

o for categorical create dummy variable for each category.
@ Apriori input was matrix 6876 x 50.
@ Output: 6288 association rules

e with max. 5 elements
o with support at least 10%.
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Negated Literals — Useful, Problematic

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

language in home = English
income < $40,000
marital status = not maerried
number of children = ¢

s
education ¢ {college graduate, graduate study}
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Frequent Pattern—tree data structure

@ The number of passes through the data of Apriory is equal to the length of
the longest frequent itemset.

@ With an internal data structure, we are able to reduce it to 2 passes.

Build an internal structure called FP-tree.

Call FP-growth to generate frequent itemsets

e Each construction of a conditional tree needs 2 pass through the parent tree
e an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

@ FP-max to find maximal itemsets
e non of immediate supersets is frequent
@ FP-close to find close itemsets
e non of immediate supersets has the same support.
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1:
2:
3:
4:
5:
6:
7
8:
9:

procedure FP—TREE:(Data )
Calculate counts of items (singletons)
Create table header ordered by decreasing item count
for each data sample do

order items according to header
insert branch into the tree
increase all counters on the inserted branch

end for
return the tree

10: end procedure

Data ordered Header table

abcefo ecabf Head of

acg cag node-links Ce
ei e D)
acdeg ecagd ‘
acegl ecag /
e]j ’
abcefp

acd

acegm acegn
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FP-tree

o FP-tree contains all the frequency information in
the database. i3
1=
@ Principle: If X and Y are two itemsets, the count of —/——=—
) . - abc=2
itemsets X U Y in the database is exactly that of Y abd—0

in the database restriction to those transactions abe—?
containing X. abf=2
abg=0
Header table a Cd =2
Head of ace=06

115-1;1 node-links acf:2
S acg=5
a:8 < ade:1

g5 N _
s adf=0
£2 adg=1
d:2 \\\ aeg:4
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FPgrowth*

1: procedure FPGROWTH*:(T a conditional FP-tree )

2 if T only contains a single path P then

3 for each subpath Y of P do

4 output pattern Y U T.base with

5: count = smallest count of nodes in Y

6 end for

7 else

8 for each i in T.header do

o: Y < T.baseU {i} with i.count

10: if T.array is not NULL then

11 construct a new header table for Y's FP-tree from T .array
12: else

13: construct a new header table for Y's from T

14: end if

15: construct Y's conditional FP-tree Ty and its array Ay;
16: if Ty # () then

17: call FPgrowth*(Ty)

18: end if

19: end for
20: end if
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Non—frequent Values Dissapear

Relative Frequency in Association Rules Relative Freguency in Data
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Unsupervised Learning as Supervised Learning

:;Scw— >{<\‘Nf
o A =
o o
1 0 1 2 1 0 1 2
Xy X1

@ We add additional attribute Y.
@ Y¢ =1 for all our data.

@ We randomly generate a data set of similar size with uniform distribution, set
Y¢ = 0 for these artificial data.

@ The task is to separate Yg =1 and Yg = 0.
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Generalize Association Rules

@ We search for high lift where the probability of conjunction is greater than
expected.

@ The hypothesis is specified by column indexes j and subsets of values s;
corresponding features X;. We aim:

(X es) ]| =

JjeET

= \

N
Z (i €5) | >>MesP(X €s)
1 JET

@ On the data from previous slide, CART (decision tree alg.) or PRIM ('bump
hunting') may be used.

@ Figure in the previous slide: Logistic regression on the tensor product of
natural splines.

@ Other methods may be used. All are heuristics compared to the full
evaluation by Apriori.
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Apriori Algorithm Summary

Unsupervised learning of association rules.

First, we find frequent itemsets, above a threshold t
@ Then, we construct rules from them and select
e high confidence
o high lift
o ... .
@ The amount of data is expected to be huge;
o We try to minimize the number of passes through the data

o the length of the longest frequent itemset for the Apriori algorithm,
o 2 with the internal structure FP-tree.

Machine Learning Association Rules, Apriori 9 1-21 April 25, 2025

21/ 56



Version Space Search

@ Version space search is one of the first Machine Learning algorithms.

@ For us, introduction to Inductive Logic Programming.
@ Our (Tom Mitchell's) toy data:

Example (Tennis Dataset)

Day Outlook  Temperature Humidity Wind PlayTennis
D1  Sunny Hot High Weak | No
D2  Sunny Hot High Strong | No
D3  Overcast Hot High Weak | Yes
D4  Overcast Mild High Weak | Yes
D5 Overcast Mild High Strong | Yes
D6  Overcast Hot Normal Weak | Yes
D7  Rain Mild High Strong | No
P  Inductive Logic Programming 10 22-56 April 25, 2025
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Version Space Search

@ Our hypothesis is a conjunction of attribute tests that imply
PlayTennis = yes.
e h=(?, Cold, High,?,7,7) represents the hypothesis
Temperature = cold & Humidity = high = PlayTennis = yes.
o 7 is satisfied by any value
@ () cannot be satisfied
o For binary attributes, we have 3/#atriutesl 4 1 hypotheses
o hypotheses with () are not satisfiable, therefore they are equivalent.

@ We perform a systematic search.
@ The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)

@ The hypothesis hg is more general than the hypothesis hy = hs iff any sample that
satisfies hs satisfies also hg.

@ In the above case, the hypothesis hs, hy > hs is called more specific that hg.

(?,7,7,7) is more general than (Sunny, ..., Same).

The most general hypothesis (7,7,7,7) is satisfied by all data.

The most specific hypothesis (0, ...) is not satisfied by any data.

The hypothesis space for a lattice partially ordered by the 'more general’
relation.
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Find-S

@ We search for a hypothesis satisfied by all positive examples and no negative
example.

Find—S (to be improved)

1. procedure FIND-S:(X dataset with the goal attritute yes/no )
2 h <« (0,0,0,0) # the most specific hypothesis

3 for each positive data sample x; do

4 for each attribute condition X; = x;; in h do

5: if x; does not satisfy X; = x; ; then

6: replace the condition by

7 a closest more general condition satisfied by x;
8 end if

9 end for

10: end for

11: return h

12: end procedure
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Version Space Search

Example (Tennis Dataset)

Day Outlook  Temperature Humidity Wind PlayTennis
D1  Sunny Hot High Weak | No
D2  Sunny Hot High Strong | No
D3  Overcast Hot High Weak | Yes
D4  Overcast Mild High Weak | Yes
D5  Overcast Mild High Strong | Yes
D6  Overcast Hot Normal Weak | Yes
D7  Rain Mild High Strong | No
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Version Space

@ Now we look for all hypotheses consistent with the data.

Definition (Version Space)

@ The version space for the hypothesis space H and the data X is a subset of
H that is consistent with X

VS(H, X) = {h € H|Consistent(h, X)}.

@ The version space is characterized by the most general and the most specific
boundary.

@ Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)

o The general boundary for the hypothesis space H and the data X is a set
of most general hypothesis from H that are consistent with X

G(H, X) = {g € H|Consistent(g, X)&(}g1 € H)[g1 = g& Consistent(g1, X)]}.
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Definition (Specific Boundary)

@ The specific boundary for the hypothesis space H and the data X is a set
of most specific hypothesis from H that are consistent with X

S(H, X) = {s € H|Consistent(s, X)&(#s1 € H)[s = s1& Consistent(s;, X)]}.

S {<Sunny, Warm, ?,Strong,?,?>}
{<Sunny, 2, 2.Strong,?,?>} {<Sunny, Warm, ?,2,2,2>} {<?, Warm, ?,Strong,?,?>}
‘ {<Sunny,?,2,2,2,2> <?, Warm, ?2,2,2,2>}

@ We search for a hypothesis satisfied by all positive examples and no negative
example.
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1: procedure CANDIDATE-ELIMINATION: (X data,the goal att. yes/no)
2 G+ {2,220} S+ {(0,0,0,0)} # general,specific

3 for each data sample x; do

4 if x; is positive then

5: remove from G all h inconsistent with x;

6 for each s € S inconsistent with x; do

7 add to S all minimal generalizations h

8 Consistent(h, x;)&(3g € G)(g = h)

o: remove from S {s|(3s; € S)(s > s1)} # not most specific
10: end for

11: else x; is negative example

12: remove from S all h inconsistent with x;

13: for each g € G inconsistent with x; do

14: add to G all minimal specifications h

15: Consistent(h, X)&(3s € S)(h = s)

16: remove from G {g|(3g1 € G)(g1 >~ g)} # not most gen.
17: end for

18: end if

19: end for

20: return G, S

21: end procedure
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Predicate Logic

Recall predicate logic.
CNF, DNF the conjunctive and disjunctive normal form
clause: a disjunction of literals father(X, Y) V —parent(X, Y) V -male(X)
Horn clauses with at most one positive literal, written as a rule
o definite clause father(X,Y) : —male(X), parent(X,Y).
e fact - no negative literal male(adam).
o goal clause - no positive literal false : —father(X, bob).

Ground term, clause - a term, a clause without variables.
@ We have our data in the form of a set of clauses B, E*, E—,

o the background knowledge B is a set of (Horn) clauses,
o the positive and examples ET, E™ are sets of ground literals (facts).

lego__builder(alice). ‘ .
enjoys__lego(A) : —lego_builder(A). Er= {hipp Y (a/;)ceg.}
B = estate_agent(dave). . appy( 2 ).
: . E~ = < happy(claire).
enjoys__lego(alice). happy|dave)

enjoys__lego(claire).
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Substitution, Subsumption

o Clauses ale implicitly generally quantified.

@ They should not have a variable with the same name.

Definition (Substitution, Subsumption)

o Given a substitution § = {v;/t;} and formula F. F6 is formed by replacing
every variable v; in F by t;.

@ Substitution 6 unifies atom A and B in the case A9 = B6.

@ Atom A subsumes atom B, A = B, iff there exists a substitution 6 such
that A6 = B.

@ Clause C subsumes clause D, C > D, iff there exists a substitution 6 such
that C6 C D.

§

e Gy =f(A,B): —head(A, B).
o G =1f(X,Y): —head(X,Y),empty(Y).
e (G subsumes G, since G0 C G, with 8 = {A/X,B/Y}.
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Definition (Generalisation)

o Clause C is more general than clause D, iff C = D.

o Clause C is more general than clause D with respect to B, iff B, C = D.
e B is the background knowledge.

A\,

o Statement A: Daffy Duck can fly. can_fly(daffy)
o Statement B: All ducks can fly. can_fly(X) = can_fly(daffy).

\

Statement C: Marek lives in London.

Statement D: Marek lives in England.

lives(marek, london)

lives(marek, england)

Background knowledge lives(x, england) : —lives(x, london).

B, C = D, 'C is more general than D with respect to B".

C = D with respect to B.
http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecturel.1.pdf
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ILP general logical setting

Definition (Hypothesis Properies)
The background knowledge B and the hypothesis H should entail E, that is:

Necessity B ¥ E' weneed H

Sufficiency, Completeness B&H = ET H explains positive examples
Weak consistency B&H ¥ L1 H does not contradict B
(Strong) consistency B&H&E~ [~ L ... neither negative examples

Definition (ILP task)

ILP task is
o Given

o B background knowledge (logic program)
o ET E~ examples — sets of ground unit clauses

@ Given B, E find a logic program H such that is necessary, sufficient and
consistent.

o Often, we assume noisy data and accept some errors, but we try to minimize
them.
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lego__builder(alice).

lego_builder(bob). E* = {happy(alice).}

B estate__agent(claire). happy(bob).
") estate_agent(dave). E~ = { happy(claire).
enjoys__lego(alice). happy(dave).

enjoys__lego(claire).

Our hypothesis space:

hy : happy(A) : —lego_builder(A).

hy . happy(A) : —estate_agent(A).

2 = hs : happy(A) : —enjoys_lego(A).

hy = happy(A) : —lego_builder(A), estate_agent(A).
hs : happy(A) : —lego__builder(A), enjoys_lego(A).
he : happy(A) : —estate_agent(A), enjoys_lego(A).

B U hy F happy(bob) therefore hy is inconsistent.
B U hy ¥ happy(alice) therefore hy is incomplete.
B U hs E happy(claire) therefore hs is inconsistent.
B U hy ¥ happy(alice) therefore hy is incomplete.
hs is both complete and consistent.

B U hg ¥ happy/(alice) therefore h; in incomplete.
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Hypothesis Space

o To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)

Mode declarations denote which literals may appear in the head/body of a rule. A
mode declaration is of the form:

mode(recall, pred(my, my, ..., m,))

where recall is the maximum number of occurrences of the predicate
m; are the argument types and they may be assigned as input +, output —,
constant #.

modeb(2,parent(+person,-person)).
modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.
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Non-monotonic reasoning

@ In Prolog, there is negation as a failure.

Program = { SO }

happy : —sunny, not weekday.

@ Prolog tries to prove weekday.
@ It does not prove it, therefore it concludes happy.

o With additional knowledge weekday some of entailments are not true any
more.

Definition (Normal logic program)

Normal logic programs may include negated literals in the body of a clause, e.g.

h:—bi,..., by not bpyi,...,not by,
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Aleph ILP system (based on Progol)

o Given

o A set of mode declaration M

e Background knowledge B in the form of a normal program

allows negation, with the semantics negation as a failure

o Positive ET and negative E~ examples as a set of ground facts
@ Return: A normal program hypothesis H that:

e H is consistent with M

o Vee EY, HUBF e (H is complete)

o Ve€ E-, HUB¥ e (H is consistent).

1. Select a positive example to generalize.

2. Construct the most specific clause consistent with M that entails the
example (the bottom clause).

3. Search for the 'best’ clause more general than the bottom clause.
4. Add the clause to the hypothesis and remove all examples covered.

5. If a positive example left, return to step 1.

P Inductive Logic Programming 10 22-56 April 25,2025 37 / 56



Bottom Clause Construction

Definition (Bottom clause)

Let H be a clausal hypothesis and C be a clause. The bottom clause L(C) is the
most specific clause such that:
HUL(C)EC.

@ The purpose is to bound the search in the step in 3.
@ Without mode declarations, the bottom clause may have infinite cardinality.

Example (Bottom clause)

red(sl).
: —modeh(x, pos(+shape)). b/ue((52))
: —modeb(x, red(+shape)). square(sl.)
M = ¢ : —modeb(*, square(+shape)). » B = triange(52).

polygon(A) : —rectangle(A).

: —modeb(, triangle(+shape)).
))- rectangle(A) : —square(A).

: —modeb(x, polygon(+shape))

Let e be the positive example pos(s1). Then:

L(e) = pos(A) : —red(A), square(A), rectangle(A), polygon(A).
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Clause Search

@ Aleph performs a bounded breadth-first search to enumerate the shorter
clauses before longer ones.

@ The search is bounded by several parameters (max. clause size, max. proof
depth).

Most general hypothesis pos(A) i~

—_ b ~— ~ s
pos(A):- pos(A):- pos(A):- pos(A):- pos(A):- pos(A):-
red(A), red(A), red(A), square(A), square(A), rectangle(A),
square(A). rectangle(A). polygon(A) . rectangle(A). polygon(A) . polygon(A) .

pos(A):- pos (A)‘:A: pos(A):-
red(A), red(A), square(A),
square(A), square(A), rectangle(A),

rectangle(A) . polygon(A).  polygon(A).

Pos(A) : -
red(A),
Most specific hypothesis square(A),
rectangle(A),
polygon(A).
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Aleph 2, Popper, FlexFringe

@ Aleph default evaluation function is coverage defined as P — N,
o P is the number of positive examples covered by the clause
o N is the number of negative examples covered by the clause
o that means it accepts some noise.

It starts from the most general one pos(A) : —.
It tries to specialize the clause
e by adding literals to the body of it, which it selects from the bottom clause

or by instantiating variables.

Each specialization is called refinement.

Aleph Advantages
e one Prolog file, easy to download and use.
@ https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
o It has good empirical performance.
o Allows numerical reasoning, user defined cost functions, handles noisy data.

Aleph Disadvantages
o It has many parameters to tune.
o It struggles to learn recursive programs and optimal programs
@ since it learns only a single clause a time.
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Metagol

o Given
o A set of metarules M
e Background knowledge B in the form of a normal program
o Positive ET and negative E~ examples as a set of facts (atoms).

@ Return: A definite program hypothesis H that:
e H is consistent with M
Ve € ET, HUBF e (H is complete)
Ve € E=, HUB¥ e (H is consistent)
Vh e H, dm € M such that h = mf
@ where 0 is a substitution that grounds all the existentially quantified variables in
m.

Example (Metarule)
@ An example is the chain metarule P(A, B) + Q(A, C), R(C, B)
o that allows Metagol to induce programs such as
f(A, B) :— tail(A, C),tail(C,B).
grandparent(A,B) : — parent(A, C), parent(C, B).
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Metagol

@ Metagol is a form of ILP besed on a Prolog meta-interpreter.

1. Select a positive example to generalize.
o If none exists, test the hypothesis on the negative examples.
o If the hypothesis does not entail any negative example

stop and return the hypothesis.
@ otherwise backtrack to a choice point at step 2 and continue.

2. Try to prove the atom by:

e using given BK or an already induced clauses

e unifying the atom with the head of a metarule

e binding the variables in the metarule to symbols in the predicate and
constant signatures

e save the substitution

o try to prove the body of the metarule
by treating the body atoms as examples and applying step 2 to them.
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Recursion

@ Metagol can learn recursive programs.

Example (Reachability)

Consider learning the concept of reachability in a graph. Without recursion, with
the maximal depth 4 we could learn:
reachable(A,B) : — edge(A, B).
reachable(A,B) : — edge(A, C), edge(C, B).
reachable(A,B) : — edge(A, C), edge(C, D), edge(D, B).
reachable(A,B) : — edge(A, C), edge(C, D), edge(D, E), edge(E, B).
With recursion, we can learn:
reachable(A,B) :— edge(A,B).
reachable(A,B) : — edge(A, C), reachable(C, B).
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lterative deepening

iterative deepening

@ Metagol uses iterative deepening to search for hypotheses.
o at depth d = 1, at most one metasub.
e at iteration d, it introduces d — 1 new predicate symbols and is allowed
to use d clauses.
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Metagol Example

Example (Kinship example)

mother(ann, amy).mother(ann, andy).
mother(amy, amelia), mother(amy, bob).
B= mother(linda, gavin).
father(steve, amy).father(steve, andy).
father(andy, sponegebob).father(gavin, amelia).

metarule(ident, [P, Q], [P, A, B], [[Q, A, B]]).
metarule(chain, [P, Q, R], [P, A, B, [[@, A, C],[R, C, B]]).

grandparent(ann, amelia).

grandparent(steve, amelia).
grandparent(ann, spongebob).

grandparent(linda, amelia).
E~ = {grandparent(amy, amelia). }

[EF =
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Tracing Metagol

o It select the first example to generalize grandparent(ann, amelia).
@ It tries to prove it from BK and induced clauses. It fails.
@ Metagol tries to use the first metarule:

grandparent(ann, amelia) : —Q(ann, amelia).

stores sub(ident, [grandparent, Q])
@ and tries to unify Q, but fails.
@ Metagol tries to use the second metarule:

grandparent(ann, amelia) : —Q(ann, C), R(C, amelia).

stores sub(chain, [grandparent, Q, R])
@ and recursively tries to prove Q(ann, C) and R(C, amelia).
@ It succeedes with the metasum sub(chain, [grandparent, mother, mother])
@ and induces the first clause;

grandparent(A, B) : —mother(A, C), mother(C, B).
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Metagol Trace 2

@ Then, it select the second example to generalize grandparent(steve, amelia).

@ |t tries to prove it from BK and induced clauses. It fails.

@ Metagol can again use the second metarule with another substitution:
stores sub(chain, [grandparent, father, mother])

@ and induces the second clause;

grandparent(A, B) : —father(A, C), mother(C, B).

@ Given no bound on the program size, the Metagol would prove the other two
examples the same way and form the program:

grandparent(A,B) :— mother(A, C), mother(C, B).
father(A, C), mother(C, B).
grandparent(A, B) father(A, C), father(C, B).
grandparent(A,B) : — mother(A, C), father(C, B).

With predicate invention, it learns:

grandparent(A, B)

grandparent(A,B) : — grandparent_1(A, C), grandparent_1(C, B).
grandparent_1(A,B) :— father(A, B).
grandparent_1(A,B) : — mother(A, B).
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Tail Recursive Metarule

Example (Tail Recursive Metarule)
@ An example is the tail recursive metarule P(A, B) + Q(A, C), P(C, B)

@ Metagol can also learn mutually recursive programs, such:

even(0).
even(A) :— successor(A, B), even_1(B).
even_1(A) :— successor(A, B), even(B).

We even do not have to provide the concept of an odd number. We can let the
Metagol to invent such predicate (even_1).
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Automata Example

Finite Production Definite Clause
acceptor rules Grammar (DCG)
2 2 o - o, lJ) <

(a) 1 g0 —> Ogqo qo([0]A], < qo(A, B)
a0 — laq qo([1]A], B) <~ qi(A, B)
@ — Oq q1([0]A], B) < qi(A, B)
1 @ — lqo qi1([1]1A], B) < qo(A, B)

E* E- Meta-interpreter Ground facts

A 1

0 01 parse(S) < parse(q0, S, []). acceptor(q0) «
00 10 . deltal(q0, 0, g0) <
() 11 001 parse(Q, 1, [1) < acceptor(Q). deltal(q0, 1, q1) <

parse(Q, [C|X],Y) <

000 010 deltal (Q.C. P). deltal(q1,0,q1) <
011 100 deltal(ql, 1, q0) <
101 11 parse(P, X,Y).

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (ET) and negative
examples (E ™), Meta-interpreter and ground facts representing the Parity grammar

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf
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Louise Example Grammar Learning

Example (Module)

:-module (anbn, [background_knowledge/2
,metarules/2
,positive_example/2
,negative_example/2
,a/2
,b/2
D.

Example (Background knowledge)
background_knowledge(s/2, [a/2,b/2]).

a([alT],T).
b([b|T],T).

Example (Metarules)

metarules(s/2,[chain]).
% (Chain) 3.P,Q,R V.x,y,z: P(x,y)+ Q(x,2z),R(z,y)
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Louise Example Continued

Example (Positive Examples)

positive_example(s/2,E):-
member (E, [%s([a,b],[])
s([a,a,b,b], [1)
D.

Example (Negative Examples)

negative_example(s/2,E):-
member (E, [s([a,al, [1)
,s([b,b]l, [1)
,s([a,a,b], [1)
,s([a,b,b], [1)
D.

Example (Parameter Tuning)

:— auxiliaries:set_configuration_option(clause_limit, [3]).
:— auxiliaries:set_configuration_option(max_invented, [1]).

:— auxiliaries:set_configuration_option(reduction, [none]).
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Louise Example Continued 2

Example (Learned Program)

’$1° (A,B):-a(A,C),a(C,B).
’$1°(A,B):-a(A,C),s(C,B).
’$1° (A,B) :-b(A,C),b(C,B).
'$1’(A,B):-s(A,C),b(C,B).
s(A,B):-’$1°(A,C),’$1°(C,B).
s(A,B):-’$1°(A,C),b(C,B).
s(A,B):-a(A,C),’$1’(C,B).
s(A,B):-a(A,C),b(C,B).

true.

Example (Learned Program)

?- auxiliaries:set_configuration_option(unfold_invented, [true]).
?-make.

?7- learn(s/2).
s(A,B):-a(A,C),b(C,B).
s(A,B):-a(A,C),s(C,D),b(D,B).
true.

Machine Learning Inductive Logic Programming 10

22-56

April 25, 2025

52 / 56



ASPAL algorithm

@ ASPAL uses Answer Set Programming.
@ ASP program can have one, many, or none models (answer sets).
@ Computation in ASP is the process of finding models.

@ We may specify the range of the number of clauses from a set beeing true.
0{sunny., weekday ., happy(A) : —lego_builder(A)}3

e We may specify an evaluation function to optimize (like to minimize the
number of 'true’ clauses, e.g. the size of the hypothesis.

ASPAL

@ Generate all possible rules consistent with the given mode declarations.

Assign each rule a unique identifier and add an guessable atom in each
rule.

@ Use an ASP solver to find a minimal subset of the rules

by formulating the problem as an ASP optimization problem.
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Example (ASPAL)

bird(alice). modeh(1, penguin(+bird)).
bird(betty). M= modeb(1, bird(+bird)).
can(alice, fly). modeb(*, not can(+bird, #ability)).
can(betty, swim).
ability(fly). E* = {penguin(betty).}
ability (swim). E~ = {penguin(alice).}
Given the modes, the possible rules are:
penguin(X) :— bird(X).
penguin(X) :— bird(X), not can(X, swim).
penguin(X) :— bird(X), not can(X, fly).
penguin(X) :— bird(X), not can(X, swim), not can(X, fly).

ASPAL replaces constants and adds extra literal:

penguin(X) :—  bird(X), rule(rl).
penguin(X) :— bird(X), not can(X, C1), rule(r2, C1).
penguin(X) :— bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).
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ASPAL passes to an ASP solver:
bird(alice).
bird(betty).
can(alice, fly).
can(betty, swim).
ability(fly).
ability (swim).
penguin(X) : —bird(X), rule(rl).
penguin(X) : —bird(X), not can(X, C1), rule(r2, C1).
penguin(X) : —bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).
0{rule(rl), rule(r2, fly), rule(r2, swim), rule(r3, fly, swim)}4
goal : —penguin(betty), not penguin(alice).

. —not goal.

@ The answer is: rule(r2, c(fly))
@ Which is translated to a program:

penguin(A) : —bird(A), not can(A, fly).
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ILP aplications

@ Bioinformatics
o ILP can make predictions based on the (sub)structured biological data.
e Predict mutagenic activity of molecules and alert the causes of chemical
cancers
o learning protein folding signatures.

@ Robot scientist.

o BK knowledge represents the relationship between protein-coding sequences,
enzymes, and metbolites in pathway.
o Automatically generates hypotheses, run experiments, iterprets results.

o Games
o Sokoban
e Bridge
o Checkers.

P Inductive Logic Programming 10 22-56 April 25,2025 56 / 56



List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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