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unit square. These functions gave rise to a considerable refinement of
the basic concepts of differential and integral calculus and gave rise to
a whole new branch of mathematics – the theory of functions of a real
variable. In the course of their study it turned out that the methods of
the calculus can be applied only to a rather narrow class of “decent”
functions. The rest of the functions lie beyond the expressive bound-
aries of the language of the differential and integral calculus.

1.1.6. Iterative Geometry

Differential and integral calculus were born in very close connection
to analytical geometry. Perhaps this was one of the reasons why math-
ematicians for a long time considered Descartes’ way of generating
curves (i.e., point by point, according to a formula) to be the correct
way of visualizing the universe of mathematical analysis. They thought
that it would be enough to widen the realm of formulas used in the pro-
cess of generation, and to accept also infinite series, integrals or perhaps
other kinds of analytical expressions instead of polynomials. They be-
lieved that the symbolic realm of functions and the iconic realm of
curves were in coherence. Leibniz expressed this conviction with the
following words:

“Also if a continuous line be traced, which is now straight,
now circular, and now of any other description, it is possible
to find a mental equivalent, a formula or an equation com-
mon to all the points of this line by virtue of which formula
the changes in the direction of the line must occur. There
is no instance of a face whose contour does not form part
of a geometric line and which can not be traced entire by
a certain mathematical motion. But when the formula is
very complex, that which conforms to it passes for irregu-
lar.” (Leibniz 1686, p. 3)

First doubts about the possibility of expressing of an arbitrary curve
by an analytical expression occurred in the discussion between Euler
and d’Alembert on the vibrating string. The vibrations of a string are
described by a differential equation that was derived in 1715 by Taylor.
In 1747 d’Alembert found a solution of this equation in the form of
travelling waves. Nevertheless, as the differential equation describing
the string is an analytical formula, d’Alembert assumed that the initial
shape of the string must be given in an explicit form of an analytical
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expression so that it can be substituted into the equation. Then by solv-
ing the equation we obtain the shape of the string in later moments of
time. Euler raised against this technical assumption the objection that
nature need not care about our analytical expressions. Thus if we gave
the string a particular shape using our fingers, the string would start to
vibrate independently of whether this initial shape is given by an an-
alytical expression or not. Neither Euler nor d’Alembert was able to
bring arguments in favor of his position and thus the problem of the
relation between physical curves and analytical formulas stopped soon
after it started.

The question of the relation between geometrical curves and ana-
lytical formulas got a new stimulus at the beginning of the nineteenth
century when Fourier derived the differential equation of heat conduc-
tion and developed methods for its solution. Fourier was one of the first
scientists who started to use discontinuous functions (in the contempo-
rary sense)13. The use of discontinuous functions in mechanics would
be absurd; if a function describes the motion of a particle, then its dis-
continuity would mean that the particle disappeared in one place and
appeared in another. Similarly unnatural is the use of a discontinuous
function in the theory of the vibrating string. There the discontinu-
ity would mean that the string is broken and thus the vibration would
stop. But if a function describes the distribution of heat in a body, then
a discontinuous function is something rather natural. It corresponds to
a situation of a contact between bodies with different temperatures. So
the transition from mechanics to thermodynamics broadened the realm
of suitable functions.

Besides a radical extension of the realm of suitable functions,
Fourier’s Théorie analytique de la chaleur (Fourier 1822) contains
a method that makes it possible for an almost arbitrary function to find
an analytical expression that represents it. Suppose that we have a func-
tion f .x/ given by means of a chart of its values or of a graph. Fourier’s
method consists in the calculation of particular numbers (today called
Fourier’s coefficients) by means of (a numerical or graphical) integra-

13 Already Euler used the term “discontinuous function” but he used it in a different sense than we do
today. For instance, he called the absolute value function, i.e., the function f .x/ D jxj, discontinuous
because on the interval .�1;0/ it is given as f .x/ D �x, while on the interval .0;C1/ as
f .x/ D x. Euler called a function discontinuous if on different parts of its domain it was defined by
means of different analytic expressions.
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tion of the function:
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Using these coefficients it is possible to express the function f (x) that
was formerly given only numerically or graphically, in the form of an
analytical expression, today called Fourier’s series:
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In this way Fourier entered the discussion between Euler and
d’Alembert on the relation between curves and expressions. Fourier
showed that “almost” any function can be represented in the form of
an analytical expression. Therefore d’Alembert could answer to Eu-
ler, that even if nature does not care about analytical expressions, we
can take care of them ourselves. The only problem was the word
“almost”. A series of prominent mathematicians such as Lejeune–
Dirichlet, Riemann, Weierstrass, Lebesgues, and Kolmogorov tried to
determine more precisely this “almost”. In their works a series of
strange functions appeared: Dirichlet’s function in 1829, Riemann’s
function in 1854, Weierstrass’ function in 1861, and Kolmogoroff’s
function in 1923 (Manheim 1964, or Hardy and Rogosinski 1944). The
theory of Fourier series enforced the refinement of several notions of
mathematical analysis, first of all the notions of function and of inte-
gral. In the framework of this theory both Riemann’s and Lebesgues’
integrals were introduced and finally in the works of mathematicians
such as Jordan, Darboux, Peano, Borel, Baire, and Lebesgues a new
mathematical discipline – the theory of functions of a real variable was
born (see Kline 1972, pp. 1040–1051).

As already mentioned, in the study of the functions of a real vari-
able a series of strange objects was discovered. In the nineteenth cen-
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tury these new functions were considered as “pathological” cases (Imre
Lakatos will call them “monsters”). Mathematicians still considered
the generation of curves point by point in accordance with an analyti-
cal formula to be a method which, perhaps with the exception of a few
“pathological” cases, gave an adequate geometrical representation of
the universe of functions. Towards the end of the nineteenth century
these “pathological” functions accumulated in a sufficient number to
become the subject of independent study. Mathematicians found their
several common attributes, for instance, that a typical “pathological”
function has almost nowhere a derivative and has no length. One of the
most surprising discoveries was that what originally appeared as patho-
logical exceptional cases were typical for functions of a real variable.
This discovery led to a gradual emancipation of the notion of a func-
tion from its dependence on analytical expressions. It turned out that
the close connection between the notion of a function and its analyti-
cal expression led to several distorted views. Nevertheless, as Picard
noticed, these distorted views were useful:

“If Newton and Leibniz had thought that continuous func-
tions do not necessarily have a derivative – and this is the
general case – the differential calculus would never have
been created.” (Picard as quoted in Kline 1972, p. 1040)

Many of the “pathological” functions discovered during the nine-
teenth century have in common that they are constructed not by
Descartes’ method of point by point construction in accordance with
an analytical formula. They are generated as limits of an infinite itera-
tive process. When in Descartes’ method we plot a point on the graph
of a function, it never changes. In contrast to this in the new method
of generation of geometrical shapes, in each step of iteration the whole
curve is drawn anew. The shape is obtained as the limit to which the
curves, drawn in the particular steps of the iterative process, converge.
Therefore the study of these new forms can be called iterative geom-
etry. And just as Descartes’ method can be seen as a visualization
of the language of algebra (where the central notion is the notion of
a polynomial and Descartes ascribed geometrical form to these alge-
braic objects), iterative geometry can be seen as the visualization of
the language of differential and integral calculus. The central notion
of the calculus is the notion of a limit transition and the new method
of generation of geometric forms by means of an iterative process un-
veils the incredible richness of forms contained in the notion of the
limit transition. Thanks to the methods of computer graphics, which
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make it possible to see the new forms created in iterative geometry on
the screen of a computer, the new objects of iterative geometry, often
called fractals, became known to a wider public and found their way
even into art (see Peitgen and Richter 1986).

1.1.6.1. Logical Power – the Ability to Prove the Existence of Solu-
tions of Differential Equations

Just as the language of analytic geometry made it possible to prove the
fundamental theorem of algebra, according to which every polynomial
has at least one root, the language of iterative geometry offers tools
for the proof of theorems of existence and uniqueness of solutions for
wide classes of differential equations. Differential equations are equa-
tions in which unknown functions together with their derivatives occur.
It seems that the first differential equation was Newton’s second law,
which can be written in the form (suggested by Euler) as:

F D m
d2x

dt2
:

This equation relates the acting force F to the acceleration of the body
(i.e., the second derivative of the position x of the body) caused by
this force. In the early period of the development of the theory of dif-
ferential equations, mathematicians wanted to determine the solution
of a differential equation in the explicit form of an analytical formula.
They developed methods by means of which it was possible to solve
wide classes of such equations. In most of these methods they started
from the assumption that the solution will be a combination of func-
tions of some special form (polynomial, exponential, etc.) depending
on several parameters. Then they substituted these combinations into
the differential equation and so obtained a system of algebraic equa-
tions for the parameters. After solving them they could determine the
sought solution of the original differential equation.

Relatively early however they discovered that some differential
equations also have so-called singular solutions. These were solutions
which remained undetected by standard methods. A more systematic
analysis of the singular solutions was offered in 1776 by Lagrange.
Apart from the singular solutions, there were broad classes of (non-
linear) differential equations for which the standard methods simply
did not work. At the beginning of the nineteenth century these tech-
nical problems were complemented by a general skepticism towards
symbolic methods. Therefore in his lectures between 1820 and 1830
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Cauchy put the emphasis on proving the existence and uniqueness of
solutions of differential equations, before he started discussing their
properties. Cauchy’s methods used in these proofs were improved
in 1876 by Lipschitz and in 1893 by Picard and Peano.

These proofs of existence and uniqueness of solutions of differen-
tial equations are technically too demanding to be expounded here. For
our purposes it is sufficient to draw attention to one aspect of them.
In their proofs, Cauchy, Lipschitz, Picard, and Peano used a new tech-
nique in constructing the function, which represented the sought solu-
tion of the differential equation. Instead of determining the function
using some analytical expressions, i.e., the symbolic language of dif-
ferential and integral calculus (as was common until then), they deter-
mined the sought function as a geometrical object generated by means
of an iterative process. The method of successive approximations, as
this new method is called, is akin to the iterative methods by means
of which the “pathological” functions were generated. Of course, here
the intention of mathematicians was the opposite to that present in the
creation of “monsters”. Now they restricted the iterative process by
different conditions of uniformity of convergence so that the functions
obtained as limits of the iterative process were “decent”. But this dif-
ference is not so important. Whether we use the iterative process to
create a “monster” that serves as a counterexample to some theorem,
or a “decent” function that is a solution of a differential equation; in
both cases we create an object by a fundamentally new method. In-
stead of plotting points following an analytical expression we employ
an iterative process.

When Cauchy presented his proofs, nobody (with the probable ex-
ception of Bolzano) realized the radical novelty of his method of con-
structing functions. The new method served the goal of building a the-
oretical foundation for the theory of differential equations and so it did
not attract suspicion. The revolutionary new technique was used to
reach conservative goals – to prove that every sufficiently “decent” dif-
ferential equation has a unique solution. Iterative geometry attracted
attention only later, when it led to new unexpected results. Neverthe-
less, from the epistemological point of view it does not matter how we
use a technical innovation. Its novelty is measured not by the surprise
which the new results generate (that is a by-product belonging to the
sociology of knowledge) but rather by the epistemological properties
of these results. So even if the proof of existence and uniqueness of the
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solutions of differential equations did not raise much stir, it illustrates
the logical power of the language of iterative geometry.

1.1.6.2. Expressive Power – the Ability to Describe Fractals

One of the first mathematicians who realized the problems to which
the method of iterative generation of curves could lead was Bolzano.
In 1834 he discovered a function that was not differentiable at any point
(Sebestik 1992, pp. 417 – 431 and Rusnock 2000, p. 174). This exam-
ple contradicts our intuition which we developed in the study of curves
of analytic geometry. The derivative of a function at a particular point
determines the direction in which the curve representing the function
sets on when it leaves that point. A function that has no derivative at
any point corresponds to a curve that cannot be drawn. If we attach
our pencil to a particular point of the curve, we do not know in which
direction to pull it. Or more precisely, we cannot pull it in any direc-
tion, because the curve changes its course at each of its point and so
it does not have even the shortest segment in any fixed direction. The
optimism of Leibniz expressed in the quotation at the beginning of this
chapter is thus demolished.

The first fractals appeared as isolated counterexamples to some the-
orems of mathematical analysis. In 1918 Hausdorff found a property
which these strange objects have in common. If we calculate their so-
called Hausdorff dimension we will obtain not an integer, as in case of
ordinary geometrical objects, but a fraction or even a real number. The
Hausdorff dimension is for a point 0, for an ordinary curve it is 1, for
a surface 2, and for a solid 3. The dimensions of fractals are some-
where in-between. So Cantor’s set has Hausdorff dimension approxi-
mately 0.6309; Koch’s curve 1.2619; and Sierpinski’s triangle 1.5850
(see Peitgen, Jürgens and Saupe 1992). This is also the origin of the
name fractal – the name indicates the fractional (i.e., non-integer) value
of the Hausdorff dimension of these objects. Later another interesting
property was discovered – their selfsimiliarity. The selfsimiliarity of
fractals means that when we take a small part of a fractal and magnify
it sufficiently, we obtain an object identical with the original one.

Later it turned out that fractals play an important role in chaotic
dynamics and in the description of turbulence. So scientists slowly
stopped viewing iterative geometry as a vagary of mathematicians and
started to see it as an independent language for the description of ge-
ometric forms. Thus besides synthetic geometry that generates its ob-
jects by ruler and compasses, and analytic geometry that generates its
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objects point by point according an analytical formula, iterative geom-
etry represents a third kind of language that can be used in the descrip-
tion of geometrical forms. The terms of this language are fractals. To
try to describe a fractal by a formula, i.e., to generate it by Descartes’
method, is hopeless. It is not difficult to see that the universe of iter-
ative geometry is fundamentally richer than the universe of Cartesian
curves. Nevertheless, the universe of analytic geometry can be delin-
eated inside of the universe of iterative geometry as the region that we
obtain when we restrict the iterative process by sufficiently strong con-
ditions of uniformity of convergence. The Cartesian world of analytic
geometry is the “smooth part” of the universe of iterative geometry –
just as the universe of Euclidean curves is the “quadratic part” of the
world of analytic geometry.

1.1.6.3. Explanatory Power – The Ability to Explain the Insolubility
of the Three-Body Problem

In classical mechanics we call the problem of determining the trajecto-
ries of the motion of two bodies with masses m1 and m2 which interact
only by gravitational attraction the two-body problem. This problem
is also called Kepler’s problem because Kepler, analyzing the data of
the positions of the planet Mars, found (empirically) the basic proper-
ties of the solutions of the two-body problem: the elliptical form and
the acceleration in the perihelion. Of course in Kepler’s days the two-
body problem could not even be formulated, because the law of uni-
versal gravitation was not known. This law was discovered by Newton
who also solved the two-body problem under some simplifying condi-
tions. The complete solution of this problem was found by Johannes
Bernoulli in 1710.

The three-body problem is analogous to the previous one; the only
difference is that instead of the trajectories of two bodies we have to
determine the trajectories of three bodies. Nevertheless, all regularities
that were present in Kepler’s problem (the elliptical form of the tra-
jectories; the simple law describing the acceleration in the perihelion)
are totally lost after the transition to three bodies. Despite the efforts
of the best mathematicians of the eighteenth and nineteenth centuries,
such as Euler, Lagrange, Laplace, and Hamilton, the three-body prob-
lem remained unsolved. For all the mentioned mathematicians to solve
this problem meant to solve it analytically, i.e., to find explicit formu-
las that would determine the position of each of the three interacting
bodies at every temporal moment. But in a similar way to the quin-
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tic equations in algebra, the three-body problem in mechanics defied
all efforts of solution. Today we know that this problem is insoluble.
But the insolubility of the three-body problem is not caused by the
poverty of language, as was the case in algebra. In the case of quintic
equations it turned out that the universe of algebraic formulas is sim-
ply too poor and does not contain the roots of quintic equations. The
insolubility of the three-body problem has a totally different reason –
deterministic chaos. The discovery of deterministic chaos was one of
the most important achievements of the mathematics of the nineteenth
century. It was made by Poincaré in November 1889, when he found
a mistake in his paper On the three-body problem and the equations of
dynamics, (Poincaré 1890) for which he won in January 1889 the pres-
tigious Prize of King Oscar II of Sweden. The dramatic circumstances
of the discovery, which led to the withdrawal of the whole edition of
the issue of Acta Mathematica which contained the original version of
Poincaré’s paper and to a new printing of the whole issue with the cor-
rected version of the paper, at Poincaré’s expense, are presented in the
literature (see Diacu and Holmes 1996, or Barrow–Green 1997).

For our purposes it is important to realize that the discovery of the
so-called homoclinic trajectory, which leads to the chaotic behavior of
a system of three bodies, was made possible thanks to the language
of iterative geometry. Poincaré first introduced a special transforma-
tion, the consecutive iterations of which represent the global dynamics
of the system. He then discovered the chaotic behavior of the sys-
tem of three bodies thanks to a careful analysis of these iterations. A
further area, in which chaotic behavior was discovered, was meteorol-
ogy. In 1961 Lorenz found chaos in a dynamic system by means of
which he modeled the evolution of weather. When the chaotic behav-
ior represented by this model was studied, a remarkable new object,
the so-called Lorenz attractor was discovered. Lorenz’s discovery was
followed by several others and so gradually it turned out that many
dynamic systems show chaotic behavior – from weather and turbulent
flow to the retina of the human eye. In the study of chaotic systems,
iterative geometry is used as the basic framework. Therefore we can
say that the understanding of chaotic behavior is an illustration of the
explanatory power of the language of iterative geometry. More detailed
exposition of the theory of chaos can be found for instance in (Peitgen,
Jürgens and Saupe 1992).



Historical Description of Re-codings 65

1.1.6.4. Integrative Power – The Description of Natural Forms

Fractals were originally discovered as counterexamples of some theo-
rems of mathematical analysis. Therefore their purpose was destructive
rather than integrative. Even at the beginning of the twentieth century
when fractals had accumulated in a sufficient number so that some of
their common properties could be found, they were still more an illus-
tration of the ingenuity and the imaginative force of mathematicians
than something useful. When in 1967 in the journal Science Mandel-
brot’s paper How long is the coast of Britain? appeared, it turned out
that fractals are not a mere creation of the imagination of mathemati-
cians, but can be used in describing natural phenomena. Ten years later
in his book Fractal Geometry of Nature (Mandelbrot 1977) Mandel-
brot drew attention to the fact that many natural objects, such as clouds
or trees, in many respects resemble fractals. Thus a series of forms
that were formerly ignored by science became subject to mathematical
study:

“Why is geometry often described as ‘cold’ and ‘dry’? One
reason lies in its inability to describe the shape of a cloud,
a mountain, a coastline, or a tree. Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line. . .
The existence of these patterns challenges us to study these
forms that Euclid leaves aside as being formless, to inves-
tigate the morphology of the amorphous. Mathematicians
have disdained this challenge.” (Mandelbrot 1977, p. 13)

And indeed, when we consider the techniques for generating geo-
metrical forms offered by iterative geometry, we will find that they are
able to generate forms that are surprisingly similar to the form of a tree,
a leaf of a fern, the line of the seashore, or the relief of a mountain. Thus
iterative geometry makes it possible to create faithful representations of
natural forms. By means of the language of analytic geometry it would
be impossible to achieve anything similar. The close relation of iter-
ative geometry to natural forms is not so surprising, if we realize that
every multicellular organism is the result of the iterative process of cell
division. Therefore it seems to be natural that the language that gen-
erates its objects by iterations of a particular transformation is suitable
for description of the forms of living things. The discovery of this (iter-
ative) unity of all living forms can be therefore seen as an illustration of
the integrative force of the language of iterative geometry. Where the
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previous languages saw only unrelated, haphazard, amorphous forms,
iterative geometry finds order and unity.

1.1.6.5. Logical Boundaries – Convergence of Fourier Series

The theory of Fourier series played an important role in the creation
of iterative geometry. It supplied a sufficiently rich realm of functions
which were constructed as limits of an iterative process. Thus the the-
ory of Fourier series was the birthplace of many examples, notions, and
methods of iterative geometry. Nevertheless, it is rather interesting that
the question of the convergence of Fourier series enforced the creation
of a new language, the language of set theory, because the language
of iterative geometry was not sufficiently strong to answer that ques-
tion. Our experience hitherto with the development of the language of
mathematics makes it possible to understand this fact and see it more
as a rule than an exception in the evolution of mathematics. The situ-
ation with analytic geometry was similar. Analytic geometry was cre-
ated thanks to the Cartesian visualization of the polynomials, but later
it turned out that the language of polynomials was too narrow for an
adequate description of the phenomena which we encounter in analyt-
ical geometry. It was necessary to create the differential and integral
calculus which is much more adequate for characterization of different
properties of analytic curves. Or we can take the example of the dif-
ferential and integral calculus. This was created in close connection
to analytic geometry, but in the end it turned out that if we wish to
get an undistorted picture of the fundamental notions of the calculus, it
is much better to base it on iterative than on analytic geometry. So it
seems that the fragment with the help of which we enter the universe
of a particular new symbolic or iconic language (in the case of iterative
geometry this fragment was the theory of the Fourier series) is in most
cases not appropriate to answer the deep new questions posed by this
new universe. The lengths of many simple curves of analytic geometry
can be calculated only by means of the differential and integral calcu-
lus; similarly the question of existence of a solution of a differential
equation can be understood by means of iterations of some (contrac-
tive) mapping.

Therefore we should not be surprised that the question of the con-
vergence of Fourier series can only be answered in the framework of
set theory. We need first of all the notion of the Lebesgues integral, on
which the whole modern theory of Fourier series is based, and this no-
tion presupposes measure theory. Therefore we can say that the ques-
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tion of the convergence of Fourier series transcends the logical bound-
aries of the language of iterative geometry. The logical power of this
language is insufficient to answer that question. Furthermore, between
the theory of Fourier series and set theory there is also an interesting
historical connection. It was the study of convergence of Fourier se-
ries that led Cantor to the discovery of set theory. As was noticed by
Zermelo, the editor of Cantor’s collected works, in his commentary
to the paper Über die Ausdehnung eines Satzes aus der Theorie der
trigonometrischen Reihen:

“We see in the theory of Fourier series the birthplace of Can-
tor’s set theory.” (Cantor 1872)

1.1.6.6. Expressive Boundaries – Non-Measurable Sets

Even if the richness of the universe of fractals may seduce one to be-
lieving that the language of iterative geometry is strong enough to ex-
press any subset on the real line, nevertheless, there are sets of real
numbers that cannot be expressed by means of this language. These
are, for example, the non-measurable sets, the existence of which is
based on the axiom of choice. It is precisely the non-constructive char-
acter of the axiom of choice that is the reason why the different sets,
which can be defined by means of this axiom, cannot be constructed
using an iterative process. Thus the existence of non-measurable sets
illustrates the expressive boundaries of the language of iterative geom-
etry.

1.1.7. Predicate Calculus

The history of logic started in ancient Greece, where there were two
independent logical traditions. One of them has its roots in Plato’s
Academy and was codified by Aristotle in his Organon. From the
contemporary point of view the Aristotelian theory can be character-
ized as a theory of inclusion of classes (containing also elements of
quantification theory). Thanks to Aristotle’s influence during the late
Middle Ages, this logical tradition had a dominant influence on the de-
velopment of logic in early modern Europe. The second tradition was
connected with the Stoic school and from the contemporary point of
view it can be characterized as basic propositional calculus (first of
all a theory of logical connectives). In antiquity, probably as a result
of the antagonism between the Peripatetic and the Stoic schools, these


