Example: Hidden CRF for Gesture Recognition

@ Sy Bor Wang, A. Quattoni, L. . -P. Morency, D. Demirdjian and T. Darrell,
"Hidden Conditional Random Fields for Gesture Recognition," 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), 2006, pp. 1521-1527, doi: 10.1109/CVPR.2006.132.
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Figure 1. lustrations of the six gesture classes for the experiments. Below each image is the abbreviation for the gesture class. These
gesture classes are: FB - Flip Back, SV - Shrink Vertically, EV - Expand Vertically, DB - Double Back, PB - Point and Back, EH - Expand
Horizontally. The green arrows are the motion trajectory of the fingertip and the numbers next to the arrows symbolize the order of these
arrows.
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HCRF Example

top Hidden Markov Model for each gesture.

middle Conditional Random Field: For each frame,
the gesture type Y is estimated, the most
frequent one is used for classification.
o Different window size w is used.
bottom 12 hidden states for each frame are

learned; the overall classification is base on
these estimated states.

Potentials
q](yvs’x; 9,0./‘) = E W(X*]JJJ) '93[8]'] + E 9y[2/~ S]]
j=1 j=1
+ E 06 [Z/, Sjy Sk} (3)
(4.k)EE
Figure 4. HCRF Model
Models Accuracy (%)
Models Accuracy (%) HMM w =0 84.22
HCRF w=0 86.44 CRFw=0 86.03
HORFw=1 %681 HCRF(CRFW s 111) 0 :713.2
one-vs-all) w = o
HCRF w =2 97.75 HCRF (multi-class) & = 0 91.64
HCRF (multi-class) w = 1 93.81
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Undirected (Pairwise, Continuous) Graphical Models

The generative model represents the full probability distribution P(X).
Missing edges represent conditional independence of the variables.
Chapter 17 Elements of Statistical Learning
o Gaussian graphical models
o Markov random fields
o Ising model, (restricted) Boltzmann machine
other not mentioned

o Bayesian networks, Mixed interaction models, ...
Raf
O

Mek_— nk
Cytometry dataset (ESLII) X\Kg
N = 7466 cells Pleg
p = 11 proteins \E
K

We ame to model protein PIP2
co-occurence probability.

PIP3
o

sklearn.covariance.GraphicallLasso # basics J Erk

gRbase # the recommended R package
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Sparse Conditional Gaussian Graphical Model Application

Yin, Jianxin & Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis
of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

o Cytometry dataset (ESLII)
@ py = 54 gene level expressions

o px = 188 markers (discrete)

) YPY‘XPX ~
./\[(/\/]PY><P)<)(P)<7 ZPYXPY)
conditional Gaussian distribution

@ Top: Black color indicates
significant association
p — value < 0.01 in the linear
regression.

@ Bottom: The undirected graph of
43 genes constructed on the
cGGM.
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Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.

Fatll 16.00
Meatll 52.00
Fatl2 14.00
Meat1l2 52.00
Fat13  13.00

Meatl3 56.00
LeanMeat  59.00
Y Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meatl1 0.74 32.97 0.67 35.94 2.01 31.97 533
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fatl3 7.66 2.01 6.84 2.18 7.62 0.38 -6.93
Meatl3 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23

LeanMeat  -9.08 533 -7.95 6.03 -6.93 7.23 12.90
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Gaussian Graphical Models (Undirected Graphs)

e Multivariate Gaussian Distribution on variables X = (Xi,..., X))
— 1 a3 (x—p)
® ¢(x) \/me 2
e |.| is the determinant. we denote p the number of components in x. Then
|27X] = (27)P|X|.

o If X is not invertible it has dependent columns. It means that the variables x;
are lineary dependent.
o If the rank of X is £ then there exists a matrix A and a vector v so:
e x = Az + v for new coordinates z with ¢ dimensions
o We just consider the new coordinates and assume X has a full rank.
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Concentration matrix

o Concentration (Precision, koncentraéni) matrix
K=x"

For u # v, ky,, =0 if and only if y, and y, are conditionally independent given all
other variables.

k*¥100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll 44 3 -20 -7 -16 4 10
Meatl11 3 16 -3 -6 -6 -6 -3
Fatl2 -20 -3 54 6 -21 -5 9
Meat12 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7
Meat13 4 -6 -5 -9 3 16 -1
LeanMeat -3 9 -0 7 -1 26
@ If looking for small values better to 'scale’ the entries into Partial Correlation
matrix.
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Definition (Partial correlation matrix)

Partial correlation matrix is defined from K by

_kuv
Puv|V\{u} = m

cov(u,v)

Compare to Pearson correleation

In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X; = a;X; + b;, j=1,...,p then
avauk:v = kuv and PZ\,W\{L,V} = puv|V\{uv}-

p*100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll - -11 41 30 32 -16 -29
Meatll -11 - 9 41 19 35 16
Fatl2 41 9 - -24 38 18 -24
Meat12 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18
Meatl3 -16 35 18 61 -9 - 7
LeanMeat 16 -24 2 -18 7 -
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Models

@ The simplest model just removes edges with small [p,, |\ u}|. Penalized
criteria will be introduced later.
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)

An undirected Gaussian graphical model is represented by an undirected graph
G =(X,E), X ={Xq,..., Xy} represent the set of variables and E is a set of
undirected edges.

When a random vector x follows a Gaussian distribution N,(u,X), the graph G
represents the model where K = ¥~ is a positive definite matrix with k,, =0
whenever there is no edge between vertices u, v in G.

This graph is called the dependence graph of the model.

For any non adjacent vertices u,v € G it holds: ullv|X\ {u, v}.

Definition (Generating class)

Let C = {C,..., Cc} be the set of cliques of the dependence graph G. A set of
functions g1(), (), - . ., gk() defined on gj(xc,) is called a generating class for
the distribution

f)= ][ &xc)
i=1,....k
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Marginalization

L —3(x=p) T (x—p)
o We haveme 2

@ We want the distribution over variables
{x3,%5, %7} C {x1,..., %}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

o p357 = (13, 15, 17) and

Y33 X35 X3y
Y357 = |¥s53 Xs5 Xs7
Z73 z75 z77
® Dy s =
1 e—%(X3,5,7—M3,5,7)Z3_,5177(X3,5,7—M3,5,7)

A/ |27TZ3,5,7|

Undirected Graphical Models 11
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Conditioning

@ We ame for ¢(A|B) where
e AC {x1,...,Xp} having g elements,
o the rest B = {x1,...,x} \ A has (p — q) elements.

@ We rearrange the rows and columns to have A together. Then we get

XA 1A
= | = I ,
LB} (one column), u [MB} (one column)
Yaa Xag| . o . [ gxq gx(p—q)
Y = with dimensions .
[ZBA ZBB] (p—a)xq (p—q)x(p—q)
Conditional Gaussian

The parameters of the conditional Gaussian distribution ¢(A|B = b)
N(pag=b, Zag=b) are:

HA|B=b pa+ asTpp(b — pg)

Yag=bp = Yaa — LasZppTpa-

Covariance matrix differs but does not depend on the observation b. It depends
on the fact B was observed.
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Conditional Gaussian Example

o 1T =(1,2,3,4)

10 1 5 4 s 51 [0418 0275
1 10 2 6 ® £AB%BB = 10,0220 0.593
°X=15 5 10 3 1
= Y AsXai(b —
40 310 S 1MA | oAﬁLsBB(o 275MB)(2 8—3)
o We observed (X3, X;) to be @ piap = [ } + [ : ) } { ' : ]
(25.40) 2| 7 10.0220 0.593| |(4.1—4)

o We ask for ¢(A|B) =
O({ X1, X2 }[{ X3, Xa})

[

- 1], [-0056] _ [0.944
Haig = 1o 0.055 | ~ [2.055

s 5 4 ® Yap_b=Tar— LasTppTea
* T2 6} S 10 1 253 2.26
0 3 ® Yap-b= 17 10| " |226 413
R 10] - . [7.47 —1.26}
- A|B=b =
g1 [ 011 0033 | ~1.26 3.65
BB~ |-0.033  0.11
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Partition Matrix Inverse Properties

@ The concentration matrix K = X1 is the inverse of the correlation matrix,

therefore:
<KAA KAB> (ZAA ):AB) _ (IAA 0 )
Kea Kgs) \Xea XgB 0 Igs

@ From the top right part we get:

KapZasg + KagXes=0
~KaaZagTps = Kas(l) (1)
YaeXpy = —KiiKag(2). (2)

o Take the top left part and substitute (1):

KaaXaa + KagXpea = laa
KaaZaa + (—KaaZapZpgpXea) = laa
Kz = Xaa— XagXpilsa.
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Regression Coefficients

pag—p = fa+XasTps(b— pis)
Yas=b = Xaa— Laslppisa

o Consider x; to be a linear function of others with the noise e; ~ N(0,0?):

X12..p = P14+ Pr2xo+ P1zxz+ ...+ BipXp + €1

@ Set A the first dimension, B the remaining (p — 1) x (p — 1) matrix:

X2
X1|B=(x,....%)T = HMABT ZABZELI; | —HB | Te€
Xp
o Recall (2): YA pp = —KaaKas
o then o7 = ;1 with coefficients /3
kiz, ..., k
(B Brp) = — L2 ltn) 3)
11
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Fit Linear Gaussian CPD

@ To fit ML model of a linear gaussian CPD,
e you fit the linear regression.

y = Bo+fBixi+Baxat ...+ Bpxpt e
g o= (XTX)"xTy
6% = Cov(Y,Y) ZZMJCOV[X,,X]
Cov(X; Xj) = [(X-—E[X-])(&—E[&])]
E[Xj] = Z Xij

rows i€rows

from pgmpy.factors.continuous import LinearGaussianCPD
ml=maximum_likelihood_estimator(data, states)
cpdY fit(data, states, estimator=ml, complete_samples_only=True)

https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf
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Parameter Learning for a Gaussian Graphical Model

Let us have the data x{ ,...,xJ over variables x ~ N,(u, X).

°S=14 Z,{V:l(x,- — X)(x; — x)T is the empirical covariance matrix.

@ Our model is represented by the concentration matrix © = ¥~ and mean p.

Log-likelihood of the data is

) N N N, _ -
loglik(©, 1) = > log |©] — Etr(@S) - E(X —uw)TO(x — p).

o for a fixed © is the maximum for u: p = X and the last term is 0. We get
o loglik(©, 1) x log|©| — tr(©S)

where tr(©S) =3, >, 0uvsu, therefore only s,, corresponding to non-zero
0., are considered by the sum.

We replace the equality conditions by Lagrange multiplyers:
£c(©) = log|O| — tr(©5) — >_; kee Vikbi
We maximize. The derivative © should be zero (I is a matrix with non-zero
for missing edges):
@ '-5-T=0
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Towards the Algorithm
o We iterate one row/column after another.
@ We start with the sample covariance matrix
WO «~ S

o We derive the formula for the last row/column: the derivative
Wit wio S11 s M 72\ _ 0
wh wen ) \sh os»w)  \nh B

12 22 12 522 T2 722

@ The upper right block can be written as wiy — 512 — 712 = 0.

o W is inverse of ©
Wi wiz) (O b2\ _ (1 0
WIE W22 917; 922 OT 1

@ therefore the last column without last row is:
wip = —Wi16012/02 = Wi 8
@ Substitute into the derivative Wi18 — 515 — y12 =0

*

@ we solve for the rows with zero v: 3* = (W) 1ss,.
@ The diagonal 65, is (1 bottom right): é = Wy — whf.
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Estimation of an Undirected Graphical Model Parameters

1: procedure GRAPHICAL REGRESSION:( S sample covariance )
2 W <« S initialize
3 repeat
4 for j=1,2,...,pdo
5: Partition W; jth row and column, Wi; the rest
6 solve Wy 8" — si, = 0 for reduced system
7 B — B* by padding with zeros
8 update wyp < WllB
9 end for
10: until convergence
11: for j=1,2,...,pdo
12: lines 5:-8: above and set
13: é22 — m > the last row on previous slide
14: 912 < 76 o 922 > (3)
15: end for
16: end procedure
Machine Learning Undirected Graphical Models 11 108 - 145 May 9, 2025
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Example (ESLII)

e

Wi, = |200 10.00 3.00
| 6.00 3.00 10.00
. [10.00 6.00
Win = | 6.00 10.00}
Wl [0.156  —0.094
1 ~ |-0.094 0.156
g* = [-0.22,0.53]"
g = [-0.22,0,0.53]"

wip + [1.00,1.16,4.00]"

Machine Learning Undirected Graphical Models 11

10.00
1.00
5.00
4.00

] Was

[10.00 2.00 6.00

*
W22
*,—1

W22

p2*
82

War

108 - 145

1.00 5.00 4.00
10.00 2.00 6.00
2.00 10.00 3.00
6.00 3.00 10.00

1.16 10.00 3.00
| 400 3.00 10.00

10.00 1.16
| 1.16  10.00

[0.101 —0.012
|—0.012  0.101

[0.08,0.19] "
[0.08,0.19,0] "
[1.00,2,0.88] "

[10.00 1.16 4.00]

May 9, 2025
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Structure Learning

o We add a lasso penalty ||©||; which denotes the L; norm
o the sum of the absolute values of the elements of © and we ignore the
diagonal.
e The negative penalized log-likelihood is a convex function of ©.

@ we maximize penalized log-likelihood
log|®[ — tr(©5) — A[|O]|x (4)
@ the gradient equation is now
©7!' -5 —-\Sign(®) =0 (5)
o sub-gradient notation
o Sign(0y) = sign(0) for Oy #£ 0

o Sign(0j) € [-1,1] for O =0
@ the update for the first row and column will be

Wi16 — si2 + ASign(B) = 0 (6)

e since B and 612 have opposite signs.
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1: procedure GRAPHICAL LASSO:( S sample covariance, A penalty )
2 W < S + Al initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W jth row and column, Wj; the rest

6 solve Wi18 — s12 + ASign(8) = 0 using the cyclical

7 ... coordinate-descent algorithm for the modified lasso
8 update wys by W11[§

9 end for

10: until convergence

11 for j=1,2,...,pdo

12: solve 6y m

13: solve é12 — —B : 922

14: end for

15: end procedure
16: procedure COORDINATEDESCENT:( V « Wiy )
17: repeat j=1,2,....p—1

18: B = S(s12 — Ly ViiBrs N/ Vi
19: until convergence
20: end procedure #S5(x, t) = sign(x)(|x| — t)+
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Example (glasso)

11.00 1.00 5.00 4.00
o N1 B | 1.00 11.00 2.00 6.00
Wo=5+A=1500 200 11.00 3.00

400 6.00 3.00 11.00

11.00 2.00 6.007 o 2.4 621 N
Wy = [200 1100 300]| P2 =507 — 457 1)/11~-016
6.00 3.00 11.00 3.21
() — 5(54+0.32— ==-1)/11 ~ 0.35
s, = [1.00 5.00 4.00] , 121
ﬂT,(O) _ [0 0 O] 64 = ...
V o« W11 R U

11.00 0.05 4.03 3.01

() S(5-0,1)/11 0.05 11.00 2.00 6.0

1 W]_%

4.03 2.00 11.00 3.00
3-4 21
Vo= se-Tr

1=
11 1)/ 51 3.01  6.00 3.00 11.00
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Graphical Lasso Properties

o Computational speed

The graphical lasso algorithm is extremely fast

can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge-specific penalty parameters Aj

setting Ajx = oo will force éjk to be zero

graphical lasso subsumes the parameter learning algorithm.

@ Missing data
e some missing observations may be imputed by EM algorithm from the model
e latent — fully unobserved variables — do not bring more power in Gaussian
graphical model
o latent variables are very important in discrete distributions.

sklearn.covariance.graphical_lasso J
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Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)

o saturated model - full model with all edges, it has maximal loglikelihood

@ Deviance

o A s-1 N
D=dev=2:(ls;y — ) = Nlog | R|| = —Nlog|SK]|
e independent model - no edges, it has minimal likelihood
o iDeviance
o A P
iD=idev=2-(0—"ling) =N <I0g|K| + Z|Og$,-,'>
i=1
@ Irt likelihood ratio test for models M; C My

~

55 | Kol
Irt=2-(ly — 1) = Nlog —.
K
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)

An Undirected Graphical Model (Markov graph, Markov network) is a graph

G = (V, E), where nodes V represent random variables and the absence of an
edge (A, B) denoted A 1L g B implies that the corresponding random variables are
conditionally independent given the rest in the probability distribution P(V).

AllgB=AlpB|V\{A B} @)

is known as the pairwise Markov independencies of G.

Definition (Separators)

o If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C.

o C is called a separator.

@ Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)

A probability measure P over V is (globally) Markov with respect to an
undirected graph G iff for any subgraphs A, B and C holds:

o if C separates A and B then the conditional independence A 1L p B|C holds,
that is

A lLg B|C = P(A[C)- P(B|C) = P(A, B|C). (8)

The pairwise and global Markov properties of a graph are equivalent for graphs
with strictly positive distributions.

@ Gaussian distribution is always positive.
@ We may infer global independence relations from simple pairwise properties.

@ The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovska nahodna pole)

@ A probability density function f over a Markov graph G with the set of
maximal cliques {Cy, ..., Cx} can be represented as

f(x) = . I vilxc) =v1(xq) - - - tulxc) 9)

@ where 1); are positive functions called clique potentials.

@ they capture the dependence in X, by scoring certain instances xc, higher
than others.

e with the normalizing constant (partition function) Z

Z= / exp | > logagi(xc)
X

i=1,....k

@ Such set of random variables is called Markov Random Field or Markov
graph. If the potentials represent conditional probabilities with respect to
some observation, it is called a Conditional Markov Random Field.

o For Markov networks with positive distributions the probability density
function (9) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

@ A graphical model does not always uniquely
specify the higher—order dependence structure of
ta joint probability distribution.

MO(cy,2) = Sl el 2)is(y,2) Q

@ For Gaussian distribution, pairwise interactions
fully specify the model.
@ We focus on pairwise Markov Graphs
o where at most second order interactions are represented (like ().
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MREF for Image Denoising

@ Given a noisy image v, perhaps with missing pixels, recover an image u,
Un,m € R that is both smooth and close to v.

o Let each pixel be a node in a graph G = (V, E), with 4-connected
neighborhood. Only pairwise interactions are present.

@ We minimize the energy function (add missing margin on your own)

E(u) = Z (Um,n_Vm,n)2+)‘ Z [(UnJrl,m - un,m)2 + (Un,m+1 - Un,m)2]

(m,n)eP (m,n)eP

We can solve u iteratively
@ Smn = Up—1,m + Upt1i,m + Unm—1 + Up,m+1,
o LD _ ﬁ(vn,m + )\s,(,t,)ﬂ) for (n,m) € v
e %s,(,tz,, for missing v
@ The goal is to find the signal u that minimizes the
energy E(u).
e Estimation by Max-flow/Min-Cut in a specific graph or Gibbs sampling.
@ https://www.cs.toronto.edu/~fleet/courses/2503/fall11/Handouts/mrf.pdf
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Definition (Ising Model, Boltzmann Machine (in ESLII))

@ The Ising model is defined by a graph G = (X, E) of binary variables
X; € X and a set of parameters ©. The joint probabilities are given by:

pX,0) = eleuneeBRNTOO) o x ¢y
d(O) = IOgZ { G,k EE kajm] _
xeX

it models only binary interactions (and unary)
for technical reasons requires constant node Xy = 1 to be included.
Originally from statistical mechanics.

This model is equivalent to a first-order-interaction Poisson log-linear model
for multiway tables of counts (Bishop et al., 1975).

@ it implies a logistic form for each node conditional on the others

1

1 —exp(—0j0 — X2 kyee Oixk)

P(X; = 11X = x-j) =

e O is fitted iteratively (Iterative proportional fitting, gradient descend, Poisson
log-linear modeling, Mean field approximation, Gibbs sampling).
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Restricted Boltzmann Machines (RBM)

ownaews ] o0 @3 N (/A2
Bl —PISPTPPYES

[mwems] 2679944977658
L7772\ TT18379

@ We have visible V and hidden H
variables.

@ 'restricted’ means the variables are i
organized in two layers: e

s 5837849497

o the hidden layer

e the visible layer that is split to
input V1 and output variables Vs.
(pixels of image/digit label).

@ no edges inside any layer

e an edge between each hidden and
visible variable.

@ The structure enables faster
parameter estimation.

n m m n

E(V,h)zfzzwijh;\/jf bj\/j*ZC,‘h,’
1 i=1

i=1 j=1 j=
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Contrastive divergence

1: procedure CONTRASTIVE DIVERGENCE:( S batch for update)
2 AW;j,Abj,AC} +~0

3 repeat

4 for each training sample in a batch S do

5: Sample H given Vi, V»

6 Sample Vflasr), Vz(/aSt) given H

7 Sample H given V{Iasr) VQ(/aSt)

8 Aw; + Aw;+p(H; = 1| ) ©) —p(H; = 1|vlast)). Vj('a“)
o: Ab; <~ Ab; + vj(o) - vj(IaSt)

10: Ac; + Ac; + p(H; = 1|v®) — p(H; = 1|vlast))

11: end for

12: until convergence

13: return Aw;;, Ab;, Ac; to adjust the parameters.

14: end procedure

Fischer, A., Igel, C. (2012). An Introduction to Restricted Boltzmann Machines.

In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds) Progress in Pattern
Recognition, /mage Ana/ys:s Computer Vision, and Applications. CIARP 2012.

nnnnn Crinnma vinl 7441 Qnpinmar Rarlin Haidalhave
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Mixed interaction models

@ Discrete and Gaussian variables together.

o Conditional Gaussian density for x = (i, y), i is the list of discrete variables, y
is the list of continuous variables.

o Directed graphs: a discrete child of a continuous parent is not allowed.

@ Undirected graphs: If there is a path between two discrete variables A, B,
then they are connected by a path without any continuous variable.

o f(i,y) = p(i)(2m) }Z|77 exp(—3(y — u(N)E (v — u(i))
@ The parameters p(i), u(i),i € Z, X are called moment parameters

@ in the exponential form we get

. . . 1
f(i,y) exp {g(l)+h(')ry— 2yTKy}
. . 1
= exp {g(’)+zuhu(l))/u - 2Zu,vKu,vyuyv}

o parameters g(i), h(i),i € Z, K are called canonical parameters.
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Mixed interaction models

A marginal distribution is not necessarily a conditional Gaussian distribution
it is a mixture of conditional Gaussians

it is still tractable for evaluation

and learning.

@ |s this possible for other kind of distributions?
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)

Let G be an undirected graph over V, let P be a probability measure P over V.
(GM) P is (globally) Markov with respect to G iff

V(A,BeV,CCV)AlgB|IC=A1pB|CinP.
(LM) A probability measure has the local Markov property iff

(VA € V) cAldlp V\FaA|NA

(PM) P has the pairwise Markov property iff VA, B € V, A # B not connected
by an edge holds A 1Lp B|V \ {A, B}.

These properties are equivalent for strictly positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)
and (1,1,1).
See [Milan Studeny:Struktury podminéné nezévislosti, Matfyzpress 2014].
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Examples

Example (P has the pairvise but not the local

property)

V={AB,C},E={(b,c)}. Let us have a
binary probability measure V' nonzero at points
(0,0,0) and (1,1,1) [Studeny p.101].

Al B|{C} :
Al C|{B}& does not imply A 1L BC|{}.

Example (P has the local but not the global
property)

V={AB,C,D},E={(a,b)(c,d)}. Let
P(V) be nonzero only at points (0,0,0,0) and
(1,1,1,1) [Studeny p.101].

A 1 CD|{B}
B 1L CD|{A}
C 1L AB|{D}
D 1 ABJ|{C}

(=)
©,

& does not imply A 1L C|{}.
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Nonparanormal Graphical Models

@ A continuous pairwise interaction model.

@ We model marginal distributions,

@ and the most important relations by gaussian copula.

o https://www.stat.cmu.edu/~larry/=sml/GraphicalModels.pdf
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List of topics

o

Linear, ridge, lasso regression, k-neares neighbours,(formulas) overfitting,
curse of dimensionality, (LARS)

@ Splines - the base, natural splines, smoothing splines; kernel smoothing:

66 600 © 00 OO

kernel average, Epanechnikov kernel.

Logistic regression, Linear discriminant analysis, generalized additive models

Train/test error and data split, square error, 0-1, crossentropy, AIC,
BIC,(formulas) crossvalidation, one-leave-out CV, wrong estimate example
decision trees, information gain/entropy/gini, CART prunning,(formulas)
random forest (+bagging), OOB error, Variable importance, boosting
(Adaboost(formulas) and gradient boosting), stacking, :

Bayesian learning: MAP, ML hypothesis (formulas), Bayesian optimal
prediction, EM algorithm

Clustering: k-means, Silhouette, k-medoids, hierarchical

Apriori algorithm, Association rules, support, confidence, lift

Inductive logic programming basic: hypothesis space search, background
knowledge, necessity, sufficiency and consistency of a hypothesis, Aleph
Undirected graphical models, Graphical Lasso procedure,

Gaussian processes: estimation of the function and its variance (figures,
ideas).
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