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representation has its limits. These limits were discovered in 1931 by
Gödel, who after proving the completeness of the predicate calculus
turned to arithmetic and attempted to prove the completeness also of
this theory. These attempts resulted in the perhaps most surprising dis-
covery of mathematics in the twentieth century – the discovery of the
incompleteness of arithmetic and the improvability of its consistency.
Nevertheless, the tools by means of which Gödel achieved his results
transcend the language of predicate calculus. Gödel used a new kind
of symbolic language, the theory of recursive functions. Therefore the
proofs of incompleteness and improvability of consistency do not be-
long to the framework of predicate calculus. These results can be seen
as an illustration of the expressive boundaries of the language of pred-
icate calculus. The situation here is similar to the previous cases. The
language of the next stage (in this case the language of the theory of re-
cursive functions, computability, and algorithms) makes it possible to
draw the boundaries of the given language. Similarly as the language
of algebra made it possible to prove the non-constructability of the reg-
ular heptagon, and thus delineated the boundaries of the language of
synthetic geometry; or as the language of the differential and integral
calculus made it possible to prove the transcendence of � , and so to
draw the boundaries of the language of algebra; also Gödel had to use
a stronger language than the one, the boundaries of which he succeeded
in drawing. In the language itself its boundaries are inexpressible. They
only display themselves in the fact that all the attempts to prove, for in-
stance, the consistency of arithmetic undertaken by Hilbert’s school
were unsuccessful. The language of the predicate calculus, however,
did not make it possible to understand the reason for this systematic
failure. Only when Gödel developed his remarkable method of coding
and laid the foundations of the theory of recursive functions, did he
create the linguistic tools necessary for demarcation of the expressive
boundaries of the language of predicate calculus.

1.1.8. Set Theory

Infinity fascinated mankind from the earliest times. The distance of
the horizon or the depths of the sea filled the human soul with a feel-
ing of awe. When mathematics created a paradigm of exact, precise,
and unambiguous knowledge, infinity because of its incomprehensibil-
ity and ambiguousness found itself beyond the boundaries of mathe-
matics. The ancient Greeks could not imagine that the infinite (called
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˛�"��o� by them) could become a subject of mathematical inquiry.
The Pythagoreans, Plato, as well as Aristotle denied the possibility of
a mathematical description of the ˛�"��o�. The situation started to
change during the middle ages when the attribute of infinity was as-
cribed to God. This weakened or even eradicated the ambiguity and
imperfection traditionally associated with the notion of infinity (see
Kvasz 2004). God is perfect and so also must be his attributes, among
them infinity. In this way infinity was divested of the negativity that
was associated with this notion since antiquity. “The study of infinity
acquired a noble purpose; it became a part of theology and not of sci-
ence” (Vopenka 2000, p. 328). In the Renaissance this new, perfect,
and unambiguous notion of infinity started to find its way from theol-
ogy into mathematics. As an illustration of this process we can mention
the De Docta Ignorantia, in which Nicholas of Cusa attempted to prove
the Trinity using an infinitely large triangle:

“It is already evident that there can be only one maximum
and infinite thing. Moreover, since any two sides of any tri-
angle cannot, if conjoined, be shorter than the third: it is ev-
ident that in the case of a triangle whose one side is infinite,
the other two sides are not shorter. And because each part
of what is infinite is infinite: for any triangle whose one side
is infinite, the other sides must also be infinite. And since
there cannot be more than one infinite thing, you understand
transcendently that an infinite triangle cannot be composed
of a plurality of lines, even though it is the greatest and
truest triangle, incomposite and most simple..” (Nicholas
of Cusa 1440, p. 22)

I quote this text not for analyzing the correctness or the persuasive-
ness of its arguments. Rather I would like to use it as an illustration
of the distance that western thought has travelled since Antiquity. The
freedom with which Nicholas of Cusa uses the notion of infinity is
amazing. Such a text could not have been written by any philosopher
of ancient Greece. After theology had broken the barrier that separated
mathematics from the notion of infinity, a gradual transformation of all
mathematics started. Euclid’s "�#"�˛ (straight line), which had only
a finite length, was replaced by our straight line, i.e., by an object of
infinite extension. The Greek geometer needed his second postulate
(“To produce a straight line continuously in a straight line”) in order
to secure the possibility of extending the "�#"�˛ as far as he wished;
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on the other hand in the Renaissance the straight line “reached the in-
finity”. Similarly the atoms of Democritus witnessed a revival in the
form of indivisibles by Kepler and Cavalieri and were finally replaced
by infinitesimals in the seventeenth century.

The penetration of the notion of infinity into mathematics was made
possible by the change of attitude to this notion that appeared first in
theology. Nevertheless, the notion of infinity was from the beginning
accompanied by criticism. Many mathematicians and philosophers of
the seventeenth and eighteenth century considered manipulations with
infinitesimals to be doubtful or even wrong (we can mention Descartes
and Berkeley). Therefore relatively early a countermovement started,
the aim of which was to eliminate infinitesimals from mathematics.
After the first attempts (Carnot 1797, Lagrange 1797) a successful way
of eliminating infinitesimals was found by Bolzano in his Rein ana-
lytischer Beweis (Bolzano 1817) and fully developed by Cauchy in his
Cours d’Analyse de l’École Polytechnique (Cauchy 1821).16 But as we
already mentioned, Cauchy and Bolzano based their method of elimi-
nation of infinitesimals on the intuitive notion of the continuum. Half
a century later Dedekind, Cantor, and Weierstrass presented three con-
structions of the continuum and so brought Cauchy’s project to a con-
summation. These constructions of the continuum, even if indepen-
dent, all assumed the existence of some infinite system of objects. This
indicated that the notion of infinity, which came into mathematics from
theology, cannot be so easily eliminated. Even if Dedekind, Cantor,
and Weierstrass succeeded in eliminating the infinitesimals, they suc-
ceeded at the price of introducing infinite systems of objects as actually
existing.

Dedekind analyzed the notion of an infinite system in Was sind und
was sollen die Zahlen (Dedekind 1888), where he introduced a defi-
nition of the infinite set, which we use until now (a set is infinite if it
can be mapped onto its proper subset by a one-to-one mapping). Can-
tor was led to the study of infinite sets by his investigations of Fourier
series. His main contribution to set theory was the Grundlagen einer
allgemeiner Mannigfaltigkeitslehre. He gave here a definition of the
notion of a set:

16 When we look into the Course we find out that Cauchy preserved the notion of an infinitesimal.
Nevertheless, he changed its meaning. An infinitesimal for Cauchy is not an infinitely small number,
as it was for his predecessors, but a variable that converges to zero. Thus the foundations of Cauchy’s
approach were built on the notion of a limit.
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“In general, by a manifold or a set I understand every multi-
plicity which can be thought of as one, i.e., every aggregate
of determinate elements which can be united into a whole by
some law. I believe that I am defining something akin to the
Platonic "�ıo& or �ı"˛ as well as to that which Plato called
	�
�o� in his dialogue Philebus or the Supreme Good.”
(Cantor 1883, p. 204; Ewald 1996, p. 916)

Cantor’s work on the theory of infinite sets received at the be-
ginning only minimal support and many influential mathematicians,
such as Kummer or Kronecker, opposed it (Dauben 1979, pp. 133–
140). The reason for this opposition lay at least partially in Cantor’s
turning against the general trend of mathematics of his times, which
consisted in the elimination of infinity from mathematics. This trend
strengthened after the discovery of Russell’s paradox in 1902. Many
mathematicians believed that the notion of infinity (introduced into
mathematics from theology) is alien to the nature of mathematics and
should be eliminated. As an illustration of this attitude we can mention
Poincaré’s words:

“There is no actual infinity. The Cantorians forgot this, and
so fell into contradiction. It is true that Cantorianism has
been useful, but that was when it was applied to a real prob-
lem, whose terms were clearly defined, and then it was pos-
sible to advance without danger..” (Poincaré 1908, p. 499)

Russell’s paradox is usually presented as the paradox of the set of
all sets. Therefore an impression could emerge that it is the paradox of
Cantorian set theory. Nevertheless, Cantor was fully aware of the prob-
lematic nature of the system of all sets, which he called the Absolute.
Thanks to a theological interpretation of the Absolute, which he iden-
tified with God (Dauben 1979, pp. 120–148), Cantor avoided the for-
mulation of any mathematical propositions about this notion. Thus the
theological interpretation of his theory saved Cantor from paradoxes.
The other two foundationalist approaches lay open to the full brunt of
the logical paradoxes. Thus Poincaré’s attack against the “Cantorians”
was unjustified; the same paradoxes appeared also in the theories of
Frege and Peano.

Despite criticism, set theory slowly started to gain popularity among
mathematicians working in the field of the theory of functions of a real
variable, measure theory, and general topology. These theories wit-
nessed a rapid growth at the end of the nineteenth and the beginning of
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the twentieth centuries and so more and more mathematicians started
to use the notions and methods of set theory. In 1908 Zermelo in his
Untersuchungen über die Grundlagen der Mengenlehre found a way
to avoid the paradoxes. Analyzing the works of Dedekind and Can-
tor, Zermelo formulated as axioms the rules that are necessary to form
new sets. But he formulated these axioms so that they did not allow
the construction of any paradoxical object, analogous to the set of all
sets. A discussion of the axioms of set theory can be found in (Fraenkel
and Bar-Hillel 1958). Thanks to the work of Zermelo, set theory was
consolidated during the short period of six years after the discovery of
the paradoxes17 and became an important mathematical discipline with
remarkable results and methods.

The next important shift in set theory appeared in 1914 when Haus-
dorff’s Grundzüge der Mengenlehre appeared. This book summarized
the results that had been achieved in set theory up to the date of its
publication. But Hausdorff’s book contains also a fundamental inno-
vation – the notion of a function was there for the first time defined
as a set of ordered pairs. Dedekind, Cantor, and Zermelo considered
functions and sets as two fundamentally different kinds of things. For
Hausdorff they were analogous. Hausdorff’s definition of an ordered
pair was a bit cumbersome. It was based on the assumption of the exis-
tence of two special objects, which Hausdorff indicated by the symbols
1 and 2. Using them he defined an ordered pair as ffa; 1g; fb; 2gg. The
modern definition of an ordered pair as ffag; fa; bgg, i.e., using no spe-
cial objects, was introduced by Kuratowsky in 1921. Hausdorff’s idea
of interpreting functions as special sets presented a fundamental step
towards a unification of mathematics on the basis of set theory. Set
theory became the language in which almost the whole of mathematics
is developed.

1.1.8.1. Logical Power – Proof of the Consistency
of the Infinitesimal Calculus

Even though the roots of set theory go back to the program of arithme-
tization of mathematical analysis, which had as its aim to eliminate
infinitesimals from mathematical analysis, it is interesting to notice

17 In the framework of the logicist approach Russell proposed a solution of the logical paradoxes based
on the theory of types (Russell 1908). Nevertheless, the theory of types was not accepted by the
majority of the mathematical community.
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that set theory led to a discovery, which made it possible to put the
infinitesimals on solid foundations. The first construction of the sys-
tem of non-standard real numbers was given by Robinson in his paper
Non-standard analysis (Robinson 1961). Robinson’s model was based
on the notion of an ultrafilter, the existence of which follows from the
axiom of choice. Therefore, construction of the hyperreal numbers as
well as proof of the consistency of the theory of infinitesimals, which
follows from this construction, can be seen as an illustration of the logi-
cal power of the language of set theory. By means of the language of set
theory (and of model theory, which is based on this language) it became
possible to lay logical foundations beneath many of Leibniz’s and Eu-
ler’s “proofs”. These “proofs” were considered as unsound until Robin-
son showed that they were correct and so we can spare the quotation
marks. Nonstandard analysis that grew out from Robinson’s construc-
tion became in the meanwhile a theory with many important results and
applications (see Albeverio et al. 1986, and Arkeryd et al. 1997).

1.1.8.2. Expressive Power – Transfinite Arithmetic

One of Cantor’s surprising discoveries was his realization that in the
successive construction of the so-called derived sets of a given set P of
real numbers it is possible to continue also after we have made this con-
struction an infinite number of times. At this point it is not important
what precisely this operation means (its explanation can be found in
Dauben 1979, p. 41). It is important rather that after Cantor created the
first derived set P 0, and by the same construction formed from the first
derived set the second derived set P 00, the third derived set P 000, etc. he
came to the idea of prolonging the steps of construction of the derived
sets beyond the limit of any number of steps that can be counted by
natural numbers. On the technical level it is not so difficult, because
among the derived sets P 0, P 00;P 000, . . . there is an interesting relation.
Each set P .n/ is a subset of the previous one. Therefore if we have a
finite series of derived sets P 0;P 00, . . . , P .n/, the last member of this
series (which in this case is P .n// can be expressed as the intersection
of all of the members of the series:

P .n/ D

n\

kD1

P .k/ : (1.8)

When instead of a finite sequence of derived sets P 0;P 00, . . . , P .n/ we
take an infinite one P 0;P 00;P 000, . . . , P .n/, . . . , Cantor’s idea was to
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build an analogous intersection of all members of the sequence. Of
course, an infinite sequence does not have a last element and therefore
the intersection of all of its members will not be equal to some derived
set P .n/as it was in the case of the finite sequence. But despite the
fact that we do not know from the very beginning what the result of
this intersection will be (in contrast to the finite case, where it was
sufficient to look at the last member of the series and we knew what the
intersection was), the intersection is a well-defined set also in the case
of the infinite series. A point x belongs to this intersection if and only
if it is a member of each of the sets P .k/. Cantor used the symbol P .1/

to represent the intersection of an infinite sequence of derived sets:

P .1/ D

1\

kD1

P .k/ : (1.9)

After he had introduced the derived set of an infinite degree, he could
start to create the derived sets of this set and thus to create the sets
P .1C1/;P .1C2/;P .1C3/, . . . , until he reached the next infinite case.
Then he could turn to the operation (1.9) and create P .21/. In this way
the paper Über unendliche lineare Punktmannigfaltigkeiten 2 (Can-
tor 1880) brought a decisive shift in the history of mathematics. Cantor
made here the first step towards transfinite arithmetic. In the paper he
used the symbols 1;1C 1 or 21 to represent the steps of the pro-
cess of creating derived sets, thus they were indices. His attention was
directed towards the set P and he wanted to understand what happens
with it by the successive derivations.18 In his later papers Cantor re-
placed the symbol 1 by the last letter of the Greek alphabet ! and
interpreted this symbol not as an index but as a transfinite number. He
introduced the distinction between ordinal and cardinal numbers, in-
troduced for both of them the operations of addition and multiplication
and created thus the transfinite arithmetic.

18 The fact that Cantor discovered transfinite arithmetic in the study of iterations of a particular operation
confirms the connection of set theory to iterative geometry. The iterative processes, by means of
which mathematicians of the nineteenth century constructed their strange objects, had steps that could
be numbered by natural numbers. Cantor prolonged the iterative process into the transfinite realm.
If we examine what enabled Cantor to make this radically new step, we will find out that it was the
operation of the intersection of an infinite system of sets and the understanding that an element belongs
to this intersection if it belongs into each one of the intersected sets. I do not want to indicate that
Cantor read Frege’s Begriffsschrift (it appeared just one year before Cantor’s paper). But I would like
to stress that the increase of the logical precision in the foundations of the calculus and the parallel
development of formal logic during the nineteenth century, which culminated in Frege’s work, played
a fundamental role also in Cantor’s breakthrough into the transfinite realm.
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Transfinite arithmetic is doubtlessly one of the most remarkable
achievements of set theory. Mathematicians before Cantor were un-
aware that it is possible to discriminate different degrees of infinity or
that it is possible to associate with them (cardinal or ordinal) numbers
which can be added and multiplied like ordinary numbers. Therefore
transfinite arithmetic is a good illustration of the expressive powers of
the language of set theory.

1.1.8.3. Explanatory Power – Unveiling the Typicality
of the Transcendent Numbers

As we already mentioned, the first transcendental number was discov-
ered in 1851 by Liouville. In 1873 Hermite showed that also the num-
ber e is transcendental, and in 1882 Lindeman proved the transcen-
dence of the number � . Thus the transcendental numbers slowly accu-
mulated. Nevertheless, it still seemed as if the transcendental numbers
were some rare exceptions and the overwhelming majority of real num-
bers were algebraic. Even though Lindeman proved a stronger result
than just the transcendence of � , and created an infinite set of transcen-
dental numbers (see Dörrie 1958, or Gelfond 1952), but he constructed
the transcendental numbers by means of the algebraic ones, and so still
nobody could suspect that there are fundamentally more transcendental
numbers than there are algebraic ones.

Therefore when Cantor in 1873 proved that transcendental num-
bers form an uncountable set, while the algebraic numbers are only
countably many, it turned out that exceptional numbers are rather the
algebraic ones, and that a typical real number is transcendental. Even
though Cantor’s proof was a non-constructive one, and so it could not
be used to find a new transcendental number, it was a remarkable dis-
covery. After a short time it was followed by similar results, as for in-
stance that a typical continuous function of a real variable has a deriva-
tive almost nowhere. Thus under the influence of set theory our view of
the real numbers as well as of the functions of a real variable changed
in a radical way. The objects which mathematicians of the nineteenth
century considered exceptional turned out to be typical; and as excep-
tional (at least from the point of view of cardinality and measure) must
be considered the objects of classical mathematics, such as algebraic
numbers, differentiable functions or rectifiable curves. Set theory thus
opened a new perspective on the universe of classical mathematics; it
changed our view of which mathematical objects are typical and which
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are exceptional. This change is an illustration of the explanatory power
of the language of set theory.

1.1.8.4. Integrative Power – The Ontological Unity
of Modern Mathematics

Even though the first foundationalist program in mathematics was
Frege’s logicism, while set theory did not have at the beginning such
broad ambitions, the truth is that the overwhelming majority of con-
temporary mathematics is done in the framework of set theory. There-
fore while the axiomatic method unifies mathematics on the method-
ological level, set theory unifies it on the ontological one. If we take
some mathematical object – be it a number, a space, a function, or
a group – contemporary mathematics studies this object by means of
its set-theoretical model. It considers natural numbers as cardinalities
of sets, spaces as sets of points, functions as sets of ordered pairs, and
groups as sets with a binary operation. Thanks to this viewpoint, math-
ematics acquired an unprecedented unity. We are used to it and so we
consider it as a matter of course, but a look into history reveals the rad-
ical novelty of this unity of the whole of mathematics. We are justified
in seeing the ontological unity of modern mathematics as an illustration
of the integrative power of the language of set theory.

1.1.8.5. Logical and Expressive Boundaries

Set theory is one of the last re-codings which were created in the history
of mathematics and so today a substantial part of all mathematical work
is done in its framework. Therefore it is difficult to determine the logi-
cal and expressive boundaries of its language. The logical and expres-
sive boundaries of a particular language can be most easily determined
by means of a stronger language, which transcends these boundaries
and so makes it possible to draw them. This is so, because the stronger
language makes it possible to express things that were in the origi-
nal language inexpressible. Nevertheless, it seems that mathematics
has not surpassed the boundaries posed by the language of set theory.
Therefore to characterize these boundaries remains an open problem
for the future. What we can say today is that from the contemporary
point of view the expressive, logical, explanatory, and integrative force
of the language of set theory is total. The boundaries of the language
of set theory are the boundaries of the world of contemporary mathe-
matics and as such they are inexpressible.


