
Rule Learning

supervised learning
rules from decision trees (or the Sequential covering algorithm)
PRIM (Bump hunting)

unsupervised learning
association rules
version space search for rules
Inductive Logic Programming (ILP, MIL)
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Association Rules, Market Basket Analysis Application

For very large datasets, p ≈ 104, N ≈ 108; in unit ball is the distance to the
nearest neighbor ≈ 0.9981.
We search for frequent itemsets (high density areas)
We test on feature Xj either equal to a specific value or no restriction at all,
the value 1 is more important for as than 0,
We select combinations of items with a higher number of occurences
(support) than predefined threshold t.
We select all combinations fulfilling conditions above.
Categorical variables may be codded by dummy variables in advance (if not
too many).

OneHotEncoder for each class g , a new variable Xg = [X == g ]
without dropping any value.
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Apriori Algorithm!

1: procedure Apriori:(X dataset, t threshold for support )
2: i ← 1
3: Generate list of candidates of the length i
4: while Candidate set not empty do
5: for each data sample do
6: for each candidate do
7: if all items of candidate appear in the data sample then
8: increase the candidate counter by 1
9: end if

10: end for
11: end for
12: i ← i + 1
13: Discard candidates with support less than t.
14: Generate list of candidates of the length i
15: Join any two candidates from previous step having i − 2

elements common. (More pruning possible.)
16: end while
17: end procedure
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Example: Apriori Algorithm

t = 0.2
t ∗N = 2 =
0.20 ∗ 10
Data

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

i=1
a=8
b=2
c=8
d=2
e=8
f=2
g=5
i=j=l=o=1
p=m=n=1

i=2
ab=2
ac=8
ad=2
ae=6
af=2
ag=5
bc=2
bd=0
be=2
bf=2
bg=0
cd=2
ce=6
cf=2
cg=5
de=1
df=0
dg=1
ef=2
eg=4
fg=2

i=3
abc=2
abd=0
abe=2
abf=2
abg=0
acd=2
ace=6
acf=2
acg=5
ade=1
adf=0
adg=1
aeg=4
. . .

i=4 . . .
abce=2
abcf=2
abef=2
abeg=0
acef=2
aceg=4
adeg=1
aefg=0
. . .
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Properties of the Apriori Algorithm

Applicable for very large data (with high threshold t).
The key idea:

Only few of 2K combinations have high support > t,
subset of high–support combination has also high support.

The number of passes through the data is equal to the size of the longest
supported combination. The data do not need to be in memory
simultaneously.
FPgrowth algorithm needs only two passes through the data.
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Association Rules !

From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A⇒ B where:

A, B are disjoint and A ∪ B = K
A is called antecedent
B is called consequent.

Support of the rule T (A⇒ B) is defined as normalized support of the
itemset K, that is normalized support of the conjunction A&B.

T (K) = |dataK|
|data|

T (A⇒ B) = |dataA&B |
|data|
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Rule Confidence and Lift
There are two important measures for a rule A⇒ B:

Confidence (predictability, přesnost)

C(A⇒ B) = T (A⇒ B)
T (A)

that is an estimate of P(B|A),
Support T (B) is an estimate of P(B),
Lift is the ration of confidence and expected precision:

L(A⇒ B) = C(A⇒ B)
T (B)

that is an estimate of P(A&B)
P(A)·P(B) .

Leverage is the difference of supports:

leverage(A⇒ B) = T (A⇒ B)− T (A) · T (B)

Conviction is the ratio:

conviction(A⇒ B) = 1− T (B)
1− C(A⇒ B) .
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Association Rule Example

ESL book example:

K = {English, own, prof/man, income>$40000},
13.4% people has all four properties,
80.8% of people with {English, own, prof/man} have income≥ $40000,
T (income ≥ $40000) = 37.94%, therefore Lift = 2.13.
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The Goal of Apriori Algorithm !

Apriori finds all rules with high support.
Frequently, it finds many of rules.
We usually select lower threshold c on confidence, that is we select rules with
T (A⇒ B) > t and C(A⇒ B) > c.
Conversion of itemsets to rules is usually relatively fast compared to search of
itemsets.
See lispMiner for user interface and a lot of more.
Python Apriori library:

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules
from mlxtend.frequent_patterns import fpgrowth,fpmax

from mlxtend.frequent_patterns import hmine
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Demographical Data ESL Example
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Demographical Example – Continuing

N = 9409 questionnaires, the ESL authors selected the 14 questions.
Preprocessing:

na.omit() remove records with missing values,
ordinal features cut by median to binary,
for categorical create dummy variable for each category.

Apriori input was matrix 6876× 50.
Output: 6288 association rules

with max. 5 elements
with support at least 10%.
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Negated Literals – Useful, Problematic
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Frequent Pattern–tree data structure

The number of passes through the data of Apriory is equal to the length of
the longest frequent itemset.
With an internal data structure, we are able to reduce it to 2 passes.

Build an internal structure called FP-tree.
Call FP-growth to generate frequent itemsets

Each construction of a conditional tree needs 2 pass through the parent tree
an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

FP-max to find maximal itemsets
non of immediate supersets is frequent

FP-close to find close itemsets
non of immediate supersets has the same support.
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FP–tree

1: procedure FP–tree:(Data )
2: Calculate counts of items (singletons)
3: Create table header ordered by decreasing item count
4: for each data sample do
5: order items according to header
6: insert branch into the tree
7: increase all counters on the inserted branch
8: end for
9: return the tree

10: end procedure

Data ordered
a b c e f o e c a b f
a c g c a g
e i e
a c d e g e c a g d
a c e g l e c a g
e j
a b c e f p
a c d
a c e g m \\a c e g n

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

(a)

root

e:8

Header table

item

Head of

node−links c:2

c:6 a:2

a:6

b:2 g:4

f:2 d:1

g:1 d:1

e:8

c:8

a:8

g:5

b:2

f:2

d:2

(b)

Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs
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FP-tree
FP-tree contains all the frequency information in
the database.
Principle: If X and Y are two itemsets, the count of
itemsets X ∪ Y in the database is exactly that of Y
in the database restriction to those transactions
containing X .

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

(a)

root

e:8

Header table

item

Head of

node−links c:2

c:6 a:2

a:6

b:2 g:4

f:2 d:1

g:1 d:1

e:8

c:8

a:8

g:5

b:2

f:2

d:2

(b)

Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs

i=3
abc=2
abd=0
abe=2
abf=2
abg=0
acd=2
ace=6
acf=2
acg=5
ade=1
adf=0
adg=1
aeg=4
. . .
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FPgrowth*

1: procedure FPgrowth*:(T a conditional FP-tree )
2: if T only contains a single path P then
3: for each subpath Y of P do
4: output pattern Y ∪ T .base with
5: count = smallest count of nodes in Y
6: end for
7: else
8: for each i in T .header do
9: Y ← T .base ∪ {i} with i .count

10: if T .array is not NULL then
11: construct a new header table for Y ’s FP-tree from T .array
12: else
13: construct a new header table for Y ’s from T
14: end if
15: construct Y ’s conditional FP-tree TY and its array AY ;
16: if TY ̸= ∅ then
17: call FPgrowth∗(TY )
18: end if
19: end for
20: end if
21: end procedureMachine Learning Association Rules, Apriori 9 1 - 21 April 25, 2025 16 / 56



t = 2
T{g} = [a : 5, c : 5, e : 4]

root

a:4+1

c:4+1

e:4

the new treeTX∪{i}. We can omit the first scan ofTX by
constructing an arrayAX while buildingTX . The follow-
ing example will explain the idea. In Figure 1 (a), supposing
that the minimum support is 20%, after the first scan of the
original database, we sort the frequent items ase:8, c:8,a:8,
g:5, b:2, f :2,d:2. This order is also the order of items in the
header table ofT∅. During the second scan of the database
we will constructT∅, and an arrayA∅. This array will store
the counts of all 2-itemsets. All cells in the array are initial-
ized as 0.

�

�

�

�

�

�
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 �  �  � �
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� � �
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Figure 2. Two array examples

In A∅, each cell is a counter of a 2-itemset, cell
A∅[d, e] is the counter for itemset{d, e}, cell A∅[d, c]
is the counter for itemset{d, c}, and so forth. Dur-
ing the second scan for constructingT∅, for each trans-
action, first all frequent items in the transaction are ex-
tracted. Suppose these items form itemsetI. To insert
I into T∅, the items inI are sorted according to the or-
der in header table ofT∅. When we insertI into T∅,
at the same timeA∅[i, j] is incremented by 1 if{i, j}
is contained inI. For example, for the first transaction,
{a, b, c, e, f} is extracted (itemo is infrequent) and sorted
as e, c, a, b, f . This itemset is inserted intoT∅ as usual,
and at the same time,A∅[f, e], A∅[f, c], A∅[f, a], A∅[f, b],
A∅[b, a], A∅[b, c],A∅[b, e], A∅[a, e],A∅[a, c], A∅[c, e] are all
incremented by 1. After the second scan, arrayA∅ keeps the
counts of all pairs of frequent items, as shown in table (a)
of Figure 2.

Next, the FP-growth method is recursively called to mine
frequent itemsets for each item in header table ofT∅. How-
ever, now for each itemi, instead of traversingT∅ along
the linked list starting ati to get all frequent items ini’s
conditional pattern base,A∅ gives all frequent items fori.
For example, by checking the third line in the table forA∅,
frequent itemse, c, a for the conditional pattern base ofg
can be obtained. Sorting them according to their counts, we
get a, c, e. Therefore, for each itemi in T∅ the arrayA∅
makes the first traversal ofT∅ unnecessary, andT{i} can be
initialized directly fromA∅.

For the same reason, from a conditional FP-treeTX ,
when we construct a new conditional FP-tree forX ∪ {i},
for an item i, a new arrayAX∪{i} is calculated. Dur-
ing the construction of the new FP-treeTX∪{i}, the array

AX∪{i} is filled. For instance, in Figure 1, the cells of
arrayA{g} is shown in table (b) of Figure 2. This array
is constructed as follows. From the arrayA∅, we know
that the frequent items in the conditional pattern base of
{g} are, in order,a, c, e. By following the linked list of
g, from the first node we get{e, c, a} : 4, so it is inserted as
(a : 4, c : 4, e : 4) into the new FP-treeT{g}. At the same
time,A{g}[e, c], A{g}[e, a] andA{g}[c, a] are incremented
by 4. From the second node in the linked list,{c, a} : 1 is
extracted, and it is inserted as(a : 1, c : 1) into T{g}. At the
same time,A{g}[c, a] is incremented by 1. Since there are
no other nodes in the linked list, the construction ofT{g} is
finished, and arrayA{g} is ready to be used for construction
of FP-trees in next level of recursion. The construction of
arrays and FP-trees continues until the FP-growth method
terminates.

Based on above discussion, we define a variation of the
FP-tree structure in which besides all attributes given in [6],
an FP-tree also has an attribute,array, which contains the
corresponding array.

Now let us analyze the size of an array. Suppose the
number of frequent items in the first FP-tree isn. Then
the size of the associated array is

∑n−1
i=1 i = n(n − 1)/2.

We can expect that FP-trees constructed from the first FP-
tree have fewer frequent items, so the sizes of the associated
arrays decrease. At any time, since an array is an attribute
of an FP-tree, when the space for the FP-tree is freed, the
space for the array is also freed.

2.3. Discussion

The array technique works very well especially when the
dataset is sparse. The FP-tree for a sparse dataset and the re-
cursively constructed FP-trees will be big and bushy, due to
the fact that they do not have many shared common pre-
fixes. The arrays save traversal time for all items and the
next level FP-trees can be initialized directly. In this case,
the time saved by omitting the first traversals is far greater
than the time needed for accumulating counts in the associ-
ated array.

However, when a dataset is dense, the FP-trees are more
compact. For each item in a compact FP-tree, the traversal
is fairly rapid, while accumulating counts in the associated
array may take more time. In this case, accumulating counts
may not be a good idea.

Even for the FP-trees of sparse datasets, the first levels of
recursively constructed FP-trees are always conditional FP-
trees forthe most common prefixes. We can therefore expect
the traversal times for the first items in a header table to be
fairly short, so the cells for these first items are unnecessary
in the array. As an example, in Figure 2 table (a), since
e, c, anda are the first 3 items in the header table, the first
two lines do not have to be calculated, thus saving counting
time.

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.
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Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs
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Non–frequent Values Dissapear
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Unsupervised Learning as Supervised Learning

We add additional attribute YG .
YG = 1 for all our data.
We randomly generate a data set of similar size with uniform distribution, set
YG = 0 for these artificial data.
The task is to separate YG = 1 and YG = 0.
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Generalize Association Rules

We search for high lift where the probability of conjunction is greater than
expected.
The hypothesis is specified by column indexes j and subsets of values sj
corresponding features Xj . We aim:

P̂

 ⋂
j∈J

(Xj ∈ sj)

 = 1
N

N∑
1

I

 ⋂
j∈J

(xij ∈ sj)

 >> Πj∈J P̂(Xj ∈ sj)

On the data from previous slide, CART (decision tree alg.) or PRIM (’bump
hunting’) may be used.
Figure in the previous slide: Logistic regression on the tensor product of
natural splines.
Other methods may be used. All are heuristics compared to the full
evaluation by Apriori.
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Apriori Algorithm Summary

Unsupervised learning of association rules.
First, we find frequent itemsets, above a threshold t
Then, we construct rules from them and select

high confidence
high lift
... .

The amount of data is expected to be huge;
We try to minimize the number of passes through the data

the length of the longest frequent itemset for the Apriori algorithm,
2 with the internal structure FP-tree.
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Version Space Search

Version space search is one of the first Machine Learning algorithms.
For us, introduction to Inductive Logic Programming.
Our (Tom Mitchell’s) toy data:

Example (Tennis Dataset)

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Overcast Mild High Weak Yes
D5 Overcast Mild High Strong Yes
D6 Overcast Hot Normal Weak Yes
D7 Rain Mild High Strong No
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Version Space Search
Our hypothesis is a conjunction of attribute tests that imply
PlayTennis = yes.

h = ⟨?, Cold , High, ?, ?, ?⟩ represents the hypothesis
Temperature = cold & Humidity = high ⇒ PlayTennis = yes.

? is satisfied by any value
∅ cannot be satisfied

For binary attributes, we have 3|#attributes| + 1 hypotheses
hypotheses with ∅ are not satisfiable, therefore they are equivalent.
We perform a systematic search.
The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)
The hypothesis hg is more general than the hypothesis hg ⪰ hs iff any sample that
satisfies hs satisfies also hg .
In the above case, the hypothesis hs , hg ⪰ hs is called more specific that hg .

⟨?, ?, ?, ?⟩ is more general than ⟨Sunny , . . . , Same⟩.
The most general hypothesis ⟨?, ?, ?, ?⟩ is satisfied by all data.
The most specific hypothesis ⟨∅, . . .⟩ is not satisfied by any data.
The hypothesis space for a lattice partially ordered by the ’more general’
relation.
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Find–S

We search for a hypothesis satisfied by all positive examples and no negative
example.

Find–S (to be improved)

1: procedure Find-S:(X dataset with the goal attritute yes/no )
2: h← ⟨∅, ∅, ∅, ∅⟩ # the most specific hypothesis
3: for each positive data sample xi do
4: for each attribute condition Xj = xi,j in h do
5: if xi does not satisfy Xj = xi,j then
6: replace the condition by
7: a closest more general condition satisfied by xi
8: end if
9: end for

10: end for
11: return h
12: end procedure
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Version Space Search

Example (Tennis Dataset)

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Overcast Mild High Weak Yes
D5 Overcast Mild High Strong Yes
D6 Overcast Hot Normal Weak Yes
D7 Rain Mild High Strong No
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Version Space

Now we look for all hypotheses consistent with the data.

Definition (Version Space)
The version space for the hypothesis space H and the data X is a subset of
H that is consistent with X

VS(H, X ) = {h ∈ H|Consistent(h, X )}.

The version space is characterized by the most general and the most specific
boundary.
Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)
The general boundary for the hypothesis space H and the data X is a set
of most general hypothesis from H that are consistent with X

G(H, X ) = {g ∈ H|Consistent(g , X )&(∄g1 ∈ H)[g1 ≻ g&Consistent(g1, X )]}.
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Definition (Specific Boundary)
The specific boundary for the hypothesis space H and the data X is a set
of most specific hypothesis from H that are consistent with X

S(H, X ) = {s ∈ H|Consistent(s, X )&(∄s1 ∈ H)[s ≻ s1&Consistent(s1, X )]}.

{<Sunny, Warm, ?,Strong,?,?>}

{<Sunny,?,?,?,?,?>  <?, Warm, ?,?,?,?>}

{<Sunny, ?, ?,Strong,?,?>} {<Sunny, Warm, ?,?,?,?>} {<?, Warm, ?,Strong,?,?>}

G:

S:

Figure 1: Prostor verzı́ s částečným uspořádánı́m inkluzı́.We search for a hypothesis satisfied by all positive examples and no negative
example.
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1: procedure Candidate–Elimination:(X data,the goal att. yes/no)
2: G ← {⟨?, ?, ?, ?⟩}, S ← {⟨∅, ∅, ∅, ∅⟩} # general,specific
3: for each data sample xi do
4: if xi is positive then
5: remove from G all h inconsistent with xi
6: for each s ∈ S inconsistent with xi do
7: add to S all minimal generalizations h
8: Consistent(h, xi)&(∃g ∈ G)(g ⪰ h)
9: remove from S {s|(∃s1 ∈ S)(s ≻ s1)} # not most specific

10: end for
11: else xi is negative example
12: remove from S all h inconsistent with xi
13: for each g ∈ G inconsistent with xi do
14: add to G all minimal specifications h
15: Consistent(h, X )&(∃s ∈ S)(h ⪰ s)
16: remove from G {g |(∃g1 ∈ G)(g1 ≻ g)} # not most gen.
17: end for
18: end if
19: end for
20: return G , S
21: end procedure
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Predicate Logic
Recall predicate logic.
CNF, DNF the conjunctive and disjunctive normal form
clause: a disjunction of literals father(X , Y ) ∨ ¬parent(X , Y ) ∨ ¬male(X )
Horn clauses with at most one positive literal, written as a rule

definite clause father(X , Y ) : −male(X), parent(X , Y ).
fact - no negative literal male(adam).
goal clause - no positive literal false : −father(X , bob).

Ground term, clause - a term, a clause without variables.
We have our data in the form of a set of clauses B, E+, E−,

the background knowledge B is a set of (Horn) clauses,
the positive and examples E+, E− are sets of ground literals (facts).

Example

B =


lego_builder(alice).

enjoys_lego(A) : −lego_builder(A).
estate_agent(dave).
enjoys_lego(alice).
enjoys_lego(claire).


E+ =

{
happy(alice).

}
E− =

 happy(bob).
happy(claire).
happy(dave).
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Substitution, Subsumption
Clauses ale implicitly generally quantified.
They should not have a variable with the same name.

Definition (Substitution, Subsumption)
Given a substitution θ = {vi/ti} and formula F . Fθ is formed by replacing
every variable vi in F by ti .
Substitution θ unifies atom A and B in the case Aθ = Bθ.
Atom A subsumes atom B, A ⪰ B, iff there exists a substitution θ such
that Aθ = B.
Clause C subsumes clause D, C ⪰ D, iff there exists a substitution θ such
that Cθ ⊆ D.

Example
C1 = f (A, B) : −head(A, B).
C2 = f (X , Y ) : −head(X , Y ), empty(Y ).
C1 subsumes C2 since C1θ ⊆ C2 with θ = {A/X , B/Y }.
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Definition (Generalisation)
Clause C is more general than clause D, iff C |= D.
Clause C is more general than clause D with respect to B, iff B, C |= D.

B is the background knowledge.

Example
Statement A: Daffy Duck can fly. can_fly(daffy)
Statement B: All ducks can fly. can_fly(X ) ⪰ can_fly(daffy).

Example
Statement C: Marek lives in London.
Statement D: Marek lives in England.

lives(marek, london)
lives(marek, england)
Background knowledge lives(x , england) : −lives(x , london).
B, C |= D, ’C is more general than D with respect to B’.
C ⪰ D with respect to B.
http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf
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ILP general logical setting

Definition (Hypothesis Properies)
The background knowledge B and the hypothesis H should entail E , that is:

Necessity B ̸|= E+ we need H
Sufficiency, Completeness B &H |= E+ H explains positive examples
Weak consistency B &H ̸|= ⊥ H does not contradict B
(Strong) consistency B &H &E− ̸|= ⊥ ... neither negative examples

Definition (ILP task)
ILP task is

Given
B background knowledge (logic program)
E+, E− examples – sets of ground unit clauses

Given B, E find a logic program H such that is necessary, sufficient and
consistent.
Often, we assume noisy data and accept some errors, but we try to minimize
them.
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Example

B =



lego_builder(alice).
lego_builder(bob).

estate_agent(claire).
estate_agent(dave).
enjoys_lego(alice).
enjoys_lego(claire).


E+ =

{
happy(alice).

}
E− =

 happy(bob).
happy(claire).
happy(dave).


Our hypothesis space:

H =



h1 : happy(A) : −lego_builder(A).
h2 : happy(A) : −estate_agent(A).
h3 : happy(A) : −enjoys_lego(A).

h4 : happy(A) : −lego_builder(A), estate_agent(A).
h5 : happy(A) : −lego_builder(A), enjoys_lego(A).
h6 : happy(A) : −estate_agent(A), enjoys_lego(A).


B ∪ h1 ⊨ happy(bob) therefore h1 is inconsistent.
B ∪ h2 ⊭ happy(alice) therefore h2 is incomplete.
B ∪ h3 ⊨ happy(claire) therefore h3 is inconsistent.
B ∪ h4 ⊭ happy(alice) therefore h4 is incomplete.
h5 is both complete and consistent.
B ∪ h6 ⊭ happy(alice) therefore h1 in incomplete.
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Hypothesis Space
To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)
Mode declarations denote which literals may appear in the head/body of a rule. A
mode declaration is of the form:

mode(recall , pred(m1, m2, . . . , ma))

where recall is the maximum number of occurrences of the predicate
mi are the argument types and they may be assigned as input +, output −,
constant #.

Example
modeb(2,parent(+person,-person)).
modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.
CoRR, abs/2008.07912, 2020.Machine Learning Inductive Logic Programming 10 22 - 56 April 25, 2025 35 / 56



Non-monotonic reasoning

In Prolog, there is negation as a failure.

Example

Program =
{

sunny .
happy : −sunny , not weekday .

}
Prolog tries to prove weekday .
It does not prove it, therefore it concludes happy .
With additional knowledge weekday some of entailments are not true any
more.

Definition (Normal logic program)
Normal logic programs may include negated literals in the body of a clause, e.g.

h : −b1, . . . , bn, not bn+1, . . . , not bm.
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Aleph ILP system (based on Progol)
Given

A set of mode declaration M
Background knowledge B in the form of a normal program
allows negation, with the semantics negation as a failure
Positive E+ and negative E− examples as a set of ground facts

Return: A normal program hypothesis H that:
H is consistent with M
∀e ∈ E+, H ∪ B ⊨ e (H is complete)
∀e ∈ E−, H ∪ B ⊭ e (H is consistent).

Aleph

1. Select a positive example to generalize.
2. Construct the most specific clause consistent with M that entails the

example (the bottom clause).
3. Search for the ’best’ clause more general than the bottom clause.
4. Add the clause to the hypothesis and remove all examples covered.
5. If a positive example left, return to step 1.
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Bottom Clause Construction
Definition (Bottom clause)
Let H be a clausal hypothesis and C be a clause. The bottom clause ⊥(C) is the
most specific clause such that:

H ∪ ⊥(C) ⊨ C .
The purpose is to bound the search in the step in 3.
Without mode declarations, the bottom clause may have infinite cardinality.

Example (Bottom clause)

M =


: −modeh(∗, pos(+shape)).
: −modeb(∗, red(+shape)).

: −modeb(∗, square(+shape)).
: −modeb(∗, triangle(+shape)).
: −modeb(∗, polygon(+shape)).

 B =



red(s1).
blue(s2).

square(s1).
triange(s2).

polygon(A) : −rectangle(A).
rectangle(A) : −square(A).


Let e be the positive example pos(s1). Then:

⊥(e) = pos(A) : −red(A), square(A), rectangle(A), polygon(A).
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Clause Search
Aleph performs a bounded breadth-first search to enumerate the shorter
clauses before longer ones.
The search is bounded by several parameters (max. clause size, max. proof
depth).

Inductive Logic Programming At 30: A New Introduction

pos(A):-

pos(A):- red(A) pos(A):- square(A) pos(A):- rectangle(A) pos(A):- polygon(A)

pos(A):-
red(A),
square(A).

pos(A):-
red(A),
rectangle(A).

pos(A):-
red(A),
polygon(A).

pos(A):-
square(A),
rectangle(A).

pos(A):-
square(A),
polygon(A).

pos(A):-
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A).

pos(A):-
red(A),
square(A),
polygon(A).

pos(A):-
square(A),
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A),
polygon(A).

Most general hypothesis

Most specific hypothesis

Figure 5: Aleph bounds the hypothesis space from above (the most general hypothesis) and below (the
most specific hypothesis). Aleph starts the search from the most general hypothesis and spe-
cialises it (by adding literals from the bottom clause) until it finds the best hypothesis.

6.1.3 Discussion

Advantages. Aleph is one of themost popular ILP systems because (i) it has a stable and easily available
implementation with many options, and (ii) it has good empirical performance. Moreover, it is a single
Prolog file, which makes it easy to download and use40. Because it uses a bottom clause to bound the
search, Aleph is also efficient at identifying relevant constant symbols that may appear in a hypothesis,
which is not the case for pure top-down approaches41. Aleph also supports many other features, such as
numerical reasoning, inducing constraints, and allowing user-supplied cost functions.

Disadvantages. Because it is based on inverse entailment, and only learns a single clause at a time,
Aleph struggles to learn recursive programs and optimal programs and does not support PI. Aleph also
uses many parameters, such as parameters that change the search strategy when generalising a bottom
clause (step 3) and parameters that change the structure of learnable programs (such as limiting the
number of literals in the bottom clause). These parameters can greatly influence learning performance.
Even for experts, it is non-trivial to find a suitable set of parameters for a problem.

40. Courtesy of Fabrizio Riguzzi and Paolo Niccolò Giubelli, Aleph is now available as a SWIPL package at https://www.swi-
prolog.org/pack/list?p=aleph

41. As the Aleph manual states, “the bottom clause is really useful to introduce constants (these are obtained from the seed
example”.

43
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Aleph 2, Popper, FlexFringe
Aleph default evaluation function is coverage defined as P − N,

P is the number of positive examples covered by the clause
N is the number of negative examples covered by the clause
that means it accepts some noise.

It starts from the most general one pos(A) : −.
It tries to specialize the clause

by adding literals to the body of it, which it selects from the bottom clause
or by instantiating variables.
Each specialization is called refinement.
Aleph Advantages

one Prolog file, easy to download and use.
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

It has good empirical performance.
Allows numerical reasoning, user defined cost functions, handles noisy data.

Aleph Disadvantages
It has many parameters to tune.
It struggles to learn recursive programs and optimal programs

since it learns only a single clause a time.
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Metagol
Given

A set of metarules M
Background knowledge B in the form of a normal program
Positive E+ and negative E− examples as a set of facts (atoms).

Return: A definite program hypothesis H that:
H is consistent with M
∀e ∈ E+, H ∪ B ⊨ e (H is complete)
∀e ∈ E−, H ∪ B ⊭ e (H is consistent)
∀h ∈ H, ∃m ∈ M such that h = mθ

where θ is a substitution that grounds all the existentially quantified variables in
m.

Example (Metarule)
An example is the chain metarule P(A, B)← Q(A, C), R(C , B)
that allows Metagol to induce programs such as

f (A, B) : − tail(A, C), tail(C , B).
grandparent(A, B) : − parent(A, C), parent(C , B).
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Metagol

Metagol is a form of ILP besed on a Prolog meta-interpreter.

Metagol

1. Select a positive example to generalize.
If none exists, test the hypothesis on the negative examples.

If the hypothesis does not entail any negative example
stop and return the hypothesis.
otherwise backtrack to a choice point at step 2 and continue.

2. Try to prove the atom by:
using given BK or an already induced clauses
unifying the atom with the head of a metarule
binding the variables in the metarule to symbols in the predicate and
constant signatures
save the substitution
try to prove the body of the metarule
by treating the body atoms as examples and applying step 2 to them.
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Recursion

Metagol can learn recursive programs.

Example (Reachability)
Consider learning the concept of reachability in a graph. Without recursion, with
the maximal depth 4 we could learn:

reachable(A, B) : − edge(A, B).
reachable(A, B) : − edge(A, C), edge(C , B).
reachable(A, B) : − edge(A, C), edge(C , D), edge(D, B).
reachable(A, B) : − edge(A, C), edge(C , D), edge(D, E ), edge(E , B).

With recursion, we can learn:

reachable(A, B) : − edge(A, B).
reachable(A, B) : − edge(A, C), reachable(C , B).
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Iterative deepening

iterative deepening

Metagol uses iterative deepening to search for hypotheses.
at depth d = 1, at most one metasub.
at iteration d , it introduces d − 1 new predicate symbols and is allowed
to use d clauses.
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Metagol Example

Example (Kinship example)

B =


mother(ann, amy).mother(ann, andy).

mother(amy , amelia), mother(amy , bob).
mother(linda, gavin).

father(steve, amy).father(steve, andy).
father(andy , sponegebob).father(gavin, amelia).


metarule(ident, [P, Q], [P, A, B], [[Q, A, B]]).
metarule(chain, [P, Q, R], [P, A, B], [[Q, A, C ], [R, C , B]]).

E+ =


grandparent(ann, amelia).

grandparent(steve, amelia).
grandparent(ann, spongebob).

grandparent(linda, amelia).


E− =

{
grandparent(amy , amelia).

}
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Tracing Metagol
It select the first example to generalize grandparent(ann, amelia).
It tries to prove it from BK and induced clauses. It fails.
Metagol tries to use the first metarule:

grandparent(ann, amelia) : −Q(ann, amelia).

stores sub(ident, [grandparent, Q])
and tries to unify Q, but fails.
Metagol tries to use the second metarule:

grandparent(ann, amelia) : −Q(ann, C), R(C , amelia).

stores sub(chain, [grandparent, Q, R])
and recursively tries to prove Q(ann, C) and R(C , amelia).
It succeedes with the metasum sub(chain, [grandparent, mother , mother ])
and induces the first clause;

grandparent(A, B) : −mother(A, C), mother(C , B).
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Metagol Trace 2
Then, it select the second example to generalize grandparent(steve, amelia).
It tries to prove it from BK and induced clauses. It fails.
Metagol can again use the second metarule with another substitution:
stores sub(chain, [grandparent, father , mother ])
and induces the second clause;

grandparent(A, B) : −father(A, C), mother(C , B).
Given no bound on the program size, the Metagol would prove the other two
examples the same way and form the program:

grandparent(A, B) : − mother(A, C), mother(C , B).
grandparent(A, B) : − father(A, C), mother(C , B).
grandparent(A, B) : − father(A, C), father(C , B).
grandparent(A, B) : − mother(A, C), father(C , B).

With predicate invention, it learns:
grandparent(A, B) : − grandparent_1(A, C), grandparent_1(C , B).

grandparent_1(A, B) : − father(A, B).
grandparent_1(A, B) : − mother(A, B).
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Tail Recursive Metarule

Example (Tail Recursive Metarule)
An example is the tail recursive metarule P(A, B)← Q(A, C), P(C , B)
Metagol can also learn mutually recursive programs, such:

even(0).
even(A) : − successor(A, B), even_1(B).

even_1(A) : − successor(A, B), even(B).

We even do not have to provide the concept of an odd number. We can let the
Metagol to invent such predicate (even_1).
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Automata Example
Mach Learn (2014) 94:25–49 27

(a)

Finite Production Definite Clause
acceptor rules Grammar (DCG)

q0 →
q0 → 0 q0

q0 → 1 q1

q1 → 0 q1

q1 → 1 q0

q0([], []) ←
q0([0|A],B) ← q0(A,B)

q0([1|A],B) ← q1(A,B)

q1([0|A],B) ← q1(A,B)

q1([1|A],B) ← q0(A,B)

(b)

E+ E− Meta-interpreter Ground facts
λ

0
00
11
000
011
101

1
01
10
001
010
100
111

parse(S) ← parse(q0, S, []).

parse(Q, [], []) ← acceptor(Q).
parse(Q, [C|X], Y ) ←

delta1(Q,C,P ),
parse(P,X,Y ).

acceptor(q0) ←
delta1(q0,0, q0) ←
delta1(q0,1, q1) ←
delta1(q1,0, q1) ←
delta1(q1,1, q0) ←

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E+) and negative
examples (E−), Meta-interpreter and ground facts representing the Parity grammar

blurs the normal distinctions between abductive and inductive techniques (see Flach and
Kakas 2000). Usually abduction is thought of as providing an explanation in the form of a
set of ground facts while induction provides an explanation in the form of a set of universally
quantified rules. However, the meta-interpreter in Fig. 1b can be viewed as projecting the
universally quantified rules in Fig. 1a onto the ground facts associated with acceptor/1 and
delta1/3 in Fig. 1b. In this way abducing these ground facts with respect to a meta-interpreter
is equivalent to induction, since it is trivial to map the ground acceptor/1 and delta1/3 facts
back to the original universally quantified DCG rules.

In this paper, we show that the MIL framework can be directly implemented using declar-
ative techniques such as Prolog and Answer Set Programming (ASP). In this way, the search
for an hypothesis in a learning task is delegated to the search engine in Prolog or ASP. Al-
though existing abductive systems can achieve predicate invention if loaded with the meta-
interpreter introduced in this paper, a direct implementation of MIL has the following ad-
vantages.

1. As a declarative machine learning (De Raedt 2012) approach, it can make use of the
advances in solvers. For example, techniques ASP solvers such as Clasp (Gebser et al.
2007) compete favourably in international competitions. Recently Clasp has been ex-
tended to Unclasp (Andres et al. 2012) which is highly efficiency for optimisation tasks.
This advance is exploited in the experiments of this paper, as we use Unclasp for our
experiments.

2. As demonstrated by the experiments in this paper, direct implementation of the approach
using a meta-interpreter has increased efficiency due to an ordered search in the case of
Prolog and effective pruning in the case of ASP. While existing abductive systems like
SOLAR (Nabeshima et al. 2010), A-System (Kakas et al. 2001) and MC-TopLog do not
have an ordered search, but instead enumerate all hypotheses that are consistent with the
data.

3. The resulting hypotheses achieve higher predictive due to global optimisation, as opposed
to the greedy covering algorithm used in many systems including MC-TopLog.

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf
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Louise Example Grammar Learning

Example (Module)
:-module(anbn, [background_knowledge/2

,metarules/2
,positive_example/2
,negative_example/2
,a/2
,b/2
]).

Example (Background knowledge)
background_knowledge(s/2,[a/2,b/2]).
a([a|T],T).
b([b|T],T).

Example (Metarules)
metarules(s/2,[chain]).
% (Chain) ∃.P,Q,R ∀.x,y,z: P(x,y)← Q(x,z),R(z,y)
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Louise Example Continued

Example (Positive Examples)
positive_example(s/2,E):-

member(E, [%s([a,b],[])
s([a,a,b,b],[])
]).

Example (Negative Examples)
negative_example(s/2,E):-

member(E,[s([a,a],[])
,s([b,b],[])
,s([a,a,b],[])
,s([a,b,b],[])
]).

Example (Parameter Tuning)
:- auxiliaries:set_configuration_option(clause_limit, [3]).
:- auxiliaries:set_configuration_option(max_invented, [1]).
:- auxiliaries:set_configuration_option(reduction, [none]).
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Louise Example Continued 2

Example (Learned Program)
’$1’(A,B):-a(A,C),a(C,B).
’$1’(A,B):-a(A,C),s(C,B).
’$1’(A,B):-b(A,C),b(C,B).
’$1’(A,B):-s(A,C),b(C,B).
s(A,B):-’$1’(A,C),’$1’(C,B).
s(A,B):-’$1’(A,C),b(C,B).
s(A,B):-a(A,C),’$1’(C,B).
s(A,B):-a(A,C),b(C,B).
true.

Example (Learned Program)
?- auxiliaries:set_configuration_option(unfold_invented, [true]).
?-make.
?- learn(s/2).
s(A,B):-a(A,C),b(C,B).
s(A,B):-a(A,C),s(C,D),b(D,B).
true.
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ASPAL algorithm

ASPAL uses Answer Set Programming.
ASP program can have one, many, or none models (answer sets).
Computation in ASP is the process of finding models.
We may specify the range of the number of clauses from a set beeing true.
0{sunny ., weekday ., happy(A) : −lego_builder(A)}3
We may specify an evaluation function to optimize (like to minimize the
number of ’true’ clauses, e.g. the size of the hypothesis.

ASPAL

Generate all possible rules consistent with the given mode declarations.
Assign each rule a unique identifier and add an guessable atom in each
rule.
Use an ASP solver to find a minimal subset of the rules
by formulating the problem as an ASP optimization problem.

Machine Learning Inductive Logic Programming 10 22 - 56 April 25, 2025 53 / 56



Example (ASPAL)

B =



bird(alice).
bird(betty).

can(alice, fly).
can(betty , swim).

ability(fly).
ability(swim).


M =

 modeh(1, penguin(+bird)).
modeb(1, bird(+bird)).

modeb(∗, not can(+bird , #ability)).


E+ = {penguin(betty).}
E− = {penguin(alice).}

Given the modes, the possible rules are:

penguin(X ) : − bird(X ).
penguin(X ) : − bird(X ), not can(X , swim).
penguin(X ) : − bird(X ), not can(X , fly).
penguin(X ) : − bird(X ), not can(X , swim), not can(X , fly).

ASPAL replaces constants and adds extra literal:

penguin(X ) : − bird(X ), rule(r1).
penguin(X ) : − bird(X ), not can(X , C1), rule(r2, C1).
penguin(X ) : − bird(X ), not can(X , C1), not can(X , C2), rule(r3, C1, C2).
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ASPAL passes to an ASP solver:

bird(alice).
bird(betty).
can(alice, fly).
can(betty , swim).
ability(fly).
ability(swim).
penguin(X ) : −bird(X ), rule(r1).
penguin(X ) : −bird(X ), not can(X , C1), rule(r2, C1).
penguin(X ) : −bird(X ), not can(X , C1), not can(X , C2), rule(r3, C1, C2).
0{rule(r1), rule(r2, fly), rule(r2, swim), rule(r3, fly , swim)}4
goal : −penguin(betty), not penguin(alice).
: −not goal .

The answer is: rule(r2, c(fly))
Which is translated to a program:

penguin(A) : −bird(A), not can(A, fly).
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ILP aplications

Bioinformatics
ILP can make predictions based on the (sub)structured biological data.
Predict mutagenic activity of molecules and alert the causes of chemical
cancers
learning protein folding signatures.

Robot scientist.
BK knowledge represents the relationship between protein-coding sequences,
enzymes, and metbolites in pathway.
Automatically generates hypotheses, run experiments, iterprets results.

Games
Sokoban
Bridge
Checkers.
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List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).
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