Procházet slovníkem pomocí tohoto rejstříku

Speciální | A | Á | B | C | Č | D | Ď | E | É | Ě | F | G | H | CH | I | Í | J | K | L | M | N | Ň | O | Ó | P | Q | R | Ř | S | Š | T | Ť | U | Ú | Ů | V | W | X | Y | Ý | Z | Ž | VŠE

D

Derivace $\Rightarrow^*$

Mějme gramatiku $G=(V,T,P,S)$.
\begin{itemize}
 \item Říkáme, že $\omega$ se \pojem{přímo přepíše} na $\gamma$ (píšeme $\omega\Rightarrow_G \gamma$ nebo $\omega\Rightarrow \gamma$) jestliže
 
 \begin{itemize}
   \item[] $\exists \alpha,\beta,\eta,\nu \in (V\cup T): \omega=\eta\alpha\nu$, $\gamma=\eta\beta\nu$ a $(\alpha\rightarrow \beta)\in P$.
 \end{itemize}
\item Říkáme, že $\omega$ se \pojem{přepíše} na $\gamma$ (píšeme $\omega\Rightarrow^* \gamma$) jestliže
\begin{itemize}
 \item[] $\exists \alpha_1,\ldots,\alpha_n\in (V\cup T)^*: \omega=\alpha_1\Rightarrow\alpha_2\Rightarrow\ldots\Rightarrow\alpha_n=\gamma$,
 \item[] tj. také $\omega\Rightarrow^*\omega$.
\end{itemize}
\item Posloupnost $\alpha_1,\ldots,\alpha_n $ nazýváme \pojem{derivací (odvozením)}.
\item Pokud $\forall i\neq j: \alpha_i\neq \alpha_j$, hovoříme o \pojem{minimálním odvození}.
\end{itemize}


Derivační strom

Mějme gramatiku $G=(V,T,P,S)$. \pojem{Derivační strom} pro $G$ je strom, kde:
\begin{itemize}
 \item každý vnitřní uzel je ohodnocen neterminálem $V$.
 \item Každý uzel je ohodnocen prvkem $\in V \cup T \cup \{\epsilon\} $.
 \item Je--li uzel ohodnocen $\epsilon$, je jediným dítětem svého rodiče.
 \item Je--li $A$ ohodnocení vrcholu a jeho děti \alert{zleva pořadě} jsou ohodnoceny $X_1,\ldots,X_k$, pak $(A\rightarrow X_1,\ldots,X_k) \in P $ je pravidlo gramatiky.
\end{itemize}


deterministický konečný automat

Deterministický konečný automat (DFA) A = (Q,Σ,δ,q0 ,F) sestává z:
konečné množiny stavů, zpravidla značíme Q
konečné množiny vstupních symbolů, značíme Σ
přechodové funkce, zobrazení z Q × Σ → Q, značíme δ, která bude
reprezentovaná hranami grafu
počátečního stavu q0 ∈ Q, vede do něj šipka ’odnikud’,
a množiny koncových (přijímajících) stavů (final states) F ⊆ Q,
označených dvojitým kruhem či šipkou ’ven’.


Dvousměrné (dvoucestné) konečné automaty

\pojem{Dvousměrným (dvoucestným) konečným automatem} nazýváme pětici $A=(Q,\Sigma, \delta, q_0,F)$, kde
\begin{enumerate}[<+->]
 \item $Q$ je konečná množina stavů,
 \item $\Sigma$ je konečná množina vstupních symbolů
 \item  přechodové funkce $\delta$ je zobrazení z $Q \times \Sigma \rightarrow Q\times\{-1,0,1\}$ \alert{rozšířená o pohyb hlavy}
 \item $q_0\in Q$ počáteční stav
 \item a množina přijímajících stavů $F\subseteq Q$.
\end{enumerate}


Dyckův jazyk

\pojem{Dyckův jazyk} $D_n$ je definován nad abecedou $Z_n=\{a_1, a^|_1,\ldots,a_n, a^|_n\}$ následující gramatikou: $S\rightarrow \lambda| SS| a_1Sa_1^| | \ldots |a_nSa_n^| $.