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Figure 1. Illustrations of the six gesture classes for the experiments. Below each image is the abbreviation for the gesture class. These
gesture classes are: FB - Flip Back, SV - Shrink Vertically, EV - Expand Vertically, DB - Double Back, PB - Point and Back, EH - Expand
Horizontally. The green arrows are the motion trajectory of the fingertip and the numbers next to the arrows symbolize the order of these
arrows.

5.2. Models

Figures 2, 3 and 4 show graphical representations of the
HMM model, the CRF model, and the HCRF (multi-class)
model used in our experiments.

HMM Model - As a first baseline, we trained a HMM
model per class. Each model had four states and used a
single Gaussian observation model. During evaluation, test
sequences were passed through each of these models, and
the model with the highest likelihood was selected as the
recognized gesture.

CRF Model - As a second baseline, we trained a sin-
gle CRF chain model where every gesture class had a corre-
sponding state. In this case, the CRF predicts labels for each
frame in a sequence, not the entire sequence. During evalu-
ation, we found the Viterbi path under the CRF model, and
assigned the sequence label based on the most frequently
occurring gesture label per frame. We ran additional exper-
iments that incorporated different long range dependencies
(i.e. using different window sizes ω, as described in Section
4).

HCRF (one-vs-all) Model - For each gesture class, we
trained a separate HCRF model to discriminate the gesture
class from other classes. Each HCRF was trained using six
hidden states. For a given test sequence, we compared the
probabilities for each single HCRF, and the highest scoring
HCRF model is selected as the recognized gesture.

HCRF (multi-class) Model - We trained a single HCRF
using twelve hidden states. Test sequences were run with
this model and the gesture class with the highest probability
was selected as the recognized gesture. We also conducted
experiments that incorporated different long range depen-
dencies in the same way as described in the CRF experi-
ments.

For the HMM model, the number of Gaussian mixtures
and states were set by minimizing the error on training data,
and for hidden state models the number of hidden states was

Models Accuracy (%)
HMM ω = 0 65.33
CRF ω = 0 66.53
CRF ω = 1 68.24

HCRF (multi-class) ω = 0 71.88
HCRF (multi-class) ω = 1 85.25

Table 1. Comparisons of recognition performance (percentage ac-
curacy) for head gestures.

set in a similar fashion.

6. Results and Discussion

For the training process, the CRF models for the arm and
head gesture dataset took about 200 iterations to train. The
HCRF models for the arm and head gesture dataset required
300 and 400 iterations for training respectively.

Table 1 summarizes the results for the head gesture ex-
periments. The multi-class HCRF model performs better
than the HMM and CRF models at a window size of zero.
The CRF has slightly better performance than the HMMs
for the head gesture task, and this performance improved
with increased window sizes. The HCRF multi-class model
made a significant improvement when the window size was
increased, which indicates that incorporating long range de-
pendencies was useful.

Table 2 summarizes results for the arm gesture recogni-
tion experiments. In these experiments the CRF performed
better than HMMs at window size zero. At window size
one, however, the CRF performance was poorer; this may
be due to overfitting when training the CRF model parame-
ters. Both multi-class and one-vs-all HCRFs perform better
than HMMs and CRFs. The most significant improvement
in performance was obtained when we used a multi-class
HCRF, suggesting that it is important to jointly learn the
best discriminative structure.
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Figure 5. Sample image sequence with the estimated body pose superimposed on the user in each frame.

Figure 2. HMM model

Figure 3. CRF Model

Figure 4. HCRF Model

Figure 6 shows the distribution of states for different ges-
ture classes learned by the best performing model (multi-
class HCRF). This graph was obtained by computing the
Viterbi path for each sequence (i.e. the most likely assign-

Models Accuracy (%)
HMM ω = 0 84.22
CRF ω = 0 86.03
CRF ω = 1 81.75

HCRF (one-vs-all) ω = 0 87.49
HCRF (multi-class) ω = 0 91.64
HCRF (multi-class) ω = 1 93.81

Table 2. Comparisons of recognition performance (percentage ac-
curacy) for body poses estimated from image sequences.
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Figure 6. Graph showing the distribution of the hidden states for
each gesture class. The numbers in each pie represent the hidden
state label, and the area enclosed by the number represents the
proportion.

ment for the hidden state variables) and counting the num-
ber of times that a given state occurred among those se-
quences. As we can see, the model has found a unique
distribution of hidden states for each gesture, and there is
a significant amount of state sharing among different ges-
ture classes. The state assignment for each image frame
of various gesture classes is illustrated in Figure 7. Here,
we see that body poses that are visually more unique for a
gesture class are assigned very distinct hidden states, while
body poses common between different gesture classes are
assigned the same states. For example, frames of the FB
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Figure 6 shows the distribution of states for different ges-
ture classes learned by the best performing model (multi-
class HCRF). This graph was obtained by computing the
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Figure 6. Graph showing the distribution of the hidden states for
each gesture class. The numbers in each pie represent the hidden
state label, and the area enclosed by the number represents the
proportion.

ment for the hidden state variables) and counting the num-
ber of times that a given state occurred among those se-
quences. As we can see, the model has found a unique
distribution of hidden states for each gesture, and there is
a significant amount of state sharing among different ges-
ture classes. The state assignment for each image frame
of various gesture classes is illustrated in Figure 7. Here,
we see that body poses that are visually more unique for a
gesture class are assigned very distinct hidden states, while
body poses common between different gesture classes are
assigned the same states. For example, frames of the FB
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Models Accuracy (%)
HCRF ω = 0 86.44
HCRF ω = 1 96.81
HCRF ω = 2 97.75

Table 3. Experiment on 3 arm gesture classes using the multi-class
HCRF with different window sizes. The 3 different gesture classes
are: EV-Expand Vertically, SV Shrink Vertically and FB - Flip
Back. The gesture recognition accuracy increases as more long
range dependencies are incorporated.

gesture are uniquely assigned a state of one while the SV
and DB gesture class have visibly similar frames that share
the hidden state four.

The arm gesture results with varying window sizes are
shown in Table 3. From these results, it is clear that incor-
porating some amount of contextual dependency is impor-
tant, since the HCRF performance improved with increas-
ing window size.

7. Conclusion

In this work we presented a discriminative hidden-state
approach for gesture recognition. Our proposed model
combines the two main advantages of current approaches to
gesture recognition: the ability of CRFs to use long range
dependencies, and the ability of HMMs to model latent
structure. By regarding the sequence label as a random vari-
able we can train a single joint model for all the gestures and
share hidden states between them. Our results have shown
that HCRFs outperform both CRFs and HMMs for certain
gesture recognition tasks. For arm gestures, the multi-class
HCRF model outperforms HMMs and CRFs even when
long range dependencies are not used, demonstrating the
advantages of joint discriminative learning.

References

[1] Quasi-newton optimization toolbox in matlab.
[2] M. Assan and K. Groebel. Video-based sign language recog-

nition using hidden markov models. In Int’l Gest Wksp:
Gest. and Sign Lang., 1997.

[3] M. Brand, N. Oliver, and A. Pentland. Coupled hidden
markov models for complex action recognition. In CVPR,
1996.

[4] A. Culotta and P. V. amd A. Callum. Interactive informa-
tion extraction with constrained conditional random fields.
In AAAI, 2004.

[5] D. Demirdjian and T. Darrell. 3-d articulated pose tracking
for untethered deictic reference. In Int’l Conf. on Multimodal
Interfaces, 2002.

[6] S. Fujie, Y. Ejiri, K. Nakajima, Y. Matsusaka, and
T. Kobayashi. A conversation robot using head gesture
recognition as para-linguistic information. In Proceedings
of 13th IEEE International Workshop on Robot and Human Figure 7. Articulation of the six gesture classes. The first few con-

secutive frames of each gesture class are displayed. Below each
frame is the corresponding hidden state assigned by the multi-class
HCRF model.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Charles University. Downloaded on November 07,2022 at 11:43:17 UTC from IEEE Xplore.  Restrictions apply. 

top Hidden Markov Model for each gesture.
middle Conditional Random Field: For each frame,

the gesture type Y is estimated, the most
frequent one is used for classification.

Different window size ω is used.
bottom 12 hidden states for each frame are

learned; the overall classification is base on
these estimated states.

Potentials

the joints in a particular configuration (see FB illustration
in Figure 1) we can predict with certainty the flip-back ges-
ture. Therefore, we would expect that this gesture would
be easier to learn with a discriminative model. We would
also like a model that incorporates long range dependencies
(i.e., that the state at time t can depend on observations that
happened earlier or later in the sequence.) An HCRF can
learn a discriminative state distribution and can be easily
extended to incorporate long range dependencies.

To incorporate long range dependencies, we modify the
potential function Ψ in Equation 1 to include a window pa-
rameter ω that defines the amount of past and future his-
tory to be used when predicting the state at time t. Here,
Ψ(y, s,x; θ, ω) ∈ � is defined as a potential function pa-
rameterized by θ and ω.

Ψ(y, s,x; θ, ω) =

n∑

j=1

ϕ(x, j, ω) · θs[sj ] +
n∑

j=1

θy[y, sj ]

+
∑

(j,k)∈E

θe[y, sj , sk] (3)

The graph E is a chain where each node corresponds to a
hidden state variable at time t; ϕ(x, j, ω) is a vector that can
include any feature of the observation sequence for a spe-
cific window size ω. (i.e. for window size ω, observations
from t− ω to t+ ω are used to compute the features.)

The parameter vector θ is made up of three components:
θ = [θe θy θs]. We use the notation θs[sj ] to refer to the
parameters θs that correspond to state sj ∈ S. Similarly,
θy[y, sj ] stands for parameters that correspond to class y
and state sj and θe[y, sj, sk] refers to parameters that corre-
spond to class y and the pair of states sj and sk.

The inner product ϕ(x, j, ω) · θs[sj ] can be interpreted
as a measure of the compatibility between the observation
sequence and the state at time j at window size ω. Each pa-
rameter θy[y, sj] can be interpreted as a measure of the com-
patibility between a hidden state k and a gesture y. Finally,
each parameter θe[y, sj, sk] measures the compatibility be-
tween pairs of consecutive states j and k and the gesture
y.

Given a new test sequence x, and parameter values θ∗

learned from training examples, we will take the label for
the sequence to be:

argmax
y∈Y

P (y | x, ω, θ∗). (4)

Since E is a chain, there are exact methods for inference
and parameter estimation as both the objective function and
its gradient can be written in terms of marginal distributions
over the hidden state variables. These distributions can be
computed using belief propagation [17].

5. Experiments

We conducted two sets of experiments comparing HMM,
CRF, and HCRF models on head gesture and arm gesture
datasets. The evaluation metric that we used for all the ex-
periments was the percentage of sequences for which we
predicted the correct gesture label.

5.1. Datasets

Head Gesture Dataset: To collect a head gesture
dataset, pose tracking was performed using an adaptive
view-based appearance model which captured the user-
specific appearance under different poses [14]. We used
the fast Fourier transform of the 3D angular velocities as
features for gesture recognition.

The head gesture dataset consisted of interactions be-
tween human participants and an embodied agent [15]. A
total of 16 participants interacted with a robot, with each
interaction lasting between 2 to 5 minutes. Human partici-
pants were video recorded while interacting with the robot
to obtain ground truth. A total of 152 head nods, 11 head
shakes and 159 junk sequences were extracted based on
ground truth labels. The junk class had sequences that did
not contain any head nods or head shakes during the inter-
actions with the robot. Half of the sequences were used for
training and the rest were used for testing. For the exper-
iments, we separated the data such that the testing dataset
had no participants from the training set.

Arm Gesture Dataset: We defined six arm gestures for
the experiments (see Figure 1). In the Expand Horizontally
(EH) arm gesture, the user starts with both arms close to the
hips, moves both arms laterally apart and retracts back to the
resting position. In the Expand Vertically (EV) arm gesture,
the arms move vertically apart and return to the resting posi-
tion. In the Shrink Vertically (SV) gesture, both arms begin
from the hips, move vertically together and back to the hips.
In the Point and Back (PB) gesture, the user points with one
hand and beckons with the other. In the Double Back (DB)
gesture, both arms beckon towards the user. Lastly, in the
Flip Back (FB) gesture, the user simulates holding a book
with one hand while the other hand makes a flipping mo-
tion, to mimic flipping the pages of the book.

Users were asked to perform these gestures in front of
a stereo camera. From each image frame, a 3D cylindrical
body model, consisting of a head, torso, arms and forearms
was estimated using a stereo-tracking algorithm [5]. Figure
5 shows a gesture sequence with the estimated body model
superimposed on the user. From these body models, both
the joint angles and the relative co-ordinates of the joints
of the arms are used as observations for our experiments
and were manually segmented into six arm gesture classes.
Thirteen users were asked to perform these six gestures; an
average of 90 gestures per class were collected.
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Figure 5. Sample image sequence with the estimated body pose superimposed on the user in each frame.

Figure 2. HMM model

Figure 3. CRF Model

Figure 4. HCRF Model

Figure 6 shows the distribution of states for different ges-
ture classes learned by the best performing model (multi-
class HCRF). This graph was obtained by computing the
Viterbi path for each sequence (i.e. the most likely assign-

Models Accuracy (%)
HMM ω = 0 84.22
CRF ω = 0 86.03
CRF ω = 1 81.75

HCRF (one-vs-all) ω = 0 87.49
HCRF (multi-class) ω = 0 91.64
HCRF (multi-class) ω = 1 93.81

Table 2. Comparisons of recognition performance (percentage ac-
curacy) for body poses estimated from image sequences.
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Figure 6. Graph showing the distribution of the hidden states for
each gesture class. The numbers in each pie represent the hidden
state label, and the area enclosed by the number represents the
proportion.

ment for the hidden state variables) and counting the num-
ber of times that a given state occurred among those se-
quences. As we can see, the model has found a unique
distribution of hidden states for each gesture, and there is
a significant amount of state sharing among different ges-
ture classes. The state assignment for each image frame
of various gesture classes is illustrated in Figure 7. Here,
we see that body poses that are visually more unique for a
gesture class are assigned very distinct hidden states, while
body poses common between different gesture classes are
assigned the same states. For example, frames of the FB
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Undirected (Pairwise, Continuous) Graphical Models
The generative model represents the full probability distribution P(X ).
Missing edges represent conditional independence of the variables.
Chapter 17 Elements of Statistical Learning

Gaussian graphical models
Markov random fields
Ising model, (restricted) Boltzmann machine
other not mentioned
Bayesian networks, Mixed interaction models, . . .

Cytometry dataset (ESLII)
N = 7466 cells
p = 11 proteins
We ame to model protein
co-occurence probability.

626 17. Undirected Graphical Models

Raf

Mek

Plcg

PIP2

PIP3

Erk Akt

PKA

PKC

P38

Jnk

FIGURE 17.1. Example of a sparse undirected graph, estimated from a flow
cytometry dataset, with p = 11 proteins measured on N = 7466 cells. The net-
work structure was estimated using the graphical lasso procedure discussed in this
chapter.

As we will see, the edges in a graph are parametrized by values or po-
tentials that encode the strength of the conditional dependence between
the random variables at the corresponding vertices. The main challenges in
working with graphical models are model selection (choosing the structure
of the graph), estimation of the edge parameters from data, and compu-
tation of marginal vertex probabilities and expectations, from their joint
distribution. The last two tasks are sometimes called learning and inference
in the computer science literature.
We do not attempt a comprehensive treatment of this interesting area.

Instead, we introduce some basic concepts, and then discuss a few sim-
ple methods for estimation of the parameters and structure of undirected
graphical models; methods that relate to the techniques already discussed
in this book. The estimation approaches that we present for continuous
and discrete-valued vertices are different, so we treat them separately. Sec-
tions 17.3.1 and 17.3.2 may be of particular interest, as they describe new,
regression-based procedures for estimating graphical models.
There is a large and active literature on directed graphical models or

Bayesian networks; these are graphical models in which the edges have
directional arrows (but no directed cycles). Directed graphical models rep-
resent probability distributions that can be factored into products of condi-
tional distributions, and have the potential for causal interpretations. We
refer the reader to Wasserman (2004) for a brief overview of both undi-
rected and directed graphs; the next section follows closely his Chapter 18.

sklearn.covariance.GraphicalLasso # basics

gRbase # the recommended R package
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Sparse Conditional Gaussian Graphical Model Application

Yin, Jianxin & Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis
of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

Cytometry dataset (ESLII)
pY = 54 gene level expressions
pX = 188 markers (discrete)
Y pY |X pX ∼
N (MpY ×pX X pX ,ΣpY ×pY )
conditional Gaussian distribution
Top: Black color indicates
significant association
p − value < 0.01 in the linear
regression.
Bottom: The undirected graph of
43 genes constructed on the
cGGM.

A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL 15

(a)

(b)

Fig. 2. Analysis of yeast MAPK pathway. (a) Association between 188 markers and 54
genes in the MAPK pathway based on simple regression analysis. Black color indicates
significant association at p-value< 0.01. (b) The undirected graph of 43 genes constructed
based on the cGGM.Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 36 / 70



Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.
Fat11 16.00

Meat11 52.00
Fat12 14.00

Meat12 52.00
Fat13 13.00

Meat13 56.00
LeanMeat 59.00

Σ Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08

Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95

Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93

Meat13 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat -9.08 5.33 -7.95 6.03 -6.93 7.23 12.90
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Gaussian Graphical Models (Undirected Graphs)

Multivariate Gaussian Distribution on variables X = (X1, . . . ,Xp)
ϕ(x) = 1√

|2πΣ|
e− 1

2 (x−µ)Σ−1(x−µ)

|.| is the determinant. we denote p the number of components in x. Then
|2πΣ| = (2π)p|Σ|.

If Σ is not invertible it has dependent columns. It means that the variables xj
are lineary dependent.

If the rank of Σ is ℓ then there exists a matrix A and a vector ν so:
x = Az + ν for new coordinates z with ℓ dimensions
We just consider the new coordinates and assume Σ has a full rank.
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Concentration matrix

Concentration (Precision, koncentrační) matrix
K = Σ−1

Lemma
For u ̸= v, kuv = 0 if and only if yu and yv are conditionally independent given all
other variables.

k*100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 44 3 -20 -7 -16 4 10

Meat11 3 16 -3 -6 -6 -6 -3
Fat12 -20 -3 54 6 -21 -5 9

Meat12 -7 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7

Meat13 4 -6 -5 -9 3 16 -1
LeanMeat 10 -3 9 -0 7 -1 26

If looking for small values better to ’scale’ the entries into Partial Correlation
matrix.
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Definition (Partial correlation matrix)
Partial correlation matrix is defined from K by

ρuv |V \{uv} = −kuv√
kuukvv

.

Compare to Pearson correleation cov(u,v)
σuσv

.

Lemma
In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X∗

j = ajXj + bj , j = 1, . . . , p then
av auk∗

uv = kuv and ρ∗
uv |V \{uv} = ρuv |V \{uv}.

ρ ∗ 100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 - -11 41 30 32 -16 -29

Meat11 -11 - 9 41 19 35 16
Fat12 41 9 - -24 38 18 -24

Meat12 30 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18

Meat13 -16 35 18 61 -9 - 7
LeanMeat -29 16 -24 2 -18 7 -
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Models

The simplest model just removes edges with small |ρuv |V \{uv}|. Penalized
criteria will be introduced later.AIC

Fat11

Meat11

Fat12

Meat13

LeanMeat

Fat13

Meat12

BIC

Fat11

Meat11

Fat12

Meat13

Meat12

Fat13

LeanMeat
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)
An undirected Gaussian graphical model is represented by an undirected graph
G = (X ,E ), X = {X1, . . . ,Xp} represent the set of variables and E is a set of
undirected edges.
When a random vector x follows a Gaussian distribution Np(µ,Σ), the graph G
represents the model where K = Σ−1 is a positive definite matrix with ku,v = 0
whenever there is no edge between vertices u, v in G .
This graph is called the dependence graph of the model.

Lemma
For any non adjacent vertices u, v ∈ G it holds: u⊥⊥v |X \ {u, v}.

Definition (Generating class)
Let C = {C1, . . . ,Ck} be the set of cliques of the dependence graph G. A set of
functions g1(), g2(), . . . , gk() defined on gi(xCi ) is called a generating class for
the distribution

f (x) =
∏

i=1,...,k
gi(xCi ).
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Marginalization

We have 1√
|2πΣ|

e− 1
2 (x−µ)Σ−1(x−µ)

We want the distribution over variables
{x3, x5, x7} ⊂ {x1, . . . , xp}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

µ3,5,7 = (µ3, µ5, µ7) and

Σ3,5,7 =

Σ33 Σ35 Σ37
Σ53 Σ55 Σ57
Σ73 Σ75 Σ77


ϕx3,x5,x7 =

1√
|2πΣ3,5,7|

e− 1
2 (x3,5,7−µ3,5,7)Σ−1

3,5,7(x3,5,7−µ3,5,7)

Histogram of s1[, 2]

s1[, 2]
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Conditioning

We ame for ϕ(A|B) where
A ⊂ {x1, . . . , xp} having q elements,
the rest B = {x1, . . . , xp} \ A has (p − q) elements.

We rearrange the rows and columns to have A together. Then we get

x =
[
xA
xB

]
(one column), µ =

[
µA
µB

]
(one column),

Σ =
[
ΣAA ΣAB
ΣBA ΣBB

]
with dimensions

[
q × q q × (p − q)

(p − q)× q (p − q)× (p − q)

]
.

Conditional Gaussian

The parameters of the conditional Gaussian distribution ϕ(A|B = b) =
N(µA|B=b,ΣA|B=b) are:

µA|B=b = µA + ΣABΣ−1
BB(b − µB)

ΣA|B=b = ΣAA − ΣABΣ−1
BBΣBA.

Covariance matrix differs but does not depend on the observation b. It depends
on the fact B was observed.
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Conditional Gaussian Example

µT = (1, 2, 3, 4)

Σ =


10 1 5 4
1 10 2 6
5 2 10 3
4 6 3 10


We observed (X3,X4) to be
(2.8, 4.1)
We ask for ϕ(A|B) =
ϕ({X1,X2}|{X3,X4})

ΣAB =
[
5 4
2 6

]
ΣBB =

[
10 3
3 10

]
Σ−1

BB
.=
[

0.11 −0.033
−0.033 0.11

]

ΣABΣ−1
BB

.=
[

0.418 0.275
0.0220 0.593

]
µA|B=b = µA + ΣABΣ−1

BB(b − µB)

µA|B
.=
[
1
2

]
+
[

0.418 0.275
0.0220 0.593

] [
(2.8− 3)
(4.1− 4)

]
µA|B

.=
[
1
2

]
+
[
−0.056
0.055

]
=
[
0.944
2.055

]
ΣA|B=b = ΣAA − ΣABΣ−1

BBΣBA

ΣA|B=b
.=
[
10 1
1 10

]
−
[
2.53 2.26
2.26 4.13

]
ΣA|B=b

.=
[

7.47 −1.26
−1.26 3.65

]
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Partition Matrix Inverse Properties

The concentration matrix K = Σ−1 is the inverse of the correlation matrix,
therefore: (

KAA KAB
KBA KBB

)(
ΣAA ΣAB
ΣBA ΣBB

)
=
(

IAA 0
0 IBB

)

From the top right part we get:

KAAΣAB + KABΣBB = 0
−KAAΣABΣ−1

BB = KAB(1) (1)
ΣABΣ−1

BB = −K−1
AA KAB(2). (2)

Take the top left part and substitute (1):

KAAΣAA + KABΣBA = IAA

KAAΣAA + (−KAAΣABΣ−1
BBΣBA) = IAA

K−1
AA = ΣAA − ΣABΣ−1

BBΣBA.
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Regression Coefficients

µA|B=b = µA + ΣABΣ−1
BB(b − µB)

ΣA|B=b = ΣAA − ΣABΣ−1
BBΣBA

Consider x1 to be a linear function of others with the noise ϵ1 ∼ N(0, σ2
1):

x1|2...p = β1 + β12x2 + β13x3 + . . .+ β1pxp + ϵ1

Set A the first dimension, B the remaining (p − 1)× (p − 1) matrix:

x1|B=(x2,...,xp)T = µA|B + ΣABΣ−1
BB

 x2
. . .
xp

− µB

+ ϵ

Recall (2): ΣABΣ−1
BB = −K−1

AA KAB
then σ2

1 = 1
k11

with coefficients β

(β12, . . . , β1p) = − (k12, . . . , k1p)
k11

. (3)
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Fit Linear Gaussian CPD

To fit ML model of a linear gaussian CPD,
you fit the linear regression.

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ϵ1

β̂ = (XTX)−1XTy
σ̂2

Y = Cov(Y ,Y )−
∑

i

∑
j
βiβjCov [Xi ; Xj ]

Cov(Xi ; Xj) = E [(Xi − E[Xi ])(Xj − E[Xj ])]

E[Xj ] = 1
Nrows

∑
i∈rows

xij

from pgmpy.factors.continuous import LinearGaussianCPD
ml=maximum_likelihood_estimator(data, states)
cpdY.fit(data, states, estimator=ml, complete_samples_only=True)
https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf
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Parameter Learning for a Gaussian Graphical Model
Let us have the data xT

1 , . . . , xT
N over variables x ∼ Np(µ,Σ).

S = 1
N
∑N

i=1(xi − x̄)(xi − x̄)T is the empirical covariance matrix.
Our model is represented by the concentration matrix Θ = Σ−1 and mean µ.
Log-likelihood of the data is

loglik(Θ, µ) = N
2 log |Θ| − N

2 tr(ΘS)− N
2 (x̄ − µ)T Θ(x̄ − µ).

for a fixed Θ is the maximum for µ: µ = x̄ and the last term is 0. We get
loglik(Θ, µ) ∝ log |Θ| − tr(ΘS)
where tr(ΘS) =

∑
u
∑

v θuv suv , therefore only suv corresponding to non-zero
θuv are considered by the sum.
We replace the equality conditions by Lagrange multiplyers:
ℓC (Θ) = log |Θ| − tr(ΘS)−

∑
(j,k)/∈E γjkθjk

We maximize. The derivative Θ should be zero (Γ is a matrix with non-zero
for missing edges):

Θ−1 − S − Γ = 0
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Towards the Algorithm
We iterate one row/column after another.
We start with the sample covariance matrix

W0 ← S

We derive the formula for the last row/column: the derivative(
W11 w12
wT

12 w22

)
−
(

S11 s12
sT
12 s22

)
−
(

Γ11 γ12
γT

12 γ22

)
= 0

The upper right block can be written as w12 − s12 − γ12 = 0.
W is inverse of Θ (

W11 w12
wT

12 w22

)(
Θ11 θ12
θT

12 θ22

)
=
(

I 0
0T 1

)
therefore the last column without last row is:

w12 = −W11θ12/θ22 = W11β

Substitute into the derivative W11β − s12 − γ12 = 0
we solve for the rows with zero γ: β̂∗ = (W ∗

11)−1s∗
12.

The diagonal θ22 is (1 bottom right): 1
θ22

= w22 − wT
12β.

Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 50 / 70



Estimation of an Undirected Graphical Model Parameters

1: procedure Graphical Regression:( S sample covariance )
2: W ← S initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W ∗

11β
∗ − s∗

12 = 0 for reduced system
7: β̂ ← β̂∗ by padding with zeros
8: update w12 ←W11β̂
9: end for

10: until convergence
11: for j = 1, 2, . . . , p do
12: lines 5:-8: above and set
13: θ̂22 ← 1

w22−wT
12β̂

▷ the last row on previous slide

14: θ̂12 ← −β̂ · θ̂22 ▷ (3)
15: end for
16: end procedure
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Example (ESLII)

X1

X2 X3

X4

W0 = S =


10.00 1.00 5.00 4.00
1.00 10.00 2.00 6.00
5.00 2.00 10.00 3.00
4.00 6.00 3.00 10.00



W11 =

10.00 2.00 6.00
2.00 10.00 3.00
6.00 3.00 10.00


W ∗

11 =
[
10.00 6.00
6.00 10.00

]
W ∗,−1

11 =
[

0.156 −0.094
−0.094 0.156

]
β∗ = [−0.22, 0.53]T

β = [−0.22, 0, 0.53]T

w12 ← [1.00, 1.16, 4.00]T

W22 =

10.00 1.16 4.00
1.16 10.00 3.00
4.00 3.00 10.00


W ∗

22 =
[
10.00 1.16
1.16 10.00

]
W ∗,−1

22 =
[

0.101 −0.012
−0.012 0.101

]
β2∗ = [0.08, 0.19]T

β2 = [0.08, 0.19, 0]T

w2r ← [1.00, 2, 0.88]T

Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 52 / 70



Structure Learning
We add a lasso penalty ||Θ||1 which denotes the L1 norm

the sum of the absolute values of the elements of Θ and we ignore the
diagonal.
The negative penalized log-likelihood is a convex function of Θ.

we maximize penalized log-likelihood

log |Θ| − tr(ΘS)− λ||Θ||1 (4)

the gradient equation is now

Θ−1 − S − λSign(Θ) = 0 (5)

sub-gradient notation
Sign(θjk) = sign(θjk) for θjk ̸= 0
Sign(θjk) ∈ [−1, 1] for θjk = 0

the update for the first row and column will be

W11β − s12 + λSign(β) = 0 (6)

since β and θ12 have opposite signs.
Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 53 / 70



1: procedure Graphical Lasso:( S sample covariance,λ penalty )
2: W ← S + λI initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W11β − s12 + λSign(β) = 0 using the cyclical
7: . . . coordinate-descent algorithm for the modified lasso
8: update w12 by W11β̂
9: end for

10: until convergence
11: for j = 1, 2, . . . , p do
12: solve θ̂22 ← 1

s22−wT
12β̂

13: solve θ̂12 ← −β̂ · θ̂22
14: end for
15: end procedure
16: procedure CoordinateDescent:( V ←W11 )
17: repeat j = 1, 2, . . . , p − 1
18: β̂j ← S(s12j −

∑
k ̸=j Vkj β̂k , λ)/Vjj

19: until convergence
20: end procedure #S(x , t) = sign(x)(|x | − t)+
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Example (glasso)

λ← 1 W0 = S+λI =


11.00 1.00 5.00 4.00
1.00 11.00 2.00 6.00
5.00 2.00 11.00 3.00
4.00 6.00 3.00 11.00



W11 =

11.00 2.00 6.00
2.00 11.00 3.00
6.00 3.00 11.00


sT
12 =

[
1.00 5.00 4.00

]
βT ,(0) =

[
0 0 0

]
V ← W11

β
(1)
2 = S(1− 0, 1)/11 = 0

β
(1)
3 = S(5− 0, 1)/11 = 4

11
β

(1)
4 = S(4− 3 · 4

11 , 1)/11 = 21
121

β
(2)
2 = S(1− 2 · 4

11 −
6 · 21
121 , 1)/11 ≈ −0.16

β
(2)
3 = S(5 + 0.32− 3 · 21

121 , 1)/11 ≈ 0.35

β
(2)
4 = . . .

. . .

β̂1 ≈ [−0.22; 0.32; 0.30]

W1 ≈


11.00 0.05 4.03 3.01
0.05 11.00 2.00 6.00
4.03 2.00 11.00 3.00
3.01 6.00 3.00 11.00
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Graphical Lasso Properties

Computational speed
The graphical lasso algorithm is extremely fast
can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge–specific penalty parameters λjk
setting λjk = ∞ will force θ̂jk to be zero
graphical lasso subsumes the parameter learning algorithm.

Missing data
some missing observations may be imputed by EM algorithm from the model
latent – fully unobserved variables – do not bring more power in Gaussian
graphical model
latent variables are very important in discrete distributions.

sklearn.covariance.graphical_lasso
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Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)
saturated model - full model with all edges, it has maximal loglikelihood
Deviance

D = dev = 2 · (ℓ̂sat − ℓ̂) = N log |S
−1|
|K̂ |

= −N log |SK̂ |

independent model - no edges, it has minimal likelihood
iDeviance

iD = idev = 2 · (ℓ̂− ℓ̂ind) = N
(

log |K̂ |+
p∑

i=1
log sii

)

lrt likelihood ratio test for models M1 ⊆M0

lrt = 2 · (ℓ̂0 − ℓ̂1) = N log |K̂0|
|K̂1|

.
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)
An Undirected Graphical Model (Markov graph, Markov network) is a graph
G = (V ,E ), where nodes V represent random variables and the absence of an
edge (A,B) denoted A ⊥⊥G B implies that the corresponding random variables are
conditionally independent given the rest in the probability distribution P(V ).

A ⊥⊥G B =⇒ A ⊥⊥P B|V \ {A,B}. (7)

is known as the pairwise Markov independencies of G.

Definition (Separators)
If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C .
C is called a separator.

Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)
A probability measure P over V is (globally) Markov with respect to an
undirected graph G iff for any subgraphs A, B and C holds:

if C separates A and B then the conditional independence A ⊥⊥P B|C holds,
that is

A ⊥⊥G B|C =⇒ P(A|C) · P(B|C) = P(A,B|C). (8)

Theorem
The pairwise and global Markov properties of a graph are equivalent for graphs
with strictly positive distributions.

Gaussian distribution is always positive.
We may infer global independence relations from simple pairwise properties.
The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovská náhodná pole)
A probability density function f over a Markov graph G with the set of
maximal cliques {C1, . . . ,Ck} can be represented as

f (x) =
∏

i=1,...,k
ψi(xCi ) = ψ1(xC1) · . . . · ψk(xCk ) (9)

where ψi are positive functions called clique potentials.
they capture the dependence in XCi by scoring certain instances xCi higher
than others.
with the normalizing constant (partition function) Z

Z =
∫

X
exp

 ∑
i=1,...,k

log gi(xCi )

 .

Such set of random variables is called Markov Random Field or Markov
graph. If the potentials represent conditional probabilities with respect to
some observation, it is called a Conditional Markov Random Field.
For Markov networks with positive distributions the probability density
function (9) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

A graphical model does not always uniquely
specify the higher–order dependence structure of
ta joint probability distribution.

f (2)(x , y , z) = 1
Z ψ1(x , y)ψ2(x , z)ψ3(y , z)

f (3)(x , y , z) = 1
Z ψ(x , y , z)

For Gaussian distribution, pairwise interactions
fully specify the model.

X

Y Z

We focus on pairwise Markov Graphs
where at most second order interactions are represented (like f (2)).
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MRF for Image Denoising

Given a noisy image v , perhaps with missing pixels, recover an image u,
un,m ∈ R that is both smooth and close to v .
Let each pixel be a node in a graph G = (V ,E ), with 4-connected
neighborhood. Only pairwise interactions are present.
We minimize the energy function (add missing margin on your own)

E (u) =
∑

(m,n)∈P

(um,n−vm,n)2+λ
∑

(m,n)∈P

[
(un+1,m − un,m)2 + (un,m+1 − un,m)2]

We can solve u iteratively
sm,n = un−1,m + un+1,m + un,m−1 + un,m+1,

u(t+1)
n,m =

{
1

1+4λ
(vn,m + λs(t)

n,m) for (n, m) ∈ v
1
4 s(t)

n,m for missing v

}
The goal is to find the signal u that minimizes the
energy E (u).

Image Denoising

Consider image restoration: Given a noisy imagev, perhaps with miss-

ing pixels, recover an imageu that is both smooth and close tov.

Let each pixel be a node in a graphG = (V , E), with 4-connected

neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E
V (ui, uj) (3)

• Unary (clique) potentialsD stem from the measurement model,

penalizing the discrepancy between the datav and the solutionu.

This models assumes conditional independence of observations.

The unary potentials are pixel log likelihoods.

• Interaction (clique) potentialsV provide a definition of smooth-

ness, penalizing changes inu between pixels and their neighbours.

Goal: Find the imageu that minimizesE(u) (and thereby maximizes

p(u|v) since, up to a constant,E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Estimation by Max-flow/Min-Cut in a specific graph or Gibbs sampling.
https://www.cs.toronto.edu/~fleet/courses/2503/fall11/Handouts/mrf.pdf
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Definition (Ising Model, Boltzmann Machine (in ESLII))
The Ising model is defined by a graph G = (X ,E ) of binary variables
Xi ∈ X and a set of parameters Θ. The joint probabilities are given by:

p(X ,Θ) = e
∑

(j,k)∈E
θjk Xj Xk −Φ(Θ) for X ∈ X

Φ(Θ) = log
∑
x∈X

[
e
∑

(j,k)∈E
θjk xj xk

]
.

it models only binary interactions (and unary)
for technical reasons requires constant node X0 ≡ 1 to be included.
Originally from statistical mechanics.
This model is equivalent to a first-order-interaction Poisson log-linear model
for multiway tables of counts (Bishop et al., 1975).
it implies a logistic form for each node conditional on the others

P(Xj = 1|X−j = x−j) = 1
1− exp(−θj0 −

∑
(j,k)∈E θjkxk) .

Θ is fitted iteratively (Iterative proportional fitting, gradient descend, Poisson
log-linear modeling, Mean field approximation, Gibbs sampling).
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Restricted Boltzmann Machines (RBM)

We have visible V and hidden H
variables.
’restricted’ means the variables are
organized in two layers:

the hidden layer
the visible layer that is split to
input V1 and output variables V2.
(pixels of image/digit label).
no edges inside any layer
an edge between each hidden and
visible variable.

The structure enables faster
parameter estimation.

Exercises 645

FIGURE 17.7. Example of a restricted Boltzmann machine for handwritten
digit classification. The network is depicted in the schematic on the left. Displayed
on the right are some difficult test images that the model classifies correctly.

second RBM that has 500 visible units and 500 hidden units. Finally, the
hidden states of the second RBM are used as the features for training an
RBM with 2000 hidden units as a joint density model. The details and
justification for learning features in this greedy, layer-by-layer way are de-
scribed in Hinton et al. (2006). Figure 17.7 gives a representation of the
composite model that is learned in this way and also shows some examples
of the types of distortion that it can cope with.

Bibliographic Notes

Much work has been done in defining and understanding the structure of
graphical models. Comprehensive treatments of graphical models can be
found in Whittaker (1990), Lauritzen (1996), Cox and Wermuth (1996),
Edwards (2000), Pearl (2000), Anderson (2003), Jordan (2004), and Koller
and Friedman (2007). Wasserman (2004) gives a brief introduction, and
Chapter 8 of Bishop (2006) gives a more detailed overview. Boltzmann
machines were proposed in Ackley et al. (1985). Ripley (1996) has a detailed
chapter on topics in graphical models that relate to machine learning. We
found this particularly useful for its discussion of Boltzmann machines.

Exercises

Ex. 17.1 For the Markov graph of Figure 17.8, list all of the implied condi-
tional independence relations and find the maximal cliques.

An Introduction to Restricted Boltzmann Machines 23

Gibbs sampler to the stationary distribution of the MRF is bounded by the
following inequality (see for example [6]):

|μPk − π| ≤ 1

2
|μ− π|(1− e−N�)k, (19)

where = supl∈V δl and δl = sup{|E(x)−E(y)|;xi = yi∀i ∈ V with i �= l}. Here
μ is an arbitrary starting distribution and 1

2 |μ− π| is the distance in variation
as defined in (15).

4 Restricted Boltzmann Machines

A RBM (also denoted as Harmonium [34]) is an MRF associated with a bipar-
tite undirected graph as shown in Fig. 1. It consists of m visible units V =
(V1, ..., Vm) to represent observable data and n hidden units H = (H1, ..., Hn)
to capture dependencies between observed variables. In binary RBMs, our focus
in this tutorial, the random variables (V ,H) take values (v,h) ∈ {0, 1}m+n

and the joint probability distribution under the model is given by the Gibbs
distribution p(v,h) = 1

Z e
−E(v,h) with the energy function

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi . (20)

For all i ∈ {1, ..., n} and j ∈ {1, ...,m}, wij is a real valued weight associated
with the edge between units Vj and Hi and bj and ci are real valued bias terms
associated with the jth visible and the ith hidden variable, respectively.

Fig. 1. The undirected graph of an RBM with n hidden and m visible variables

The graph of an RBM has only connections between the layer of hidden and
visible variables but not between two variables of the same layer. In terms of
probability this means that the hidden variables are independent given the state
of the visible variables and vice versa:

E (v , h) = −
n∑

i=1

m∑
j=1

wijhivj −
m∑

j=1
bjvj −

n∑
i=1

cihi
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Contrastive divergence×

1: procedure Contrastive divergence:( S batch for update)
2: ∆wij ,∆bj ,∆ci ← 0
3: repeat
4: for each training sample in a batch S do
5: Sample H given V1, V2
6: Sample V(last)

1 , V(last)
2 given H

7: Sample H given V(last)
1 , V(last)

2
8: ∆wij ← ∆wij +p(Hi = 1|v (0)) ·v (0)

j −p(Hi = 1|v (last)) ·v (last)
j

9: ∆bj ← ∆bj + v (0)
j − v (last)

j
10: ∆ci ← ∆ci + p(Hi = 1|v (0))− p(Hi = 1|v (last))
11: end for
12: until convergence
13: return ∆wij , ∆bj , ∆ci to adjust the parameters.
14: end procedure

Fischer, A., Igel, C. (2012). An Introduction to Restricted Boltzmann Machines.
In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds) Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012.
Lecture Notes in Computer Science, vol 7441. Springer, Berlin, Heidelberg.Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 65 / 70



Mixed interaction models

Discrete and Gaussian variables together.
Conditional Gaussian density for x = (i , y), i is the list of discrete variables, y
is the list of continuous variables.
Directed graphs: a discrete child of a continuous parent is not allowed.
Undirected graphs: If there is a path between two discrete variables A,B,
then they are connected by a path without any continuous variable.
f (i , y) = p(i)(2π)− q

2 |Σ|− 1
2 exp(− 1

2 (y − µ(i))Σ−1(y − µ(i)))
The parameters p(i), µ(i), i ∈ I,Σ are called moment parameters
in the exponential form we get

f (i , y) = exp
{

g(i) + h(i)T y − 1
2yT Ky

}
= exp

{
g(i) + Σuhu(i)yu −

1
2Σu,v Ku,v yuyv

}
parameters g(i), h(i), i ∈ I,K are called canonical parameters.
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Mixed interaction models

A marginal distribution is not necessarily a conditional Gaussian distribution
it is a mixture of conditional Gaussians
it is still tractable for evaluation
and learning.

Is this possible for other kind of distributions?
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)
Let G be an undirected graph over V , let P be a probability measure P over V .
(GM) P is (globally) Markov with respect to G iff

∀(A,B ∈ V , C ⊆ V ) A ⊥⊥G B|C ⇒ A ⊥⊥P B|C in P.

(LM) A probability measure has the local Markov property iff
(∀A ∈ V ) : A ⊥⊥P V \ FaA|NA

(PM) P has the pairwise Markov property iff ∀A,B ∈ V ,A ̸= B not connected
by an edge holds A ⊥⊥P B|V \ {A,B}.

Theorem
These properties are equivalent for strictly positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)
and (1, 1, 1).
See [Milan Studený:Struktury podmíněné nezávislosti, Matfyzpress 2014].
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Examples

Example (P has the pairvise but not the local
property)
V = {A,B,C},E = {(b, c)}. Let us have a
binary probability measure V nonzero at points
(0, 0, 0) and (1, 1, 1) [Studený p.101].
A ⊥⊥ B|{C}
A ⊥⊥ C |{B}& does not imply A ⊥⊥ BC |{}.

A B C

Example (P has the local but not the global
property)
V = {A,B,C ,D},E = {(a, b), (c, d)}. Let
P(V ) be nonzero only at points (0, 0, 0, 0) and
(1, 1, 1, 1) [Studený p.101].
A ⊥⊥ CD|{B}
B ⊥⊥ CD|{A}
C ⊥⊥ AB|{D}
D ⊥⊥ AB|{C}

& does not imply A ⊥⊥ C |{}.

A

B

C

D
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Nonparanormal Graphical Models
A continuous pairwise interaction model.
We model marginal distributions,
and the most important relations by gaussian copula.
https://www.stat.cmu.edu/~larry/=sml/GraphicalModels.pdf
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Three examples of nonparanormals.

We can estimate G using a two stage procedure:

1. Estimate each Zj = fj(xj) = Φ−1(Fj(xj)).

2. Apply the glasso to the Zj’s.

Let f̂j(xj) = Φ−1(F̂j(xj)). The usual empirical F̂j(xj) will not work if d increases with n. We
use a Winsorized version:

F̃j(x) =





δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1− δn
(1− δn) if F̂j(x) > 1− δn,

where

δn ≡
1

4n1/4
√
π log n

.

This choice of δn provides the right bias-variance balance so that we can achieve the desired
rate of convergence in our estimate of Ω and the associated undirected graph G. Now compute
the sample covariance Sn of the Normalized variables: Zj = f̂j(Xj) = Φ−1(F̃j(Xj)). Finally,
apply the glasso to Sn. Let S∗n be the covariance using the true fj’s.

19

Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025 70 / 70



List of topics
1 Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,

curse of dimensionality, (LARS)
2 Splines - the base, natural splines, smoothing splines; kernel smoothing:

kernel average, Epanechnikov kernel.
3 Logistic regression, Linear discriminant analysis, generalized additive models
4 Train/test error and data split, square error, 0-1, crossentropy, AIC,

BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
5 decision trees, information gain/entropy/gini, CART prunning,(formulas)
6 random forest (+bagging), OOB error, Variable importance, boosting

(Adaboost(formulas) and gradient boosting), stacking, MARS ,
7 Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal

prediction, EM algorithm
8 Clustering: k-means, Silhouette, k-medoids, hierarchical
9 Apriori algorithm, Association rules, support, confidence, lift
10 Inductive logic programming basic: hypothesis space search, background

knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
11 Undirected graphical models, Graphical Lasso procedure, deviance , MRF

12 Gaussian processes: estimation of the function and its variance (figures,
ideas).
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