Decision Trees, and Related Methods

gam Generalized Additive Models (advanced)
CART! Classification and regression trees
I cost sensitive pruning (a's)
PRIM Patient Rule Induction Method (a note)
MARS Multivariate Additive Regression Splines (advanced)
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Additive Models, Trees, and Related Methods

o Generalized additive models (GAMs) are automatic flexible statistical
methods that may be used to identify and characterize nonlinear regression
effects.

@ GAM has the form

E(Y[X1,. .o Xp) = a+ A(X0) + .o+ fo( Xp)

o where f;'s are unspecified smooth functions
e X; predictors, Y the outcome.
@ We use a cubic smoothing spline, local polynomial regression or a kernel
smoother

@ we simultaneously estimate all p functions.
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GAM for non Gaussian distributions

@ Denote p(X) = P(Y = 1|X) in a two class classification with 0-1 encoding
and recall the logistic regression

X
log (%) =a+ Xt ...+ BoX,
o Additive logistic regression model replaces the linear terms by the
smoothers
log ( HX) ) —a+AX)+. ..+ FH(X),
w(X)
@ The conditional mean p(X) of a response Y is related to an additive function
of the predictors via a link function g

glu(X)] = a+ A(X1) + ...+ H(Xp).

@ Examples of classical link functions are the following
o g(u) = p the identity link, used for linear and additive models for Gaussian
response data.
o g(u) = logit(u) as above
o g(u) = probit(u) probit link function for modeling binomial probabilities is the
inverse of Gaussian cumulative distribution function probit(y) = ®~* (1)
o g(u) = log(u) for log-linear or log-additive models for Poisson count data.
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Models with Feature Interactions

The categorical variables are usually treated like identifiers (0-1 or -1,1)
in the logistic regression, it leads to a 'constant’ §3; fitted for the variable

the slope B_; of others does not depend on the identifier

We can extend to a semiparametric model, that keeps the effect of the kth
predictor and the effect of the predictor Z additive

g(u) = X" + aw + f(2).
@ To allow different slopes/shapes of Z based on qualitative variable V we
need an interaction term of two features

g(n) = f(X) + &x(2)
o Generally, we may add a function gzw(Z, W) of two or more features
g(n) = f(X) + gzw(Z, W).
o Note: logit, probit, log, gamma and negative-binomial distributions belong
the an exponential family, therefore have some nice properties (fit together).
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Fitting Additive Model

The backfitting algorithm for additive models

1: procedure GENERALIZED ADDITIVE MODEL FITTING:(X, y)
2. a=x3Vy, f = 0initialize Vi, .
3: repeat for j=1,2...,p,..., 1,2 ...

4: e i [ = & = T ) 1],
N n Mg
= fj = 15 = 2ima (xy)-
6: until the functions f; change less than a prespecified threshold.

7: end procedure

@ §; denotes the smoother, for example the smoothing spline with predefined
degrees of freedom.

A~

@ All f; should have zero mean, the constant is fitted by .

@ Re-normalization is recommended because of rounding errors.
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Generalized Additive Logistic Regression x

1: procedure ADDITIVE LOGISTIC REGRESSION:(X, y in 0-1 encoding)
2 y=1% levy,-,& = Iog(ﬁ), f; = 0 initialize Vj.
A A 0 o 1
3: n’:a+ZJ6(XU) and p,’zm
4: repeat
5 Construct the working target variable

. yi — pi
Zp =1+ -
T pi(1-B)
6: Construct the weight w; = p;(1 — p;).
7% Fit an additive model to the targets z; with weights w;, using a
weighted backfitting algorithm. This gives new estimates 7);, f; Vj
8: until the functions change less than a prespecified threshold.

9: end procedure
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Spam Example

o Email classification as email/spam. . g
— e 2. g
5 g 2 g
@ word frequency as X features. 2- 5 - g, B
“ = (= iy
o Important features: e R e e R
our over remove internet
TABLE 9.2. Significant predictors from the additive model fit to the spam train- - 7 -
ing data. The coefficients represent the linear part of f;, along with their standard = g - -
errors and Z-score. The nonlinear P-value is for a test of nonlinearity of f;. 8- - = 2.
R 2 = 5
Name Num. df Coefficient Std. Error _ Z Score Nonlinear . < - = =
P-value
Positive effects . "
our 5 |39 0.114 4.970 0.052 * 7 free ° ‘business hp © hpl
over 6 |39 0.105 1249 | 0.004
remove 7 4.0 0.183 5.201 0.093 I B ©
internet 8 |40 0.176 2074 | 0028 ¥ 2 I~ e
free 16 |39 0.127 4.010 0.065 & o - £ S -
business || 17 | 38 0.186 4179 | 0104 &= = = . =
hpl 26 38 0.250 0.181 0.002 N
cnt 52 | 40 0.128 5283 | 0164 s f
ch$ 53 |39 0.280 5062 | 0.354 “george ° 7 ge9" corm e Co e
CAPMAX 5 | 3.8 0.228 1080 | 0.000 s
CAPTOT 57 | 40 0.165 4566 0.063 N < - e
Negative cfjects - o~ = 1=
- . = I
hp 25 |39 —1.404 0.224 0.140 g Gl 3 =
o~ [— O o =
george 27 |37 0.045 = =. = =
1999 37 3.8 0.011 . o
re 15 |39 0.507 .
edu 46 1.0 —1.183 0.209 0.000 oo c!:! - o c‘hé v o CA‘E"IA}‘(WJ ° ”"CA‘““I;EFd.i‘.‘“
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Decision Trees

Decision tree for a given goal at-
tribute G is a rooted tree with

@ a root and inner nodes labeled
by attributes; for each possible
value of the attribute there is an
outgoing edge from the node;

@ leaves are labeled with predicted
goal class g € G assuming other
attributes have values as labeled
on the path from the root.

Attributes not present on the path from the root to the leaf

are irrelevant.
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Construction

Tree construction idea:

° ; create a node and according the value of
the attribute

° based on the appropriate part of
the data

@ stop if there is a unique value of the goal G in the data or no attributes to
split,

The criterion to select an attribute follows.
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Entropy

The entropy of an attribute A ('uncertainty’, negative information) we would like:
@ to be zero for the pure data (only one value of the attribute A)

o the highest entropy for uniform distribution on values of A (no information at
all)

@ two step split leads to the same result as split at once:

H([2,3,4]) = H(12,7]) + & - H([3,4)

Definition

Entropy These properties has the entropy H([p1,...,pk]) = — ZLI pi log pi, the
base of the logarithm usually e, sometimes 2.

k
If we do not normalize we get the entropy multiplied by E g Ik
=

The lower index A denotes the attribute to calculate the entropy Hy, for the goal
attribute Hg.
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The Entropy for a binary attribute

X axis: pj, y axis: entropy.
Gini =1 - Y,(pi)?

FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2. Cross-entropy has been scaled to pass through

(0.5,0.5).
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ID3 algorithm

We select an attribute with the maximal information gain, defined for the data
and an attribute Xj:

. |datax.—,|
Gain(data, X;) = Hg(data) — —_—
J ij@:g |datal

He(datax,—;)

where datax,—,; is a subset of data where X; = x;, the entropy is defined

|G|

|datag=,| |datag—g|
Hg(data) = —— i ;
c(data) gzé;; datal B gl Z —p; - logap;

where p; denotes the ratio of G = g; in the data.

It is equivalent to minimize the weighted entropy after the split, that is

|datax,—| |datag—ge.x;—x;| |datag—ge x,=x|
ar, m n = ny/ =3
gm Z |data| Z |datax;—| e |datax,—|

x;€Xj
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Entropy or 0-1 Error

It is equivalent to minimize the weighted entropy after the split, that is

arg min Z |datax,— | Z B |datag—ge.x;—x;| Jog |datag—ge.x;—x|
X; ek |datal = |datax,—x| |datax,— |

@ The attributes are A and B.
@ Both splits have the same 0-1 error =200.
@ Entropy and Gini criterion prefers the 'pure’ leaf in the split B.

Y == Y == leaf entropy | weighted entropy || 0-1 error
A-left 300 100 0.81 0.5 *0.81 100
A-right 100 300 0.81 0.5 *0.81 100
A-split 0.81 200
B-left 400 0 0 05*0 0
B-right 200 200 1 05%*1 200
B-split 0.5 200
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1: procedure ID3 ALGORITHM:(data, G goal, Attributes attributes)
2: Create the root root

3 if all data have the same g then

4: label the root g and return g

5: end if

6 if no attributes Attributes then

7 label the root by the most frequent g in the data and return g
8
9

end if

: X; < the attribute from Attributes with the maximal Gain(data, X;)
10: label root as X;
11: for each possible value x; of X; do
12: add an edge from root labeled X; = x;
13: datax,—, < the subset of the data with X; = x;
14: if datax,—, is empty then
15: add a leaf labeled by the most common class g in data
16: else add a subtree /ID3(datax,—.;, G, Attributes \ {X;})
17: end if
18: end for
19: return root

20: end procedure
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Categorical Attribute Notes

@ CART in the sklearn DecisionTreeClassifier does not support categorical
attributes

e uses just binary splits.

@ It is requires exponential complexity with respect to the number of categories
to find optimal binary split.
e The recommended heuristic is to sort categories according to the goal class
probabilities and search the split in a linear time.

@ We should avoid the split into too many branches.
o ID3 used penalization Gain™(X;, data) = %
e so for the identifier with unique values Gain™(X;, data) = %

e min_samples_split, min_samples_leaf, min_weight_fraction_leaf can do it
too.
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Prunning Introduction

To avoid overfitting we try to remove unnecessary nodes
@ postprunning — build a tree, prune afterwards;
o usuall way

@ preprunning — prune during the construction
e This seems nice but we could prune two attributes combined by XOR since

both has information gain (close to) zero.

Postprunning

@ subtree replacement — select a tree and replace it by a leaf;
@ it increases the training error
e it may decrease the error on validation data
o step by step, we try to prune each subtree: we prune if we do not increase

validation error.
@ subtree raising — remove an inner node. Used in C4.5. The data samples
must be re-send to the remaining branch, it is time consuming.

e Usually checked only for the most frequent branch in the tree.
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Minimal cost-complexity pruning

Reduced Error Pruning PN eave 0.0

@ reduced error pruning —
we keep part of the data for
validation (pruning).

george<().

9 georg:
n em
o710 Ifm:

@ for each inner node compare ,<0,005  CAPAVEK2.7505

o validation error with this
0.08 f .
node as a leaf hp>0.03 T o2 0.065
o validation error with the Gt [ Gy
(pruned) subtree of this e d T4

CAPMAXN0.5  bushiess<0.145
node PMAX>1 5uslne§s>0 145

5713 5

(.125 edu<0.045
receive>0.12 edu>0 045

* m 2 @il ‘
@ there exist also a criterion based on ™= 7= jEm o

@ select whatever gives the _
lower error. recefve<

<1.%
the training data NS Gdr>1.2
e Minimal cost-complexity [t [spain

pruning CART - few slides later.
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Numerical attributes

64 |65 | 68 | 69 | 70 | 71 72 75 80 | 81 | 83 | 85
yes | no | yes | yes | yes | no | no,yes | yes,yes | no | yes | yes | no

@ we require a binary split
@ 11 split points
o for each split we calculate the information gain

H(19,5) — H([4,2][5,3]) = H([9,5]) — (13 - H([4,2]) + 1 - H([5.3])

= 0.940 — 0.939 bits.
@ We allow multiple splits based on this attribute.
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Regression trees - numerical prediction

@ Model tree has linear fit in the
leaves
e not so popular as regression
trees; increases complexity and
discontunuity

e CART

o use the decrease of the square
error loss to select an attribute

e binary splits

o predict the average value in the
leaves.

Ry

Xo
X2

Ry

R’

X1 X1

partition in the top right pan ective plot
of the prediction surface appears in the bottom right
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CART (Classification and) Regression Trees

@ Regions t,, (=leaves), we predict a constant ¢, inside any region.
M
F(x) = cml(x € tm)
m=1
R 1
= S

M xi€tm

Single Regression Tree for CART

@ Start with all data in one region t

@ Select the best attribute j and its value s for the split:

min[minc, Z (yi — a)® + mine, Z (i — @)’

155 . .
x;i€t1(j,s) xi€tr(j,s)

o Inner minimum is the average & = ave(yi| x; € t1).

o iterate until stop (number of samples in the leaf < ng).
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One Tree Minimal Cost-Complexity Pruning

@ The error for any node t taken as a leaf t is
) 2
R(t) = ;- — il
XjEt Xi€t

@ Cost of the tree with « penalty for the number of leaves

Ru(T) = Y. R(t)+alTl.

t€leaves(T)

@ For each single node t € T as a leaf the cost complexity is
Ra(t) = R(t) + «

@ For some ., this costs is the same as the cost R(T;) of the subtree rooted
at t,
R(t) — R(T:)

eff(t) =
Qerr() T -1

@ A non-terminal node with the smallest value of a.fg is the weakest link and
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Minimal cost-complexity pruning

@ Split the data into K folds
@ For each fold k:
o use all except fold k to train the tree T
o Build a sequence of subtrees T* > T{ > T¥... D> T‘kﬂ
@ always join two leaves with the minimal increase in the training error
o use fold k do calculate the crossvalidation error of each tree
o consider the error function R.(T*) as a function of a
o Select o« argming >°, Ra(TH)
@ Build a tree on the full training data

@ Return the subree corresponding to the optimal «.
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Missing values,Class and Samples Weights

Trees can handle missing data well.

Often we cannot omit missing data since many samples have missing values.
o Furthermore, missing values in unused attributes are irrelevant.

@ If the value is not missing at random then take the missingness as another

value of the attribute

e example: very small and very high wages are more ofter missing

If the data are missing at random
o split the instance
e according the data ratio following each branch
o weight and average the predictions on leaves.

Similarly, we use weighted information gain to select the attribute.

o by setting setting class_weight
o fit(X, y, sample_weight=None).
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Complexity considerations

CART

@ Let us have N instances with p attributes.
@ Assume a reasonably balanced tree with the tree depth O(logh).

@ To build the tree we need O(p - N? - logNV) time.

o At each depth, each instance occurs exactly ones, logl depth levels, p
attributes on each level, the time O(p - N - log N).

@ Subtree replacement O(N), Subtree raising O(N(logN)?).
o Naive tree construction comlpexity is O(p - N2 - logN) + O(N(logN)?).
o With sorted features and clever indexing

o Overall tree construction comlpexity is O(p - N - log) + O(N(logN)?).
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Decision Trees, and Related Methods

gam Generalized Additive Models (advanced)
CART! Classification and regression trees
I cost sensitive pruning (a's)
PRIM Patient Rule Induction Method (a note)
MARS Multivariate Additive Regression Splines (advanced)
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Decision Rules from Decision Trees

@ We can represent a tree as a set of rules
e one rule for each leaf.
@ These rules may be improved by testing each attribute in each rule

o Has the rule without this test a better precision than with the test?
o Use validation data
e May be time consuming.

@ These rules are sorted by (decreasing) precision.
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Patient Rule Induction Method PRIM = Bump Hunting

@ Rule induction method

@ We iteratively search regions with
the high Y values

e for each region, a rule is created.

@ CART runs of data after
aproximately log,(N) — 1 cuts.

log(N) V

@ PRIM can affort — og(1—a) FIGURE 9.7. lllustration of PRIM algorithm. There
F N _ 12 d I d are two classes, indicated by the blue (class 0) and red
or — 8 ata Samp €S an (class 1) points. The procedure starts with a rectangle
_ F . (broken black lines) surrounding all of the data, and
o = 0' 1 It IS 6 and 46 respeCtlver then peels away points along one edge by a prespecified
H amount in order to maximize the mean of the points
29’ since the n umber Of remaining in the box. Starting at the top left panel, the
ObSerVatiOnS must be a Whole sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number

number. is indicated at the top of each panel.
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PRIM Patient Rule induction Algorithm

Consider the whole space and all data. Set o = 0.05 or 0.10.

Find X; and its upper or lower boundary such that the cut of .- 100%
observations leads to the maximal mean of the remaining data.

Repeat until less then 10 observations left.

@ Enlarge the region in any direction that increases the mean value.

Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.

Denote the best region B;.

Create a rule that describes B;.

Remove all data in B; from the dataset.

Repeat 2-5, create B, continue until final condition met.
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CART Weaknesses

@ the high variance
o the tree may be very different for very similar datasets
e ensemble learning addresses this issue
@ the cuts are perpendicular to the axis
@ the result is not smooth but stepwise.
e MARS (Multivariate Adaptive Regression Splines) addresses this issue.
o it is difficult to capture an additive structure

Y = C1/(X1 < tl) + C2/(X2 < t2) + ...+ Ck/(Xk < tk) +e€

o MARS (Multivariate Adaptive Regression Splines) addresses this issue.

o
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART

for each feature and each data point we create a reflected pair of basis
functions

(x — t)+ and (t — x)4 where + denotes non—negative part, minimum is zero.

we have the set of functions

C= {()<J - t)+, (t - )<j)+}f€{><1,j7X2,j,-»-,XN,j},j:172,-»-~,P

@ that is 2Np functions for non—duplicated data points.

(t—=z)+ (x—t)¢

Basis Function

00 01 02 03 04 05
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MARS - continuation
@ our model is in the form
M
f(X) = ﬂO + Z ﬂmhm(X)
m=1

where hp,(X) is a function from C or a product of any amount of functions
from C

o for a fixed set of h,,'s we calculate coefficients 3, by usual linear regression
(minimizing RSS)

@ the set of functions h,, is selected iteratively.
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MARS - basis selections

o We start with hy = 1, we put this ’// . \ /////\
function into the model M = {ho}. \ -

@ We consider the product of any member \ )
he € M with any pair from C, I

Bur1he(X)-(Xi—t) s+ +Bm2he(X)-(t=X) 4 / " X\ // //}\

we select the one minimizing training
error RSS (for any product candidate, we

estimate /3). P IN
@ Repeat until predefined number of 4//"" = wEsdnd sl w )
functions in M \ """"" / \/J///
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MARS — model pruning

@ The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f, for
different numbers of parameters \.

o (we want to speed—up cross-validation for computational reasons)
o we select A (and the model) minimizing generalized cross-validation

_ XL = AP
VN =T Moy

@ where M() is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K, the authors suggest to multiply
K by 3: M(\) =r + 3K.
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MARS is a generalization of CART

@ We select piecewise constant functions /(x —t > 0) and /(x — t < 0)

o If h,, uses multiplication we remove this function from the candidate list. It
cannot be used any more.

e This guarantees binary split.

o Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART

for each feature and each data point we create a reflected pair of basis
functions

(x — t)+ and (t — x)4 where + denotes non—negative part, minimum is zero.

we have the set of functions

C= {()<J - t)+, (t - )<j)+}f€{><1,j7X2,j,-»-,XN,j},j:172,-»-~,P

@ that is 2Np functions for non—duplicated data points.

(t—=z)+ (x—t)¢

Basis Function

00 01 02 03 04 05
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MARS - continuation
@ our model is in the form
M
f(X) = ﬂO + Z ﬂmhm(X)
m=1

where hp,(X) is a function from C or a product of any amount of functions
from C

o for a fixed set of h,,'s we calculate coefficients 3, by usual linear regression
(minimizing RSS)

@ the set of functions h,, is selected iteratively.
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MARS - basis selections

o We start with hy = 1, we put this ’// . \ /////\
function into the model M = {ho}. \ -

@ We consider the product of any member \ )
he € M with any pair from C, I

Bur1he(X)-(Xi—t) s+ +Bm2he(X)-(t=X) 4 / " X\ // //}\

we select the one minimizing training
error RSS (for any product candidate, we

estimate /3). P IN
@ Repeat until predefined number of 4//"" = wEsdnd sl w )
functions in M \ """"" / \/J///
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MARS — model pruning

@ The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f, for
different numbers of parameters \.

o (we want to speed—up crossv-alidation for computational reasons)
o we select A (and the model) minimizing generalized cross-validation

_ XL = AP
VN =T Moy

@ where M() is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K, the authors suggest to multiply
K by 3: M(\) =r + 3K.
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Ensemble Methods

Random forest (+ Bagging)

Boosting
o Adaboost - classification

o Gradient boosting - regression and classification

Stacking
MARS (=earth).

Repttattighs

Bagpibger

Machine Learning Ensamble Methods 6
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Bootstrap

@ Select elements with replacement. Bosial

Fiths

@ We have N data samples, we select with
replacement N samples — some are selected
more than one, some are not selected at all.
The not selected are used for testing.

@ The probability of not-selecting a sample is
(1-2)"~ et =0.368

FIGURE 7.12. Schematic of the bootstrap process.

We wish to assess the statistical accuracy of a quan-

@ Selected samples used to learn a model tity S$(Z) computed from our dataset. B training scts
” Zt b =1,..., B each of size N are drawn with re-

(Usua y a tree)- placement from the original dataset. The quantity of

interest S(Z) is computed from each bootstrap training

@ These are used for the OutOfBag error set, and the values S(Z™"), ..., S(Z*") are used to as-
computation.

sess the statistical accuracy of S(Z).
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Random Forest for Regression or Classification

1. procedure RANDOM FOREST:( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4: Grow a random forest tree T

5: repeat

6 Select m variables at random from p variables.
7 Pick the best variable/split—point among the m
8 Split the node into two daughter nodes.

9 until the minimum node size n,,;, is reached.

10: end for

11:  Output the ensamble of trees { T, } 5.

12: end procedure

To make a prediction at a new point x:
o Regression: F8(x) = 37, Tp(x).
o Classification: Let Eb(x) be the class prediction of the bth random—forest
tree.
e Predict EE(X) = majority vote {a,(x)}?.
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Bagging (Bootstrap aggregating)

@ It is a Random Forest, where we use all predictors, that is m = p.

@ both regression and classification.

@ Training data Z = {(x1, y1), (x2, ¥2), - .-, (xn, yn)}
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Bagging for Classification

@ Training data Z =
{(xa,81): (%2, 82), - (xv, gn) }
o for each bootstrap sample,
b=1,2,...,B, we fit our model,

A 2 Consensus
giving prediction £*°(x). . J-z - @
@ Take either o |
i . 3 &) Bagged Trees
e predict probabilities of classes B, | e v
and find the class with the Ec
highest predicted probability over <
the bootstrap samples g
Q . Bwes .
B s L T T T T
~ ’\*b 0 50 100 150 200
G(x) = argmaxi § £77(x)
b=1
o predict class and
Gag(x) = majority vote { G*?(x)}5
bag - 1/ y b=1-
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Behind Random Forest

The variance of the random forest estimate Var(f2(x)) = E(f(x) — Ef(x))? is

@ iid data variables, independent features, each with variance ¢2:
1

4] EU
o id identically distributed data, each with variance o2 with positive pairwise
correlation p:
° pO' + 1— p 2
@ The second part is addressed by bagging.
@ The idea behind random random forest is to address the first part of the
formula.
o Before each split, select m < p variables as candidates for splitting.
o m < ,/p for regression, even as low as 1. £ for classification.
@ Bagging does not change linear estimates, such as the sample mean

e The pairwise correlation between bootstrapped means is about 50%.
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OOB Error

Definition (Out of bag error (OOB)) @ An OOB error estimate is almost
identical to that obtained by N-fold
crossvalidation.

For each observation z; = (x;, y;),
construct is random forest predictor by

averaging only those trees @ Unlike many other nonlinear
corresponding to bootstrap samples in e.stllmators, random forests can be
which z; did not appear. fit in one sequence.

0.075
I

OB Error
N Test Error

Misclassification Error
0.065
I

0.055
I

0.045
I

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees

Machine Learning Ensamble Methods 6 39 - 60 March 21, 2025 45 / 60



Variable Importance (Gini, RSS)

Gini

table l

e Variable Importance of a predictor Xy in a single
tree T is

B(T) =iy 2 1(v(t) = 0)
e For each mternal node t of the tree, we calculate
the Gini or RSS gain
o where 77 is the Gini/RSS improvement of the
predictor in the inner node t. ‘
o Gini Pi(t)(1 — p(t)) before and after the split o —
o for K goal classes, a separate tree for each class em=
against others .me,:!l=
o weighted by the probability of reaching the node e
t.

@ For a set of trees, we average over M all trees
2 __ 1 M 2
I7 = 3 2221 17 (Tm).

@ Usually scaled to the interval (0,100).

Variable Importance
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OOB Variable Importance

OOB Variable Importance

1: procedure OOBN VARIMPORTANCE:(data)
2 for b=1,2,...,Bdo
3 Draw a bootstrap sample Z* of size N
4: Grow a random forest tree Tp Alternative Variable
5 Calculate accuracy on OOB samples Importance
6 for j=1,2,...,pdo
7: permute the values for the jth vari- "t e e
able randomly in the OOB samples
8: Calculate the decrease in the accu-
racy
9: end for
10: end for
11 Output average accuracy gain for each j =
1,2,....p.

12: end procedure

@ The randomization voids the effect of a variable.

Il Ensamble Methods 6 y  39-60 March 21, 2025 47 / 60



Proximity plot

Proximity plot

1. procedure PROXIMITY PLOT( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4 Grow a random forest tree T}

5: Calculate prediction accuracy on OOB samples

6 for any pair of OOB samples sharing the same leaf do
7 increase the proximity by one.

8: end for

9: end for

10: end procedure

@ Distinct samples usually come from
the pure regions

Dimension 2

@ Samples in the 'star center’ are
close to the decision boundary.

Dimension 1 X1
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Overfitting

@ Though the random forest cannot overfit the limit distribution
fr(x) =EeT(x;0) = lim £(x)
B—oo

the limit distribution (the average of fully grown trees) may overfit the data.
Small number of relevant variables with many irrelevant hurts the random
forest approach.

@ With higher number of relevant variables RF is quite robust.
@ Seldom the pruning improves

@ 6 relevant and 100 noisy variables,

m— /6100 ~ 10 the rlelnnd]:)rlrll forest result
@ usually, fu rown trees are
@ probability of a relevant variable being used Y ye
selected atwany”splljcr 1S 046 o Two additive vars, 10 noisy,
s o plus additive Gaussian noise.

qma

yyyyyyyyyyyyyyyyy

T
@5 (@2 (25 (2100 (2150

Number of (Relevant, Noise) Variables FIGURE 15.8. The effect of tree size on the erro
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Random Forest Experiments

Spam example misclassification error California housing data
H [
° bagging 5.4% @ Random forests stabilize at about

o random forest 4.88% 200 trees, while at 1000 trees
e gradient boosting 4.5%. boosting continues to improve.
e Boosting is slowed down by the
shrinkage
o the trees are much smaller
Nested Spheres in RIO, 2500 trees, the (decision stumps’ interaction
number selected by 10—fold crossvalida- depth=1 or 2).
tion

@ Boosting outperforms random
Nested Spheres forests here.

GBM depth=4
o GBM depth=6

000
s
T
032 034 036
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Boosting

I Use a week classifier as a decision stump (a decision
tree with the depth=1). e Two class problem

AdaBoost.M1 with encoding

Y e{-1,1}

1: procedure ADABOOST CLASSIFIER( X, G) R T
2 Initialize the observation weights w; + .. N o
3: for m=1,2,..., M do ““‘"“"‘*”‘\'[”‘“ ,
4 Fit a classifier Gp(x) to the training ey [Shleson
data using weights w; . e Gla)
5: compute erry, Zﬂ*ﬁf’”(m :
=1
6: compute ap, /og(ler%’") e Gye)
7: Set w; « w; - e/(iFGm06))-am T
8: (normalize weights) e @0
o: end for T

10:  Output G(x) = sign[M_, amGm(x)]. > -

11: end procedure
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Nested Spheres Example

@ The features X, ..., Xjo are standard independent Gaussian

@ deterministic target
o Y =1iff ) X7 > x3(0.5) = 9.34,
e Y = —1 otherwise.

2000 training cases

10000 test observations.

@ Decision stumps.

w
° Single Stump

0.4

03
I

244 Node Tree

Test Error

0.2

0.1

T T T T T
0 100 200 300 400

Boosting lterations
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Additive Model

@ We encode the binary goal by Y € {—1,+1}.
@ Boosting fits an additive model:

M
F(x) =D Bmb(x;Ym)
m=1
@ where 3, for m=1,..., M are the expansion coefficients

@ b(x;v) € R are usually simple functions of the multivariate argument x
o characterized by a set of parameters ~.
o For trees, v parametrizes the split variables and split points at the internal
nodes, and the predictions at the terminal nodes.
o Forward stagewise Additive Modeling sequentially adds one new basis function
without adjusting the parameters and coefficients of the previously fitted.
@ For squared—error loss

L(y, f(x)) = (v — f(x))?,
we have
L(yi, fn-1(X) + Bmb(xi;7m)) = (Vi — f—1(X) — Bmb(xi; Ym))?
(Fim — Bmb(xi: ¥m))?
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Exponential Loss and AdaBoost

o Let us use the Y € {—1,1} encoding and the exponential loss
L(y, f(x)) = et

@ We have to solve

N
= i [—yi(fn—1(x)+BG(xi)]
(Bm> Gm) arg rg,lg;e

N
- i [—yi(fm—1(x))] p[—¥iBG(x)]
= argmin e e
gﬁl’G;
. (m)
= i m) o[- G()]
= argmin w: e

@ where W,.(m) = el=Yifn-1(4)] does not depend on /3 nor G(x).

@ this weight depends on f,,_1(x;) and change with each iteration m.
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Exponential Loss and AdaBoost

@ From
N
(Bm, Gm) = argmme ) el=yiBG(xi)]

i=1
— . B . (m) -8 (m)
= argmin |e Z wip e Z w;

yi# () ¥=G(x)
N ) )
= argmin Wlml i £ G(x;) +e b Wm
B 2w # 60)) z

@ For any /3 > 0 the solution for Gp,(x;7) is

G = argmin _ w™ I(yi # G(xi7)),
argm’ylniz:;w, (vi # G(xi;7))

@ Recall the error definition:
Sl w™I(y; # ()
ZN ) W(m)
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Adaboost Update

-8 B .
arg min e W i £ G(x;)) +e” w;
gﬁ ) E I(y, ( ?1

@ The minimum w.r.t. 5, is:

1 1-—
Bm = */Ogﬂ

2 errm

@ The approximation is updated
fn(X) = fmn—1(X) + Bm Gim(x)

@ which causes the weights for the next iteration to be:

Wim+1 — Wim . efﬁm)’icm(xi)'

@ using the fact —y;Gn(x;) =2 I(yi # Gm(x;)) — 1 we get

wmtl — Wim . eMiF#GCm(xi)) | o= Bm
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Why exponential loss?

@ The population minimizer is

_ B 1, P(Y=1[x)
o VI = Zjog—n— 2
f*(x) = arg ?EL?EY\X(G ) 5log P(Y = —1|x)

o therefore 1
1+ e—2f*(x)’
@ The same function *(x) minimizes also deviance (cross—entropy, binomial
negative log—likelihood)
e interpreting f* as the logit transform. Let:

P(Y = 1|x) =

*(x)
e 1
p(x) = P(Y = l\x) =

e () 1 ef () T lie 2
o and define Y/ = (Y 4 1)/2 € {0,1}. Log-likelihood is

(Y. p(x)) = Y'log p(x) + (1 — Y log(1 — p(x))
e or equivalently the deviance:
—U(Y, f(x)) = log (1+ e >")).

@ Exponential loss decreases long after misclassification loss is
stable at zero.
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Forward Stagewise Additive Modeling

@ A general iterative fitting approach.

@ In each step, we select the best function from the dictionary b(x;; ), fit its
parameters v and the weight of this basis function 5.

@ Stagewise approximation is often faster then iterative fitting of the full model.

Forward Stagewise Additive Modeling

1: procedure FORWARD STAGEWISE ADDITIVE MODELING( L, X, Y, b)
2 Initialize fy < 0.

3 for m=1,2....Mdo

4: Compute (Bm, Ym) <— argming Z,N:1 L(y;, fm—1(x:) + Bb(xi; 7).
5: Set fin(x) < fm_1(Xx) + Bmb(xi; Ym)

6 end for

7: end procedure

@ For example, our basis functions are decision trees, v represents the splits and
fitted values T (x;7)).

@ For square error loss, any new tree T (x;) is the best tree fitting residuals
ri=Yi — fm—1(x).
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Gradient Tree Boosting Algorithm

Gradient Tree Boosting Algorithm

1: procedure GRADIENT TREE BOOSTING ALGORITHM( X, Y, L)
2 Initialize f5(x) <— arg min, Z,N:1 L(yi, ).
3: for m=1,2,...,M do
4 for i=1,2,...,Ndo
| 9Ly f () —[ . — :
5 compute rj, = [ OF () ]f(X’_):le(Xi) =My — fo1(x)
6 end for
7 Fit reg. tree to the target rim giving regions {Rjm}j=1,... 4,
8: for j=1,2,...,J,do
0: Compute 7jm < arg min, Zieij L(yi, fm—1(x:) + ).
10: end for
11: Set fon(x) < Fn—1(x) + X771 Yim /(X € Rim).
12: end for

13: Output 7(x) = fu(x).
14: end procedure

[¥] for square error loss.
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Stacking

@ Over a set of models (possibly different types) learn a simple model (like a
linear regression)

@ Assume predictions 1Af1(x)7 ?2(x), cey ?M(x) under square error loss
@ Predictors trained without ith example are denoted
o f'(x), 1t '(x),... ' (x)

@ we can seek weights w = (wy, ..., wp,,) such that

N M 2

W = arg min Z Vi — Z Wt ' (x)

i=1 m=1

@ The final prediction is

M
Fr(x) = > witfm(x).
m=1

o Using cross—validated predictions #,'(x) stacking avoids giving unfairly high
weight to models with higher complexity

o Better results can be obtained by restricting the weights to be nonnegative
and to sum to 1.
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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