- supervised learning
 - rules from decision trees (or the Sequential covering algorithm)
 - PRIM (Bump hunting)
- unsupervised learning
 - association rules
 - version space search for rules
 - Inductive Logic Programming (ILP, MIL)

Association Rules, Market Basket Analysis Application

- For very large datasets, $p \approx 10^4$, $N \approx 10^8$; in unit ball is the distance to the nearest neighbor ≈ 0.9981 .
- We search for frequent itemsets (high density areas)
- We test on feature X_j either equal to a specific value or no restriction at all,
- the value 1 is more important for as than 0,
- We select combinations of items with a higher number of occurences (support) than predefined threshold *t*.
- We select <u>all</u> combinations fulfilling conditions above.
- Categorical variables may be codded by dummy variables in advance (if not too many).
 - **OneHotEncoder** for each class *g*, a new variable $X_g = [X == g]$ without dropping any value.

Apriori Algorithm!

- 1: **procedure** APRIORI:(X dataset, t threshold for support)
- 2: $i \leftarrow 1$

7.

8:

9:

- 3: Generate list of candidates of the length i
- 4: while Candidate set not empty do
- 5: **for** each data sample **do**
- 6: for each candidate do
 - if all items of candidate appear in the data sample **then** increase the candidate counter by 1
 - end if
- 10: end for

11: end for

- 12: $i \leftarrow i + 1$
- 13: Discard candidates with support less than t.
- 14: Generate list of candidates of the length *i*
- 15: Join any two candidates from previous step having i 2 elements common. (*More pruning possible.*)
- 16: end while
- 17: end procedure

Example: Apriori Algorithm

 t = 0.2 t * N = 2 = 0.20 * 10 Data a b c e f o a c g e i a c d e g a c e g l e j a b c e f p a c d a c e g m a c e g n 	$ \begin{array}{c} i=1 \\ a=8 \\ b=2 \\ c=8 \\ d=2 \\ e=8 \\ f=2 \\ g=5 \\ i=j=l=o=1 \\ p=m=n=1 \end{array} $	i=2 ab=2 ac=8 ad=2 ae=6 af=2 ag=5 bc=2 bd=0 be=2 bf=2 bg=0 cd=2 ce=6 cf=2 cg=5 de=1 df=0 dg=1 df=2	$i=3$ $abc=2$ $abd=0$ $abe=2$ $abf=2$ $abg=0$ $acd=2$ $ace=6$ $acf=2$ $acg=5$ $ade=1$ $adf=0$ $adg=1$ $aeg=4$ \cdots	$i=4 \dots$ $abce=2$ $abcf=2$ $abef=2$ $abeg=0$ $acef=2$ $aceg=4$ $adeg=1$ $aefg=0$ \dots
--	---	---	--	---

4 / 56

- Applicable for very large data (with high threshold t).
- The key idea:
 - Only few of 2^{κ} combinations have high support > t,
 - subset of high-support combination has also high support.
- The number of passes through the data is equal to the size of the longest supported combination. The data do not need to be in memory simultaneously.
- *FPgrowth* algorithm needs only two passes through the data.

- From each supported itemset K found by Apriori algorithm we create a list of association rules, implications of the form A ⇒ B where:
 - A, B are disjoint and $A \cup B = \mathcal{K}$
 - A is called **antecedent**
 - *B* is called **consequent**.
- Support of the rule T(A ⇒ B) is defined as normalized support of the itemset K, that is normalized support of the conjunction A&B.

$$T(\mathcal{K}) = \frac{|data_{\mathcal{K}}|}{|data|}$$
$$T(A \Rightarrow B) = \frac{|data_{A\&B}|}{|data|}$$

Rule Confidence and Lift

There are two important measures for a rule $A \Rightarrow B$: • **Confidence** (predictability, přesnost)

$$C(A \Rightarrow B) = \frac{T(A \Rightarrow B)}{T(A)}$$

that is an estimate of P(B|A),

- Support T(B) is an estimate of P(B),
- Lift is the ration of confidence and expected precision:

$$L(A \Rightarrow B) = \frac{C(A \Rightarrow B)}{T(B)}$$

that is an estimate of $\frac{P(A\&B)}{P(A)\cdot P(B)}$.

• Leverage is the difference of supports:

$$leverage(A \Rightarrow B) = T(A \Rightarrow B) - T(A) \cdot T(B)$$

• Conviction is the ratio:

$$conviction(A \Rightarrow B) = \frac{1 - T(B)}{1 - C(A \Rightarrow B)}.$$

ESL book example:

Association rule 2: Support 13.4%, confidence 80.8%, and lift 2.13.

 $\begin{bmatrix} \text{language in home} = English \\ \text{householder status} = own \\ \text{occupation} = \{professional/managerial\} \end{bmatrix}$ $\downarrow \downarrow$ income > \$40,000

- $\mathcal{K} = \{ \text{English, own, prof/man, income} > \$40000 \},\$
- 13.4% people has all four properties,
- 80.8% of people with {English, own, prof/man} have income \geq \$40000,
- $T(\text{income} \ge \$40000) = 37.94\%$, therefore Lift = 2.13.

The Goal of Apriori Algorithm !

- Apriori finds <u>all</u> rules with high support.
- Frequently, it finds many of rules.
- We usually select lower threshold *c* on confidence, that is we select rules with $T(A \Rightarrow B) > t$ and $C(A \Rightarrow B) > c$.
- Conversion of itemsets to rules is usually relatively fast compared to search of itemsets.
- See lispMiner for user interface and a lot of more.
- Python Apriori library:

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules from mlxtend.frequent_patterns import fpgrowth,fpmax

from mlxtend.frequent_patterns import hmine

Feature	Demographic	# Values	Type
1	Sex	2	Categorical
2	Marital status	5	Categorical
3	Age	7	Ordinal
4	Education	6	Ordinal
5	Occupation	9	Categorical
6	Income	9	Ordinal
7	Years in Bay Area	5	Ordinal
8	Dual incomes	3	Categorical
9	Number in household	9	Ordinal
10	Number of children	9	Ordinal
11	Householder status	3	Categorical
12	Type of home	5	Categorical
13	Ethnic classification	8	Categorical
14	Language in home	3	Categorical

- N = 9409 questionnaires, the ESL authors selected the 14 questions.
- Preprocessing:
 - na.omit() remove records with missing values,
 - ordinal features cut by median to binary,
 - for categorical create dummy variable for each category.
- Apriori input was matrix 6876×50 .
- Output: 6288 association rules
 - with max. 5 elements
 - with support at least 10%.

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

 $\begin{bmatrix} \text{language in home} = English \\ \text{income} < $40,000 \\ \text{marital status} = not married \\ \text{number of children} = 0 \\ & \downarrow \\ \text{education} \notin \{ \text{college graduate, graduate study} \} \end{bmatrix}$

- The number of passes through the data of Apriory is equal to the length of the longest frequent itemset.
- With an internal data structure, we are able to reduce it to 2 passes.
- Build an internal structure called FP-tree.
- Call FP-growth to generate frequent itemsets
 - Each construction of a conditional tree needs 2 pass through the parent tree
 - an optimized version with only 1 pass is presented. (It needs an additional data structure array.)
- FP-max to find maximal itemsets
 - non of immediate supersets is frequent
- FP-close to find close itemsets
 - non of immediate supersets has the same support.

FP-tree

- 1: procedure FP-TREE:(Data)
- 2: Calculate counts of items (singletons)
- 3: Create table header ordered by decreasing item count
- 4: for each data sample do
- 5: order items according to header
- 6: insert branch into the tree
- 7: increase all counters on the inserted branch
- 8: end for
- 9: return the tree
- 10: end procedure

FP-tree

- **FP-tree** contains all the frequency information in the database.
- Principle: If X and Y are two itemsets, the count of itemsets X ∪ Y in the database is exactly that of Y in the database restriction to those transactions containing X.

i=3abc=2 abd=0 abe=2 abf=2 abg=0 acd=2ace=6acf=2acg=5ade=1adf=0 adg=1aeg=4

. . .

FPgrowth*

1:	procedure FPGROWT	H*:(T a conditional	FP-tree)			
2:	if T only contains a single path P then						
3:	for each subpath Y of P do						
4:	output pattern $Y \cup T$. base with						
5:	count =	smallest count of r	nodes in	Y			
6:	end for						
7:	else						
8:	for each <i>i</i> in <i>T</i>	header do					
9:	$Y \leftarrow T.bas$	$e \cup \{i\}$ with <i>i</i> .count					
10:	if T.array is not NULL then						
11:	construct a new header table for Y 's FP-tree from T . array						
12:	else						
13:	construc	t a new header table	e for Y's	from T			
14:	end if						
15:	construct Y's conditional FP-tree T_Y and its array A_Y ;						
16:	if $T_Y \neq \emptyset$ then						
17:	call $FPgrowth^*(T_Y)$						
18:	end if						
19:	end for						
20:	end if						
	Machine Learning Association Rules	Apriori 9	1 - 21	April 25, 2025			

Non-frequent Values Dissapear

Unsupervised Learning as Supervised Learning

- We add additional attribute Y_G .
- $Y_G = 1$ for all our data.
- We randomly generate a data set of similar size with uniform distribution, set $Y_G = 0$ for these artificial data.
- The task is to separate $Y_G = 1$ and $Y_G = 0$.

- We search for high lift where the probability of conjunction is greater than expected.
- The hypothesis is specified by column indexes j and subsets of values s_j corresponding features X_j . We aim:

$$\hat{P}\left(\bigcap_{j\in\mathcal{J}}(X_j\in s_j)\right) = \frac{1}{N}\sum_{1}^{N}I\left(\bigcap_{j\in\mathcal{J}}(x_{ij}\in s_j)\right) >> \prod_{j\in\mathcal{J}}\hat{P}(X_j\in s_j)$$

- On the data from previous slide, CART (decision tree alg.) or PRIM ('bump hunting') may be used.
- Figure in the previous slide: Logistic regression on the tensor product of natural splines.
- Other methods may be used. All are heuristics compared to the full evaluation by Apriori.

- Unsupervised learning of association rules.
- First, we find **frequent itemsets**, above a threshold *t*
- Then, we construct rules from them and select
 - high confidence
 - high lift
 -
- The amount of data is expected to be huge;
 - We try to minimize the number of passes through the data
 - the length of the longest frequent itemset for the Apriori algorithm,
 - 2 with the internal structure FP-tree.

- Version space search is one of the first Machine Learning algorithms.
- For us, introduction to Inductive Logic Programming.
- Our (Tom Mitchell's) toy data:

Example (Tennis Dataset)						
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Overcast	Mild	High	Weak	Yes	
D5	Overcast	Mild	High	Strong	Yes	
D6	Overcast	Hot	Normal	Weak	Yes	
D7	Rain	Mild	High	Strong	No	

Version Space Search

- Our **hypothesis** is a conjunction of attribute tests that imply *PlayTennis* = yes.
 - h = ⟨?, Cold, High, ?, ?, ?⟩ represents the hypothesis Temperature = cold & Humidity = high ⇒ PlayTennis = yes.
 - ? is satisfied by any value
 - $\bullet \ \ \emptyset$ cannot be satisfied
 - For binary attributes, we have $3^{|\#attributes|} + 1$ hypotheses
 - hypotheses with \emptyset are not satisfiable, therefore they are equivalent.
 - We perform a systematic search.
 - The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)

- The hypothesis h_g is more general than the hypothesis $h_g \succeq h_s$ iff any sample that satisfies h_s satisfies also h_g .
- In the above case, the hypothesis $h_s, h_g \succeq h_s$ is called more specific that h_g .
 - $\langle ?, ?, ?, ? \rangle$ is more general than $\langle Sunny, \ldots, Same \rangle$.
 - The most general hypothesis $\langle ?, ?, ?, ? \rangle$ is satisfied by all data.
 - The most specific hypothesis $\langle \emptyset, \ldots \rangle$ is not satisfied by any data.
 - The hypothesis space for a lattice partially ordered by the 'more general' relation.

Find-S

• We search for a hypothesis satisfied by all positive examples and no negative example.

Find-S (to be improved)

1:	procedure FIND-S:(X dataset with the goal attritute yes/no)
2:	$h \leftarrow \langle \emptyset, \emptyset, \emptyset, \emptyset angle$ # the most specific hypothesis
3:	for each positive data sample x_i do
4:	for each attribute condition $X_j = x_{i,j}$ in h do
5:	if x_i does not satisfy $X_j = x_{i,j}$ then
6:	replace the condition by
7:	a closest more general condition satisfied by x_i
8:	end if
9:	end for
10:	end for
11:	return <i>h</i>
12:	end procedure

Example (Tennis Dataset)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Overcast	Mild	High	Weak	Yes
D5	Overcast	Mild	High	Strong	Yes
D6	Overcast	Hot	Normal	Weak	Yes
D7	Rain	Mild	High	Strong	No

Version Space

• Now we look for all hypotheses consistent with the data.

Definition (Version Space)

• The version space for the hypothesis space *H* and the data *X* is a subset of *H* that is consistent with *X*

$$VS(H, X) = \{h \in H | Consistent(h, X)\}.$$

- The version space is characterized by the most general and the most specific boundary.
- Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)

• The general boundary for the hypothesis space H and the data X is a set of most general hypothesis from H that are consistent with X

 $G(H,X) = \{g \in H | \textit{Consistent}(g,X) \& (\nexists g_1 \in H) [g_1 \succ g \& \textit{Consistent}(g_1,X)] \}.$

Definition (Specific Boundary)

• The specific boundary for the hypothesis space *H* and the data *X* is a set of most specific hypothesis from *H* that are consistent with *X*

 $S(H,X) = \{s \in H | Consistent(s,X) \& (\nexists s_1 \in H) [s \succ s_1 \& Consistent(s_1,X)] \}.$

• We search for a hypothesis satisfied by all positive examples and no negative example.

1:	procedure CANDIDATE-ELIMINATION: (X data, the goal att. yes/no)						
2:	$G \leftarrow \{ \langle ?, ?, ?, ? \rangle \}, S \leftarrow \{ \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle \} \ \# \text{ general, specific}$						
3:	for each data sample x _i do						
4:	if x _i is positive then						
5:	remove from G all h inconsistent with x_i						
6:	for each $s \in S$ inconsistent with x_i do						
7:	add to S all minimal generalizations h						
8:	$\textit{Consistent}(h, x_i)\&(\exists g \in G)(g \succeq h)$						
9:	remove from S $\{s (\exists s_1 \in S)(s \succ s_1)\}$ $\#$ not most specific						
10:	end for						
11:	else x _i is negative example						
12:	remove from S all h inconsistent with x_i						
13:	for each $g \in G$ inconsistent with x_i do						
14:	add to G all minimal specifications h						
15:	$\textit{Consistent}(h,X)\&(\exists s\in S)(h\succeq s)$						
16:	remove from $G \{g (\exists g_1 \in G)(g_1 \succ g)\} \#$ not most gen.						
17:	end for						
18:	end if						
19:	end for						
20:	return G, S						
21:	end procedure						
	Machine Learning Inductive Logic Programming 10 22 - 56 April 25, 2025						

- A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction. CoRR, abs/2008.07912, 2020.
- S. Muggleton & all.: Meta-interpretive learning: application to grammatical inference, http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf
- Patsantzis, S., Muggleton, S.H. Top program construction and reduction for polynomial time Meta-Interpretive learning. Mach Learn 110, 755–778 (2021).
- https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
- https://github.com/stassa/louise
- $\bullet \ https://github.com/logic-and-learning-lab/Popper$
- http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf

Predicate Logic

- Recall predicate logic.
- CNF, DNF the conjunctive and disjunctive normal form
- clause: a disjunction of literals $father(X, Y) \lor \neg parent(X, Y) \lor \neg male(X)$
- Horn clauses with at most one positive literal, written as a rule
 - **definite clause** father(X, Y) : -male(X), parent(X, Y).
 - fact no negative literal male(adam).
 - goal clause no positive literal false : -father(X, bob).
- Ground term, clause a term, a clause without variables.
- We have our data in the form of a set of clauses B, E^+ , E^- ,
 - the background knowledge B is a set of (Horn) clauses,
 - the positive and examples E^+ , E^- are sets of ground literals (facts).

$$B = \begin{cases} lego_builder(alice).\\ enjoys_lego(A) : -lego_builder(A).\\ estate_agent(dave).\\ enjoys_lego(alice).\\ enjoys_lego(claire). \end{cases} \qquad E^+ = \{happy(alice).\}\\ B^+ = \{happy(bob).\\ happy(bob).\\ happy(claire).\\ happy(dave). \}$$

Substitution, Subsumption

- Clauses ale implicitly generally quantified.
- They should not have a variable with the same name.

Definition (Substitution, Subsumption)

- Given a substitution $\theta = \{v_i/t_i\}$ and formula *F*. $F\theta$ is formed by replacing every variable v_i in *F* by t_i .
- Substitution θ unifies atom A and B in the case $A\theta = B\theta$.
- Atom A subsumes atom B, $A \succeq B$, iff there exists a substitution θ such that $A\theta = B$.
- Clause C subsumes clause D, C ≥ D, iff there exists a substitution θ such that Cθ ⊆ D.

- $C_1 = f(A, B) : -head(A, B)$.
- $C_2 = f(X, Y) : -head(X, Y), empty(Y).$
- C_1 subsumes C_2 since $C_1\theta \subseteq C_2$ with $\theta = \{A/X, B/Y\}$.

Definition (Generalisation)

- Clause C is more general than clause D, iff $C \models D$.
- Clause C is more general than clause D with respect to B, iff $B, C \models D$.
 - *B* is the **background knowledge**.

Example

- Statement A: Daffy Duck can fly. can_fly(daffy)
- Statement B: All ducks can fly. $can_fly(X) \succeq can_fly(daffy)$.

- Statement C: Marek lives in London.
- Statement D: Marek lives in England.
- lives(marek, london)
- lives(marek, england)
- Background knowledge *lives*(*x*, *england*) : -*lives*(*x*, *london*).
- $B, C \models D$, 'C is more general than D with respect to B'.
- $C \succeq D$ with respect to B.
- http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf

Definition (Hypothesis Properies)

The background knowledge B and the hypothesis H should entail E, that is:Necessity $B \not\models E^+$ we need HSufficiency, Completeness $B \& H \models E^+$ H explains positive examplesWeak consistency $B \& H \not\models \bot$ H does not contradict B(Strong) consistency $B \& H \& E^- \not\models \bot$... neither negative examples

Definition (ILP task)

ILP task is

- Given
 - *B* background knowledge (logic program)
 - E⁺, E⁻ examples sets of ground unit clauses
- Given B, E find a logic program H such that is necessary, sufficient and consistent.
- Often, we assume noisy data and accept some errors, but we try to minimize them.

$$B = \begin{cases} lego_builder(alice).\\ lego_builder(bob).\\ estate_agent(claire).\\ estate_agent(dave).\\ enjoys_lego(alice).\\ enjoys_lego(claire). \end{cases}$$

$$E^{+} = \{happy(alice).\}\\ happy(bob).\\ happy(claire).\\ happy(dave). \end{cases}$$

$$C^{-} = \begin{cases} happy(bob).\\ happy(claire).\\ happy(dave). \end{cases}$$
Our hypothesis space:

$$\mathcal{H} = \begin{cases} h_1 : happy(A) : -lego_builder(A).\\ h_2 : happy(A) : -estate_agent(A).\\ h_3 : happy(A) : -lego_builder(A), estate_agent(A).\\ h_5 : happy(A) : -lego_builder(A), enjoys_lego(A).\\ h_6 : happy(A) : -estate_agent(A), enjoys_lego(A). \end{cases}$$

- $B \cup h_1 \vDash happy(bob)$ therefore h_1 is inconsistent.
- $B \cup h_2 \nvDash happy(alice)$ therefore h_2 is incomplete.
- $B \cup h_3 \vDash happy(claire)$ therefore h_3 is inconsistent.
- $B \cup h_4 \nvDash happy(alice)$ therefore h_4 is incomplete.
- *h*₅ is both complete and consistent.
- $B \cup h_6 \nvDash happy(alice)$ therefore h_1 in incomplete.

Hypothesis Space

• To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)

Mode declarations denote which literals may appear in the head/body of a rule. A mode declaration is of the form:

```
mode(recall, pred(m_1, m_2, \ldots, m_a))
```

where *recall* is the maximum number of occurrences of the predicate m_i are the argument types and they may be assigned as input +, output -, constant #.

Example

```
modeb(2,parent(+person,-person)).
modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).
```

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.

1 /0000 070	10 0000	
Machine Learning	Inductive Logic Programming	10

• In Prolog, there is negation as a failure.

Example
$$Program = \left\{ \begin{array}{c} sunny. \\ happy : -sunny, not weekday. \end{array} \right\}$$

- Prolog tries to prove *weekday*.
- It does not prove it, therefore it concludes happy.
- With additional knowledge *weekday* some of entailments are not true any more.

Definition (Normal logic program)

Normal logic programs may include negated literals in the body of a clause, e.g.

$$h: -b_1, ..., b_n, not \ b_{n+1}, ..., not \ b_m.$$

Aleph ILP system (based on Progol)

- Given
 - A set of mode declaration M
 - Background knowledge *B* in the form of a normal program allows negation, with the semantics negation as a failure
 - Positive E^+ and negative E^- examples as a set of ground facts
- Return: A normal program hypothesis H that:
 - *H* is consistent with *M*
 - $\forall e \in E^+$, $H \cup B \vDash e$ (*H* is complete)
 - $\forall e \in E^-$, $H \cup B \nvDash e$ (*H* is consistent).

Aleph

- 1. Select a positive example to generalize.
- 2. Construct the most specific clause consistent with M that entails the example (the bottom clause).
- 3. Search for the 'best' clause more general than the bottom clause.
- 4. Add the clause to the hypothesis and remove all examples covered.
- 5. If a positive example left, return to step 1.

Bottom Clause Construction

Definition (Bottom clause)

Let *H* be a clausal hypothesis and *C* be a clause. The bottom clause $\perp(C)$ is the most specific clause such that:

$$H \cup \bot(C) \vDash C.$$

- The purpose is to bound the search in the step in 3.
- Without mode declarations, the bottom clause may have infinite cardinality.

Example (Bottom clause)

$$M = \begin{cases} :-modeh(*, pos(+shape)).\\ :-modeb(*, red(+shape)).\\ :-modeb(*, square(+shape)).\\ :-modeb(*, triangle(+shape)).\\ :-modeb(*, polygon(+shape)). \end{cases} B = \begin{cases} red(s1).\\ blue(s2).\\ square(s1).\\ triange(s2).\\ polygon(A): -rectangle(A).\\ rectangle(A): -square(A). \end{cases}$$

Let e be the positive example pos(s1). Then:

 \perp (e) = pos(A) : -red(A), square(A), rectangle(A), polygon(A).

Clause Search

- Aleph performs a bounded breadth-first search to enumerate the shorter clauses before longer ones.
- The search is bounded by several parameters (max. clause size, max. proof depth).

Aleph 2, Popper, FlexFringe

- Aleph default evaluation function is coverage defined as P N,
 - *P* is the number of positive examples covered by the clause
 - N is the number of negative examples covered by the clause
 - that means it accepts some noise.
- It starts from the most general one pos(A) : -.
- It tries to specialize the clause
 - by adding literals to the body of it, which it selects from the bottom clause
- or by instantiating variables.
- Each specialization is called refinement.
- Aleph Advantages
 - one Prolog file, easy to download and use.
 - https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
 - It has good empirical performance.
 - Allows numerical reasoning, user defined cost functions, handles noisy data.
- Aleph Disadvantages
 - It has many parameters to tune.
 - It struggles to learn recursive programs and optimal programs
 - since it learns only a single clause a time.

Metagol

Given

- A set of metarules M
- Background knowledge B in the form of a normal program
- Positive E^+ and negative E^- examples as a set of facts (atoms).
- Return: A definite program hypothesis H that:
 - *H* is consistent with *M*
 - $\forall e \in E^+$, $H \cup B \vDash e$ (*H* is complete)
 - $\forall e \in E^-$, $H \cup B \nvDash e$ (H is consistent)
 - $\forall h \in H$, $\exists m \in M$ such that $h = m\theta$
 - where θ is a substitution that grounds all the existentially quantified variables in m.

Example (Metarule)

- An example is the chain metarule $P(A, B) \leftarrow Q(A, C), R(C, B)$
- that allows Metagol to induce programs such as

$$f(A,B) : - tail(A,C), tail(C,B).$$

grandparent(A, B) :- parent(A, C), parent(C, B).

Metagol

• Metagol is a form of ILP besed on a Prolog meta-interpreter.

Metagol

- 1. Select a positive example to generalize.
 - If none exists, test the hypothesis on the negative examples.
 - If the hypothesis does not entail any negative example stop and return the hypothesis.
 - otherwise backtrack to a choice point at step 2 and continue.
- 2. Try to prove the atom by:
 - using given BK or an already induced clauses
 - unifying the atom with the head of a metarule
 - binding the variables in the metarule to symbols in the predicate and constant signatures
 - save the substitution
 - try to prove the body of the metarule
 - by treating the body atoms as examples and applying step 2 to them.

Recursion

• Metagol can learn recursive programs.

Example (Reachability)

Consider learning the concept of *reachability* in a graph. Without recursion, with the maximal depth 4 we could learn:

reachable(A, B)	: –	edge(A, B).
reachable(A, B)	: –	edge(A, C), edge(C, B).
reachable(A, B)	: –	edge(A, C), edge(C, D), edge(D, B).
reachable(A, B)	: –	edge(A, C), edge(C, D), edge(D, E), edge(E, B)

With recursion, we can learn:

$$reachable(A, B) := edge(A, B).$$

 $reachable(A, B) := edge(A, C), reachable(C, B).$

iterative deepening

- Metagol uses iterative deepening to search for hypotheses.
 - at depth d = 1, at most one metasub.
 - at iteration d, it introduces d-1 new predicate symbols and is allowed to use d clauses.

Metagol Example

Example (Kinship example)

mother(ann, amy).mother(ann, andy). mother(amy, amelia), mother(amy, bob). mother(linda, gavin). father(steve, amy).father(steve, andy). father(andy, sponegebob).father(gavin, amelia).

> metarule(ident, [P, Q], [P, A, B], [[Q, A, B]]).metarule(chain, [P, Q, R], [P, A, B], [[Q, A, C], [R, C, B]]).

$$E^{+} = \begin{cases} grandparent(ann, amelia).\\ grandparent(steve, amelia).\\ grandparent(ann, spongebob).\\ grandparent(linda, amelia). \end{cases}$$
$$E^{-} = \{grandparent(amy, amelia).\}$$

Tracing Metagol

- It select the first example to generalize grandparent(ann, amelia).
- It tries to prove it from BK and induced clauses. It fails.
- Metagol tries to use the first metarule:

grandparent(ann, amelia) : -Q(ann, amelia).

stores sub(ident, [grandparent, Q])

- and tries to unify Q, but fails.
- Metagol tries to use the second metarule:

grandparent(ann, amelia) : -Q(ann, C), R(C, amelia).

stores sub(chain, [grandparent, Q, R])

- and recursively tries to prove Q(ann, C) and R(C, amelia).
- It succeedes with the metasum sub(chain, [grandparent, mother, mother])
- and induces the first clause;

grandparent(A, B) : -mother(A, C), mother(C, B).

Metagol Trace 2

- Then, it select the second example to generalize grandparent(steve, amelia).
- It tries to prove it from BK and induced clauses. It fails.
- Metagol can again use the second metarule with another substitution: stores *sub(chain,[grandparent, father, mother])*
- and induces the second clause;

grandparent(A, B) : -father(A, C), mother(C, B).

- Given no bound on the program size, the Metagol would prove the other two examples the same way and form the program:
 - grandparent(A, B) :- mother(A, C), mother(C, B).
 - grandparent(A, B) : father(A, C), mother(C, B).
 - grandparent(A, B) : father(A, C), father(C, B).
 - grandparent(A, B) :- mother(A, C), father(C, B).

With predicate invention, it learns:

grandparent(A, B) :- $grandparent_1(A, C), grandparent_1(C, B).$ $grandparent_1(A, B)$:- father(A, B). $grandparent_1(A, B)$:- mother(A, B).Machine Learning Inductive Logic Programming 10 22 - 56 April 25, 2025 47 / 56

Example (Tail Recursive Metarule)

- An example is the tail recursive metarule $P(A, B) \leftarrow Q(A, C), P(C, B)$
- Metagol can also learn mutually recursive programs, such:

$$even(0).$$

 $even(A) : - successor(A, B), even_1(B).$
 $even_1(A) : - successor(A, B), even(B).$

We even do not have to provide the concept of an odd number. We can let the Metagol to invent such predicate (*even_1*).

Automata Example

	Finite	Production	Definite Clause
	acceptor	rules	Grammar (DCG)
(a)		$egin{array}{cccc} q_0 & ightarrow & \ q_0 & ightarrow & 0 q_0 \ q_0 & ightarrow & 1 q_1 \ q_1 & ightarrow & 0 q_1 \ q_1 & ightarrow & 1 q_0 \end{array}$	$\begin{array}{rcl} q_0([], []) & \leftarrow \\ q_0([0 A], B) & \leftarrow q_0(A, B) \\ q_0([1 A], B) & \leftarrow q_1(A, B) \\ q_1([0 A], B) & \leftarrow q_1(A, B) \\ q_1([1 A], B) & \leftarrow q_0(A, B) \end{array}$

	E^+	E^{-}	Meta-interpreter	Ground facts
(b)	$\lambda \\ 0 \\ 00 \\ 11 \\ 000 \\ 011 \\ 101$	1 01 10 001 010 100 111	$parse(S) \leftarrow parse(q0, S, []).$ $parse(Q, [], []) \leftarrow acceptor(Q).$ $parse(Q, [C X], Y) \leftarrow$ $delta1(Q, C, P),$ $parse(P, X, Y).$	$\begin{array}{l} acceptor(q0) \leftarrow \\ delta1(q0,0,q0) \leftarrow \\ delta1(q0,1,q1) \leftarrow \\ delta1(q1,0,q1) \leftarrow \\ delta1(q1,1,q0) \leftarrow \end{array}$

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E^+) and negative examples (E^-) , Meta-interpreter and ground facts representing the Parity grammar

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf

Louise Example Grammar Learning

Example (Module)

```
:-module(anbn, [background_knowledge/2
,metarules/2
,positive_example/2
,negative_example/2
,a/2
,b/2
]).
```

Example (Background knowledge)

```
background_knowledge(s/2,[a/2,b/2]).
a([a|T],T).
b([b|T],T).
```

Example (Metarules)

 $\begin{array}{l} metarules(s/2,[chain]). \\ \% \ (Chain) \ \exists.P,Q,R \ \forall.x,y,z: \ P(x,y) \leftarrow \ Q(x,z),R(z,y) \end{array}$

Louise Example Continued

Example (Positive Examples)

```
positive_example(s/2,E):-
 member(E, [%s([a,b],[])
  s([a,a,b,b],[])
  1).
```

Example (Negative Examples)

```
negative_example(s/2,E):-
  member(E, [s([a,a], []))
   ,s([b,b],[])
   ,s([a,a,b],[])
   ,s([a,b,b],[])
  ]).
```

Example (Parameter Tuning)

- auxiliaries:set_configuration_option(clause_limit, [3]).
- auxiliaries:set configuration option(max invented, [1]).
- auxiliaries:set configuration option(reduction, [none]).

Example (Learned Program)

```
'$1'(A,B):-a(A,C),a(C,B).
'$1'(A,B):-a(A,C),s(C,B).
'$1'(A,B):-b(A,C),b(C,B).
'$1'(A,B):-s(A,C),b(C,B).
s(A,B):-'$1'(A,C),'$1'(C,B).
s(A,B):-a(A,C),'$1'(C,B).
s(A,B):-a(A,C),b(C,B).
true.
```

Example (Learned Program)

```
?- auxiliaries:set_configuration_option(unfold_invented, [true]).
?-make.
?- learn(s/2).
s(A,B):-a(A,C),b(C,B).
s(A,B):-a(A,C),s(C,D),b(D,B).
true.
```

ASPAL algorithm

- ASPAL uses Answer Set Programming.
- ASP program can have one, many, or none models (answer sets).
- Computation in ASP is the process of finding models.
- We may specify the range of the number of clauses from a set beeing true. 0{sunny., weekday., happy(A) : -lego_builder(A)}3
- We may specify an evaluation function to optimize (like to minimize the number of 'true' clauses, e.g. the size of the hypothesis.

ASPAL

- Generate all possible rules consistent with the given mode declarations. Assign each rule a unique identifier and add an guessable atom in each rule.
- Use an ASP solver to find a minimal subset of the rules by formulating the problem as an ASP optimization problem.

Example (ASPAL)

 $B = \begin{cases} bird(alice).\\ bird(betty).\\ can(alice, fly).\\ can(betty, swim).\\ ability(fly).\\ ability(swim). \end{cases} M = \begin{cases} modeh(1, penguin(+bird)).\\ modeb(1, bird(+bird)).\\ modeb(*, not can(+bird, #ability)). \end{cases}$ $E^+ = \{penguin(betty).\}$ $E^- = \{penguin(alice).\}$ Given the modes, the possible rules are:

$$penguin(X) : - bird(X).$$

$$penguin(X) : - bird(X), not can(X, swim).$$

$$penguin(X) : - bird(X), not can(X, fly).$$

$$penguin(X) : - bird(X), not can(X, swim), not can(X, fly).$$

ASPAL replaces constants and adds extra literal:

```
ASPAL passes to an ASP solver:
```

```
bird(alice).
bird(betty).
can(alice, fly).
can(betty, swim).
ability(fly).
ability(swim).
penguin(X) : -bird(X), rule(r1).
penguin(X) : -bird(X), not can(X, C1), rule(r2, C1).
penguin(X) : -bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).
0{rule(r1), rule(r2, fly), rule(r2, swim), rule(r3, fly, swim)}4
goal : - penguin(betty), not penguin(alice).
: - not goal.
```

- The answer is: rule(r2, c(fly))
- Which is translated to a program:

penguin(A) : -bird(A), not can(A, fly).

- Bioinformatics
 - ILP can make predictions based on the (sub)structured biological data.
 - Predict mutagenic activity of molecules and alert the causes of chemical cancers
 - learning protein folding signatures.
- Robot scientist.
 - BK knowledge represents the relationship between protein-coding sequences, enzymes, and metbolites in pathway.
 - Automatically generates hypotheses, run experiments, iterprets results.
- Games
 - Sokoban
 - Bridge
 - Checkers.

List of topics

- Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- **O** Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- Idecision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking, MARS,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Sclustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

List of topics

- Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- **O** Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- Idecision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking, MARS,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Sclustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

Table of Contens

- Overview of Supervised Learning
- Kernel Methods, Basis Expansion and regularization
- 3 Linear Methods for Classification
- 4 Model Assessment and Selection
- 5 Additive Models, Trees, and Related Methods
- 6 Ensamble Methods
- 🕜 Bayesian learning, EM algorithm
- 8 Clustering
- 9 Association Rules, Apriori
- Inductive Logic Programming
- 1 Undirected Graphical Models
- 12 Gaussian Processes
- 13 Support Vector Machines
- (PCA Extensions, Independent CA)