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Exam

@ Oral exam on topics covered by lectures.

@ Most of it is covered by T. Hastie, R. Tishirani, and J. Friedman. The
Elements of Statistical Learning, Data Mining, Inference and Prediction.
Springer Series in Statistics. Corrected 12th printing 2017
https://web.stanford.edu/ hastie/ElemStatLearn/printings/ES-
LIl_print12_toc.pdf
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Statistical Decision Theory (for Regression)

@ Let X € RP denote a real valued random input vector, and Y € R a real
valued random output variable, with joint distribution P(X, Y).

@ We seek a function f(X) for prediction Y given values of the input X.

@ The theory requires a loss function (chybovou funkci) L(Y, f(X)) for
penalizing errors in predictions.

@ The far most common and convenient is squared error loss (kvadraticka
chybova funkce) L(Y, f(X)) = (Y — f(X))?

o this leads us to a criterion for choosing f, the expected (squared)
prediction error (otekavanou chybu) (EPE),

EPE(f) E(Y — f(X))?
= [ re02Plox.dy)

@ by conditioning on X we get
EPE(f) = ExEyx([Y — FOX)PIX)
@ and we see that it suffices to minimize EPE poinwise:
f(x) = argmin Eyx([Y — c?|X = x).

@ the solut|on is the conditional expectation also known as the regression
Machine Learning Overview of Supervised Learning 1 February 22, 2024 4 /388




k-NN and Conditional Expectation

@ We seek the conditional expectation:
f(x) = E(Y|X=x).

@ Thus the best prediction of Y at any point X = x is the conditional mean,
when the best is measured by the average squared error.
@ Assume we have a training set of data 7 = {(x;, y;)}V,.
@ The nearest neighbor methods attempt to directly implement this.
e Since there are typically at most one observation at any point x, we settle for

f(x) = mean(yi|x € Nk(x)),
o where mean denotes average, and Ni(x) is the neighborhood containing k
points in T closest to x.
e Under mild regularity conditions on P(X, Y’) one can show as k, N — oo,
such that £ — 0 then f(x) = E(Y|X = x).

@ The rate of convergence decreases as the dimension increases. The
problem is the speed of the convergence.
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Nearest-Neighbor Methods

@ The nearest-neighbor methods use those
observations in the training set 7 closest in

~

the input space to x to form f.

=3 Y v

XjeNk(X)

@ In classification, majority vote is used.

o Figures correspond to 15 nearest neighbor
and 1 nearest neighbor respectively.

@ Training error (usually) increases with
increasing k.

Effective number of parameters
The effective number of parameters of k

nearest neighbors is N/k and is generally Prediction complexity

bigger than p of the linear regression.
&8 P & 'Naive" O(Np).

Overview of Supervised Learning 1 1-37 February 22, 2024 6 /388




Overfitting

@ Our goal is the minimal expected

prediction error usually estimated by the S
error on the test data ( ). ﬁ v

o Usually, overfitting appears for complex e L3
models - an increase of the test error £
despite the decrease of the training g
error.

- Number of Nearest Neightiors

@ This is the reason for other models then
nearest neighbor model. PRSI

@ Possible improvements: N
Kernel methods

different weights for dimensions

local regression fits

linear models fit to a basis expansion
sums of non-linearly transformed linear
models.
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Curse of Dimensionality demonstration

Prediction

@ Assume x; uniformly generated form the interval (—1,1)P

@ We have Y = f(X) = e’s”x”z, without any noise, for x; we know exactly
f(X,').
We use 1-NN to estimate f(0) based on 1000 data sample.
Predicted value for x = (0, ...,0) is lower that 1 and in high dimensions p it
goes to 0.

@ Increasing k in k—NN does not help here.
1-NN in One Dimension 1-NN in One vs. Two Dimensions
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Empirical Nearest Neighbor Distance

@ Assume x; uniformly generated form the interval (—1,1)P
@ We use 1-NN to estimate 7(0) based on 1000 data sample.

Distance to 1-NN vs. Dimension
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Curse of dimensionality

Most points are close to the border
@ Consider N instances uniformly distributed in a p—dimensional unit ball.
@ Median distance of the nearest neighbor from the center is:

d(p,N) = (1 — ;N> p

@ The formula: 1 point inside: ‘11—:,7, outside: (1 — dP), N outside (1 — dP)V = 1.

e For N =500, p = 10, we get d(p, N) = 0.52, that is more than a half way to
the border.

e For N =10°, p = 200, we get d(p, N) =~ 0.93.

Close to the border, we must extrapolate, what is more difficult than
interpolation.
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Training data (and their notation)

We have
@ a set of random variables (features) Xi,..., X,
@ numerical goal variable Y (for regression)

e training data 7 = {(x1,)1),---, (Xn, ¥n)}

Goal attribute
XT = vector | (X; X; Xp) Y or G
x{
x] = vector | (x X Xp) yorg
T
Xy

e x and x; are p-dimensional column vectors
o X is the N x p matrix

e x; is the N vector consisting of all observations on variable X;.

@ y=(y1,...,yn)" denotes the vector of training goal data.
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Linear regression

@ Given a vector of inputs X7 = (Xi,..., X,) we predict the output Y via the

model f3, 3 € RPT!

p
Y =5(X) =5+ Xb

j=1

o Ay is the intercept, bias, (prisecik).

@ We include the constant variable 1 to X, include 3y in /3 to get the model in

vector form as an inner product

Jj=0

e The sum S°7_ X;/3; can be written as X7 3.
j=07"J~J
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Linear regression from the data

@ Let i range over the data samples, X be an N x p data matrix, y is a column
vector of the goal variable. We can write:

y=Xp

We search optimal 3 to minimize the residual sum squares RSS:

N

RSS(B) =Y (vi—x] B)> = (y — XB)"(y — XB) (1)

i=1
o Differentiating w.r.t. 5 we get normal equations
XT(y - X5) =0
@ If XTX is not singular, then the unique solution is given by
A= (XTX)"'XTy (2)

For a given x; the estimate y; is y; = y(x;) = X,TB.

From a singular XTX we should remove dependent features or filter the data
to make it invertible.
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Linear Regression

o Let us have a data N = 6, p = 2 (Fattll, Meatll), 1 column is for Sy, does

not count:
1 Fit711 Me5alt11 [ LeanMeat ]
1 17 49 gg‘g
X=|1 14 38 _ ’
y= 55.9
1 17 58 61.8
1 14 51 63.0
120 40 | | 546

@ We are searching parameters 3 = (3o, 1, 52) " to minimize:

N
RSS(B,X,y) = > (vi—x/B)>=(y—XB)T(y—Xp)

4 (58.6 — (1% By + 20 * By + 40 % 3,))?
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Linear regression from the data

e If XTX is not singular, then the unique solution is given by

B=(XTX)" !XTy

1 1 1 1 1 1
XT=1|17 17 14 17 14 20
51 49 38 58 51 40

6 99 287
XT™X =199 1659 4732
287 4732 14011

19.7320 —0.6714120 —0.1774305
(XTX)"! = | -0.6714 0.0392824  0.0004861
—0.1774  0.0004861  0.0035416

Ll  Overview of Supervised Learning 1 1-37
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Linear regression from the data

N

B =(XTX) !XTy

56.5
1 1 1 1 1 1 57.6
XT= |17 17 14 17 14 20 ~55.9
51 49 38 58 51 40 Y= |61.8
63.0
54.6
349.3498
XTy = | 5746.1340
16807.4663
19.7320 —0.6714120 —0.1774305] [ 349.3498 53.2097294 o
f=|—0.6714 0.0392824  0.0004861 | | 5746.1340 | = |—0.6653895| 3,

—0.1774  0.0004861 0.0035416 16807.4663 0.3343728 | B2
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Prediction

@ Linear regression predicts:

@ Prediction for training data:

58.95112
58.28237
56.60044
61.29173
60.94729
53.27685

§ = F(X) =XB = X(X™X)" !XTy =

o The hat matrix H = X(XTX)~1XT transforms y to y.

0.21 0.19 0.00 0.29 0.15 0.15
0.19 0.18 0.07 0.22 0.13 0.20
H— 0.00 0.07 0.78 —0.25 0.31 0.09
0.29 0.22 —0.25 0.55 0.22 —0.03
0.15 0.13 0.31 0.22 0.44 —0.25
0.15 0.20 0.09 —0.03 —0.25 0.84

@ You may notice that trace(H) = sum(diag(H)) = 3.
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Residual Sum of Squares

@ Residual Sum of Squares is

RSS(B,X,y) = Z(y;—x,-Tﬂ)ZZ(y—il)T(y—?)

[56.5 58.95112 56.5 58.95112
57.6 58.28237 57.6 58.28237
B 55.9 56.60044 55.9 56.60044
- 61.8|  |61.29173 61.8|  |61.29173
63.0 60.94729 63.0 60.94729
54.6 53.27685 54.6 53.27685
[—2.42637271\ | [ [—2.4263727
—0.7027914 —0.7027914
B —0.7105023 —0.7105023
- 0.5254632 0.5254632
2.0123528 2.0123528
| 1.3018505 1.3018505

= 12.9065
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Linear regression complexity

B =(XTX)"XTy

Linear Regression Complexity

Training complexity

@ The complexity of the direct approach to linear regression is

O(p°N + p?).

e XTX is O(p*N)

@ the result is p X p matrix,

e its inversion takes O(p?).
Cholevsky decomposition

e O(p*+ %ZN)
QR decomposition

o O(p*N)
Prediction complexity

e To calculate 87 x takes O(p).
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Improving Least Square Estimate

@ Reasons

e improve prediction accuracy
(decrease variance)
e improve interpret ability

@ methods

o Best Subset selection

o Forward- and Backward-Stepwise
Selection

o Forward-Stagewise Regression

as Forward-Stepwise
do not change previous
coefficients

slow convergence

may be useful in high
dimension p!

o Penalized methods.

e ) et

Residual Sum-of-Squares

Subset Size k

 Best Subset
Forward Stepwise
Backward Stepwise
Forward Stagewise

Subset Size k
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Centering, Standardization

Definition (Centering, Standardization)

@ To center the variables replace each feature to have zero mean,
XJ' <— XJ' — Xj

@ The sample variance of a variable x; is defined,

N
ZXU

U)

Both my sources use N. | know about N — 1 used in statistics.

@ Standardization performs the centering and divides features by their
standard deviation,

Overview of Supervised Learning 1 1-37 February 22, 2024

21/ 388



Sample Covariance, Correlation

Definition (Sample Covariance, Correlation)

@ The sample covariance is a p X p symmetric matrix

S= NZ(X,_X (xi —x)7

@ with elements

N
Sjk = Z Xij — X/k _Xk)

@ The sample correlation of the columns x;, x is

Sj,k Nval(Xu X;)(Xik — Xk)

pj.k + corr(x;,

e \/ Z, 1 (6 —%;)? \/ Z, (X — Xk)?

.
o For standardized features, the correlation is just x’,\fk
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Penalized Methods

=

N P
= argming (Z(y,- — Bo —x/ B)* + /\Z |5j|q>
j=1

i=1

o We add the complexity penalty )\Zle |Bj]9 to the
RSS.

o Ridge regression g =2
o Lasso regression g =1
o

Elastic net penalty A Y%, (a[3j]* + (1 — a)|5;])
e a compromise between ridge and lasso
o selects variable like the lasso, and shirks together
the coefficients of correlated predictors like ridge.
o It also has considerable computational advantage
over the Lg penalties.

from sklearn import linear_model
linear_model.BayesianRidge() ’

Ll Overview of Supervised Learning 1 1-37
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Rigde Regression

N

p
jBridee —  argming (Z(YI —Bo—x/ B>+ A Z |ﬂf2>
=1

i=1

@ The solution is

X <« centered (N x p) input matrix
LN
fo = N ;)/i

g o= (XTX—=Al"IXTy.

sklearn.linear__model.Ridge J
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Lasso Regression

N

i=1

p
Blasso _ argming (Z(y,. — Bo — xl.Tﬁ)2 + )\Z 5J|>
=1

@ Solved by a quadratic programming

algorithm <]

sklearn.linear_model.Lasso J 2]

@ or LARS modification, that calculates full &1

Lasso path in in O(p2N + p3). .
@ we use LARS on standardized data.
sklearn.linear_model.Lars )

Ll  Overview of Supervised Learning 1 1-37
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LARS Idea

For active set of parameters Ay the parameters 54,

consider current residuals ry =y — X 4,54,

and the correlation of each predictor with the residuals (x;, ry)
the correlations are equal for the predictors in the active set Ay
we change B4, < B4, + adk in the direction

0 = (X, X)) IXT 1

@ and the correlation X4, with residuals decreases.
@ Correlations of other features change linearly and we can calculate next

intersection point.

Absolute Correlations
0.

0 5 10 15
Ly Arc Length
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LARS Least Angle Regression

@ democratic version of forward stepwise regression
@ provides an extremely efficient algorithm for computing the entire lasso path.

Least Angle Regression

1. procedure LEAST ANGLE REGRESSION:(X, y)

2 B, ..., Bp < 0 initialize

3: r < y — y residuals

4 find the predictor x; most correlated with r

5 Move f3; from O towards its least-squares coefficient (x;, r) until some
other competitor x, has as much correlation with the current residual as
does x;.

6: A + {x;} active coefficients

7: for k=2,...,min(N—1,p) do

8: move current set of 34, by their joint least squares coefficient of
the current residual until some other competitor x; catches up.

9: Ay Ax_1 U {x¢} active coefficients

10: end for

11: end procedure
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Least Angle Regression Lasso

w 4 / w 4
2 L g L
— / — L
o 7\ o
n © w S
Lol | 2] ~
5w - 5w ~
g @1 i . — &2 7 i N ~_
k7] T k7] —
g o ~ g .
| \ O 9 \
\ \
E] \ E]
T \ T \}
o 5 10 15 o 5 10 15
Ly Arc Length Ly Arc Length

Lasso Modification of the Least Angle Regression

8a: If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

Complexity of LARS

@ LARS requires the same order of computation as that of a single least
squares fit using the p predictors.

@ hidden in the p's in O(p?N + p3) or Cholevsky decomposition.
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Model Complexity

Effective Degrees of Freedom

Linear regression p
Ridge regression df (y) = tr(X(XTX — AI)~1XT).
LARS: after k steps, df(y) = k.

LASSO: roughly the number of predictors in the model (may take
more than p steps, some predictors drop out).
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Summary

@ Introduction

classification and regression,
training data,

RSS,

expected prediction error,
overfitting,

effective number of parameters,
curse of dimensionality,

@ k Nearest neighbor model,

@ Linear regression and its modifications
Best subset

Ridge, BayesianRidge

Lasso

LARS
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Pathwise Coordinate Optimization

o LARS modification, iteratively by the coordinates
o fix the penalty parameter A

@ optimize successively over each parameter, holding the other parameters fixed
at their current values.

@ Assume the predictors are all standardized to have mean zero and unit norm,

° Bk(/\) the current estimate for Sy at penalty parameter A

2
- 1 ~ <
R(B(N),B) = 5 Z Yi— inkﬁk()\) —xiB | + )\Z 1Bk(M] + Al
i—1 kA kA

@ this can be viewed as a univariate lasso problem with response variable the
partial residual

yi— 9 =yi - ZXikEk(/\).
k#j
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Pathwise Coordinate Optimization

@ this has an explicit solution, resulting in the update

Bi(A\) « S (Zx,-j(y,- - j/,-(j)),/\>

@ where S is the soft-thresholding operator

S(£,\) = sign(£)(It] = \)- (3)
Lasso
A
@ Estimators of §; in case of - GO
orthonormal columns of X. /"
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Grouped Lasso - not presented this year

Dummy variables for representing the levels of a categorical predictor.

Genes that belong to the same biological pathway.

Suppose that the p predictors are divided into L groups
e with py the number in group /.
e a matrix X; represents the predictors corresponding to the ¢th group
e with corresponding coefficient vector 5.

the grouped-lasso minimizes the convex criterion

L L
mingere <||y — Bl = > XeBelB+AD \/P1€|5£|2> (4)
=1 =1

[| - ||2 is the Euclidean norm (not squared)

\/pe¢ accounts for the varying group sizes.
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Example — Storch brings babies in Europa

¥ =0.0288% +225.03

5
2
o
Fi
g
g
£
B
E
@

Number of stork breeding pairs

Fig 1. How the number of human births varies with stork populations in 17 European countries.

Teaching Statistics.  Volume 22, Number 2, Summer 2000 o 37
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Linear methods for classification

We are given two features Xi, X5 and
the goal BLUE or

Later, we will see better ways. For now,
we encode BLUE =0 a =1,
and find a linear regression model.

The fitted values Y are converted to a

fitted class variable G as follows:
& BLUE for Y < 0.5

- for Y > 0.5
The hyperplane {x : xT3 = 0.5} is
called the decision boundary
(rozhodovaci hranice).

Better to use logistic regression, that
gives also a linear decision boundary.

Overview of Supervised Learning 1

Linear Regression of /1 Response

e L

FIGURE 2.1. A classification example in two di-
mensions. The classes are coded as a binary variable

=0, = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
273 = 0.5. The orange shaded region denotes that part
of input space classified as
is classified as

, while the blue region

1-37 February 22, 2024
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Two Scenarios

@ The training data in each class @ The training data in each class
were generated from bivariate came from a mixture of 10
Gaussian distribution with low-variance Gaussian distributions,
uncorrelated components and with individual means themselves
different means. distributed as Gaussians.

@ The linear model is (almost) @ The linear model is not optimal.
optimal.

Linear Regression of 0/1 Response 15-Nearest Neighbor Classifier

// Euih,

FIGURE 2.1. A classification example in two di- FIGURE 2.2. The same classification example in two

mensions. The classes are coded as a binary variable dimensions as in Figure 2.1. The classes are coded as

(i =0, = 1), and then fit by linear re- a binary variable ( =0, = 1) and then fit
gression. The line is the decision boundary defined by by 15-nearest-neighbor averaging as in (2.8). The pre-
278 = 0.5. The orange shaded region denotes that part dicted class is hence chosen by majority vote amongst
of input space classified as , while the blue region the 15-nearest neighbors.

is classified as
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Basis expansion and regularization

Linear and logistic regression assume linear function of X.
@ Regression: We estimate f(X) = E(Y|X)
o Classification: We estimate /og%
Linear basis expansion in X
@ we replace the vector of inputs X with additional variables hy,,

o hm(X):RP >R, m=1,...,M.

@ 'the only change’ is a different matrix of the features X, further fit is the
same.
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Simple derived features

o We fit the model: "
X) =" Bmhm(X
m=1

@ hp(X) =Xy, m=1,..., M recovers the original linear model.
@ hp(X) = Xj2 or hm(X) = X; Xk polynomial terms to achieve higher-order
Taylor expansions.
I' The number of variables grows exponentially in the degreee of the polynomial.
o hm(X) = log(X;), /X, ||X]|... .. other nonlinear transformations.
® hy(X) = I(Lm S Xk < Up), an indicator for a region of X.

e piecewise constant contribution for Xx.
e With non-overlapping regions used in regression trees.

o hm(X) = max((X; — &)3,0) piecewise-polynomial spline basis

@ wavelet bases.
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Piecewise Polynomials and Splines

@ For most of today we assume one-dimensional feature X.

o A piecewise polynomial function f(X) is obtained by

e division the domain of X into continuous intervals by the knots &1, . ..
e and representing f by a separate polynomial in each interval.

o Examples:

@ Three basis functions:
hi(X) = I(X < &), ha(X) = 1(&1 < X < &), hs(X) = (&2 < X).
o Additional linear functions:
hmyz = hm(X)- X, m=1,...,3.
@ Additional cubic functions:

Bt = hm(X) - X2, Bmio = hm(X) - X3, m=1,...

Kernel Methods, Basis Expansion and regularization 2

38 - 66

3.
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Continuous functions

@ We add the continuity restriction: the value in &; is the unique.
@ Continuous piecewise linear basis:

hi(X) =1, hao(X) = X, h3(X) = (X = &)+, ha(X) = (X = &)+
@ We have spared two parameters for two continuity conditions.

Continuous Piecewise Linear Piecewise-linear Basis Function Continuous
= A e
° % o © 8 | |
7R 1 | l %y o | | o
“Noe . | ] e S
° AN e [ e >N \
N ¥ (X = &)y,- /o:\‘ o WL
1o, | *l \9% o o
Hieg e N
I | [ | } }
1 o 1 camam ...;' 1 | o |
& &2 & & & &2
@ For the cubic fit, the figure looks ugly, we need continous first and second

derivative.
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Cubic spline

@ Cubic spline is a piecewise cubic fit with continuous first and second
derivatives at the knots &;.

Continuous Second Derivative

@ The basis functions with knots &7, & are: }
m(X) =1, | |
ho(X) = X, e
hy(X) = X2, / 0
ha(X) = X5, . A
hs(X) = (X — &), e
he(X) = (X = &) o |

&1 &2
o Parameter count:
(3 regions)x(4 pars per region)-(2 knots)x(3 constraints per knot)=6.
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Order-M splines

@ Cubic spline is an order-4 spline.

@ Generally, order-M spline with knots &, j =1,..., K is a
piecewise-polynomial of order (M — 1) and has continuous derivatives to
order (M — 2).

@ General truncated basis functions are:

o hi(X)=X"1j=1,...,M,

o hupe=(X—-¢&) 1 0=1,... K.
@ Regression splines

o splines with fixed knots

e usually at percentiles of the data X.

o the number of knots is specified by the degree an the degrees of freedom
(df — M). ho does not count.
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B-splines

B-splines use other basis describing the same linear feature space.
e {h;} is a basis of a linear space of functions
@ we may choose a different base to cover the same space of functions.
@ B-splines are more stable numerically, useful for large number of knots K.
@ B-splines have quite difficult recursive formula (not needed for the exam).

, _ U G < x <&
Bialx) = {O otherwise
Biki1(x) = wik(x)Bik(x) +[1 = wiv1k(x)]Bit1,k(x)
e G A
. — Eivk—E&i i+k !
wik(x) { ‘0 otherwise.

B-splines of Order 4

00 04 08 12
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Computational complexity

Spline fit time complexity

o (Standard) regression splines

o N observations, K + M variables (basis functions) take

O(N(K + M)* + (K + M)?).

@ B-splines
sort values of X
Cubic B splines have local support, B is lower 4-banded.
order (M + 1) B splines have local support, B is lower (M + 1)-banded.
Cholesky decomposition B = LL" can be computed easily.
Solution of  is in O(N(M + 1)) operations.

B-splines implemented in scipy )

Kernel Methods, Basis Expansion and regularization 2 38 - 66 February 22, 2024 44 / 388



Natural Cubic Spline

@ Polynomial fit tends to be erratic near the boundaries.

©

Global Lint
——  Global Cubic Polynomial
o Cubic Spline - 2 knots
2 ——  Natural Cubic Spiine - 6 knots

Pointwise Variances
0.3

0.0

0.0 0.2 0.4 0.6 0.8 1.0

X

o Natural cubic spline is a spline that the function is linear beyond the
boundary knots.

@ Basis functions N;, i=1,... K:
Nl(X) = ].7 NZ(X) = X, Nk+2(X) = dk(X) — dK_l(X) for
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Smoothing Splines

Maximal number of knots: N, the number of examples.

@ But, we need a penalty for model complexity.

N
RSS(F,0) = S (i — Fx))? + A/(f"(t))%/t
i=1
@ )\ is smoothing parameter

e A = 0: can be any function that interpolates the data.
e )\ = oo: the simple least squares line fit, no nonzero second derivative is
tolerated.

@ Has a unique finite-dimensional minimizer, a natural cubic spline with knots
at the unique values of the x;, i=1,..., N.

The solution is in the form: f(x) = Zszl N;(x)0;.
@ The criterion reduces for:

RSS(0,)) = (y — N&) " (y — N&) + \0"Qp0

where {N}; = Nj(x;) and {Q}j = [ N/(t)N}/(t)dt.
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let a =x1 =0,b= 10 =1, and knots & = x;;; for l = 1,..., K and K = 99. Also, the
basis functions for a cubic spline M = 4 are
hi(z) = 297! j=1,...,M,
h,MJr](.T) = (7} = 51)1[71 l=1,....K.

Then, H = (hj(x;))nm+k where hj(x;) is for the i-th row and the j-th column. Let =

(wi,j)M+K,M+K be a symmetric matrix and the upper triangular w; ; = fb hy (t)R (t )dt is

wi; = 0 for i < M,
Wmy = %bst— %bfﬁj + %Ef for j > M, and
wyy = (08 =&) = 30 =) + &) + (b= E0)&im&5m  for j =i > M,

where & = max{&_nr, §j—n}-

https://vardeman.public.iastate.edu/stat602/602x_hw4_sol.pdf
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Smoothing Splines solution

@ Smoothing spline solution is a generalized ridge regression
6= (N"N+ Q) 'NTy
@ The fitted smoothing spline is given by:
N

Fx) = Ni(x)f;

j=1

. L ——  Male
@ Bone mineral density (BMD) in CT o remae
adolescents. val T

0.20
I

0.15
I

@ Response: the change in BMD over
two consecutive visits, typically
about one year apart.

Relative Change in Spinal BMD
0.05
|

0.0

@ coded by gender, females precedes
growth spurt about two years. :

e )\ = 0.00022, dfy = 12.
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Degrees of Freedom and Smoother Matrices

@ Smoothing spline is a linear smoother:

f

N(N"N +XQy) " INTy
= S,y

@ S, is known as smoother matrix.

o dfy = trace(S,)

o the sum of the diagonal elements
e A\ = 0.00022 derived numerically by solving trace(S») = 12.

smoothing splines only in R )
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Smoother Matrix

rows S, ordered with x

right: selected rows

A — 0 means dfy — N and
S)\ — 1

@ )\ — oo means dfy — 2 and
S, — H, the hat matrix for

linear regression on x. e
o H=X(XTX)"IXT since -
(7 = Hy)

Machine Learning Kernel Methods, Basis Expansion and regularization 2

Smoother Matrix
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Pollution data example

@ 128 observations of pressure 8
and ozone. g |

@ Two fitted smoothing
splines. ]

@ third to sixth eigenvectors 50 0 50 100
Of the Sp|lne smoother Daggot Pressure Gradient
matrices uy against x.

@ eigendecomposition of S: N

3 \\
N . el \
5 < N
Sx= E Pr(A) ety N \ A
k=1 3 e """‘—-un. \
- ’ s e s om o
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Selection degrees of freedom

@ The degrees of freedom df
(or the complexity penalty
A) are usually selected to E
minimize the expected
prediction error.

10

EPE()) and CV(\)

@ More specifically, the
crossvalidation estimate of
the error.

° f-(X) _ Sin(1)2<(—~_X0~.i>20‘2)) N

o Y=1F(X)+e -

e X ~ UJ0,1], e ~ N(0,1), .
N = 100.

o df selected by
crossvalidation is 9.

08

Machine Learning

Kernel Methods, Basis Expansion and regularization 2

Cross-Validation

dfy =5

W

\v/\’//

s s 10 1
dfy,
dfy =9

00 02 04 06 08 10
X

dfy =15

\"'\ \/ :

0

0

00 02 04 06 08 10

X
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Multidimensional Splines

o X e R?2
(] hlk(Xl)v k= 17...,/\/’1 in
the first coordinate

o h2k(X2), k = 1,...7/\/,2 in
the second coordinate.

@ M; x M, dimensional tensor
product basis is defined by

gik(X) = h1;(X1)hak(X2)

@ can be used for representing
a two-dimensional function:

M1 MQ
g(X) =" Ougu(X)
j=1 k=1 &
o coefficients can be fitted by & ‘&

least squares.
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Additive logistic regression vs. tensor product

@ In higher dimensions, the number of basic functions and parameters grows
rapidly.

o Consider to add the basic elements iteratively, as the additive MARS method
introduced later.

o left: df=7, right df=16

Additive Natural Cubic Splines - 4 df each

Training Eror: 0.23
TestEror: 028
Bayes Error:  0.21

Natural Cubic Splines - Tensor Product - 4 df each

1
m Kernel Methods, Basis Expansion and regularization 2 38 - 66 February 22, 2024 54 / 388




Multidimensional smoothing splines

@ Let us place the knot into each example

@ and add a complexity penalty J (below). Systoc Biood Pressure

@ It can be generalized for an arbitrary
dimension.
@ The solution has the form:
o F(x)=Bo+ B x+ >, ajhi(x)
e where h;j(x) = n(||x — x;||) and
n(z) = z°2log 2°.

e complexity O(N?3)
@ or O(NK? + K3) with K knots.

D)y (P )
M= //}RZ{ Ox? (8X18X2)+( 952 )| dxidxa

implemented in R and OpenCV J
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Summary

We learned about

@ splines (one dimensional)

B-splines - for faster fit
@ natural splines - linear on the borders

@ smoothing splines - complexity penalty for the second derivative
o the solution is a natural spline.

Generalizations to more dimensions

e thin plate splines
e multidimensional smoothing splines.
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Kernel Methods

@ estimate regression function g

f(x)eR .
@ a different but simple model 3

separately at each query point xp. .
o The resulting 7(X) is smooth in R, .
@ Localization is achieved via a .

weighting function er kernel

kx(x0, xi)

@ assigns a weight to x; based on its
distance form xp. p

@ ) is a parameter that dictates the 2
width of the neighbourhood. .

@ memory based methods .

o little or no training .
o the model is the entire training
data set.

Machine Learning Kernel Methods, Basis Expansion and regularization 2

Nearest-Neighbor Kemel

)

(o)

Epanechnikov Kernel

(o)
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k-NN, Epanechnikov Kernel

o k-Nearest Heighbour kernel

Nearest-Neighbor Kemel

o Ni(x) is the set of k points R .
nearest to x in squared distance e S (o)
e all have equaI weight 2
o Fx)=¢ Ex,ENk i V4 \
o 7(x) is bumpy, dlscontmuous. Blo . ‘
o Nadaraya-Watson kernel-weighted :
average 1
N o o 0 L(ps o 1o
v; >i—1 ka(x0, Xi)yi
f(X()) = N
Zi:l k>\ (XO) XI) . 'Epanechnlkov Kernel

(o)

o with the Epanechnikov quadratic e

kernel E
kx(x0,x) = D (‘X;,\XOU
@ with :
31—t iflt <1 #
S = 1
D(t) = { 0 otherwise. VR 7R —
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Example

Weighted estimate at xo=-1

30 —
-~ smoothed
@ Red circles: data 2 =
@ Blue: epanechnikov "’218"
kernel for (—1.0) 377
@ Predicted values: y
green dashed line
° E)redicted value
f(—1.0) = 1.55.
To 15 20

(0.63%2.18 + 0.56 * 1.38 + 0.48 * 1.26 + 0.38 * 1.15 + 0 * others)
(0.63 + 0.56 + 0.48 + 0.38)

=1.55
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Kernels - variable width, shapes

@ Tri-cube kernel
3)3
@ The width A may vary hy(xp) with xg D(t) = {(1 — ) if e <1

0 otherwise.

@ mo general formula for he kernel .
o Gaussian kernel

ka(xo, x :D(‘X_X"') —xll2
A(X0, ) hix(x0) D(t) = %e* 1ol
o for k-NN, Ay (x0) = [x0 — X o Epanechnikov
@ where x|, is the kth closest x; to xp. 3(1 _ t2) if [t <1
D(t) = -
(t) 0 otherwise.
Epanechnikov
© ———  Tri-cube
—~ @ Gaussian
3
S
& <
\; =)
X
=
o T
3 2 1 0 1 2 3
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Local Linear Regression

@ Locally-weighted averages can be badly
biased on the boundaries of the domain

N-W Kernel at Boundary

@ or whenever X are not equally spaced.

o Fitting straight lines may help (a bit). | Bk \
@ Locally weighted regression “ ‘ \
v ] |
Minagsa) a0) D Ka (0, x5)[Yi—alx0)—Blro)xl 0
i=1
@ The estimate is: )A‘_(Xo) = d(Xo) + B(X())XO. ) Local Linear Regression at Boundary

o For xT = (1,x), X is N x (p + 1) matrix,
W N x N diagonal matrix kx(xo, X;)- : ‘
Then | J(d0)

F(x0) = xg (XTW(x0)X) "I XT)W(x0)y

@ what is linear function of y.

Lo o
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Local Polynomial Regression

Local Linear in Interior

@ Local linear fits can help bias o]

dramatically at the boundaries. . F(z0)
o local quadratic fits tend to be most N

helpful in reducing bias due to 1./

curvature in the interior of the A

domain.

@ Recommended to select the degree
by the application, not to combine
linear boundaries and quadratic
interior.

Local Quadratic in Interior

F(x0)

10

05

Constant

Linear #e
Quadratic o | % o

Variance
00 01 02 03 04 05

0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T
00 02 04 06 08 10
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Selecting the Width of the Kernel

@ crossvalidation

4] )?:SA)/

o df = trace(S))

@ Right: comparison of the tri-cube
local linear regression kernels
(orange) and smoothing splines
(blue) with matching degrees of

freedom 5.86.

Machine Learning

Kernel Methods, Basis Expansion and regularization 2
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(Structured Local Regression in RP)

Velocity

ka(x0,x) = D (7|KZ$)‘|> \

@ Structured local regression: a
positive semidefinite matrix A to
weigh the different coordinates:

— X T X —X(
ka(x0,x) = D (L 31))(1\5) 0))

East-West

Velocity

RAN
Y
South-North

East-West
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Computational Consideration

Kernel smoothing complexity

Model is the entire training data set.
The fitting is done at evaluation or prediction.
Single observation xp fit is O(N),

expansion in M basis functions O(M) for one evaluation, typically
M ~ O(logN).
Basis function method have an initial cost at least O(NM? + M3).

@ Smoothing parameter A\ usually determined off-line by cross-validation,
at cost of O(N?).
@ Popular implementations of local regression loess is S-PLUS compute

the fit exactly at M locations O(NM) and interpolate to fit elsewhere
(O(M) per evaluation).
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Linear methods for classification and their extensions

@ likelihood example
@ logistic regression

ext. logistic regression with L; penalty

ext. local likelihood

o spline basis extension
@ linear and quadratic discriminant analysis
o Local likelihood (local logistic regression)
ext. When p is Much Bigger than N.

ext. Diagonal linear discriminant analysis
ext. reduced rank linear discriminant analysis
ext. Elastic net penalty

? Support Vector Machines
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Probability of the data given the model

@ Assume we have 15 red balls and 5 blue balls in a bag.
@ Repeat 5x:
o select a ball
e put it back.
@ The probability of the sequence red, blue, blue,red, red is % . % . % . % . %.

The logarithm log, of the probability is ~ —04 —2—-2—0.4—0.4=-5.2
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Likelihood of the model given the data

@ Assume we do not know the probabilities, let # be the probability of red. We
have following probabilities of data for different 6.
0 | red blue blue red red

3 1 1 3 3 33

3
4 4 4 4 4 4 45

o Take the logy of the probabilities:

0 red blue blue red red
i -1 -1 -1 -1 -1 -5
P 074 -132 -132 -074 -0.74 | —4.86
3 04 -2 -2 -04 —04 | 52
@ Probability of the data given model is called likelihood of the model # given
the data.

@ Maximum likelihood 8 estimate is in our case %

@ Predicting probabilities, maximum likelihood estimate is the same as
maximum log-likelihood estimate.
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(Log)likelihood

train data prediction likelihood loglik
Xi  8i P(green|x;)  P(blue|x;)  P(yellow|x;)
I I I
1 green 5 0 5 5 -1
1 1 1
2 I 2 p)
2 green 5 3 0 3 loga§
2 green 2 3 0 2 log»3
2 blue % % 0 % —log>3
3 blue 0 1 0 1 0
—2 — log>3
—|—2/og2%

o loglik logarithm of likelihood function is defined as:

N
00) = Z log(P(G = gilx;,0))

o Logistic regression uses:
P(G =gk X =x)=

.
eﬁk0+[3k x

ﬁ/o*’ﬁlrx :
i,k
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Logistic Function

o Probability should be from the interval (0, 1).
@ Linear prediction is transformed by logistic function (sigmoid) with the
maximum L.
- L
o |0gIStIC m
@ Inverse function is called logit.
; p
o logit log St
s g .|
I I P
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Logistic Regression

o For K- class classification we estimate (p + 1) x (K — 1) parameters

0= {BlOaﬂ]Ta e aﬁ(Kfl)(hﬁ;—l}'

P(G=a|X=x) _ T
gP(G:gK|X:X) o 610+B1X

P(G = g2|X = x)

lo = + B8] x
gP(G:gK|X:x) Boo + B,

P(G = gk-1|X = x)
P(G = gk|X = x)

Bik-1)0 + Br_1x

that is
eﬁko+5kTX
T4+ ket efoth]x
1
T4+> 00 ko1 efn+hx

pr(x;0) + P(G =gl X =x) =

pr(x;0) +— P(G =gk|X =x) =

Machine Learning Linear methods for classification 3 67 - 94 February 22, 2024

71/ 388



Fitting Logistic Regression Two class

@ This model is estimated iteratively maximizing conditional likelihood of G
given X.

N
U0) =3 _log py(xi; )

@ Two class model: g; encoded via a 0/1 response y;; y; = 1 iff gx = g1.
Let p(x; 8) = p1(x;0), pa(x;0) =1 — p(x;0). Then:

N
(0) = > (yilogp(xi; B)+ (1 - yi)log(1 - p(xi; B))
i=1
N T
= ) (viBTx —log(1+ & )
i=1
@ Set derivatives to zero:

ov N

O = >t i ) =0
i=1

@ which is p + 1 nonlinear equations in 3.
o First component: x; = 1 specifies >.,_; yi = Z,N:1 p(x;; B) the expected
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Newton—Raphson Algorithm

@ We use Newton—Raphson Algorithm to solve the system of equations
S = in()/i — p(xi; 8)) =0,
i=1

@ we need the second—derivative or Hessian matrix

o*(B
aBaBT = ZX’X p(X’ ( 6))

e Starting with 3° a single Newton—Raphson update is

820(8) \ " 9u(B)
%%T) o’

6new — BOld . (

@ where the derivatives are evaluated at 3°.
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Newton—Raphson Algorithm in Matrix Notation

Let us denote:

y the vector of y;
X N x (p+1) data matrix x;
p the vector of fitted probabilities with ith element p(x;; 3°)
W  diagonal matrix with weights p(x;; 3°9)(1 — p(x;; 5°'))
ae
28(6[5) = XT(Y -p)
o°4(B) __ T
36057 = —X"WX
The Newton—Raphson step is (3° < 0)

e = 57 (XTWX) X (y — )

— (XTWX) XWX+ Wy — p))
(XTWX)"1X "Wz
z = XB°% +W-l(y—p) adjusted response

@ p, W,z change each step
This algorithm is reffered to as iteratively reweighted least squares IRLS

B+ arg mﬁin(z — XB)TW(z — Xp)
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South African Heart Disease

@ Analyzing the risk factors of myocardian infarction Ml
@ prevalence 5.1%, in the data 160 positive 302 controls

TABLE 4.2. Results from a logistic regression fit to the South African heart
disease data.

Coefficient  Std. Error  Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034
1dl 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029  —1.187
alcohol 0.001 0.004 0.136
age 0.043 0.010 4.184

o Wald test: Z score |Z| > 2 is significant at at the 5% level.

TABLE 4.3. Results from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error 7 score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1dl 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52
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South African Heart Disease

o Wald test: Z score |Z| > 2 is significant at at the 5% level.

TABLE 4.3. Results from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error  Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16
1dl 0.168 0.054 3.09
famhist 0.924 0.223 4.14
age 0.044 0.010 4.52
o P(M/‘X,-, 9) _ @ 4+204--0.081x¢ o pacco+0- 168X(g+0. 924X o st +0.044xage

1+(e74.204+0,OSlxtobaCCO+O.168xId/ +0.924X,—amh,-st+0,044xage)

o Interval estimate odds;opacco = €2-0812%0:026 — (1.03,1.14) increase of odds
of Ml based of the increase of Xtopacco-
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L, regularization 'Lasso’-like

N

P
argmaxg, g (Z(yi(ﬂo + B7x;) — log(1 + e(ﬂ°+ﬂTX'))) —A Z 5j|>
j=1

i=1

@ Newton—Raphson Algorithm or nonlinear programming.
@ )\ = 0 standard logistic regression.
@ A\ — oo moves coefficients towards O.
@ [y is not included into the penalty.
g el
//
3 / F Bhaceo
2 +
E ‘;; /_,_.... b sbp.
T T T I7 ovesty
Bl
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Linear Discriminant Analysis

@ LDA assumes multivariate gaussian distribution of each class with a common
covariance matrix.

B(K) = e emm)TE x)

Nariox

e Under this assumptions it provides bayes optimal estimate.

@ Different covariance matrix for each class leads to Quadratic Discriminant
Analysis.

@ Let us denote N, number of training data in the class Gy.

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
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Linear Discriminant Analysis

The LDA model parameters: the mean and probability of each class {u;, 7},
and the common covariance matrix ¥ can be evaluated directly.

T
Tk = N

~ Zx-: X )= Xi
f = {xi:G(xi)=gx}

Ny

. (i — ) (0 — i)™
= ) N F)

Pk(x) = Nk, X)
P(G=gX=x) = fk(x)ﬂ'k

To classify new instance x we predict the Gi with maximal d:

1
0(x) = xTE e = Sl T i+ logm
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Linear Discriminant Analysis

R
/

FIGURE 4.5. The left panel shows three Gaussian

distributions, with the same covariance and different
means. Included are the contours of constant density

Example Vovel data ESL X € R9:

train  test

Linear regression 0.48 0.67

Linear discriminant analysis 0.32  0.56
Quadratic discriminant analysis 0.01  0.53
Logistic regression 0.22  0.51

Notes: Common covariance matrix, masking.

Linear methods for classification 3
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Quadratic Discriminant Analysis

Quadratic discriminant analysis estimates the covariance matrix for each class

independently. The rest is the same as for the LDA.

P(G = gk|X = x)

Ny
N
2 {x:Glx) =i} Xi
Ny

> (i — ) (i = ) T
(- Co=g} (|Gl = 1)
N(px, )

fk(X)ﬂ'k

Sy fo(x)me

To classify new instance x we predict the Gx with maximal d:

1 _ 1
Ok(x)=—=(x — pk)TZk 1(x — k) — 5 log | X k| + log mk

2

Machine Learning
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Quadratic and Regularized Discriminant Analysis

@ QDA has substantially more parameters. It is questionable whether it is
worth to increase the model complexity.

o LDA parameters: (K —1) x (p+1)

Misclassification Rate

o QDA parameters: (K —
@ Regularized discriminant analysis takes a weighted average of LDA and

1) x (282 4 1),

QDA to tune the model complexity.

02 03 04 05

0.0 01

Regularized Discriminant Analysis on the Vowel Data

Test Data N
Train Data

0.0

0.2

0.4

Linear methods for classification 3

[e%

0.6

0.8

1.0

FIGURE 4.6. Two methods for fitting quadratic
boundaries.  The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained using LDA in the five-dimensional space
X1, X2, X1 X2, X}, X2).  The right plot shows the
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Computations for LDA

Linear and Quadratic Discriminant Analysis

e O(N3), often O(N?37°)
@ QDA and LDA may be computed using matrix decomposition:
o Compute the eigendecomposition for each
(¢ = ) T (x = i) = UL (x = )] "D UF (x — )]
e log |)ik| = Ze log de.
@ Using this decomposition, LDA classifier can be implemented by the
following pair of steps:
o Sphere the data with respect to the common covariance estimate PX
X* <~ D 3UT X, where ¥ = UDU”.
The common covariance estimate of X™ will now be the identity.
o Classify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities 7.
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Local Likelihood and other methods

@ Logistic and log-linear models involve the covariates in a linear fashion.
o We fit the model locally at xy and weight the loglik by the kernel ky
@ and center the estimate at xg.

N

UBy) = Zk,\(xoaxi)f(}/i,(x*Xo)Tﬁxo)

i=1

N
= Z kx(x0, x;) {y,ﬂ)z(;(x,- —xp) — log(1+ eﬁxro(x"_x"))}
i=1

o <

3 3

o o
a ° a ©°
5 o 5 o Note: Increased prevalence for
@ o (] o
e £ small values due to retrospec-
s = s . .
s ° s ° tive data: some people with
a a .

3 3 diagnosed CHD started more

o | o healthy life.

o Il 1T o NI Il

100 140 180 220 15 25 35 45
Systolic Blood Pressure Obesity
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South African Heart Disease continued

@ Each feature Xj is approximated by a natural spline.

@ The overall model is:
logit[P(CHD|X)] = 0o + h1(X1) 701 + ha(X2) "0z + ... + hy(X,) 76,

@ 0; are vectors of coefficients multiplying their associated vector of natural
spline basis functions h;

o four basis functions (three inner knots) per spline in this example.

@ binary familyhist with a single coefficient.

@ Combine all p vectors of basic functions into one big vector h(X),
df =1+377 , df;

@ each basis function is evaluated at each of the N samples

@ resulting in a N x df basis matrix H.

@ and use 'standard’ logistic regression.

Machine Learning Linear methods for classification 3 67 - 94 February 22, 2024 85 / 388



o
5 §-
@ Alcohol not significant by @ S -
= £
AIC test ° e
@ covariance Cov() is "L oy
. 100 120 140 160 180 200 220 o 5 10 15 20 25 30
estimated by sbp tobacco
3 = (HTWH)!
o W the diagonal weight :‘f a
matrix g g
. . . &= ue
@ variance of a single variable o =,
_j is: L Lwwy v — —
_ B D — famhidt
o (X)) = Varlf(X)] = ot
hi(X;) " Zihi(X;) - N
@ error bounds o -
A o~ )
(X)) £ 2¢/v;(X;)- 8. R
<
SR Ry - S e -
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Summary

likelihood example

logistic regression

linear and quadratic discriminant analysis

(logistic regression with L; penalty and other advanced methods).
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When p is Much Bigger than N

o Simulated experiments (ridge regression models):
e N =100
e p =20,100 and 1000 with standard Gaussian distribution with pairwise
correlation 0.2

P
Y=Y XB+oe
j=1
e f3; with standard Gaussian distribution
o o to make signal-to-noise ratio Var[E(Y|X)]/c* = 2.
o The (average) number of significant coefficients was 9, 33 and 331.

20 features 100 features 1000 features

3.0
3.0
3.0

11
“*,‘
B
{ o

2 o . o o -
' - . - o
TS -~ 5 ‘ SRR T 2
o
= ! | - —_ - .
2 ! 24 = 24 e
3 | 3 3
- " o
i
-
o o o
= 3 3
T T T T T T T T T
20 9 2 99 35 7 99 87 43
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Diagonal Linear Discriminant Analysis

@ Gene expression experiment

e 2308 genes (columns)

o 63 samples (rows), from a set of
microarray experiments.

o The samples arose from small, round
blue-cell tumors (SRBCT) found in
children, and are classified into four major
types:

o BL (Burkitt lymphoma),

e EWS (Ewing's sarcoma),

e NB (neuroblastoma),

e and RMS (rhabdomyosarcoma).

o There is an additional test data set of 20

. observations.
@ diagonal-covariance LDA

Z X +2|og(7rk)

@ s; is the pooled within-class standard deviation of the jth gene
X: — Xij
@ Xjk = Zieq N
® Xk = (Xiky- -+ Xjk,---,Xpk) | is the k class centroid.
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Reduced—Rank Linear Discriminant Analysis

Finding the sequence of optimal subspaces for LDA:

@ compute the K x p matrix of class centroids M and the common covariance
matrix W (within—class covariance);
@ compute M* = MW 2 using the eigen—decomposition of W,
@ compute B* between—class covariance, the covariance matrix of M* and its
eigen—decomposition B* = V*DgV*T.
e order Dg in the decreasing order

e v, of V* in sequence define the coordinates of the optimal subspaces
o Zy = v/ X with v, = W_%v;.

Machine Learning Linear methods for classification 3 67 - 94 February 22, 2024 90 / 388



Reduced—Rank Linear Discriminant Analysis

~ ~ A o
© ®
2 2
<4 @
£ o 1 £ o 4
B 2
s s
<1 3
o o
A A
o
~ A
~ A
B -1
~ 3
¢ 2
4 @
£ ° £ o {
5 2
8 8
(SR o
<
& 4
o | PR N A oy
-4 -2 0 2 4 -2 -1 0 1 2 3
Coordinate 1 Coordinate 9
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Vovel Example

Misclassification Rate

Canonical Coordinate 2

LDA and Dimension Reduction on the Vowel Data

2 a 6 8 10

Dimension

Classification in Reduced Subspace

I VAT, .. cthois for classification 3
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And many other models

o Elastic net penalty

max g, 5,creik Z log P(gi|xi) — Z Z a|Bik + (1 — a)ﬁfj)

N K p
i=1 k=

1j=1

Number of Genes

1500
L

2308 2050 1223 508 284 150 81 43 23 15 10 5 1 -

J O B S O S E—
S Training o
10-fold CV sose 3 =
s @ Test / I5)
& Vot g =
§ < ? -
g 3 / — =
381 -
= P " ersrsrsrsresesene y
T T T T
0 2 4 6
Amount of Shrinkage A _—
T T T T T T T T
10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10 -10 05 00 05 10

Centroids: Average Expression Centered at Overall Centroid
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Model Assessment and Selection

e We assume i.i.d. data = e
e independently (independent .
samples)
o identically (the same distribution)
o distributed

@ Assume many iid datasets

e 1 line= train/test curve for 1 set
of samples (data)

o data used to fit the model Definition (Generalization error)
Trammg error is

Generalization error is the expected

er=w Z L{yi, F(x))), prediction error over an independent
e data not used to fit the model
test sample

Test error |s
err = Z L(y; x, ), A
N i=1 ’ —
o Test error is a point estimate of Err = E[L(Y’ f(X))]
the generalization error.
e Dark red line is an average of test
errors, a more robust estimate.

where both X and Y are drawn
randomly from their joint distribution
(population).
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Loss functions for regression

Definition

e Square error loss L(y,y) = (y — §)?
@ Absolute error loss L(y,y) = |y — §|
@ Huber error loss

_ [ =92 forly—J|<s,
) 1
Sly — y| — 162, otherwise.

Loss
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Classifier Assessment and Selection

Definition (Loss functions for classification)

@ Qualitative response G
taking one of K values @ 0-1 loss, misclassification

labeled as 1, ..., K.
o Typically
G(X) = arg maxy pe(X).

L(G, G(X)) = I(G # G(X))
o log-likelihood, cross-entropy, deviance

L(G, p(X)) = —2/(G = k) log px(X)

@ two classes encoded {—1,+1}

o exponential

—yf
e}/

e support vector

Loss
00 05 10 15 20 25 30

max(0,1 — yf(x))

o Non-negative loss matrix L € RK*X with 0
on the diagonal.
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Data Rich Situation

Validation Test

If we have enough data, we split the dataset
@ Train train the model

o Validate select appropriate model parameter «, A, usually the model
complexity, cost penalty
@ Test estimate the test error on an independent sample.
Recommended ratios:
° : 1 with the validation set

without the validation need.

WIN NI=
Wl D=
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Stratified Selection

@ Assume small disease prevalence.
o We split the data healthy/sick and split each group separately.
@ Consider a model over different branches of your company:

e to estimate a new branch, all data from some branches should be selected as
test ones
e not a random sample from each branch.

Other methods only since we almost never have enough of the data.
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Error Estimation with a few data

Amount of data needed depends on:
@ true function complexity
@ the noise ratio.

The estimation method depends on the purpourse:

Model selection Test error estimation
@ absolute value is not necessary, the ¢ apsolute value is necessary

ifference is crucial . N —
difference s cruci @ direct estimation (cross-validation,
@ any method can be used (AIC, one-leave-out) preferred.
BIC, cross-validation,...)

Log-ikelihood Loss 01 Loss

e

IIII

jS3ezcz2s8ss1
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Bias Variance Decomposition

e Assume Y = f(X) + € where E(¢) = 0 and Var(e) = o2.
@ we derive the expected prediction error of the regression fit ?(X) at an input
point X = xg using squared-error loss:

Err(xo) E[(Y — F(x0))?|X = xo
o2 + [Ef (x0) — f(x0)]? + E[f (x0) — Ef(x0)]?
02 + Bias®(f(x0)) + Var(f(x))

= Irreducible Error + Bias® 4 Variance.

spline
wavelet
true

0.0 0.2 0.4 0.6 0.8 1.0
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Bias Variance Decomposition

K-Nearest neighbour

Err(x) = E[(Y — F(x0))*X = xo]
= 02+ [EF(x0) — f(0)]’ +Elf (x0) — Ef (x0)]?
1o o?
= ot +[f(x0) = 7 D flxe)lP + =
k k
=1
Linear fit
Err(x) = E[(Y — f(x0))?IX = xo]
= 02+ [Efp(x0) — f(x0)]” + [[h(x0) |02
h(o)y = (g (XTX)7'XT)y = f,(x0)-
@ hence Var[?p(xo)] = ||h(x0)||o? and its average is &2, hence
L N b
- . = N2+ P o2
N ; Err(x;) N g —Ef(x)]? + N
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Penalized model complexity

~

o Consider ridge regression fit f,(xo) with the fit

h(xo)y = xg (XTX + /) *XTy

@ we break the bias more finely. Let 5. be the fit with o = 0,

B. = argming E(f(X) — BT X)>2.

Ex[f(x0) —Efa(0)® = Exlf(x0) — B0 +Ex[8] 30 — Efx0o]’
= Ave[Model Bias]? + Ave[Estimation Bias]?,

Closest fit in population

Redlization
‘.\ |
| Closest fit
[
Truth / {7 MODEL
* SPACE
Model b\as/\/ g
Estimation Bias ____ \ __ Shrunken fit
e
Estimation /777
Variance

RESTRICTED
MODEL SPACE
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Example: Bias-Variance Tradeoff

Kk-NN - Regression Linear Model - Regression
@ 50 observations, 20 2 2
predictors, uniformly N N
distributed in the
20 R R
hypercube [0, 1]°.

Left YisOileg%andl E I ———— i S
. 1 50 40 30 20 10 0 5 10 15 20
if X1 > 5 and we apply
k-NN

k=NN - Classification Linear Model - Classification
Right Y is 1 if E E

10
> j=1X>5and0 . .
otherwise, and we use

best subset linear ] ]
regression of size p. 3 ER

% . % x w0 . e w5 o

Fig. 7.3.
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Optimism of the Training Error Rate

training error &7 = L SN L(yi, F(x))

usually less than the true error Err = E[L(Y, F(X))].

we keep x; points fixed, we take new sample of y at these points.

in-sample error Err, = % Efvzl EyEyrnew L( Y7, )A’(x,))

optimism op < Err;, — E,(&FF).

for squared error, 0-1, and other loss functions: op = 2 Z,N:l cov(¥i, yi)

For a linear fit with d = p inputs of basis functions and additive error model
Y = f(X) + € it simplifies

N
Z COV()/},', y,') = dUg
i=1

€

d
Erri, = Eyerr +2—0% = Cp = AlCquuss..
. [AY

spline
wavelet

—— true
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The Optimism (Just for fun)

Vi = 9i = (i = £00)) + (F(x:) = EF () + (EF (xi) — 91).

@ We get six terms of the sum of squares: R
=2 — f(x))? Dy =232:(yi — £(xi))(f(xi) — Ef(xi))
B () —EF(x)?  E=2%,(f(x) - IE"(X:))(E;‘( xi) = 1)

C = ¥ (EF(x) — 9:)? FL=23(vi — FO0)(EF (%) - 91)
@ For the new sample Y, taking the expectation.
o Ay =37 Evo(YP — f(xi))?
@ and similarly Dy, F».
N(Erry —ef) = (M+B+C+Da+E+FR)—(A+B+C+Di+E+F)
= (Az — A1) + (D2 — Dl) + (F2 — F1)
e E(A;) = E(Ay) = No?, .
o E(Dy) =23 i(E(y:) — £(i))(f(x;) — Ef(xi)) = 0 since E(y;) = f(x;)
@ E(D;) =0 as well.
o F =25 (Eyo [(v,o — () (EF(x) _y,-)} =0
o as E(Y?) = f(x;) and Y? and §; are independent.
o E(F) = -2V cov(yi, ).
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The Covariance (Just for fun)

cov(§.y) = cov((X(XTX)"'XT)y,y) = (X(XTX)"'XT)cov(y,y)
cov(y,y) = o2

@ The values cov(¥;,y;) are the diagonal values of the above matrix cov(y,y).

Thus
N
Y cov(fiyi) = trace(X(XTX)"H(XT))o?
i=1
= trace((XTX) (X X))o?
= trace(ly)o? = do?.
o Similarly,

N
ZCOV(S,\y;,y,-) = trace(S,).
i=1

https: / /www.waxworksmath.com /Authors/G_M/Hastie/WriteUp/Weatherwax_Epstein_Hastie_Solution_Manual.pdf
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AlIC Akaike Information Criterion

Definition (AIC)
The AIC Akaike Information Criterion is defined

o Logistic regression, binomial log likelihood

2 d
e Gaussian model with variance o2
— d
AlC(a) = err(a)+ 2%03.

the sum of the training error err(«) and the complexity penalty for d, d(«)
model parameters, N samples, loglik the logarithm of likelihood.

@ The effective number of parameters
o for a linear fit y = Sy is d(S) = trace(S), the sum of the diagonal elements.

@ For 0-1 loss does not hold in general, only as approximation.
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BIC Bayesian Information Criterion

PMLIZ) = P(Z|M;()Z-)P(Mm)
P(Z|Mm) : P(Mm)
P(Mm)-/P(Z|9m,Mm)P(9m|Mm)d9m

<

<

Laplace approximation to the integral gives with 0, the ML estimate of 6:

log P(ZI M) = IogP(Z|9Am,Mm)fd7mclogN+ 0(1)

dm
= loglik — - log N+ O(1)

Definition (Bayesian Information Criterion (BIC))

BIC,, = —2loglikm, + (log N) - dp,

1
e?'BIC’"

BIC may be used to compare the model posterior probabilities —=———.
2.BIC,

D €2 BIC
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Crossvalidation

Crossvalidation

@ Split the data into K roughly equal-sized parts. Usually, K =5 or 10
or K=N
o For K =10 it is called tenfold crossvalidation.
o For K = N it is called one-leave-out crossvalidation.
o r:{l,...,N} = {1,..., K} is the partition function
o f~¥is the fitted function with kth part removed.
e Fork=1,... K
o For the kth part we fit the model to the other K — 1 parts of the data,
and calculate the prediction error of the fitted model when predicting
the kth part of the data.

@ Average the error estimates.

N
Z yla =) l))

10 times 10 Crossvalidation
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Parameter Tuning by Crossvalidation

Parameter Tuning by Crossvalidation

@ Given a set of models f(x, a)
indexed by a tuning parameter
o, we define

=% Z yi, 750 (x;, ).

@ The CV/(a) provides an estimate
of the test error curve and we
find the tuning parameter & that
minimizes it.

@ Our final model is f(x, &).

Model Assessment and Selection 4

Machine Learning

Misclassifcation Error

] jSeEassdszess

5 10 15 20
Subset Size p

FIGURE 7.9. Prediction error (orange) and tenfold
cross-validation curve (blue) estimated from a single
training set, from the scenario in the bottom right panel
of Figure 7.3.

Definition (One standard error rule)

We choose the most parsimonious
model whose error is no more than
one standard error above the error of
the best model.

Here, p = 9.
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Generalized Crossvalidation

o For a linear fitting method we can write

y = Sy.
@ For many linear fitting methods,
N N s
1 _ 1 yi — f(xi)
- _Fi 2 _ = 2
N;[y’ (X’)] N;[ 1_5[_[ ]
@ The generalized crossvalidation GCV approximation is
N R 2
1 yi — (%)
GCV = — —_—
N ; 1 — trace(S)/N
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Bad and good Crossvalidation

@ p = 500 dimensions Wrong way
o N=20 @ choose 100 good predictors
@ random data, y independent of x. o Using just this subset of
e We search for the best 'decision stump’ predictors, build a multivariate
(decision rule based on one single classifier, using all of the
attribute). samples except those in fold k.
ol N o Use the classifier to predict the
1 class labels for the samples in
£l fold k.

T T
o 10 200 300 40 500 12 45 6 7 8 8
- = cec o en S B

Correlations of Selected Predictors with Outcome

BN

Predictor 436 (blue) v Erors Correlations of Selected Predicors with Outcome

Class Label
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One-leave—out

@ Use all but one data samples for learning.

@ Evaluate the error or the hidden sample.

@ Repeat for each sample and calculate the average.
Advantage:

@ The largest possible training set.

@ Deterministic evaluation (no sense to repeat it).
Disadvantage:

@ Time consuming.

@ May be misleading — take randomly 50 : 50 generated goal G, the
one—leave—out error is 100%.

Learning curve

E /

E
04

00 02

0 50 100 150 200
Size of Training Set
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Bootstrap

@ Select elements with replacement.

@ We have N data samples, we select with
replacement N samples — some are selected 7
more than one, some are not selected at all. TS
The not selected are used for testing. |

- Rodleltivhs

Bootstrap
SHRpIEE

@ The probability of not-selecting a sample is
(1-21)"~e1=0.368
@ The error estimate is pessimistic since we

learn a model on N samples that come from |, .une 710 s
onIy 0.632 sampl es. We wish to assess the statistical accuracy of a quan-

tity S(Z) computed from our dataset. B training sets
The USU3| error estimate is: Z**, b =1,...,B ecach of size N are drawn with re-
placement from the original dataset. The quantity of

interest S(Z) is computed from each bootstrap training

set, and the values S(Z*'),...,S(Z*?) are used to as-

err = 0.632 - €test -+ 0.368 - €train sess the statistical accuracy of S(Z).

of the bootstrap process.

@ Again, may be misled by similar data as
one—leave—out.
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Confusion Matrix

true class \ prediction

+

+

TP — true positive

FN — false negative

FP — false positive

TN true negative

Basic measures:

Cesky se ¥ika spravné/fale$né positivni/negativni.

celkova spravnost accurancy ACC = et N
chyba error Err = %
presnost precision Prec = 55
Uplnost, sensitivita recall, sensitivity Rec = w57y
specificita specificity Specificity = x5
F mira F measure F= %Zfigeecc = 2.TP2_JE+FN
TP rate PN
FP rate (=1-Specificity) %

Machine Learning

Model Assessment and Selection 4
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Additional Remarks

e ROC - curve

o Precision recall curve

@ Interval estimates
@ t-test
e paired t-test
o ANOVA
o Q-Q plot
N SRS % 2
o R%(y,y)=1— % 1 or 0 instead of nan and infinity.
i YiTYi
e explained variance - identical for zero mean residuals.
@ Mc Nemar's test (two classifiers, confusion matrix with values <5; i.e. not X2

test).
o statsmodels.stats.contingency_tables.mcnemar()
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Additive Models, Trees, and Related Methods

o Generalized additive models (GAMs) are automatic flexible statistical
methods that may be used to identify and characterize nonlinear regression
effects.

@ GAM has the form

E(Y[X1,. .0 Xp) = a+ A(X0) + .o+ fo( Xp)

e where f;'s are unspecified smooth functions
e X; predictors, Y the outcome.

o Compared to the basis expansion, here we use use a scatterplot smoother
@ use a cubic smoothing spline or kernel smoother

@ and simultaneously estimate all p functions.
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GAM for non Gaussian distributions

@ Denote p(X) = P(Y = 1|X) in a two class classification with 0-1 encoding
and recall the logistic regression

X
log (%) =a+ Xt ...+ BoX,
o Additive logistic regression model replaces the linear terms by the
smoothers
log ( HX) ) —a+AX)+. ..+ H(X),
w(X)
@ The conditional mean p(X) of a response Y is related to an additive function
of the predictors via a link function g

glu(X)] = a+ A(X1) + ...+ H(X,).

@ Examples of classical link functions are the following
o g(u) = p the identity link, used for linear and additive models for Gaussian
response data.
o g(u) = logit(u) as above
o g(u) = probit(u) probit link function for modeling binomial probabilities is the
inverse of Gaussian cumulative distribution function probit(y) = ®~* (1)
o g(u) = log(u) for log-linear or log-additive models for Poisson count data.
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Models with Feature Interactions

o We may add a function gzw(Z, W) of two features
g(u) = f(X) + gzw(Z, W)
@ Assume qualitative variables V' (factors) and Z one of the predictors and we
create an interaction term g(V, Z) = gx(Z) for each index level k of V/,

g(n) = f(X) + &(2)
@ a semiparametric model keeps the effect of the kth predictor and the effect
of the predictor Z additive
g(u) = X" + au + £(2).
@ Note: logit, probit, log, gamma and negative-binomial distributions belong
the an exponential family, therefore have some nice properties (fit together).

Machine Learning Additive Models, Trees, and Related Methods 5 118 - 138 February 22, 2024 119 / 388



Fitting Additive Model

The backfitting algorithm for additive models

1: procedure GENERALIZED ADDITIVE MODEL FITTING:(X, y)
2. a=xVy, f = 0initialize Vi, .
3: repeat for j=1,2...,p,..., 1,2 ...

4: e S [ — = Ty ) 1],
N n Mg
= fi = 15 = 2 ima (xy)-
6: until the functions f; change less than a prespecified threshold.

7: end procedure

@ §; denotes the smoother, for example the smoothing spline with predefined
degrees of freedom.

A

@ All f; should have zero mean, the constant is fitted by a.

@ Re-normalization is recommended because of rounding errors.
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Generalized Additive Logistic Regression

1: procedure ADDITIVE LOGISTIC REGRESSION:(X, y in 0-1 encoding)
2 y=1% levy,-,d = Iog(ﬁ), f; = 0 initialize Vj.
~ A 2 I 1
3 0i=a4 3 6(x) and pi = ooy
4: repeat
5 Construct the working target variable

. yi — bi
zi =M+ .
e pi(1 — pi)
6: Construct the weight w; = p;(1 — p;)
7% Fit an additive model to the targets z; with weights w;, using a
weighted backfitting algorithm. This gives new estimates &, f; Vj
8: until the functions change less than a prespecified threshold.

9: end procedure
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Spam Example

o Email classification as email/spam. ~ g
—~ s 2. £
5 g 2 g
@ word frequency as X features. 2- 5 - g, B
“ = (= iy
e Important features: e b b S T
our over remove internet
TABLE 9.2. Significant predictors from the additive model fit to the spam train- N % -
ing data. The coefficients represent the linear part of f;, along with their standard o ] N -
errors and Z-sc The nonlinear P-value is for a test of nonlinearity of f;. #- " = 3 .
R 2 = 5
Name Num. df  Coefficient Std. Error  Z Score  Nonlinear &< - % B [~ I~
P-value
Positive effects . "
our 5 |39 0.114 1.970 0.052 7 free ° ‘business hp © hpl
over 6 3.9 0.195 1.249 0.004
remove 7 1.0 0.183 5.201 0.093 I - <
internet 8 4.0 0.176 2974 0.028 gﬂ - 2 I~ (=
free 16 |39 0.127 4.010 0.065 & o - £ S -
business 17 3.8 0.186 4.179 0.194 gt (= = . = -
hpl 26 38 0.250 0.181 0.002 N
ch! 52 4.0 0.128 5.283 0.164 # B
ch$ 53 |39 0.280 5062 | 0.354 “george ° igee’ coa t et
CAPMAX 56 3.8 0.228 1.080 0.000 =
CAPTOT 57 1.0 0.165 4.566 0.063 = [ . =
Negative cffects ~ o~ = e -
= . = 2
hp 25 |39 —1.404 0.224 6.262 g Gl 3 =
o~ [— O o =
george 27 | 3.7 0.045 e = = =
1999 37 38 0.011 B o
re 45 3.9 0.597 .
edu 46 1.0 —1.183 0.209 0.000 oo ci:! - o c‘hé v o CA“;i"IA}‘(Ww ° ”NCA‘LP%:FE’!'?

ning Additive Models, Trees, and Related Methods 5 118 - 138 February 22, 2024 122 / 388




Decision Trees

ch$<6k
ch$>0.0555

remove<0.06
remqve>0.06

Decision tree for a given goal at-
tribute G is a rooted tree with

1 n
@ a root and inner nodes labeled w1 to1 eotzechis CAL
. . ch!>0.191 george>0.15/ CAP VE>2 9C
by attributes; for each possible o)

value of the attribute there is an o s 100heoks
t oin ed e from the node' geur e>(] (Jl)a AVE>2 7505 1999>0.58
outgoing edg ; gf; bion  Emeo
@ leaves are labeled with predicted nelo fred<o. "’;o

hp>U 03

goal class g € G assuming other ‘ 1

7 T

attributes have values as labeled  cafiaxNos  busitessdo 145

CAPMAX>1( 5nmm=s>0 145

on the path from the root. “ B

Attributes not present on the path from the root to the leaf eccefve<.125 edu<0.0

receive>0.125 edu>U 045
our>1 2
[

él
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Construction

Tree construction idea:

° ; create a node and according the value of
the attribute

° based on the appropriate part of
the data

@ stop if there is a unique value of the goal G in the data or no attributes to
split,

The criterion to select an attribute follows.
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Entropy

The entropy of an attribute A ('uncertainty’, negative information) we would like:
@ to be zero for the pure data (only one value of the attribute A)

o the highest entropy for uniform distribution on values of A (no information at
all)

@ two step split leads to the same result as split at once:

H([2,3,4]) = H(12,7]) + & - H([3,4)

Definition

Entropy These properties has the entropy H([p1,...,pk]) = — ZLI pi log pi, the
base of the logarithm usually e, sometimes 2.

k
If we do not normalize we get the entropy multiplied by E gl Il
=

The lower index A denotes the attribute to calculate the entropy Hy, for the goal
attribute Hg.
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The Entropy for a binary attribute

X axis: pj, y axis: entropy.
Gini =1 - Y,(pi)?

FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2. Cross-entropy has been scaled to pass through

(0.5,0.5).
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ID3 algorithm

We select an attribute with the maximal information gain, defined for the data
and an attribute Xj:

. |datax.—,|
Gain(data, X;) = Hg(data) — —_—
J ij@:g |datal

He(datax,—;)

where datax,—,; is a subset of data where X; = x;, the entropy is defined

|G|

|datag=,| |datag—g|
Hg(data) = —— i ;
c(data) gzé;; datal B gl Z —p; - logap;

where p; denotes the ratio of G = g; in the data.

It is equivalent to minimize the weighted entropy after the split, that is

|datax,—| |datag—ge.x;—x;| |datag—ge x,—x|
ar, m n = ny/ =3
gm Z |data| Z |datax;—| e |datax,—|

x;€Xj
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ID3 algorithm(data, G goal, Attributes attributes)

ID3

Create the root root
If all data have the same g, label the root g and return,
If no attributes Attributes, label the root
by the most frequent g in the data and return
otherwise
X; < the attribute from Attributes with the maximal Gain(data, X;)
label root as X;
for each possible value x; of Xj,
add an edge from root labeled X; = x;
datax,—x, < the subset of the data with X; = x;
If datax,—x; is empty, add a leaf labeled by
the most common class g in data and return
add a subtree ID3(datax,—,, G, Attributes \ {X;})

return root
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Categorical Attribute Notes

@ CART in the sklearn DecisionTreeClassifier does not support categorical
attributes

e uses just binary splits.

@ It is requires exponential complexity with respect to the number of categories
to find optimal binary split.
e The recommended heuristic is to sort categories according to the goal class
probabilities and search the split in a linear time.

@ We should avoid the split into too many branches.
o ID3 used penalization Gain™(X;, data) = %
e so for the identifier with unique values Gain™(X;, data) = %

e min_samples_split, min_samples_leaf, min_weight_fraction_leaf can do it
too.
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Prunning Introduction

To avoid overfitting we try to remove unnecessary nodes
@ postprunning — build a tree, prune afterwards;
o usuall way

@ preprunning — prune during the construction
e This seems nice but we could prune two attributes combined by XOR since

both has information gain (close to) zero.

Postprunning

o subtree replacement — select a tree and replace it by a leaf;
@ it increases the training error
e it may decrease the error on validation data
o step by step, we try to prune each subtree: we prune if we do not increase

validation error.
@ subtree raising — remove an inner node. Used in C4.5. The data samples
must be re-send to the remaining branch, it is time consuming.

e Usually checked only for the most frequent branch in the tree.
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Reduced Error Pruning

Reduced Error Pruning Y emave>0.0

Cpam

o7

o reduced error pruning —
we keep part of the data for
validation (pruning).

ch!<0.191 george<(.1
ch)>0.19

1 georg
I [spajn [em
! 67109

505

o for each inner node compare

o validation error with this
node as a leaf

o validation error with the Gyl [
(pruned) subtree of this TR s 0
CAPMAX 0.5 business<|0.145
node CAPMAX>1( 5usmess>o,145

@ select whatever gives the

2 ( m il s]>1 18
2023 5718 14789
lower error. recelve<{.125 edu<0.045

1ecelve>0 126 edu>() 045

[cinap n @iy ‘

@ there exist also a criterion based on
the training data our>1.2
@ Reduced Cost Pruning CART - [cooeft [spafe

few slides later.
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Numerical attributes

64 | 65| 68 | 69 | 70 | 71 72 75 80

81

83

85

yes | no | yes | yes | yes | no | no,yes | yes,yes | no

yes

yes

no

@ we require a binary split
@ 11 split points
o for each split we calculate the information gain

H(19,5) — H([4,2][5,3]) = H([9,5]) — (13 - H([4,2]) + 1 - H([5.3])

= 0.940 — 0.939 bits.
@ We allow multiple splits based on this attribute.
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Regression trees - numerical prediction

@ Model tree has linear fit in the
leaves
e not so popular as regression
trees; increases complexity and
discontunuity

e CART

o use the decrease of the square
error loss to select an attribute

e binary splits

o predict the average value in the
leaves.

Ry

X
X

Ry

Ry

X1 X1

partition in the top right pan ective plot

of the prediction surface appears in the bottom right
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CART (Classification and) Regression Trees

@ Regions R,,, we predict a constant ¢, inside any region.
M
F(x) = cml(x € Rm)
m=1
R 1
Cm = Ni Z Yi-

m Xi€Rm

Single Regression Tree for CART

@ Start with all data in one region R

@ Select the best attribute j and its value s for the split:

min[minc, Z (yi — a1)® + mine, Z (i — @)?]

Js
X €R1(j,s) xi€Ra(j,5)

o Inner minimum is the average & = ave(yi| x; € R1).

o iterate until stop (number of samples in the leaf < ng).
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Reduced Cost Pruning

@ Split the data into K folds
@ For each fold k:
o use all except fold k to train the tree T
o Build a sequence of subtrees T* > T{ > T¥... D T\kT|
@ always join two leaves with the minimal increase in the training error
o use fold k do calculate the crossvalidation error of each tree
o consider the error function C,(T¥) as a function of a
o Select the minimum of 3, C,(T*)
@ Build a tree on the full training data
@ Return the subree corresponding to the optimal «.

@ Average error on a leaf m
1 1
Qn(T) = 5= D =7 D )
M x;€Rm M x;€Rm

@ Cost of the tree with « penalty for the number of leaves

il
C(T) = E NmQm(T) + | T].
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Missing values,Class and Samples Weights

Trees can handle missing data well.

Often we cannot omit missing data since many samples have missing values.
o Furthermore, missing values in unused attributes are irrelevant.

o If the value is not missing at random then take the missingness as another

value of the attribute

e example: very small and very high wages are more ofter missing

If the data are missing at random
o split the instance
e according the data ratio following each branch
o weight and average the predictions on leaves.

Similarly, we use weighted information gain to select the attribute.

o by setting setting class_weight
o fit(X, y, sample_weight=None).
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Complexity considerations

CART

@ Let us have N instances with p attributes.
@ Assume a reasonably balanced tree with the tree depth O(logh).

@ To build the tree we need O(p - N? - logNV) time.

o At each depth, each instance occurs exactly ones, log depth levels, p
attributes on each level, the time O(p - N? - log N).

@ Subtree replacement O(N), Subtree raising O(N(logN)?).
o Naive tree construction comlpexity is O(p - N2 - logN) + O(N(logN)?).
o With sorted features and clever indexing

o Overall tree construction comlpexity is O(p - N - log) + O(N(logN)?).
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Ensemble Methods

o Gradient boosting - regression and classification

@ Random forest (+ Bagging)
@ Boosting

o Adaboost - classification
e Stacking
e MARS (=earth).

- Be

I e

piEktiths
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Bootstrap

@ Select elements with replacement. Bosial

Fiths

@ We have N data samples, we select with
replacement N samples — some are selected
more than one, some are not selected at all.
The not selected are used for testing.

@ The probability of not-selecting a sample is
(1-2)"~e 1 =0.368

FIGURE 7.12. Schematic of the bootstrap process.

We wish to assess the statistical accuracy of a quan-

@ Selected samples used to learn a model tity S$(Z) computed from our dataset. B training sets
” Zt b =1,..., B each of size N are drawn with re-

(Usua y a tree)- placement from the original dataset. The quantity of

interest S(Z) is computed from each bootstrap training

@ These are used for the OutOfBag error set, and the values S(Z°"), ..., S(Z*") are used to as-
computation.

sess the statistical accuracy of S(Z).
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Random Forest for Regression or Classification

1. procedure RANDOM FOREST:( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4: Grow a random forest tree Tj

5: repeat

6 Select m variables at random from p variables.
7 Pick the best variable/split—point among the m
8 Split the node into two daughter nodes.

9 until the minimum node size n,,;, is reached.

10: end for

11:  Output the ensamble of trees { T, } 5.

12: end procedure

To make a prediction at a new point x:
o Regression: F8(x) = 37 Tp(x).
o Classification: Let Eb(x) be the class prediction of the bth random—forest
tree.
e Predict EE(X) = majority vote {a,(x)}?.
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Bagging (Bootstrap aggregating)

@ It is a Random Forest, where we use all predictors, that is m = p.

@ both regression and classification.

e Training data Z = {(x1, y1), (x2, ¥2), - .-, (xn, ¥n)}
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Bagging for Classification

@ Training data Z =
{(xa,81): (%2, 82), - (xv, 8n) }
o for each bootstrap sample,
b=1,2,...,B, we fit our model,

A 2 Consensus
giving prediction f*?(x). . J-z - @
@ Take either o |
i . 3 &) Bagged Trees
e predict probabilities of classes B, | e v
and find the class with the Ec
highest predicted probability over <
the bootstrap samples g
Q . Bwes .
B s L T T T T
~ ’\*b 0 50 100 150 200
G(x) = argmaxi § £77(x)
b=1
o predict class and
Ghag(x) = majority vote { G*?(x)}5
bag - ) y b=1-
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Behind Random Forest

The variance of the random forest estimate Var(£2(x)) = E(f(x) — Ef(x))?

iid data variables, independent features, each with variance o2

4] §U2
id identically distributed data, each with variance o2 with positive pairwise
correlation p:

° pa + 1= p 2.
The second part is addressed by bagging.

The idea behind random random forest is to address the first part of the
formula.

o Before each split, select m < p variables as candidates for splitting.

o m < /p for regression, even as low as 1. £ for classification.
For boot—strapped trees

e p is typically small (0.05 or lower)

o o2 is not much larger than for the original tree.

Bagging does not change linear estimates, such as the sample mean
e The pairwise correlation between bootstrapped means is about 50%.
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Random Forest Experiments

Spam example misclassification error
@ bagging 5.4%
@ random forest 4.88%
@ gradient boosting 4.5%

Nested spheres in R? 2500 trees, the
number selected by 10—fold crossvalida-
tion

Nested Spheres

California housing data

@ Random forests stabilize at about
200 trees, while at 1000 trees
boosting continues to improve.

e Boosting is slowed down by the
shrinkage

o the trees are much smaller
(decision stumps, interaction
depth=1 or 2).

@ Boosting outperforms random
forests here.

0 20 00 600 800 1000
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OOB Error

Definition (Out of bag error (OOB)) e An OOB error estimate is almost
identical to that obtained by N-fold
crossvalidation.

For each observation z; = (x;, y;),
construct is random forest predictor by
averaging only those trees
corresponding to bootstrap samples in >
which z; did not appear. fit in one sequence.

@ Unlike many other nonlinear
estimators, random forests can be

0.075
I

OB Error
N Test Error

Misclassification Error
0.065
I

0.055
I

0.045
I

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees.

Machine Learning Ensamble Methods 6 139 - 172 February 22, 2024 145 / 388



Variable Importance (Gini, RSS)

Gini

table l

e Variable Importance of a predictor Xy in a single
tree T is

B(T) =i 2 1(v(t) = 0)
e For each mternal node t of the tree, we calculate
the Gini or RSS gain
o where 77 is the Gini/RSS improvement of the
predictor in the inner node t. ‘
o Gini Pi(t)(1 — p(t)) before and after the split o —
o for K goal classes, a separate tree for each class em=
against others .me,:!l=
o weighted by the probability of reaching the node e
t.

o For a set of trees, we average over M all trees
2 __ 1 M 2
I7 = 3 2221 17 (Tm).

@ Usually scaled to the interval (0,100).

Variable Importance
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OOB Variable Importance

OOB Variable Importance

1: procedure OOBN VARIMPORTANCE:(data)

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4: Grow a random forest tree Tp Alternative Variable

5 Calculate accuracy on OOB samples Importance

6 for j=1,2,...,pdo

7: permute the values for the jth vari- "
able randomly in the OOB samples

8: Calculate the decrease in the accu-
racy

9: end for

10: end for

11 Output average accuracy gain for each j =
1,2,...,p.

12: end procedure

@ The randomization voids the effect of a variable.
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Proximity plot

Proximity plot

1: procedure PROXIMITY PLOT( X,y training data )

2 for b=1,2,...,Bdo

3 Draw a bootstrap sample Z* of size N

4: Grow a random forest tree Tp

5: Calculate prediction accuracy on OOB samples

6 for any pair of OOB samples sharing the same leaf do
7 increase the proximity by one.

8: end for

o: end for

10: end procedure
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Proximity Plot

@ Distinct samples usually come from the pure regions
@ Samples in the 'star center’ are close to the decision boundary.

Dimension 2

Proximity Plot Random Forest Classifier
(4]
(6] B
(& c
. > =
3
N ~= 5
5 =
—— - 2 e
(6]
Dimension 1 X1
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Overfitting

@ Though the random forest cannot overfit the limit distribution
fr(x) =EeT(x;0) = lim £(x)
B—oo

the limit distribution (the average of fully grown trees) may overfit the data.
Small number of relevant variables with many irrelevant hurts the random
forest approach.

@ With higher number of relevant variables RF is quite robust.
@ Seldom the pruning improves

@ 6 relevant and 100 noisy variables,

m=+/6+ 100 ~ 10 the random forest result
@ usually, fully grown trees are

used.

probability of a relevant variable being

selected atwany”splljcr 1S 046 o Two additive vars, 10 noisy,

& s o plus additive Gaussian noise.
o 8
o T = =
g 5 - 7 g
rToLt F - E E

. | EEET
. Bayes Ei 0 0
< 7”7\ 7777777 — — — \77” "
(2,5) (2,25) (2,50) (2, 100) (2, 150)
Number of (Relevant, Noise) Variables FIGURE 15.8. The effect of tree size on the erro
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Boosting

I Use a week classifier as a decision stump (a decision
tree with the depth=1). e Two class problem

AdaBoost.M1 with encoding

Y e{-1,1}

1: procedure ADABOOST CLASSIFIER( X, G) o LS vt
o ) . 7 = Vi # G))
2 Initialize the observation weights w; < % N
3 for m= 17 2’ . M dO FINAL CLASSIFIER
. e .. G(x) = sign | XN 4G,
4 Fit a classifier Gp(x) to the training ( :[2
data using weights w; = Gula)
N .
Wil (yi#Gm(xi
5: compute erry, w :
= Wi
(1—errm) e Ga(a)

compute ap, < log e
Set w; +—w; - e I(yi#Gm(xi))-atm !
(normalize weights) [

end for

10: OUtpUt G(X) = Sign[zrl\:zl ame(X)]. ,,,,. Gy(z)

11: end procedure
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Nested Spheres Example

@ The features X, ..., Xy are standard independent Gaussian

@ deterministic target
o Y =1iff 31 X7 > x3(0.5) = 9.34,
e Y = —1 otherwise.

2000 training cases

10000 test observations.

@ Decision stumps.

w
° Single Stump

0.4

03
I

244 Node Tree

Test Error

0.2

0.1

T T T T T
0 100 200 300 400

Boosting lterations
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Additive Model

@ We encode the binary goal by Y € {—1,+1}.
@ Boosting fits an additive model:

M
F(x) =D Bmb(x;Ym)
m=1
@ where 3, for m=1,..., M are the expansion coefficients

@ b(x;v) € R are usually simple functions of the multivariate argument x
o characterized by a set of parameters ~.
o For trees, v parametrizes the split variables and split points at the internal
nodes, and the predictions at the terminal nodes.
o Forward stagewise Additive Modeling sequentially adds one new basis function
without adjusting the parameters and coefficients of the previously fitted.
@ For squared—error loss

L(y, f(x)) = (v — f(x))?,
we have
L(yi, fn1(X) + Bmb(xi;7m)) = (Vi — fn—1(X) — Bmb(xi; Ym))?
(Fim — Bmb(xi: ¥m))?
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Exponential Loss and AdaBoost

o Let us use the Y € {—1,1} encoding and the exponential loss
L(y, f(x)) = et

@ We have to solve

N
= i [—yi(fn—1(x)+BG(xi)]
(Bm> Gm) arg rg,lg;e

N
- i [—yi(fm—1(x))] p[—¥iBG(x)]
= argmin e e
gﬁl’G;
. (m)
= i m) o[- G()]
= argmin w: e

o where W,.(m) = el=Yifn-1(4)] does not depend on 3 nor G(x).

@ this weight depends on f,,_1(x;) and change with each iteration m.
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Exponential Loss and AdaBoost

e For any 8 > 0 the solution for Gp,(x;7) is

m—argmanW I(yi # G(xi;7)),

N m
err. — 2i—1 W )I()’i # Gm(xi))
Zl{vil Wi(m)
@ since
N
= [=viBG(x)]
(Bm, Gm) argmlg;vv e

= argmln e’ Z W —|—e’3 Z W,-(m)

=G(x) Yi#G(x)

= argrg’ig F_eh) Zwm)ly, G(x)) +e”- Zwm)
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Adaboost Update

@ Solving previous equation for (3, gives:

1, 1-
B = Slog =™

2 errm

@ The approximation is updated

fn(x) = fmn—1(x) + BmGm(x)
@ which causes the weights for the next iteration to be:

Wim+1 — Wim . e_ﬂm}/icm(x/’)_

@ using the fact —y;Gn(x;) =2 I(yi # Gm(x;)) — 1 we get

Wm+1 — Wim . eal(yi7éGm(Xi)) . e_ﬁm.
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Why exponential loss?

@ The population minimizer is

_ B 1, P(Y=1)
£* _ E Yf(x) =—log—————".
(x) = arg ?Elxr)] yix(e ) 2 o8 P(Y = —1|x)

o therefore 1
lte2r (0
@ The same function *(x) minimizes also deviance (cross—entropy, binomial
negative log—likelihood)
e interpreting f* as the logit transform. Let:

P(Y =1|x) =

e ) _ 1
e—f*(x) + ef*(x) - 1+ e—2f*(x) "

p(x) = P(Y =1|x) =
o and define Y/ = (Y 4 1)/2 € {0,1}. Log-likelihood is
(Y, p(x)) = Y'logp(x) + (1 = Y')log(1 — p(x))
e or equivalently the deviance:
—L(Y,f(x)) = log (1 + e72Yf(x)) .

@ Exponential loss decreases long after missclassification loss is stable at zero.

)
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Partial Dependence Plots

o Partial Dependence of f on
Sc{l,...,p} is defined as:

fs(Xs) = Ex.f(Xs,Xc)

_ 1N

fS(XS) = sz(X&XiC)
i=1

@ |t estimates the dependence on
S averaging other predictors
(not ignoring them).

Machine Le Ensamble Methods 6

FIGURE 10.8. Partial dependence of the log-odds o
spam vs. email as a function of joint frequencies of hy

and the character !.
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Forward Stagewise Additive Modeling

@ A general iterative fitting approach.

@ In each step, we select the best function from the dictionary b(x;; ), fit its
parameters v and the weight of this basis function 5,.

@ Stagewise approximation is often faster then iterative fitting of the full model.

Forward Stagewise Additive Modeling

1: procedure FORWARD STAGEWISE ADDITIVE MODELING( L, X, Y, b)
2 Initialize fy < 0.

3 for m=1,2....Mdo

4: Compute (Bm, Ym) < argming ., Z,N:1 L(yi, fm—1(x:) + Bb(xi; 7).
5: Set fin(x) < fm_1(Xx) + Bmb(xi; Ym)

6 end for

7: end procedure

@ For example, our basis functions are decision trees, v represents the splits and
fitted values T (x;7)).

@ For square error loss, any new tree T (x;7) is the best tree fitting residuals
ri = Yi — fm—1(x).
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Gradient Tree Boosting Algorithm

Gradient Tree Boosting Algorithm

1. procedure GRADIENT TREE BOOSTING ALGORITHM( X, Y, L)
2 Initialize fy(x) <— arg min, Z,N:l L(yi, ).
3: for m=1,2,...,Mdo
4 for i=1,2,...,Ndo
| 9Ly f () —[ . — :
5 compute rj, = [ OF () ]f(x;):fmfl(x,-) =My — fo1(x)
6 end for
7 Fit reg. tree to the target rim giving regions {Rjm}j=1,... 4,
8: for j=1,2,...,J,do
o: Compute 7jm < arg min, Zieij L(yi, fm—1(xi) + 7).
10: end for
11: Set fon(x) < Fn—1(x) + X771 Yim /(X € Rim).
12: end for

13: Output 7(x) = fu(x).
14: end procedure

[¥] for square error loss.
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Stacking

@ Over a set of models (possibly different types) learn a simple model (like a
linear regression)

o Assume predictions f (x), 2(x), . .., fu(x) under square error loss
@ Predictors trained without ith example are denoted
o f7'(x), 1t '(x),... ' (x)
@ we can seek weights w = (ws, ..., w,,) such that
N M 2
Wt = argmin Z Vi — Z Wt ' (X)
] m=1
@ The final prediction is
M
P ) =D warfm(x)
m=1

o Using cross—validated predictions #,'(x) stacking avoids giving unfairly high
weight to models with higher complexity

o Better results can be obtained by restricting the weights to be nonnegative
and to sum to 1.
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Decision Rules from Decision Trees

@ We can represent a tree as a set of rules
e one rule for each leaf.
@ These rules may be improved by testing each attribute in each rule

o Has the rule without this test a better precision than with the test?
o Use validation data
o May be time consuming.

@ These rules are sorted by (decreasing) precision.

Machine Learning Ensamble Methods 6 139 - 172 February 22, 2024 162 / 388



Loss Matix

The cost of missclassification may be dif-
ferent for each class. The general loss
specification is a loss matrix L, an el-
ement represent the cost of classifying k
as k!. Must be zero at the diagonal, non-
negative everywhere.

@ we can modify
Gini(m) = Zk;éld Lyt Pk Pl

@ or weight the data samples k L,
times (only in binary classification)

o we classify according to
k(m) = argmin Z, LixPmy in the
leaves.

Ensamble Methods 6

Tree (0.95)
GAM (0.98)
Weighted Tree (0.90) |

Sensitvity

‘Specificity

FIGURE 9.6. ROC curves for the classification rules
fit to the spam data. Curves that are closer to the north-
east corner represent better classifiers. In this case the
GAM classifier dominates the trees. The weighted tree

h better ty for higher specificity than the
unweighted tree. The numbers in the legend represent
the area under the curve.
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CART Weaknesses

@ the high variance
o the tree may be very different for very similar datasets
e ensemble learning addresses this issue
@ the cuts are perpendicular to the axis
@ the result is not smooth but stepwise.
o MARS (Multivariate Adaptive Regression Splines) addresses this issue.
o it is difficult to capture an additive structure

Y = C1/(X1 < tl) + C2/(X2 < t2) + ...+ Ck/(Xk < tk) +e€

o MARS (Multivariate Adaptive Regression Splines) addresses this issue.

h

Ensamble Methods
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART

for each feature and each data point we create a reflected pair of basis
functions

(x — t)+ and (t — x)4 where + denotes non—negative part, minimum is zero.

we have the set of functions

C= {()<J - t)+, (t - )<j)+}f€{><1,j7X2,j,-»-,XN,j},j:172,-»-~,P

@ that is 2Np functions for non—duplicated data points.

(t—=z)+ (x—t)¢

Basis Function

00 01 02 03 04 05
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MARS - continuation
@ our model is in the form
M
f(X) = ﬂO + Z ﬂmhm(X)
m=1

where hp,(X) is a function from C or a product of any amount of functions
from C

o for a fixed set of h,,'s we calculate coefficients 3, by usual linear regression
(minimizing RSS)

@ the set of functions h,, is selected iteratively.
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MARS - basis selections

T

@ We start with hg = 1, we put this / ) \ /_/_/_/_/\
function into the model M = {ho}. ( nstant

@ We consider the product of any member \ /
hy € M with any pair from C, —

Brar1he(X)-(Xi—t) 4 +Bryahe(X)-(t=X;) ¢ /4 \ // //;\

LTS
N AN it s a )
we select the one minimizing training \ // \// ///

error RSS (for any product candidate, we

estimate 3). / ) \ ///;?\
o Repeat until predefined number of =
functions in M \4/ """" / \/J///
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MARS — model pruning

@ The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f, for
different numbers of parameters \.

o (we want to speed—up cross-validation for computational reasons)
o we select A (and the model) minimizing generalized cross-validation

DI ERNCO)s
VN =T Moy

o where M() is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K, the authors suggest to multiply
K by 3: M(\) =r + 3K.
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MARS is a generalization of CART

© We select piecewise constant functions /(x —t > 0) and /(x — t < 0)

o If h,, uses multiplication we remove this function from the candidate list. It
cannot be used any more.

e This guarantees binary split.

o Its CART.

Nearest Neighbors

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html
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Patient Rule Induction Method PRIM = Bump Hunting

@ Rule induction method

@ We iteratively search regions with
the high Y values

e for each region, a rule is created.
o CART runs of data after
aproximately log,(N) — 1 cuts.

e PRIM can affort — &)

|0g(1705) . FIGURE 9.7. Illustration of PRIM algorithm. There
F N o 12 d I d are two classes, indicated by the blue (class 0) and red
or - 8 ata Samp €S an (class 1) points. The procedure starts with a rectangle
_ B . (broken black lines) surrounding all of the data, and
a = 0' 1 It IS 6 and 46 respeCtlver then peels away points along one edge by a prespecified
H amount in order to maximize the mean of the points
29’ since the n umber Of remaining in the box. Starting at the top left panel, the
observations must be a WhOle sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number

is indicated at the top of each panel.

numper.
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PRIM Patient Rule induction Algorithm

@ Consider the whole space and all data. Set o = 0.05 or 0.10.

e Find X; and its upper or lower boundary such that the cut of a:- 100%
observations leads to the maximal mean of the remaining data.

@ Repeat until less then 10 observations left.

@ Enlarge the region in any direction that increases the mean value.

Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.

Denote the best region B;.
Create a rule that describes B;.

Remove all data in B; from the dataset.

Repeat 2-5, create B, continue until final condition met.
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Unsupervised Learning

o No goal class (either Y nor G).
@ We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,

Segmentation)

EM algorithm for clustering

(Dirichlet Process Mixture Models)

(Spectral Clustering)

Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) /ater
Other The Elements of Statistical Learning Chapter 14

SOM Self Organizing Maps

PCA Principal Component Analysis Linear Algebra; k linear
combinations of features minimizing reconstruction error (=
first k principal components).

o Principal Curves and Surfaces, Kernel and Spare Principal

Components

ICA Independent Component Analysis.
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Clustering Example

2 Clusters

Scaled Data
N 4 ; o
ol e 1 d
c = c = 1

t]
rT T T T TT
-3 -1 1 3

pitch

pitch

o
T TTTT
-3 -1 1

3

yawn

Pitch, Yawn, Roll Clustering

- o 2.

-3

-2 -1 0 1 2 3

roll, pitch

@ We set the color of items, no colour in train data.

@ We want to assign same color to nearby points.

Machine Le:

Clustering 7
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K — means !

K—means

1: procedure K—MEANS:(X data, K the number of clusters )
2 select randomly K centers of clusters jiy

3 # either random data points or random points in the feature space
4 repeat

5: for each data record do

6 C(xi) < argmingeqa,.. kyd(Xi, pi)

7 end for

8 for each cluster k do # find new centers

9 He = D iClx) =k \ch)\

10: end for

11: until no chance in assignment

12: end procedure
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K — means

K—means

The t iterations of K—means algorithm take O(tkpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.

May not be robust to data sampling.

o We may generate datasets by bootstrap method.
o The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).

@ Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance

measures:

= /0 e = )2

Euclidian d(xi, x;)
Hamming (Manhattan) | d(xi,x;) = > o, [xir — X;r|
overlap (prekryti) Y _ .
categorical variables 06, 5) = 2or—y 10xr # X5r)
L > (i)
cosine similarit s(x;, x
y ( ! J) \/Zr 1 Xﬂ le) Z (X/r Xl’
cosine distance d(xi,x;)=1— Z'*l(x" )

\/Zle(Xjf'Xj')'Zle(Xir‘Xr’r)

Machine

Learning

Clustering 7
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Distance — key issue, application dependent

The result depends on the choice of distance measure d(x;, fk).
The choice is application dependent.

Scaling of the data is recommended.

Weights for equally important attributes are: w; = Elij where

. 1 N N 1 N N
CIJ:WZZ x,l,x,2 :mzz Xj, — X,2
h=1ih=1 ih=1ih=1

Total distance as a weighted sum of attribute distances.

Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi,xe) < d(xi, %) + d(xr, x¢)-
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Alternative ldeas

@ Scaling may remove natural clusters S« S x
o Weighting Attributes

o Consider internet shop offering socks and computers.
o Compare: number of sales, standardized data, $

1500

1000

M wm .

Socks  Computers Socks  Computers Socks  Computers
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l

o Notice that W(C) is decreasing also for uniformly distributed data.

@ We look for small drop of W(C) as a function of K or maximal difference
between W(C) on our data and on the uniform data.

@ Total cluster variation is the sum of between cluster variation and within
cluster variation

N
> d(xi, x) = W(C) + B(C)

iil=1

DD IS DICENEED DI DN DITCR D)

k=1 C(i)=k C(il)=k k=1 C(i)=k C(il)k

T =

I\JM—l

l\)\l—l

Machine Learning [IROTSEd IR 173 - 197 February 22, 2024 179 / 388



GAP function for Number of Clusters

o denote W) the expected W for uniformly distributed data and k clusters, the
average over 20 runs

o GAP is expected log(Wj) minus observed log(W (k))

K* = argmin{k|G(k) > G(k+1) — S,LH}

1
S,L = s/1+ 20 where s is the standard deviation of log( W)

log W

Machine Learning

-30 -25 -20 -1.5 -1.0 -05 0.0

2 4 6
Number of Clusters

Clustering 7

8

Gap

=

0.5

0.0

-0.5

| \/L\
_1/11 HI\I

2 4 6 8
Number of Clusters
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Silhouette

For each data sample x; we define Optimal number of clusters k
e a(i)= ﬁ eCidi d(i,j) if |G| > 1 may be selected by the SC.

e b(i) = ml'nk;éiﬁ ZjeCk d(i,j)

Definition (Silhouette
Score)

Definition (Silhouette) The Silhouette score is

N .
Silhouette s is defined % > s(i).
N — _b)—ald) o
° s(i) = max{a(i),b(i)} if ]Gl > 1 ilhouette is always between

o s(i)=0for |G| =1. o —1<s(i)< 1.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.

y 08

e Note: One cluster (—1,1),(1,1),
other cluster (0,—1.2),(0,—1.1),
the point (0,0) is assigned to the
first cluster but has a negative sil-

Cluster label
Feature space for the 2nd feature

houette. https:/ /stackoverflow.com/a /66751204

0100 02 04 06 08 10 02 00 02 04 06 08
The silhouette coefficient values Feature space for the 1st feature
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Country Similarity Example

e Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG
BRA | 5.58
CHI | 7.00 6.50
CUB | 7.08 7.00 3.83
EGY | 4.83 5.08 8.17 5.83
FRA | 217 5.75 6.67 6.92 4.92
IND |6.42 5.00 558 6.00 4.67 6.42
ISR | 342 550 6.42 6.42 5.00 3.92 6.17
USA | 250 4.92 6.25 7.33 4.50 225 6.33 2.75
USS | 6.08 6.67 4.25 267 6.00 6.17 6.17 692 6.17
YUG | 525 6.83 450 3.75 575 542 6.08 583 6.67 3.67
ZAL |4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 567 6.50 6.92
Machine Lear Clustering 7 173 - 197 February 22, 2024
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1: procedure K-MEDOIDS:( X data, K the number of clusters )
2 select randomly K data samples to be centroids of clusters
3 repeat

4 for each data record do

5: assign to the closest cluster

6 end for

7 for each cluster k do # find new centroids iy € Cj

8 Iy 4= argming;.c(iy=k} Zc(n):k d(xi, x;1)

9 end for

10: until no chance in assignment

11: end procedure

@ To find a centroid requires quadratic time compared to linear k—means.
@ We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K—-medoids take O(tkpN?).
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Clusters of Countries

@ Survey of country dissimilarities.
o Left: dissimilarities

o Reordered and blocked according to 3-medoid clustering.

o Heat map is coded from most similar (dark red) to least similar (bright red).

@ Right: Two-dimensional multidimensional scaling plot

e with 3-medoid clusters indicated by different colors.
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Multidimensional Scaling

@ The right figure on previous slide was done by Multidimesional scaling.
@ We know only distances of countries, not a metric space.
o We try to keep proximity of countries (least squares scaling).

@ We choose the number of dimensions p.

Definition (Multidimensional Scaling)

For a given data xi, ..., xy with their distance matrix d, we search
(z1,-..,2zn) € RP projections of data minimizing stress function

1

2

So(z,- .y zn) = | >_(dlxi, xe] — ||z — zl|)?

il

o It is evaluated gradiently.

@ Note: Spectral clustering.
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

@ closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)

@ Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paue)® — > d(xi, pa)® = Y d(xi, pg)?

i€CaUCp i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)

o where 1 are the centers of clusters (A, B and joined cluster).
e It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

@ Dendrogram is the result plot of a hierarchical clustering.

o Cutting the tree of a fixed high splits samples at leaves into clusters.

o The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage

— —]

I Clustering 7 173 - 197 February 22, 2024 187 / 388



Interpretation of Dendrograms — 2 and 9 are NOT close

Samples fused at very bottom are close each other.

° 3
3
w w
F g
o
o 2 7
2 = 3 8 5
o
o ° o S
o | e ; 2
3 < . : .
o
s 0
- © 0~ <1 4
T T T T T T
-15 -1.0 -05 0.0 05 1.0
X,
9 9
ER R 7
o 8 8
2|, 5| |, 5
2 2
2 1 24 1
6 6
14 1 4

5 40 05 00 05 10 15 0 05 00 05 1.0
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Mean Shift Clustering

Mean Shift Clustering

1: procedure MEAN SHIFT CLUSTERING:(X data, K(-) the kernel, A the

bandwidth )
22 C+0
3: for each data record do
4: repeat # shift Atlaach mean x to the weighted average
5 m(x) + Z'ﬁvl MO

Zi:l e

6 until no chance in assignment
7 add the new m(x) to C
8 end for
9: return prunned C

10: end procedure

Kernels:
o flat kernel A\ ball

llx =12
o Gaussian kernel K(x; — x) =€ 2

Clustering 7 173 - 197
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Other Distance Measures

&7 Observation 1
= Observation 2
Observation 3
w |
o |

Variable Index

Correlation Proximity
o Euclidian distance: Observations 1 and 3 are close.
o Correlation distance: 1 and 2 look very similar.

px,y = corr(X,Y) = cov(X, Y) _ E[(X — pux)(Y — py)]

OXx0y OX0y
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Summary

@ K-means clustering - the basic one

o the number of clusters:
o GAP
o Silhouette

The distance is crucial.
o Consider standardization or weighting the features.

K-medoids - does need metric, just a distance

hierarchical clustering

o different distance measures
e dendrogram

other approaches (mean shift clustering, Self Organizing Maps, Spectral
Clustering).
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Gaussian Mixture Model

@ Assume the data come from a set of k gaussian distributions

@ each with
o prior probability 7
e mean pik
e covariance matrix X
_ 1 == TE T (=)
° X) = —F/———e 2 k .
¢Nk:zk( ) )P 12hl

@ We want to find the maximum likelihood estimate of the model parameters.

@ We use (more general) EM algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
density

00 02 04 06 08 10

VNN

IIIIII IIIIIII
0 2 4 6

y y

0 2 4 6
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EM learning of Mixture of K Gaussians !

@ Model parameters 71, ..., Tk, b1, - - - fhks 21, - - - , 2k Such that Zszl m, = 1.

o Expectation: weights of unobserved 'fill-ins' k of variable C:

pix = P(C=klx))=a-P(x|C = k) P(C;=k)
Z;(:l 7T/¢0/ (Xi)

N
Pk = Zpik
i=1

@ Maximize: mean, variance and cluster 'prior’ for each cluster k:

Pik

Bk X
Pk
plk

i E Hk)
Pk
Tk < K .
Z/:1 pi
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Density Classification

density
0.05 0.10 0.15 0.20 0.25
|

a1 39
Model Parameters
2
L

Observed Data Log-fikeihood
2

5 10 15 20 T T T T T
Heration N 2 3 4 5
Latent Data Parameters
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ML Estimate of Gaussian Distribution Parameters

@ Assume x to have Gaussian distribution with unknown parameters i a o.
2

—(x—n)
@ Our hypotheses are hy, , = ﬁe 202
@ We have observed xi, ..., x,.
o Log likelihood is:
N
1 —(x=p)?
LL = lo e 22
J.:Zl g 2o
N
(g = p)?
(o o) = 2 252

Find the maximum.
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Linear Gaussian Distribution

@ Assume random variable (feature) X.

@ Assume goal variable Y with linear gaussian distribution where = b - x + by
—(y=((b-x+bp))?

and fixed variance 02 p(Y|X = x) = N(b - x + by; 0) = \/zime 207

@ Find maximum likelihood estimate of b, by given a set of observations
data = {<X17y1>a R <XN7)/N>}-

@ (Look for maximum of the logarithm of it; change the max to min with the
opostite sign. Do you know this formula?)

argmaxp p, (loge (N f\’zl(e*(y"*(b'x"“")))2 ))) = argming p,(?)
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Bayesian Learning

Complicated derivation of known things.
e Maximum a posteriori probability hypothesis (MAP)
(nejpravdépodobnéjsi hypotéza)
Maximum likelihood hypothesis (ML) (maximéalné vérohodna hypotéza)
Bayesian optimal prediction (Bayes Rate)
Bayesian methods, bayesian smoothing
EM algorithm
Naive Bayes model (classifier).
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Candy Example (Russel, Norvig: Artif. Intell. a MA)

@ Our favorite candy comes in two flavors: cherry and lime, both in the same
wrapper.
@ They are in a bag in one of following rations of cherry candies and prior
probability of bags:
hypothesis (bag type) h ho h3 ha hs
cherry 100% | 75% | 50% | 25% | 0%
prior probability h; 10% | 20% | 40% | 20% | 10%

@ The first candy is cherry.

MAP Which of h; is the most probable given first candy is cherry?
Bayes estimate What is the probability next candy from the same bag is cherry?
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Maximum Aposteriory Probability Hypothesis (MAP)

@ We assume large bags of candies, the result of one missing candy in the bag

is negligable.
@ Recall Bayes formula:
P(hi|B=c) = =
2 j=1....5 P(B = clhy) - P(h)) P(B = c)

@ We look for the MAP hypothesis maximalné aposteriorné pravdépodobna
argmax;P(h;|B = ¢) = argmax;P(B = c|h;) - P(h;).

@ Aposteriory probabilities of hypotheses are in the following table.

P  Bayesian learning, EM algorithm 8 198 - 224 February 22, 2024 199 / 388



Candy Example: Aposteriory Probability of Hypotheses

’ index\ prior \ cherry ratio \

cherry AND h;

| aposteriory prob. h; |

i | P(h) | P(B=clh) | P(B=clh) P(h) P(hi|B = c)
1 0.1 1 0.1 0.2

2 | 02 0.75 0.15 03

3 | 04 05 0.2 0.4

| 02 0.25 0.05 01

5 | 01 0 0 0

@ Which hypothesis is most probable?

hmap = argmax; P(datal|h;) - P(h;)

@ What is the prediction of a new candy according the most probable
hypothesis hyap?

Machine Learning
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Bayesian Learning, Bayesian Optimal Prediction

o Bayesian optimal prediction is weigthed average of predictions of all

hypotheses:
P(N = cldata) = > P(N = c|hj,data)- P(hj|data)
j=1,..., 5
= > P(N=cl|h))- P(hj|data)
j=1,...,5

@ If our model is correct, no prediction has smaller expected error then
Bayesian optimal prediction.

o We always assume i.i.d. data, independently identically distributed.

@ We assume the hypothesis fully describes the data behavior. Observations are
mutually conditionally independent given the hypothesis. This allows the last
equation above.
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Candy Example: Bayesian Optimal Prediction

i [P(RB=c) | P(N=c|h) | P(N=clh) - P(hi]B = c)
1 0.2 1 0.2
2 03 0.75 0.225
3 0.4 05 0.2
4 0.1 0.25 0.02
5 0 0 0
(2] 1 \ \ 0.645
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Maximum Likelihood Estimate (ML)

@ Usually, we do not know prior probabilities of hypotheses.

@ Setting all prior probabilities equal leads to Maximum Likelihood

Estimate, maximalné vérohodny odhad

@ Probability of data given hypothesis = likelihood of hypothesis given data.

@ Find the ML estimate:

hyr = argmax,-P(data\ h,')

’ index \ prior \ cherry ratio \ cherry AND h; \ Aposteriory prob. h; ‘

i | P(h) | P(B=clh) | P(B=c|h)- P(h) P(hi|B = c)
1 0.1 1 01 0.2

2 0.2 0.75 0.15 03

3 0.4 05 0.2 04

4 0.2 0.25 0.05 0.1

5 0.1 0 0 0

@ In this example, do you prefer ML estimate or MAP estimate?

o (Only few data, over-fitting, penalization is useful. AIC, BIC)

Machine Learning
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MAP and Penalized Methods

@ MAP hypothesis maximizes:
hvap = argmax; P(datalh;) - P(h;)
@ therefore minimizes:

hmap = argmax,P(datalh)P(h)
argminy[—logy P(data|h) — loga P(h)]
argming[—loglik + complexity penalty]

argminy[RSS + complexity penalty] Gaussian models
= argmaxy[loglik — complexity penalty] Categorical models
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Maximum Likelihood: Continuous Parameter 0

@ New producer on the market. We do not know the ratios of candies, any hy,
kde 6 € (0; 1) is possible, any prior probabilities hy are possible.

@ We look for maximum likelihood estimate.

o For a given hypothesis hy, the probability of a cherry candy is 6, of a lime
candy 1 — 6.

@ Probability of a sequence of ¢ cherry and / lime candies is:

P(datalhg) = 6 - (1 — 6)".
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ML Estimate of Parameter 6

@ Probability of a sequence of ¢ cherry and / lime candies is:
P(datalhg) = 6 - (1 — 0)'
@ Usual trick is to take logarithm:
U(hg; data) = c - log, 6 + | - log,(1 — 0)

@ To find the maximum of £ (log likelihood of the hypothesis) with respect to 6
we set the derivative equal to 0:

Ol(hg;data) ¢ |

06 0 1-90
c_ L

0 1-0

c
0= .
c+1
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ML Estimate of Multiple Parameters

@ Producer introduced two colors of wrappers - red r and green g.
@ Both flavors are wrapped in both wrappers, but with different probability of
the red/green wrapper.
@ We need three parameters to model this situation:
P(B=c) | PW=rlB=c) | PIW=rB=1)
to b1 0>
@ Following table denotes observed frequences:
wrapper)\ flavor | cherry | lime
red re r
green 8c 8i
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ML Estimate of Multiple Parameters

Parameters are:

P(W =r|B=c¢)

P(W=r[B=1)

Ao

01

0>

Probability of data given the hypothesis hy, g, g, is:

P(data|h90791792)
f(hgoygl,gz; data) =

O (1 — 61)% - & .90 . (1 — 6,)8 - (1 — )&
relog, 01 4 gelogy (1 — 601) + (re + &¢) log, 6o

+rilog, 02 + gilogy(1 — 02) + (11 + g1) log, (1 — 6p)

We look for maximum:

OL(hgy.0, .0, data) retg nte
06, 0o 1— 6,
9 (rC + gC)
0 _ \e® &)
r'e + 8c + ry + 14
8£(h‘90,91,92; data) i . 8
96, 0 1—16,
e
0> L
rn+ g
P  Bayesian learning, EM algorithm 8 198 - 224 February 22, 2024

208 / 388



Naive Bayes Model, Bayes Classifier

@ Maximum Likelihood estimate is the ratio of frequences.

o Naive Bayes Model, Bayes Classifier assumes independent features given
the class variable.
o Calculate prior probability of classes P(c;)
e For each feature f, calculate for each class the probability of this feature
P(flc)
o For a new observation of features f predict the most probable class
argmax, P(f|c;) - P(ci).
Bayes factor
P(ci)
P(cj)
o after each observation x, multiply it by the bayes factor %
J
e that is:

o We can start with a comparison ratio of two classes

P(c;\xl,...,xp) _ P(C,’) . P(X1|C,') . ) P(XP|C,')
P(clx,...,x)  P(g) Plalg) = Plxlg)

@ Bayesian Networks learn more complex (in)dependencies between features.
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Bayesian Methods

o We specify a sampling model P(Z|0)
@ and a prior distribution for parameters P(0)

@ then we compute
__ P(z]6) - P(6)
N | P(Z]0) - P(0)do’

pP(6]Z)
e we may draw samples

@ or summarize by the mean or mode.
e it provides the Bayesian optimal predictive distribution:

P(z""|Z) = / P(2""|0) - P(6|Z)do.

Tossing a biased coin
e P(Z = head|f) =6
@ p(#) =uniform
e P(0|Z) follows the Beta distribution.

P  Bayesian learning, EM algorithm 8 198 - 224 February 22, 2024 210 / 388



Discrete Model Parameter Learning

o For binary features, Beta function is used, a is the number of positive
examples, b the number of negative examples.

beta[a, b](0) = af*~1(1 — 9)>~!

@ Beta Function:

~| pos,neg
3 ] 0,0
S 5,0
- 50,0
D 55
g 3
o
T
o
S 4 —— L
=] T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

x[2:101]

o For categorical features, Dirichlet priors and multinomial distribution is used.
(Dirichlet-multinomial distribution).
o For Gaussian, p has Gaussian prior, % has gamma prior (to stay in

exponential family).
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Bayesian smoothing example

e Training data Z = {z;,..., zn}, . : X ]
Z,':(X,',y,'),l.:].,...7N. ) gm \\ N
@ We look for a cubic spline with e $]) \ X
three knots in quartiles of the X Sl NN )

values. It corresponds to B-spline
basis hj(x), j=1,...,7.

T=1 7 = 1000

@ We estimate the conditional mean . .

E(YIX=x): ux)= Sl bt |- . L
@ Let H be the N x 7 matrix h;(x;). 1o Wk /1\
@ RSS f3 estimate is . \/ : /\J

w(x

u(
)

B =(HTH)'HTy.

We assume to know o2, fixed x;, we specifying prior on 3 ~ N(0,7X).
2
E(BZ) = (HH+ Zx1)"HTy
T

E(u(x)|2)
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Example (EM Algorithm for Missing Data)

@ Two bags of bonbons mixed Bag | F | W
together. Each bonbon has a Bag ? cl|r
Wrapper and flavor Flavor and 1 I r
may have Holes. Each bag had 1 c| ?
another ratio of Wrapper color @ @ 1 c| g
and Flavor. ? | ?

@ Initialize all parameters randomly close to uniform distribution, 6, ~ 0.5.

E step M step — update 0s
w=P(Z"0,Z) Bag | F | W w
l 0 Bag=1
c r Bag=1 — w
c r Z w
Bag=1,F=c
1 1 | r OF=c|Bag=1 < -~ w
Bag=1
1 C
0 Bag=2,F=c v
1 C F=c|Bag=2 <~ - .
1 1 C g bag=2
w
| 9W:r|Bag:1 ¢ FBag=1,W=r
w
| Bag=1
w
Bag=2,W=r
! Ow=r|Bag=2 agiw
| Bag=2
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EM as a Maximization-Maximization Procedure

Z the observed data (the usual X with missing
values)

£(0; Z) the log-likelihood of the model @
Z™ the latent or missing data

T =(Z,Z™) the complete data with the
log—likelihood £o(8; T).

P(Z™),P(Z™|0, Z) any distribution over the
latent data Z.

Consider the function F

F(6',P) = Ep[to(¢'; T)] — Epllog P(Z™)]

for P = P(Z™|¢’,Z) is F the log-likelihood of the observed data
o F(0',P(Z™0',Z)) = E[lo(0"; T)|0',Z] — E[(1(0'; Z™|2)|0’, Z]
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The EM Algorithm in General

- P(z™, Z|0"
P(Z"|Z,0') = (P(Z|9’))'
N _ P(Zm Z]o")
PP = Bzrz.e)

@ In the log-likelihoods
00 Z) = 6o(0"; T) — £1(0", 2™ Z)

@ where /1 is based on the conditional density P(Z™|Z).
Taking the expectation w.r.t. T|Z governed by parameter 6 gives

(o' z) E[to(0"; T)I0, Z] — E[(2(6"; Z7|Z)]0, Z]
= Q(¢.0)— R(0',0)

o R() is the expectation of a density with respect the same density
e it is maximized when ¢’ = 0.
@ Therefore:

(0 Z) - 0(6;2) = [Q0',0) — Q(6,0)] — [R(6',0) — R(6,0)]

n
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The EM Algorithm

1: procedure THE EM ALGORITHM:( Z observed data, the model(6) )

2: 6(©) « an initial guess (usually close to the uniform distribution)
3: repeat
4 Expectation step: at the jth step, compute

Q' 89) = E(to(9: )| Z,69)

5 as a function of the dummy argument ¢’.
6 Maximization step: determine the new estimate 4u+1)

7 as the maximizer of Q(#',01)) over ¢’
8 until convergence

9: return é

10: end procedure

@ Full maximization is not necessary.
o We need to find a value §UtD so that Q(AUHD, 41D > Q(4U), §0)).
@ Such prodecures are called generalized EM algorithms (GEM).
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BN example of EM algorithm (Russel, Norvig) - can be
omitted

@ Two bags of bonbons mixed together. Each bonbon has a Wrapper and
flavor Flavor and may have Holes. Each bag had another ratio of Wrapper
color, Flavor and Holes.

We can model the situation by a naive bayes model, Bag as the class variable.

Example We have tested 1000 bonbones and observed:

W=red W=green Bag
H=1 [ H=0 | H=1 | H=0

F=cherry || 273 | 93 [ 104 [ 90
F=lime [ 79 [ 100 || 94 | 167 @ @ @

We choose the initial parameters

89 = 0.6, 95 = 6% = o) = 0.6, 6 = 9%), = 6%) — 0.4
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EM example - can be omitted

@ Expectation of @ is the ratio of the expected counts

Z P(flavorJ|Bag = 1)P(wrapperj|Bag = 1)P(holesj|Bag = 1)P(Bag = 1)
N : P(flavorj|Bag = i)P(wrapperj|Bag = i)P(holes;|Bag = i)P(Bag = i)

(normalization constant depends on parameter values).
For the type red, cherry, holes we get:
(0) n(0) H(0)

01 01,0170

~ 0.835055
‘9(FO1 0(0) 0)9(0) + 092)0%)29(+?2)9(0)

we have 273 bonbons of this type, therefore we add % -0.835055.
Similarly for all seven other types and we get

M) = 0.6124
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EM example continued - can be omitted

#(Bag=1,Flavor=cherry)
#(Flavor=cherry)

@ We have to use expected counts Bag = 1&F = cherry and Bag =1,

@ The estimate of 6¢; for fully observed data is

s _ > j:Flavor,—cherry P'(Bag = 1|Flavor; = cherry, wrapper;, holes;)
F1 =

>_; P(Bag = 1|cherry;, wrapper;, holes;)
@ Similarly we get:
1 1 1
01 = 0.6124, 6 = 0.6684,6"), = 0.6483,6'}) = 0.6558,

0% = 0.3887,0\), = 0.3817,6\}) = 0.3827.
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Hierarchical Mixture of Experts

@ a hierarchical extension of naive
Bayes (latent class model)

@ a decision tree with 'soft splits’

@ splits are probabilistic functions of a
linear combination of inputs (not a
single input as in CART)

@ terminal nodes called 'experts’

@ non—terminal nodes are called
gating network

@ may be extended to multilevel.

Machine Learn Bayesian learning, EM algorithm 8
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Hierarchical Mixture of Experts

e data (x;,y;), i=1,..., N, y; continuous or
categorical, first x; = 1 for intercepts.

Gatin, Gati)

;
Vi X Networl Networl
Y . .
e gi(x,v) = W,J—l,...,Kchlldren :
e
k=
of the root, oan /) o ) o
. — e Jt — ‘ : :
° gyi(x ) = == {=1..,K TR A

~vTx
e Jk
Pr(ylz, 011) Pr(y|z, 021) Pr(y|z, 612) Pr(y|z, 622)

k=1
children of the root,

e Terminals (Experts) o EM algorithm

(] A,‘, AZU 0-1 latent
variables — branching

Regression Gaussian linear reg. model,
00 = (Bje:07), Y = B +e
Classification The linear logistic reg. model:

E st ions for A’
Pr(Y = 1|x,6;) = step expectations for A's

—_oT x .
1+e Uit M step estimate parameters
HME by a version of

m|||t|n|n lncictic
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Missing data (T.D. Nielsen)

Die tossed N times. Result reported via noisy telephone line. When transmission
not clearly audible, record missing value:

4,2,7,6,5,4,7.3,4,1,...

“2" and "“3" sound similar, therefore:

1/4 k=23

: :? Pl g s = s = = !

P =7 =K = P =11 =0 = { V8 2T
W

Distribution of the Y is (for fair die): 2,3 g1~ %7
1,4,5,6 ag TS

If we simply ignore the missing data items, we obtain as the maximum likelihood

estimate for the parameters of the die:

7117 7 7, 6

« g = (0.175,0.15,0.15,0.175,0.175,0.175)
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Incomplete data

How do we handle cases with missing values:
@ Faulty sensor readings.
@ Values have been intentionally removed.
@ Some variables may be unobservable.
How is the data missing?
We need to take into account how the data is missing:

@ Missing completely at random The probability that a value is missing is
independent of both the observed and unobserved values (a monitoring
system that is not completely stable and where some sensor values are not
stored properly).

@ Missing at random The probability that a value is missing depends only on
the observed values (a database containing the results of two tests, where the
second test has only performed (as a “backup test”) when the result of the
first test was negative).

o Non-ignorable Neither MAR nor MCAR (an exit poll, where an extreme
right-wing party is running for parlament).
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Frequent itemsets, Association Rules

Unsupervised learning

No goal class (either Y nor G).

Usually binary data X € {0,1}V*P

Value = 1 is our interest; for example purchase.

p may be very large; for example the size of the range of goods in an market.
Popular application: Market basket analysis.

Generally: We look for L prototypes v, ..., vy € XP such that P(v;) is
relatively large.

With large p, we do not have enough data to estimate P(v;) since number of
observations with P(X = v;) is too small.

We seek for regions where P(x) is large, that can be written as conjunctive

rule on dimension conditions (7_, (X; € ;) where s; are selected values of
the feature X;.
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Hypothesis space for Apriori

ESL book Figure:

Xy X1

FIGURE 14.1. Simplifications for association rules. Here there are two inputs
X1 and Xo, laking four and six distinct values, respectively., The red squares
indicate areas of high density. To simplify the computations, we assume that the
derived subset corresponds to either a single value of an input or all values. With
this assumption we could find either the middle or right patiern, bul not the left
one.

Xy

X1
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Market Basket Analysis

@ For very large datasets, p ~ 10%, N ~ 10%; in unit ball is the distance to the
nearest neighbour ~ 0.9981.
o Simplifications: Test on feature Xj either equal to a specific value or no

restriction at all,

@ | select combinations of items with higher number of occurences (support)
than predefined threshold t.

@ | select all combinations fulfilling conditions above.
o Categorical variables may be codded by dummy variables in advance (if not
too many).
o OneHotEncoder for each class g, a new variable X; = [X == g].
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Apriori Algorithm

1: procedure APRIORI:(X dataset, t threshold for support )

2 i+ 0

3 Generate list of candidates of the length f

4 while Candidate set not empty do

5: for each data sample do

6 for each candidate do

7 if all items of candidate appear in the data sample then
8 increase the candidate counter by 1

9

: end if
10: end for
11: end for
12: i+—i+1
13: Discard candidates with support less than t.
14: Generate list of candidates of the length i
15: Join any two candidates from previous step having i — 2
elements common. (More pruning possible.)
16: end while

17: end procedure
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Example: Apriori Algorithm

i=2
ab=2
ac=8
o t=02 =2 i=3
o txN=2= af=2 abc=2
020410 =1 2g=5 24 =4 .
e Data a=8 bc=2 2;;2 abce=2
Sbcefo  b=2 bd=0 abcf=2
c=8 be=2 abg=0 abef=2
Z ,c & d=2 bf=2 aCdfg abeg=0
acdeg e=8 bg=0 22::2 acef=2
acegl f=2 cd=2 - aceg=4
ej & g=5 ce=6 azgii) adeg=1
abcefp i=j=l=0=1 cf=2 :d]f:_o aefg=0
acd p=m=n=1 cg=>5 adg—1
acegm de=1 aeg—4
acegn df=0
dg=1

af—92
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Properties of the Apriori Algorithm

Applicable for very large data (with high threshold t).

The key idea:

o Only few of 2% combinations have high support > t,
o subset of high—support combination has also high support.

@ The number of passes through the data is equal to the size of the longest
supported combination. The data does not to be in memory simultaneously.

FPgrowth algorithm needs only two passes through the data.
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Association Rules !

@ From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A = B where:
e A, B are disjoint and AUB =K
o Ais called antecedent
e B is called consequent.

@ Support of the rule T(A = B) is defined as normalized support of the
itemset K, that is normalized support of the conjunction A&B.

|datax|
T(K) =
(K) |datal
T(A= B) — |9atance|
|data|
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Rule Confidence and Lift

There are two important measures for a rule A = B:
e Confidence (predictability, pfesnost)
T(A= B)
C(A=B)= "7~/
(A= B) T0A)
that is an estimate of P(B|A),
@ Support T(B) is an estimate of P(B),
o Lift is the ration of confidence and expected precision:

C(A= B)
that is an estimate of %.

o Leverage is the difference of supports:

leverage(A= B) = T(A= B) — T(A)- T(B)
@ Conviction is the ratio:
1-T(B)

conviction(A = B) = 1-C(A= B)’
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Association Rule Example

ESL book example:
Association rule 2: Support 13.4%, confidence 80.8%, and Lft 2.13.

language in home = English
householder status = own
occupation = {professional/managerial}
1

income > $40,000

e K = {English, own, prof/man, income>$40000},

@ 13.4% people has all four properties,

@ 80.8% of people with {English, own, prof/man} have income> $40000,
e T(income > $40000) = 37.94%, therefore Lift = 2.13.
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The Goal of Apriori Algorithm !

@ Apriori finds all rules with high support.
@ Frequently, it finds many of rules.

@ We usually select lower threshold ¢ on confidence, that is we select rules with
T(A= B)>tand C(A= B) > c.

@ Conversion of itemsets to rules is usually relatively fast compared to search of
itemsets.

@ See lispMiner for user interface and a lot of more.
@ Python Apriori library:

from mixtend.preprocessing import TransactionEncoder

from mlixtend.frequent_ patterns import apriori, association_rules
from mixtend.frequent_patterns import fpgrowth,fpmax

from mlixtend.frequent_ patterns import hmine
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Demographical Data ESL Example

Feature Demographic # Values Type
1 Sex 2 Categorical
2 Mamntal status 5] Categorical
3 Age 7 Ordinal
4 Education & Ordinal
H Occupation 9 Categorical
6 Income 9 Ordinal
7 Years in Bay Area 5 Ordinal
8 Dual incomes 3 Categorical
9 Number in household 9 Ordinal
10 Number of children 9 Ordinal
11 Householder status 3 Categorical
12 Type of home 5] Categorical
13 Fthnic clagsification 8 Categorical
14 Language in home 3 Categorical
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Demographical Example — Continuing

@ N = 9409 questionnaires, the ESL authors selected 14 questions.
@ Preprocessing:
e na.omit() remove records with missing values,
e ordinal features cut by median to binary,
o for categorical create dummy variable for each category.
@ Apriori input was matrix 6876 x 50.
@ Output: 6288 association rules

e with max. 5 elements
o with support at least 10%.
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Negated Literals — Useful, Problematic

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

language in home = English
income < $40,000
marital status = not maerried
number of children = ¢

s
education ¢ {college graduate, graduate study}
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Non—frequent Values Dissapear

Relative Frequency in Association Rules Relative Freguency in Data
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Unsupervised Learning as Supervised Learning

:;Scw— >{<\‘Nf
o A =
o o
1 0 1 2 1 0 1 2
Xy X1

@ We add additional attribute Y.
@ Y¢ =1 for all our data.

@ We generate randomly a dataset of similar size with uniform distribution, set
Y¢ = 0 for this artificial data.

@ The task is to separate Y =1 and Yg = 0.
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Generalize Association Rules

@ We search for high lift, where probability of conjunction is greater than
expected.

o Hypothesis is specified by column indexes j and subsets of values s;
corresponding features X;. We aim:

(X es) ]| =

JjeET

= \

N
Z (i €5) | >>MesP(X €s)
1 JET

@ On the data from previous slide, CART (decision tree alg.) or PRIM ('bump
hunting') may be used.

@ Figure on previous slide: Logistic regression on tensor product of natural
splines.

@ Other methods may be used. All are heuristics compared to full evaluation by
Apriori.
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1:
2:
3:
4:
5:
6:
7
8:
9:

procedure FP—TREE:(Data )
Calculate counts of items (singletons)
Create table header ordered by decreasing item count
for each data sample do

order items according to header
insert branch into the tree
increase all counters on the inserted branch

end for
return the tree

10: end procedure

Data ordered
a b ce fO eca b f Header table root
Head of M
acg cag i node-links @ @
. Ed v
el e :
acdeg ecagd ; Caz)
acegl ecag S ey o
. ) N - rd R4
ej : . . p
abcefp s L

\
e v — '

£ A1
225 - 245 February 22, 2024

240 / 388



Frequent Itemsets with only 2 pass through data

@ Build an internal structure called FP-tree

o Call FP-growth to generate frequent itemsets
o Each construction of a conditional tree needs 2 pass through the parent tree
e an optimized version with only 1 pass is presented. (It needs an additional

data structure array.)

@ FP-max to find maximal itemsets
e non of immediate supersets is frequent

@ FP-close to find close itemsets

e non of immediate supersets has the same support.
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FP-tree

o FP-tree contains all frequency information of the
database. i3
1=
@ Principle: If X and Y are two itemsets, the count of ———
; . X abc=2
itemsets X U Y in the database is exactly that of Y abd—0

in the restriction of the database to those abe—?
transactions containing X. abf=2
abg=0
Header table a Cd =2
Head of ace=6
1151;1 node-links acf:2
S| acg=5
a:8 < ade:1
g5 N _
s adf=0
f:2 adg=1
d:2 X aeg=4
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FPgrowth*

1: procedure FPGROWTH*:(T a conditional FP-tree )

2 if T only contains a single path P then

3 for each subpath Y of P do

4 output pattern Y U T .base with

5: count = smallest count of nodes in Y

6 end for

7 else

8 for each i in T.header do

o: Y < T.base U {i} with i.count

10: if T.array is not NULL then

11 construct a new header table for Y's FP-tree from T .array
12: else

13: construct a new header table for Y's from T

14: end if

15: construct Y's conditional FP-tree Ty and its array Ay;
16: if Ty # 0 then

17: call FPgrowth*(Ty)

18: end if

19: end for
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t = 2

cC|6

Tigy = [a:5,c:5,e:4] alels
gj4|5|5
b[2][2]2]o0 -
fl2]2]2|0]2 5
d[1]2][2]1]0] 0] 4]4]
e cagbf a c

(a) Ae (b) Aty

e

Header table @
Head of
item | node-links @ Q
e

a8
g5
b:2
f:2
d:2
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Version Space Search

Example (Tennis Dataset)

Day Outlook  Temperature Humidity Wind PlayTennis
D1  Sunny Hot High Weak | No
D2  Sunny Hot High Strong | No
D3  Overcast Hot High Weak | Yes
D4  Overcast Mild High Weak | Yes
D5  Overcast Mild High Strong | Yes
D6  Overcast Hot Normal Weak | Yes
D7  Rain Mild High Strong | No
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Version Space Search

@ Our hypothesis is a conjunction of attritute tests that imply
PlayTennis = yes.
e h=(?, Cold, High,?,7,7) represents the hypothesis
Temperature = cold & Humidity = high = PlayTennis = yes.

o 7 is satisfied by any value
@ () cannot be satisfied

o For binary attributes, we have 3/#atiutesl 4 1 hypotheses
o hypotheses with () are not satisfiable, therefore they are equivalent.

@ We perform a systematic search.
@ The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)

@ The hypothesis hg is more general than the hypothesis hy = hs iff any sample that
satisfies hs satisfies also hg.

@ In the above case, the hypothesis hs, hy > hs is called more specific that hg.

(?,7,7,7) is more general than (Sunny, ..., Same).

The most general hypothesis (7,7,7,7) is satisfied by all data.

The most specific hypothesis (0, ...) is not satisfied by any data.

The hypothesis space for a lattice partially ordered by the 'more general’
relation.
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Find-S

@ We search for a hypothesis satisfied by all positive examples and no negative

example.
Find—S (to be improved)

1. procedure FIND-S:(X dataset with the goal attritute yes/no )
2 h <« {(0,0,0,0) # the most specific hypothesis

3 for each positive data sample x; do

4 for each attribute condition X; = x;; in h do

5: if x; does not satisfy X; = x; ; then

6: replace the condition by

7 a closest more general condition satisfied by x;
8 end if

9 end for

10: end for

11: return h

12: end procedure
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Version Space

@ Now we look for all hypotheses consistent with the data.

Definition (Version Space)

@ The version space for the hypothesis space H and the data X is a subset of
H that is consistent with X

VS(H, X) = {h € H|Consistent(h, X)}.

@ The version space is characterized by the most general and the most specific
boundary.

@ Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)

o The general boundary for the hypothesis space H and the data X is a set
of most general hypothesis from H that are consistent with X

G(H, X) = {g € H|Consistent(g, X)&(}g1 € H)[g1 = g& Consistent(g1, X)]}.
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Definition (Specific Boundary)

@ The specific boundary for the hypothesis space H and the data X is a set
of most specific hypothesis from H that are consistent with X

S(H, X) = {s € H|Consistent(s, X)&(#s1 € H)[s = s1& Consistent(s;, X)]}.

S {<Sunny, Warm, ?,Strong,?,>}
{<Sunny, 2, 2,Strong,?,2>} {<Sunny, Warm, 2,2,2,2>} {<? Warm, ?,Strong,2,2>}
‘ {<Sunny,?,2,2,2,2> <?, Warm, 2,2,2,2>}

@ We search for a hypothesis satisfied by all positive examples and no negative
example.
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1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

n

procedure CANDIDATE-ELIMINATION: (X data,the goal att. yes/no)

G+ {(2,7,2.1},S+ {(0,0,0,0)} # general specific

for

each data sample x; do
if x; is positive then
remove from G all h inconsistent with x;
for each s € S inconsistent with x; do
add to S all minimal generalizations h
Consistent(h, x;)&(3g € G)(g = h)
remove from S {s|(3s1 € S)(s > s1)} # not most specific
end for
elsex; is negative
remove from S all h inconsistent with x;
for each g € G inconsistent with x; do
add to G all minimal specifications h
Consistent(h, X)&(3s € S)(h > s)
remove from G {g|(3g1 € G)(g1 > g)} # not most gen.
end for
end if

end for
return G, S

I

ure
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@ A. Cropper and S. Dumancic. Inductive logic programming at 30: a new
introduction. CoRR, abs/2008.07912, 2020.

o S. Muggleton & all.: Meta-interpretive learning: application to grammatical
inference, http://www.doc.ic.ac.uk/~shm/FLOC_ILP /Paper03.pdf
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Predicate Logic

Recall predicate logic.
CNF, DNF the conjunctive and disjunctive normal form
clause: a disjunction of literals father(X, Y) V —parent(X, Y) V —male(X)
Horn clauses with at most one positive literal, written as a rule
o definite clause father(X,Y) : —male(X), parent(X,Y).
e fact - no negative literal male(adam).
o goal clause - no positive literal false : —father(X, bob).

Ground term, clause - a term, a clause without variables.
@ We have our data in the form of a set of clauses B, E*, E—,

o the background knowledge B is a set of (Horn) clauses,
o the positive and examples ET, E™ are sets of ground literals (facts).

lego__builder(alice). 4 .
enjoys__lego(A) := lego_builder(A). ET = {hipp}/(a/;)ceg.}
B = estate_agent(dave). . appy( 2 ).
: . E~ = { happy(claire).
enjoys__lego(alice). happy|dave)

enjoys__lego(claire).
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Substitution, Subsumption

o Clauses ale implicitly generally quantified.

@ They should not have a variable with the same name.

Definition (Substitution, Subsumption)

o Given a substitution § = {v;/t;} and formula F. F6 is formed by replacing
every variable v; in F by t;.

@ Substitution 6 unifies atom A and B in the case A9 = B6.

@ Atom A subsumes atom B, A = B, iff there exists a substitution 8 such that
A0 = B.

@ Clause C subsumes clause D, C > D, iff there exists a substitution 6 such
that C6 C D.

4

e G, =f(A,B): —head(A, B).
o G =1f(X,Y): —head(X,Y),empty(Y).
e (G subsumes G, since G0 C G, with 8 = {A/X,B/Y}.
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Definition (Generalisation)

o Clause C is more general than clause D, iff C = D.

o Clause C is more general than clause D with respect to B, iff B, C = D.
e B is the background knowledge.

A\,

o Statement A: Daffy Duck can fly. can_fly(daffy)
o Statement B: All ducks can fly. can_fly(X) = can_fly(daffy).

A\

Statement C: Marek lives in London.

Statement D: Marek lives in England.

lives(marek, london)

lives(marek, england)

Background knowledge lives(x, england) : —lives(x, london).

B, C = D, 'C is more general than D with respect to B".

C = D with respect to B.
http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecturel.1.pdf
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ILP general logical setting

Definition (Hypothesis Properies)
The background knowledge B and the hypothesis H should entail E, that is:

Necessity B [ E" weneed H
Sufficiency (Gplnost) B&H E ET H explains positive examples
Weak consistency B&H [ L H does not contradict B
(Strong) consistency B &H &E~ £ L .. neither negative examples
ILP task
o Given

e B background knowledge (logic program)
o ET,E~ examples — sets of ground unit clauses

@ Given B, E find a logic program H such that is necessary, sufficient and
consistent.

@ Often, we assume noisy data and accept some errors, but we try to minimize
them.
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lego__builder(alice).

lego_builder(bob). E* = {happy(alice).}
B estate_agent(claire). happy(bob).
") estate_agent(dave). E~ = { happy(claire).
enjoys__lego(alice). happy(dave).
enjoys__lego(claire).
Our hypothesis space:
hy : happy(A) : —lego_builder(A).
hy . happy(A) : —estate_agent(A).
2y = hs : happy(A) : —enjoys_lego(A).
" ) hy : happy(A) : —lego_builder(A), estate_agent(A).
hs : happy(A) : —lego__builder(A), enjoys_lego(A).
he : happy(A) : —estate_agent(A), enjoys_lego(A).
@ BU hy E happy(bob) therefore h; is inconsistent.
@ BU hy ¥ happy(alice) therefore hy is incomplete.
e BU hs = happy(claire) therefore hs is inconsistent.
e BU hy ¥ happy(alice) therefore hy is incomplete.
@ hg is both complete and consistent.
@ BU hg ¥ happy(alice) therefore hy in incomplete.
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Hypothesis Space

@ To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)

Mode declarations denote which literals may appear in the head/body of a rule. A
mode declaration is of the form:

mode(recall, pred(my, my, ..., m,))

where recall is the maximum number of occurrences of the predicate
m; are the argument types and they may be assigned as input +, output —,
constant #.

modeb(2,parent(+person,-person)).
modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.

1n__Annn
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Non-monotonic reasoning

@ In Prolog, there is negation as a failure.

Program = { S }

happy : —sunny, not weekday.

@ Prolog tries to prove weekday.
@ It does not prove it, therefore it concludes happy.

o With additional knowledge weekday some of entailments are not true any
more.

Definition (Normal logic program)

Normal logic programs may include negated literals in the body of a clause, e.g.

h:—bi,..., by, not bpyi,...,not by,
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Aleph ILP system (based on Progol)

o Given

o A set of mode declaration M

e Background knowledge B in the form of a normal program

allows negation, with the semantics negation as a failure

o Positive ET and negative E~ examples as a set of ground facts
@ Return: A normal program hypothesis H that:

e H is consistent with M

o Veec EY, HUBF e (H is complete)

o Ve€ E-, HUB¥ e (H is consistent).

1. Select a positive example to generalize.

2. Construct the most specific clause consistent with M that entails the
example (the bottom clause).

3. Search for a clause more general than the bottom clause.
@ Add the clause to the hypothesis and remove all examples covered.

o If a positive example left, return to step 1.
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Bottom Clause Construction

@ The purpose is to bound the search in the step in 3.
@ Without mode declarations, the bottom clause may have infinite cardinality.

Definition (Bottom clause)

Let H be a clausal hypothesis and C be a clause. The bottom clause L(C) is the
most specific clause such that:

HUL(C)E C.

Example (Bottom clause)

red(sl).
: —modeh(x, pos(+-shape)). b/ue((52))
: —modeb(, red(+shape)). square(sl.)
M = { : —modeb(x, square(+shape)). » B = triange(s2)'
: —modeb(x, triangle(+shape)). polygon(A) : —rect‘;ng/e(A)
: —modeb(x, polygon(+shape)). . .

rectangle(A) : —square(A).
Let e be the positive example pos(s1). Then:

L(e) = pos(A) : —red(A), square(A), rectangle(A), polygon(A).
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Clause Search

@ Aleph performs a bounded breadth-first search to enumerate the shorter

clauses before longer ones.
@ The search is bounded by several parameters (max. clause size, max. proof

depth).
Most general hypothesis

- ‘polygon(A)

pos(A) -~ pos (A : - pos(A): pos(A):- pos(A):- pos(A):-
red(A), red(A), red(A), square(A), square(A), rectangle(A),
square(A). rectangle(A). polygon(A). rectangle(A). polygon(A). polygon(A).

i
pos(A):-

pos(A):-

red(A), square(A),

square(A), square(A), rectangle(A),

rectangle(A). polygon(A).  polygon(A).

Pos(A) : -
red(A),
Most specific hypothesis square(A),
rectangle(A),
polygon(A).
246 - 278 February 22, 2024 261 / 388
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Aleph 2, Popper

@ Aleph default evaluation function is coverage defined as P — N,
e P is the number of positive examples covered
e N is the number of positive examples covered by the clause
o that means it accepts some noise.

It starts from the most general one pos(A) : —.
It tries to specialize the clause
e by adding literals to the body of it, which it selects from the bottom clause

or by instantiating variables.

Each specialization is called refinement.

Aleph Advantages
e one Prolog file, easy to download and use.
o https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
o It has good empirical performance.
o Allows numerical reasoning, user defined cost functions, handles noisy data.

Aleph Disadvantages
o It has many parameters to tune.
o It struggles to learn recursive programs and optimal programs
@ since it learns only a single clause a time.
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Metagol

o Given
o A set of metarules M
e Background knowledge B in the form of a normal program
o Positive E™ and negative E~ examples as a set of facts (atoms).

@ Return: A definite program hypothesis H that:
e H is consistent with M
Ve € ET, HUBF e (H is complete)
Ve € E=, HUB¥ e (H is consistent)
Vh € H, dm € M such that h = mf
o where 0 is a substitution that grounds all the existentially quantified variables in
m.

Example (Metarule)
@ An example is the chain metarule P(A, B) + Q(A, C), R(C, B)
o that allows Metagol to induce programs such as
f(A, B) :— tail(A, C),tail(C,B).
grandparent(A,B) : — parent(A, C), parent(C, B).
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Metagol

@ Metagol is a form of ILP besed on a Prolog meta-interpreter.

1. Select a positive example to generalize.
o If none exists, test the hypothesis on the negative examples.
o If the hypothesis does not entail any negative example

stop and return the hypothesis.
@ otherwise backtrack to a choice point at step 2 and continue.

2. Try to prove the atom by:
e using given BK or an already induced clauses
e unifying the atom with the head of a metarule
o binding the variables in a metarule to symbols in the predicate and
constant signatures
e save the substitution
o try to prove the body of the metarule

by treating the body atoms as examples and applying step 2 to them.
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Recursion

@ Metagol can learn recursive programs.

Example (Reachability)

Consider learning the concept of reachability in a graph. Without recursion, with
the maximal depth 4 we could learn:
reachable(A,B) : — edge(A, B).
reachable(A,B) : — edge(A, C), edge(C, B).
reachable(A,B) : — edge(A, C), edge(C, D), edge(D, B).
reachable(A,B) : — edge(A, C), edge(C, D), edge(D, E), edge(E, B).
With recursion, we can learn:
reachable(A,B) :— edge(A,B).
reachable(A,B) : — edge(A, C), reachable(C, B).
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lterative deepening

iterative deepening

@ Metagol uses iterative deepening to search for hypotheses.
o at depth d =1, at least one metasub.
e at iteration d, it introduces d — 1 new predicate symbols and is allowed
to use d clauses.
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Metagol Example

Example (Kinship example)

mother(ann, amy).mother(ann, andy).
mother(amy, amelia), mother(amy, bob).
B= mother(linda, gavin).
father(steve, amy).father(steve, andy).
father(andy, sponegebob).father(gavin, amelia).

metarule(ident, [P, Q], [P, A, B, [[Q, A, B]]).
metarule(chain, [P, Q, R], [P, A, B], [[@Q, A, C],[R, C, B]]).

grandparent(ann, amelia).
£+ _ grandparent(steve, amelia).
grandparent(ann, spongebob).
grandparent(linda, amelia).
E~ = {grandparent(amy, amelia).}

P Inductive Logic Programming 10 246 - 278 February 22, 2024 267 / 388



Tracing Metagol

o It select the first example to generalize grandparent(ann, amelia).
@ It tries to prove it from BK and induced clauses. It fails.
@ Metagol tries to use the first metarule:

grandparent(ann, amelia) : —Q(ann, amelia).

stores sub(ident, [grandparent, Q])
@ and tries to unify Q, but fails.
@ Metagol tries to use the second metarule:

grandparent(ann, amelia) : —Q(ann, C), R(C, amelia).

stores sub(chain, [grandparent, Q, R])
@ and recursively tries to prove Q(ann, C) and R(C, amelia).
o It succeedes with the metasum sub(chain, [grandparent, mother, mother])
@ and induces the first clause;

grandparent(A, B) : —mother(A, C), mother(C, B).
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Metagol Trace 2

@ Then, it select the second example to generalize grandparent(steve, amelia).

@ |t tries to prove it from BK and induced clauses. It fails.

@ Metagol can again use the second metarule with another substitution:
stores sub(chain, [grandparent, father, mother])

@ and induces the second clause;

grandparent(A, B) : —father(A, C), mother(C, B).

@ Given no bound on the program size, the Metagol would prove the other two
examples the same way and form the program:

grandparent(A,B) :— mother(A, C), mother(C, B).
grandparent(A, B father(A, C), mother(C, B).
father(A, C), father(C, B).

: — mother(A, C), father(C, B).

)
grandparent (A, B)
grandparent(A, B)

In praxis, it learns:
grandparent(A,B) : — grandparent_1(A, C), grandparent_1(C, B).
grandparent_1(A,B) :— father(A, B).
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Tail Recursive Metarule

Example (Tail Recursive Metarule)
@ An example is the tail recursive metarule P(A, B) + Q(A, C), P(C, B)

@ Metagol can also learn mutually recursive programs, such:

even(0).
even(A) :— successor(A, B), even_1(B).
even_1(A) :— successor(A, B), even(B).

We even do not have to provide the concept of an odd number. We can let the
Metagol to invent such predicate (even_1).
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Automata Example

Finite Production Definite Clause
acceptor rules Grammar (DCG)
2 2 © - PRGR) <
(a) 1 g — O0qo qo([0|A], B) < qo(A, B)
a0 — laq qo([1]1A], ) <~ qi(A, B)
@ — Oq q1([0]A], B) < qi1(A, B)
1 q - lqo qi1([1]1A], B) < qo(A, B)
E* E- Meta-interpreter Ground facts
A 1
0 01 parse(S) < parse(q0, S, ). acceptor(q0) <«
® | O | 0T e, 1) « accepror(g). | 4€1a1(49.0.0) <
11 001 rse(Q. [CIX]. Y) < deltal(q0,1,q1) <
000 010 parsetis, Lela1(Q, C, P) deltal(q1,0,q1) <
011 100 eaiis, & 10, deltal(ql, 1, g0) <
101 1 parse(P, X,Y).

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E1)and negative
examples (E ), Meta-interpreter and ground facts representing the Parity grammar
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Hypothesis in Meta-interpretive learning

ET

—ET

=

parse([]) <
parse([1,1]) <
parse([0, 1, 1]) <
parse([1,0, 1]) <
parse([1,1,0]) <

parse([]),
parse([1, 1),
parse([0, 1, 1]),
parse([1,0, 1]),
parse([1,1,0]).

<« parse([1])

<~ parse([0, 1])
< parse([1,0])
<« parse([0,0, 1])
<« parse([1,1,1])

H

-H

acceptor($0) <

deltal($0, 0, $0) <
deltal (30, 1,$1) <
deltal ($1,0,$1) <
deltal($1, 1, $0) <

acceptor(Q0),

deltal(Q0, 0, Q0),
deltal(QO0, 1, Q1),
deltal(Q1,0, Q1),
deltal (01,1, 00).

Fig. 2 Parity example where By is the Meta-interpreter shown in Fig. 1b, B4 =@ and Et, —=E+, E~, H,
—H, are as shown above. ‘$0” and ‘$1” in H are Skolem constants replacing existentially quantified variables

@ The background knowledge is the meta-interpreter from the previous figure.
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Metagol

- parse([],[1,G1), parse([0],G1,G2), parse([0,0],G2,G3), parse([1,1],G3,G4), % Pos
parse([0,0,0],G4,G5), parse([0,1,1],G5,G6), parse([1,0,1],G6,G),
not(parse([1],G,G)), not(parse([0,1],G,G)). % Neg

parse(S,G1,G2,51,52,K1,K2) :- parse(s(0),S,[1.G1,G2,51,S2,K1,K2).

parse(Q,X,X,G1,G2,S,S,K1,K2) :- abduce(acceptor(Q),G1,G2,K1,K2).

parse(Q,[C|X],Y,G1,G2,51,S2,K1,K2) :- Skolem(P,S1,S3),
abduce(deltal(Q,C,P),G1,G3,K3,K2), parse(P,X,Y,G3,G2,53,52,K3,K2).

abduce(X,G,G,K,K) :- member(X,G).
abduce(X,G,[X|G],s(K),K) :- not(member(X,G)).

Skolem(s(N),[s(Pre)|SkolemConsts],[s(N),s(Pre)|SkolemConsts]):- N is Pre+1.
Skolem(S,SkolemConsts,SkolemConsts):-member(S,SkolemConsts).

Fig. 5 Metagolg
@ Hypothesis found by Prolog

G = |[deltal(s(1),0,s(1)), deltal(s(1),1,s(0)), deltal(s(0),1,s(1)),
deltal(s(0), 0, s(0)), acceptor(s(0))]

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf
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ASPAL algorithm

@ ASPAL uses Answer Set Programming.
@ ASP program can have one, many, or none models (answer sets).
@ Computation in ASP is the process of finding models.

@ We may specify the range of the number of clauses from a set beeing true.
0{sunny., weekday ., happy(A) : —lego_builder(A)}3

e We may specify an evaluation function to optimize (like to minimize the
number of 'true’ clauses, e.g. the size of the hypothesis.

ASPAL

@ Generate all possible rules consistent with the given mode declarations.

Assign each rule a unique identifier and add an guessable atom in each
rule.

@ Use an ASP solver to find a minimal subset of the rules

by formulating the problem as an ASP optimization problem.
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ASPAL Example

Example (ASPAL)

bird(alice). modeh(1, penguin(+bird)).
bird(betty). M = modeb(1, bird(+bird)).
can(alice, fly). modeb(x, not can(+bird, #ability)).
can(betty, swim).
ability (fly). E*Y = {penguin(betty).}
ability (swim). E~ = {penguin(alice).}
Given the modes, the possible rules are:
penguin(X) :—  bird(X).
penguin(X) :— bird(X), not can(X,swim).
penguin(X) :— bird(X), not can(X, fly).
penguin(X) : — bird(X), not can(X,swim), not can(X, fly).

ASPAL replaces constants and adds extra literal:

penguin(X) :—  bird(X), rule(rl).
penguin(X) :— bird(X), not can(X, C1), rule(r2, C1).
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ASPAL passes to an ASP solver:
bird(alice).
bird(betty).
can(alice, fly).
can(betty, swim).
ability(fly).
ability (swim).
penguin(X) : —bird(X), rule(rl).
penguin(X) : —bird(X), not can(X, C1), rule(r2, C1).
penguin(X) : —bird(X), not can(X, C1), not can(X, C2), rule(r3, C1, C2).
0{rule(rl), rule(r2, fly), rule(r2, swim), rule(r3, fly, swim)}4
goal : —penguin(betty), not penguin(alice).

. —not goal.

@ The answer is: rule(r2, c(fly))
@ Which is translated to a program:

penguin(A) : —bird(A), not can(A, fly).
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ILP aplications

@ Bioinformatics
o ILP can make predictions based on the (sub)structured biological data.
e Predict mutagenic activity of molecules and alert the causes of chemical
cancers
o learning protein folding signatures.

@ Robot scientist.

o BK knowledge represents the relationship between protein-coding sequences,
enzymes, and metbolites in pathway.
o Automatically generates hypotheses, run experiments, iterprets results.

o Games
o Sokoban
e Bridge
o Checkers.
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Undirected (Pairwise, Continuous) Graphical Models

The generative model represents the full probability distribution P(X).

Missing edges represent conditional independence of the variables.

Meg/O Jnlé

o Cytometry dataset (ESLII) X\Kw
o N = 7466 cells Pleg

@ p =11 proteins \t
@ We ame to model protein PIPZ KE

co-occurence probability.
PIP3 A
Erlé

sklearn.covariance.GraphicallLasso # basics

gRbase # the recommended R package
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Other Application

Yin, Jianxin & Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis

of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

o Cytometry dataset (ESLII) . v el TL T
@ py = 54 gene level expressions I . T _7;: :'.l
@ px = 188 markers (discrete) - - _-”g_-_ :_
o YPY|XPX ~ L el %
N (MPY*Px XPx 3 PYXPy) i Y - - .___'* !'lrr;: =
conditional Gaussian distribution I S T

@ Top: Black color indicates
significant association
p — value < 0.01 in the linear
regression.

@ Bottom: The undirected graph of
43 genes constructed on the
cGGM.
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Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.

Fatll 16.00
Meatll 52.00
Fat1l2 14.00
Meat1l2 52.00
Fat13  13.00

Meatl3 56.00
LeanMeat  59.00
Y Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meatl1 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fatl3 7.66 2.01 6.84 2.18 7.62 0.38 -6.93
Meatl3 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23

LeanMeat  -9.08 533 -7.95 6.03 -6.93 7.23 12.90
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Gaussian Graphical Models (Undirected Graphs)

e Multivariate Gaussian Distribution on variables X = (Xi,..., X))
— 1 a3 (x—p)
° ¢(x) \/me 2
e |.| is the determinant. we denote p the number of components in x. Then
|27X] = (27)P|X|.

o If X is not invertible it has dependent columns. It means that the variables x;
are lineary dependent.
o If the rank of X is £ then there exists a matrix A and a vector v so:
e x = Az + v for new coordinates z with ¢ dimensions
o We just consider the new coordinates and assume X has a full rank.
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Concentration matrix

o Concentration (Precision, koncentraéni) matrix
K=x"

For u # v, k,, =0 if and only if y, and y, are conditionally independent given all
other variables.

k*¥100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll 44 3 -20 -7 -16 4 10
Meatl11 3 16 -3 -6 -6 -6 -3
Fatl2 -20 -3 54 6 -21 -5 9
Meat12 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7
Meat13 4 -6 -5 -9 3 16 -1
LeanMeat -3 9 -0 7 -1 26
@ If looking for small values better to 'scale’ the entries into Partial Correlation
matrix.
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Partial correlation matrix

Definition (Partial correlation matrix)
Partial correlation matrix is defined from K by
_kuv
Puv|V\{uv} = ﬁ

In contrast to concentrations, the partial correlations are invariant under a change

of scale and origin in the sense that if X;" = a;X; + b;, j=1,...,p then

avauky, = Kuy and pi, o uy = Puv|V\{uv}-

N

p*100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat
Fatll - -11 41 30 32 -16 -29
Meatl1 -11 - 9 41 19 35 16
Fat12 41 9 - -24 38 18 -24
Meat12 41 -24 - 2 61 2
Fatl3 32 19 38 2 - -9 -18
Meat13 -16 35 18 61 -9 - 7
LeanMeat 16 -24 2 -18 7 -
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Models

@ The simplest model just removes edges with small [p,, |\ u}|. Penalized
criteria will be introduced later.
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)

An undirected Gaussian graphical model is represented by an undirected graph
G =(X,E), X ={Xq,...,X,} represent the set of variables and E is a set of
undirected edges.

When a random vector x follows a Gaussian distribution N,(u,X), the graph G
represents the model where K = Y1 is a positive definite matrix with k,, =0
whenever there is no edge between vertices u, v in G.

This graph is called the dependence graph of the model.

For any non adjacent vertices u,v € G it holds: ullv|X\ {u, v}.

Definition (Generating class)

Let C = {C,..., Cc} be the set of cliques of the dependence graph G. A set of
functions g1(), (), - .., gk() defined on gj(xc,) is called a generating class for
the distribution

fx)= ]I ailxc).
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Marginalization

L —3(x—p) T (x—p)
o We haveme 2

@ We want the distribution over variables
{x3,%5,x7} C {x1,..., %}

Marginal of a Gaussian Distribution ]

The marginal of a Gaussian distribution is L
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

Histogram of s1, 2]

100
I

Frequency
0

o 1357 = (13, 15, f17) and

Y33 X35 237 ]
Y357 = |Zs3 Xss Loy P —
273 275 277 60 -40 -20 0 20 40 60
sit.2)
° ¢X3,X57><7:
1 e_%(X3,5,7_M3,5,7)z3_,51,7(x3,5,7—H3,5,7)

V12735 7]
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Conditioning

@ We ame for ¢(A|B) where
o AC {x1,...,Xp} having g elements,
o the rest B = {xi1,...,x} \ A has (p — q) elements.

@ We rearrange the rows and columns to have A together. Then we get

XA 1A
= I L= I ,
LB} (one column), u [MB} (one column)
Yaa XaB| o . [ gxq gx(p—q)
> = with dimensions .
[ZBA ZBB] (P—a)xq (pP—q)x(pP—q)
Conditional Gaussian

The parameters of the conditional Gaussian distribution ¢(A|B = b) =
N(pag=b, Zag=b) are:

A B=b pa+ LasTpp(b — 1g)

2 A1B=b Yaa — LasZppTpa-

Covariance matrix differs but does not depend on the observation b. It depends
on the faCt B was Oqﬁglre\c/teed {Pairwise Continuous)

Graphical Mod-
els 11
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Conditional Gaussian Example

o’ =(1,2,3,4)

10 1 5 4 5.yl [0418 0275
oy _ |1 10 2 6 AB%BB = 10,0220 0.593
“ |5 2 10 3 -
4 6 3 10 ® fiaig=b = pia + T gz(b — pg)
. 0418 0.275] [(2.8 —3)
° \(/\2/eSOZSf)rved (X3, Xs) tobe @ pap= [2} + [0.0220 0.593} {(4.1 - 4)]
@ We ask for ¢(A|B) = o jap = [ﬂ i [—000(!)3556} _ [gggﬂ
d({ X1, X2 }{ X3, Xa}) : e
5 (5 4 ® YaB=b = Xaa — LaBX ggLpA
EE: 6} oy, - [10 1] _[253 226
10 3 AlB=b = 11 10 226 4.13
° s =3 10] - . [7.47 —1.26}
- A|B=b =
g1 [ 011 0033 | ~126  3.65
BB~ |-0.033  0.11
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Partition Matrix Inverse Properties

@ The concentration matrix K = X1 is the inverse of the correlation matrix,

therefore:
<KAA KAB> (ZAA ):AB) _ (IAA 0 )
Kea Kgs) \Xea XgB 0 Igs
@ From the top right part we get:
KaaXag + KagXps=0
_KAAZABZEé = KAB(]-) (5)
YaeXpr = —KuiiKag(2). (6)

o Take the top left part and substitute (1):

KaaXaa + KagXpea = laa
KaaZaa + (—KaaZapZpgpXea) = laa
Kz = Yaa— XapXpilsa.
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Regression Coefficients

pag—p = fa+XasTps(b— pis)
Yas=b = Xaa— Laslppisa

o Consider x; to be a linear function of others with the noise e; ~ N(0,0?):

X1)2..p = P14+ Pr2xo+ P1zxz+ ...+ BipXp + €1

@ Set A the first dimension, B the remaining (p — 1) x (p — 1) matrix:

X2
X1|B=(x,....%)T = HMABT ZABZELI; | —HB | Te€
Xp
o Recall (2): YA pp = —KuaKas
o then o7 = ;- with coefficients /3
(klg, ey klp)

(Br2y -+, P1p) = —

ki1
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Fit Linear Gaussian CPD

@ To fit ML model of a linear gaussian CPD,
e you fit the linear regression.

= fo+ Bixi+ Boxo+ ...+ Bpxp + €1
(XTX)"1xTy
Gy = Cov(Y,Y) ZZMJCOV[X,,X]

= <
|

Cov(Xii X)) = E[X--XJ—E[x,-]-E[X,-]

E[X] = Z Xij

rows i€rows

from pgmpy.factors.continuous import LinearGaussianCPD
ml=maximum_likelihood_estimator(data, states)
cpdY fit(data, states, estimator=ml, complete_samples_only=True)

https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf
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Parameter Learning for a Gaussian Graphical Model

Let us have the data x{ ,...,xJ over variables x ~ N,(u, X).

e S=14 Z,{V:l(x,- — X)(x; — X)T is the empirical covariance matrix.

@ Our model is represented by the concentration matrix © = ¥~ and mean p.

Log-likelihood of the data is

) N N N, _ -
loglik(©, 1) = > log |©]| — Etr(@S) - E(X —w)TO(x — p).

o for a fixed © is the maximum for u: p = X and the last term is 0. We get
o loglik(©, 1) x log|©| — tr(©S)

where tr(©S) =3, >, 0uvsu, therefore only s,, corresponding to non-zero
0., are considered by the sum.

We replace the equality conditions by Lagrange multiplyers:
£c(©) = log|O| — tr(©5) — >_; kyee Vikbj
We maximize. The derivative © should be zero (I is a matrix with non-zero
for missing edges):
O '-5-T=0
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Towards the Algorithm

We iterate one row/column after another.
We start with the sample covariance matrix

Wo%s

@ We derive the formula for the last row/column: the derivative

Wit wio S11 s M 72\ _ 0
wih  wa ) \sh swm/)  \~f -
12 22 12 S22 Y12 722

The upper right block can be written as wyp — s12 — 712 = 0.
o W is inverse of ©

<W11 W12> <@11 912) _ ( / 0)
WIE W22 917; 922 OT 1
therefore the last column without last row is:

wip = —Wi16012/02 = Wi 8

Substitute into the derivative Wi1 6 — s10 — v12 =0

*

we solve for the rows with zero v: 3* = (W) isp,.

The diagonal 65, is (1 bottom right): é = Wy — whf.
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Estimation of an Undirected Graphical Model Parameters

1: procedure GRAPHICAL REGRESSION:( S sample covariance )
2 W <« S initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wi; the rest
6 solve Wy 8" — si, = 0 for reduced system

7 B — B* by padding with zeros

8 update wyp < WllB

9 end for

10: until convergence

11: for j=1,2,...,pdo

12: lines 5:-8: above and set

13: Oy < m

14: 912 < 76 . 922

15: end for

16: end procedure
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Example (ESLII)

o

10.00 1.00 5.00 4.00
1.00 10.00 2.00 6.00

=5= 500 200 10.00 3.00
400 6.00 3.00 10.00
[10.00 2.00 6.00 [10.00 1.16 4.00
Wi = [200 10.00 3.00 Ws, = |[1.16 10.00 3.00
| 6.00 3.00 10.00 | 400 3.00 10.00
« _ [10.00 6.00 . _ [10,00 1.16
Wi = {600 10.00} oo = 1116 10.00}
Wl [0.156 —0.094 wel o [0.101  —0.012
1 |—0.094  0.156 22 |—0.012  0.101
p* = [-0.22,053]" 2" = [0.08,0.19]7
g = [-0.22,0,0.53]" f2 = [0.08,0.19,0]"

Wi 4 [100 1.16,4.00

Undirelted
Machine Learning els 11

17 wo, < [1.00,2,0.88]"
(Paftwise Continuous) Graphical Mod-
279 - 313 February 22, 2024
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Structure Learning

o We add a lasso penalty ||©||; which denotes the L; norm
o the sum of the absolute values of the elements of © and we ignore the
diagonal.
e The negative penalized log-likelihood is a convex function of ©.

@ we maximize penalized log-likelihood
log|®| — tr(85) — Al|O][x (7)
@ the gradient equation is now

©7!' -5 —-\Sign(®) =0 (8)

e sub-gradient notation
o Sign(0j) = sign(6jx) for Ojx # 0
e Sign(0) € [-1,1] for 0 =0
@ the update for the first row and column will be

Wi18 — s12 + ASign(3) = 0 9)
e since B and 612 have opposite signs.
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1. procedure GRAPHICAL LASSO:( S sample covariance, A penalty )
2 W « S + A\l initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wji; the rest

6 solve Wy18 — s1o + ASign(B) = 0 using the cyclical

7 . coordinate-descent algorithm for the modified lasso
8 update wyo by WHB

9 end for

10: until convergence

11 for j=1,2,...,pdo

12: solve Oy + m

13: solve 912 — 5 922

14: end for

15: end procedure

16: procedure COORDINATEDESCENT:( V < Wiy )

17: repqatj:1,2,...,p—1 .

18: 0j = S(s12 = 2 Vi A)/ Vi

19: until convergence

20: end procedu@cccs (pairise Continuous) Grapiitsd (1% t) = s:gn(x)(|x| —t)y
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Example (glasso)

11.00 1.00 5.00 4.00
o N1 B ~ [ 1.00 11.00 2.00 6.00
Wo=5+A=1500 200 1100 3.00

400 6.00 3.00 11.00

11.00  2.00 6.007 . 2.4 6-21
W = |200 1100 300| % =S1-7 - 5 /11~ 016
6.00 3.00 11.00 3.21
. §2):5(5+032—Tl)/11~035
sh = [1.00 5.00 4.00] ,
ﬂT,(O) — [0 0 O] 64 = ...
V o« W11 R e
0 11.00 0.05 4.03 3.01
30 = S(6-01/11 =2 W~ | 005 1100 200  6.00
1 ~

4.03 2.00 11.00 3.00
3-4 21
Vo= se-Tr

11="=
11 1)/ 51 3.01  6.00 3.00 11.00
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Graphical Lasso Properties

o Computational speed

The graphical lasso algorithm is extremely fast

can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge-specific penalty parameters Aj

setting Ajx = oo will force éjk to be zero

graphical lasso subsumes the parameter learning algorithm.

@ Missing data
e some missing observations may be imputed by EM algorithm from the model
o latent — fully unobserved variables — do not bring more power in Gaussian
graphical model
o latent variables are very important in discrete distributions.

sklearn.covariance.graphical_lasso J
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Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)

o saturated model - full model with all edges, it has maximal loglikelihood

@ Deviance

o A s-1 N
D =dev =2 (ls — ) = Nlog | Rll = —Nlog|SK|

o independent model - no edges, it has minimal likelihood

@ iDeviance

P
iD = idev =2 - (@—@;nd) =N <I0g|f(| —l—ZIogs,-,-)

i=1

o Irt likelihood ratio test for models M; C M,

55 | Kol
Irt=2-(lp — 1) = Nlog —.
K

Undirected " (Pairwise  Continuous) Graphical Mod~
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)

An Undirected Graphical Model (Markov graph, Markov network) is a graph

G = (V, E), where nodes V represent random variables and the absence of an
edge (A, B) denoted A 1L g B implies that the corresponding random variables are
conditionally independent given the rest in the probability distribution P(V).

AllgB=AlpB|V\{A B} (10)

is known as the pairwise Markov independencies of G.

Definition (Separators)

o If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C.

@ C is called a separator.

@ Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)

A probability measure P over V is (globally) Markov with respect to an
undirected graph G iff for any subgraphs A, B and C holds:

o if C separates A and B then the conditional independence A 1Lp B|C holds,
that is

A llg B|C = P(A|C) - P(B|C) = P(A, B|C). (11)

The pairwise and global Markov properties of a graph are equivalent for graphs
with strictly positive distributions.

@ Gaussian distribution is always positive.
@ We may infer global independence relations from simple pairwise properties.

@ The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovska nahodna pole)

@ A probability density function f over a Markov graph G with the set of
maximal cliques {Cy, ..., Cc} can be represented as

f)= J[ wilxa)=vrlxa) ... ulxc) (12)
i=1,....k

@ where 1); are positive functions called clique potentials.

o they capture the dependence in X¢, by scoring certain instances xc, higher
than others.

e with the normalizing constant (partition function) Z

Z= / exp | Y loggi(xc)
X

i=1,....k

@ For Markov networks with positive distributions the probability density
function (12) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

@ A graphical model does not always uniquely
specify the higher—order dependence structure of
ta joint probability distribution.

FO(y,2) = Sl y)alx,2bs(r,2)

FO(x,y,2) = %w(wv 2) @7@

@ For Gaussian distribution, parwise interactions
fully specify the model.
@ We focus on pairwise Markov Graphs
o where at most second order interactions are represented (like ().
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Undirected models with discrete variables

@ Boltzmann machine (=lIsing models; a special case of Markov random
field)

visible and hidden nodes

e only pairwise interactions

e binary valued nodes

e constant node Xp = 1.

p(X,0) = exp Z O Xi Xk — ®(O)
(.k)eE
»(0O) = /ogz exp( Z 0 X Xi)
XEX (j,k)EE

@ Issing model implies a logistic form for each node conditional on the others
1

1+ exp(—bjo — - e IikXk)

PO = 11X = x)) =

@ Restricted Boltzmann machines

o two layers, the visible and the hidden layer, no edges inside a layer - it is easier
Undirected Graphical = Mod-

(Pairwise Continuous)
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Boltzmann machine learning

@ Parameter learning

o iteratively
e for example lterative proportional fitting IPF Jirousek and Preudil.

@ Structure learning

o for example Hoefling and Tibshirany: glasso extension to discrete Markov
Networks.
o still slow and not very precise.

@ Restricted Boltzmann machine
o fitting the model is faster due to the conditional independence.
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Restricted Boltzmann Machine Example (ESLII)

o Two layers:

@ V a visible layer

@ H a hidden layer X Hidden 7

@ no links inside a layer. 0,1
Example:

@ V) binary pixels of an image of a X, X,
handwritten digit Visible V; Visible V),

@ V), 10 units for observed class ool \N(4AL2

- g g

labels 0-9 - [sohddenunts] @ 22+ 2 235> 7

@ more hidden layers in the lower = g c
figure. 2(4?91/355\:

. . . ] L Vi

o Fitted by contrastive divergence 2% F72737T4373

(not part of this lecture) b8373540997

@ or Gibbs sampling, but it is slow.
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)

Let G be an undirected graph over V, let P be a probability measure P over V.
(GM) P is (globally) Markov with respect to G iff

V(A,Be V,CC V) AlgBIC=AlpB|CinP.

(LM) A probability measure has the local Markov property iff
(VA € V) c Aldlp V\FaA|NA

(PM) P has the pairwise Markov property iff VA, B € V, A # B not connected
by an edge holds A 1Lp B|V \ {A, B}.

These properties are equivalent for strictly positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)
and (1,1,1).
See [Milan Studeny:Struktury podminéné nezévislosti, Matfyzpress 2014].
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Examples

Example (P has the pairvise but not the local

property)

V={AB,C},E={(b,c)}. Let us have a
binary probability measure V' nonzero at points
(0,0,0) and (1,1,1) [Studeny p.101].

Al B|{C} :
Al C|{B}& does not imply A 1L BC|{}.

Example (P has the local but not the global
property)
V={AB,C,D},E={(a,b)(c,d)}. Let
P(V) be nonzero only at points (0,0,0,0) and
(1,1,1,1) [Studeny p.101].

Al CD|{B}
B 1L CD|{A} :
C L AB|{D}& does not imply A 1L C|{}.

D 1L AB|{C}

©
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Linear Gaussian CPD

Definition (Linear Gaussian CPD)

For a variable Y with parents X = Xi,..., Xi the Linear Gaussian model is
defined by the mean of Y and a linear function of X and the variance of Y does
not depend on X.

from pgmpy.factors.continuous import LinearGaussianCPD
cpdY = LinearGaussianCPD('Y’, [0.2, -2, 3, 7], 9.6, ['X1', 'X2', 'X3])
cpdX1 = LinearGaussianCPD('X1’, [0.2], 1, [])

o We may define Gaussian Bayesian Networks.
o Usually, undirected models are used.

o Mixed interactions models Bayesian network with discrete and conditional
Gaussian nodes; no descrete child of a gaussian parent

o (generally, not a clear semantics).
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Canonical Form of a Gaussian Distribution

Definition (Canonical Form of a Gaussian Distribution)

For a Gaussian Distribution ¢(x) = \/lzliﬂe’%(x’“)zfl(x’”) we define its

canonical form C(X; K, h, g) where

@ concentration matrix K = ¥ 1
e h=Kpu
o g =—5log(2rm) + Llog(|K|) — 2uT Kp.

@ We can rewrite the join probability density to

o) = @) Kl e {5 0x- k(- )}

4 1

1 1
= (2m)72|K|? exp{—zuTKu—Fth—szKx}
g+h'x—= TKx}

{N + X, huX, — ZuvKu,vxuxv}
Undirected (Pai
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Gaussian Distribution Decomposition

If the concentration matrix of a multivariate Gaussian distribution fulfills condition
of a graph model then the distribution can be written as a product of distributions
on cliques of the graph.

° ¢(X) = exp {g + ZuEUthu - %Zu,vKu,vxuxv}
@ Let us have two sets of vertices A, B separated by the set C. Then
Yue A,veBk, =0.
@ We split the summation in the formula: ¢(x) =
exp { . 8 + Xuecauchuxy + Xvepuchyxy — Lyechyxy }
_i(zu,VGAUCKu,vxuxv + zu,vEBUCI'(u,vxuxv - zu,vGCl'(u,vXuxv)
e therefore ¢(x) = g(A, C)h(C, B).

A C B
A | Kaa  Kac |
C Kac Kcc Kces
B | Kec  Kss |
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Gaussian Processes

@ An infinite (continuous) number of Gaussian variables
@ to any value x a new variable N(u = f(x), Xy|rest)

@ we have only a finite number of observations which means a finite number of
variables

e we can marginalize unobserved variables out (the integral is 1, we multiply by
1, we just remove),

@ we can predict at any x, continuously.

Brownian Motion

504

—1004

position

—150

""" Brown motion
-200{ —} Observations
—— Prediction

—2504 95% confidence interval

[ 2000 4000 6000 8000 10000
time
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Gaussian Processes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
the MIT Press, 2006

Definition (Gaussian Process)

A Gaussian process is a set of random variables where any finite subset follows
multivariate Gaussian distribution.

We define the mean m(x) and the symmetric positive semidefinite covariance
function k(x,x!):

E[f(x)]

E[(f(x) = m(x))(f(x) = m(x))]

==
<
SO
sINEV)
N— N
[l

a Gaussian process is
f(x) = GP(m(x), k(x,x)).

We assume m(x) = 0 it simplifies the formulas.
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Brownian Motion (Wiener Process)

https:/ /www.coursera.org/lecture/stochasticprocesses /week-4-6-two-definitions-of-a-brownian-motion-THRqL

Brownian Motion

—— Our trajectory

TR . . 300 ® Observations
Definition (Brownian motion 1) 196 0,
200
@ By =0 for sure 100

position

@ stationary and independent 0
increments 100 \WWWWW

o B, — B ~ N(0,s — t)

0 2000 4000 6000 8000 10000
time
Brownian Motion: Histogram over 10* trajectories Brown motion: of =
B —t=
300 1 f— 0.35 - ;;
250 5 0.30 — =3
g — t=4
2 0.25 — t=5
£ 200 > — t=6
g 2020 t=7
2 150 3 — t=8
H zo1s t=9
100 ) — t=10
0.10
2 — t=11
s 5 .05 — t=12
0 ! 0.00
-100 -75 =50 -25 00 25 50 75 100 -40 -30 -20 -10 0 10 20 30 40
position position
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Definition (Brownian motion 2)

Definition (Brownian motion 1) Gaussian process with
@ By = 0 almost surely e m=0 and
@ B; stationary and e k(x,x") = min(x, x").

independent increments - —
Positive semidefinite:

OBS—BtNN(O,S—t) Ommts) fo ft
@ fi(x)fs(x)=1iffx € [O, t]&x € [0, s]

e K(0,0) = min(0,0) =0
@ The process has variance 0 at t = 0 and m(0) = 0.

@ covariance is linear in both arguments, s > t

cov(Bs — By, Bs — B;) = cov(Bs, Bs) — cov(B:, Bs) — cov(Bs, Bt) + cov(B;.
= s—2t+t=s5—t
@ increments, s > t > b > aQ # independence skipped, from Gaussian vectors
cov(By — Bs, Bs — B:) = cov(Bp, Bs) — cov(Bs, Bs) — cov(Bs, Bt) + cov(Bs, B:)

= b—a—b+a:0
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Normal Distribution

Definition (Brownian motion 2) Obseraiions [ ] [ ] () e
Gaussian process with Ganssian field _/,)_(I\H)_J)_(\ \E\/ O-
e m=0and L1

ws [x] (] [ ][]

e k(x,x") = min(x,x").

@ The covariance on y is defined by the covariance on the inputs x.
@ the covariance defines also the distribution on functions f:

f, ~ N(0, K(X., X.)).

@ Without noise, we observe y and we want to predict f,:

HEI Gl aiiesl)

X=[3,7] _[min(3,3) min(3,7)| (3 3
yT=[05, 1.11] KX, X) = [ 3,7) min(7,7)} - [3 7]
K(xs,X)=[min(xs,a) for a in X]
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Prediction
@ noisy-free observations y = f(x)
cov(yp,¥q) = k(xp,Xq)
@ noisy observations y = f(x) + ¢, e ~ N(0,02)

COV(Yp;Yq) = k(xpaxq)JrU%éPq
cov(y) = K(X,X)+0o2l

@ We observe y and we want to predict f,:

MR Clieosapuaeal)

@ Predictive distribution

f*|X7va*

N(f., cov(f.))
]E[f*‘vaaX*] = K(X*,X)[K(X,X) + 0—121/]71y
K(X., X)) — K(Xe, X)[K (X, X) + 02 7EK(X, X,)

> 2
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£ Xy, Xe ~ N(F., cov(f.))
f. £ E[f[X,y, X.] = KXo, X)[K(X, X) + o7 /] Ty
cov(f,) = K(X., X.) = KXo, X)[K(X, X) + 21K (X, X,)
-1
A 3| |0.5 _ 3+ 02 3 0.5
2 el [l ] eaPy 2]
-1
_ . 3+02 3 3
cov(f,) = min(4,4)— [3,4] [ 3 7+05] {4]
v,
Brownian Motion
Machine Learning Gaussian Prgcesses 71’;“ oot anet i 314 :r‘?:\:; February 22, 2024 319 / 388




Predictive distribution

@ is a linear function of observations y @ The red vertical bars show
o for a <= (K4 027ty the variance due to the
o we predict observation noise.

F(x.) < N, ark(xi, x.)
Brownian Motion, Opeise = 25

ol
-50 1 '\\%\&

A
‘!wl F‘?#"\I o

c
k=l
= 1001 ¥ o
) 3 A i
2 w ¥ Y
8 Nl SV
=150 ..... Brown motion ol
Observations
—2004 —— Prediction
noiseless Cl
~250 95% confidence interval
0 2000 4000 6000 8000 10000
time
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Definition (First Set of Kernel Functions)

o Radial Basis Function (RBF) covariance function with the length scale
parameter / is defined

cov(f(x,), F(xq)) = RBF(Xp,X4) = exp (-2;2).

Constant covariance function with the constant parameter is defined

cov(f(xp), f(xq)) = Constant(x,,xq) = constant.

Squared exponential (SE) covariance function with hyperparameters /2
lenghtscale and a% signal variance

1 |x, — x4/?
k(xp,%q) = U%exp(—2p€2q)

= Constant(xp, Xq)*RBF (Xp, X4)

can be defined as a product kernel of the Constant and RBF kernels.

There is also a sum kernel kernel function +.
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Scikitlearn Examples

@ The red vertical bars show the

@ Noiseless observations. variance due to the observation
2 Gaussian Process sklearn Example noise.
----- f(x) = xsin(x)
1] © Ovservations 15
= Predicton | f(x) = xsin(x)
mm 95% confidence interval —— Prediction
10 10- mmm 95% confidence interval
¢ Observations
g s 5
=
0 =
0
-5
=5
=10
0 2 4 6 8 10
x -10

0 2 4 6 8 10

@ The parameters may be fitted by the gradient update.
@ The observation noise alpha may be specific for each observation (right),
identically 0 (left) or constant.

kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (100e-2, 100e2))
gp = GaussianProcessRegressor(kernel=kernel, alpha=dy ** 2)
gp-fit(X, y)
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Marginal likelihood

@ The parameters may be automatically tuned by gradiently maximize the
marginal likelihood.
@ 'In sample’ prediction f follows: f ~ N(0, K(X, X)).

The marginal log likelihood is

o for noisy-free observations 'y = f:
1 1 N
log p(y|X) = log p(f|X) = —EfTK‘lf — 5 log |K| — = log 27
@ For noisy observations y|f ~ N(f,o21), y ~ N(0, K + o21)

1 1 N
log p(y|X) = —EyT(K + 027ty — 5 log |K + o2I| — > log 27.

The noise level may be tuned as well by (sum)adding the WhiteKernel.
WhiteKernel= noise_level iff we address the same variable (x,,X,), otherwise
WhiteKernel = 0.
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Hyperparameter Fit

Log-marginal-likelihood

4.67 x 10*
o . 4.29 x 10
Scikitlearn example: *
3.95x 10"
@ The log-marginal function has two = 36310
. < 10 333x 10!
local maxima. ]
2 3.06 x 10*
. . )
@ The log-marginal maxima 281x10
2.58 x 10!
corresponds to the two models. 237100
1072 1 2.18x10*
10° 10!
Length-scale
Initial: 1**2 * RBF(length_scale=100) + WhiteKernel(noise_level=1) Initial: 1**2 * RBF(length_scale=1) + WhiteKernel(noise_level=1e-05)
wm: 0.00316**2 * RBF(length_scale=109) + WhiteKernel(noise_level=C mum: 0.64**2 * RBF(length_scale=0.365) + WhiteKernel(noise_level=0.
Log-Marginal-Likelihood: -23.87233736198489 Log-Marginal-Likelihood: -21.80509089016203
15 ° 15
® °

1.0 1.0

05 0.5

0.0 0.0

—05 -0.5

-1.0 e ° -1.0

°
0 1 2 3 4 5 0 1 2 3 4 5
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Definition (Further Kernel Functions)

o ExpSineSquared kernel function with the parameters length scale ¢ and the
periodicity p > 0 (d is the distance) is defined

sin(md(xq, X,
cov(f(xq), f(x,)) = exp <2 ( dézqv )/P))

Usefull for periodic functions.
@ Dot product kernel function with the inhomogenicity parameter oy is
defined
cov(f(xp), f(Xq)) = 00 + Xp - Xgq.
Useful to capture the trend, often combined with exponential kernel.

o Rational Quadratic kernel function with hyperparameters ¢2 lenghtscale and
mixture «

d(xp,%q)2\
k(xp;xq) = <l+(2pa32q)>

The mixure of many RBF kernel lengthscales.
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Conditional Covariance

@ Consider the conditional “ Brownian Motion, Gnaise = 25
covariance, the relation of two ,
unobserved points x and xg. \\%\fél
o ?
left Noiseless Brown motion example. & A I%l
The covariance is zero outside the ¢ *lif'{ﬁ'; P
. . =150 ..o Brown motion \' ?
Xp closest observations interval. | observations
-200- — Prediction
right Brown motion with a high noise 0| | =2 93% conidence ntera
Ievel . 0 2000 4000 6000 8000 10000
time
Conditional covariance cov(x, xo|X) Conditional covariance cov(x, xo|X), Onoise = 25
2500 2500
—— X=1000 —— X=1000
X0=3500 X0=3500
20004 — xp=4000 2000 —— Xo=4000
" —— X=6000 " —— X=6000
g —— xp=6500 H —— xp=6500
'S 1500 var(x|X) 'S 1500 var(x|X)
z 2
g 1000 g 1000
500 500
° 0 2000 4000 6000 8000 10000 ° 0 2000 4000 6000 8000 10000
time time
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Conditional Covariance Rassmussen Example

@ The conditional covariance may be also negative.

@ Most kernels have a continuous first derivative. This makes the conditional
covariance negative with points on the other side of the closest observation.

2 Z 06
g
1 < 04
= 8
< o g o2
1 g FEE
° g s 1’ \l
-1 g b \/\_/_
o N l_’—
-2 2 g2
-5 0 5 -5 0 5
input, x input, x
(a), posterior (b), posterior covariance
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Matérn

@ Most kernel function have many derivatives.
@ The Matérn kernel v = 1.5 ('nu’) has only the first derivative. It is able to
model less smooth functions.

@ As v — o0, it becomes a RBF kernel.

Definition (Matérn kernel)
The Matérn kernel with parameters v = k + % and / is defined

k(xPﬂxq) = Q"%F(l/) <\/£27d(xp7xq)> Ku (V?d(xqu))

The Modified Bessel functions (for « not integer, the limit otherwise) are
defined

o lo(x) = X w3

° Ka(X) — %Ifa(x)fla(x)

sina :
v

) 2m+«
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Bayesian Optimization

@ Bayesian Optimization is used when
e We are solving: x™ = arg miny f(x)
o f(x) is a black box function
o f is expensive to evaluate
o the evaluations may be noisy.
If any condition is not true, a better algorithm exists.
We search the point x to observe.
scikit-optimize = skopt Python package
we minimize y and search the maximal probability of improvement
"the chance to improve’ is expressed by the Expected improvement (E/)

Bayesian Optimization Algorithm

@ Evaluate y on X, let y = y(X) and calculate conditional means and
covariances

@ repeat forever
o x"" = argmax, El(x) add x into X
o Evaluate y = y(x) and add y toy.
e re—estimate the Gaussian process (the parameters of the covariance).
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Bayesian Optimization

Gaussian Process Model

Example [Skopt]

Expected Improvement function

= = True (unknown)

== o)

— €

@ Nextauery point

Pa N ® observations 0.02
0 \
< 0.01
-1 0.00
-20 -15 -10 -05 00 05 10 15 2.0 -2.0 -15 -10 -05 00 05 10 15 20
1 B
.
/,,x\\ 0.02
s N
0 -
0.01
-1 0.00
-2.0 -15 -10 -05 00 05 10 15 20
0.04
0.02
0.00
-2.0 -15 -10 -05 00 05 10 15 20
0.04
0.02
0.00
-2.0 -15 -10 -05 00 05 10 15 20
0.04
0.02
0.00
-20 -15 -10 -05 00 05 10 15 20
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Expected Improvement Aquisition Function

@ we search the point x to observe
@ we minimize y, we already have the training data X,y

@ the search the maximal probability of improvement is expressed by the
Expected improvement (E/)

El(x) = E[(min(Y (X)) = Y(x)"[Y(X)=y]
= E[(min(y) — Y(x))"|Y(X) =y]

this can be solved analytically (® cummulative df, ¢ pdf Gaussian distribution):

Ei(x) = (miny) (o)) (T ECD ) (s (D) )
to maximize y:

El(x) = ((x)—max(y))® (N(X) —:Ef:;(y) - 5) to(x)o (u(X) — max(y) — 5) .

o if 'xi" £ > 0 we ignore small improvements.
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Paralelization: The Constant Liar

El(x) = E[(min(Y (X)) = min(Y(x"D), Y (x("2) vy (xRN Y(X) =y
= E[(min(y) = Y(x))"[Y(X) =]

it does not have direct formula. It is solved by Markov Chain simulation.
@ We estimate the observations y by an estimate (min, max, mean)
@ and run the evaluation in parallel.

That means the covariance is correctly estimated, the mean must be corrected
later.

ParBayesianOptimization R package )

Definition (Other Aquisition Functions)

@ Probability of Improvement: PI(f(x.) < min(y)) = ¢ (%)
o Lower Confidence Bound: LCB(x) = p(x) — & - o(x).
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GP for Classification

@ GP for classification are more complex and 'only an approximation’
still, it is worth to try the
sklearn.gaussian_process.GaussianProcessClassifier .

@ We estimate a latent function f as before
e we link it to (0, 1) interval by the sigmoid function (or ®).
@ The log-marginal-likelihood does not have a closed analytical form anymore.
@ can be approximated by Hessian matrix, the algorithm works in O(N?), not
too bad.
1.4 4 — Initial kernel: 1**2 * RBF(length_scale=1)
—— Optimized kernel: 66.3**2 * RBF(length_scale=1.33)
127 o Traindata
.. 104 @ Test data coen)
:‘f? 0.8
g
S 067
8 0.4
o
0.2

0.0 7OOCEEIOAD DO €8 AoD

—0.24

Feature
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POMDP Applications

o Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under
Partial
Observability
https://proceedings.neurips.cc/paper/2017 /file/e9412ee564384b987d086df32d4
Paper.pdf

@ Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics
https://aviationsystemsdivision.arc.nasa.gov/publications/2016/AIAA-2016-
3673.pdf
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

Uiy

o horizontal plane accelerations
e state 2D, (3D)

o relative range states ry, ry, (r;) T N ¢

e velocities for the ownship Vo, Voy,
(voz)

o velocities for the intruder v, vj, A d
(Viz) Y

e absolute displacement from the Voy

desired trajectory dx, d, (d;) @.’J Vog d,
o the desired trajectory is @ >

normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

Machine Learning Gaussian Processes 12 314 - 347 February 22, 2024 335 / 388



MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient

not a benefit to using more complex dynamic
equations.

ax, a, acceleration by the ownship

N, noise to the ownship, intruder, x and y axis
o No(p =0,0.305"2), N;j(z = 0,0.45572),

Bellman update

transition from s with acceleration a to s/

Q[s, a] + R(s, a)+’yz T(s|s, a)max, Q[s', al].

sl
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Vix
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Reward

@ Minimum reward R,

o collision
o physically impossible states
o keeps the sum finite

we prefer no acceleration

°
@ we prefer long distance to the intruder

o we prefer short distance to the desired trajectory
°

Ks, K1, Rmin weights was learned, k weights was = 1.
1

kecr2 + kry ry2

R(s,a) = max | Ruin, —(kax|ax| + kay|ay|) — Ks — K7 (kaxd? + kayd?)
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QMDP Approximation

@ offline optimization

a few hours for coarse discretization, 1 PC

initially stationary intruders

intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

@ all values normalized

o the coarse set contained a total of 765,625 discrete states
o the finely discretized version contained 9,529,569 states.

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—-3,—1,0,1,3,5 s~*

Vizs Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 s~

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10
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Evaluation Function

@ The primary goal is to remain safely

separated from the intruder aircraft.

Lateral Position

Lateral Position

e ryycpa the closest point of
approach’, we allow 5%

trajectories a little bit closer.
L

o Figure: required 1.5 units, never

closer than 1.1 units.

@ Mean deviation distance from
the desired trajectory figey -

& original cPA -
o /| scpamation v
[ J
2] S actual CPA
0.6| o~ separation
-
} I
0.4 A
2 J/ /
4 o) [ desived
| separation
6. 0 %
20 00 0 10 20 30 4 50 L
Longitudinal Position CPA Separation
Figure 3: Separation metric used to evaluate the collision avoidance algorithm
1 —
P mean /" ol
4 X .
2 deviation
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Reward Tuning — Bayesian Optimization

@ Gaussian process models F(Rp).

o We tune Rp = (K7, Ks, Runin) @ We determine the point at
which the objective function is

expected to have the largest

improvement, E[/(F(Rp))] over

F(Rp) = (ﬁx(fs%cPA)_l-i'(l—ﬂ)Xudev)- that of the current minimum.

@ This set of Rp is passed to
QMDP to evaluate.

@ until convergence.
Reward By
Parameters

Dynamic  |(s.a) 5 (b)
3 Policy
Programming
E[I (F(l{pj)]
Gaussian Objective Metrics
Lccess F(Rp) Function T5%CP A, Hdeo etrics

o [ weights the two objective
functions

Simulation }

trajectories

Figure 5: Process for tuning POMDP reward parameters
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Bayesian Optimization

2| Gaussian process posterior on the objective function

@ we know QMDP and F values for

one or more X = Rp points H

@ we search the point x = R} to
observe R

@ we minimize y = F(Rp) and search oot Fncion
the maximal probability of
improvement

@ 'the chance to improve’ is o % R I
faxpressed by the Expected Peter I. Frazier: A Tutorial on Bayesian Op-
improvement (E/) timization, rXiv:1807.02811v1 [stat.ML] 8

Jul 2018
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Value lteration, QMDP Policies

@ considerable improvement in o Figures: Owhship at the origin
convergence speed by o different intruder positions
initializing by the value of e policies indicated by color: black=up,
previously evaluated policy red=right
o the value of maximum negative o |eft: both own and intruder velocities
reward influenced the are zero. d = 0
convergence speed . . . .
vere 'p @ right: owhship is moving in the positive
° T 9'99 taking hundred y—axis direction at 1 s~1 with zero
iterations to converge. trajectory error and nominal trajectory
@ smaller v did not ensure the matches the velocity.
return to the desired path. @ The intruder is stationary.

. Lateral Position

-1 No Action

S0 5w 15 2 p 5 o 5o 5 10 15
Longitudinal Position Longitudinal Position
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Beliefs

Uncertainty does not increase with time

State uncertainty is incorporated only when actions are selected

a set of potential states is calculated from the observations received at each
step.

the potential states become the beliefs used to select an action.

7w(b) = max, Z Q(s™, a)p¥)
K

The value Q(s(), a)b(k) approximated from QMDP solutions
e rectangular interpolation between 2" nearest neighbor
o simplex interpolation between n + 1 nearest neighbor
e prior work has found little benefit to using more sophisticated approaches.
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Pareto Optimal frontier

@ 194 parameter sets evaluated
@ 3 between 0.01 and 0.99 .

@ resulting in nine non-dominated, Pareto—optimal designs.
3

T T T
—— QMDP optimal front
® QMDP designs

o
T

Tnverse 5% CPA Range, rsycpa

Mean Deviation
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Human Expert Check

o Left: intruder starts at (0,0), @ Right: The goal is hovering

@ random heading, fixed velocity of @ the intruder comes from the
the intruder right with the unknown

@ the ownship starts at the blue cross behaviour.

/«;\\;\ \ + CPA locations
5 “ — /\ * Ownship start points
. \I

__Intruder start point

Lateral Position
I

Ownship stops to
allow intruder to pass

=20 -10 0 10 20 -4 -12 -0 8 -6 -4 -2
Longitudinal Position Longitudinal Position
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State Discretization

The fine discretization improves the results.

1 1 .
£ os} 3 1
2
5
:
Z0.6) b 1
=
3
5 04t b 1
£
g
2
g
Zo02f b
o , . .
0 2 4 6 8 10 12 14 0 5 10 15 20 25
CPA Separation Maximum Trajectory Deviation
(a) CPA separations (b) Maximum trajectory deviations

Figure 10: Cumulative distributions of encounter model metrics as a function of state discretization

chine Learnin
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Further ML Methods

@ Linear Projections

e Principal Component Analysis (PCA): "the most spread variance’ directions
o Sparse PCA. (sklearn)

o Partial Least Squares: not mentioned here. (sklearn)

o Archetypal analysis: extremes, instead of 'centers’ from clustering; data=lin.
comb. of archetypes (archetypes)

o NMF Nonnegative Matrix Factorization: 'linear r-dimensional autoencoder’
(sklearn)

o Factor analysis: A view on 'independent factors' observed via a linear
combination mixture with a gaussian noise (sklearn)

e Independent Component Analysis: splits the signal according to
non-gaussian features (max. divergence from gaussian) (sklearn)

e Procrustes transformation - curve fitting.

@ Principal curves and surfaces (predefined f;(\), curve paramater \)
(prinPy),
o Kernel PCA. (sklearn)

o Spectral Clustering. (sklearn)
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PCA Principal Components, Curves and Surfaces

The principal components of a set of data in R”
provide a sequence of best linear approximations to
that data, of all ranks g < p.
let 11 be a location vector in RP, Visa p x g
matrix with g orthogonal unit vectors as columns, A
is a g vector of parameters.
f(A) = p+ Vg represents an affine hyperplane of
rank g.
We minimize the reconstruction error (by least
squares)
. N

o min, (xy > i lIXi—p— Vi[>
We can partially optimize

o =X

o\ = VqT(X,' — Y).
This leaves us to find the orthogonal matrix V,

. N — T 12
miny, > i_y H(Xi =X) = VoVy (% — X)H :

We center the data X = 0 to simplify the formulas.
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Handwritten 3 Example

@ 130 handwritten digits 3, each 16x16 grayscale

; 2132333233323 33|
image. 2313238333333
256 3332333) 33322
e xeR 33323232333353
. A 23333/332333323[3
@ First two principal component plot 23312323 333¢33
. - . 3359223333332353
o For the first two principal components quantiles 3333333333333
5,25,50,75,95 percent. ?gg%g%%g%g%gg

e First component - x axis: mainly the length of 3

e Second component - the thickness.

@ The projection on the first two components is: %%E%%
FON = 2+ Avr+ A g %%Q
3@ [ S

@ First 12 components account for 63% data
variations.

@ Explained variance by PCA (blue) and randomized
directions (orange).

nnnnnnnn
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Sparse Principal Components

@ We often interpret PCA by examining loadings: direction vectors v;.

@ This interpretation is easier if the loadings are sparse.
@ If both A =X; =0 and

Definition (Sparse PCA) N > p, than v = 0 is the
.. . largest principal component
Sparse principal component technique solves direction

for a single component: )
@ When p > N the solution

N may not be unique unless
ming,, 3 I = 0Tl + MvIE + s llvl A > 0. For A > 0.and i =0
—1 is the solution proportional to
subject to |||, = 1. the largest pr.map.al
< component direction.

Sparse principal component for multiple components minimizes © and V p x K
matrices

N K K
mine,v Y IIxi — OV i[5+ A [Ivill3 + > Aullvilla
i=1 k=1 k=1

subject to 070 = I.
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Corpus Callosum (CC) Sparse PCA Example

@ The Corpus Callosum scan.

@ The area represented by a number
of points aligned by Procrustes
analysis,

@ a set of 2d points for now.

‘Walking Speed

>

Verbal Fluency

> Y

Principal Components  Sparse Principal Components
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Archetypal Analysis

@ Archetypal Analysis approximates data points by a linear combination of
prototypes
o that are themselves linear combinations of data points.
e Each data point is approximated by a convex combination of prototypes.
e This forces the prototypes to lie on the convex hull of the data cloud.
o In this sense, they are 'archetypal’.

4 Prototypes 8 Protoiypes

@ K-means clustering

o approximates any point by one °°u°"f} °°u°"f'3’ °°uzf‘}
prototype o . e

e each prototype is a linear ol o
combination of samples (the
mean of a cluster).

PCA Extensions, Independent CA 13 348 - 370 February 22, 2024 352 / 388



Archetypal Analysis

@ “linear autoencoder" of the dimension r

Definition (Archetypal Analysis)

@ A non-negative N x p data matrix X is modeled X ~ WH,
e H= BX is r x p matrix of r archetypes (rows of H),
o Bis r x N matrix where by > 0 and (Vk) (Zf\lzl bii = 1).
o Wis N x r matrix where wi > 0 and (Vi) (3_,_, wi = 1).
o We minimize over W and B: J(W, B) = ||[X — WH|]> = || X — WBX|]*.

@ Its minimized in an alternating fashion,

with each separate minimization involving a F] F]
convex optimization.

@ Converges to a local minimum. F] :] F}
4

o Figure: 2,3, and 4 prototypes for the

Handwritten 3 example. t] F] E-] :]

@ Extreme 3's both in size and shape.
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Non-negative Matrix Factorization

Original

NMF

Definition (Non-negative Matrix Factorization) =18

@ A centered N x p data matrix X is modeled |- :3-—" b x
L EE

o Wis N x r matrix, H is r X p,
r < max(N, p).

@ We assume x;;, Wi, hyj > 0.
@ We maximize over W and H: L(W, H) =
N
Dic1 2o [xi log(WH); — (WH) ;).

@ NMF assumes x;; has a Poisson distribution
with mean (WH);

@ we maximize the loglikelihood. 8
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NMF
o The NMF solutor

is not unique.
1: procedure NMF:(X centered data)

5. repeat Any hy, hy basis vectors in the open space

Zﬁ;l hijfj/(WH)ij between the coordinate axes and data work
3: Wik <~ Wik P hyi ’ (given an exact reconstruction of the data).

j=11 hy
N

Z’; wikxij/ (WH);;

& hig 4 hyg 2=/ (Vi /
Zi:l bik * © ot

5: until convergence P .
6: return W, H / R

7: end procedure

sklearn.decomposition.NMF has the objective function:

0.5]X — WHIlloss  +  aw - ILratiopl|vec(W)|l1 + 0.5aw - (1~ Iratio)p|| W 7o

+ ay - NaoN|vec(H))l1 + 0.5 - (1 — o) N[ H| |70
o [vec(W)llL =3, ; abs(Wi ;) e|etmerl||twis(e L)illnorm ( to) NI Hl

° |W|Z, = Do W?; Frobenius norm

@ Joss is Frobenius norm or another beta-divergence loss, /1.t = 0.

v
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Independent Component Analysis

& & & & &
¢

\
\p N L'MWT MML/»,W\ ‘w» v
‘,‘,*‘\,«;‘,, ol

Selected
Channels

e
gt etk

s o
- A

o Multivariate data as multiple
indirect measurements from an
underlying source. = 2 PO N W P A T

. , » 5058 AT YO [ W \/WWW‘WJWNJ\W~¢

o Examples: EEG brain scans, 'body Byl @

fat’, trading prices. ' T

A P P B o g+ A

ill
o It (e (e

o Factor analysis @ NN RO DT ) Q7
SO RN I A A

e typically wed to Gaussian

2 3 45 6 7 8 9 1011 12 13 14

distributions &5 Time (5) €12
° WhICh has hindered their FIGURE 14.41. Fifteen seconds of EEG data (of 1917 seconds) at nine (of
100) scalp channels (top panel). as well as nine ICA components (lower panel).
usefulness e o e
o and has no u mq ue solution iii.;{::mmrmr/ coefficients d; as a heatmap, showing brain or scalp location of the

@ any linear transformation is a
solution.
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Latent Variables and Factor Analysis

o Take the singular value decomposition X = UDV' T
e we assume that the columns of X have zero mean
o where D is a diagonal matrix
e U is orthogonal.

@ X has a latent variable decomposition X = SAT
o where S =+V/NU, AT = —bvT
o each of the columns of X is a linear combination of the columns of S
o columns of S have zero mean, are uncorrelated and have unit variance,
Cov(S) = 1.
e we can interpret the SVD, or the corresponding PCA as an estimate of a
latent variable model X = AS

X1 = anSi+anS+...+ alpSp
Xo = anSi+anS+...+ aszp
Xp = ap151 + ap252 + ...+ appSp

@ Notice that for any orthogonal p x p matrix R is X = AS = ARTRS = A*S*.
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Factor Analysis

@ In the SVD decomposition any rank g < p truncated decomposition
approximates X in an optimal way.

e Factor analysis model (popular in psychometrics)
e with g < p, a factor analysis model has the form X = AS + ¢

X1 = auSi+anS +...+a1qSq + e
X2 = anSi+ anS+...+ aqSq + e
Xo = amSi+amSo+ ...+ apgSq+ep

e S is a vector of g < p underlying latent variables or factors

Ais a p X g matrix of factor loadings
@ used to name and interpret the factors

e ¢; are uncorrelated zero—mean disturbances.

Typically, S¢ and ¢; are modeled as Gaussian random variables, and the model
is fit by maximum likelihood.

The parameters all reside in the covariance matrix

Y = AAT + D.

where D, = diag[Var(e1), Var(ez2), ..., Var(ep)]
S independent factors like intelligence, drive in a battery of educational tests.
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Independent Component Analysis

X1 = anSi+anS+...+ a5,
X5 151 +anS+...+ agpSp

Xp = ap151 + ap252 + ...+ ap,,S,,

@ S are assumed statistically independent rather than uncorrelated
e correlation: second order interaction
o independence: all orders of interactions.

o Multivariate Gaussian is determined by its second moments alone (up to
rotation).

o Otherwise, the extra moments allow to identify the elements of A uniquely.
@ We assume X has been whitened to have Cov(X) = /; Simplest: multiply by
W = £, typically achieved via the SVD to D=3 V7.
o Var(S) = I, therefore is A orthogonal.
o ICA searches an orthogonal S such that S = A" X are independent
(not-Gaussian) components.
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Example

o Cocktail party problem Different microphones X; pick up mixtures of
different independent sources S; (music, speech from different speakers).
@ ICA is able to perform blind source separation
e by exploiting the independence and non—Gaussianity of the original sources.

Source Signals Measured Signals

ENATNAS
NS

V4 ~
1 1 ]
/1 /N /A 1 1 ]
W4 V L~ = -
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Entropy

entropy H(Y) =~ [ gly)loge(y)dy
mutual information /(Y) = z": H(Y;) — H(Y)
I0Y) = D" H(Y) = H(X) ~ log | det(A)
= ) HOG) ~ HX)

@ since Cov(X) =1, Y = ATX and A is orthogonal.
@ We search A to minimize /(Y) = I(ATX)
o looks for the orthogonal transformation that leads to the most independence
between its components
e minimizes the sum of the entropies of the separate components of Y
e this amounts to maximizing their departures from Gaussianity.
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Negentropy, FastICA

@ For each Y;, let Z; be a Gaussian random variable
with the same variance as Y.

@ The negentropy J(Y;) is defined I
R =HEZ)-HY) Joale
@ It is non—negative, and measures the departure of Y; .
from Gaussianity. 000
o Can be approximated by 00 e
J(Y)) ~ [EG(Y;) — EG(ZJ)]z @ Above diagonal:
first five ICA
o G(u) = Llogcosh(au) for 1 < a<2. components
@ Below diagonal:
FasiCh first five PCA
o |CA starts from essentially a factor analysis components
solution e all standardized to
@ and looks for rotations that lead to unit variance.

independent components.
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FastICA

@ X are centered and whitened data with Cov(X) =/

o typically achieved via the SVD, X + /DU from X = UDV".
@ g the number of components

e Only one is allowed to follow Gaussian distribution.
@ a a parameter.

FastICA

1: procedure FASTICA:(X, a€ (1,2), g <p)
2: Wi, ..., Wq < randomly initialize N-dimensional weight vectors
3: for /=1,...,q9 do
4 repeat
5 WZr — ZlNzl x tanh(aw, x) — (Zfil m) w
6: Wy — Wzr = Zf:_ll w,] w;w; # orthogonal to previous
7: wp < —<£— # normalize
\/WZTW[
8: until convergence
o: end for

10: end procedure
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Procrustes Transformations

@ Assume each handwritten S is represented as i}
N = 96 points. R

@ Both Xj and X, are N x 2 matrices (green, orange
curve).

o with column means X1, X2, centered to Xi, Xa.

e To find landmarks (points) are difficult and subject
specific.

o In this example, dynamic time wrapping of the
speed signal along each signature was used.

@ Procrustes transformation
e R is an orthonormal p X p matrix,
o R« UVT from X[ X, = UDVT.
e 1 a p vector of location coordinates
@ [L <4 X2 — /A?Yl.
o [|X||2 = trace(XTX) = Zf\il J’.le |x;|? is the squared Frobenius matrix norm
e We minimize the Procrustes distance

min, r HX2 — (XlR + 1/1,7-)Hf__ .
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Shape Averaging, Procrustes Average

I From now on, we assume the data are centered.

Definition (Procrustes average)

The Procrustes average of a collection o A A
of L shapes is M that minimizes ?\( % /OK
L

. 2
mln{Re}%’M Z ||X4Rg - M”F
£=1

Procrustes Average

1: procedure PROCRUSTES AVERAGE:(N x p shapes {X,}5_; )
2 M <« X1 # init the average

3 repeat

4 Xé < XZIA?Z # M fixed, solve L Procruster rotations /A?g
5 M «+ %Zézl X| # average

6 until convergence

7. end procedure
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Principal Curves and Surfaces

@ To find a principal curve f(\) of a distribution, we
consider

o f(A) =[fA(N), L(A),...,fr(N)] its coordinate
functions and let

o XT =(X1,...,X,)

Principal Curves and Surfaces

1: procedure PRINCIPAL CURVE:(f(\), X )

2: repeat

3: fj-(/\)<—E[Xj\)\(X):/\],j:1,2...,p,
4: M (x) < arg miny ||x — ?(X)H :

5: until convergence

6: end procedure

@ A scatterplot smoother is used to estimate the
conditional expectations in step 3: by smoothing
each X; as a function of the arc-length A(X).
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Kernel Principal Components

@ We can select any kernel function, like
_lx=x1?

radial K(x;, xp) = e~ =
@ Weset M =117 /N and calculate
dOUble-Centered version Of K Radial Kernel (c=2) Radial Kemel ¢=10)

K=(-MK({I-M)=UD>UT

@ then principal components variables are
Z = UD.

e The elements of the mth component z, o o et

(mth column of Z) can be written (up to 21 =

centering) i ]

N u;
° Zim = Zj:l ajmK (i, x;), where ajm = dj—:.

o Figure: Radial kernel (top) and spectral I S
clustering without NN (bottom right) on " gan——— [ PER A Aa
the previous 3-'circles’ example.
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Spectral Clustering

@ The idea is to put close points into the same cluster. o

@ We form a weighted adjacency graph for data samples. P 3

Spectral Clustering

1: procedure SC:(X as N points in RP, ¢ > 0 scale, k > 0)
2: siiv + exp(—d(i,i")?/c) # calculate the similarity matrix
3 W, G < zero matrix N x N

4: for i, i’ symmetric nearest neighbors do

5: Wjir — S # connect them
6
7
8
9

end for
for i € X do
gii < > Wi # the degree of vertex i
: end for

10: L+ G — W 4 the graph Laplacian (unnormalized)
11:  (or L+ I — G~'W # (normalized))
12: find m eigenvectors Zyx,» with smalest eigenvalues of L
13: return Zy, , rows clustered by standard kK — means

14: end procedure
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Spectral Clustering

e For any vector f

N
FILF = Zgﬁf,-Q—szf’Wu \
i=1 8%, ¢ ;Jc 1

i=1i'=1

= *ZZWI' =)

i=1i'=1

Eigenvalue

x Number

o 1711 =0 for any graph.
e For a graph with m connected
components,

@ reordered so that L is a block diagonal
with a block for each component

Eigenvectors Spectral Clustering

005

o then L has m eigenvectors of eigenvalue 1F
Zero. T T T T T T T

T T
0 10 20 300 400 004 002 o000 002

Index Second Smallest Eigenvector

@ In practice zero eigenvalues are
approximated by small eigenvalues.
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Separating hyperplane, Optimal separating hyperplane

Classification, we encode the goal class by —1 and 1, respectively.
separate the space X by a hyperplane

Linear Discriminant Analysis LDA is not necessary optimal.
Logistic regression finds one if it exists.

Perceptron (a neural network with one neuron) finds separating hyperplane
if it exists.

o The exact position depends on initial parameters.

FIGURE 4.16. The same data as in Figure §.14.

i The shaded region delineates the mazimum margin sep-
FIGURE 4.14. A toy example with two classes sep-

arable by a hyperplanc. The orange line is the least
squares solution, which misclassifics one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with

arating the two classes. There are three support points
indicated, which lic on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using
logistic regression (red line), which is very close to the
optimal separating hyperplane (sce Section 12.3.3).

different random starts.
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Optimal Separating Hyperplane (separble case)

We define Optimal Separating Hyperplane as a separating hyperplane with

maximal free space M without any data point around the hyperplane.
Formally:

max
8,80, 118]1=1

subject to y;(x” B+ Bo) > M forall i=1,... N.

de—

Bo+ATz=0
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Formally:
max M
B.,80,118]I=1

subject to y;(x B+ Bo) > M foralli=1,... N.
We re-define: ||3]| = 1 can be moved to the condition (and redefine 3p):

Hﬁ”y’(x B+ Bo) >

Since for any 8 and 3y satisfying these inequalities, any positively scaled multiple
satisfies them too, we can set ||3|| = 7 and we get:

2
min — /3
58,50 2” ”

subject to y;(x” B+ Bo) > 1proi=1,...,N.
This is a convex optimization problem. The Lagrange function, we look for the
saddle point w.r.t. 8 and So:

N
= 18I = eulyi o7+ o) 1.
i=1

EETES  Support Vector Machines 14 371 - 389 February 22, 2024 372 / 388



N
Lo = JI817 ~ 3 eul78 + o) — 1.
i=1

Setting the derivatives to zero, we obtain:

N
5 = Z Q;yiXi
i=1
N
0= Z QY
i=1

Substituing these in Lp we obtain the so—called Wolfe dual:

subject to a; > 0
The solution is obtained by maximizing Lp in the positive orthant, for which
standard software can be used.
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N N N
.
Lp = E o — E E QGOLYiYEX; Xk
i=1 i=1 k=1

subject to a; > 0.
In addition the solution must satisfy the Karush—Kuhn—Tucker conditions:

ailyi(x' B+ Bo) —1] =0

for any i, therefore for any a; > 0 must [y;(x;' 8+ Bo) — 1] = 0, that means x; is
on the boundary and for all x; outside the boundary is a; = 0.
The boundary is defined by x; with a; > 0 — so called support vectors.

We classify new observations

~

G(x) = sign(xTﬂ + Bo)

@ where 3 = Z,N:l QG YiXi, © N
o o =ys — x] 3 for any support T
vector ag > 0.
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Optimal Separating Hyperplane (nonseparble case)

@ We have to accept incorrectly classified instances in a non—separable case.
@ We limit the number of incorrectly classified examples.
We define slack ¢ for each data point (&1, ...,&n) = £ as follows:
o & is the distance of x; from the boundary for x; at the wrong side of the
margin
e and & =0, for x; at the correct side.
We require Z,N:1 & < K.
We solve the optimization problem

max
BBo;118]1=1

subject to:
yi(x' B+ Bo) = M(1— &) m

where Viis & >0a 1 & < K.
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Optimal Separating Hyperplane (nonseparble case)

Again, we omit replace the condition || 3| by defining M = ﬁ and optimize

: : yi(xT B+ fo) > (1 - &)Vi
min || 3] subject to { & >0, & < constant

We replace the constant by a multiplicative parameter v and solve

N
1

min — + i

min 3115 wgg

subject to & > 0 and yi(x" B+ o) > (1 - &).
@ We can set v = oo for the separable case.
@ Large v: a complex boundary, fewer support vectors.
@ Small v: a smooth boundary, a robust model, many support vectors.

@  usually set by crossvalidation.
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We solve
1 N
. 2
min = + i
min 2Hﬂll Y ;:1 3

subject to & > 0 and y;(x,” B+ Bo) > (1 — &).
Lagrange multipliers again for «;, u;:

N
||/3|\2+725, Za,[y,Xﬂ+Bo) 1—&) =D s
i=1

i=1

Setting the derivative = 0 we get:

N
= Z Q;jyiXj
i=1
N
0= Z a;y;i
i=1

Qj =7 — Hi.
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Substitute to get Wolfe dual:

N N

N
Lp = Z o — Z Z QO YiYiX; Xk
i=1 1 k=1

and maximize Lp subject to 0 < a; <y a Z,N:l a;y; = 0.
Solution satisfies:

ailyi("B+Bo) —(1-&) = 0
ui& = 0
il B+B)—(1=&)] > 0

@ The solution is ﬁA = Z,N:l Q;Yix;i.
@ support points with nonzero coefficients &; are
e points at the boundary
0 &=0 (therefore 0 < oy < =),
e and points on the wrong side of the margin
° 2,->0(ando7,-:'y).

@ Any point with 5 = 0 can be used to calculate Eo, typically an average.

e [ for a boundary point a; > 0, & = 0:
5 ~
o [(xTB+ Bo) — (1-0)] =0
I Eiiiﬁiﬁﬁ! ai iffﬂprl hv tiinino (crocsvalidatinp)
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SVM Solution

.. oa N 4 .
@ The solution is 8 =Y "._; &iyix;. %1 ’
@ support points with nonzero .|
coefficients &; are Tl @) =
e points at the boundary o
°l f@ =0 I /18l

° g = 0 (therefore 0 < ar < v), m ~
e and points on the wrong side of 34
the margin PR

°§>0(ando7,-:7)_ 2 R S

@ Any point with £ = 0 can be used = |
to calculate [y, typically an average. 05 o o 1o L

° ,[% for a boundary point & = 0:
@i [yi(TB+ Bo) — (1 0)] =0

o o= ¢ =0 for points 1,4,8,9,11
e a >0, =0 for points 2,6,8 [

° oints 3.5. e
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Support Vector Machines

Let us have the training data (x;, y;)Y;, x; € RP, y; in {—1,1}. We define a
hyperplane

{x:f(x)=x"B+ Bo =0} (13)
where [|3]| = 1.
We classify according to

G(x) = sign [XTB + ﬂo]
where f(x) is a signed distance of x from the hyperplane.

Support vector machines replace the scalar product (x;, x) by a kernel
function.

f(x) = Bx+ Bo
N
F) = D iy x+ fo

k=1

N
?(X) = Zé\é,‘y,'<X,',X + 3

?(X) = ZO‘)/I Xn +ﬁ0
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SVM Example

@ kernel functions are function to replace scalar
product with a scalar product in a transformed

space.

SVM - Degree-4 Polynomial in Feature Space

dth Degree polynomial:

K(x,x‘) =(1+ <x,x|))d

Radial basis

2

K(x,x!) = exp(=270)

Neural network

K(x,x1) = tanh(k1(x, x1) + ko)

@ For example a degree 2 with two dimensional input:
K(x,x') = (1+ (x,x))? =
(1 + 2x1x] + 2x0x5 + (x1x1)? + (x2x5)? + 2x1x] X2X5)
o thatis M =6, hi(x) = 1, ha(x) = v2xq,
h3(x) = V2x2, ha(x) = x2, hs(x) = x3,

hG(X) = \/§X1X2.

The classification function

F(x) = h(x)TB+Bo = Sy aiyi{h(x), h(x;)) + o

does not need evaluation of h(i), only the scalar

product (h(x), h(x;)).
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String Kernels and Protein Classification

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK

o Consider all possible sequences of length m.

@ We define a feature map

Om(x) = {da(x)}aca,

@ The kernel function is the inner product:

Kin(x1,%2) = (®m(x1), Pm(x2)).
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SVM as a Penalization Method

o We fit a linear function wrt. basis

{hi(x)}: f(x)=hTB+ po. e

—— Hinge Loss

—— Class Huber

Binomial Deviance
Squared Error

o Consider the loss function i
Lly,f) =[1 - yfl+ e
o The optimization problem 2
. N 2
mingo,s Y i [1—yfle +AIBIT o]
@ is equivalent to SVM = 2 a0 1z o3
H 1 2 N yf
° mlanﬁO 5”6” + ry Zi:l gf
o subject to f,‘ 2 0 and Loss Function| Lly, f(2)] Minimizing Function
T
yilx "B+ Bo) = (1 - &). P
@ is similar to smoothing splines g ol o B
penalty: SVM Hinge 1—yf(@))+ f(z) = sign[Pr(Y = +1[z) — 4
) N T Loss
® MiNa, Zi:l[l - yf]+ + Ao’ Ka Squared | [y~ f@)f = [1 - yf (@) Fla) = 2Pr(Y = +1]a)— 1

Error

o where o’ Ka = J(f) is the —
smoothing penalty. Square

Hinge Loss

—dyf(z) yf(w) <-1

1—yf(z))2 otherwise

fla) =2Pr(Y = +1jz) - 1

S (s 4E]
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SVM and Kernel Dimsension

@ The first Simulated example
o 100 observations of each class
o First class: four standard normal
independent features

X1, X2, X3, Xa.
e Second class conditioned on
9 < Z )(12 < 16. Test Error (SE)
Method No Noise Features Six Noise Features
@ Second example SV Classifier 0 150 (0.003) 0.472 (0.003)
. . SVM/poly 2 0.078 (0.003) 0.152 (0.004)
o The first one augmented with an /) 105 0.180 (0.004) 0.370 (0.004)
additional six standard Gaussian SVM/poly 10 | 0.230 (0.003) 0.434 (0.002)
. BRUTO 0.084 (0.003) 0.090 (0.003)
noise features. MARS 0.156 (0.004) 0.173 (0.005)

e BRUTTO: Additive spline model.

@ BRUTTO and MARS has the ability
to ignore noisy features.

@ We can see the overfitting of SVM.
The degree 2 polynomial kernel is
the best since the decision boundary
is quadratic.
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SVM

SVM Complexity

The SVM complexity is m® 4+ mN + mpN, where m is the number of support

vectors.

Parameter tuning for different radial basis lengthscale ~.

¥y=5 vy=1 v=0.5 v=0.1
8
S
wover ®
4
o / o
g / 4 N,
/ / ™,
4
s \

0

<

° \&/‘

we

I R R e ] e R e TR

<

e T T T T T T T T T T T T

1le-01 le+01 1e+03 le-01 le+01 1e+03 le-01 1le+01 1le+03 le-01 le+01 1le+03
C
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SVM for Regression

e In regression, we fit a function: f(x) = x"3 + o

if
V() = {0 if [r| <,

|r| — €, otherwise.

@ We consider error function V. (left figure)

@ and minimize:

A
H(B, Bo) =D _ Velyi — () + 51181
i=1
(]
< ! o | i //
o | = . |
- iy ° T
4 2 0 2 4 4 2 0 2 4
T T
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SVM for Regression 2

@ The solution has the form: &;,&f > 0

A N
B = Z(@Zf — &y)y,
A ZJ—VI
flx) = (& — &q)(x, zi) + Bo,
=1

@ and solve the quadratlc programming problem
N

1
nnn EZ aj + ;) Zyl o — ;) +3 Z (o — ;) (0 — o) (@i, )
o i—1

0,4’ =1

@ subject to the constraints
0<ay, of <1/A,

N
Enfalf

aa; =0.
@ Support vectors are those with nonzero (a - a,)
@ With scaled response y, you may use the default €
@ A is tuned by cross-validation.
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SVR

sklearn.svm.SVR

Support Vector Regression

—— RBF model —— Linear model — Polynomial model
O RBF support vectors 5 Linear support vectors ©  Polynomial support vectors
O other training data O other training data © other training data

target

0 1 2

3
— TEmETE ] s

4 5 0 1 2 3 a H o 1 2 3 4 5
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