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Abstract. The paper reviews special Aronszajn trees, both at
ω1 and κ+ for an uncountable regular κ. It provides a compre-
hensive classification of the trees and discusses the existence of
these trees under different set-theoretical assumptions. The pa-
per provides details and proofs for many folklore results which
circulate (often without a proper proof) in the literature.

Keywords: Special Aronszajn trees.

AMS subject code classification: 03E05.

1 Introduction

A tree, which is now called Aronszajn, was first constructed by Nachman
Aronszajn and the construction can be found in [Kur35]. The constructed
tree was actually a special ω1-Aronszajn tree. The definition of special
Aronszajn tree has several equivalent variants and in the literature can be
found many generalizations of the definition of a special Aronszajn tree. In
this paper we focus on the question what are the relationships between them
and provide a basic classification.

1.1 Preliminaries

In this section, we provide a review of basic definitions and facts relating to
trees.

Definition 1.1. We say that (T,<) is a tree if (T,<) is a partial order such
that for each t ∈ T , the set {s ∈ T |s < t} is wellordered by <.

Definition 1.2. We say that S ⊆ T is a subtree of (T,<) in the induced
ordering < if ∀s ∈ S ∀t ∈ T (t < s→ t ∈ S).

Definition 1.3. Let T be a tree
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(i) If t ∈ T , then ht(t, T ) = ot({s ∈ T |s < t}) is height of t in T ;

(ii) For each ordinal α, we define the α-th level of T as Tα = {t ∈ T |ht(t) =
α};

(iii) The height of T , ht(T ), is the least α such that Tα = ∅;

(iv) T � α =
⋃
β<α Tβ is a subtree of T of height α.

Definition 1.4. For a regular κ ≥ ω, T is called a κ-tree if T has height κ,
and |Tα| < κ for each α < κ.

Many κ-tree is isomorphic to a subtree of the full tree (<κκ,⊂). More
precisely, this is the case whenever the κ-tree is normal. See the definition
below.

Definition 1.5. A normal κ-tree is a tree T such that:

(i) ht(T ) = κ;

(ii) |Tα| < κ, for every α < κ;

(iii) |T0| = 1;

(iv) If ht(s, T ) = ht(t, T ) is a limit ordinal, then s = t if and only if
{r ∈ T |r < s} = {r ∈ T |r < t}.

Note that the conditions (i) and (ii) ensure that a normal κ-tree is a κ-tree.

Fact 1.6. Let κ be a regular cardinal. Then every normal κ-tree is isomor-
phic to a subtree T ′ of the full tree (<κκ,⊂).

If we consider a successor cardinal κ+ in the previous fact, then the levels
of the κ+-tree have size ≤κ. Hence we can strengthen the formulation of
the previous fact for successor cardinals as follows: Every normal κ+-tree is
isomorphic to a subtree T ′ of the full tree (<κ

+
κ,⊂).

Definition 1.7. Let T be a tree. We say that B is a branch if it is a maximal
chain in T .

Definition 1.8. Let κ be a regular cardinal. We say that a κ-tree T is a
κ-Aronszajn tree if it has no branch of size κ. We denote the class of all
Aronszajn trees at κ as A(κ).

By König’s Lemma, no ω-Aronszajn trees exist. On the other hand, by result
of Aronszajn, there exists an ω1-Aronszajn tree. Moreover, if we assume
GCH, then there exists a κ+-Aronszajn tree for each regular cardinal κ, by
a result of Specker [Spe49].
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There are two common strengthenings of the notion of an Aronszajn tree.
The first one leads to the notion of a special Aronszajn tree, to which we
dedicate the next section. The second leads to the notion of a Suslin tree.

Definition 1.9. Let κ be a regular cardinal. We say that a κ-Aronszajn
tree is Suslin, if it has no antichain2 of size κ. We denote the class of all
Suslin trees at κ as S(κ).

The notion of an ω1-Suslin tree first appeared in connection with the Suslin
problem of the characterization of the real line. Actually, in [Kur35] Kurepa
showed that the original Suslin hypothesis (SH) can be formulated as the
claim that there are no Suslin trees. For more details about Suslin hypothesis
see [Jec03].

2 Special Aronszajn trees at ω1

2.1 Classification

In this section, we classify different types of special Aronszajn trees at ω1.
Most of the notions are standard, but dispersed through diverse papers, so
we think it is useful to provide a unified treatment here.

Definition 2.1. We say that an ω1-Aronszajn tree T is special if T is a union
of countable many antichains. We denote the class of all special Aronszajn
trees at ω1 as Asp(ω1).

Definition 2.2. Let κ be a regular cardinal, T be a κ-Aronszajn tree and
P = 〈P,<P〉 be a partially ordered set. We say that T is P-embeddable if
there is a function f : T → P such that s <T t→ f(s) <P f(t). We denote
the class of all P-embeddable trees at κ as T(P)(κ).

Note that the previous definition can be generalized for arbitrary partially
ordered set.

Definition 2.3. Let κ be a regular cardinal, R = 〈R,<R〉 and P = 〈P,<P〉
be a partially ordered sets. We say that R is P-embeddable if there is a
function f : R→ P such that s <R t→ f(s) <P f(t).

Fact 2.4. The following are equivalent for an ω1-Aronszajn tree T :

(i) T is special;

2A ⊂ T is an antichain if for every t, s ∈ A, if t 6= s, then there is no u ∈ T such that
u ≥ t and u ≥ s.
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(ii) There is f : T → ω such that if s, t are comparable in T , then f(s) 6=
f(t);

(iii) T is Q-embeddable, i.e. T ∈ T(Q)(ω1).

When we work with Q-embeddable Aronszajn trees it is natural to consider
also R-embeddable Aronszajn trees and ask what is the connection between
them. The following fact tells us how to characterise R-embeddable Aron-
szajn trees using Q-embeddable Aronszajn trees. It was first proved in
[Bau70].

Fact 2.5. Let T be an ω1-tree. T is R-embeddable if and only if T ∗ =⋃
α<ω1

Tα+1 is Q-embeddable.

Now, we introduce the concept of an M-special Aronszajn tree.

Definition 2.6. We say that an ω1-Aronszajn tree T is M-special if T is
isomorphic to the subtree of {s ∈ <ω1ω|s is 1-1}. We denote the class of all
M-special ω1-Aronszajn trees as AM-sp(ω1).

We use the notation M-special to distinguish special Aronszajn trees de-
fined by Mitchell in [Mit72] from now more used Definition 2.1. Note that
Mitchell’s definition includes just normal trees in contrast to Definition 2.1.
In this sense the notion of a special tree is more general than M-special.
However, if we consider just normal trees, then every special normal tree
can be represented by an M-special tree. The converse may not hold in
general, see Lemma 2.16.

Lemma 2.7. If T is a normal special ω1-Aronszajn tree, then T is M-special.

Proof. Fix for every α < ω1 a 1-1 function gα : Tα → ω, and write T =⋃
n<ω An, where An is an antichain for each n < ω.

We define by induction on α < ω1 a tree T ′ and an isomorphism i : T → T ′,
where T ′ is a subtree of {s ∈ <ω1(ω × ω)|s is 1-1}. The isomorphism i will
be a union of partial isomorphisms iα : T � α→ T ′ � α.

Set T ′0 = {∅} and i1(r) = ∅, where r is the root of T . As we assume that T
is normal, i1 is an isomorphism between T � 1 and T ′ � 1.

Suppose that we have constructed iβ : T � β → T ′ � β for each β < α. First,
if α is limit, set iα =

⋃
β<α iβ and T ′ � α =

⋃
β<α T

′ � β.

If α = γ + 1 and γ is a successor, then we define iα by extending iγ setting
for each s ∈ Tγ :

(2.1) iα(s) = iγ(t) ∪ {〈γ, 〈gγ(s), n〉〉},
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where the node t is the immediate predecessor of s and s ∈ An. Let T ′ �
α = T ′ � γ ∪ T ′γ , where T ′γ = {iα(s)|s ∈ Tγ}. It is clear that each function in
T ′γ is 1-1 since each two comparable nodes must be in different antichains.

If α = γ + 1 and γ is limit, then we define iα by extending iγ setting for
each s ∈ Tγ :

(2.2) iα(s) =
⋃
{iγ(t)|t < s}.

By (iv) of Definition 1.5, iα is 1-1 and clearly it is also an isomorphism. Let
T ′ � α = T ′ � γ ∪ T ′γ , where T ′γ = {iα(s)|s ∈ Tγ}. Again it is obvious that
each function in T ′γ is 1-1 since it is a union of 1-1 functions with gradually
increasing domains.

At the end, set T ′ =
⋃
α<ω1

T ′ � α and i =
⋃
α<ω1

iα. It is easy to see that
the tree T ′ is isomorphic to a subtree of {s ∈ <ω1ω|s is 1-1} by any bijection
between ω × ω and ω. Hence T is M-special.

Note that at limit steps we use just the assumption that the tree is normal.
Hence we can generalize this lemma to R-embeddable trees. The proof of
the implication from right to left can be found in [Dev72].

Lemma 2.8. Let T be an ω1-Aronszajn tree. T is normal R-embeddable if
and only if T is M-special.

Proof. (⇒) Let T be a normal R-embeddable. Then T ∗ =
⋃
α<ω1

Tα+1 is
Q-embeddable and so T ∗ =

⋃
n<ω An where An is an antichain for each n.

The rest of the proof is the same as the proof of Lemma 2.7 since we used
the antichains only in the successor step.

(⇐) Let T be M-special. We define f : T → R by setting

f(t) =

∞∑
i=0

XRng(t)(i)

10i
,

where XX is the characteristic function of a set X ⊂ ω. Since every node of
T is a 1-1 function from some ordinal α < ω1 to ω, if s < t then Rng(s) ⊂
Rng(t) and so there is n < ω such that 0 = XRng(s)(n) < XRng(t)(n) = 1 and
XRng(s) � n = XRng(t) � n. Hence f(s) < f(t).

By Fact 2.5, if the tree T is R-embeddable then T � S for S = {α+1|α < ω1}
is Q-embeddable. So it is natural to introduce the concept of S-special for
arbitrary unbounded subset of S ⊆ ω1. The following definition is from
[She98].
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Definition 2.9. Let S be an unbounded subset of ω1. We say that an
ω1-tree T is S-special if T � S is Q-embeddable, where

T � S = {t ∈ T |ht(t, T ) ∈ S},

with the induced ordering. We say that an ω1-tree T is S-special if there
is S, an unbounded subset of ω1, such that T is S-special. We denote the
class of all S-special ω1-Aronszajn trees as AS-sp(ω1).

The following fact from [DJ74] says that if we only consider S-special trees
for closed unbounded subsets S of ω1, we get nothing new.

Fact 2.10. Let C be a closed unbounded subset of ω1. If T is a C-special
ω1-Aronszajn tree, then T is special.

The following Fact 2.11, which can be found in [She98], says that if all
Aronszajn trees are S-special for some given unbounded subset of ω1, then
all of them are in fact special. As an easy corollary, we have by Fact 2.5
that if every ω1-Aronszajn tree is R-embeddable, then every ω1-Aronszajn
tree is Q-embeddable.

Fact 2.11. Let S be an unbounded subset of ω1. If every ω1-Aronszajn
tree is S-special then every ω1-Aronszajn tree is special. In particular, if
every ω1-Aronszajn tree is R-embeddable, then every ω1-Aronszajn tree is
Q-embeddable.

Note that S-special Aronszajn trees, including special, R-embeddable, and
M-special Aronszajn trees, are not Suslin in the following strong sense: every
uncountable subset of such tree contains an uncountable antichain. This
motivates the following definition.

Definition 2.12. We say that an ω1-tree T is non-Suslin if every uncount-
able subset U of T contains an uncountable antichain. We denote the class
of all non-Suslin Aronszajn trees at ω1 as ANS(ω1).

The name of non-Suslin trees is inspired by the fact that every non-Suslin
tree is not Suslin. On the other hand, every tree that is not non-Suslin has
a Suslin subtree, as follows from the next fact that can be found in [Han81].

Fact 2.13. Let T be an ω1-Aronszajn tree. If T is not non-Suslin, then T
has a subtree which is Suslin.

Lemma 2.14. Let T be an ω1-Aronszajn tree. If T is S-special, then T is
non-Suslin.
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Proof. Assume for contradiction that T is an S-special ω1-Aronszajn tree
which is not non-Suslin. By the previous fact T has a subtree T ′ which
is Suslin. Since T is S-special, T ′ is S-special, too. Hence there is an
unbounded subset S of ω1 such that T ′ � S =

⋃
n<ω An, where An is an

antichain for each n. By pigeon-hole principle, for some n < ω the size of
An must be greater than ω. This contradicts the fact that T ′ is Suslin.

To sum up, for general trees we obtain:

(2.3) Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) ⊆ AS-sp(ω1) ⊆ ANS(ω1).

If we consider only normal trees, we get:
(2.4)

Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) = AM-sp(ω1) ⊆ AS-sp(ω1) ⊆ ANS(ω1).

In the next section, for each of these inclusions, we examine if there is a
model in which it is proper.

2.2 Existence

The existence of special Aronszajn trees at ω1 can be proved in ZFC and by
Baumgartner’s theorem published in [BMR70] it is consistent with ZFC that
every Aronszajn tree at ω1 is special, so Asp(ω1) = T(R)(ω1) = AS-sp(ω1) =
ANS(ω1) is consistent with ZFC. On the other hand, consistently, each in-
clusion can be proper.

The following Fact 2.15 was first published in [Bau70]. It says that it is
consistent that there is an Aronszajn tree which is M-special but not special.
As a corollary we obtain that the first inclusion in (2.3) can be consistently
proper.

Fact 2.15. Assume ♦. Then there is a non-special Aronszajn tree which
is a subtree of {s ∈ <ω1ω|s is 1-1}. In particular, there is an R-embeddable
ω1-Aronszajn tree which is not special.

Proof. This has been proved by Baumgartner (see [Dev72]). We have ex-
tended his proof to obtain a more general result, see Theorem 3.27.

The following lemma is a consequence of Fact 2.15 and it shows us that the
second inclusion in (2.3) can be consistently proper.

Lemma 2.16. Assume ♦. Then there is an ω1-Aronszajn tree, which is
S-special and not R-embeddable.
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Proof. By Fact 2.15, assuming ♦, there is an ω1-Aronszajn tree which is
R-embeddable, but not Q-embeddable. Let α < ω1 be a limit ordinal and
let t ∈ Tα. For the chain C = {s ∈ T |s < t} we add a new node tC such
that tC < t and tC > s for all s ∈ C. Consider the tree T ′ which is created
by adding such tC for every limit node t. Note that

⋃
α<ω1

T ′α+1 = T \ T0.
Now, T ′ is not R-embeddable since

⋃
α<ω1

T ′α+1 is not Q-embeddable. But
T ′ is S-special for S = {α+ 2|α < ω1} since T ′ � S =

⋃
α<ω1

Tα+1 \ T1.

The claim that the last inclusion in (2.3) can be consistently proper is a
consequence of the theorem published in [Sch14], which says that if ZFC is
consistent, so is ZFC + SH3 + there is an Aronszajn tree T at ω1 which is not
S-special. If SH holds, then by Fact 2.13 every Aronszajn tree is non-Suslin.
Therefore T is non-Suslin and it witnesses that ZFC + AS-sp(ω1) 6= ANS(ω1)
is consistent.

3 Special Aronszajn trees at larger κ

3.1 Generalisations of Q

In this section we consider some common generalisations of Q at higher
cardinals. The following definitions of Qκ and Q∗κ are taken from [Tod84].
In addition, we introduce our definition of a generalisation of the real line
for higher cardinals because we want to generalize the concept of an R-
embeddable tree (see Definition 2.2).

Definition 3.1. Let κ be a regular cardinal. Then

Q∗κ =({f ∈ ωκ| {n < ω|f(n) 6= 0} is finite} \ {0}, <lex);
(3.1)

Qκ =({f ∈ κ2| |{α < κ|f(α) 6= 0}| < κ} \ {0}, <lex);
(3.2)

Rκ =({f ∈ κ2|(¬∃α < κ)[f(α) = 0 and (∀β > α)(f(β) = 1)]} \ {0, 1}, <lex);
(3.3)

where <lex is the lexicographical ordering, 0 (1) denotes the sequence of
zeros (ones) of length ω in (3.1) and of length κ in (3.2) and (3.3).

Note that in the definition of Rκ, we allow all 1’s on a tail, but restrict this
configuration by demanding that in this case there is no greatest α with
f(α) = 0.4

3Suslin Hypothesis
4If f ∈ κ2 does not satisfy (3.3) and α is the greatest position with 0, then we can
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Remark 3.2. Note that Qω
∼= Q ∼= Q∗ω. On the other hand, for κ > ω,

Qκ 6∼= Q∗κ, even if |Qκ| = κ. This holds, because Q∗κ does not contain
any decreasing sequence of uncountable length. However, in Qκ there are
decreasing sequences of length κ.

In this paper we work mainly with Qκ because it has some nice properties:
in particular, one can generalize Kurepa’s Theorem for Qκ and prove Lemma
3.4 which is very useful and plays the key role in proving Lemma 3.13. On
the other hand, the main advantage of Q∗κ is that it always has size κ. When
we work with Qκ, we need to assume that κ<κ = κ to control its size.

The following easy lemma tells us that Qκ has the properties which we want
from a generalisation of Q, with the exception that it does not have to have
size κ. The proof is left as an exercise.

Lemma 3.3. The ordering Qκ is linear, dense, without endpoints and |Qκ| =
κ<κ.

There is an asymmetry in Qκ between decreasing and increasing sequences:

Lemma 3.4. Assume κ > ω is regular.

(i) Let A = 〈fα|α < λ〉 be a strictly decreasing sequence in Qκ, where λ
is a limit ordinal such that ω ≤ λ < κ. Then A does not have an
infimum in Qκ.

(ii) Let B = 〈gα|α < λ〉 be a strictly increasing sequence in Qκ where λ is
a limit ordinal such that ω ≤ λ < κ. Then B has a supremum in Qκ.

Proof. Ad (i). Let A = 〈fα|α < λ〉 be given. Assume for contradiction that
there is the infimum f ∈ Qκ of A. Since f ∈ Qκ, there is β0 < κ such that
for each β ≥ β0 f(β) = 0. Since λ < κ and κ is regular, there is γ0 < κ such
that for each γ ≥ γ0 and for each α < λ fα(γ) = 0. Let δ = max{β0, γ0}.
We define f∗ = f � δ ∪ {〈δ, 1〉} ∪ {〈β, 0〉 |β > δ}. Clearly, f∗ > f . Since
f < fα for every α < λ and since δ = max{β0, γ0}, f∗ < fα for every α < λ.
This is a contradiction because we assume that f is the infimum of A.

Ad (ii). Let B = 〈gα|α < λ〉 be given. We define supremum g by induction
on β < κ.

For β = 0. Set

define g ∈ Rκ which is the immediate successor of f in the lexicographical order: define
g exactly as f below α, and set g(β) = 1 for all β ≥ α. To prohibit this situation (which
violates density of the ordering), we choose to disallow such f ’s in (3.3). If there is no
greatest α where f(α) = 0, this problem does not arise.
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g(0) =

{
1 if ∃α < λ(gα(0) = 1);

0 otherwise.

Assume that g � β is defined, then we define g(β) as follows:

g(β) =

{
1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g � β ∪ {〈β, 0〉};
0 otherwise.

First note that g is in Qκ since κ is regular and λ < κ.

Now, we show that g is the supremum of B. It is obvious that gα < g for
every α < λ. Hence it is enough to show that g is the least upper bound
of B. Let h < g be given. Then there is β0 < κ such that h � β0 = g �
β0 and 0 = h(β0) < g(β0) = 1. By definition of g there is α such that
gα � (β0 + 1) > g � β0 ∪ 〈β0, 0〉. As h � β0 = g � β0 and h(β0) = 0,
g � β0 ∪ 〈β0, 0〉 = h � (β0 + 1) and so gα � (β0 + 1) > h � (β0 + 1). Therefore
gα > h.

Note that it was important in (i) of the previous lemma that λ is a limit
ordinal < κ. One can easily find decreasing sequences in Qκ of length κ
which do have the infimum.5

Now, we present the generalisation of Kurepa’s Theorem for Qκ:

Theorem 3.5. (Generalised Kurepa’s Theorem) Assume κ<κ = κ.
Let (E,<) be a partially ordered set. Then the following are equivalent:

(i) E is embeddable in Qκ;

(ii) E is the union of at most κ-many antichains.

Proof. (i)⇒ (ii) Let f be the embedding. Let {qα|α < κ} be an enumeration
of Qκ. We define Aα = f−1(qα) for each qα ∈ Rng(f). Obviously, each Aα
is an antichain since f is an embedding.

(ii) ⇒ (i) We assume that
⋃
α<κAα = E, where each Aα is an antichain.

Moreover, without loss of generality, we may assume that for each β, α < κ,
Aα ∩ Aβ = ∅. Let f : E → κ be a function such that Aα = f−1(α).
For x ∈ E define g(x) so that g(x)(α) = 1 if and only if α ≤ f(x) and
{y ∈ E|y ≤ x} ∩Aα 6= ∅.

5Compare with Q: some infinite decreasing sequences have an infimum; since there is
no limit ordinal below ω, the analogue of (i) of the previous Lemma does not appear in
Q.
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Notice that g(x) is in Qκ because g(x)(α) = 1 implies that α ≤ f(x), where
f(x) ∈ κ.

Now, we check that g is an embedding. Assume that x < y are in E and
x ∈ Aα, y ∈ Aβ for some β 6= α. We distinguish two cases.

First suppose that α < β. Then g(x)(α) = 1 and also g(y)(α) = 1 since
x < y and x ∈ Aα. And for all γ < α if g(x)(γ) = 1 then g(y)(γ) = 1 and
so g(x) � α ≤lex g(y) � α. If g(x) � α <lex g(y) � α, then g(x) < g(y) and
we are finished. If g(x) � α = g(y) � α, then we can continue as follows: for
all γ > α it holds that g(x)(γ) = 0 since γ > f(x). Hence g(x)(β) = 0 and
g(y)(β) = 1; therefore g(x) < g(y).

Next suppose that β < α. Again for all γ < β, if g(x)(γ) = 1 then g(y)(γ) =
1 and so g(x) � β ≤lex g(y) � β. Now, we show that g(x)(β) = 0 and
g(y)(β) = 1. Assume for contradiction that g(x)(β) = 1. Then by definition
of the function g, we know there exists z ∈ Aβ and z ≤ x. Hence z < y and
this is a contradiction since there are two comparable elements in Aβ. By
the definition of g, g(y)(β) = 1 and so g(x) < g(y).

Remark 3.6. Note that the assumption κ<κ = κ is necessary just in the
proof of (i) ⇒ (ii).

Remark 3.7. We cannot prove Kurepa’s Theorem for Q∗κ, for κ > ω a
regular cardinal, since it does not contain strictly decreasing sequence of
uncountable length. Consider the ordinal κ with reverse ordering <∗, i.e.
α <∗ β that α <∗ β if and only if β ∈ α for α, β ∈ κ. Then κ is a union of
κ-many antichains and cannot be embedded to Q∗κ.

Partials orders from Theorem 3.5 have another useful characterisation. The
proof of the following lemma is easy and it is left as an exercise for the
reader.

Lemma 3.8. Let κ be regular and let (E,<) be a partially ordered set. Then
the following are equivalent:

(i) E is the union of at most κ-many antichains;

(ii) there is f : E → κ such that if s, t are comparable in E, then f(s) 6=
f(t).

Now, we focus on the partial order Rκ. We show that it has similar properties
as R.

Lemma 3.9. The partial order Rκ is

(i) linear, without endpoints;
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(ii) Qκ is dense in Rκ;

(iii) Dedekind complete.

Proof. It is easy to verify that Rκ satisfies (i).

Ad (ii). Let f <Rκ g in Rκ be given. Let α0 be the least ordinal such that
0 = f(α0) < g(α0) = 1. By definition of Rκ, there is the least β0 > α0 such
that f(β0) = 0. Let h = f � β0 ∪ {〈β0, 1〉} ∪ {〈γ, 0〉 |γ > β0}. It is easy to
see that h ∈ Qκ and f <Rκ h <Rκ g.

Ad (iii). It is enough to show that every increasing sequence with upper
bound has the supremum. First note that each increasing sequence in Rκ
has cardinality at most κ<κ since Qκ is dense in Rκ as we proved in the
previous paragraph. Let A = 〈fα ∈ Rκ|α < λ〉 for some ordinal λ ≤ κ<κ be
given and let f ∈ Rκ be the upper bound of A. Let FC be a choice function
from P(Qκ) to Qκ. We define the sequence AQκ in Qκ as follows:

(3.4) AQκ = 〈gα ∈ Qκ|gα = FC({q ∈ Qκ|fα < q < fα+1}) and α < λ〉 .

We show that AQκ has the supremum g in Rκ and that g is also the supre-
mum of A in Rκ. We define a function g∗ : κ→ 2 by induction on β < κ.

For β = 0. Set

g∗(0) =

{
1 if ∃α < λ(gα(0) = 1);

0 otherwise.

Let g∗ � β be defined, then we define g∗(β) as follows:

g∗(β) =

{
1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g∗ � β ∪ {〈β, 0〉};
0 otherwise.

Note that g∗ may not be in Rκ, but it holds that g∗ 6= {〈α, 1〉 |α < κ} since
the sequence has an upper bound in Rκ.

Now, we need to show that g∗ is the supremum of AQκ in (2κ, <lex). However,
the proof of this is the same as the proof of Lemma 3.4 (ii). Note that in
the Lemma 3.4 (ii) we used the assumption that the sequence has length
less than κ just for showing that the supremum is in Qκ.

As we mentioned earlier, g∗ may not be in Rκ, but note that g∗ 6= {〈α, 1〉 |α <
κ}. If g∗ is not in Rκ, there is β0 < κ such that g∗(β0) = 0 and g∗(β) = 1 for
every β > β0. Let g = g∗ � β0 ∪ {〈β0, 1〉} ∪ {〈β, 0〉 |β > β0}. Clearly g ∈ Rκ
and there is no function between g∗ and g in 2κ. Now we define g ∈ Rκ by
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g =

{
g∗ if g∗ ∈ Rκ;

g otherwise.

It is obvious that g ∈ Rκ and since g∗ is the supremum of AQκ in 2κ, g is
the supremum of AQκ in Rκ.

To finish the proof of the theorem, it suffices to show that g is also the
supremum of A. The function g is clearly the upper bound of A. Now, we
show that g is the least upper bound. Let h < g. Since g is the supremum
of AQκ , there is q ∈ AQκ , such that h < q. But q < r for some r ∈ A by the
definition of AQκ . Hence h < r.

3.2 Classification

In the previous section we have built the foundations for the investigation of
special κ+-Aronszajn trees for any regular κ. We introduced the concept of
special, R-embeddable, M -special and S-special ω1-Aronszajn trees. Now,
we generalize these concepts to higher Aronszajn trees, which are in the
center of our interest. When we talk about an Aronszajn tree in this section,
we mean a κ+-Aronszajn tree for some regular cardinal κ > ω.

Definition 3.10. Let κ be a cardinal. We say that κ+-Aronszajn tree T
is special if T is a union of κ-many antichains. We denote the class of all
special Aronszajn trees at κ+ as Asp(κ+).

As in the previous section, the concept of a special Aronszajn tree has more
equivalent definitions. However, we need to be careful when we talk about
Qκ-embeddability, since this partial order in general does not have to have
size κ.

Lemma 3.11. Let κ be regular. The following are equivalent for a κ+-
Aronszajn tree T :

(i) T is special;

(ii) There is f : T → κ such that if s, t are comparable in T , then f(s) 6=
f(t).

Proof. This is a direct consequence of Lemma 3.8.

Lemma 3.12. Assume κ<κ = κ. Then κ+-Aronszajn tree T is special if
and only if T is Qκ-embeddable.

Proof. It follows from Theorem 3.5.

13



Again as in the previous section, we can characterise Rκ-embeddable Aron-
szajn trees using Qκ-embeddable Aronszajn trees. This is our generalisation
of Fact 2.5.

Theorem 3.13. Assume κ<κ = κ. Let T be an κ+-tree. T is Rκ-embeddable
if and only if T ∗ =

⋃
α<κ+ Tα+1 is Qκ-embeddable.

Proof. (⇒) Let T be Rκ-embeddable and T ∗ =
⋃
α<κ+ Tα+1. Let f be

the embedding, t ∈ T ∗ and let s ∈ T be the immediate predecessor of t.
We define f ′ : T ∗ → Qκ as follows: f ′(t) = q where q ∈ Qκ such that
f(s) < q < f(t).

(⇐) Let T ∗ =
⋃
α<κ+ Tα+1 be Qκ-embeddable and let f be the embedding.

We first define a function g : Qκ → Qκ × Qκ which will “replace” every
q ∈ Qκ with an open interval (g(q)1, g(q)2),6 while preserving the ordering.
More precisely, we will define g by induction on κ and ensure it satisfies the
following for all q < q′ in Qκ:

(3.5) g(q)2 < g(q′)1.

Enumerate Qκ as {qβ|β < κ}. We will construct by induction on α < κ
embeddings gα : {qβ|β < α} → Qκ × Qκ which will be used to define the
final function g.

As we will see below, at the successor step, we define gα+1 as an extension
of gα to qα. Suppose gα+1(qα) = 〈q, q′〉 for some q < q′ in Qκ. In addition
to choosing q, q′, fix also two elements a(qα) < b(qα) in the interval (q, q′)
and two sequences as follows: a strictly increasing sequence of elements in
(q, q′) of length κ converging to a(qα) and a strictly decreasing sequence of
elements in (q, q′) of length κ converging to b(qα). We denote these sequences
〈a(qα)i|i < κ〉 and 〈b(qα)i|i < κ〉, respectively.

Now we provide an inductive definition of the functions gα, α < κ:

Set g0 = ∅.

Let α be a limit ordinal. Define

gα = {〈qβ, 〈a(qβ)α+1, b(qβ)α+1〉〉 |β < α}.

The idea behind this definition is to take the intervals defined in the previ-
ous stages of the construction and “shrink” them to get more space. The
shrinking of the intervals makes sure that the construction can continue on
the successor steps.

At α+ 1, define gα+1 by

gα+1 = gα ∪ {〈qα, 〈q, q′〉〉},
6g(q)1 denotes the left coordinate and g(q)2 the right coordinate of the pair g(g).
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for some suitable interval (q, q′), i.e. for all s < s′ in the domain of gα+1, we
should have gα+1(s)

2 < gα+1(s
′)1.7

When all functions gα, α < κ, have been constructed, set

g = {〈qα, 〈a(qα), b(qα)〉〉 |α < κ}.

By the construction, it follows that g is as required.

Now we can finish the proof of the theorem. Define a function i : Qκ → Qκ

by i(q) = r, where r is some element of the open interval (g(q)1, g(q)2). We
define an embedding f ′ : T → Rκ as follows:

f ′(t) =

{
i(f(t)) if t ∈ Tα+1 for α < κ+;

sup{i(f(s))|s < t and s ∈ Tβ+1 and β < α} otherwise.

Now we need to check that the function f ′ is the embedding of T to Rκ. If
s < t and s, t ∈ T ∗, then it is easy to see that f ′(s) < f ′(t) because i is
order-preserving. If t ∈ Tα for α limit, then f ′(s) < f ′(t) since f ′(t) is the
supremum. The only interesting case is if s ∈ Tα for α limit and t ∈ Tα+1.
Then we need to show
(3.6)

f ′(t) = i(f(t)) > sup{i(f(r))|r < s and r ∈ Tβ+1 and β < α} = f ′(s).

This follows from the construction of g. For every r < s it holds that
i(f(r)) < q < i(f(t)) where q = g(f(t))1. Hence
(3.7)
f ′(s) = sup{i(f(r))|r < s and r ∈ Tβ+1 and β < α} ≤ q < i(f(t)) = f ′(t).

Definition 3.14. Let κ be a cardinal. We say that κ+-Aronszajn tree T is
M-special if T is isomorphic to a subtree of {s ∈ <κ+κ|s is 1-1}

The following lemma is a generalisation of Lemma 2.7, hence we left the
proof as an exercise.

Lemma 3.15. Let κ be a regular cardinal. If T is a normal special κ+-
Aronszajn tree then T is M-special.

As in the case for ω1, at the limit step we use just the assumption that
the tree is normal. Hence we can generalize this lemma to the following

7When defining gα+1, we need to ensure that we can map qα into an interval which
is disjoint from the intervals gα(β), β < α, while respecting the ordering. Without the
shrinking at the limit stages of the construction, the intervals might converge in a way
which prevents the definition of gα+1(qα).
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lemma. Note that for this we do not need the assumption κ<κ = κ since
we use that the tree

⋃
α<κ+ Tα+1 is special instead of Qκ-embeddable. We

explicitly state this lemma here so it is clear that M-special trees are exactly
those trees that are normal and whose successor levels form a special tree,
as was the case at ω1.

Lemma 3.16. Let κ be a regular cardinal. Let T be a normal κ+-Aronszajn
tree. Then T ∗ =

⋃
α<κ+ Tα+1 is special if and only if T is M-special.

Proof. (⇒) Let T ∗ =
⋃
α<κ+ Tα+1 be special. Then T ∗ =

⋃
ξ<κAξ where

Aξ is an antichain for each ξ < κ. The rest of the proof is the same as the
proof of Lemma 3.15.

(⇐) Let T be an M-special tree. Then T is isomorphic to a subtree T ′ of
{s ∈ <κ+κ|s is 1-1} via i. We define f : T ∗ → κ by setting f(t) = i(t)(α)
for ht(t, T ) = α + 1. Let s < t ∈ T ∗. Then ht(s, T ) = β + 1 < α + 1 =
ht(t, T ). Since i(s) ⊂ i(t), i(s)(β) = i(t)(β). As i(t) is 1-1, i(t)(β) 6= i(t)(α).
Therefore f(s) 6= f(t).

On the other hand, generalisation of Lemma 2.8 requires the additional as-
sumption that κ<κ = κ since we need to use Generalised Kurepa’s Theorem.

Lemma 3.17. Assume κ<κ = κ. Let T be a κ+-Aronszajn tree. T is a
normal Rκ-embeddable tree if and only if T is M-special.

Proof. It follows by Theorem 3.13 and Lemmas 3.12 and 3.16.

Unlike special ω1-Aronszajn trees, it is not provable in ZFC that special
κ-Aronszajn trees exist for κ > ω1. Hence we are also interested in the
question how the existence of one kind of special Aronszajn trees influences
the existence of other kinds of special Aronszajn trees. The following lemma
claims that if there are no M-special Aronszajn trees then there are no special
Aronszajn trees at all.

Lemma 3.18. Let κ be a regular cardinal. If there exists a special κ+-
Aronszajn tree, then there exists an M-special Aronszajn tree.

Proof. Let T be a special κ+-Aronszajn tree. We first add one root r such
that r < t for each t ∈ T0. Now we wish to guarantee the condition (iv) of
Definition 1.5. Let α < κ+ be a limit ordinal and let C be a cofinal branch
in T � α such that there exists node t ∈ T greater than all nodes c ∈ C.
Then we add one extra node tC to the limit level α such that tC > c for all
c ∈ C and tC < t for all t > C, where t > C means t > c for all c ∈ C.

Since for every chain we add one extra node to the limit level, this new tree
satisfies (iv). Denote this tree T ′. This tree is normal and T =

⋃
α<κ+ T

′
α+1.

By Lemma 3.16 the tree T ′ is M-special.
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As in previous section it makes sense to introduce the concept of S-special
Aronszajn trees.

Definition 3.19. Let κ be a regular cardinal and S be an unbounded subset
of κ+. We say that the κ+-tree T is S-special if T � S is special, where
T � S = {t ∈ T |ht(t, T ) ∈ S} with the induced ordering. We say that a
κ+-tree T is S-special if there is S, an unbounded subset of κ+, such that
T is S-special. We denote the class of all S-special κ+-Aronszajn trees as
AS-sp(κ+).

The proofs of the following lemmas are direct generalisations of proofs of
Facts 2.10 and 2.11.

Lemma 3.20. Let C be a closed unbounded subset of κ+, where κ is a
regular cardinal. If T is a C-special κ+-Aronszajn tree, then T is special.

Proof. Let T be a C-special κ+-Aronszajn tree. Then T � C =
⋃
ν<κAν ,

where each Aν is an antichain. Let {aνα|α < κ+} be an enumeration of Aν
for each ν < κ. Let {cα|α < κ+} be the monotone enumeration of C. For
α < κ+ and for x ∈ Tcα , we define Sx = {y ∈ T � cα+1|x <T y}. Since each
Sx has size less than κ+, let {sµ(x)|µ < κ} be an enumeration of Sx. Set

(3.8) Aν,µ = {sµ(aνα)|α < κ+}.

Clearly, Aν,µ is an antichain of T for each ν, µ < κ. Since C is closed
unbounded, T =

⋃
ν<κAν ∪

⋃
ν,µ<κAν,µ. Hence T is special.

Lemma 3.21. Let κ be a regular cardinal and S be an unbounded subset of
κ+. If every κ+-Aronszajn tree is S-special then every κ+-Aronszajn tree is
special.

Proof. Let S = {αµ|µ < κ+} be an unbounded subset of κ+ and T be a
S-special κ+ Aronszajn tree. We define a new tree

(3.9) T ′ = {〈t, β〉 |t ∈ T and β < αht(t,T ) and ∀s < t(αht(s,T ) < β)}.

The tree T ′ is ordered by <T ′ as follows: 〈t, β〉 <T ′ 〈s, γ〉 if and only if
t < s or (t = s and β < γ). It is obvious that T satisfies our definition
of Aronszajn tree. Hence T ′ is S-special, i.e. T ′ � S is special. Since T is
isomorphic to T ′ � S = {

〈
t, αht(t,T )

〉
|t ∈ T}, T is special.

Again, note that S-special κ+-Aronszajn trees are not Suslin in a strong
sense. This means that every subset of size κ+ of such tree contains an
antichain of size κ+. Hence we can generalize Definition 2.12 and Lemma
2.14.
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Definition 3.22. Let κ be a regular cardinal and T be a κ+-Aronszajn
tree. We say that T is non-Suslin if every subset U of T , which has size
κ+, contains an antichain of size κ+. We denote the class of all non-Suslin
Aronszajn trees at κ+ as ANS(κ+).

The proof of following lemma is a direct generalisation of proof of Fact 2.13.

Lemma 3.23. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If
T is not non-Suslin, then T has a subtree which is Suslin.

Proof. Let T be a κ+-Aronszajn tree, which is not non-Suslin. Then there
is a subset X of T such that |X| = κ+ and X does not contain antichain of
size κ+. We define T ′ = {s ∈ T |∃t ∈ X(s < t)}. It is easy to verify that T ′

is Suslin.

The proof of following lemma is a direct generalisation of proof of Lemma
2.14.

Lemma 3.24. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If
T is S-special, then T is non-Suslin.

The following theorem is only the summary of what we have showed about
the relative existence of different kinds of special Aronszajn trees. It tells
us that the weak tree property8 at κ+ is equivalent to the claim that there
are no M-special κ+-Aronszajn trees and also to the claim that there are no
S-special κ+-Aronszajn trees.

Theorem 3.25. Let κ be a regular. The following are equivalent

(i) Asp(κ+) = ∅;

(ii) AM (κ+) = ∅;

(iii) AS−sp(κ+) = ∅.

Proof. Ad (i) ⇔ (ii). The claim from left to right follows from Lemma 3.16
and the converse follows from Lemma 3.18.

Ad (i) ⇔ (iii). This follows from the definition of S-special κ+-Aronszajn
tree.

To sum up:

(3.10) Asp(κ+) ⊆ AS−sp(κ+) ⊆ ANS(κ+) and AM (κ+) ⊆ AS−sp(κ+).

8We say that a cardinal κ+ has the weak tree property, if there are no special κ+-
Aronszajn trees.
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If moreover we only consider normal trees and assume that κ<κ = κ, we get:
(3.11)
Asp(κ+) = T(Qκ)(κ+) ⊆ T(Rκ)(κ+) = AM-sp(κ+) ⊆ AS-sp(κ+) ⊆ ANS(κ+).

3.3 Existence

We are interested in special Aronszajn trees at successors of regular cardi-
nals. While the existence of a special ω1-Aronszajn tree can be proved in
ZFC, at higher cardinals we need some additional assumption, for example
κ<κ = κ or weak square principle. The first one was used in construction
by Specker in [Spe49] and the second one in the construction by Jensen in
[Jen72]. On the other hand, it is possible to find a model with no special
κ+-Aronszajn tree where κ > ω is regular, but this requires much stronger
assumption. Throughout this section we assume that κ is a regular cardinal
and κ > ω.

Definition 3.26. Eκ
+

κ = {α < κ+|cf(α) = κ}

This theorem is our generalisation of Fact 2.15. As a corollary we obtain
that the first inclusion in (3.10) can be consistently proper.

Theorem 3.27. Assume κ<κ = κ and ♦κ+(Eκ
+

κ ). Then there is an M-
special κ+-Aronszajn tree, which is not special.

Proof. By ♦κ+(Eκ
+

κ ) there is a sequence 〈fα|α ∈ Eκ
+

κ 〉 such that fα is a
function from α to α and for any function f : κ+ → κ+ the set {α ∈
Eκ

+

κ |fα = f � α} is stationary in κ+. We fix this sequence for the rest of
the proof.

We construct the tree T and the function π : T → κ+, which will code
the tree in κ+, by induction on α < κ+. For each α < κ+ we require the
following conditions:

(T1) If s ∈ T � α then |κ \ Rng(s)| = κ.

(T2) If s ∈ T � α and x ∈ [κ \Rng(s)]<κ then there is s′ ⊇ s on each higher
level of T � α such that Rng(s′) ∩ x = ∅.

(π0) πα is a 1-1 map from T � α to κ+ such that s ⊆ t → πα(s) < πα(t)
and for β < α, πβ ⊆ πα.

Let T0 = {∅} and π1 is an arbitrary function from T � 1 = T0 to κ+. It is
clear that T0 satisfies both conditions and π1 satisfies (π0).

Let α = β+1. Suppose T � (β+1) and πβ+1 are defined and they satisfy the
conditions mentioned above. We want to construct level Tα. For each s ∈ Tβ
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we add all one-point extensions s ∪ {〈α, ν〉} of s such that ν ∈ κ \ Rng(s).
This is possible by (T1), which guarantees the existence of κ-many such
extensions. Since we add all such extension of s, for each x ∈ [κ \Rng(s)]<κ

we can always find t ∈ Tα such that s ⊆ t and x ∩ Rng(s) = ∅; therefore
T � (α+ 1) satisfies (T2). As T � (β + 1) satisfies (T1), T � (α+ 1) satisfies
(T1), too. To obtain πα+1, we extend πα arbitrarily such that it satisfies
the condition (π0).

Let α be limit. For each β < α, suppose T � β and πβ are defined and they
satisfy the conditions mentioned above. We need to distinguish two cases.
First, if α has cofinality less than κ then we add all possible sequences. We
can do that since κ<κ = κ.

Second, if α has cofinality κ then let T ′α =
⋃
β<α Tβ and π∗α =

⋃
β<α πβ. We

construct for each s ∈ T ′α and x ∈ [κ \ Rng(s)]<κ node sx above s of height
α such that x ∩ Rng(s) = ∅. Let us fix for the rest of the proof a bijection
g from κ to Qκ. Again, we need to distinguish two cases. First, if fα ◦ g
embeds π∗α

′′T ′α to Qκ and Dom(fα) = π∗α
′′T ′α, then set

(3.12) Xα =
{

(s, x)|s ∈ T ′α & x ∈ [κ]<κ & Rng(s) ∩ x = ∅
}
.

For (s, x), (t, y) in Xα, we define (s, x) ≤α (t, y) if and only if s ⊆ t and
x ⊆ y. For each q ∈ Qκ, set

∆α
q = {(s, x) ∈ Xα|g(fα(π∗α(s))) ≥Qκ q or

(∀(t, y) ∈ Xα)((t, y) ≥α (s, x)→ g(fα(π∗α(t))) <Qκ q)} .(3.13)

It is easy to see that ∆α
q is cofinal in Xα.

Let s ∈ T ′α and x ∈ [κ \ Rng(s)]<κ be given. First we fix an increasing
sequence 〈αγ |γ < κ〉 with limit α and α0 = length(s). By induction we

construct an increasing sequence
〈

(sγ , xγ)∆α
g(γ)|β < κ

〉
with length(sγ) ≥

αγ for all γ < κ.

Let s′0 = s and x′0 = x. By definition of Xα, (s′0, x
′
0) is in Xα and as ∆α

g(0)

is cofinal in Xα, we can find (s0, x0) ≥α (s′0, x
′
0) in ∆α

g(0).

If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume
(sβ, xβ) is defined. By (T1) there is νβ ∈ κ\(Rng(sβ)∪xβ). Let x′β+1 = xβ∪
{νβ}. By (T2) we can find s′β+1 ∈ T ′α such that s′β+1 ⊇ sβ, length(s′β+1) ≥
αβ+1 and Rng(s′β+1)∩ x′β = ∅. By definition of Xα, (s′β, x

′
β) is in Xα and as

∆α
g(β) is cofinal in Xα, we can find (sβ+1, xβ+1) ≥α (s′β+1, x

′
β+1) in ∆α

g(β+1).

Let γ < κ be limit. Since γ < κ we can take s′′γ =
⋃
β<γ sβ and x′γ =⋃

β<γ xβ. As κ is regular, |x′γ | < κ. Note that Rng(s′′γ) ∩ x′γ = ∅, but
length(s′′γ) does not have to be greater or equal to αγ . However, by (T2)
there exists s′γ ⊇ s′′γ such that Rng(s′γ) ∩ x′γ = ∅ and length(s′γ) ≥ αγ . By
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definition of Xα, (s′γ , x
′
γ) is in Xα and as ∆α

g(γ) is cofinal in Xα, we can find

(sγ , xγ) ≥α (s′γ , x
′
γ) in ∆α

g(γ).

In the other case, if fα ◦ g does not embed π∗α
′′T ′α to Qκ, then we proceed

similar as before. Let s ∈ T ′α, x ∈ [κ \ Rng(s)]<κ and 〈αγ |γ < κ〉 be cofinal
in α with α0 = length(s). By induction we construct an increasing sequence
〈(sγ , xγ)|β < κ〉 with length(sγ) ≥ αγ for all γ < κ.

Let s0 = s and x0 = x.

If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume
(sβ, xβ) is defined. By (T1) there is νβ ∈ κ\ (Rng(s)∪xβ). Let xβ+1 = xβ ∪
{νβ}. By (T2) we can find sβ+1 ∈ T ′α such that sβ+1 ⊇ sβ, length(sβ+1) ≥
αβ+1 and Rng(sβ+1) ∩ xβ+1 = ∅.

Let γ < κ be limit. Since the size of γ is less than κ, we can take s′γ =⋃
β<γ sβ and xγ =

⋃
β<γ xβ. As κ is regular, |xγ | < κ. Note that Rng(s′γ) ∩

xγ = ∅, but length(s′γ) does not have to be greater or equal to αγ . However
by (T2) there exist sγ ⊇ s′γ such that Rng(sγ)∩xγ = ∅ and length(sγ) ≥ αγ .

Let sx =
⋃
γ<κ sγ . We define the level Tα = {sx|s ∈ T ′α and x ∈ [κ \ Rng(s)]<κ}.

It is easy to verify that T � (α+ 1) = T ′α ∪ Tα satisfies the condition (T1)
and (T2). Again, we can extend π∗α to πα+1 on T � (α+ 1) arbitrarily such
that it satisfies the condition (π0).

Finally, set T =
⋃
α<κ+ Tα and π =

⋃
α<κ+ πα. Then π : T → κ+ is a

function such that s ⊆ t→ π(s) < π(t).

For a contradiction assume that T is special. As we assume κ<κ = κ, by
Lemma 3.12 T is special if and only if T is Qκ-embeddable. Therefore there
is a function f : κ+ → κ such that f ◦ g embeds π′′T in Qκ. Let

C =
{
α < κ+|α is a limit ordinal and π′′(T � α) = π∗α

′′T ′α and

f ◦ g � α embeds π∗α
′′T ′α in Qκ and

(∀s ∈ T ′α)(∀x ∈ [κ \ Rng(s)]<κ)(∀q >Qκ g(f(π(s)))

((∃t ∈ T )(t ⊇ s & Rng(t) ∩ x = ∅ & g(f(π(t))) ≥Qκ q)

→ (∃t′ ∈ T ′α)(t′ ⊇ s & Rng(t′) ∩ x = ∅ & g(f(π(t′))) ≥Qκ q)
}
.(3.14)

It is easy to verify that C is a closed unbounded subset of κ+. As we assume
♦κ(Eκ

+

κ ), the set {α ∈ Eκ+κ |f � α = fα} is stationary, so there is α ∈ C such
that f � α = fα and α has cofinality κ. Let t ∈ Tα and let q = g(f(π(t))).
By the construction of T , there is (s, x) ∈ ∆α

q such that Rng(s)∩ x = ∅ and
s ⊂ t. Since f◦g, and π are order-preserving, g(f(π(s))) <Qκ g(f(π(t))) = q.

Since g(f(π(s))) <Qκ q and g(f(π(t))) ≥Qκ q, by the definition of C there
exists t′ ∈ T ′α such that t′ ⊇ s, Rng(t′) ∩ x = ∅ and g(f(π(t′))) ≥Qκ q.
Note that (s, x), (t′, x) are in Xα and (s, x) ≤α (t′, x). Since (s, x) is in
∆α
q and f � α = fα, by (3.13) it must hold that g(fα(π(s))) ≥Qκ q. But
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fα = f � α and so g(f(π(s))) ≥Qκ q. This contradicts our earlier inequality
g(f(π(s))) <Qκ q.

Corollary 3.28. Assume κ<κ = κ and ♦κ+(Eκ
+

κ ). Then there is an Rκ-
embeddable κ+-Aronszajn tree, which is not special.

Proof. By Lemma 3.17, every M-special κ+-Aronszajn tree is Rκ-embeddable.

Corollary 3.29. Assume κ<κ = κ and ♦κ+(Eκ
+

κ ). Then there is an S-
special κ+-Aronszajn tree, which is not special.

Proof. By Lemma 3.16, every M-special κ+-Aronszajn tree is S-special for
S = {α+ 1|α < κ+}.

The next lemma is a straightforward generalisation of Lemma 2.16 and tells
us that the last inclusion in (3.10) can be consistently proper.

Lemma 3.30. Assume κ<κ = κ and ♦κ+(Eκ
+

κ ). Then there is a κ+-
Aronszajn tree, which is S-special for some S unbounded subset of κ+ and
it is not M-special and by our assumption it is not Rκ-embeddable.

Proof. The proof is the same as in Lemma 2.16.

To show that the second inclusion in (3.10) can be consistently proper, i.e.
that AS-sp 6= ANS , we need to introduce the notion of an ω-ascent path,
which is due to Laver.

Definition 3.31. Let κ be a regular cardinal. We say that a κ+-Aronszajn
tree T has the property of the ω-ascent path if there is a sequence 〈xα|α < κ+〉
such that

(i) for each α < κ+, xα is a function from ω to Tα;

(ii) if α, β < κ with α < β then ∃n ∈ ω ∀m ≥ n xαm < xβm.

If the tree T has a cofinal branch, then this branch is a 1-ascent path and
it is obvious that T is not special. But Aronszajn trees do not have cofinal
branches. Thus an ω-ascent path is a pseudo-branch with width ω which
prevents the tree from being special.

The following fact is due to Shelah ([SS88]), building on work of Laver and
Todorčević.

Fact 3.32. Let κ > ω be a regular cardinal. Let T be a κ+-Aronszajn tree
with the property of an ω-ascent path. Then T is not special.
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Remark 3.33. No such argument can exist for ω1-trees since it is impor-
tant for the proof that there is a regular cardinal between ω and κ+. This
is the difference between the specialization forcing for ω1 and for higher car-
dinals. In the case of higher cardinals, if T has an ω-ascent path, then any
specialization forcing must collapse cardinals. On the other hand, as was
pointed out by a referee, Baumgartner showed that an ω1-tree has a cofinal
branch if and only if it contains an ascent path of finite width. In particu-
lar, the nonexistence of paths of finite width implies that the corresponding
specialization forcing has the ccc.

Corollary 3.34. Let κ be a regular cardinal. Let T be a κ+-Aronszajn tree
with the property of an ω-ascent path. Then T is not S-special.

Proof. Let S ⊆ κ+ be an unbounded subset of κ+ and 〈xα|α < κ+〉 be an
ω-ascent path. Then 〈xα|α < κ+〉 � S is ω-ascent path for T � S and by the
previous theorem T � S is not special.

The construction of the following tree can be found in [SS88].9

Fact 3.35. Let κ be a regular cardinal. Assume �κ. Then there is a non-
Suslin κ+-Aronszajn tree with ω-ascent path.

Hence we can conclude that the second inclusion in (3.10) can be consistently
proper.

Corollary 3.36. Let κ be a regular cardinal. Assume �κ. Then there is a
non-Suslin κ+-Aronszajn tree T such that T is not S-special.

Proof. It follows from Corollary 3.34 and Fact 3.35.

9It is worth noting that Todorčević also constructed Aronszajn trees with ascent paths
from weaker assumptions, see [Tod89].
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