
Model Assessment and Selection

We assume i.i.d. data
independently (independent
samples)
identically (the same distribution)
distributed

Assume many iid datasets
1 line= train/test curve for 1 set
of samples (data)
data used to fit the model
Training error is
err = 1

N
∑N

i=1 L(yi , f̂ (xi )),
data not used to fit the model
Test error is
err = 1

N
∑N

i=1 L(yi , f̂ (xi )),
Test error is a point estimate of
the generalization error.
Dark red line is an average of test
errors, a more robust estimate.
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FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Definition (Generalization error)
Generalization error is the expected
prediction error over an independent
test sample

Err = E[L(Y , f̂ (X ))]

where both X and Y are drawn
randomly from their joint distribution
(population).

Machine Learning Model Assessment and Selection 4 1 - 26 April 4, 2024 1 / 30



Loss functions for regression

Definition
Square error loss L(y , ŷ) = (y − ŷ)2

Absolute error loss L(y , ŷ) = |y − ŷ |
Huber error loss

Lδ(y , ŷ) =
{ 1

2 (y − ŷ)2 for |y − ŷ | ≤ δ,
δ|y − ŷ | − 1

2 δ2, otherwise.
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FIGURE 10.5. A comparison of three loss functions
for regression, plotted as a function of the margin y−f .
The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss
when |y − f | is large.
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Classifier Assessment and Selection

Qualitative response G
taking one of K values
labeled as 1, . . . , K .
Typically
Ĝ(X ) = arg maxk p̂k(X ).
Figure for binary response
encoded {−1, +1}
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FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) �= y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Definition (Loss functions for classification)
0-1 loss, misclassification

L(G , Ĝ(X )) = I(G ̸= Ĝ(X ))

log-likelihood, cross-entropy, deviance

L(G , p̂(X )) = −2I(G = k) log p̂k(X )

L{0,1}(g1, p̂1) = −2[p1 log p̂1+(1−p1) log(1−p1))]
two classes encoded {−1, +1}

exponential
e−yf

support vector

max(0, 1 − yf (x))

Non-negative loss matrix L ∈ RK×K with 0
on the diagonal.
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Data Rich Situation

If we have enough data, we split the dataset
Train train the model
Validate select appropriate model parameter α, λ, usually the model
complexity, cost penalty
Test estimate the test error on an independent sample.

Recommended ratios:
1
2 : 1

4 : 1
4 with the validation set

2
3 : 1

3 without the validation need.
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Stratified Selection

Assume small disease prevalence.
We split the data healthy/sick and split each group separately.

Consider a model over different branches of your company:
to estimate a new branch, all data from some branches should be selected as
test ones
not a random sample from each branch.

Other methods only since we almost never have enough of the data.
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Error Estimation with a few data
Amount of data needed depends on:

true function complexity
the noise ratio.

The estimation method depends on the purpourse:

Model selection
absolute value is not necessary, the
difference is crucial
any method can be used (AIC,
BIC, cross-validation,. . . )
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FIGURE 7.9. Prediction error (orange) and tenfold
cross-validation curve (blue) estimated from a single
training set, from the scenario in the bottom right panel
of Figure 7.3.

Test error estimation
absolute value is necessary
direct estimation (cross-validation,
one-leave-out) preferred.Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.4. AIC used for model selec-
tion for the phoneme recognition example of Sec-
tion 5.2.3. The logistic regression coefficient function

β(f) =
PM

m=1 hm(f)θm is modeled as an expansion in
M spline basis functions. In the left panel we see the
AIC statistic used to estimate Errin using log-likelihood
loss. Included is an estimate of Err based on an in-
dependent test sample. It does well except for the ex-
tremely over-parametrized case (M = 256 parameters
for N = 1000 observations). In the right panel the
same is done for 0–1 loss. Although the AIC formula
does not strictly apply here, it does a reasonable job in
this case.
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Bias Variance Decomposition
Assume Y = f (X ) + ϵ where E(ϵ) = 0 and Var(ϵ) = σ2

ϵ .
we derive the expected prediction error of the regression fit f̂ (X ) at an input
point X = x0 using squared-error loss:

Err(x0) = E[(Y − f̂ (x0))2|X = x0]
= σ2

ϵ + [Ef̂ (x0)− f (x0)]2 + E[f̂ (x0)− Ef̂ (x0)]2

= σ2
ϵ + Bias2(f̂ (x0)) + Var(f̂ (x0))

= Irreducible Error + Bias2 + Variance.
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FIGURE 5.19. Wavelet smoothing compared with
smoothing splines on two examples. Each panel com-
pares the SURE-shrunk wavelet fit to the cross-vali-
dated smoothing spline fit.
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Bias Variance Decomposition
K-Nearest neighbour

Err(x0) = E[(Y − f̂ (x0))2|X = x0]
= σ2

ϵ + [Ef̂ (x0)− f (x0)]2 + E[f̂ (x0)− Ef̂ (x0)]2

= σ2
ϵ + [f (x0)− 1

k

k∑
ℓ=1

f (x(ℓ))]2 + σ2
ϵ

k .

Linear fit

Err(x0) = E[(Y − f̂ (x0))2|X = x0]
= σ2

ϵ + [Ef̂p(x0)− f (x0)]2 + ∥h(x0)∥σ2
ϵ

h(x0)y = (xT
0 (XTX)−1XT)y = f̂p(x0).

hence Var [f̂p(x0)] = ∥h(x0)∥σ2
ϵ and its average is p

N σ2
ϵ , hence

1
N

N∑
i=1

Err(xi) = σ2
ϵ + 1

N

N∑
i=1

[f (xi)− Ef̂ (xi)]2 + p
N σ2

ϵ ,
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Penalized model complexity
Consider ridge regression fit f̂λ(x0) with the fit

h(x0)y = xT
0 (XTX + λI)−1XTy

we break the bias more finely. Let β∗ be the fit with λ = 0,
β∗ = arg minβ E(f (X )− βT X )2.

Ex0 [f (x0)− Ef̂λ(x0)]2 = Ex0 [f (x0)− βT
∗ x0]2 + Ex0 [βT

∗ x0 − Eβ̂T
λ x0]2

= Ave[Model Bias]2 + Ave[Estimation Bias]2.Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.2. Schematic of the behavior of bias and
variance. The model space is the set of all possible
predictions from the model, with the “closest fit” la-
beled with a black dot. The model bias from the truth is
shown, along with the variance, indicated by the large
yellow circle centered at the black dot labeled “closest
fit in population.” A shrunken or regularized fit is also
shown, having additional estimation bias, but smaller
prediction error due to its decreased variance.
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Example: Bias-Variance Tradeoff
50 observations, 20
predictors, uniformly
distributed in the
hypercube [0, 1]20.

Left Y is 0 if X1 ≤ 1
2 and 1

if X1 > 1
2 and we apply

k-NN
Right Y is 1 if∑10

j=1 Xj > 5 and 0
otherwise, and we use
best subset linear
regression of size p.

orange error (mean square
resp. 0-1)

green squared bias
blue estimation variance
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FIGURE 7.3. Expected prediction error (orange),
squared bias (green) and variance (blue) for a simu-
lated example. The top row is regression with squared
error loss; the bottom row is classification with 0–1 loss.
The models are k-nearest neighbors (left) and best sub-
set regression of size p (right). The variance and bias

For classification, only the error differ compared to regression.
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Optimism of the Training Error Rate
training error err = 1

N
∑N

i=1 L(yi , f̂ (xi))
usually less than the true error Err = E[L(Y , f̂ (X ))].
we keep xi points fixed, we take new sample of y at these points.
in-sample error Errin = 1

N
∑N

i=1 EyEY new L(Y new
i , f̂ (xi)).

optimism op ← Errin − Ey(err).
for squared error, 0-1, and other loss functions: op = 2

N
∑N

i=1 cov(ŷi , yi)
For a linear fit with d = p inputs of basis functions and additive error model
Y = f (X ) + ϵ it simplifies

N∑
i=1

cov(ŷi , yi) = dσ2
ϵ

Errin = Eyerr + 2 d
N σ2

ϵ = Cp = AICgauss..
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FIGURE 5.19. Wavelet smoothing compared with
smoothing splines on two examples. Each panel com-
pares the SURE-shrunk wavelet fit to the cross-vali-
dated smoothing spline fit.
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The Optimism (Just for fun)

yi − ŷi = (yi − f (xi)) + (f (xi)− Ef̂ (xi)) + (Ef̂ (xi)− ŷi).
We get six terms of the sum of squares:

A1 =
∑

i(yi − f (xi))2 D1 = 2
∑

i(yi − f (xi))(f (xi)− Ef̂ (xi))
B =

∑
i(f (xi)− Ef̂ (xi))2 E = 2

∑
i(f (xi)− Ef̂ (xi))(Ef̂ (xi)− ŷi)

C =
∑

i(Ef̂ (xi)− ŷi)2 F1 = 2
∑

i(yi − f (xi))(Ef̂ (xi)− ŷi)
For the new sample Y , taking the expectation.
A2 =

∑
i EY 0(Y 0

i − f (xi))2

and similarly D2, F2.

N(Errin − err) = (A2 + B + C + D2 + E + F2)− (A1 + B + C + D1 + E + F1)
= (A2 − A1) + (D2 − D1) + (F2 − F1)

E(A1) = E(A2) = Nσ2
ϵ ,

E(D1) = 2
∑

i(E(yi)− f (xi))(f (xi)− Ef̂ (xi)) = 0 since E(yi) = f (xi)
E(D2) = 0 as well.
F2 = 2

∑
i EY 0

[
(Y 0

i − f (xi))(Ef̂ (xi)− ŷi)
]

= 0
as E(Y 0

i ) = f (xi ) and Y 0
i and ŷi are independent.

E(F1) = −2
∑N

i cov(yi , ŷi).
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The Covariance (Just for fun)

cov(ŷ, y) = cov((X(XTX)−1XT)y, y) = (X(XTX)−1XT)cov(y, y)
cov(y , y) = σ2

ϵ .

The values cov(ŷi , yi) are the diagonal values of the above matrix cov(ŷ, y).
Thus

N∑
i=1

cov(ŷi , yi) = trace(X(XTX)−1(XT ))σ2
ϵ

= trace((XTX)−1(XT X))σ2
ϵ

= trace(Id)σ2
ϵ = dσ2

ϵ .

Similarly,
N∑

i=1
cov(Sλyi , yi) = trace(Sλ).

https://www.waxworksmath.com/Authors/G_M/Hastie/WriteUp/Weatherwax_Epstein_Hastie_Solution_Manual.pdf
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AIC Akaike Information Criterion

Definition (AIC)
The AIC Akaike Information Criterion is defined

Logistic regression, binomial log likelihood

AIC = − 2
N loglik + 2 d

N .

Gaussian model with variance σ2
ϵ

AIC(λ) = err(λ) + 2d(λ)
N σ2

ϵ .

the sum of the training error err(λ) and the complexity penalty for d , d(λ)
model parameters, N samples, loglik the logarithm of likelihood.

The effective number of parameters
for a linear fit ŷ = Sy is d(S) = trace(S), the sum of the diagonal elements.

For 0-1 loss does not hold in general, only as approximation.
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BIC Bayesian Information Criterion

P(Mm|Z) = P(Z|Mm) · P(Mm)
P(Z)

∝ P(Z|Mm) · P(Mm)

∝ P(Mm) ·
∫

P(Z|θm,Mm)P(θm|Mm)dθm

Laplace approximation to the integral gives with θ̂m the ML estimate of θ:

log P(Z|Mm) = log P(Z|θ̂m,Mm)− dm
2 · log N + O(1)

= loglik − dm
2 · log N + O(1)

Definition (Bayesian Information Criterion (BIC))

BICm = −2loglikm + (log N) · dm

BIC may be used to compare the model posterior probabilities e
1
2 ·BICm∑M

ℓ=1
e

1
2 ·BICℓ

.
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Crossvalidation

Crossvalidation

Split the data into K roughly equal-sized parts. Usually, K = 5 or 10
or K = N

For K = 10 it is called tenfold crossvalidation.
For K = N it is called one-leave-out crossvalidation.
κ : {1, . . . , N} → {1, . . . , K} is the partition function
f̂ −k is the fitted function with kth part removed.

For k = 1, . . . , K
For the kth part we fit the model to the other K − 1 parts of the data,
and calculate the prediction error of the fitted model when predicting
the kth part of the data.

Average the error estimates.

CV = 1
N

N∑
i=1

L(yi , f̂ −κ(i)(xi)).

10 times 10 Crossvalidation
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Parameter Tuning by Crossvalidation

Parameter Tuning by Crossvalidation

Given a set of models f (x , α)
indexed by a tuning parameter
α, we define

CV (α) = 1
N

N∑
i=1

L(yi , f̂ −κ(i)(xi , α)).

The CV (α) provides an estimate
of the test error curve and we
find the tuning parameter α̂ that
minimizes it.
Our final model is f (x , α̂).
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FIGURE 7.9. Prediction error (orange) and tenfold
cross-validation curve (blue) estimated from a single
training set, from the scenario in the bottom right panel
of Figure 7.3.

Definition (One standard error rule)
We choose the most parsimonious
model whose error is no more than
one standard error above the error of
the best model.

Here, p = 9.
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Generalized Crossvalidation

For a linear fitting method we can write

ŷ = Sy.

For many linear fitting methods,

1
N

N∑
i=1

[yi − f̂ −i(xi)]2 = 1
N

N∑
i=1

[yi − f̂ (xi)
1− Sii

]2,

The generalized crossvalidation GCV approximation is

GCV = 1
N

N∑
i=1

[
yi − f̂ (xi)

1− trace(S)/N

]2

.
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Bad and good Crossvalidation
Our data

p = 500 dimensions
N = 20
random data, y independent of
x .
We search for the best ’decision
stump’ (decision rule based on
one single attribute).

Wrong way of the crossvalidation
1. choose 100 good predictors
2. Using just this subset of

predictors, build a multivariate
classifier, using all of the
samples except those in fold k.

3. Use the classifier to predict the
class labels for the samples in
fold k.

This approach achieves the
crossvalidation error 3%.
What is the true error?
What is the correct crossvalidation
approach?
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FIGURE 7.10. Cross-validation the wrong and right
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randomly chosen samples, with the 100 predictors chosen
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Best Decision Stump Example

Left top: Best decision stumps
on full data
1/5 and 4/5 split
bottom left: The stump fitted
on 4/5 produces two
missclassified validation data
(blue)
The crossvalidation error in 50
experiments is around 0.5, as it
should be.
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FIGURE 7.11. Simulation study to investigate the per-

formance of cross validation in a high-dimensional problem

where the predictors are independent of the class labels. The

top-left panel shows the number of errors made by individual

stump classifiers on the full training set (20 observations).

The top right panel shows the errors made by individual

stumps trained on a random split of the dataset into 4/5ths

(16 observations) and tested on the remaining 1/5th (4 ob-

servations). The best performers are depicted by colored

dots in each panel. The bottom left panel shows the effect of
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One–leave–out

Use all but one data samples for learning.
Evaluate the error or the hidden sample.
Repeat for each sample and calculate the average.

Advantage:
The largest possible training set.
Deterministic evaluation (no sense to repeat it).

Disadvantage:
Time consuming.
May be misleading – take randomly 50 : 50 generated goal G , the
one–leave–out error is 100%.
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Learning curve

The learning curve suggests whether additional data would improve our
model:
curve flat close to maximal data size: small expected improvement.
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FIGURE 7.8. Hypothetical learning curve for a clas-
sifier on a given task: a plot of 1−Err versus the size of
the training set N . With a dataset of 200 observations,
5-fold cross-validation would use training sets of size
160, which would behave much like the full set. How-
ever, with a dataset of 50 observations fivefold cross–
validation would use training sets of size 40, and this
would result in a considerable overestimate of predic-
tion error.
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Bootstrap

Select elements with replacement.
We have N data samples, we select with
replacement N samples – some are selected
more than one, some are not selected at all.
The not selected are used for testing.
The probability of not-selecting a sample is(
1− 1

N
)N ≈ e−1 = 0.368.

The error estimate is pessimistic since we
learn a model on N samples that come from
only 0.632 samples.
The usual error estimate is:

err = 0.632 · etest + 0.368 · etrain

Again, may be misled by similar data as
one–leave–out.
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Bootstrap

Bootstrap

replications

samples

sampleTrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).
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Confusion Matrix

true class \ prediction + -
+ TP – true positive FN – false negative
- FP – false positive TN true negative

Česky se říká správně/falešně positivní/negativní.
Basic measures:

celková správnost accurancy Acc = TP+TN
TP+TN+FP+FN

chyba error Err = FP+FN
TP+TN+FP+FN

přesnost precision Prec = TP
TP+FP

úplnost, sensitivita recall, sensitivity Rec = TP
TP+FN

specificita specificity Specificity = TN
TN+FP

F míra F measure F = 2·Prec·Rec
Prec+Rec = 2·TP

2·TP+FP+FN
TP rate TP

TP+FN
FP rate (=1–Specificity) FP

FP+TN
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Additional Remarks

ROC - curve
Precision recall curve

Interval estimates
t-test

paired t-test
ANOVA
Q-Q plot

R2(y , ŷ) = 1−
∑N

i=1
(yi −ŷi )2∑N

i=1
(yi −y i )2

, 1 or 0 instead of nan and infinity.

explained variance - identical for zero mean residuals.
Mc Nemar’s test (two classifiers, confusion matrix with values <5; i.e. not χ2

test).
statsmodels.stats.contingency_tables.mcnemar()
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Loss Matix

The cost of missclassification may be dif-
ferent for each class. The general loss
specification is a loss matrix Lkk| , an el-
ement represent the cost of classifying k
as k |. Must be zero at the diagonal, non-
negative everywhere.

we can modify
Gini(m) =

∑
k ̸=k| Lkk| p̂mk p̂mk|

or weight the data samples k Lkk|

times (only in binary classification)
we classify according to
k(m) = argmink

∑
l Llk p̂ml in the

leaves.
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FIGURE 9.6. ROC curves for the classification rules
fit to the spam data. Curves that are closer to the north-
east corner represent better classifiers. In this case the
GAM classifier dominates the trees. The weighted tree
achieves better sensitivity for higher specificity than the
unweighted tree. The numbers in the legend represent
the area under the curve.
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART
for each feature and each data point we create a reflected pair of basis
functions
(x − t)+ and (t − x)+ where + denotes non–negative part, minimum is zero.
we have the set of functions

C = {(Xj − t)+, (t − Xj)+}t∈{x1,j ,x2,j ,...,xN,j },j=1,2,...,p

that is 2Np functions for non–duplicated data points.
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FIGURE 9.9. The basis functions (x − t)+ (solid
orange) and (t − x)+ (broken blue) used by MARS.
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MARS – continuation

our model is in the form

f (X ) = β0 +
M∑

m=1
βmhm(X )

where hm(X ) is a function from C or a product of any amount of functions
from C
for a fixed set of hm’s we calculate coefficients βm by usual linear regression
(minimizing RSS)
the set of functions hm is selected iteratively.
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MARS – basis selections

We start with h0 = 1, we put this
function into the model M = {h0}.
We consider the product of any member
hℓ ∈M with any pair from C,

β̂M+1hℓ(X )·(Xj−t)++β̂M+2hℓ(X )·(t−Xj)+

we select the one minimizing training
error RSS (for any product candidate, we
estimate β̂).
Repeat until predefined number of
functions in M
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MARS – model pruning

The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f̂λ for
different numbers of parameters λ.
(we want to speed–up crossv-alidation for computational reasons)
we select λ (and the model) minimizing generalized cross-validation

GCV (λ) =
∑N

i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2 .

where M(λ) is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K , the authors suggest to multiply
K by 3: M(λ) = r + 3K .
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