Bayesian Learning

Complicated derivation of known things.
e Maximum a posteriori probability hypothesis (MAP)
(nejpravdépodobnéjsi hypotéza)
Maximum likelihood hypothesis (ML) (maximéalné vérohodna hypotéza)
Bayesian optimal prediction (Bayes Rate)
Bayesian methods, bayesian smoothing
EM algorithm
Naive Bayes model (classifier).
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Candy Example (Russel, Norvig: Artif. Intell. a MA)

@ Our favorite candy comes in two flavors: cherry and lime, both in the same
wrapper.
@ They are in a bag in one of following rations of cherry candies and prior
probability of bags:
hypothesis (bag type) h ho h3 ha hs
cherry 100% | 75% | 50% | 25% | 0%
prior probability h; 10% | 20% | 40% | 20% | 10%

@ The first candy is cherry.

MAP Which of h; is the most probable given first candy is cherry?
Bayes estimate What is the probability next candy from the same bag is cherry?
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Maximum Aposteriory Probability Hypothesis (MAP)

@ We assume large bags of candies, the result of one missing candy in the bag

is negligable.
@ Recall Bayes formula:
P(hi|B=c) = =
2 j=1....5 P(B = clhy) - P(h)) P(B = c)

@ We look for the MAP hypothesis maximalné aposteriorné pravdépodobna
argmax;P(h;|B = ¢) = argmax;P(B = c|h;) - P(h;).

@ Aposteriory probabilities of hypotheses are in the following table.
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Candy Example: Aposteriory Probability of Hypotheses

’ index \ prior \ cherry ratio \ cherry AND h; \ aposteriory prob. h; ‘
i P(hi) | P(B=clh;) | P(B=c|h;)-P(h;) P(hi|B = ¢)
1 0.1 1 0.1 0.2
2 0.2 0.75 0.15 0.3
3 0.4 0.5 0.2 0.4
4 0.2 0.25 0.05 0.1
5 0.1 0 0 0

@ Which hypothesis is most probable?
hmap = argmax; P(datal|h;) - P(h;)

@ What is the prediction of a new candy according the most probable
hypothesis hyap?
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Bayesian Learning, Bayesian Optimal Prediction

o Bayesian optimal prediction is weigthed average of predictions of all

hypotheses:
P(N = cldata) = > P(N = c|hj,data)- P(hj|data)
j=1,..., 5
= > P(N=cl|h))- P(hj|data)
j=1,...,5

@ If our model is correct, no prediction has smaller expected error then
Bayesian optimal prediction.

o We always assume i.i.d. data, independently identically distributed.

@ We assume the hypothesis fully describes the data behavior. Observations are
mutually conditionally independent given the hypothesis. This allows the last
equation above.
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Candy Example: Bayesian Optimal Prediction

i [P(RB=c) | P(N=c|h) | P(N=clh) - P(hi]B = c)
1 0.2 1 0.2
2 03 0.75 0.225
3 0.4 05 0.2
4 0.1 0.25 0.02
5 0 0 0
(2] 1 \ \ 0.645
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Maximum Likelihood Estimate (ML)

@ Usually, we do not know prior probabilities of hypotheses.

@ Setting all prior probabilities equal leads to Maximum Likelihood
Estimate, maximalné vérohodny odhad

hyr = argmax,-P(data\ h,')

@ Probability of data given hypothesis = likelihood of hypothesis given data.

o Find the ML estimate:
’ index \ prior \ cherry ratio \ cherry AND h; \ Aposteriory prob. h; ‘

i | P(h) | P(B=clh) | P(B=c|h)- P(h) P(hi|B = c)
1 0.1 1 01 0.2

2 0.2 0.75 0.15 03

3 0.4 05 0.2 04

4 0.2 0.25 0.05 0.1

5 0.1 0 0 0

@ In this example, do you prefer ML estimate or MAP estimate?

o (Only few data, over-fitting, penalization is useful. AIC, BIC)
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Maximum Likelihood: Continuous Parameter 0

@ New producer on the market. We do not know the ratios of candies, any hy,
kde 6 € (0; 1) is possible, any prior probabilities hy are possible.

@ We look for maximum likelihood estimate.

o For a given hypothesis hy, the probability of a cherry candy is 6, of a lime
candy 1 — 6.

@ Probability of a sequence of ¢ cherry and / lime candies is:

P(datalhg) = 6 - (1 — 6)".
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ML Estimate of Parameter 6

@ Probability of a sequence of ¢ cherry and / lime candies is:
P(datalhg) = 6 - (1 — 0)'
@ Usual trick is to take logarithm:
U(hg; data) = c - log, 6 + | - log,(1 — 0)

@ To find the maximum of £ (log likelihood of the hypothesis) with respect to 6

we set the derivative equal to 0:

Ol(hg;data) ¢ |
06 0 1-90
c_ L
0 1-0
c

0= .
c+1
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ML Estimate of Multiple Parameters

@ Producer introduced two colors of wrappers - red r and green g.
@ Both flavors are wrapped in both wrappers, but with different probability of
the red/green wrapper.
@ We need three parameters to model this situation:
P(B=c) | PW=rlB=c) | PIW=rB=1)
to b1 0>
@ Following table denotes observed frequences:
wrapper)\ flavor | cherry | lime
red re r
green 8c 8i
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ML Estimate of Multiple Parameters

P(W =r|B=c¢)

P(W=r[B=1)

Parameters are:
Ao

01

0>

Probability of data given the hypothesis hy, g, g, is:
P(data|h90791792) 0{5 . (1 — Ql)gf . 06c+gc . 95’ . (1 — 92)g’ . (1 — 00)”+g’
U(hgy0,.0,; data) = rclog, 01 + gclogy(1 — 61) + (re + &) log, 6o
+rilog, 02 + gy logy(1 — 02) + (11 + g1) logy(1 — o)

We look for maximum:

az(hé‘o,@h@z; data) _ re + 8¢ _h + 8
890 (90 1-— 00
9 _ (rC +gC)
g = —=7
re + 8¢ +nrn+ 8
3£(h90’91’92; data) _ oo &
00, 0, 1—6,
b = — .
rn+g

@ Maximum Likelihood estimate is the ratio of frequences.
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ML Estimate of Gaussian Distribution Parameters

@ Assume x to have Gaussian distribution with unknown parameters i a o.

2

—x=p)
@ Our hypotheses are hy, , = ﬁe =
@ We have observed xi, ..., x,.
o Log likelihood is:
N
1 —(e=p)?
LL = lo e 22
; # Varo

. (,o 1)2(“‘)
B g\/27ra = 202

Find the maximum.
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Linear Gaussian Distribution

@ Assume random variable (feature) X.

@ Assume goal variable Y with linear gaussian distribution where = b - x + by
—(y=((b-x+bp))?

and fixed variance 02 p(Y|X = x) = N(b - x + by; 0) = \/zime 207

@ Find maximum likelihood estimate of b, by given a set of observations
data = {<X17y1>a R <XN7)/N>}-

@ (Look for maximum of the logarithm of it; change the max to min with the
opostite sign. Do you know this formula?)

argmaxp p, (loge (N f\’zl(e*(y"*(b'x"“")))2 ))) = argming p,(?)
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Bayesian Methods

o We specify a sampling model P(Z|0)
@ and a prior distribution for parameters P(0)

@ then we compute
P(z10) - P(0)

PO = Thz) - po)de

e we may draw samples
@ or summarize by the mean or mode.
e it provides the Bayesian optimal predictive distribution:

P(z""|Z) = / P(2""|0) - P(6|Z)do.

Tossing a biased coin
e P(Z = head|f) =6
@ p(#) =uniform
e P(0|Z) follows the Beta distribution.
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Discrete Model Parameter Learning

o For binary features, Beta function is used, (a — 1) is the number of positive
examples, (b — 1) the number of negative examples.

beta[a, b](0) = af*~1(1 — 9)>~!

@ Beta Function:

~| pos,neg
3 ] 0,0
S 5,0
- | s00
D 55
g 3
o
T
o
S 4 —— L
o

0.0 0.2 0.4 0.6 0.8 1.0

x[2:101]

o For categorical features, Dirichlet priors and multinomial distribution is used.
(Dirichlet-multinomial distribution).
o For Gaussian, p has Gaussian prior, % has gamma prior (to stay in

exponential family).
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MAP and Penalized Methods

@ MAP hypothesis maximizes:
hvap = argmax; P(datalh;) - P(h;)
@ therefore minimizes:

hmap = argmax,P(datalh)P(h)
argminy[—logy P(data|h) — loga P(h)]
argming[—loglik + complexity penalty]

argminy[RSS + complexity penalty] Gaussian models
= argmaxy[loglik — complexity penalty] Categorical models
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Bayesian smoothing example

o Training data Z = {z,...,zy}, . . ol

Z,':(X,',y,'),l.:].,...7N. | N

@ We look for a cubic spline with o \\ \ ‘e
three knots in quartiles of the X R I ANV NN
values. It corresponds to B-spline ’ 2 '
basis hj(x), j=1,...,7.

B-spline Basis

) o r=1 7 = 1000
@ We estimate the conditional mean -

E(Y|X = x): p(x) = Z}:l Bihi(x) - I8 I IR IR

@ Let H be the N x 7 matrix h;(x;). | Wk /1\

@ RSS 3 estimate is - \/ . /\J
f=(HTH)"'HTy. : :

w(x

u(
)

15 20 25 30 00 05 10 15 20
T T

We assume to know o2, fixed x;, we specifying prior on 3 ~ N(0,7X).
2
E(BZ) = (HH+ Zx1)"HTy
T

E(u(x)|2)
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Naive Bayes Model, Bayes Classifier

@ Maximum Likelihood estimate is the ratio of frequences.
o We may use smoothed estimate adding o samples to each possibility to avoid
zero probabilities.
@ ML estimite of a gaussian distribution parameters are the mean and the
variance (or covariance matrix for multivariate distribution).
o Naive Bayes Model, Bayes Classifier assumes independent features given
the class variable.
e Calculate prior probability of classes P(c;)
e For each feature f, calculate for each class the probability of this feature
P(flci)
e For a new observation of features f predict the most probable class
argmax, P(f|c;) - P(ci).
Bayes factor

o We can start with a comparison ratio of two classes PAei)

P(cj)
o after each observation x, multiply it by the bayes factor
e that is:

P(xplci)
P(xp\cj-)

P(C,“Xl,...,Xp) _ P(C,') P(X1|C,') P(XP|C,')

P(clxa,---, %) — P(g) Plalg) " Plalg)

@ Bayesian Networks learn more complex (in)dependencies between features.
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Expectation Maximization Algorithm (EM Algorithm)

EM algorithm estimates the maximum likelihood model based on the data
with missing values.

used in HMM
used in clustering (Gaussian mixture model estimation)

but not restricted to this applications

It is a general approach to fill missing values based on the maximum likely
model.
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Example (EM Algorithm for Missing Data)

@ Two bags of bonbons mixed
together. Each bonbon has a
Wrapper and flavor Flavor and
may have Holes. Each bag had

another ratio of Wrapper color @
and Flavor.

Bag

@

Bag | F | W
? C r
1 I r
1 c| ?
1 c| g
? || 7

@ Initialize all parameters randomly close to uniform distribution, 6, ~ 0.5.

E step

w=P(Z"0,Z) Bag | F | W
c r
c r
1 1 | r

1 c

1 c
1 1 c| g

|

|

|

|

RSl Bayesian learning, EM algorithm 7

M step — update s

w
Bag=1
QBagzl — 7agw
ZB 1,F: v
ag=1,F=c
eF:c\Bag:l < S 4
Bag=1

OF—c|Bag=2 <

w
Bag=2,F=c

w
Bag=2

9W:r|Bag:1 —

9W:r|Bag:2 —

w
Bag=1,W=r
w
Bag=1
w

w
Bag=2
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EM as a Maximization-Maximization Procedure

Z the observed data (the usual X with missing
values)

£(0; Z) the log-likelihood of the model @
Z™ the latent or missing data

T =(Z,Z™) the complete data with the
log—likelihood £o(8; T).

P(Z™),P(Z™|0, Z) any distribution over the
latent data Z.

Consider the function F

F(6',P) = Ep[to(¢'; T)] — Epllog P(Z™)]

for P = P(Z™|¢’,Z) is F the log-likelihood of the observed data
o F(0',P(Z™0',Z)) = E[lo(0"; T)|0',Z] — E[(1(0'; Z™|2)|0’, Z]

P  Bayesian learning, EM algorithm 7 1-30 April 12, 2024 21 /53



The EM Algorithm in General

o PEnz)
. PErZ))
PP = pzmnz.e)

In the log—likelihoods
00,Z) = lo(0"; T) — 44(0; 27| Z)
where (1 is based on the conditional density P(Z™|Z).
Taking the expectation w.r.t. T|Z governed by parameter 0 gives
08 Z) E[lo(0'; T)|0,Z] — E[(1(0;Z27|Z)|6, Z]
= Q(¢,0)—R(¢,0)

@ R() is the expectation of a density with respect the same density
o it is maximized when 6’ = 0.
@ Therefore:
0(0Z)—00:Z) = [Q(¢,0)—Q(0,0)] — [R(¢",0) — R(6,0)]
> 0.
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The EM Algorithm

1: procedure THE EM ALGORITHM:( Z observed data, the model(6) )

2: 6(©) « an initial guess (usually close to the uniform distribution)
3: repeat
4 Expectation step: at the jth step, compute

Q' 89) = E(to(9: )| Z,69)

5 as a function of the dummy argument ¢’.
6 Maximization step: determine the new estimate 4u+1)

7 as the maximizer of Q(#',01)) over ¢’
8 until convergence

9: return é

10: end procedure

@ Full maximization is not necessary.
o We need to find a value §UtD so that Q(AUHD, 41D > Q(4U), §0)).
@ Such prodecures are called generalized EM algorithms (GEM).
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BN example of EM algorithm (Russel, Norvig) - can be
omitted

@ Two bags of bonbons mixed together. Each bonbon has a Wrapper and
flavor Flavor and may have Holes. Each bag had another ratio of Wrapper
color, Flavor and Holes.

We can model the situation by a naive bayes model, Bag as the class variable.

Example We have tested 1000 bonbones and observed:

W=red W=green Bag
H=1 [ H=0 | H=1 | H=0

F=cherry || 273 | 93 [ 104 [ 90
F=lime [ 79 [ 100 || 94 | 167 @ @ @

We choose the initial parameters

89 = 0.6, 95 = 6% = o) = 0.6, 6 = 9%), = 6%) — 0.4
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EM example - can be omitted

@ Expectation of @ is the ratio of the expected counts

Z P(flavorJ|Bag = 1)P(wrapperj|Bag = 1)P(holesj|Bag = 1)P(Bag = 1)
N : P(flavorj|Bag = i)P(wrapperj|Bag = i)P(holes;|Bag = i)P(Bag = i)

(normalization constant depends on parameter values).
For the type red, cherry, holes we get:
(0) n(0) H(0)

01 01,0170

~ 0.835055
‘9(FO1 0(0) 0)9(0) + 092)0%)29(+?2)9(0)

we have 273 bonbons of this type, therefore we add % -0.835055.
Similarly for all seven other types and we get

M) = 0.6124
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EM example continued - can be omitted

#(Bag=1,Flavor=cherry)
#(Flavor=cherry)

@ We have to use expected counts Bag = 1&F = cherry and Bag =1,

@ The estimate of 6¢; for fully observed data is

s _ > j:Flavor,—cherry P'(Bag = 1|Flavor; = cherry, wrapper;, holes;)
F1 =

>_; P(Bag = 1|cherry;, wrapper;, holes;)
@ Similarly we get:
1 1 1
01 = 0.6124, 6 = 0.6684,6"), = 0.6483,6'}) = 0.6558,

0% = 0.3887,0\), = 0.3817,6\}) = 0.3827.
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Hierarchical Mixture of Experts

@ a hierarchical extension of naive
Bayes (latent class model)

@ a decision tree with 'soft splits’

@ splits are probabilistic functions of a
linear combination of inputs (not a
single input as in CART)

@ terminal nodes called 'experts’

@ non—terminal nodes are called
gating network

@ may be extended to multilevel.

Machine Learn

Bayesian learning, EM algorithm 7
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Hierarchical Mixture of Experts

e data (x;,y;), i=1,..., N, y; continuous or
categorical, first x; = 1 for intercepts.

Gatin, Gati)

;

Vi X Networl Networl
Y . :

e gi(x,v) = W,J—l,...,Kchlldren :

k=1 €
of the root, o/ - e/ N o
’vjzx ’ ‘ '
_ _ e — :
° guilx ) = 5 t=1....K B BB

Pr(y|z, 611) Pr(y|z, 021) Pr(ylz,612)  Pr(ylz, 022)

k=1
children of the root,

e Terminals (Experts) o EM algorithm

(] A,‘, AZU 0-1 latent
variables — branching

Regression Gaussian linear reg. model,
_ 2 _aT
Oje = (Bje, 03), Y = By + €
Classification The linear logistic reg. model:

E st ions for A’
Pr(Y = 1|x,6;) = step expectations for A's

—67 x .
1+e it M step estimate parameters

HME by a version of

miiltinle Ingictic
[Ty Gayesian learning, EM algorithm 7 1-30 April 12, 2024 28/ 53



Missing data (T.D. Nielsen)

Die tossed N times. Result reported via noisy telephone line. When transmission
not clearly audible, record missing value:

4,2,7,6,5,4,7.3,4,1,...

“2" and "“3" sound similar, therefore:

1/4 k=23

: :? Pl g s = s = = !

P =7 =K = P =11 =0 = { V8 2T
W

Distribution of the Y is (for fair die): 2,3 g1~ %7
1,4,5,6 ag TS

If we simply ignore the missing data items, we obtain as the maximum likelihood

estimate for the parameters of the die:

7117 7 7, 6

« g = (0.175,0.15,0.15,0.175,0.175,0.175)
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Incomplete data

How do we handle cases with missing values:
@ Faulty sensor readings.
@ Values have been intentionally removed.
@ Some variables may be unobservable.
How is the data missing?
We need to take into account how the data is missing:

@ Missing completely at random The probability that a value is missing is
independent of both the observed and unobserved values (a monitoring
system that is not completely stable and where some sensor values are not
stored properly).

@ Missing at random The probability that a value is missing depends only on
the observed values (a database containing the results of two tests, where the
second test has only performed (as a “backup test”) when the result of the
first test was negative).

o Non-ignorable Neither MAR nor MCAR (an exit poll, where an extreme
right-wing party is running for parlament).
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Unsupervised Learning

o No goal class (either Y nor G).
@ We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,

Segmentation)

EM algorithm for clustering

(Dirichlet Process Mixture Models)

(Spectral Clustering)

Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) /ater
Other The Elements of Statistical Learning Chapter 14

SOM Self Organizing Maps

PCA Principal Component Analysis Linear Algebra; k linear
combinations of features minimizing reconstruction error (=
first k principal components).

o Principal Curves and Surfaces, Kernel and Spare Principal

Components

ICA Independent Component Analysis.
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Clustering Example

2 Clusters

Scaled Data
N 4 ; o
ol e 1 d
c = c = 1

t]
rT T T T TT
-3 -1 1 3

pitch

pitch

o
T TTTT
-3 -1 1

3

yawn

Pitch, Yawn, Roll Clustering

- o 2.

-3

-2 -1 0 1 2 3

roll, pitch

@ We set the color of items, no colour in train data.

@ We want to assign same color to nearby points.

Machine Le:

Clustering 8

31-53
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K — means !

K—means

1: procedure K—MEANS:(X data, K the number of clusters )
2 select randomly K centers of clusters jiy

3 # either random data points or random points in the feature space
4 repeat

5: for each data record do

6 C(xi) < argmingeqa,.. kyd(Xi, pi)

7 end for

8 for each cluster k do # find new centers

9 He = D iClx) =k \ch)\

10: end for

11: until no chance in assignment

12: end procedure
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K — means

K—means

The t iterations of K—means algorithm take O(tkpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.

May not be robust to data sampling.

o We may generate datasets by bootstrap method.
o The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).

@ Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance

measures:

= /0 e = )2

Euclidian d(xi, x;)
Hamming (Manhattan) | d(xi,x;) = > o, [xir — X;r|
overlap (prekryti) Y _ .
categorical variables 06, 5) = 2or—y 10xr # X5r)
L > (i)
cosine similarit s(x;, x
y ( ! J) \/Zr 1 Xﬂ le) Z (X/r Xl’
cosine distance d(xi,x;)=1— Z'*l(x" )

\/Zle(Xjf'Xj')'Zle(Xir‘Xr’r)

Machine

Learning

Clustering 8
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Distance — key issue, application dependent

The result depends on the choice of distance measure d(x;, fk).
The choice is application dependent.

Scaling of the data is recommended.

Weights for equally important attributes are: w; = Elij where

. 1 N N 1 N N
CIJ:WZZ x,l,x,2 :mzz Xj, — X,2
h=1ih=1 ih=1ih=1

Total distance as a weighted sum of attribute distances.

Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi,xe) < d(xi, %) + d(xr, x¢)-
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Alternative ldeas

@ Scaling may remove natural clusters S« S x
o Weighting Attributes

o Consider internet shop offering socks and computers.
o Compare: number of sales, standardized data, $

1500

1000

m . .

Socks  Computers Socks  Computers Socks  Computers
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l

o Notice that W(C) is decreasing also for uniformly distributed data.

@ We look for small drop of W(C) as a function of K or maximal difference
between W(C) on our data and on the uniform data.

@ Total cluster variation is the sum of between cluster variation and within
cluster variation

N
> d(xi, x) = W(C) + B(C)

iil=1

DD IS DICENEED DI DN DITCR D)

k=1 C(i)=k C(il)=k k=1 C(i)=k C(il)k

T =

I\JM—l

l\)\l—l
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GAP function for Number of Clusters

o denote W) the expected W for uniformly distributed data and k clusters, the
average over 20 runs

o GAP is expected log(Wj) minus observed log(W (k))

K* = argmin{k|G(k) > G(k+1) — S,LH}

1
S,L = s/1+ 20 where s is the standard deviation of log( W)

log W

Machine Learning

-30 -25 -20 -1.5 -1.0 -05 0.0

2 4 6
Number of Clusters

Clustering 8

8

Gap

=

0.5

0.0

-0.5

| \/L\
_1/11 HI\I

2 4 6 8
Number of Clusters

31-53

April 12, 2024

39 / 53



Silhouette

For each data sample x; we define Optimal number of clusters k
e a(i)= ﬁ eCidi d(i,j) if |G| > 1 may be selected by the SC.

e b(i) = ml'nk;éiﬁ ZjeCk d(i,j)

Definition (Silhouette
Score)

Definition (Silhouette) The Silhouette score is

N .
Silhouette s is defined % > s(i).
N — _b)—ald) o
° s(i) = max{a(i),b(i)} if ]Gl > 1 ilhouette is always between

o s(i)=0for |G| =1. o —1<s(i)< 1.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.

y 08

e Note: One cluster (—1,1),(1,1),
other cluster (0,—1.2),(0,—1.1),
the point (0,0) is assigned to the
first cluster but has a negative sil-

Cluster label
Feature space for the 2nd feature

houette. https:/ /stackoverflow.com/a /66751204

0100 02 04 06 08 10 02 00 02 04 06 08
The silhouette coefficient values Feature space for the 1st feature
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Country Similarity Example

e Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG
BRA | 5.58
CHI | 7.00 6.50
CUB | 7.08 7.00 3.83
EGY | 4.83 5.08 8.17 5.83
FRA | 217 5.75 6.67 6.92 4.92
IND |6.42 5.00 558 6.00 4.67 6.42
ISR | 342 550 6.42 6.42 5.00 3.92 6.17
USA | 250 4.92 6.25 7.33 4.50 225 6.33 2.75
USS | 6.08 6.67 4.25 267 6.00 6.17 6.17 692 6.17
YUG | 525 6.83 450 3.75 575 542 6.08 583 6.67 3.67
ZAL |4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 567 6.50 6.92
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1: procedure K-MEDOIDS:( X data, K the number of clusters )
2 select randomly K data samples to be centroids of clusters
3 repeat

4 for each data record do

5: assign to the closest cluster

6 end for

7 for each cluster k do # find new centroids iy € Cj

8 Iy 4= argming;.c(iy=k} Zc(n):k d(xi, x;1)

9 end for

10: until no chance in assignment

11: end procedure

@ To find a centroid requires quadratic time compared to linear k—means.
@ We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K—-medoids take O(tkpN?).
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Clusters of Countries

@ Survey of country dissimilarities.
o Left: dissimilarities

o Reordered and blocked according to 3-medoid clustering.

o Heat map is coded from most similar (dark red) to least similar (bright red).
@ Right: Two-dimensional multidimensional scaling plot

e with 3-medoid clusters indicated by different colors.
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Multidimensional Scaling

@ The right figure on previous slide was done by Multidimesional scaling.
@ We know only distances of countries, not a metric space.
o We try to keep proximity of countries (least squares scaling).

@ We choose the number of dimensions p.

Definition (Multidimensional Scaling)

For a given data xi, ..., xy with their distance matrix d, we search
(z1,-..,2zn) € RP projections of data minimizing stress function

1

2

So(z,- .y zn) = | >_(dlxi, xe] — ||z — zl|)?

il

o It is evaluated gradiently.

@ Note: Spectral clustering.
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

o closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)

@ Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paue)® — > d(xi, pa)® = Y d(xi, pg)?

i€CaUCp i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)

o where 1 are the centers of clusters (A, B and joined cluster).
e It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

@ Dendrogram is the result plot of a hierarchical clustering.

o Cutting the tree of a fixed high splits samples at leaves into clusters.

o The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage

.
i

— —]
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Interpretation of Dendrograms — 2 and 9 are NOT close

Samples fused at

00 05 10 15 20 25 30

X

Machine Leal

rning

very bottom are close each other.
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Mean Shift Clustering

Mean Shift Clustering

1: procedure MEAN SHIFT CLUSTERING:(X data, K(-) the kernel, A the

bandwidth )
22 C+0
3: for each data record do
4: repeat # shift Atlaach mean x to the weighted average
5 m(x) + Z'ﬁvl MO

Zi:l e

6 until no chance in assignment
7 add the new m(x) to C
8 end for
9: return prunned C

10: end procedure

Kernels:
o flat kernel A\ ball

llx =12
o Gaussian kernel K(x; — x) =€ 2
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Other Distance Measures

20
1

Observation 1
= Observation 2
Observation 3

15

10

Variable Index

Correlation Proximity
o Euclidian distance: Observations 1 and 3 are close.
o Correlation distance: 1 and 2 look very similar.

px,y = corr(X,Y) = cov(X, Y) _ E[(X — pux)(Y — py)]

OXx0y OX0y
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Summary

@ K-means clustering - the basic one

o the number of clusters:
o GAP
o Silhouette

The distance is crucial.
o Consider standardization or weighting the features.

K-medoids - does need metric, just a distance

hierarchical clustering

o different distance measures
e dendrogram

other approaches (mean shift clustering, Self Organizing Maps, Spectral
Clustering).
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Gaussian Mixture Model

@ Assume the data come from a set of k gaussian distributions

@ each with
o prior probability 7
e mean pik
e covariance matrix X
_ 1 == TE T (=)
° X) = —F/———e 2 k .
¢Nk:zk( ) )P 12hl

@ We want to find the maximum likelihood estimate of the model parameters.

@ We use (more general) EM algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
density
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y y
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EM learning of Mixture of K Gaussians !

@ Model parameters 71, ..., Tk, b1, - - - fhks 21, - - - , 2k Such that Zszl m, = 1.

o Expectation: weights of unobserved 'fill-ins' k of variable C:

pix = P(C=klx))=a-P(x|C = k) P(C;=k)
_ TP (xi)
Z;(:l 7T/¢0/ (Xi)

N
Pk = Zpik
i=1

@ Maximize: mean, variance and cluster 'prior’ for each cluster k:

273 Z %XI

plk
Yo E — )"
Pk
Tk < K .
Z/:1 Pi
[V Gl Clustering 8 31-53 April 12, 2024
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Density Classification

density
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|

a1 39
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Clustering 8 31-53 April 12, 2024 53 /53



Table of Contens

@ Overview of Supervised Learning

© Kernel Methods, Basis Expansion and regularization
© Linear Methods for Classification

@ Model Assessment and Selection

e Additive Models, Trees, and Related Methods

@ Ensamble Methods

@ Bayesian learning, EM algorithm

© Clustering

@ Association Rules, Apriori

@ Inductive Logic Programming

@ Undirected (Pairwise Continuous) Graphical Models
@ Gaussian Processes

@ PCA Extensions, Independent CA

@ Support Vector Machines

Summary 15 54 - 54 April 12, 2024

53 / 53



	Overview of Supervised Learning
	Kernel Methods, Basis Expansion and regularization
	Linear Methods for Classification
	Model Assessment and Selection
	Additive Models, Trees, and Related Methods
	Ensamble Methods
	Bayesian learning, EM algorithm
	Clustering
	Association Rules, Apriori
	Inductive Logic Programming
	Undirected (Pairwise Continuous) Graphical Models
	Gaussian Processes
	PCA Extensions, Independent CA
	Support Vector Machines
	Summary

