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1. Introduction

We will discuss areas of set theory which are relevant for other fields in
mathematics:

• Strengthenings of the Continuum Hypothesis (CH) which are often
more useful than the plain CH. For instance, ZFC + ♦ω1(S) for ev-
ery stationary S ⊆ ω1 implies that every Whitehead group on ω1 is
free (a result of Shelah, see [4] for more details; also see Section 8.2.1
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for a brief outline of the problem); or, ZFC + ♦ω1(ω1)1 implies that
there exists a dense linear order which is complete in the ordering and
satisfies ccc, and yet is not isomorphic to the real line (Suslin line).
Kaplansky’s conjecture, see Section 8.3.1, is an example of a problem
which is decided in one way by CH alone.
• Strengthenings of the negation of the Continuum Hypothesis which are
often more useful than the plain ¬CH or 2ω = ω2: most importantly,
the so called forcing axioms, such as Martin’s Axiom MAω1 or even
stronger Proper forcing axiom (PFA). In the above mentioned results,
see [4], it shown that MAω1 implies there exists a Whitehead group of
size ω1 is which is not free. MAω1 also implies there are no Suslin lines.
Kaplansky’s conjecture is decided by PFA.
• Many apparently simple questions lead to answers which have a strictly
stronger consistency strength then ZFC. The strength is usually mea-
sured in terms of large cardinals: we shall meet the more known ones,
such as inaccessible, weakly compact, measurable and strongly com-
pact cardinals. For instance the consistency strength of the theory
ZF+ “all subsets of R are Lebesgue-measurable” is exactly one inacces-
sible cardinal, while the consistency of ZFC+ “the Lebesgue measure
can be extended to all subsets of R (while losing translation-invariance,
of course)” is exactly one measurable cardinal. There are also direct
implications, the existence of a measurable cardinal implies that all Σ1

2

sets are Lebesgue-measurable.
• Many combinatorial principles are best analysed by means of infinite
trees: we will discuss Aronszajn and Suslin trees and their construc-
tions.

2. Preliminaries

2.1. Basic concepts

Notation: unless specified otherwise, κ, λ, µ, . . . will range over infinite car-
dinals. α, β, γ, . . . will range over ordinals. n,m, k will range over natural
numbers. ξ, i may range over anything. Ord denotes the proper class of ordi-
nal numbers, Card denotes the proper class of cardinal numbers, ω denotes the
set of natural numbers. P(x) is the powerset of x, the set of all its subsets.
{x |ϕ(x)} denotes the class of all x satisfying ϕ; 〈xξ | ξ < κ〉 denotes a function
f with domain κ and range {xξ | ξ < κ} with f(ξ) = xξ. If x = {xξ | ξ < κ} is
a collection of sets, we may write either

⋃
ξ<κ xξ or

⋃
{xξ | ξ < κ} for

⋃
x.

The following concepts should be familiar to the reader:

1♦ω1(ω1) is often denoted just by ♦ω1 or even just ♦ (see Definition 2.14 for more details).
Note that by a result of Shelah ♦ω1(ω1) does not imply ♦ω1(S) for every stationary S ([8]).
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– Axioms of ZFC = ZF+AC, where AC denotes the Axiom of Choice (for every
collection x of non-empty sets there is a function f with domain x such that
f(x) ∈ x for every x). AC is equivalent to many statements, in particular to
the principle which says that every set can be well-ordered.2

– Well-orderings, ordinal and cardinal numbers. Ordinal numbers are canon-
ical representatives for the equivalence classes with respect to the isomor-
phism relation on the class of all well-orderings. Historically, there are more
definitions of cardinal numbers, all equal under AC. For concreteness: an
ordinal numbers α is called a cardinal number if there is no β < α and a
bijection between β and α. Ordinal numbers measure “length” (of an enu-
meration), cardinal numbers measure “size”. It is important to remember
that while these two concepts are the same for finite sets, they are different
for infinite sets.

– The notion of cofinality: if α is a limit ordinal, then cf(α) is the least cardinal
κ for which there exists a strictly increasing sequence 〈αξ | ξ < κ〉 whose
supremum is α. It can be shown that ω ≤ cf(α) = cf(cf(α)) ≤ α, and the
sequence 〈αξ | ξ < κ〉 can be assumed to be continuous at its limit points.

– κ is a regular cardinal if cf(κ) = κ, it is singular otherwise. cf(α) is always
a regular cardinal.

– Cardinal addition and multiplication: for all κ, λ, κ + λ = λ + κ = κ · λ =
λ · κ = max{κ, λ}, where κ+ λ is the size of the disjoint union of κ, λ, and
κ · λ the size of the product κ× λ.

– Cardinal exponentiation: 2κ denotes the size of P(κ). It can be shown that
κ < λ implies 2κ ≤ 2λ (but not in general 2κ < 2λ).

– Cantor’s theorem says κ < 2κ.
– König’s lemma makes a stronger claim that κ < cf(2κ) ≤ 2κ.
– In particular, the size of the real numbers R is 2ω and the cofinality of 2ω

must be uncountable.
– Ordinal addition and multiplication: α+ β denotes the unique ordinals iso-
morphic to a well-ordered set which starts as α and continues as β, more
formally, α+β denotes the order-type of the set ({0}×α)∪({1}×β) ordered
lexicographically. This operation is not in general commutative, for instance
ω = n+ ω < ω + n, for any n < ω.

– Let ℵ : Ord → Card \ ω be the unique isomorphism. Then ℵ(α) = ℵα
denotes the α-th infinite cardinal number.

– AC implies that for every x there is a (necessarily unique) κ with a bijection
between x and κ. We write |x| = κ to indicate that x has size κ.

2N,Z,Q can be shown to be well-orderable just in ZF; this is not the case for R, a matter
of confusion at the beginnings of set theory.
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– AC implies that for every α, ℵα+1 is a regular cardinal. The least singular
cardinal is ℵω with cofinality ω, ℵω+ω is the next one; ℵω1 is a singular
cardinal with cofinality ω1.

– We will write ωα instead of ℵα (double notation).
– We write κ+ to denote the cardinal successor of κ; more generally κ+ξ is the
ξ-th successor of κ.

– CH, the continuum hypothesis, says that the size of R is the least possible:
ω1. This implies that one can enumerate reals as a sequence 〈rξ | ξ < ω1〉;
i.e. it is possible to carry out a recursive construction over the reals whose
initial parts are at most countable.

– GCH, the general continuum hypothesis, says that for every κ, 2κ = κ+.
GCH is consistent with the axioms of ZFC.3

2.2. Cardinal arithmetics

Notation: Suppose 〈κξ | ξ < µ〉 is a sequence of cardinal numbers. Then∑
ξ<µ κξ denotes the size of the disjoint union of sets

⋃
{{ξ} × κξ | ξ < µ}.

If x, y are sets, then xy denotes the set of all functions with domain x and
range in y. In particular, |x2| = 2|x|. If µ is a cardinal number, then <µx
denotes thet set

⋃
ξ<µ

ξx. If κ = |x|, we write |<µx| = κ<µ.

Lemma 2.1. (i)
∑

ξ<µ κξ = sup{κξ | ξ < µ} · µ. In particular if 1 ≤ κ and
ω ≤ µ, then κ<µ = sup{κ|α| |α < µ}.

(ii) For every set x, |<ωx| = |x|+ω. In particular, if L is an at most countable
first-order signature, then there are just countably many formulas in the
language L.

(iii) The size of ωx cannot in general be computed just from the size of x, but
at least we have (κµ)ν = κµ·ν , so in particular |ωR| = |R| = 2ω.

Proof. (i) Let ν denote sup{κξ | ξ < µ}. We show there exists an injection (a)
from

⋃
{{ξ} × κξ | ξ < µ} into µ× ν, and (b) conversely. For (a), the identity

function works. For (b), it suffices to notice that there is an injection from µ,
and also one from µ; since µ · ν = max{µ, ν}, this suffices.

(ii) Let κ = |x|. Clearly, |<ωx| = κ<ω =
∑

n<ω κ
n = κ+ ω.

(iii) Obvious. �

Regarding (iii), what can we say about the special case of ωℵω? This in-
teresting both from the point of set theory, and also from the point of history
because this question was incorrectly answered by Bernstein, and König used
Bernsteins’s (incorrect) claim4 to argue that 2ω is not a cardinal; but König’s

3First shown by Gödel in 1930’s using the constructible universe L; can be also shown by
forcing (a method developed by Cohen in 1960’s).

4Bernstein proved in his dissertation an incorrect claim that ℵωα = ℵα · 2ω for all α.
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argument was otherwise solid and without the mistaken claim, it correctly
showed that cf(2ω) 6= ω.
Example. Suppose 2ω = ω1, then for all 1 ≤ n < ω, ℵωn = ℵn (proof easy).

By a difficult theorem of Shelah, this breaks down at ℵω: even if GCH holds
below ℵω, then ℵωω (in this case = 2ℵω) is provably (in ZFC) bounded by ℵω2 ,
yet it is consistent that 2ℵω = ℵω+α+1 for any α < ω1. This “breaking-down”
can take place in general at all singular cardinals with countable cofinality.
Example. The case of singular cardinals with uncountable cofinalities is

completely different: Silver showed in 1970’s that (to take a specific example)
if GCH holds below ℵω1 , then it continues to hold at ℵω1 . In fact, it suffices if
it holds at a stationary set below ℵω1 , we shall discuss stationarity below.

One of the reasons for this difference is the structure of closed unbounded
subsets of limit cardinals which behaves pathologically at countable cofinalities
(we will discuss this later).5

We conclude this section by showing how GCH determines the exponentia-
tion function.

Lemma 2.2. Assume GCH holds. Let κ, µ be infinite cardinals. Then if (i)
κ ≤ µ, then κµ = 2µ = µ+, (ii) cf(κ) ≤ µ ≤ κ, then κµ = κ+, (iii) µ <
cf(κ) ≤ κ, then κµ = κ.

Proof. (i) κµ ≤ 2κ·µ = 2µ = µ+.
(ii) κ < κcf(κ) ≤ κµ ≤ κκ = 2κ = κ+, and so κcf(κ) = κµ = κ+.
(iii) κµ =

∑
α<κ |α|µ = sup{|α|µ |α < κ} · µ. Let ν = (|α| · µ)|α|·µ; note that

ν < κ. Then |α|µ ≤ νν = ν+ ≤ κ, and so κµ = sup{|α|µ |α < κ} · µ = κ. �

2.3. Filter of closed unbounded sets

Before we move to trees at uncountable cardinals, we need to review the notion
of a closed unbounded sets. Let κ be a regular uncountable cardinals.

To motivate the notional of closed unbounded set, consider the following
example. Let f : κ→ κ be a function. Let us say that α < κ is a closure point
of f if for all β < α, f(β) < α. Let us denote CL(f) the set of closure points.

Claim 2.3. (i) The set CL(f) is unbounded in κ, that is for every α < κ
there is some β such that β ∈ CL(f) and α ≤ β.

(ii) The set CL(f) is closed in κ, that is if α < κ is a limit ordinal, and
CL(f) ∩ α is unbounded, then α ∈ CL(f).

Proof. Ad (i). The proof is a special case of the Skolem hull argument for the
construction of a substructure of κ which is closed under f and contains as a

5To anticipate a little: if α has cofinality ω, then there are disjoint closed unbounded
subsets of α: the reason is that being closed is trivial for sequences of length ω; this cannot
happen at uncountable cofinalities.
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subset a given α ∈ κ (note that by transitivity of κ, α ⊆ κ). Let α ∈ κ be given.
By induction of length ω construct β ⊇ α, β ∈ κ, which is closed under f . Set
α = α0, and if n is already constructed, αn+1 = max(αn, sup{f(γ) + 1 | γ ∈
αn}). Set β = sup{αn |n ∈ ω}; by regularity of κ, β ∈ κ. It follows that β ≥ α
is a closure point of f .

Ad (ii). Trivial. �

The two properties of CL(f) identified above lead to the concept of an closed
unbounded set. We say that X ⊆ κ is club if it is unbounded and closed in κ.

Lemma 2.4. If C and D are clubs in κ, then C ∩D is a club in κ

Proof. We first show that C ∩D is closed. This is clear: if α is a limit ordinal
and C ∩ α and D ∩ α are both unbounded in α, then by closedness of C,D,
α ∈ C ∩D.

The key of the proof is to show the unboundedness. Let α < ω1 be given, we
wish to find some β ≥ α such that β ∈ C ∩D. Let us construct by recursion
a sequence 〈ci | i < ω〉 of elements of C and 〈di | i < ω〉 of elements of D as
follows. Choose c0 ∈ C and d0 ∈ D so that α < c0 < d0. In general, in the step
n+ 1, choose cn+1 ∈ C and dn+1 ∈ D so that . . . cn < dn < cn+1 < dn+1. Let
us denote c = sup{ci | i < ω} and d = sup{di | i < ω}. First note that c = d
and that c (and d) is a limit ordinal of countable cofinality. By closedness of
C and D, c ∈ C ∩D. �

Corollary 2.5. If {Ci | i < µ} is a set of clubs in κ for some µ < κ, then⋂
i<µCi is a club in κ.

Proof. This is a simple generalization of Lemma 2.4, using the regularity of κ.
See proof of Lemma 2.8 for more details. �

Exercise. Let C be a club. Let us denote as D the set of all limit ordinals
in C. Show that D is a club.

Exercise. Let C be a club and let Lim(C) be the set of limit points of C,
where α ∈ C is a limit point of C if C ∩ α is unbounded in α. Show that
Lim(C) is a club (which is strictly smaller than C).

Lemma 2.4 allows us to define the closed unbounded filter generated by the
club sets. Let us denote this filter as Club(κ):

Club(κ) = {X ⊆ κ | there is a club C such that C ⊆ X}.

We say that a filter F is κ-complete for a regular cardinal κ if for every family
{Xi | i < λ} of elements of F , where λ < κ, the intersection

⋂
{Xi | i < λ} is in

F .

Corollary 2.6. The filter Club(κ) is κ-complete.
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Proof. Follows from Corollary 2.5. �

Note. Under AC, Club(κ) is never an ultrafilter (see in Theorem 2.11).
The existence of an ω1-complete ultrafilter on any regular κ is a very strong
assumption which postulates the existence of the so called measurable cardinal.

Let us denote as NS(κ) the dual ideal to Club(κ):

NS(κ) = {X ⊆ κ |κ \X ∈ Club(κ)}.
We call the ideal NS(κ) the non-stationary ideal on κ. The Lemma 2.6, the
non-stationary ideal NS(κ) is κ-complete.6 We say that X ⊆ κ is stationary if
X 6∈ NS(κ).

Lemma 2.7. X ⊆ κ is stationary iff X ∩ C 6= ∅ for every club C.

Proof. If X is stationary, then κ \X is not in Club(κ). This means that there
is no C so that C ⊆ κ \X, or equivalently for any club C, C 6⊆ κ \X, which
is the same as C ∩X 6= ∅.

For the converse, just run the argument in the opposite direction. �

The club filter Club(κ) satisfies another important property, that of normal-
ity. Let Xi for i < κ be subsets of κ. Let us define the diagonal intersection

4i<κXi = {ξ < κ | ξ ∈
⋂
ζ<ξ

Xζ}.

Lemma 2.8. The filter Club(κ) is normal, that is it is closed under the diag-
onal intersections of length κ: If for every i < κ, Xi is an element of Club(κ),
then

4i<κXi ∈ Club(κ).

Proof. Let {Ci | i < κ} be clubs such that Ci ⊆ Xi. It suffices to show that
D = 4i<κCi is closed unbounded.

We first show thatD is closed. Let α be a limit ordinal andD∩α unbounded,
we wish to show α ∈ D. This is equivalent to demanding that for all β < α,
α ∈ Cβ . Fix such β < α. Then for all γ, β < γ < α, γ ∈ D implies γ ∈ Cβ ; it
follows D ∩ α is unbounded in Cβ , and hence α ∈ Cβ as desired.

We now show that D is unbounded. Let α < κ be given, we wish to show
there exists β ≥ α, β ∈ D. Set α0 = α and A0 = ∅. Assume αn and An
are already constructed, we show how to construct αn+1 and An+1. Choose
an increasing sequence 〈aβ |β < αn〉 such that aβ ∈ Cβ and aβ > αn for
each β < αn. Set An+1 = {aβ |β < αn} and αn+1 = sup An+1. Finally set
β = sup {αn |n < ω}. In order to verify β ∈ D, we need to check that β ∈ Cγ
for each γ < β. Notice that for every γ < β there exists n < ω such that

6Often, we say σ-complete instead of ω1-complete.
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γ < αn; it follows that for each m ≥ n, there is some a ∈ Am ∩ Cγ . Hence
β ∩ Cγ is unbounded and so β ∈ Cγ as required. �

Note that in general, we cannot hope that any proper filter F on κ is κ+-
complete – for every such F there is a family Xα, α < κ, of elements in F such
that

⋂
α<κXα = ∅. It follows that the diagonal intersection is in some sense

the best we can get.
Exercise*. Any normal filter F on κ is also κ-complete.
Intuitively, if set X is stationary, it means that it is not small in the sense of

the club filter. “Stationarity” is therefore a measure of “largeness” for subsets
of regular cardinals of uncountable cofinality. It has no analogue in case of ω,
because ω has no limit points.

Remark 2.9. The club filter Club(κ) properly extends the Frechet filter F (κ)
on κ, where X ∈ F (κ)↔ X\κ is bounded in κ. A typical subset of κ on which
F (κ) makes no decision, but Club(κ) does, is the set A of all limit ordinals in
κ – A nor its complement κ \A is in F (κ), but A ∈ Club(κ).

We said above that the club filter Club(κ) is not an ultrafilter:

Lemma 2.10. Suppose κ is a regular cardinal. Then κ is a disjoint union of
two stationary sets. In particular Club(κ) is not an ultrafilter.

Proof. First note that if κ is a regular cardinal and µ < κ is also a regular
cardinal, then Eκµ = {α < κ | cf(α) = µ} is a stationary set. It follows that if
κ is at least ω2, then Eκω and Eκω1

are two disjoint stationary subsets of κ.
Interestingly, there is no easy way how to imitate this simple proof for κ =

ω1. It is necessary to use the Axiom Choice, and the so called Ulam matrices
(see any text book on set theory).7 �

In fact, a stronger result hold:

Theorem 2.11 (Solovay). If κ is regular uncountable, then every stationary
subset of κ is a disjoint union of κ-many stationary sets.

Proof. (Sketch) For a successor cardinal κ, Ulam matrices mentioned in the
proof of Lemma 2.10 give the stronger result that every stationary set is a
disjoint union of κ-many stationary sets. For a limit cardinal κ, the proof is a
bit more involved (see for instance [1, Theorem 2.27]). �

We end the discussion of stationary sets by stating a very useful Fodor’s
lemma.

We say that a function f : κ→ κ is regressive if f(α) < α for every α > 0.

7Uder some large cardinal hypotheses, it is consistent with ZF that Club(ω1) is an ultra-
filter (for instance the Axiom of Determinacy implies this).
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Theorem 2.12 (Fodor’s lemma). If f : κ → κ is regressive, then there is a
stationary set S ⊆ κ on which f is constant.

More generally, if f : T → κ is regressive, where T ⊆ κ is stationary, then
there a stationary set S ⊆ T on which f is constant.

Proof. We will just show the case for f : κ → κ, although the generalization
to the second part featuring T is easy.

Assume for contradiction that for each α < κ, the set set f−1′′{α} is non-
stationary, and fix for each α a club Cα such that

(2.1) f−1′′{α} ∩ Cα = ∅.
By diagonal intersection, the set 4αCα is a club. However, any ξ ∈ 4αCα
contradicts the fact that f is regressive: ξ ∈

⋂
ζ<ξ Cζ implies by (2.1) that

ξ 6∈ f−1′′{ζ} ↔ f(ξ) 6= ζ for every ζ < ξ. Thus f(ξ) ≥ ξ, which contradicts
the fact that f is regressive. �

2.4. Diamonds and squares

Jensen discovered several combinatorial principles which are true in L, but
can hold also in more general universes and which can be used to construct
mathematically interesting structures. Later on we will discuss Suslin trees
and non-reflecting stationary sets, and show how these principles can be used
to construct.

Definition 2.13. Let E be a subset of κ+, then �κ(E) holds if there is a
sequence 〈Cα |α < κ+, α limit〉 such that:
(i) Cα is a club in α;
(ii) cf(α) < κ→ ot(Cα) < κ, where ot(Cα) denotes the order-type of Cα;
(iii) if ᾱ < α is a limit point of Cα, then ᾱ 6∈ E and Cᾱ = Cα ∩ ᾱ.
We write �κ instead of �κ(∅). Note that by (iii), we can extend (ii) to

cf(α) = κ → ot(Cα) = κ. Exercise*. Note that �ω is trivially true (provable
in ZFC).

Under the assumption V = L, �κ is true for every infinite cardinal κ.

Definition 2.14. Let E be a stationary subset of κ+. We say that ♦κ+(E)
holds if there is sequence 〈Sα |α ∈ E〉 such that Sα ⊆ α for every α and for
every A ⊆ κ+,

{α ∈ E |Sα = A ∩ α} is stationary.
Under V = L, ♦κ+(E) is true for every stationary E. It is also known that

for every infinite κ ≥ ω1, 2κ = κ+ is equivalent to ♦κ+ . However, there are
limitions for this result which connects GCH with diamond:

• This correspondence fails for κ = ω. By a result of Jensen, CH plus
¬♦ω1 is consistent.
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• Even for regular κ ≥ ω1, 2κ = κ+ does not imply diamond on the
critical cofinality κ, i.e. 2κ = κ+ is consistent with ¬♦κ+(Eκ

+

κ ) (by a
result of Shelah in Theorem 2.16, this is the only restriction).

Let us state the connection with GCH with more detail:

Theorem 2.15 (Gregory). Assume GCH. Let κ be an infinite cardinal. Denote
E = Eκ

+

ω . Then:
(i) If cf(κ) > ω, then ♦κ+(E) holds.
(ii) If moreover �κ holds, then even in case cf(κ) = ω, ♦κ+(E) holds.

Shelah finally proved:

Theorem 2.16 (Shelah). Suppose λ is an uncountable cardinal satisfying 2λ =
λ+. Then ♦λ+(E) holds for every stationary E ⊆ {α < λ+ | cf(α) 6= cf(λ)}.

Remark 2.17. Diamond as a canonical way to construct many disjoint
stationary sets. Let κ be a regular cardinal. We say that two subsets A,B
of κ are almost-disjoint if |A ∩B| < κ.

Claim 2.18. Assume 〈Sα |α < κ〉 is a diamond sequence for κ. Then one can
define 2κ-many almost disjoint stationary subsets of κ “canonically from this
diamond sequence”.

Proof. Let 〈Xi | i < 2κ〉 be some enumeration of subsets of κ. For each i, define

Di = {α < κ |Xi ∩ α = Sα}.
We claim that {Di | i < 2κ} is an almost disjoint family of stationary subsets of
κ. Since 〈Sα |α < κ〉 is a diamond sequence, each Di is stationary. If Xi 6= Xj ,
then without loss of generality there is some ξ ∈ Xi & ξ 6∈ Xj . It follows that
Di and Dj are disjoint in the interval (ξ, κ). �

Remark 2.19. Forcing diamond at ω1. Forcing diamond is quite easy,
in fact the Cohen forcing Add(ω1, 1) adds a diamond (see [7], Theorem 8.3,
p.227).8 Note that this immediately implies that ♦(ω1) is consistent with
2ω1 being arbitrarily large: just carry out Theorem 8.3 over a ground model
satisfying CH where 2ω1 is arbitrarily large (for instance by first forcing with
Add(ω1, κ) for some κ over a model with CH).

3. Linear orders and trees

3.1. Kurepa’s theorem

First we not some useful facts about countable linear orders.
8Add(ω1, 1) always preserves ω1, but collapses 2ω to ω1 (that is, if CH holds in the ground

model, then it does not collapse cardinals).
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Definition 3.1. Let (P,<) be a partially ordered set. We say that A ⊆ P is
an antichain if no two elements in A are comparable in <. We say that A is a
chain if it is linearly ordered under <.

Definition 3.2. Let (A,<) and (B,<) be partial orders. We say that A
embeds in B (or A is B-embeddable) if there is a function f : A→ B which is
a homomorphism with respect to the strict ordering <.

If f : A → B is as above, then f is 1-1 on chains: if C ⊆ A is a chain and
c1 6= c2 are in C, then f(c1) 6= f(c2) (if c1 < c2, then f(c1) < f(c2)). However
f may not be 1-1 on all of its domain – see Kurepa’s theorem below which
shows that there is no bound on the size of (E,<) which embeds in Q.

When we want to say that an embedding f : A → B is 1-1 on all elements
of A, we say it is a 1-1 embedding.

Fact 3.3. (i) (Q, <) is an universal order for countable linear orders: if
(A,<) is an at most countable linear order, then there is an 1-1 embedding
i : A→ Q.

(ii) In particular, if (A,<) is dense linear order without end-points, then A
and Q is isomorphic.

Proof. Ad (i). Let {a0, a1, . . .} be an infinite enumeration of A (if A is finite,
the Fact is trivial). By induction construct i =

⋃
n in, where in+1 is defined on

{a0, . . . , an+1} and extends in by defining i(an+1) to be an element in Q such
that in+1 is an isomorphism between dom(in+1) and rng(in+1).

Ad (ii). Extend the above argument to a back-and-forth argument. �

Remark 3.4. A useful representation of (Q, <), one which is easily generaliz-
able to higher cardinals (see higher Aronszajn trees below), is

A = ({f ∈ ωω | {n < ω | f(n) 6= 0} is finite}, <lex),

or
B = ({f ∈ ω2 | {n < ω | f(n) 6= 0} is finite}, <lex),

where <lex is the lexicographical ordering. (Remove the sequence of constant
0’s if you do not wish to have the least element.)

Claim 3.5. Let ~0 denote the sequence in ω2 such that ~0(n) = 0 for each
n < ω. Then A \ {~0} and B \ {~0} are both isomorphic with Q (with respect to
the lexicographical orders defined above).

Proof. We will focus on B, the case of A is identical. We show that the
ordering (A,<lex) is countable, linear, dense and without endpoints. All of
these follow immediately, except perhaps the density: let x < y in B be given.
Let n be the least such that 0 = x(n) < y(n) = 1. Since there can only
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be finitely many 1’s in x, let k > n be the least such that x(k) = 0; then
z = x�k ∪ {〈k, 1〉} ∪ x�(ω \ (k + 1)) satisfies x < z < y. �

The following is less known (see [11], p.284).

Theorem 3.6 (Kurepa). Let (E,<) be a partially ordered set. Then the fol-
lowing are equivalent:
(i) E is embeddable in Q.
(ii) E is the union of at most countably many antichains.

Proof. (i)→(ii). Define An = f−1(qn) for each qn which is in the range of
f , where {q0, q1, . . .} is some enumeration of rationals. Each An must be an
antichain if f is an embedding.

(ii)→(i). Consider (ω2, <), where < is the lexicographical, and hence linear
ordering. We find an embedding g : E → ω2 such that rng(g) is countable. By
Fact 3.3(i), rng(g) is then embeddable in Q, and by composition, so is E. To
construct g, proceed as follows.

Let first f : E → ω be so defined so that An = f−1(n) is an antichain
of E, and E =

⋃
n∈ω An. We assume here that f is onto ω (that is E is

the union of countably many antichains); if not, modify the argument below
accordingly. For x ∈ E define g(x) so that g(x)(n) = 1 iff n ≤ f(x) and
{y ∈ E | y ≤ x} ∩An 6= ∅.

We check that g is as required. First notice that each g(x) has only finitely
many 1’s because g(x)(n) = 1 implies that n ≤ f(x), where f(x) ∈ ω. Thus
rng(g) is only countable. Notice further that the following holds for all elements
in E:

(3.2) (∀x, y ∈ E) (m,n ∈ ω)
(
x ∈ Am → [g(x)(m) = 1 &

(x < y & y ∈ An & m ≤ n)→ g(y)(m) = 1)]
)
.

Assume now x < y are in E, we want to show that g(x) < g(y). Let x ∈ Am
and y ∈ An for some n 6= m, and let l = min(m,n). Clearly, for all k ≤ l , if
g(x)(k) = 1, then g(y)(k) = 1. We now distinguish two cases.

Case 1: m < n, and so l = m. In this case, by (3.2), g(x)(m) = g(y)(m) = 1.
For all k > m, it must be g(x)(k) = 0. So to ensure g(x) < g(y), it suffices to
find k > m such that g(y)(k) = 1. However, g(y)(n) = 1 by (3.2), so we are
done.

Case 2: n < m, and so l = n. In this case, we show g(x)(n) = 0 and
g(y)(n) = 1, and so g(x) < g(y). If g(x)(n) = 1, then by definition of the
function g, we know there exists z ∈ An and z ≤ x; hence z ≤ x ≤ y implies
z ≤ y are two comparable elements in An and this is a contradiction. g(y)(n) =
1 follows by (3.2). �
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Corollary 3.7. There is no upper bound on the size of a partially ordered set
which can be embedded into Q.

Proof. In Kurepa’s proof, we put no size restriction on the size of the antichains.
�

We will see later that Kurepa’s theorem provides a useful characterization
of special Aronszajn trees.

3.2. Basic definitions for trees

The following definition is more or less standard (although it differs slightly
from Kunen’s use of Tα in [7]).

Definition 3.8. We say that (T,<) is a tree if (T,<) is a partial order such
that for each t ∈ T , the set {s ∈ T | s < t} is well-ordered by <. Let

ht(t, T ) = ot({s ∈ T | s < t}),
where “ot” denotes the order-type of a given well-ordered set. We define Tα =
{t ∈ T |ht(t, T ) = α}. We set height(T ) to be the least α such that Tα = ∅.
We further set T �α =

⋃
β<α Tβ (which makes T �α a subtree of T of height

α).

We say that S ⊆ T is a subtree of (T,<) in the induced ordering < if

∀x ∈ S ∀y ∈ T (y < x→ y ∈ S).

Notice that if S is a subtree of T , then for all x ∈ S, ht(x, S) = ht(x, T ). If
x ∈ T , then the set {y ∈ T |x < y ∨ y < x} of all nodes in the tree T above or
below x is a subtree (T restricted to x).

Definition 3.9. For a regular cardinal κ ≥ ω, T is called a κ-tree if T has
height κ, and |Tα| < κ for each α < κ.

Very often, a κ-tree T is isomorphic to a subtree of the full κ-ary tree
(κ<κ,⊆). More precisely, whenever T is normal (indeed, normal here means
representable as a subtree of (κ<κ,⊆)). See Definition 3.10.

Definition 3.10. A normal κ-tree is a tree T with the following properties:
(i) height(T ) = κ;
(ii) |T0| = 1;
(iii) |Tα| < κ, for every α < κ;
(iv) each node has ρ-many successors (exact number varies; ρ < κ);
(v) each x ∈ T has some y > x at each higher level of T ;
(vi) if β < κ is a limit ordinal, and ht(x, T ) = ht(y, T ) = β and x, y have the

same predecessors, then x = y.

See [5], p.122, Ex 9.6.
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Lemma 3.11. Every normal tree T is isomorphic to a subtree T̄ of the full
κ-ary tree (<κκ,⊆), where T̄β consists of sequences with domain β. In fact,
only the items (i),(ii),(iii),(vi) of normality are required.

Proof. We define by induction isomorphisms iα : T �α → T̄ �α and i =
⋃
iα :

T → T̄ . Set T̄0 = {∅}; by (ii), i1(r) = ∅ is an isomorphism between T0 and T̄0,
where r is the unique root of T . Suppose we have constructed iβ : T �β → T̄ �β
for each β < α and we wish to construct iα.

Assume first that α is limit. Set iα =
⋃
β<α iβ .

Suppose α is a successor of a limit cardinal: α = α′ + 1 where α′ is limit.
Then define iα by extending iα′ setting for each x ∈ Tα

iα(x) = {〈β, iα′(y)〉 |β < α′ & y < x & ht(y, T ) = β}.

By (vi), iα is 1-1. It is obviously also an isomorphism.
Assume now that α is a successor of a successor ordinal β. Since |Tβ| < κ

by (iii), one can naturally extend iβ to iα by including the level Tβ using some
1-1 function from Tβ into κ.

Set T̄ =
⋃
{rng(iα) |α < κ}. �

If T is a tree and B ⊆ T , we say that B is a branch if it is a maximal (under
inclusion) chain in T .

Definition 3.12. Let κ be a regular cardinal. We say that a κ-tree (T,<) is
an Aronszajn tree if it has no branch of size κ.

Remark 3.13. An Aronszajn κ-tree T is a typical example of an “incompact
object”: by definition, for each α < κ, there is a branch Bα of height α in T – if
T were to be “compact” (in the analogous sense as first-order logic is compact),
then from the assumption that for each α < κ, there exists a branch of height
α, we should be able to conclude that there is a branch of height κ.

Note that it is important that the levels in the tree have size < κ. For
instance, it is easy to construct a tree of height ω which has no infinite branch
(Exercise). However, such a tree would not be an ω-tree; compare with König’s
theorem below.

Definition 3.14. We say that a regular cardinal κ ≥ ω has the tree property
if there are no κ-Aronszajn trees.

In view of the previous Remark, if κ has the tree property, then it is “com-
pact” as far as branches in trees are concerned.

Theorem 3.15 (König). Every ω-tree T has an infinite branch. Hence ω has
the tree property.
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Proof. We construct a branch B by induction on levels. Since T is an ω-tree,
|T0| < ω. It follows there is some t0 ∈ T0 such that S(t0) = {s ∈ T | t0 < s} is
infinite (this is true because T0 is finite, T is infinite, and every element in T
is above an element of T0). The set S(t0) ∩ T1 is finite – pick t1 ∈ S(t0) ∩ T1

such that S(t1) = {s ∈ T | t1 < s} is infinite. Proceed in the same fashion and
pick tn for each n < ω. Then B = {tn |n < ω} is a branch in T . �

Often one considers κ-trees with extra properties which simplify the presen-
tation of various results.

Definition 3.16. A κ-tree T is called well-pruned if
(i) T has a single root: |T0| = 1;
(ii) ∀t ∈ T ∀α

(
ht(t, T ) < α < κ→ ∃y ∈ Tα(x < y)

)
.

Notice that every normal tree is well-pruned (conditions (ii) and (v)) in
Definition 3.10.

Lemma 3.17. Every κ-tree T has a subtree which is a well-pruned κ-tree.

Proof. Hint. Consider the nodes {t ∈ T | |{s ∈ T | s > t}| = κ}; the subtree is
any thinning of this to a single root. �

Well-pruned Aronszajn trees are bushy, in the terminology of Exercise 38,
p.90, in [7]:

Lemma 3.18. Assume κ is regular, T is a κ-Aronszajn tree, λ < κ, x ∈ T
and |{y ∈ T | y > x}| = κ. Then

∃α > ht(x, T )
(
|{y ∈ Tα | y > x}| ≥ λ

)
.

Proof. Hint. By contradiction. Define a regressive function q on α’s with
cf(α) = cf(λ) = λ, with q(α) < α where T does not branch between levels
q(α) and α. �

However, note that this does not imply that the trees must split into many
nodes. The trees can be subtrees of the binary tree (see the construction of
the ω1-tree Suslin tree below).

stationary. If Xi 6= Xj , then without loss of generality there is some ξ ∈
Xi & ξ 6∈ Xj . It follows that Di and Dj are disjoint in the interval (ξ, κ).

4. ω1-trees

4.1. Aronszajn trees

We now study the trees at ω1. When we say an Aronszajn tree in this section,
we mean an ω1-Aronszajn tree unless stated otherwise.
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Definition 4.1. We say that an Aronszajn tree is special if T is the union of
countably many antichains.

Lemma 4.2. The following are equivalent for an Aronszajn tree T ,
(i) T is special;
(ii) There is f : T → ω such that if x, y are comparable in T , then f(x) 6=

f(y);
(iii) There is f : T → ω which is 1-1 on chains;
(iv) T embeds in Q.

Proof. (iv)→(iii). Let f be the embedding, we show that f ′ witnesses (iii),
where f ′ = i ◦ f , where i is any bijection between Q and ω. Let C ⊆ T be a
chain, and t < s elements in C; then f(t) < f(s), and so f ′(t) 6= f ′(s).

(iii)→(ii). f in (iii) witnesses (ii).
(ii)→(i). Let f be as in (ii). Set An = f−1(n). Then each An is an antichain.
(i)→(iv). This is the Kurepa’s theorem 3.6. �

We will now construct an Aronszajn tree in ZFC.

Theorem 4.3. There is an Aronszajn tree T ∗. We construct T ∗ as a subtree
of T = {s ∈ <ω1ω | s is 1-1} with ⊆ as the ordering. In particular, our tree will
be normal according to Definition 3.10.

Proof. Consider the subtree T = {s ∈ <ω1ω | s is 1-1} of the tree <ω1ω. T
cannot have an ω1-branch, because it would yield a 1-1 function from ω1 to
ω. However, T is not required tree because it has uncountable levels, and so
is not an ω1-tree.

Let us define for s and t in <ω1ω the following equivalence relation

s ≈ t↔ dom(s) = dom(t) & {β ∈ dom(s) | s(β) 6= t(β)} is finite.
We call a sequence 〈sα |α < ω1 & dom(sα) = α〉 a semi-branch whenever
(i) sα �β ≈ sβ , for every β ≤ α.
(ii) ω \ rng(sα) is infinite for each α < ω1.
A semi-branch satisfying (i) and (ii) makes it easy to define an Aronszajn

tree:
T ∗ = {s ∈ T | ∃α s ≈ sα}.

It is immediate to verify that T ∗ is an Aronszajn tree, and a subtree of T .
To finish the prove of the theorem, it suffices to construct a semi-branch

〈sα |α < ω1〉 satisfying (i) and (ii) above. The construction is by induction on
α < ω1. For α+ 1, define sα+1 = sα∪{〈α, n〉}, where n is any natural number
in ω \ rng(sα) (this is possible by (ii)).

At a limit stage γ, first fix an increasing sequence 〈αn |n < ω〉 with limit γ.
Define t ∈ Tγ as the union t =

⋃
n tn, where each tn is in Tαn and tn ≈ sαn

(which implies tn � β ≈ sβ for each β ≤ αn). The sequence 〈tn |n < ω〉 is
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defined by induction. First set t0 = sα0 . To construct tn+1 when we have
already constructed tn, consider first t∗n+1 defined as tn ∪ (sαn+1 \ sαn). The
domain of t∗n+1 is equal to αn+1 and by the induction assumption on tn and
the properties of 〈sα |α < γ〉,
(4.3) t∗n+1 ≈ sαn+1 .

However, while sαn+1 is 1-1, t∗n+1 may not be 1-1 because of the finite disagree-
ment (4.3). Define tn+1 by making finitely many changes to t∗n+1 to ensure:
(i) tn+1 ≈ t∗n+1.
(ii) tn+1 is 1-1.

This can be done because ω \ rng(sαn+1) is infinite, and so there is plenty of
room to make tn+1 1-1. It follows tn+1 ∈ Tαn+1 .

Finally, the range of t may have used up all of ω, so we define sγ by setting
sγ(αn) = t(α2n), thus leaving t(α2n+1)’s outside the range of sγ . Note that
still sγ �β ≈ sβ for every β < γ, because αn’s are bounded below each β < γ,
and so sγ �β ≈ tn �β ≈ sβ , for any n such that β < αn. �

Definition 4.4. An Aronszajn tree T is called a Suslin tree if all antichains
in T are at most countable.

Note that T ∗ is never a Suslin tree (see [7],p.90, ex 39):

Lemma 4.5. Suppose that T is an Aronszajn tree and a subtree of the tree
{s ∈ <ω1ω | s is 1-1}. Then T is not Suslin.

Proof. Notice that for each n ∈ ω, An = {s ∈ T | ∃α dom(s) = α+ 1 & s(α) =
n} is an antichain. To see this, let s 6= t be in An, and assume for contradiction
that s ( t. Then s(α) = n and t(α) = t(α′) = n, where dom(s) = α + 1 and
dom(t) = α′ + 1. This contradicts that t is 1-1. Now, many An’s can be just
countable, but by the pigeon hole principle, there must be some n such that
An is uncountable (the set A = {s ∈ T | ∃α dom(s) = α + 1} is uncountable
and A =

⋃
nAn). �

Note that the above Lemma does not claim that T must be special: A 6= T
because it consists of successor levels only, and so T may not be a union of
countably many antichains.

Note however (as is stated in [1]) that if T is any Aronszajn tree as in
Lemma 4.5, then S =

⋃
α<ω1

Tα+1 together with the induced ordering is a
special Aronszajn tree. [Every sequence s ∈ S has the maximal element;
compare with the construction of the special Aronszajn tree below.]

Remark 4.6. Let T be the tree constructed in Theorem 4.3. Then ZFC
does not prove that T is non-special because there is a generic extension (see
Baumgartner’s construction below) where T is special. Even more strongly,
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Baumgartner’s result shows that ZFC + MAω1 implies that all Aronszajn trees
are special: this implies

ZFC 6` ∃ a non-special ω1-Aronszajn tree,

while we do have (see below)

ZFC ` ∃ a special ω1-Aronszajn tree.

We will now construct a special Aronszajn tree (following [11], p.257, The-
orem 5.2).

We first introduce a useful definition ([11], p.245):

Definition 4.7. Let (P,<) be a partially ordered set. Then σP denotes the set
of all bounded well-ordered subsets of P ordered as follows: s ≤ t iff s is an ini-
tial segment of t. Define also σ′P = {t ∈ σP | t has the greatest = max element}.

Note that σP is always a tree: for t ∈ σP , the set {s | s < t} is isomorphic
to the ordinal (ot(t),∈), and is thus well-ordered. As for σ′P , note that σ′P =
{t ∈ σP | ot(t) is a successor ordinal}. σ′P is thus in general not the subtree
of σP (limit levels are omitted), but σ′P is a tree in its own right.

Denote max : σ′P → P the function which takes the max. Then max is a
strictly increasing mapping.

Lemma 4.8. σ′Q is a tree of height ω1 which is the union of countably many
antichains.

Proof. For some illustration, there are some elements of σ′Q: {0, 1, 3, 17},
{1, 2, 5/2}, t = {1, 2−1/2, 2−1/3, 2−1/4 . . . , 2}. Note that ot(t) = ω+1, but
t is on the ω-th level of the tree σ′Q because the set {s | s < t} has oder-type ω.
In general, if ot(t) = α+ 1 for a limit ordinal α < ω1, then t ∈ (σ′Q)α.9 Since
successor order-types of well-ordered subsets of Q are unbounded in ω1, the
height of σ′Q is ω1. Since Q is countable, σ′Q has no uncountable branches.
Also, σ′Q is the union of countably many antichains because for each q ∈ Q,
the set Aq = {s ∈ σ′Q | max s = q} is an antichain. However, σ′Q has un-
countable levels, so is not an ω1-tree, and hence not a (special) ω1-Aronszajn
tree. �

We will find now a subtree T of σ′Q which will be a special ω1-Aronszajn
tree.

Theorem 4.9. There is a special ω1-Aronszajn tree.

Proof. As in Theorem 4.3, σ′Q is almost the right tree, except that it is too
wide. We will rectify that.

9Show by induction that for every limit α, {β + 1 |β < α} has the same order-type as α.
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We will construct a subtree T of σ′Q by induction on levels α < ω1. The
following the the induction hypothesis for level α:

(∗)α: For each γ < β < α, each t ∈ Tγ , and each x ∈ Q such that x > max t,
there is an s ∈ Tβ such that t < s and x > max s. Moreover each level Tβ for
β < α is at most countable.

Case α = β + 1. We assume that (∗)α holds, and wish to define Tα so that
(∗)α+1 holds. Define

Tα = {t ∪ {x} | t ∈ Tβ & x ∈ Q & x > max t}.

Since |Tβ| ≤ ω, |Tα| ≤ ω; also since all relevant x ∈ Q are added, (∗)α+1 holds.
Case α is limit. It will be here that we need to exercise some care to have

Tα at most countable. Let 〈αn |n < ω〉 be an increasing sequence cofinal in α.
Fix t ∈

⋃
β<α Tβ , and x ∈ Q such that x > max t. Let h(t) be the ordinal

β < α such that t ∈ Tβ . Let m = min{n |αn ≥ h(t)}. Using (∗)β for
β < α, construct inductively an increasing sequence 〈tk | k < ω〉 of elements
in
⋃
β<α Tβ such that t0 = t, tk ∈ Tαm+k

and max tk < x. We can also ensure
that sup{max tk | k < ω} = x.10 Let

st,x =
⋃
k tk ∪ {x}.

Notice that st,x ∈ σ′Q and t < st,x ∈ Tα. Finally, set

Tα = {st,x | t ∈
⋃
β<α Tβ & x ∈ Q & x > max t}.

Clearly, |Tα| ≤ ω and (∗)α+1 holds (if γ < β < α, t ∈ Tγ and x > max t, then
st,x was constructed to ensure that max st,x �β < x).

The function max which maps t to max t embeds T in Q and witnesses that
T is special. �

4.2. Suslin trees

Definition 4.10. Let κ be a regular cardinal. We say that a κ-tree T is Suslin
if every chain and antichain in T has size < κ.

In the context of Suslin trees, it is more convenient to demand something
extra:

Definition 4.11. A κ-tree T is called ever-branching (or ever-splitting) if for
all x ∈ T , the set {y ∈ T | y > x} is not a chain.

There are some simplifications:

10This is possible by the induction hypothesis which ensures that the max’s of tn’s can
be chosen to be cofinal in x.
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Lemma 4.12. (i) Assume κ is an infinite cardinal, T is a tree such that
|T | = κ and every chain and antichain has size < κ. Then κ is regular,
and T is a κ-tree.

(ii) If T is an ever-splitting κ-tree such that every antichain has size < κ,
then every chain has size < κ. In other words, T is Suslin.

Proof. Ad (i). [7], Lemma 5.6.
Ad (ii). If B were a chain of size κ, then by induction pick an increasing

sequence bα ∈ B, α < κ, and f(bα) such that f(bα) is incomparable with any
element of B above bα. Then {f(bα) |α < κ} is a antichain of size κ. Note
that we have essentially used that T is ever-splitting. �

The following is according to [7], p.82.

Theorem 4.13. Assume ♦ω1 . Then there exists an ever-splitting ω1-tree which
is Suslin. This tree can be taken to be the subtree of the binary tree <ω12.

We first state some lemmas first. The key idea of the construction is that we
should “seal off” all possible antichains in building T . However, there are more
potential antichains – 2ω1 – than levels of construction – ω1. This is where ♦ω1

comes in. Recall the definition of the ♦ω1-sequence:

Definition 4.14. 〈Sα |α < ω1〉 is called a ♦ω1-sequence if Sα ⊆ α, and if X
is any subset of ω1, then the set

{α < ω1 |X ∩ α = Sα}

is stationary. Note that one can consider the sequence is defined only at limit
ordinals α < ω1.

The magic of an ♦ω1-sequence is that can be used to guess any subset ω1

whose defining properties reflect down on a club in ω1. This is the meaning
behind the following lemma:

Lemma 4.15. Let T = (ω1,≺) be an ω1-tree, then:
(i) {α < ω1 |T �α = α} is a club.
(ii) If A ⊆ ω1 is a maximal antichain in T , then

CA = {α < ω1 |T �α = α & A ∩ T �α is a maximal antichain in T �α}

is club in ω1.

Proof. Note that this has a Löwenheim-Skolem flavour, but not for the struc-
ture (ω1,≺), but rather for a structure of the type (P(ω1), ω1,≺,∈, . . .) be-
cause we talk about antichains etc. It is easier to describe the L-S argument
directly, rather than to invoke some abstract statements.
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Ad (i). Closure is easy. So let α0 be given. We need to find α ≥ α0 such
that T �α = α. First analyze the meaning of T �α = α:

T �α = α↔ ∀ξ
(
ht(ξ, T ) < α↔ ξ < α

)
.

This suggests that we define some closure functions f, g to make this true:
define f(ξ) = ht(ξ, T ) (to ensure the direction from right to left), and g(ξ) =⋃
Tξ (from left to right).
Let α be an ordinal ≥ α0 closed under f, g.
Ad (ii). Similarly. Note that A ∩ T � α will always be an antichain, so we

worry about maximality. A ∩ T �α is maximal if

(∀ξ ∈ T �α)(∃α ∈ A ∩ T �α) ξ || α.
This suggest we define a function h(ξ) = some α ∈ A such that ξ || α in
T . Note that h is correctly defined because A is maximal in T , so such a
witness always exists. Obtain α by closing under f, g, h (or equivalently, take
the intersection of the three clubs determined by f, g, h). �

The following lemma shows how to “seal the antichains”:
Lemma 4.16 (Sealing-off lemma).
Let T = (ω1,≺) be an ever-splitting ω1-tree, and 〈Sα |α < ω1〉 a ♦ω1-sequence.
Suppose for all limit α < ω1:(

T �α = α & Sα max antichain in α
)
→ (∀x ∈ Tα)(∃y ∈ Sα) y ≺ x.

Then T is an ω1-Suslin tree.

Proof. Let A ⊆ ω1 be a maximal antichain. By Lemma 4.15(ii), the set CA is
a club, and hence the intersection of CA and the stationary set {α < ω1 |Sα =
A ∩ α} is non-empty. Fix some α such that α = T �α and Sα = T �α ∩ A is
a maximal antichain in T �α. Now, by our assumption any x ∈ T such that
ht(x, T ) ≥ α must be above some element of Sα, and so A cannot have any
elements on levels ≥ α. It follows that A = Sα, and so A is countable. �

We now review the construction of the tree.

Proof. (of Theorem 4.13). Fix a diamond sequence 〈Sα |α < ω1〉. The tree
will have levels Tn = {k | 2n − 1 ≤ k < 2n+1 − 1} for n < ω, and Tω+α =
{ω(1 + α) + n |n < ω}, so that Tω+α = ω(1 + α) + ω, for 0 ≤ α < ω1.

At successor level, split each node into two (compatibly with what the levels
should be).

At a limit level α, first consider the situation when Sα is not a maximal
antichain or α 6= T � α. The point is that we need to extend only ω-many
branches through T � α. By induction hypothesis T � α is countable, so let
{xm |m < ω} be some enumeration of T �α. For each xm, pick an increasing
sequence of nodes xm(n) > xm,n < ω, the heights of which converge to α. Put
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ωα+m above all {xm(n) |n < ω}. If Sα is a maximal antichain in T �α = α,
then for each xm first pick some xm ≺ ym such that for some a ∈ Sα, a ≺ ym
(this is possible because by assumption A ∩ α is maximal) and start building
xm(n)’s, for m < ω, above ym. �

Remark 4.17. Some facts about ω1-Suslin trees. Let (T,<) be an ω1-
Suslin tree. Then (T,<) can be naturally viewed as a forcing notion where for
t, s ∈ T we set that t is stronger than s if t > s. Since T does not contain
uncountable antichains, T as a forcing notion is ccc. A more complicated
argument can be used to show that T is ω1-distributive, i.e. does not add new
countable sequences of ordinals (see [5], Lemma 15.28). It is easy to see that
forcing with T adds a new branch through T , and therefore T is no longer
Suslin (nor Aronszajn) in the generic extension V T . Thus to destroy a Suslin
tree, it is enough to force with it.

The completion of the forcing (T,<) is a complete Boolean algebra which is
ccc and ω1-distributive (sometimes called the Suslin algebra). Such an algebra
may not exist (consistently).

The product forcing T×T is not ccc even even if T is Suslin. Exercise*. This
shows that ccc is consistently not productive, i.e. the product of two ccc forcings
may not be ccc. However, it is also consistently true that ccc is productive
(e.g. under MAω1).

5. Higher trees

5.1. κ+-Aronszajn trees

This section roughly follows [Todorcevic, p.273].
Let κ be a regular uncountable cardinal. Consider first the following gener-

alization of (Q, <):

Qκ = ({f ∈ ωκ | {n < ω | f(n) 6= 0} is finite}, <lex).

Clearly, |Qκ| = κ, and the ordering is linear and dense.
We will use Qκ in place of Q to construct, under some cardinal arithmetic

assumptions, a special κ+-Aronszajn tree. The following lemma captures the
key property of Qκ.

Lemma 5.1. Let κ be a regular uncountable cardinal. Then for all a <lex b
in Qκ there exists a strictly increasing sequence 〈ai | i < κ〉 with a0 = a and
lim(ai) = b.

Proof. Exercise*. �

Theorem 5.2 (Specker). Assume κ<κ = κ ≥ ℵ0 (in particular, κ is regular).
Then there is a κ-special κ+-Aronszajn tree.
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Proof. Follow proof of Theorem 4.9; in particular use the induction assumption
(*)α for each α < κ+. Make the following modifications:
(i) At every α < κ of cofinality < κ, enumerate all increasing sequences of

order-type α of points in T �α and put a rational number larger than all
of the points in the sequence on top. By the assumption κ<κ = κ, Tα
will have size ≤ κ.

(ii) At every α < κ of cofinality κ, proceed as in Theorem 4.9, making crucial
use of Lemma 5.1. Note that in this step it is essential that we have
added all possible branches in cofinalities < κ (we need to make sure that
at limit stages we can take limits).

�

5.2. κ+-Suslin trees for a regular κ

Theorem 5.3. If κ<κ = κ and ♦κ+(Eκ
+

κ ) holds, then there exists a κ+-Suslin
tree. The tree can be taken to be a subtree of the binary tree, and to be κ-
complete.

Proof. The levels are similar as in Theorem 4.13, except that α < κ+, and Tα
is a subset of κα+ κ (it could be calculated what it is exactly, but this is not
really important).

Fix 〈Sα |α ∈ E〉 witnessing the diamond, where E = Eκ
+

κ .
The construction is by induction. At each successor level, each node splits

into two.
At each α < κ+, with cf(α) < κ, the number of all branches in T �α is at

most |T �α||cf(α)| since very branch b ∈ [T �α] is determined by a cofinal chain
in T �α. By the induction assumption, |T �α| ≤ κ, and by κ<κ = κ, we get
that the number of all branches is ≤ κ. So extend all branches.

Note that this permits the possibility that even if α = T �α and A ⊆ T �α
is a maximal antichain, then it is not necessarily the case that each branch in
[T �α] has an element above some member of A (if b ∈ [T �α], then for each
β < α there is some aβ||β, aβ ∈ A; however β < aβ is possible for every β < α).
So it may happen that potential antichains are not sealed off at α < κ+ with
cofinality < κ.

This is the reason to use E, where the antichains are sealed off as usual.
The κ-completeness of the tree is also essential: if α ∈ E, then fix {γi | i < κ}
converging to α. Extend each x ∈ T �α (possibly taking into account Sα where
appropriate) into a branch – at each i < κ, the ordinal γi has cofinality < κ, so
at limit stages there are nodes which “connect the dots” to make a branch. �
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5.3. κ+-Suslin trees for a singular κ

Assume κ is a singular cardinal. Since κcf(κ) > κ, at stage cf(κ) < κ we cannot
extend all the branches. The following is taken from [3], p.141–148.

Theorem 5.4. Assume that κ is an uncountable cardinal (regular or singular).
If there is a stationary set E ⊆ κ+ such that both �κ(E) and ♦κ+(E) hold,
then there is a κ+-Suslin tree.

In particular, if GCH holds and �κ holds, then there is a κ+-Suslin tree (by
Theorem 2.16 and Lemma 7.3).

Proof. Hints.
At ordinals in E, the construction of the tree is designed to seal-off the

antichains.
The construction of the tree is by induction. The successor step is trivial

(just split every node into two nodes). Let α be a limit ordinal.
If α 6∈ E, we define the level Tα so that every node x ∈ T �α lies on some

cofinal branch in T �α (and we put some node on level Tα above all the nodes in
that branch). To arrange this, we define canonically from the square sequence
a cofinal branch bαx which contains x. Let 〈cαi | i < γα〉 be some enumeration of
Cα. We find the least node (in the canonical ordering of κ+×κ) on levels Tcαi ,
starting with i such that ht(x, T �α) ≤ i. At limit stages cαj , j limit, if there is
one, pick the unique node on level Tcαj which extends the branch bαx � cαj built
so far.

If α ∈ E, and Sα is a maximal antichain in T � α, we proceed as in the
previous paragraph, but we only extend those x ∈ T �α which lie above some
element of Sα. If Sα is not a maximal antichain, we extend every node x.

It is easy to see, using the properties of the diamond sequence, that if the
construction does not break down, then T is a κ+-Suslin tree.

We verify that the construction does not break. Let α be the least ordinal
such that for some x ∈ T �α, bαx cannot be built. This can only happen if for
some limit j, with ht(x, T ) < cαj , there is no node on level Tcαj above bαx � cαj .
However cαj is a limit point of Cα, and so (*) Ccαj = Cα ∩ cαj , and also (**)

cαj 6∈ E. By (**), x was considered at stage in T �cαj for the construction of b
cαj
x ,

and by (*) the branch bαx restricted to cαj is precisely the branch b
cαj
x . However,

by our assumption that α is the least counterexample, there must be a node on
the level Tcαj above b

cαj
x , and so the branch bαx can be built, which contradicts

our assumption that it cannot.
Note that it seems that the condition that the order type of each Cα is ≤ κ

is not used explicitly. However this is essentially used to ensure �κ(E) from
�κ. �
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6. Large cardinals

6.1. Measurable cardinals

Recall that U ⊆ P(κ) is a non-principal κ-complete ultrafiter on κ if it is an
ultrafilter which does not contain singletons, and is closed under intersections
of fewer than κ-many sets.

Definition 6.1. We say that an uncountable cardinal κ is measurable if there
exists a κ-complete non-principal ultrafilter U on κ.

It is easy to see that if κ is measurable, then it contains the complements of
all bounded sets, and κ is a regular cardinal. It is in fact much more than that:
measurable cardinals are an example of a large cardinal : they are inaccessible
and more. For instance every weakly compact cardinal, see Definition 6.20, is
measurable (but not conversely).

We will prove some consequences of measurability. We will use the concept
of an ultrapower of the universe V , to give all these proofs a unified (and
elegant) setting.

6.1.1. The ultrapower construction

For more details regarding the ultrapower construction, read Section 5 “El-
ementary embeddings” in Kanamori’s book [6]. For more context about the
measure problem, read Section 2 “Measurability” also in Kanamori’s book.

We sketch the construction: Suppose U is a normal (and hence κ-complete)
ultrafilter on κ. For f, g : κ→ V let us define

f =U g ↔ {α < κ | f(α) = g(α)} ∈ U.
=U is an equivalence on the class of all functions f : κ→ V . The equivalence
classes are denoted by [f ]U = [f ]. The universe of the ultrapower Ult(V,U) =
M is the class of all equivalence classes [f ].11 Let us further define

[f ] ∈ [g]↔ {α < κ | f(α) ∈ g(α)} ∈ U.
Los theorem states that this definition extends to all formulas: for all formulas
ϕ,

M |= ϕ([f1], . . . , [fn])↔ {α < κ |ϕ(f1(α), . . . , fn(α))} ∈ U.
For every x ∈ V , let cx be the function with domain κ such that for every
α < κ, cx(α) = x. It is easy to check that if we define jU = j : V → M by
j(x) = [cx], then j is an elementary embedding.

Lemma 6.2. If U is σ-complete (i.e. closed under countable intersections),
then M is well-founded.

11Each [f ] is technically speaking a proper class, but it is possible to make the definition
formally correct. We will omit it here.
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Proof. Suppose for contradiction there is an finite ∈-decreasing sequence of
elements in M 〈[fn] |n < ω〉 with [f0] 3 [f1] 3 . . .. For each n let Xn ∈ U
be the set of all α < κ such that fn+1(α) ∈ fn(α). By σ-completeness there
is some α ∈

⋂
n<ωXn, and so f0(α) 3 f1(α) 3 . . ., contradicting that ∈ is

well-founded in V . �

By Mostowski theorem, there is a “transitive collapse isomorphism” i from
M onto a transitive proper class M̄ .12 It is usual to identify M with M̄ and
“forget” about the isomorphism. For instance if f is a function from κ to
ordinals, then by Los theorem

([f ] is an ordinal)M

though technically speaking it is not an ordinal in V ; since i is an isomorphism,
we have

(i([f ]) is an ordinal)M̄

and i([f ]) is really an ordinal in V because M̄ is a transitive model of ZFC and
ordinals are absolute for such models. But as we said above, it is customary
to treat [f ] as an ordinal in V .

Lemma 6.3. Suppose U a normal ultrafilter and let M denote the ultrapower
via U .
(i) For all α, α ≤ j(α).
(ii) j(α) = α for every α < κ, but κ ≤ [id] < j(κ). We say that κ is the

critical point of j.
(iii) Let A be a subset of κ. Define f : κ → [κ]<κ by f(α) = A ∩ α. Then

A = [f ].
(iv) M contains all subsets of κ, and hence all cardinals up to and including

κ+ are computed correctly by M .
(v) [id] = κ, and κ+ < j(κ) < (2κ)+.

Proof. (i) The proof is by induction. Suppose the claim holds for every β < α.
Since α is an upper bound of {β |β < α}, by elementarity j(α) is an upper
bound of {j(β) |β < α}; since by induction β ≤ j(β), we have j(α) ≥ α. Note
that j(α) need not be equal to the supremum of {j(β) |β < α}; see for instance
claim (ii).

(ii). To show j(α) = α, it suffices by (i) to argue that [f ] < j(α) implies
[f ] < α. [f ] < j(α) ↔ {ξ < κ | f(ξ) < α} ∈ U ; by κ-completeness of U there
must be some β < α with {ξ < κ | f(ξ) = β} ∈ U . For the second part, it
suffices to notice that κ ≤ [id] < j(κ) (κ is the supremum of all of j(α) = α
for α < κ).

12The function i is defined by well-founded recursion setting i([f ]) = {i([g]) | [g] ∈ [f ]}.
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(iii). By Los theorem, [f ] is a subset of j(κ) of size < j(κ). Recall that for
every ξ < κ, j(ξ) = ξ. Suppose ξ ∈ A; then ξ ∈ f(α) for every α > ξ, and so
{α < κ | ξ ∈ f(α)} ∈ U , and hence j(ξ) = ξ ∈ [f ]. Conversely, if ξ ∈ [f ], then
there is some α < κ with ξ ∈ f(α) = α ∩A and so ξ ∈ A.

(iv). By (iii), if A ⊆ κ, then [f ] = A for some f . Every well-order of size at
most κ can be coded by a subset of κ, so M has the right information about
ordinals of size at most κ, and so κ+M = κ+.

(v). We show that [id] is the least upper bound of ordinals in κ; in other
words if [f ] < [id], then [f ] = α for some α < κ. [f ] < [id] ↔ {ξ < κ | f(ξ) <
ξ} ∈ U . It follows as in Fodor’s lemma (because U is a normal filter) that the
regressive function f is constant on a set in U , and hence [f ] = α for some
α < κ. �

Remark 6.4. The normality of U is essential for proving [id] = κ; if U is
non-normal and κ-complete, then the ultrapower M is still well-founded, but
[id] > κ is possible.

6.1.2. Some consequences of measurability

A sort of converse to Lemma 6.3(iii) is of a separate interest, related to
the notion of a weakly compact cardinal and an ineffable cardinal discussed in
Sectin 6.2.

Lemma 6.5. Suppose U is a normal ultrafilter on κ, and let f = 〈Sα |α < κ〉
is such that for all α, Sα ⊆ α (i.e. f has the form of a diamond sequence).
Then there is S ⊆ κ such that

XS = {α < κ |S ∩ α = Sα}
is in U (and so in particular is stationary). We say that S threads f on a
U -large set, or that f coheres on a U -large set.13

Proof. By Los theorem, [f ] is a subset of κ. Let us write [f ] = S. By Lemma
6.3(ii), j(S) ∩ κ = S, and so by Los theorem, using [id] = κ, this is equivalent
to

XS = {α < κ |S ∩ α = Sα} ∈ U.
�

We will see that if we relax the requirement and ask that for each 〈Sα |α < κ〉
coheres on a stationary set, and then further only on an unbounded set, we
will get the notion of an ineffable, and a weakly compact cardinal, respectively
(see Section 6.2).

13Sequences of the form like f are called lists, a generalization of a tree. With this
terminology, if S threads f , we can also say that it is a cofinal branch in f .
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Exercise. Convince yourself that if we strengthen the requirement and ask
for coherence on a closed unbounded set, then such a principle is contradictory.

Remark 6.6. Note that if 〈Sα |α < κ〉 is a diamond sequence, then it coheres
on a stationary set for all subsets of κ. The converse asks that every sequence
of the form 〈Sα |α < κ〉 coheres on a large set: obviously, some sequences
always cohere: for instance if S ⊆ κ, then 〈S ∩ α |α < κ〉 coheres everywhere.
It is interesting to learn (as we will prove later on), that the existence of an
“ugly” sequence 〈Sα |α < κ〉 on an inaccessible κ which does not cohere on
any unbounded set is equivalent to the fact that there is an “ugly” graph on κ
without a clique or indenpendent set of size κ, or an “ugly” κ-tree without a
cofinal branch.

In Theorem 6.7 we show that measurability of κ implies ♦κ. In Theorem
6.25 we will show, by a more difficult argument, the same for an ineffable
cardinal. It is a major open question, whether this can be further extended to
a weakly compact cardinal.

Theorem 6.7. If κ is measurable, then ♦κ holds.

Proof. We will define by recursion a sequence 〈Sα |α < κ〉 and show that it
is a diamond sequence. Let < be some fixed well-order of H(κ). Suppose
the sequence was constructed for every β < α. If there is some S ⊆ α such
that 〈β < α |S ∩ β = Sβ〉 is non-stationary, i.e. 〈Sβ |β < α〉 does not guess
S stationarily often, let Sα be the <-least such S. If there is no such S, set
Sα = α.

Let jU : V →M be an ultrapower embedding via some normal ultrafilter U
on κ. Assume for contradiction there is some E ⊆ κ which is not guessed by
〈Sα |α < κ〉 stationarily often and let E be the j(<)-least such. By Lemma
6.3(iii), E = [〈Eα |α < κ〉] with Eα = E ∩ α for every α.

By elementarity j(〈Sα |α < κ〉) is a sequence of length j(κ) which maps
κ = [id] to E. By Los theorem, this means

(6.4) {α < κ | 〈Sα |α < κ〉(α) = Eα} ∈ U iff {α < κ |Sα = E ∩ α} ∈ U.

So E is guessed on a set in U , and since U extends the filter of closed unbounded
subsets of κ, this set must be at least stationary. This a contradiction because
we assumed that E is not guessed stationarily often. �

Remark 6.8. Since κ is a regular cardinal in every ultrapower (equivalently,
the set Reg of regular cardinals < κ is in every ultrapower), we have actually
showed ♦κ(Reg). More generally, the same argument shows that ♦κ(S) holds
for every stationary S such that there is a normal ultrafilter U with S ∈ U . It
might be tempting to say that there may be a normal ultrafilter for every S,
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but this is not the case: the stationary set Sing of singular cardinals below κ
is the complement of Reg and hence cannot be in any normal ultrafilter.

Note that ♦κ does not characterize any large cardinal notion: in L, ♦κ holds
for every regular κ (even limit). But in L, ♦κ is a consequence of the global
structure of L; in Theorem 6.7 we derived ♦κ from a local “large cardinal”
property of κ.

Large cardinals tend to imply a lot of reflection for structures at κ. Let us
prove some of the more known.

Theorem 6.9. If GCH holds below κ and κ is measurable, 2κ = κ+ (conversely:
failure of GCH at κ reflects on a large set below κ).

Proof. Let M be an ultrapower over some normal measure U . By our assump-
tion, the set X = {α < κ | 2α = α+} is equal to whole of κ, and is therefore
in U . By Los theorem and by [id] = κ, this implies (2κ = κ+)M . We need to
argue that this holds in V : but this follows from the fact that P(κ) ⊆M and
(κ+)M = κ+ (Lemma 6.3), and so a bijection between P(κ) and κ+ inM also
witnesses 2κ = κ+ in V . Note that it is enough to assume that there is some
normal ultrafilter which contain X. �

Another form of reflection is the following:

Theorem 6.10. If κ is a measurable cardinal, then every stationary S ⊆ κ
reflects, SR(κ).

Proof. Let M be an ultrapower over some normal ultrafilter U . Let S ⊆ κ be
stationary. We wish to show there some α < κ of uncountable cofinality such
that S ∩ α is stationary in α. By elementarity j(S) is a stationary subset of
j(κ), and j(S) ∩ κ = S is stationary in κ in V , and hence a fortiori in M . So
we have (There is some α of uncountable cofinality such that j(S) reflects at
α)M . By elementarity of j this implies in V there is some α of uncountable
cofinality such that S reflects at α. �

Theorem 6.11. If κ is a measurable cardinal, then every κ-tree has a cofinal
branch, TP(κ).

Proof. Let M be an ultrapower over some normal ultrafilter U . Let T be a
κ-tree, which we can assume to be a subset of Vκ (if not, take an isomorphic
copy). Since all levels of T has size < κ, there are not moved by j, and so j(T )
restricted to nodes in Vκ is equal to T . By elementarity j(T ) has height j(κ),
so in particular there must be some node t ∈ j(T ) on level κ < j(κ). Since
t ∈M ⊆ V , t is a cofinal branch in T . �

Remark 6.12. Notice that Theorem 6.9 requires that M contains all subsets
of κ, while Theorem 6.10 and 6.11 only require that κ is the critical point of
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j. This will lead us to weaker principles such as ineffable, weakly compact and
Mahlo cardinal.

Measurability implies that the universe V is very “wide”; more precisely, it
is inconsistent with the V = L. We will need the following fact related to L.
Lest state a definition first:

Definition 6.13. A transitive proper-class model M of ZFC is called an inner
model.

Notice that by definition an inner model is a subclass of V : M ⊆ V . This
makes it different from an “outer model” such as a forcing extension V [G] of
V for which we have V ⊆ V [G]. By the following fact, it is consistent that L
is the only inner model.

Fact 6.14. L is the least inner model under ⊆: if M is an inner model, then
L ⊆M . In particular, if V = L, then L is the only inner model.

Proof. The main idea is to show that ifM is an inner model, then L constructed
inside of M , LM , is again L. It follows L = LM ⊆M . �

Theorem 6.15. If there is a measurable cardinal, then V 6= L.

Proof. Suppose V = L and let M be an ultrapower via some normal measure
at κ, where κ is the least measurable cardinal. By the fact above, M = L
because L ⊆ M . By elementarity j(κ) is the least cardinal in M = L. But
also κ < j(κ), a contradiction. �

Finally, let us show that the existence of any embedding from V to M
gives us a measurable cardinal; in other words, the existence of elementary
embeddings between transitive models of ZFC implies the existence of certain
large cardinals.

Lemma 6.16. Suppose j : V → M is an elementary embedding into some
inner model M with critical point κ, then κ is a measurable cardinal.

Proof. Define
U = {X ⊆ κ |κ ∈ j(X)}.

It is easy to check that U is a normal κ-complete ultrafilter on κ.
Note that is not important for the definition of U that the domain of j is the

whole universe V : it suffices if the domain of j contains all subsets of κ. �

6.2. Weakly compact and ineffable cardinals

6.2.1. Partition relations

For many of the results proved above from the assumption of a measur-
able cardinal, weaker combinatorial concepts are sufficient. They have many
equivalent definitions but let us start with the most widely known.
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Recall the “arrow notation”: we write

κ→ (µ)2
2

if every undirected graph on κ has either an independent set of size κ or a
clique of size µ. More generally, we write

κ→ (µ)nγ

for every function14 f : [κ]n → γ there exists a homogenous set H of size µ,
i.e. a set H ⊆ κ such that there is a single color i < γ such that f gives to
every n-element subset of H the same color i.

Remark 6.17. We can consider even more general partitions: for us, only the
following are relevant: (i) f : [κ]ω → γ, where [κ]ω is the set of all countable
subsets of κ; in this case f is homogenous on H if all elements of [H]ω have
the same color. (ii) f : [κ]<ω → γ, where [κ]<ω is the set of all finite subsets of
κ; here H is homogenous if for every n < ω, all n-element subsets of H have
the same color (but the color for each n can be different).

Remark 6.18. It is customary to identify an n-element subset {x1, . . . , xn}
of κ with the n-tuple (x1, . . . , xn) with the assumption x1 < x2 < · · ·xn.

Recall that Ramsey’s theorem states

(6.5) ω → (ω)mn , where m,n ≥ 1.

Let us first discuss the limits of possible generalizations of Ramsey’s theorem
(6.5).

Theorem 6.19. The following hold:
(i) (Erdös-Rado) ω 6→ (ω)<ω2 .
(ii) (Erdös-Rado) For every regular κ ≥ ω, κ 6→ (ω)ω2 .
(iii) (Gödel, Erdös-Kukutani) For every regular κ ≥ ω, 2κ 6→ (3)2

κ.
(iv) (Sierpinski, Kurepa) For every regular κ ≥ ω, 2κ 6→ (κ+)2

2.

The item (iii) in the previous theorem is the best possible: a theorem of
Erdös and Rado shows that if increase 2κ by one cardinal, we get a positive
result:15 for instance for every regular ω ≤ κ,

(2κ)+ → (κ+)2
2.

Let us now sketch a proof of Theorem 6.19.16

14View f as a coloring which to every n-element subset of κ assigns a colour δ < γ.
15For more details, see Kanamori’s book [6], Theorem 7.3.
16For more details, see Kanamori’s book [6], Proposition 7.1, Exercise 7.4 and Proposition

7.5.
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Proof. (i). Let f : [ω]<ω be defined by setting f(k1, . . . , kn) = 0 iff k1 ≤ n, and
1 otherwise. Suppose H is an infinite homogeneous set and let k be its least
element. Then for every n ≥ k, f restricted to [H]n must have value 0 because
f(k, k2, . . . , kn) = 0, for any increasing k < k2 < · · · < kn; however, since H is
infinite, there must be some l > n in H such that (l, l2, . . . , ln) is in [H]n, and
f assigns value 1 to this sequence. A contradiction.

(ii). Let ≺ be some well-order of [κ]ω. Set f(x) = 0 iff x is the ≺-least
element in [x]ω, and 0 otherwise. Suppose H an infinite homogeneous set, and
let x ∈ [H]ω be the ≺-least element of [H]ω. Then f(x) = 0 by the definition
of f : x is the ≺-least element of [H]ω, and hence also of [x]ω. By homogeneity,
it follows that f gives to all elements of [x]ω value 0. Let x0 ( x1 · · · ( x
be a strictly increasing infinite chain of countable subsets of x. It is easy to
check that this gives an infinite ≺-decreasing chain · · ·x2 ≺ x1 ≺ x0, which is
a contradiction because ≺ is a well-order.

(iii). We identify 2κ with κ2. Let 〈fα |α < 2κ〉 some enumeration of κ2. Set
F (α, β) to be the least i < κ such that fα and fβ are identical below i but
fα(i) 6= fβ(i). It is easy to check that F cannot have a homogeneous set of size
more than 2. Exercise. Show that there is a function from two-elements subsets
of real numbers in the interval (0, 1) into ω such that every homogeneous set
has size at most 10.

(iv). The proof proceeds by showing that κ2 ordered lexico-graphically by
<lex does not have a decreasing or increasing chain of order-type κ+.17 Let us
give a hint to this argument: Suppose for contradiction that {fα |α < κ+} is a
strictly increasing chain (the argument is analogous for the decreasing chain),
and let γ ≤ κ be least such that X = {fα �γ |α < κ+} has size κ+; by thinning
out and reenumerating if necessary, we can assume that X has the property
that if α 6= β < κ+, then fα �γ 6= fβ �γ. For every α < κ+, let ξα < γ be such
that fα �ξα = fα+1 �ξα and fα(ξα) = 0 and fα+1(ξα) = 1. By the pigeon hole
principle, there is some fixed ξ < γ such that ξ = ξα for κ+-many α (let us
denote this set Y ). Since γ was chosen as the least one and ξ < γ there must
be α1 < α2 in Y such that fα1 � ξ = fα2 � ξ: we have fα1 <lex fα1+1 ≤lex fα2 ,
but also fα1(ξ) = 0, fα1+1(ξ) = 1, fα2(ξ) = 0, which is a contradiction.

Then one concludes the argument by pointing out that if F is defined by
setting F (α, β) = 0 iff fα <lex fβ , then a homogeneous set of size κ+ gives a
decreasing or increasing chain of length κ+. For more details see [6], Proposi-
tion 7.5. Note that this limiting result is strongest possible: Erdös proved in
1940s that (2κ)+ → (κ+)2

2 always holds. �

17Recall that the usual linear order on R (which has size 2ω) does not have a decreasing
or increasing chain of order-type ω1, while it has such a chain for every countable α < ω1.
The argument uses the separability of R (the existence of a countable dense set); the present
result is a bit more general.
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The above theorem does not a priori refute κ → (κ)2
2, set let us take it as

the definition of a new concept which gives the Ramsey property – which holds
on ω – to an uncountable cardinal κ.

Definition 6.20. We say that a cardinal κ > ω is weakly compact if

κ→ (κ)2
2.

Lemma 6.21. If κ is weakly compact, it must be inaccessible.

Proof. First notice that κ must be regular: If not let, us write κ as a disjoint
union κ =

⋃
i<γ Xi where |Xi| < κ for each i < γ, where γ < κ. Define

F : [κ]2 → 2 by setting F (α, β) = 0 iff for some i < γ, α, β ∈ Xi. It is easy to
see that F cannot have a homogeneous set of size κ.

To show that κ is strong limit, we use Theorem 6.19(iv). Suppose for con-
tradiction there is a cardinal µ < κ and 2µ ≥ κ. Then in κ → (κ)2

2 holds, so
must 2µ → (κ)2

2. Since κ ≥ µ+, we get 2µ → (µ+)2
2, a contradiction. �

There is an obvious strengthening of the concept of weak compactness which
postulates that there should be not only an unbounded homogeneous set, but
stationary.

Definition 6.22. We say that a cardinal κ > ω is ineffable if for every function

F : [κ]2 → 2

there exists a homogeneous set H which is stationary in κ.

It is not obvious, but ineffable cardinals are strictly stronger than weakly
compact (there are many weakly compact cardinals below the least ineffable).
We will show below in Theorem 6.25 that they imply ♦κ like measurable car-
dinals. For weakly compact cardinals this is open.

6.2.2. Some consequences of weak compactness

We fill prove a part of the following theorem:

Theorem 6.23. Suppose κ is a infinite cardinal. Then the following are equiv-
alent.
(i) κ→ (κ)2

2.
(ii) κ is inaccessible and there are no κ-Aronszajn tree (i.e. the tree property

holds, TP(κ)).

Proof. ((i) → (ii)). Inaccessibility of κ follows by Lemma 6.21. Let us now
argue that the existence of a large homogeneous set for graphs on κ implies
the existence of a large homogeneous set – i.e. a cofinal branch – for certain
direct graphs on κ, namely κ-trees.
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Let (T,<T ) be a κ-tree; we can assume that T = κ by taking an isomorphic
copy in necessary. We extend <T into a linear order ≺ and apply the partition
property to it. ≺ is a generalization of the Kleene-Brouwer ordering on finite
sequences of natural numbers.

In preparation for the definition let us define the “projection” of a node ξ on
level ≥ α on the level α of the tree:

πα(ξ) is the unique node ζ ∈ Tα with ζ ≤T ξ,
where Tα is the α-th level of T . If α, β < κ are comparable, we set

α <T β ↔ α ≺ β.
If α, β < κ are incomparable in <T , we set

α ≺ β ↔ πδ(α) < πδ(β),

where δ is the least ordinal such that πδ(α) 6= πδ(β). It is easy to check that
≺ is a linear order which extends <T ; note for instance that the following hold

α ≺ β <T γ → α ≺ γ.
Define F : [κ]2 → 2 by setting F (α, β) = 0 iff α ≺ β, and F (α, β) = 1 iff

β ≺ α. Let H be an F -homogeneous set of size κ.
Let α < κ be fixed. Since T is a κ-tree, there is some ρα such that ξ > ρα

implies ξ is on level greater or equal to α. By definition of ≺, if ξ, ζ ≥ ρα,
and ξ ≺ ζ, then either πα(ξ) ≺ πα(ζ) or πα(ξ) = πα(ζ). It follows that if
f ′′[H] = 0, then {πα(ξ) | ρα < ξ, ξ ∈ H} is a non-≺-decreasing set of nodes in
Tα, and if f ′′[H] = 1, it is a non-≺-increasing set of nodes in Tα. In either
case, since |Tα| < κ, there must be some σα and some node bα ∈ Tα such that

for all ξ > σα, if ξ ∈ H, then πα(ξ) = bα.

Do the above construction for every α, obtaining a sequence of nodes 〈bα |α <
κ〉. We show that two nodes bα, bβ have a common larger node in the <T -
ordering which makes them comparable, and hence 〈bα |α < κ〉 is a cofinal
branch. Fix bα, bβ , with α < β, and let σ = max(σα, σβ); then for every
ξ ∈ H, ξ > σ, bα = πα(ξ) <T ξ and bβ = πβ(ξ) <T ξ.

((ii) → (i)). We will not prove this. If you are interested, see [6, Theorem
7.8]. �

6.2.3. Some consequences of ineffability

Recall the notion of “threading” in Lemma 6.5. The following lemma is a
key to proving that ineffability implies ♦κ.

Lemma 6.24. Let κ > ω be regular. Then κ is ineffable iff whenever 〈Sα |α <
κ〉 is such that Sα ⊆ α for all α < κ, there is a S ⊆ κ such that {α < κ |S∩α =
Sα} is stationary.
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Proof. (←). Let F : [κ]2 → 2 be given. For each α, let us define Sα : α→ 2 by
setting Sα(ν) = F (ν, α), for ν < α. By our assumption there is a stationary
set S such that for each α ∈ S, S � α = Sα (identifying subsets of α with
their characteristic functions). S is regressive for arguments ≥ 2, so by Fodor’s
lemma there is a stationary set S∗ ⊆ S such that for some fixed i < 2, S(ν) = i
for every ν ∈ S∗. It follows that S∗ is homogeneous for F : for ν < α in S∗,
F (ν, α) = Sα(ν) = S �α(ν) = S(ν) = i.

(→). (This is optional). See Devlin’s book [3, Theorem 2.1, p. 313]. �

Theorem 6.25. Suppose κ is ineffable. Then ♦κ holds.

We will not prove this. If you are interested, see [3, Theorem 2.4, p. 315].

7. Large cardinals – in disguise

7.1. Stationary reflection

Suppose κ ≥ ω2 is a regular cardinal.

Definition 7.1. We say that S ⊆ κ reflects if there is some α < κ of uncount-
able cofinality such that S ∩ α is stationary in α. We call α a reflection point
(of S).

Let us fix some notation. Suppose S is stationary, then

r(S) = {α | cf(α) > ω, S ∩ α is stationary},
and

nr(S) = S \ r(S).

Notice that we do not necessarily have r(S) ⊆ S, while nr(S) ⊆ S is true
by definition.

Let us state some easy observations related to this concept:

Lemma 7.2. Suppose κ ≥ ω2 is a regular cardinal.
(i) If κ = µ+, then Eκµ does not reflect.
(ii) If S is stationary, then nr(S) is stationary.
(iii) If every stationary subset of κ reflects, then for every stationary S, r(S)

is stationary.

Proof. (i) Let us denote E = Eκµ . If α < κ has uncountable cofinality δ, then
δ < κ, and there exists a closed unbounded set C in α of order-type δ such
that for every α in C we have

cf(α) < δ ≤ µ < κ.

It follows that E ∩ C ∩ α is empty. Since α was arbitrary, it follows E does
not reflect.
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(ii) Let C be a closed unbounded set. We wish to show that nr(S) ∩ C is
non-empty. Let α be the least element of Lim(C) ∩ S, where Lim(C) is the
set of limit points of C (Lim(C) ∩ S is non-empty because S is stationary). If
cf(α) = ω, then α ∈ nr(S) because r(S) contains only ordinal with uncount-
able cofinality. So suppose cf(α) > ω. Then Lim(C)∩α is a closed unbounded
set disjoint from S ∩α because α is the least element of Lim(C)∩S. It follows
S ∩ α is not stationary, and hence α ∈ nr(S).

(iii). Let C ⊆ κ be a closed unbounded set. We wish to show that r(S)∩C
is non-empty. Since S∩C is stationary, the reflection applied to S∩C gives the
desired claim. Note that without the blanket assumption that every stationary
set reflects, it is possible that r(S) contains just one element: if S is a non-
reflecting stationary set and S∗ = S ∪ ω1, then r(S∗) = {ω1}. �

Is it possible that every stationary subset of a regular limit cardinal κ re-
flects? Or, is it possible that every stationary subset of Eω2

ω reflects?18

The following lemmas says that under certain assumptions, there are non-
reflecting stationary subsets of Eω2

ω ; see Definition 2.13 for the square sequence.

Lemma 7.3. Assume �ω1 holds. Then there is a non-reflecting stationary
subset E ⊆ Eω2

ω .

Proof. Let 〈Dα |α ∈ Lim(ω2)〉 witnesses �ω1 . We define a new sequence
〈Cα |α ∈ Lim(ω2)〉 which witnesses �ω1(E) for some E ⊆ Eω2

ω . This implies
that E does not reflect: if α < ω2 has uncountable cofinality, then Lim(Cα)∩E
is empty by (iii) from Definition 2.13.

First note that by the condition cf(α) < ω1 → ot(Dα) < ω1, we have

Eω2
ω =

⋃
δ<ω1

Eδ,

where for each δ < ω1:

Eδ = {α ∈ Eω2
ω | ot(Dα) = δ}.

By ω2-completeness of the non-stationary ideal and the fact that Eω2
ω is

stationary, there is some δ < ω1 such that Eδ = E is stationary.
The following holds:
(*) For every α < ω2 with uncountable cofinality, |Lim(Dα) ∩ E| ≤ 1.
Assume for contradiction there are two (limit) ordinals ξ < ξ′ < α in

Lim(Dα) ∩ E. Then Dξ = Dα ∩ ξ and Dξ′ = Dα ∩ ξ′, so the order-type
of Dξ must be smaller than the order-type of Dξ′ , but this contradicts the
assumption that they both should have order-type δ.

18We know from the previous lemma that Eω2
ω1

cannot reflect so we need to limit ourselves
to Eω2

ω .
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Let us now define a new sequence 〈Cα |α ∈ Lim(ω2)〉 as follows: if ot(Dα) ≤
δ, set Cα = Dα, and if ot(Dα) > δ, set Cα = {γ ∈ Dα | ot(Dα∩γ) > δ}. Check
that the sequence 〈Cα |α ∈ Lim(ω2)〉 witnesses �ω1(E). �

We can ask whether the assumption of �ω1 was essential for the proof of
the existence of a non-reflecting stationary subset of Eω2

ω . The answer is more
complicated than it seems: the fact that all subset of Eω2

ω reflect is consistent
with ZFC if the existence of certain large cardinals (more precisely of a Mahlo
cardinal) is consistent. And conversely, the consistency of a Mahlo cardinal
implies that it is consistent that all stationary subsets of Eω2

ω reflect. Let ϕ
denote the statement “All stationary subsets of Eω2

ω reflect”, then we have:

Con(ZFC + ϕ)↔ Con(ZFC + “There is a Mahlo cardinal”).
We say that ϕ and “There is a Mahlo cardinal” are equiconsistent.
We will sketch a proof of one direction using a measurable cardinal.

Theorem 7.4. If κ is a measurable cardinal, then there is generic extension
V [G] in which κ = (ω2)V [G] and all stationary subsets of Eω2

ω in V [G] reflect.

Proof. (Sketch). Let P denote the Levy collapse Col(ω1, < κ)19 and let G be
P-generic filter over V . Then by standard forcing arguments (ω1)V [G] = ωV1
and (ω2)V [G] = κ.

Let j : V → M be an ultrapower elementary embedding with critical point
κ. P is an element of M and j(P) is by elementarity equal to Col(ω1, < j(κ))
and the restriction of Col(ω1, < j(κ)) to κ is equal to P.

By standard arguments it follows that j lifts20 in V [G][H] to an elementary
embedding j∗:

j∗ : V [G]→M [G][H],

where G ∗H is j(P)-generic over V .
The rest of the argument is a more complicated version of the proof for

Theorem 6.10 (compare). If S is a stationary subset of Eω2
ω , then j(S) is a

stationary subset of Ej(κ)
ω in M [G][H]. By the construction j(S) ∩ κ = S is

a stationary subset of Eκω in V [G] and hence in M [G]. But we need to prove
more:

(∗) S is stationary in M [G][H].

This is done by arguing that an ω1-closed forcing (like our P) preserves station-
arity of S: stationarity of S is preserved from the model M [G] to the larger
model M [G][H], and this finishes the proof. �

19Conditions are countable functions f from ω1 × κ to κ with f(α, β) < β.
20This means that j∗ �V = j.
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7.2. The tree property

Recall that we proved in Theorem 6.23 that κ → (κ)2
2 implies that κ is in-

accessible and there are no κ-Aronszajn trees (κ satisfies the “tree property”,
TP(κ)). As a fact we mentioned that the converse is true as well. This leaves
the intriguing possibility that TP(κ) can hold even for a successor cardinal.
In this section, in Theorem 7.6 we sketch a proof that this is indeed the case:
If there is a weakly compact cardinal, then there is a generic extension where
TP(ω2) holds.

Let us first start with an informative observation related to the existence of
Aronszajn trees. It implies that being a κ-tree with levels of size < κ is the
only interesting case as far as existence or non-existence of Aronszajn trees on
κ is concerned: if T of height κ is allowed to have levels of size κ, then it is
easy to construct in ZFC such a tree without a cofinal branch; conversely, as
Theorem 7.5 says, if the levels of T have size < λ for some cardinal λ < κ,
then T always has a cofinal branch.

Theorem 7.5. Suppose κ is regular and λ < κ is an infinite cardinal. Suppose
T is a κ-tree such that every level of T has size < λ. Then T has a cofinal
branch.

Proof. Let (T,<T ) be a κ-tree; we can assume that T = κ by taking an
isomorphic copy in necessary. We assume that T is normal in the sense of
Definition 3.10 (only item (vi) is really important). Recall that Tα denotes the
collection of nodes on level α of the tree.

Assume first that λ is a regular cardinal. Let us choose arbitrarily ξα ∈ Tα
for each α < κ with cofinality λ. Suppose ξ ∈ Tα and ξ 6= ξα. Let σ(ξ) be
the least ordinal ζ < α such that πζ(ξ) 6= πζ(ξα).21 Let ρα < α be above all
the σ(ξ), ξ 6= xα, ξ ∈ Tα (such a ρα exists because the cofinality of α is λ,
and |Tα| < λ). Then for every two nodes ξ 6= ξα in Tα, πρα(ξ) 6= πρα(ξα).
The function ρ is regressive, and so by Fodor’s lemma there is a γ < κ and
a stationary set S composed of ordinals of cofinality λ such that ρα = γ for
every α ∈ S. For every α ∈ S, let γα = πγ(ξα). Since |Tα| < λ < κ, there is a
stationary S∗ ⊆ S such that for all α ∈ S∗, γα = x for some fixed x ∈ Tγ . It
follows that 〈ξα | γ < α, α ∈ S∗〉 determines a cofinal branch in T : for α < β in
S∗, if ξα and ξβ were incomparable, then πα(xβ) 6= xα, and by the construction
(because γ < α < β), πγ(πα(xβ)) 6= πγ(xα); but this contradicts the fact that
they both should be equal to x.

As an exercise, argue that the regular case can be used to prove the theorem
also for a singular λ. �

21Recall that πζ(ξ) the unique node on level ζ <T below ξ.
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We will not prove the following theorem, but keep in mind that it says that
some “trace” of weak compactness can consistently hold even at such small
cardinals as ω2.22

Theorem 7.6 (Mitchell). If there is a weakly compact cardinal, then there is
a generic extension where TP(ω2) holds.

8. Forcing and forcing axioms

8.1. Preservation of stationary sets and Aronszajn trees

[This section requires basic understanding of forcing.]
We have discussed the compactness principles SR(κ) (stationary reflection)

and TP(κ) (the tree property); see Section 7.
Let us now state some lemmas which are used in proofs for results like

Theorems 7.4 and 7.6.
Recall that if P = (P,≤) is a partially ordered set with the greatest element

1; then we say that p, q ∈ P are compatible, and write p || q, if there is r ∈ P
with r ≤ p, q. We say that p, q are incompatible if there are not compatible.
We say that A ⊆ P is an antichain if all p 6= q ∈ A are incompatible. For
future use, let us also define that D ⊆ P is dense if for every p there is some
q ≤ p in D; D is dense below p if for every p′ ≤ p there is some q ≤ p′ in D.

Definition 8.1. We say that P is ccc (countable chain condition) if every
antichain in P is at most countable. We say that P is σ-closed (or ω1-closed)
if whenever 〈pi | i < α〉, α < ω1 is a decreasing sequence in ≤ in P, then there
is some p such that p ≤ pi for all i < α.

Typical examples are these:

Definition 8.2. Add(ω, α), 0 < α, is a set of all functions p such that
dom(p) ⊆ α × ω, |dom(p)| < ω, and rng(p) ⊆ {0, 1}. Add(ω, α) is called
the Cohen forcing (at ω). It adds α-many new subsets of ω. ∆-lemma implies
that Add(ω, α) is ccc for every α.

Definition 8.3. Coll(ω1, α), ω1 ≤ α, is a set of all functions p such that
dom(p) ⊆ ω1, |dom(p)| ≤ ω, and rng(p) ⊆ α. Coll(ω1, α) is called a collapsing
forcing. It adds a surjection from ω onto α. It is easy to check it is σ-closed.

Definition 8.4. Suppose P is a partially ordered set. Then the product P×P
is defined as the partially ordered set whose domain are pairs (p, q), p, q ∈ P,
with the ordering defined by coordinates.

22Also recall that ZFC proves ¬TP(ω1), so ω1 is provably “incompact” in this sense.
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Note that Add(ω, α)×Add(ω, α) is isomorphic to Add(ω, α) so the product
is ccc. If (T,≤T ) is a Suslin tree, the the partially ordered set (T,≥T ) (notice
the reversed ordering) is ccc (by the definition of Susliness), but T × T is not
ccc (exercise).23

Exercise. Show that Add(ω, α) is not σ-closed, Coll(ω1, α) is not ccc, and a
Suslin tree (T,≥T ) is not σ-closed.

Lemma 8.5. Let P be ccc. Then:
(i) P preserves stationary subsets of ω1.
(ii) If P×P is ccc, then P preserves all ω1-Aronszajn trees. More strongly, it

does not add new cofinal branches to ω1-trees.

Proof. (i). Suppose S is a stationary set. We show that if p forces that Ċ is a
club in ω1, then p forces that S ∩ Ċ is non-empty. The key observation is that
there exists a club D such that

p 
 Ď ⊆ Ċ.
With this observation, the proof is finished easily: since S is stationary, S ∩D
is non-empty; if ξ ∈ Ď ∩ Š, then p 
 ξ ∈ Ċ ∩ Š.

To see that the observation holds, note that using ccc of P one can build by
induction a countable sequence 〈Xn |n < ω〉 such that (i) Xn is an at most
countable set of ordinals below ω1, (ii) for every n < ω, p 
 Ċ ∩ X̌n 6= ∅,24

and (iii) the supremum of each Xn is strictly smaller than the least element of
Xn+1. Since Ċ is forced by p to be a club, p must force that the supremum
of
⋃
Xn is in Ċ. By repeating the argument, we get in V a club D whose

elements are forced by p into Ċ.
(ii). (Sketch) Suppose for contradiction that ḃ is forced by p to be a new

cofinal branch. This means that for every α < ω1 there are incompatible
extensions p1, p2 of p such that p1 forces ḃ�α = b1 and p2 forces ḃ�α = b2, and
b1 6= b2. Then using the ideas in Footnote 23, one can construct an uncountable
antichain in P× P. �

Note that (ii) of the previous lemma cannot be strengthened to just P being
ccc: if P is a Suslin tree (T,≥T ), then forcing with T adds a new cofinal branch
to T .

23 Hint. Let X be a collection of nodes in T such that (i) if t ∈ X, then t has two
immediate successors t1 and t2 on the next level of T , (ii) on every level of T there is at
most one t ∈ X and if t, t′ are in X, then the levels of t, t′ are sufficiently far apart (it is
enough if the difference is at least 2) and (iii) the heights of t ∈ X are cofinal in ω1. Argue
that A = {(t1, t2) | t ∈ X} is an uncountable antichain in T × T : If (t1, t2) and (x1, x2) are
in A, then t1 < x1 implies t2 is incompatible with x2.

24For instance as follows: for every ξ < ω1, p 
 (∃α)f(ξ̌) = α. By ccc, there is an at most
countable set X such that p 
 f(ξ) ∈ X̌.
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Lemma 8.6. Let P be σ-closed. Then:
(i) P preserves stationary subsets of ω1.
(ii) P preserves all ω1-Aronszajn trees. More strongly, it does not add new

cofinal branches to ω1-trees.

Proof. (i). Suppose S is a stationary set and p forces that Ċ is a club. For
each p′ ≤ p, we find q ≤ p′ which forces Ċ∩ Š 6= ∅. This means that conditions
forcing that Ċ ∩ Š 6= ∅ are dense below p and this suffices.

By induction on ω1, construct a decreasing sequence of elements 〈qα |α <
ω1〉 below p′ and a strictly increasing continuous sequence 〈ξα |α < ω1〉 of
ordinals below ω1 such that qα forces that ξα is in Ċ. The set D = {ξα |α <
ω1} is a club, and hence there is some α such that ξα ∈ S ∩ D. It follows
pα 
 ξα ∈ Ċ ∩ Š.

(ii) (Sketch) Suppose p forces that ḃ is a new cofinal branch. By induction on
2<ω (finite sequences of zeros and ones) construct a tree of conditions 〈ps | s ∈
2<ω〉 below p such that for each s, psa〈0〉 ≤ ps and psa〈1〉 ≤ ps are incompatible
conditions which force ḃ � α = b̌1 6= b̌2 = ḃ � α for some well-chosen α. For
x ∈ 2ω, let px be a lower bound of 〈px�n |n < ω〉. It can be arranged that there
is a level γ < ω1 of the tree such that for every pair x 6= y of elements of 2ω,
px and py decide ḃ � γ + 1 differently, which implies that the γ-th level of the
tree has at least 2ω > ω many nodes, a contradiction. �

8.2. Martin’s Axiom

One of the (few) drawbacks of the forcing method for a typical mathematician
is that it requires deeper knowledge of set-theoretical methods (compare with
the previous section). Forcing axioms are a way of applying forcing to clas-
sical mathematical problems without requiring too much of set theory: it is
enough to define an appropriate partially ordered set (P,≤) and then show by
a combinatorial argument that P is ccc to get the required result.

Recall the notions of antichains and dense sets defined at the beginning of
Section 8.1. Let us further define that G ⊆ P is a filter if G contains the
greatest element of P (we also assume it has one), for every p, q ∈ G there is
some r ∈ P with r ≤ p, q, and if p ∈ G and p ≤ q, then q ∈ G.

Let us define the most widely known forcing axiom:

Definition 8.7 (Martin’s axiom, MAω1). Whenever P is ccc and D is a collec-
tion of ω1-many dense sets in P, then for every p there is a filter G containing
p which intersects every element of D.

Recall that if D has size ω, then the respective principle is provable:
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Lemma 8.8 (Rasiowa-Sikorski). Suppose P is a partially ordered set and D is
a countable collection of dense sets. Then for every p there is a filter G such
that p ∈ G and G meets every element of D.

Proof. Construct by induction a decreasing sequence of elements in P, 〈pn |n <
ω〉 with p0 = p and pn+1 ∈ Dn. Then define

G = {q ∈ P | ∃n < ω, pn ≤ q}.

�

Remark 8.9. MAω1 is not provable in ZFC, but by using a forcing argument,
it holds that if ZFC is consistent, then so is ZFC + MAω1 .

Let us show some consequences of MAω1 to illustrate its use:

Theorem 8.10. ZFC + MAω1 proves ¬CH.

Proof. Suppose for contradiction that 2ω = ω1, and let 〈xα |α < ω1〉 enumerate
all subsets of ω. Recall that the Cohen forcing C = Add(ω, 1) is ccc.25 Define
dense sets Dα for α < ω1 and Dm for m < ω:

Dα = {p ∈ C | ∃n < ω, p(n) 6= xα(n)}, Dm = {p ∈ C |m ⊆ dom(p)}.

Let G be a filter meeting every Dα and Dm. Let x be the union of conditions
in G. It is a function (because G is a filter) from ω into 2 (because G meets
every Dm). It further follows x 6= xα for every α < ω1 because for every α
there is some n the domain of x with x(n) 6= xα(n) (because G meets every
Dα). This contradicts the fact that 〈xα |α < ω1〉 enumerates all subsets of
ω. �

Recall that SH denotes the Suslin hypothesis which states that there are no
ω1-Suslin trees.

Theorem 8.11. ZFC + MAω1 proves SH.

Proof. Suppose for contradiction that (T,≤T ) is a Suslin tree. Then (T,≥T )
is a ccc partial order. Define dense sets Dα for α < ω1,

Dα = {t ∈ T |ht(t, T ) ≥ α}.

Let G be a filter meeting every Dα. Then G determines a cofinal branch
through T , a contradiction (recall that being Suslin implies being Aronszajn).

�

25For Add(ω, 1) this follows without a reference to the ∆-system lemma because
|Add(ω, 1)| = ω.



44 RADEK HONZIK

8.2.1. Whitehead’s problem

Recall the following theorem which we used to motivate some of the notions
discussed in these lectures:

Theorem 8.12 (Shelah [8]). (i) If ♦ω1(S) holds for all stationary S ⊆ ω1

(a consequence of V = L), then every Whitehead group of size ω1 is free.
(ii) ZFC + MAω1 implies there is a non-free Whitehead group of size ω1.

With regard to (i), let us just say that with ♦ω1(S) (in fact a weaker principle
suffices) one can imitate the proof of the known fact that every countable
Whitehead group is free. We will not discuss (i) here in detail, the reader may
read [4].

The theorem in (ii) shows that some additional combinatorial assumptions
above ZFC are necessary to prove the result in (i).26

Let us briefly review the underlying group-theoretic assumptions (let us
writeW -group for “Whitehead group”) to motivate the definition of the forcing
notion to use with MAω1 .

• Recall that a free group can be characterized as follows: A is free if for
every group B and every homomorphism π : B → A onto A there is
an (injective) homomorphism ϕ : A→ B such that π(ϕ(a)) = a for all
a ∈ A. (The existence of ϕ follows from the fact that A has a basis).
• We say that a group A is a W -group if for every group B and ev-
ery homomorphism π : B → A onto A with kernel Z, there exists a
homomorphism ϕ : A→ B such that π(ϕ(a)) = a for all a ∈ A.
• It was known that every countable W -group is free.
• We say that a group A is ω1-free if every countable subgroup of A is
free.
• It was known that every W -group of size ω1 is ω1-free.
• Before Shelah’s result it was also known that there are groups A such
that:
(i) |A| = ω1,
(ii) A is not free,
(iii) A is ω1-free,27

(iv) every countable subgroup of A is included in a countable subgroup
B of A such the quotient A/B is ω1-free.

26Shelah later proved in [9, 10] that CH is not sufficient for the result in (i): this is
analogous to the existence of an ω1-Suslin tree which is implied by ♦ω1(ω1) but not by CH
alone.

27Hence ω1-free does not imply free; which makes the property of being “free” non-compact
in the sense of the compactness properties discussed in this lecture.
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Suppose A is a group satisfying the properties (i)–(iv) from the last bullet.
It is good to see A as a potential counterexample to the Whitehead’s conjecture
– i.e. while not free, it may still be Whitehead: we now define a partial order
which will make it Whitehead with respect to a fixed B. Let B be an arbitrary
group and π : B → A a homomorphism onto A. Let P(B,A) be a partial order
such that if G is a filter ensured by MAω1 which meets a certain family of ω1

many dense sets in P, then
⋃
G = ϕ is a homomorphism from A into B with

π(ϕ(a)) = a.

Definition 8.13. P(B,A) is a collection of all ϕ such that there exists some
finitely generated pure subgroup28 S of A and ϕ is a homomorphism from
S into B with π(ϕ(a)) = a for all a ∈ S. The ordering on P is by reverse
inclusion.

To apply MAω1 one needs to verify:
(1) For a ∈ A, let us write Da = {ϕ ∈ P | a ∈ dom(ϕ)}. One needs to

verify that each Da is dense in P.
(2) P is ccc.
The second condition is hard and captures the combinatorial core of the

argument. First notice that the ∆-lemma argument would imply P is ccc if
each ϕ were finite. But ϕ ∈ P are countable so the ∆-lemma alone will not
help. We are saved by the fact that S in the definition of P is finitely-generated
which together with (iv) can be used to argue for ccc.

Remark 8.14. WithoutMAω1 , the same argument would need go by defining a
forcing iteration of length ω2 with finite support such that at each stage α < ω2

one would force with a partial order as in Definition 8.13 for some A,B (some
bookkeeping function would make sure that every potential counterexample
would eventually appear in our iteration). One can appreciate to what extent
MAω1 makes the argument more accessible for a non-set-theoretician.

Remark 8.15. The reader may speculate which of the two additional axioms
– (∀S)♦ω1(S) or MAω1 – are more “natural” or “in keeping with mathematical
intuition”, based on the implications they have for the Whitehead’s problem –
a problem which emerged in mainstream mathematics, and not in set theory:

(∀S)♦ω1(S) implies that the result which true for countable groups just from
ZFC (that every countable W -group is free) extends to ω1. This may sound
convincing, until one realizes that ω is an “inaccessible” cardinal (regular and
strong limit), and ω1 is a successor cardinal, so some differences might be in
fact natural (compare with the fact that every ω-tree has a cofinal branch,
but there is in ZFC an ω1-tree without a cofinal branch). Perhaps ZFC is too

28In our context, it means that A/S is torsion free.
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weak to accentuate the difference between ω and ω1 in all contexts: under
this interpretation, MAω1 can be identified as a natural principle which lends
set theory the power to make visible the distinctions which may be under the
resolution ZFC.

8.3. Proper forcing axiom

The consequences of MAω1 are limited by the fact that it only applies to partial
orders which are ccc. It took some time to find a good generalization of MAω1 ;
one of the reasons was that it was hard to find a good analogue of the following
two properties of ccc forcing notions:
(A) Any forcing iteration with finite support of arbitrary length such that each

iterand of the iteration is forced to be ccc is ccc.
(B) MAω1 is equivalent to its restriction to ccc partial orders of size ≤ ω1.

The combined consequence of (A) and (B) is that to get a model with MAω1 ,
it suffices to iterate with finite support ccc partial orders of size ω1, and in the
resulting extension, all cardinals are preserved (by ccc) and MAω1 holds (by
(B) and some bookkeeping device to successive deal with all ccc partial orders
of size ω1).

Let sketch the prove of (B):

Theorem 8.16. MAω1 is equivalent to its restriction to ccc partial orders of
size ≤ ω1.

Proof. Suppose P is a ccc forcing notion and D = {Dα |α < ω1} is a collection
of ω1-dense sets in P. We wish to find a filter over P meeting every Dα using
only the version of MAω1 which is applicable to forcing notions of size ≤ ω1: P
may be much larger so we need to find some ccc forcing notion P∗∗ ⊆ P of size
≤ ω1 with a filter G which (when extended to all of P) will meet every element
of D.

Let for each α < ω1 be Aα ⊆ Dα some antichain in P maximal for the
following property:

(*) for every d ∈ Dα there is some a ∈ Aα with a || d.
Notice that because Dα is dense it actually holds:
(**) for every p ∈ P there is some a ∈ Aα with a || p, i.e.

(8.6) there is some q ∈ P with q ≤ a, p.
(Naive approach). Since P is ccc, each Aα is at most countable, and hence

P∗ =
⋃
α<ω1

Aα is subset of P of size ω1. Define D∗α = {p ∈ P∗ | (∃a ∈
Aα) p ≤ a}. If each D∗α is dense in P∗, we are done: by MAω1 , there is a
filter G over P∗ which meets every D∗α, and by definition of D∗α it meets some
a ∈ Aα ⊆ Dα. But D∗α may not be dense because (8.6) only ensures that
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D̄α = {p ∈ P | (∃a ∈ Aα) p ≤ a} is dense. There is also an additional concern
whether P∗ is actually ccc (perhaps some conditions are compatible in P but
not in P∗, which may give rise to a large antichain).

(Corrected approach). Using a Löwenheim-Skolem type argument, let P∗∗
be the minimal closure of P∗ under the operation h which assigns to each pair
(p, p′) of compatible condition some witness for compatibility, i.e. some q ∈ P
with q ≤ p, p′. Then P∗∗ has size ω1 and it satisfies the following two properties:

(8.7) P∗∗ is ccc,

because by the closure of P∗∗ under h, any antichain in P∗∗ is an antichain in
P, and

(8.8) (∀p ∈ P∗∗)(∀α < ω1)(∃a ∈ Aα)(∃q ∈ P∗∗) q ≤ p, a.

Define D∗∗α = {p ∈ P∗∗ | (∃a ∈ Aα) p ≤ a}. Then by (8.8) each D∗∗α is dense in
P∗∗, and we are done by applying MAω1 to P∗∗: first let G∗∗ ⊆ P∗∗ be a filter
meeting every D∗∗α , and then define

G = {p ∈ P | (∃g ∈ G∗∗) g ≤ p}.

It is easy to check that G is as required. �

It was Shelah who discovered a fruitful generalization of ccc which satisfies
an analogue of (A), and with large cardinals, a version of (B). This is the
notion of a proper forcing. The definition of this concept is beyond the scope
of this lecture (see for instance [5] for details). Let us just mention that every
ccc and σ-closed forcing is proper, as are variants of the “tree-based” forcings,
such as the Sacks forcing.

Definition 8.17. PFA (proper forcing axiom) says that if P is proper and D is
a collection of ω1 many dense sets in P, then there is a filter G meeting them
all.

Note that since every ccc forcing is proper, we easily get that PFA implies
MAω1 .

The following analogues of (A) and (B) discussed for ccc forcings are true
for the proper forcings:

(α) Any forcing iteration with countable support of arbitrary length such
that each iterand of the iteration is forced to be proper is proper.

(β) PFA is not equivalent to its restriction to proper partial orders of size
≤ ω1. However, using a supercompact cardinal, PFA is consistent.29

29A supercompact cardinal κ is used to “guess” every potential proper forcing of an
arbitrary size, and in the resulting proper iteration of length κ, PFA holds.
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While MAω1 does not put any upper bound on the size of 2ω (it only implies
that 2ω must be regular and greater than ω1), PFA implies 2ω = ω2.

The known consequences of PFA are often strengthenings of the consequences
ofMAω1 : for instanceMAω1 implies that all ω1-Aronszajn trees are special (and
hence there are no ω1-Suslin trees); PFA implies that any two ω1-Aronszajn
trees are very similar.30 PFA also implies TP(ω2).31

Importantly, PFA also decides another “mainstream mathematics” problem,
this time from functional analysis – the Kaplansky’s conjecture. See the next
section for a brief description.

Let us illustrate the use of PFA by showing that it implies the tree property
at ω2.

Theorem 8.18. PFA implies TP(ω2).

Proof. (Sketch) Suppose for contradiction that T is an ω2-Aronszajn tree (we
identify the domain of T with ω2). Let M be an elementary submodel of size
ω1 with ω1 ⊆ M , in some large enough H(θ), for instance in H(ω3), with
T ∈M .

Let oM = M ∩ω2 (oM is an ordinal of size ω1). By elementarity T ∩M ∈M
is a tree of height oM without cofinal branches. Let P be a σ-closed forcing
which collapses ω2 to ω1 and Q̇ the ccc forcing which specializes T by finite
conditions. By elementarity P∗Q̇ ∈M and it is easy to see that P∗Q̇ is a proper
forcing. By PFA, let us consider all ω1 dense sets in M in P ∗ Q̇ and a filter G
which meets them all. G determines an initial part of the collapsing function
f which would be added by P: working over M , this collapsing function is a
sujrection f : oM → ω1. Since f is a generic filter over M (because it meets all
ω1 dense sets in M), M [f ] is a generic extension of M . Working in M [f ], let
g : T ∩M → ω be the specializing function (corresponding to Q̇) which maps
T ∩M into ω such that

(8.9) t <T s implies g(t) 6= g(s).

Again M [f ][g] is a model of set theory. Now we reach a contradiction because
any node w ∈ T on the level oM determines a cofinal branch through T ∩M
of length ω1 which is supposed to be mapped injectively into ω by (8.9). �

Remark 8.19. MAω1 is equiconsistent with ZFC. In contrast, PFA has a very
large consistency strength: by current results in inner model theory, it implies
consistency of many Woodin cardinals (much larger than measurable). The
conjecture is that PFA is equiconsistent with the existence of a supercompact

30“club-isomorphic”, which we will not define here.
31PFA does not imply SR(ω2), but a strengthening of PFA called Martin’s maximum (MM)

does imply SR(ω2).
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cardinal. This should be viewed as a positive thing: PFA can thus decide
statements which cannot be decided by MAω1 simply based on the consistency
strength of the respective theories. An example is TP(ω2); the consistency
strength of TP(ω2) is a weakly compact cardinal – since MAω1 is equiconsistent
with ZFC, it cannot imply TP(ω2). In Theorem 8.18 we showed that PFA does
imply TP(ω2).

8.3.1. Kaplansky’s conjecture

Recall that a Banach algebra A is an associative algebra over the complex
numbers that is at the same time a Banach space, i.e. a normed space which
is complete with respect to the metric induced by the norm. The norm must
satisfy the multiplicative inequality

||xy|| ≤ ||x|| ||y||.

The multiplicative inequality makes the multiplication continuous on A (if
(xn)→ x and (yn)→ y, then (xnyn)→ xy).

The algebra is unital if it has a multiplicative inverse whose norm is 1.
A prototypical example of a unital Banach algebra is the algebra of contin-

uous complex valued functions defined on some non-empty compact Hausdorff
space X, denoted C(X), such as the unit interval [0, 1]. The norm is the usual
supremum norm ||f || = sup{|f(x)| |x ∈ X}, and the multiplication is defined
by fg(x) = f(x)g(x). This makes C(X) a commutative Banach algebra with
the identity function being the unit for multiplication.

Kaplansky conjectured in 1948 that any Banach algebra homomorphism
from C(X), for a non-empty compact Hausdorff space X, into any other Ba-
nach algebra is necessarily continuous (and thus the notion of continuity –
which depends on the norm – is reduced to purely algebraic properties of
C(X)).

Theorem 8.20. (i) (Dales, Esterle, 1976) CH implies that Kaplansky’s con-
jecture fails.

(ii) (Solovay, Woodin, 1976) It is consistent relative to ZFC that 2ω = ω2,
MA holds, and Kaplansky’s conjecture is true.

(iii) (Todorcevic, 1989, see [12]) PFA implies that Kaplansky’s conjecture is
true.

We will not give further details (see for instance [2] for more details), but
put the result in the set-theoretical context considered in this lecture.

Notice that we have discussed three independence of mainstream mathemat-
ical questions from the axiom of set theory: Suslin hypothesis, Whitehead’s
problem, and Kaplansky’s conjecture. In one direction, they were all decided
by a form of CH: ♦ω1(ω1), (∀S)♦ω1(S), and CH, respectively. In the other
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direction, they were all decided by a form of ¬CH: MAω1 , MAω1 , PFA, respec-
tively. It is instructive to notice that V = L decides all three in one way, while
PFA decides all three the other way. It is up to the reader to speculate which
solution is the more intuitively “correct”.

Remark 8.21. On a more technical note: Solovay’s and Woodin’s result from
1976 proceeds as follows: first we force MAω1 by the usual ccc finite-support
iteration of length ω2, denoted P; then we define a ccc forcing Q̇ such that in
V [P ∗ Q̇] Kaplansky’s conjecture holds. The whole forcing P ∗ Q̇ is ccc, but it
is not same as saying that MAω1 implies Kaplansky’s conjecture.32 Todorcevic
showed that PFA does imply Kaplansky’s conjecture: the difference is that
in PFA one can also consider collapsing forcing notions which can “morally
speaking” (though not literally) turn ω2 into ω1 using only ω1 many dense
sets; over this (partial collapse) a ccc forcing notions is used (this is similar to
the argument in Theorem 8.18).

32MAω1 says that there is a filter for any ccc forcing and any collection of ω1 dense sets
in that forcing; a true generic extension will meet all, in our context ω2 many, dense sets. It
may be open whether Kaplansky’s conjecture can consistently fail with MAω1 .
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9. For the exam 2023: Theorems and lemmas to learn

There will be a written exam. You will receive a question from the list
below and you should prove the relavant result in a self-contained, clearly
written way. The proof must contain all relevant definitions appearing in the
theorem or lemma. You will submit the written proof and I will grade it.

Questions:
• 3.6,
• 4.2,
• 4.3,
• 4.13,
• 6.2, 6.3,
• 6.5, 6.7,
• 6.9, 6.10, 6.11,
• 6.19, 6.21,
• 6.23,
• 7.2, 7.3,
• 7.5,
• 8.8, 8.10, 8.11,
• 8.16
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