Piecewise Polynomials and Splines

- Regression We interpolate/predict a continuous variable
- Example: Bone Mineral Density for adolescent male/female

- Left: Linear regression
- Right: k-nearest neighbour estimate
- We may generalize the linear regression
 - ⇒ splines (piecewise polynomial regression)
- We may generalize the kNN
 - ← kernel methods.

Basis expansion and regularization, Splines

Linear assumes linear function of X.

• Regression: We estimate $f(X) = \mathbb{E}(Y|X)$

Linear basis expansion in X

- ullet we replace the vector of inputs X with additional variables h_m ,
- $h_m(X): \mathbb{R}^p \to \mathbb{R}, m = 1, \ldots, M.$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(X).$$

- 'the only change' is a different matrix of the features X, further fit is the same.
- Usually, we search $f_j(X_j)$ for each dimension by a backfitting algorithm in a generalized additive model (GAM)

$$\mathbb{E}(Y|X_1,\ldots,X_p)=\alpha+f_1(X_1)+\ldots+f_p(X_p)$$

- where f_j's are unspecified smooth functions
- X_j predictors, Y the outcome.
- For now, we consider one-dimensional feature X.

Simple derived features

• We fit the model:

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(X).$$

- $h_m(X) = X_m$, m = 1, ..., M recovers the original linear model.
- $h_m(X) = X_j^2$ or $h_m(X) = X_j X_k$ polynomial terms to achieve higher-order Taylor expansions.

! The number of variables grows exponentially in the degreee of the polynomial.

- $h_m(X) = log(X_i), \sqrt{X_i}, ||X||, \ldots$, other nonlinear transformations.
- $h_m(X) = I(L_m \le X_k < U_m)$, an indicator for a region of X_k .
 - piecewise constant contribution for X_K .
 - With non-overlapping regions used in regression trees.
- $h_m(X) = max((X_i \xi_k)^3, 0)$ piecewise-polynomial spline basis
- wavelet bases.

Piecewise Polynomials and Splines

- A **piecewise polynomial** function f(X) is obtained by
 - ullet division the domain of X into continuous intervals by the knots ξ_1,\dots,ξ_{M-1}
 - and representing f by a separate polynomial in each interval.
 - Examples:
 - Three basis functions: $h_1(X) = I(X < \xi_1), \ h_2(X) = I(\xi_1 \le X < \xi_2), \ h_3(X) = I(\xi_2 \le X).$
 - Additional linear functions: $h_{m+3} = h_m(X) \cdot X, m = 1, ..., 3.$
 - Additional cubic functions: $h_{m+6} = h_m(X) \cdot X^2$, $h_{m+9} = h_m(X) \cdot X^3$, $m = 1, \dots, 3$.

Continuous functions

- We add the continuity restriction: the value in ξ_i is the unique.
- Continuous piecewise linear basis: $h_1(X) = 1$, $h_2(X) = X$, $h_3(X) = (X \xi_1)_+$, $h_4(X) = (X \xi_2)_+$.
- We have spared two parameters for two continuity conditions.

 For the cubic fit, the figure looks ugly, we need continous first and second derivative.

Cubic spline!

• Cubic spline is a piecewise cubic fit with continuous first and second derivatives at the knots ξ_i .

Continuous Second Derivative

- ullet The basis functions with knots ξ_1,ξ_2 are:
 - $h_1(X) = 1,$ $h_2(X) = X,$ $h_3(X) = X^2,$ $h_4(X) = X^3,$

$$h_5(X) = (X - \xi_1)_{\frac{1}{2}}^3$$

$$h_6(X) = (X - \xi_2)^3_+.$$

- Parameter count:
 (3 regions) v(4 pars per region) (2 knots) v(3 constraints per le
 - (3 regions)x(4 pars per region)-(2 knots)x(3 constraints per knot)=6.

Order-M splines

- Cubic spline is an order-4 spline.
- Generally, order-M spline with knots ξ_j , $j=1,\ldots,K$ is a piecewise-polynomial of order (M-1) and has continuous derivatives to order (M-2).
- General truncated basis functions are:
 - $h_i(X) = X^{j-1}, j = 1, ..., M$
 - $h_{M+\ell} = (X \xi_{\ell})_{+}^{M-1}, \ \ell = 1, \ldots, K.$
- Regression splines
 - splines with fixed knots
 - usually at percentiles of the data X.
 - the number of knots is specified by the degree an the degrees of freedom (df M). h_0 does not count.

B-splines

B-splines use other basis describing the same linear feature space.

- $\{h_i\}$ is a basis of a linear space of functions
- we may choose a different base to cover the same space of functions.
- ullet B-splines are more stable numerically, useful for large number of knots K.
- B-splines have quite difficult recursive formula (not needed for the exam).

$$B_{i,1}(x) = \begin{cases} 1 & \text{if } \xi_i \leq x \leq \xi_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$B_{i,k+1}(x) = \omega_{i,k}(x)B_{i,k}(x) + [1 - \omega_{i+1,k}(x)]B_{i+1,k}(x)$$

$$\omega_{i,k}(x) = \begin{cases} \frac{x - \xi_i}{\xi_{i+k} - \xi_i} & \text{if } \xi_{i+k} \neq \xi_i \\ 0 & \text{otherwise.} \end{cases}$$

B-splines of Order 4

Computational complexity

Spline fit time complexity

- (Standard) regression splines
 - N observations, K + M variables (basis functions) take $O(N(K + M)^2 + (K + M)^3)$.
- B-splines
 - sort values of X
 - Cubic B splines have local support, B is lower 4-banded.
 - order (M+1) B splines have local support, B is lower (M+1)-banded.
 - Cholesky decomposition $B = LL^T$ can be computed easily.
 - Solution of \hat{f} is in O(N(M+1)) operations.

B-splines implemented in scipy and statmodels.

Natural Cubic Spline

Polynomial fit tends to be erratic near the boundaries.

- Natural cubic spline! is a spline that the function is linear beyond the boundary knots.
- Basis functions N_i , i = 1, ..., K: $N_1(X) = 1, N_2(X) = X, N_{k+2}(X) = d_k(X) - d_{K-1}(X)$ for $d_k(X) = \frac{(X - \xi_k)_+^3 - (X - \xi_K)_+^3}{\xi_K - \xi_k}$.

Smoothing Splines

- Smoothing Spline! uses the maximal number of knots: N, the number of examples.
- But, we need a penalty for model complexity.

$$RSS(f,\lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- λ is smoothing parameter
 - $\lambda = 0$: can be any function that interpolates the data.
 - $\lambda = \infty$: the simple least squares line fit, no nonzero second derivative is tolerated.
- Has a unique finite-dimensional minimizer, a natural cubic spline with knots at the unique values of the x_i , i = 1, ..., N.
- The solution is a **natural cubic spline**: $f(x) = \sum_{j=1}^{N} N_j(x)\theta_j$.
- The criterion reduces for:

$$RSS(\theta, \lambda) = (\mathbf{y} - \mathbf{N}\theta)^{T}(\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^{T}\Omega_{N}\theta$$

• where $\{\mathbf{N}\}_{ij} = N_i(x_i)$ and $\{\Omega\}_{jk} = \int N_i''(t)N_k''(t)dt$.

let $a=x_1=0,\,b=x_{101}=1,$ and knots $\xi_l=x_{l+1}$ for $l=1,\ldots,K$ and K=99. Also, the basis functions for a cubic spline M=4 are

$$h_j(x) = x^{j-1}$$
 $j = 1, ..., M,$
 $h_{M+l}(x) = (x - \xi_l)_+^{M-1}$ $l = 1, ..., K.$

Then, $\boldsymbol{H}=(h_j(x_i))_{N,M+K}$ where $h_j(x_i)$ is for the i-th row and the j-th column. Let $\boldsymbol{\Omega}=(\omega_{i,j})_{M+K,M+K}$ be a symmetric matrix and the upper triangular $\omega_{i,j}=\int_a^b h_i''(t)h_j''(t)dt$ is

$$\begin{array}{lll} \omega_{i,j} & = & 0 & \text{for } i < M, \\ \omega_{M,j} & = & \frac{1}{3}b^3 - \frac{1}{2}b^2\xi_j + \frac{1}{6}\xi_j^3 & \text{for } j > M, \text{ and} \\ \omega_{i,j} & = & \frac{1}{3}(b^3 - \xi_0^3) - \frac{1}{2}(b^2 - \xi_0^2)(\xi_{i-M} + \xi_{j-M}) + (b - \xi_0)\xi_{i-M}\xi_{j-M} & \text{for } j \geq i > M, \end{array}$$

where $\xi_0 = \max\{\xi_{i-M}, \xi_{j-M}\}.$

https://vardeman.public.iastate.edu/stat602/602x_hw4_sol.pdf

Smoothing Splines solution

Smoothing spline solution is a generalized ridge regression

$$\hat{\theta} = (\mathbf{N}^T \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^T \mathbf{y}$$

• The fitted smoothing spline is given by:

$$\hat{f}(x) = \sum_{j=1}^{N} N_j(x)\hat{\theta}_j$$

Example

- Bone mineral density (BMD) in adolescents.
- Response: the change in BMD over two consecutive visits, typically about one year apart.
- coded by gender, females precedes growth spurt about two years.
- $\lambda \approx 0.00022$, $df_{\lambda} = 12$.

Degrees of Freedom and Smoother Matrices

Smoothing spline is a linear smoother:

$$\hat{f} = \mathbf{N}(\mathbf{N}^T \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^T \mathbf{y}$$

= $\mathbf{S}_{\lambda} \mathbf{y}$

- \mathbf{S}_{λ} is known as smoother matrix.
- $df_{\lambda} = trace(\mathbf{S}_{\lambda})$
 - the sum of the diagonal elements
 - $\lambda \approx 0.00022$ derived numerically by solving $trace(\mathbf{S}_{\lambda}) = 12$.

from scipy.interpolate import make_smoothing_spline

Smoother Matrix

- rows \mathbf{S}_{λ} ordered with x
- right: selected rows
- $\lambda \to 0$ means $df_{\lambda} \to N$ and $\mathbf{S}_{\lambda} \to \mathbf{I}$
- $\lambda \to \infty$ means $df_{\lambda} \to 2$ and $\mathbf{S}_{\lambda} \to \mathbf{H}$, the hat matrix for linear regression on \mathbf{x} .
- $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ since $(\hat{y} = Hy)$

Equivalent Kernels

Pollution data example

Example

- 128 observations of pressure and ozone.
- Two fitted smoothing splines.
- third to sixth eigenvectors of the spline smoother matrices u_k against x.
- eigendecomposition of *S*: eigenvaules d_k (right)

$$\mathbf{S}_{\lambda} = \sum_{k=1}^{N} \rho_k(\lambda) u_k u_k^T$$

- $\rho_k(\lambda) = \frac{1}{1+\lambda d_k}$.
- Right: 3rd-6th eigenvectors as a function of x and smoothed df = 5 in red

Selection degrees of freedom

- The degrees of freedom df (or the complexity penalty λ) are usually selected to minimize the expected prediction error.
- More specifically, the crossvalidation estimate of the error.

Example

•
$$f(X) = \frac{\sin(12(X+0.2))}{X+0.2}$$

•
$$Y = f(X) + \epsilon$$

- $X \sim U[0,1]$, $\epsilon \sim N(0,1)$, N = 100.
- df selected by crossvalidation is 9.

Multidimensional Splines

- \bullet $X \in \mathbb{R}^2$
- $h_{1k}(X_1)$, $k = 1, ..., M_1$ in the first coordinate
- $h_{2k}(X_2)$, $k = 1, ..., M_2$ in the second coordinate.
- $M_1 \times M_2$ dimensional tensor product basis is defined by

$$g_{jk}(X) = h_{1j}(X_1)h_{2k}(X_2)$$

 can be used for representing a two-dimensional function:

$$g(X) = \sum_{j=1}^{M_1} \sum_{k=1}^{M_2} \theta_{jk} g_{jk}(X)$$

 coefficients can be fitted by least squares.

Multidimensional smoothing splines

- Let us place the knot into each example
- and add a complexity penalty *J* (below).
- It can be generalized for an arbitrary dimension.
- The solution has the form:

•
$$f(x) = \beta_0 + \beta^T x + \sum_{i=1}^N \alpha_i h_i(x)$$

- where $h_j(x) = \eta(||x x_j||)$ and $\eta(z) = z^2 2 \log z^2$.
- complexity $O(N^3)$
- or $O(NK^2 + K^3)$ with K knots.

$$J[f] = \int \int_{\mathbb{R}^2} \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right) + \left(\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \right) + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right) \right] dx_1 dx_2$$

implemented in R and OpenCV

Summary

We learned about

- \bullet regression splines (one dimensional X) these formulas you should know
- B-splines for faster fit no formulas necessary
- natural splines linear on the borders
- smoothing splines complexity penalty for the second derivative
 - the solution is a natural spline.
- Generalizations to more dimensions
 - thin plate splines
 - multidimensional smoothing splines.

Kernel Methods

- estimate regression function $f(x) \in \mathbb{R}$
- a different but simple model separately at each query point x_0 .
- The resulting $\hat{f}(X)$ is smooth in \mathbb{R}^p .
- Localization is achieved via a weighting function er kernel $k_{\lambda}(x_0,x_i)$
 - assigns a weight to x_i based on its distance form x_0 .
- \bullet λ is a parameter that dictates the width of the neighbourhood.
- memory based methods
 - little or no training
 - the model is the entire training data set

Kernel Smoothing Methods

• k-Nearest Neighbour kernel

- N_k(x) is the set of k points nearest to x in squared distance
- all have equal weight
- $\hat{f}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$
- $\hat{f}(x)$ is bumpy, discontinuous.
- Nadaraya-Watson kernel-weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^N k_\lambda(x_0, x_i) y_i}{\sum_{i=1}^N k_\lambda(x_0, x_i)} \text{ sure }$$

 with the Epanechnikov quadratic kernel

$$k_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{\lambda}\right)$$

with

$$D(t) = \begin{cases} \frac{3}{4}(1-t^2) & \text{if } |t| \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

Example!

- Red circles: data
- Blue: Epanechnikov kernel for (-1.0)
- Predicted values: green dashed line
- predicted value $\hat{f}(-1.0) = 1.55$.

$$\frac{\left(0.63*2.18+0.56*1.38+0.48*1.26+0.38*1.15+0*others\right)}{\left(0.63+0.56+0.48+0.38\right)}=1.55$$

Kernels - variable width, shapes

- The width λ may vary $h_{\lambda}(x_0)$ with x_0
- mo general formula for he kernel

$$k_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{h_{\lambda}(x_0)}\right)$$

- for k-NN, $k_k(x_0, x) = \delta_{x \in Neighbours_k(x)}$
- where $x_{|k|}$ is the kth closest x_i to x_0 .

Tri-cube kernel

$$D(t) = egin{cases} (1-|t|^3)^3 & ext{if } |t| \leq 1 \ 0 & ext{otherwise}. \end{cases}$$

Gaussian kernel

$$D(t) = \frac{1}{\lambda} e^{-\frac{\|x - x_0\|^2}{2\lambda}}$$

Epanechnikov

$$D(t) = egin{cases} rac{3}{4}(1-t^2) & ext{if } |t| \leq 1 \ 0 & ext{otherwise}. \end{cases}$$

Local Linear Regression

- Locally-weighted averages can be badly biased on the boundaries of the domain
- ullet or whenever X are not equally spaced.
- Fitting straight lines may help (a bit).
- Locally weighted regression

$$\mathit{min}_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} k_{\lambda}(x_0,x_i) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

• For $x^T \to (1,x)$, **X** is $N \times (p+1)$ matrix, **W** $N \times N$ diagonal matrix $k_{\lambda}(x_0,x_i)$. Then

$$\hat{f}(x_0) = x_0^T (X^T W(x_0) X)^{-1} X^T) W(x_0) y$$

• what is linear function of y.

Local Polynomial Regression

- Local linear fits can help bias dramatically at the boundaries.
- local quadratic fits tend to be most helpful in reducing bias due to curvature in the interior of the domain.
- Recommended to select the degree by the application, not to combine linear boundaries and quadratic interior.

1 - 29

Selecting the Width of the Kernel

- crossvalidation
- $\hat{f} = S_{\lambda} y$ • $df = trace(S_{\lambda})$
- Right: comparison of the tri-cube local linear regression kernels (orange) and smoothing splines (blue) with matching degrees of freedom 5.86.

(Structured Local Regression in \mathbb{R}^p)

$$k_{\lambda}(x_0,x) = D\left(\frac{\|x-x_0\|}{h_{\lambda}(x_0)}\right)$$

 Structured local regression: a positive semidefinite matrix A to weigh the different coordinates:

$$k_{\lambda}(x_0, x) = D\left(\frac{(x-x_0)^T A(x-x_0)}{h_{\lambda}(x_0)}\right)$$

1 - 29

Computational Consideration

Kernel smoothing complexity

- Model is the entire training data set.
- The fitting is done at evaluation or prediction.
- Single observation x_0 fit is O(N),
- \bullet expansion in M basis functions O(M) for one evaluation, typically $M \sim O(log N)$.
- Basis function method have an initial cost at least $O(NM^2 + M^3)$.
- Smoothing parameter λ usually determined off-line by cross-validation, at cost of $O(N^2)$.
- Popular implementations of local regression loess is S-PLUS compute the fit exactly at M locations O(NM) and interpolate to fit elsewhere (O(M)) per evaluation).

Machine Learning

List of topics

- Linear, ridge, lasso regression, k-neares neighbours, (formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- Oscillation Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- decision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking, MARS
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Olustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

List of topics

- Linear, ridge, lasso regression, k-neares neighbours, (formulas) overfitting, curse of dimensionality, (LARS)
- Splines the base, natural splines, smoothing splines; kernel smoothing: kernel average, Epanechnikov kernel.
- Oscillation Logistic regression, Linear discriminant analysis, generalized additive models
- Train/test error and data split, square error, 0-1, crossentropy, AIC, BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
- decision trees, information gain/entropy/gini, CART prunning,(formulas)
- random forest (+bagging), OOB error, Variable importance, boosting (Adaboost(formulas) and gradient boosting), stacking,
- Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal prediction, EM algorithm
- Olustering: k-means, Silhouette, k-medoids, hierarchical
- Apriori algorithm, Association rules, support, confidence, lift
- Inductive logic programming basic: hypothesis space search, background knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
- Undirected graphical models, Graphical Lasso procedure, deviance, MRF
- Gaussian processes: estimation of the function and its variance (figures, ideas).

Machine Learning Summary 15 31 - 32 February 28, 2025

29 / 29

Table of Contens

- Overview of Supervised Learning
- Kernel Methods, Basis Expansion and regularization
- 3 Linear Methods for Classification
- Model Assessment and Selection
- 5 Additive Models, Trees, and Related Methods
- 6 Ensamble Methods
- Bayesian learning, EM algorithm
- 8 Clustering
- Association Rules, Apriori
- Inductive Logic Programming
- 11 Undirected Graphical Models
- Gaussian Processes
- (Deep Bayesian Learning)
- (PCA Extensions, Independent CA)

Machine Learning Summary 15 31 - 32 February 28, 2025 29 / 29