Bayesian Learning

Complicated derivation of known things.

e Maximum a posteriori probability hypothesis (MAP)
(nejpravdépodobnéjsi hypotéza)

Maximum likelihood hypothesis (ML) (maximalné vérohodna hypotéza)
Bayesian optimal prediction (Bayes Rate)
Bayesian methods, bayesian smoothing

e 'complexity penalty’ is our prior distribution/preference on parameters.

Naive Bayes model (classifier).

EM algorithm

o The best way to fill in missing values

e the most common application is clustering

e but the use is far broader, for example

e Baum-Welch algorithm for HMM

e variational approximation for continuous distributions.
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Candy Example (Russel, Norvig: Artif. Intell. a MA)

@ Our favorite candy comes in two flavors: cherry and lime, both in the same
wrapper.
@ They are in a bag in one of following rations of cherry candies and prior
probability of bags:
hypothesis (bag type) h hy h3 ha hs
cherry 100% | 75% | 50% | 25% | 0%
prior probability h; 10% | 20% | 40% | 20% | 10%

@ The first candy is cherry.

MAP Which of h; is the most probable given first candy is cherry?
Bayes estimate What is the probability next candy from the same bag is cherry?
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Maximum Aposteriory Probability Hypothesis (MAP)

@ We assume large bags of candies, the result of one missing candy in the bag

is negligable.
@ Recall Bayes formula:
P(hi|B=c) = =
2 j=1....5 P(B = clhy) - P(h)) P(B = c)

@ We look for the MAP hypothesis maximalné aposteriorné pravdépodobna
argmax;P(h;|B = ¢) = argmax;P(B = c|h;) - P(h;).

@ Aposteriory probabilities of hypotheses are in the following table.
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Candy Example: Aposteriory Probability of Hypotheses

’ index \ prior \ cherry ratio \ cherry AND h; \ aposteriory prob. h; ‘
i P(hi) | P(B=clh;) | P(B=c|h;)-P(h;) P(hi|B =)
1 0.1 1 0.1 0.2
2 0.2 0.75 0.15 0.3
3 0.4 0.5 0.2 0.4
4 0.2 0.25 0.05 0.1
5 0.1 0 0 0

@ Which hypothesis is most probable?
hmap = argmax; P(datal|h;) - P(h;)

@ What is the prediction of a new candy according the most probable
hypothesis hyap?
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Bayesian Learning, Bayesian Optimal Prediction

o Bayesian optimal prediction is weigthed average of predictions of all

hypotheses:
P(N = cldata) = > P(N = c|hj,data)- P(hj|data)
j=1,...,5
= Y P(N=cl|hj)- P(hj|data)
j=1,...,5

@ If our model is correct, no prediction has smaller expected error then
Bayesian optimal prediction.

@ We always assume i.i.d. data, independently identically distributed.

@ We assume the hypothesis fully describes the data behavior. Observations are
mutually conditionally independent given the hypothesis. This allows the last
equation above.

@ The error of the bayesian optimal prediction is called the bayes error rate.

It is analogous to ireducible error from 'bias variance decomposition’.
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Candy Example: Bayesian Optimal Prediction

i [ P(RB=c) | P(N=c|h) | P(N=clh) - P(hi|B = c)
1 0.2 1 0.2
2 03 0.75 0.225
3 0.4 05 0.2
4 0.1 0.25 0.02
5 0 0 0
[ 2] 1 \ \ 0.645
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Maximum Likelihood Estimate (ML)

@ Usually, we do not know prior probabilities of hypotheses.

@ Setting all prior probabilities equal leads to Maximum Likelihood
Estimate, maximalné vérohodny odhad

hyr = argmax,-P(data\ h,')

@ Probability of data given hypothesis = likelihood of hypothesis given data.

o Find the ML estimate:
’ index \ prior \ cherry ratio \ cherry AND h; \ Aposteriory prob. h; ‘

i | P(h) | P(B=clh) | P(B=c|h)- P(h) P(hi|B = c)
1 01 1 01 0.2

2 0.2 0.75 0.15 03

3 0.4 05 0.2 04

4 0.2 0.25 0.05 0.1

5 0.1 0 0 0

@ In this example, do you prefer ML estimate or MAP estimate?

o (Only few data, over-fitting, penalization is useful. AIC, BIC)
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Maximum Likelihood: Continuous Parameter 0

@ New producer on the market. We do not know the ratios of candies, any hy,
kde 6 € (0; 1) is possible, any prior probabilities hy are possible.

@ We look for maximum likelihood estimate.

o For a given hypothesis hy, the probability of a cherry candy is 6, of a lime
candy 1 — 6.

@ Probability of a sequence of ¢ cherry and / lime candies is:

P(data|hg) = 6 - (1 — 6)".
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ML Estimate of Parameter 6

@ Probability of a sequence of ¢ cherry and / lime candies is:
P(datalhg) = 6 - (1 — 0)'
@ Usual trick is to take logarithm:
U(hg; data) = c - log, 6 + | - log,(1 — 0)

@ To find the maximum of £ (log likelihood of the hypothesis) with respect to 6

we set the derivative equal to 0:

Ol(hg;data) ¢ |

00 0 1-90
c_ L

0 1-10

c
0= .
c+1
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ML Estimate of Multiple Parameters

@ Producer introduced two colors of wrappers - red r and green g.
@ Both flavors are wrapped in both wrappers, but with different probability of
the red/green wrapper.
@ We need three parameters to model this situation:
P(B=c) | PW=rB=c) | PIW=rB=1)
to 01 0>
@ Following table denotes observed frequences:
wrapper)\ flavor | cherry | lime
red re r
green 8c 8i
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ML Estimate of Multiple Parameters
P(B=c) | PW=rB=c)| P(W=rB=1)

Parameters are:

bo 61 6>
Probability of data given the hypothesis hy, g, 9, is:
P(data|h90791792) = 0{5 . (1 — Ql)gf .06c+gc . 95’ . (1 — 92)g’ . (1 — 00)”+g’
€(hoy.0,.0,; data) = rclog, 01 + gelogy(1 — 1) + (rc + &) log, fo

+r1logy 02 + grlogy (1 — 62) + (1 + g1) logy (1 — o)

We look for maximum:

az(hé‘o,@h@z; data) _ re + 8¢ _h + 8
890 (90 1-— 00
9 _ (rC +gC)
g = —=7
re + 8¢ +nrn+ 8
8£(h90,91,92; data) _ oo &
00, 0, 1—6,
0 = — .
rn+g

@ Maximum Likelihood estimate is the ratio of frequencies.
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ML Estimate of Gaussian Distribution Parameters

@ Assume x to have Gaussian distribution with unknown parameters i a o.

2

—x=p)
@ Our hypotheses are h;, , = ﬁe =
@ We have observed xi, ..., x,.
o Log likelihood is:
N
1 —(e=p)?
LL = lo e 22
; # Varo

. (,o 1)2(“‘)
B g\/27ra = 202

Find the maximum.
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Linear Gaussian Distribution

@ Assume random variable (feature) X.

@ Assume goal variable Y with linear Gaussian distribution where = b - x + by
—(y=((b-x+b9))?

and fixed variance 02 p(Y|X = x) = N(b- x + by; 0) = \/;fme 207

@ Find maximum likelihood estimate of b, by given a set of observations
data = {<X17y1>a R <XNayN>}-

@ (Look for maximum of the logarithm of it; change the max to min with the
opostite sign. Do you know this formula?)

argmaxp p, (loge (I f\’zl(e*(y"*(b'x"“")))2 ))) = argming p,(?)
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Naive Bayes Model, Bayes Classifier

o Naive Bayes Model, Bayes Classifier assumes independent features given
the class variable.

o Calculate prior probability of classes P(c;)

o For each feature x;, calculate for each class the probability of this feature
P(x]c)

e For a new observation of features f predict the most probable class
argmax, P(x;|ci) - P(ci).

e Maximum Likelihood estimate is the ratio of frequencies.

@ We may use smoothed estimate adding a samples to each possibility to avoid
zero probabilities.

o ML estimite of a Gaussian distribution parameters are the mean and the

variance (or covariance matrix for multivariate distribution).
Bayes factor

P(ci)
P(g)

o We can start with a comparison ratio of two classes

P(xplci)
P(xplcj)

Plcilx, ..., %) _ Pla) Plale) — Plxla)
P(eklxa, .-, xp)  Plck) Plxale) = P(xplex)’
@ Bayesian Networks learn more complex (in)dependencies between features.

o after each observation x, multiply it by the bayes factor
o that is:
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Parameter Estimate as a Probability Distribution

o For binary features, Beta function is used, (a — 1) is the number of positive
examples, (b — 1) the number of negative examples.

beta[a, b](0) = af*~1(1 — 9)>~!

@ Beta Function:

~| pos,neg
3 | 0,0
S 5,0
- | s00
D 55
g 3
o
T
o
S 4 —— L
o

0.0 0.2 0.4 0.6 0.8 1.0

x[2:101]

o For categorical features, Dirichlet priors and multinomial distribution is used.
(Dirichlet-multinomial distribution).

o For Gaussian, p has Gaussian prior, % has gamma prior (to stay in
exponential family).
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Bayesian Methods

o We specify a sampling model P(Z|0)
@ and a prior distribution for parameters P(6)

@ then wi mpu
then we compute o P(ZI6)- P(9)
(012) = fP(Z|0)~P(0)d9'

e we may draw samples
@ or summarize by the mean or mode.
e it provides the Bayesian optimal predictive distribution:

P2 |2) / P(2"|0) - P(6]Z)do0.

Example (Previous slide)

Tossing a biased coin
e P(Z = head|f) =6
e p(#) =uniform
e P(0|Z) follows the Beta distribution.
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Bayesian smoothing example

o Training data Z = {z,...,zy}, . . Sl

Z,':(X,',y,'),l.:].,...7N. | N

@ We look for a cubic spline with ST | \ |
three knots in quartiles of the X R I ANV NN
values. It corresponds to B-spline ’ 2 '
basis hj(x), j=1,...,7.

B-spline Basis

) o r=1 7 = 1000
@ We estimate the conditional mean -

E(Y|X = x): p(x) = Z}:l Bihi(x) - IS I IR IR
o Let H be the N x 7 matrix h;(x;). e o /1\
@ RSS j estimate is . \/ . /\J

w(x

u(
)

f=(HTH)'HTy.

We assume to know o2, fixed x;, we specifying prior on 3 ~ N(0,7X).
2
E(BZ) = (HTH+ Zx1)"HTy
T

E(u(x)|2)
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MAP, Bayesian Smoothing and Penalized Methods

@ The complexity penalty (Lasso, Ridge, ...) can be explained as our prior
distribution on parameters (hypotheses) P(h) with a higher probability for
more simple models.

@ MAP hypothesis maximizes:

hvap = argmax; P(datalh;) - P(h;)

@ therefore minimizes:

hvap = argmax,P(data|lh)P(h)
= argminy[—logx P(data|h) — loga P(h)]
= argminy[—loglik + complexity penalty]
= argminy[RSS + complexity penalty] Gaussian models

= argmaxy|loglik — complexity penalty] Categorical models
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Expectation Maximization Algorithm (EM Algorithm)

EM algorithm estimates the maximum likelihood model based on the data
with missing values.

used in HMM
used in clustering (Gaussian mixture model estimation)

but not restricted to this applications

It is a general approach to fill missing values based on the maximum likely
model.
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Example (EM Algorithm for Missing Data)

@ Two bags of bonbons mixed Bag | F | W
together. Each bonbon has a Bag ? cl|r
Wrapper and flavor Flavor and 1 I r
may have Holes. Each bag had 1 c| ?
another ratio of Wrapper color @ @ 1 c| g
and Flavor. ? | ?

@ Initialize all parameters randomly close to uniform distribution, 6, =~ 0.5.

E step M step — update 0s
w=P(Z"0,Z) Bag | F | W w
) 0 Bag=1
c r Bag=1 — w
c r Z w
Bag=1,F=c
1 1 | r OF=c|Bag=1 < -~ w
Bag=1
1 c w
Bag=2,F=c
1 C OF —c|Bag=2 < giw
1 1 c g bag=2
w
| 9W:r|Bag:1 ¢ FBag=1,W=r
w
| Bag=1
w
Bag=2,W=r
! Ow=r|Bag=2 agiw
| Bag=2
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EM as a Maximization-Maximization Procedure

Z the observed data (the usual X with missing
values)

£(0; Z) the log—-likelihood of the model @
Z™ the latent or missing data

T =(Z,Z™) the complete data with the
log—likelihood £o(8; T).

P(Z™),P(Z™0, Z) any distribution over the
latent data Z".

Consider the function F

F(¢',P) = Ep[to(¢'; (Z,Z™))] — Epllog P(Z™)]

for P = P(Z™|¢,Z) is F the log-likelihood of the observed data
o F(0',P(Z™0',Z)) = E[lo(0';(Z,Z™))|0', Z] — E[¢1(0'; Z™|Z)|0', Z]
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The EM Algorithm in General

o PEnz)
. PErZ))
PP = pzmnz.e)

In the log—likelihoods
00,Z) = lo(0"; T) — 44(0;2™|Z)
where {1 is based on the conditional density P(Z™|Z).
Taking the expectation w.r.t. T|Z governed by parameter 6 gives
08 Z) E[lo(0';T)|0,Z] — E[(1(0;Z27|Z)|6, Z]
= Q(¢,0)—R(¢,0)

@ R() is the expectation of a density with respect the same density
o it is maximized when 6’ = 0.
@ Therefore:
0(0Z)—0:Z) = [Q(¢,0)— Q(0,0)] — [R(¢',0) — R(6,0)]
> 0.
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The EM Algorithm

1: procedure THE EM ALGORITHM:( Z observed data, the model(6) )

2: 6(©) « an initial guess (usually close to the uniform distribution)
3: repeat
4: Expectation step: at the jth step, compute

Q' 89) = E(to(9: )| Z,69)

5 as a function of the dummy argument ¢’.
6 Maximization step: determine the new estimate 4u+1)

7 as the maximizer of Q(#',01)) over ¢’
8 until convergence

9: return é

10: end procedure

@ Full maximization is not necessary.
o We need to find a value §UtD so that Q(AUHD, 41D > Q(4U), §0)).
@ Such procedures are called generalized EM algorithms (GEM).
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Gaussian Mixture Model for Clustering

@ We assume the Gaussian Mixture Model

o like a Naive Bayes Model
o but the 'Class’ variable represents the cluster and is latent, 'missing’

@ We use EM algorithm to estimate the 'Cluster’ variable.

@ sklearn example

from sklearn.mixture import BayesianGaussianMixture J

Gaussian Mixture
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EM learning of Mixture of K Gaussians !

@ Model parameters 71, ..., Tk, fi1, - - -

a,uk7zl7"'7

@ Expectation: weights of unobserved 'fill-ins' k of variable C:

pix = P(C=klx)=a
Tkdo, (Xi)

Sy T, (%)
N

Z Pik

i=1

Pk =

P(X,‘C,: k)P(C,: k)

@ Maximize: mean, variance and cluster 'prior’ for each cluster k:

Uk %Xi
Pk

Y, o« ZP:k
Pk

Tk < K .
D=1 P

Machine Learning
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BN example of EM algorithm (Russel, Norvig) - can be
omitted

@ Two bags of bonbons mixed together. Each bonbon has a Wrapper and
flavor Flavor and may have Holes. Each bag had another ratio of Wrapper
color, Flavor and Holes.

We can model the situation by a naive bayes model, Bag as the class variable.

Example We have tested 1000 bonbones and observed:

W=red W=green Bag
H=1 [ H=0 | H=1 | H=0

F=cherry || 273 | 93 [ 104 | 90
F=lime [ 79 [ 100 || 94 | 167 @ @ @

We choose the initial parameters

89 = 0.6, 95 = 6% = o) = 0.6, 6 = %) = 61) = 0.4

P  Bayesian learning, EM algorithm 7 1-41 April 4, 2025 26 / 66



EM example - can be omitted

@ Expectation of @ is the ratio of the expected counts

Z P(flavorJ|Bag = 1)P(wrapperj|Bag = 1)P(holesj|Bag = 1)P(Bag = 1)
N : P(flavorj|Bag = i)P(wrapperj|Bag = i)P(holes;|Bag = i)P(Bag = i)

(normalization constant depends on parameter values).
For the type red, cherry, holes we get:
(0) n(0) H(0)

;01,0170

~ 0.835055
‘9(FO1 0(0) 0)9(0) + 092)0%)29(+?2)9(0)

we have 273 bonbons of this type, therefore we add % -0.835055.
Similarly for all seven other types and we get

M) = 0.6124
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EM example continued - can be omitted

#(Bag=1,Flavor=cherry)
#(Flavor=cherry)

@ We have to use expected counts Bag = 1&F = cherry and Bag =1,

@ The estimate of 6¢; for fully observed data is

s _ > j:Flavor,—cherry P'(Bag = 1|Flavor; = cherry, wrapper;, holes;)
F1 =

>_; P(Bag = 1|cherry;, wrapper;, holes;)
o Similarly we get:
1 1 1
01 = 0.6124, 6 = 0.6684,6'), = 0.6483,6'}) = 0.6558,

0 = 0.3887,0\, = 0.3817,6}) = 0.3827.
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Hierarchical Mixture of Experts

@ a hierarchical extension of naive
Bayes (latent class model)

@ a decision tree with 'soft splits’

@ splits are probabilistic functions of a
linear combination of inputs (not a
single input as in CART)

@ terminal nodes called 'experts’

@ non—terminal nodes are called
gating network

@ may be extended to multilevel.

Machine Learn
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Hierarchical Mixture of Experts

e data (x;,y;), i=1,..., N, y; continuous or
categorical, first x; = 1 for intercepts.

Gatin, Gati)

;

Vi X Networl Networl
Y . .

e gi(x,v;) = W,J—l,...,Kchlldren :

k=1 €
of the root, o/ - e/ o
’vjzx ’ ‘ '
_ _ e — :
° guilx ) = 5 t=1....K BB BB

Pr(ylz,01)  Pr(yle,021) Pr(yle,012)  Priylr,02)

k=1
children of the root,

e Terminals (Experts) o EM algorithm

(] A,‘, AZU 0-1 latent
variables — branching

Regression Gaussian linear reg. model,
_ 2 _aT
Oje = (Bje, 03), Y = By + €
Classification The linear logistic reg. model:

E st ions for A’
Pr(Y = 1)x,6;) = step expectations for A's

—67 x .
1+e ¢ M step estimate parameters
HME by a version of
miiltinle Incictic
VSTl Bayesian learning, EM algorithm 7 1-41 April 4, 2025
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Missing data (T.D. Nielsen)

Die tossed N times. Result reported via noisy telephone line. When transmission
not clearly audible, record missing value:

4,2,7,6,5,4,7.3,4,1,...

“2" and "“3" sound similar, therefore:

1/4 k=273

: :? Pl g s = s = = !

P =7 =K = P =11 =0 = { V8 230
W

Distribution of the Y is (for fair die): 2,3 g1~ %7
1,4,5,6 gg TS

If we simply ignore the missing data items, we obtain as the maximum likelihood

estimate for the parameters of the die:

7117 7 7, 6

« g = (0.175,0.15,0.15,0.175,0.175,0.175)
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Incomplete data

How do we handle cases with missing values:
@ Faulty sensor readings.
@ Values have been intentionally removed.
@ Some variables may be unobservable.
How is the data missing?
We need to take into account how the data is missing:

@ Missing completely at random The probability that a value is missing is
independent of both the observed and unobserved values (a monitoring
system that is not completely stable and where some sensor values are not
stored properly).

@ Missing at random The probability that a value is missing depends only on
the observed values (a database containing the results of two tests, where the
second test has only performed (as a “backup test”) when the result of the
first test was negative).

o Non-ignorable Neither MAR nor MCAR (an exit poll, where an extreme
right-wing party is running for parlament).

P  Bayesian learning, EM algorithm 7 1-41 April 4, 2025 32 / 66




Decision Rules from Decision Trees

@ We can represent a tree as a set of rules
e one rule for each leaf.
@ These rules may be improved by testing each attribute in each rule

o Has the rule without this test a better precision than with the test?
o Use validation data
e May be time consuming.

@ These rules are sorted by (decreasing) precision.
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Patient Rule Induction Method PRIM = Bump Hunting

@ Rule induction method

@ We iteratively search regions with
the high Y values

e for each region, a rule is created.

@ CART runs of data after
aproximately log,(N) — 1 cuts.

log(N

@ PRIM can affort — % . FIGURE 9.7. lllustration of PRIM algorithm. There
_ are two classes, indicated by the blue (class 0) and red
For N — 128 data Samples a nd (class 1) points. The procedure starts with a rectangle
F . broken black lines) surrounding all of the data, and
o = 0' 1 It IS 6 and 46 respeCtlver L(hen peels away poz)nls along mleg edge gy a prespecified
H amount in order to maximize the mean of the points
29’ since the n umber Of remaining in the box. Starting at the top left panel, the
ObSerVatiOnS must be a Whole sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number

number. is indicated at the top of each panel.
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PRIM Patient Rule induction Algorithm

Consider the whole space and all data. Set o = 0.05 or 0.10.

Find X; and its upper or lower boundary such that the cut of .- 100%
observations leads to the maximal mean of the remaining data.

Repeat until less then 10 observations left.

@ Enlarge the region in any direction that increases the mean value.

Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.

Denote the best region B;.

Create a rule that describes B;.

Remove all data in B; from the dataset.

Repeat 2-5, create B, continue until final condition met.
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CART Weaknesses

@ the high variance
o the tree may be very different for very similar datasets
e ensemble learning addresses this issue
@ the cuts are perpendicular to the axis
@ the result is not smooth but stepwise.
e MARS (Multivariate Adaptive Regression Splines) addresses this issue.
o it is difficult to capture an additive structure

Y = C1/(X1 < tl) + C2/(X2 < t2) + ...+ Ck/(Xk < tk) +e€

o MARS (Multivariate Adaptive Regression Splines) addresses this issue.

b
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART

@ for each feature and each data point we create a reflected pair of basis
functions
@ (x — t)4 and (t — x)+ where + denotes non—negative part, minimum is zero.

we have the set of functions

C= {()<J - t)+, (t - )<j)+}f€{><1,j7X2,j,-»-,XN,j},j:172,-»-~,P

@ that is 2Np functions for non—duplicated data points.

(t—=z)+ (x—t)¢

Basis Function

00 01 02 03 04 05
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MARS - continuation
@ our model is in the form
M
f(X) = ﬂO + Z ﬂmhm(X)
m=1

where hp,(X) is a function from C or a product of any amount of functions
from C

o for a fixed set of h,,'s we calculate coefficients 3, by usual linear regression
(minimizing RSS)

@ the set of functions h,, is selected iteratively.
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MARS - basis selections

o We start with hy = 1, we put this ’// \ /////\
function into the model M = {ho}. \ -

@ We consider the product of any member \ )
he € M with any pair from C, I

Bur1he(X)-(Xi—t) s+ +Bm2he(X)-(t=X) 4 / " X\ // //}\

we select the one minimizing training
error RSS (for any product candidate, we

estimate /3). P IN
@ Repeat until predefined number of 4//"" = wEsdnd sl w )
functions in M \ """"" / \/J///
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MARS — model pruning

@ The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f, for
different numbers of parameters \.

o (we want to speed—up cross-validation for computational reasons)
o we select A (and the model) minimizing generalized cross-validation

_ XL = AP
VN =T Moy

@ where M() is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K, the authors suggest to multiply
K by 3: M(\) =r + 3K.
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MARS is a generalization of CART

@ We select piecewise constant functions /(x —t > 0) and /(x — t < 0)

o If h,, uses multiplication we remove this function from the candidate list. It
cannot be used any more.

e This guarantees binary split.

o Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:
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kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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