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1. Introduction

We will discuss three famous independent mathematical problems from
various areas of mathematics: from characterization of the real line, to infi-
nite abelian group theory and functional analysis. We will briefly describe
their contents, discuss their relevance, and then focus on set-theoretical re-
formulations which were used by set-theoretics to show their independence.

• SH denotes the statement that there are no Suslin lines.
• WC denotes the statement there exists a non-free Whitehead groups

of size ω1.
• KC denotes the statement that every homomorphism from C(X) (the

commutative Banach algebra of continuous real valued functions on
an infinite compact space X) into any commutative Banach algebra
is continuous.

SH stands for “Suslin hypothesis”. Suslin asked in the 1920s, [22], whether
one can replace the condition of separability in the characterization of the or-
dering on the reals by the weaker countable chain condition and still uniquely
characterize the reals. A Suslin line is a hypothetical witness for the nega-
tive answer: it is a dense complete linear order satisfying the countable chain
condition which fails to be separable. Existence of this line is equivalent to
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the existence of an ω1-Suslin tree. See the appropriate sections of [14] for
details.

WC stands for the “Whitehead conjecture” in the infinite abelian group
theory. Whitehead asked in the 1950s whether there exists a non-free abelian
group G of size ω1 such that every surjective homomorphism onto G with
kernel Z splits (a group satisfying this property is called “Whitehead”). By
a result of Stein from 1951 every countable Whitehead group is free (¬WC
holds in the countable case in our notation). See [9] for a clearly written
summary and definitions and the book [8] for more context and generaliza-
tions.

KC stands for “Kaplansky conjecture” in Banach algebra theory. Kaplan-
sky asked around 1947 whether every algebra homomorphism from C(X),
where X is any infinite compact Hausdorff space and C(X) is the Banach
algebra of continuous real valued functions, into any other commutative Ba-
nach algebra is continuous (“automatic continuity”). See the book [5] for
more details and alternative definitions and [26, 7, 1] for more context a
recent development.

Remark 1.1. Suslin, Whitehead1 and Kaplansky apparently did not commit
to a specific solution to their questions. We chose the uniform notation
SH,WC,KC for easier reading: All three statements follow from PFA and all
of them are refuted from V = L.

In all three cases, the key step for showing independence over ZFC is
to identify a set-theoretic combinatorial property which is equivalent (or
at least implies) the original mathematical statement. For SH, this is the
non-existence of ω1-Suslin trees, for WC the existence of uniformizations of
certain colorings of ladders on stationary sets, and for KC the non-existence
of strictly increasing maps from 2ω1 ordered lexicographically into ωω ordered
by eventual domination.

Let us first review additional set-theoretic assumptions which resolve these
problem over ZFC. The theorem in particular implies that SH,WC,KC are
independent over ZFC.

Theorem 1.2. The following hold:
(i) MAω1 implies SH [21] and WC [20, 9], and PFA implies KC [5, 24].
(ii) CH implies ¬KC [4], ♢ implies ¬SH [15], and ♢(S) for every stationary

S ⊆ ω1 implies ¬WC [20, 9].

Remark 1.3. The argument for KC in [5] goes by constructing a generic
extension via a ccc iteration which yields simultaneously MAω1 and a com-
binatorial property which implies KC. Todorcevic noticed in [24, Theorem
8.8] that this combinatorial property already follows from PFA (see [24, p.
87] for more historical details on this point). It is open whether MAω1 is
necessary for KC; see [1] which constructs a model with ¬KC, ¬CH and a
weak fragment of MAω1 .

1It is sometimes suggested that Whitehead conjectured that all Whitehead groups of
size ω1 are free (for instance in [1]) possibly because Stein proved in the early 1950s that all
countable Whitehead groups are free. But there is no general consensus on the notation.
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2. Set-theoretic background

We will briefly review notions which appear in Theorem 1.2 to make these
notes relatively self-contained.

2.1. Stationarity

We will discuss the concept of stationarity only on ω1, but it is meaningful
on any ordinal of uncountable cofinality.

Definition 2.1. A set C ⊆ ω1 is called closed unbounded, club if it satisfies:
(i) C is unbounded in ω1: for every α < ω1 there is β ≥ α with β ∈ C.
(ii) C is closed: whenever α < ω1 is a limit ordinal and C∩α is unbounded

in α, then α ∈ C.

Lemma 2.2. If C and D are clubs in ω1, then C ∩D is a club in ω1

Proof. We first show that C∩D is closed. This is clear: if α is a limit ordinal
and C ∩ α and D ∩ α are both unbounded in α, then by closedness of C,D,
α ∈ C ∩D.

The key of the proof is to show the unboundedness. Let α < ω1 be given,
we wish to find some β ≥ α such that β ∈ C ∩ D. Let us construct by
recursion a sequence ⟨ci | i < ω⟩ of elements of C and ⟨di | i < ω⟩ of elements
of D as follows. Choose c0 ∈ C and d0 ∈ D so that α < c0 < d0. In general,
in the step n+1, choose cn+1 ∈ C and dn+1 ∈ D so that . . . cn < dn < cn+1 <
dn+1. Let us denote c = sup{ci | i < ω} and d = sup{di | i < ω}. First note
that c = d and that c (and d) is a limit ordinal of countable cofinality. By
closedness of C and D, c ∈ C ∩D. □

Exercise. Let C be a club. Let us denote as D the set of all limit ordinals
in C. Show that D is a club.

Exercise. Let C be a club and let Lim(C) be the set of limit points of C,
where α ∈ C is a limit point of C if C ∩ α is unbounded in α. Show that
Lim(C) is a club (which is strictly smaller than C).

Exercise. Lemma 2.2 generalizes to countably many clubs Ci: if Ci, i < ω,
are clubs, so is

⋂
i∈ω Ci.

Lemma 2.2 allows us to define the closed unbounded filter generated by
the club sets:

Definition 2.3. The club filter on ω1, Club(ω1), is defined as follows:

Club(ω1) = {X ⊆ ω1 | there is a club C such that C ⊆ X}.

Note. Under AC, Club(ω1) is never an ultrafilter.

Definition 2.4. Let us denote by NS(ω1) the dual ideal to Club(ω1):

NS(ω1) = {X ⊆ ω1 |κ \X ∈ Club(ω1)}.
We call the ideal NS(ω1) the non-stationary ideal on ω1.

Lemma 2.5. X ⊆ ω1 is stationary iff X ∩ C ̸= ∅ for every club C.

Proof. If X is stationary iff κ \X is not in Club(κ). This means that there
is no C so that C ⊆ κ \X, or equivalently for any club C, C ̸⊆ κ \X, which
is the same as C ∩X ̸= ∅. □
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Exercise. Show that every stationary set S is unbounded, and hence
uncountable. Exercise. Let us denote by F (ω1) the Frechet filter on ω1:

F (ω1) = {X ⊆ ω1 | |ω1 \X| < ω1}.
Show

F (ω1) ⊊ Club(ω1).

2.2. Diamonds

Recall the definition of CH:

Definition 2.6. The Continuum Hypothesis, CH is defined as follows:

2ω = ω1.

Exercise. Show that the following two principles are equivalent to CH:
(i) There is a surjection from P(ω) onto ω1.
(ii) If X is an arbitrary infinite subset of the real line R, then |X| = ω or

|X| = |R|.
The principle CH is relatively weak, the following concept is a strength-

ening of CH wich much broader range of consequences in mathematics.

Definition 2.7. Let S be a stationary subset of ω1. We say that ♢(S) holds
if there is sequence ⟨Sα |α ∈ S⟩ such that Sα ⊆ α for every α and for every
A ⊆ ω1,

{α ∈ S |Sα = A ∩ α} is stationary.
We write ♢ for ♢(ω1).

Under V = L,2 ♢(S) is true for every stationary S.
♢ implies CH:

Theorem 2.8. Suppose ♢ holds, then CH holds.

Proof. Let ⟨Sα |α ∈ ω1⟩ be a diamond sequence. We will show that for
every X ⊆ ω there is some α ∈ ω1 such that X = Sα. This means that
there is a surjection from P(ω) onto ω1, which is equivalent to CH. Let
X ⊆ ω be arbitrary. Since ⟨Sα |α ∈ ω1⟩ is a diamond sequence, the set
{α < ω1 |Sα = X ∩ α} is stationary and in particular unbounded. Choose
any α ≥ ω from this set. Then X = X ∩ α = Sα. □

Note that by a result of Jensen, CH plus ¬♢ is consistent so the converse
of Theorem 2.8 does not hold.

2.3. Forcing axioms

Forcing axioms are axiomatic statements which postulate existence of certain
ultrafilters on a wider class of Boolean algebras, not only the powerset alge-
bras. By extending the class of algebras, it is possible to derive from forcing
axioms consequences for specific mathematical structures: roughly speaking
given a mathematical problem, it is sometimes possible to associate with it
a specific Boolean algebra, and the existence of an ultrafilter with certain

2An axiom claiming that V is equal to the the constructible universe or Gödel universe,
denoted L. L ⊆ V is always true. Gödel defined L to show in 1930’s that CH and AC
relatively consistent with ZF.
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properties implies a solution to the original problem. This is a remarkable
extension of Cohen’s original idea for forcing. See [14] for more details and
context.

There is a conceptual similarity between compactness principles (con-
sequences of AC) and forcing axioms: they both generalize certain ZFC-
theorems, each in a different sense:

• AC implies that every filter in any powerset algebra P(X) can be
extended into an ultrafilter.

• AC implies that given any complete Boolean algebra B and a family
of countably many dense open subsets {Dn |n < ω} of B there is
an ultrafilter on B which meets every Dn (this is a straightforward
reformulation of the Baire category theorem).

Forcing axioms postulate the second bullet for uncountably many dense
open subsets of a Boolean algebra B. B must come from some fixed class
B of complete Boolean algebras (the larger the class B, the stronger the
associated forcing axiom).

Definition 2.9. Given a class B of complete Boolean algebras, we write
FAω1(B) for the stament that for any B ∈ B and any family of dense open
subsets {Dα |α < ω1} of B there is an ultrafilter U on B which meets every
Dα. We say that U is “partially generic”.

Let us review some important classes B. Let “ccc” denote the class of
Bolean algebras satisfying the countable chain condition, “proper” the class of
proper Boolean algebras, and “stat” the class of Boolean algebras preserving
stationary subsets of ω1. Note that these classes satisfy:

ccc ⊆ proper ⊆ stat.

Definition 2.10. Let us define the associated forcing axioms:
(i) Martin Axiom, also denoted MAω1 , is FAω1(ccc).
(ii) Proper Forcing Axiom, also denoted PFA, is FAω1(proper).
(iii) Martin Maximum, also denoted MM, is FAω1(stat).

From the general perspective mentioned above, one can classify math-
ematical problems according to the associated Boolean algebra B and its
class B such that the problem is decided by the existence of partially generic
ultrafilters for B.

2.3.1. Some examples

Suppose P = (P,≤, 1) is a partially ordered set with the greatest element
1; then we say that p, q ∈ P are compatible, and write p || q, if there is r ∈ P
with r ≤ p, q. We say that p, q are incompatible if there are not compatible.
We say that A ⊆ P is an antichain if all p ̸= q ∈ A are incompatible. We
say that D ⊆ P is dense if for every p there is some q ≤ p in D and D is
open if p ∈ D and q ≤ p implies q ∈ D (downwards closure).

Definition 2.11. We say that P is ccc (countable chain condition) if every
antichain in P is at most countable.

A paradigmatic example is Cohen forcing for adding new subsets of of ω:
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Definition 2.12. Add(ω, α), 0 < α, is a set of all functions p such that
dom(p) ⊆ α × ω, |dom(p)| < ω, and im(p) ⊆ {0, 1}. We set p ≤ q iff q ⊆ p
(reverse inclusion ordering). Add(ω, α) is called the Cohen forcing (at ω). It
adds α-many new subsets of ω.

Fact 2.13. An application of the so called ∆-lemma shows that Add(ω, α)
is ccc for every α. Note that for α < ω1, Add(ω, α) is just countable, so it
is ccc trivially.

Let us further define that G ⊆ P is a filter if G contains the greatest
element of P, for every p, q ∈ G there is some r ∈ P with r ≤ p, q, and if
p ∈ G and p ≤ q, then q ∈ G.

The following definition is equivalent to the Boolean algebra version men-
tioned above:

Definition 2.14 (Martin’s axiom, MAω1). Whenever P is ccc and D is a
collection of ω1-many dense sets in P, then for every p there is a filter G
containing p which intersects every element of D.

Recall that if D has size ω, then the respective principle is provable:

Lemma 2.15 (Rasiowa-Sikorski). Suppose P is a partially ordered set and
D is a countable collection of dense sets. Then for every p there is a filter G
such that p ∈ G and G meets every element of D.

Proof. Construct by induction a decreasing sequence of elements in P, ⟨pn |n <
ω⟩ with p0 = p and pn+1 ∈ Dn. Then define

G = {q ∈ P | ∃n < ω, pn ≤ q}.
□

Remark 2.16. MAω1 is not provable in ZFC, but by using a forcing argu-
ment, it holds that if ZFC is consistent, then so is ZFC+MAω1 .

Let us show some consequences of MAω1 to illustrate its use:

Theorem 2.17. ZFC+MAω1 proves ¬CH.

Proof. We will apply MAω1 with the partial order C = Add(ω, 1). Suppose
for contradiction that 2ω = ω1, and let ⟨xα |α < ω1⟩ enumerate all subsets
of ω. Define dense sets Dα for α < ω1 and Dm for m < ω:

Dα = {p ∈ C | ∃n < ω, p(n) ̸= xα(n)}, Dm = {p ∈ C |m ⊆ dom(p)}.
Let G be a filter meeting every Dα and Dm. Let x be the union of conditions
in G. It is a function (because G is a filter) from ω into 2 (because G meets
every Dm). It further follows x ̸= xα for every α < ω1 because for every α
there is some n the domain of x with x(n) ̸= xα(n) (because G meets every
Dα). This contradicts the fact that ⟨xα |α < ω1⟩ enumerates all subsets of
ω. □

3. Whitehead conjecture

3.1. The problem

Definition 3.1. Suppose G is an abelian group and f : G → H is a surjective
homomorphism. We say that f splits if there exists a homomorphism f ′ :
H → G such that f ◦ f ′ = 1H .
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Note that if f : G → H is surjective and ker(f) denotes the kernel of f ,
then H ∼= G/ker(f) (see Theorem 3.15).

The problems is to characterize free abelian groups H via the criterion of
the existence of splitting homomorphisms.

Fact 3.2 (see Theorem 3.24). H is free iff for every G and every surjective
f : G → H, f splits.

It is easy to see that if H is free, then every f : G → H splits (see Theorem
3.24). The converse direction is a bit more difficult to prove: it uses the fact
that every abelian group H is a quotient of the free group Z(H) generated by
H, i.e. H ∼= Z(H)/ker(f) for some surjective homomorphism f : Z(H) → H.
The existence of splitting homomorphism ensures that H has an isomorphic
copy inside Z(H), and by Dedekind’s theorem (that a subgroup of a free
abelian group is always free), H must be free as well.

It follows that to prove the harder direction in Fact 3.2, it suffices to
require that every surjective homomorphism f : Z(H) → H splits. White-
head inquired whether it is possible to weaken this criterion still further and
demand that only certain f ’s are split.

To understand this note that if H ∼= Z(H)/ker(f), then ker(f) is a normal
subgroup of Z(H) and again by Dedekind’s theorem ker(f) itself must be a
free group. All free abelian groups are up to isomorphism of the form Z(κ) for
some cardinal κ (finite or infinite), see Section 3.3.3 Stein proved that if H is
countable, then it suffices for the converse direction that every f : Z(H) → H
such that ker(f) ∼= Z splits.4 Whitehead asked whether one can remove the
condition of countability in Stein’s theorem.

Let us restate the problem now in the modern notation:

Definition 3.3. We say that an abelian group H is a Whitehead group or
W -group if for every G and every surjective homomorphism f : G → H, if
ker(f) ∼= Z, then f splits.

Note that by the discussion above we have the following inclusion:

Free abelian groups ⊆ W -groups.

Stein’s theorem now reads that every countable H is free iff H is a W -
group.

Definition 3.4. We say that Whitehead’s conjecture holds if there is an
abelian group of size ω1 which is a W -group, but not a free group. We
denote this conjecture by WC.

Remark 3.5. Whitehead apparently did not commit strongly to a particu-
lar “conjecture”, he posed the question as a problem. We write WC to have
all the conjectures false in V = L and true under PFA, undescoring the con-
ceptual resemblance of the three problems (Whitehead’s, Kaplansky’s and
Suslin’s) which emerged only after some hard work of generations of mathe-
maticians. Note that the conceptual resemblance shows that Stein’s theorem

3In particular Z(H) ∼= Z(|H|).
4Since H is countable, Z(H) is countable as well, so all the possibilities for ker(f) are

{Z(κ) | 1 ≤ κ ≤ ω}. Hence limiting the splitting homomorphism just to the case of Z is
non-trivial.
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is specific for the countable case and should not be naively postulated for all
cardinals. Compare with König’s lemma which asserts that every ω-tree has
a cofinal branch, and the fact that König’s lemma is false for ω1 (there exit
ω1-Aronszajn trees).

3.2. Preliminaries on groups

We first review some basic concept. Recall that if G is a group (in general
non-commutative) G = (G,+G,−G, 0G). We say that a function f : G → H
between two groups is a homomorphism if f(0G) = 0H , f(x+Gy) = f(x)+H

f(y), and f(−Gx) = −Hf(x). We will omit the subscripts G and H in the
subsequent text because they can be deduced from the notation.

Assume H is a subgroup, which we denote by H ≤ G. For every g ∈ G,
we call g + H = {g + h |h ∈ H} the left coset (with respect to g) and
H + g = {h + g |h ∈ H} the right coset (with respect to g). Note that in
general g +H ̸= H + g is possible.

As an exercise, convince yourselves that

(3.1) H + a = H + b ↔ a− b ∈ H ↔ b− a ∈ H

and a+H = b+H ↔ −a+ b ∈ H ↔ −b+ a ∈ H.

Lemma 3.6. The family of all left cosets and also of all right cosets is a
partition of G. The number of elements in both partitions is the same. Also,
for every g, |g +H| = |H + g| = |H|.

Proof. Exercise. Hint for the second claim: define a function which maps
H + g to −g +H and show that it is a bijection. See [H], Section 4. □

Remark 3.7. Note that we used this argument it the proof of Lagrange’s
theorem in Introduction to mathematics I: it implies that if G is finite and
H ≤ G, then the number of elements in H divides the number of elements
in G.

It follows that the partition into left cosets defines an equivalence relation
≡H,l, and analogously for the right cosets, ≡H,r. By (3.1), a, b are equivalent
if their difference is small mod H.

Recall that an equivalence ≡ on G is a congruence if a ≡ b, then −a ≡ −b,
and if a1 ≡ a2 and b1 ≡ b2, then a1+ b1 ≡ a2+ b2. If ≡ is a congruence of G,
then G/ ≡= {[g]≡ | g ∈ G} can be given the group structure by postulating:

0 = [0]≡, [a]≡ + [b]≡ = [a+ b]≡,−[a]≡ = [−a]≡.

Congruences make it possible to define the so called quotient structures.
In the context of groups, we get:

Lemma 3.8. G/ ≡ is a group (called the quotient group) and π : G → G/ ≡
is a surjective homomorphism, where π(g) = [g]≡ for every g ∈ G.

Proof. The fact that G/ ≡ is a group follows easily by the definition of
operations in G/ ≡; for instance (we omit the subscript ≡): [g] + [−g] =
[g − g] = [0]. π is clearly surjective, so it remain to show that it is a
homomorphism. π(0) = [0], π(−g) = [−g] = −[g], and π(g + h) = [g + h] =
[g] + [h]. □
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A natural question is whether ≡H,l and ≡H,r are congruences. Let us try
to check it for ≡H,r and for the inverse: if a ≡H,r b, then by (3.1) a−b ∈ H; in
order to have a congruence, we would like to have −a ≡H,r −b ↔ −a+b ∈ H.
But a − b ∈ H does not necessarily imply −a + b ∈ H. However, it does if
H + a = a+H and H + b = b+H. A similar argument would work for +,
giving a sufficient condition for being a congruence:

if g +H = H + g for every g, then ≡H,r and ≡H,l are congruences.

But this is actually the same as ≡H,r being identical to ≡H,l.
This property is very important and can be reformulated in many equiv-

alent ways (where g +N − g = {g + n− g |n ∈ N}):

Lemma 3.9. The following are equivalent for a subgroup N ≤ G:
(i) ≡N,r=≡N,l.
(ii) g +N = N + g for all g ∈ G.
(iii) For all g ∈ G, g +N − g ⊆ N .
(iv) For all g ∈ G, g +N − g = N .

Proof. We prove the less obvious ones.
(ii) → (iii). Let g+n−g be given. g+n ∈ g+N , and since g+N = N+g,

there is n′ ∈ N with g+ n = n′ + g. Hence g+ n− g = n′ + g− g = n′ ∈ N .
(iii) → (iv). Suppose n ∈ N , and let us write it as g + (−g + n+ g)− g.

Since −g +N + g ⊆ N by (iii), there is n′ ∈ N with n = g + n′ − g, and so
n ∈ g +N − g.

(iv) → (ii). g +N = g − g +N + g = N + g. □

Definition 3.10. A subgroup N which satisfies conditions in Lemma 3.9 is
called normal, and we write N ◁G.

The notions of a normal subgroup, a quotient group and a (surjective)
homomorphism are deeply connected as we show next.

Definition 3.11. Suppose f : G → H is a homomorphism. Then the kernel
of f , ker(f), is defined as

ker(f) = {g ∈ G | f(g) = 0}.

As it turns out every normal subgroup is kernel of some homomorphism,
and kernels are always normal subgroups.

Theorem 3.12. (i) Suppose f : G → H is homomorphism. Then ker(f)◁
G.

(ii) Suppose N ◁G. Then the function π which maps g ∈ G to N + g is a
surjective homomorphism π : G → G/N with ker(π) = N .

Proof. (i). First we need to check that ker(f) is a subgroup of G. Clearly
0 ∈ ker(f) because f(0) = 0. If g ∈ ker(f), then f(x) = 0, and so f(−x) =
−f(x) = −0 = 0, and so −x ∈ ker(f). The closure under + is similar.
To verify normality, it suffices to show g + ker(f) − g ⊆ ker(f) for every
g ∈ G; let fix any n ∈ N and g + n− g. Since f is a homomorphism, we get
f(g + n− g) = f(g) + 0− f(g) = 0.

(ii). This follows from Lemma 3.8, noting that N = [0]. □
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Remark 3.13. Theorem 3.12 implies that if ≡ is a congruence and f is the
surjective homomorphism given by ≡, then [0]≡ ◁G. Hence ≡N,r (or ≡N,l)
being a congruence is equivalent to all the conditions in Lemma 3.9.

Before we prove the first isomorphism theorem, let us state a small lemma
first:

Lemma 3.14. Suppose f : G → H is a homomorphism. Then f is injective
iff ker(f) = {0}.

Proof. If f is injective, then clearly ker(f) = {0}, so let us prove the converse.
We notice first that if g ̸= h is equivalent to g − h ̸= 0. Suppose for
contradiction that ker(f) = {0} and for some g ̸= h we get f(g) = f(h).
Then f(g−h) = f(g)−f(h) = 0, and so g−h ̸= 0 is in ker(f), a contradiction.

□

Theorem 3.15 (First isomorphism theorem for groups). If f : G → H
is a group homomorphism, then there is a unique injective homomorphism
f̄ : G/kerf → H such that f̄(g + ker(f)) = f(g). It follows that f̄ is
an isomorphism between G/ker(f) and im(f); in particular if f is surjective
then f̄ : G/ker(f) ∼= H. Moreover, denoting π : G → G/ker(f), the following
diagram commutes:

G H

G/ker(f)

f

π
f̄

Proof. By Theorem 3.12, π is a surjective homomorphism. It remains to
show that f̄ is well-defined and is injective. First we check that f̄ is well-
defined: Suppose g + kerf = g′ + kerf , we need to show f(g) = f(g′);
g + ker(f) = g′ + ker(f) iff g − g′ ∈ ker(f), and hence f(g)− f(g′) = 0, and
f(g) = f(g′). Next we check that f̄ is a homomorphism: f̄(ker(f)) = f(0) =
0; f̄(−[g + ker(f)]) = f̄(−g + ker(f)) = f(−g) = −f(g) = −f̄(g + ker(f));
f̄(g+ker(f)+ g′+ker(f)) = f̄(g+ g′+ker(f)) = f(g+ g′) = f(g)+ f(g′) =
f̄(g+ker(f))+ f̄(g′+ker(f)). By Lemma 3.14, the injectivity of f̄ follows if
we show ker(f̄) = {ker(f)}. But f̄(g+ ker(f)) = 0 is equivalent to f(g) = 0
by the definition of f̄ , and hence g + ker(f) = ker(f). □

3.3. Free abelian groups

Recall that if G is any abelian group, we write ng for x + · · · + x of length
n ∈ Z, and 0g for 0G.5 Clearly, ng +mg = (n+m)g.

Let F (G) be the free abelian group generated by G. It can be represented
as the direct sum ⊕g∈GZg of copies of Z indexed by G, also written as Z(G),
where (G) indicates that only functions with finite support are allowed. That
is, an element x ∈ Z(G) is a function from G to Z such that for all but
finitely many g ∈ G, x(g) = 0. The group operations on F (G) are defined
coordinate-wise:

(i) (x+ y)(g) = x(g) + y(g), and
(ii) (−x)(g) = −x(g).

5This makes every abelian group a module over Z.
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(iii) 0F (g) is a function which is constantly 0G.
Define a function e : G → F (G) by postulating e(g) := eg where eg(g) = 1,

and eg is 0 everywhere else. The mapping e is injective, so we identify G
with the image of this function.6

Then the basis of Z(G) is the set {eg | g ∈ G}: every x ∈ F (G), x ̸= 0F (G),7

can be written uniquely (up to permutation of its members) as

x = n1eg1 + · · ·+ nkegk ,

for some ni ̸= 0 and gi, 1 ≤ i ≤ k.
One can easily check that if |G1| = |G2|, then F (G1) ∼= F (G2).

Remark 3.16. If G is an abelian group, then it is free if there is a set X ⊆ G
(called a basis of G) such that G ∼= Z(X). In particular for every element
g of G there exists exactly one expression n1x1 + · · ·nkxk, 0 ≤ k < ω, for
some some non-zero ni and xi from X, such that

n1x1 + · · ·nkxk = g.

For this to be the case, X must linearly independent8 if in the following sense.
Whenever x1, . . . , xk are distinct elements of X, then n1x1 + · · ·nkxk = 0
iff ni = 0 for all 1 ≤ i ≤ n. If the equation n1x1 + · · ·nkxk = 0 had a
solution in some non-zero ni’s, then any g could be expressed by more than
one equation (because it would be possible to add n1x1 + · · ·nkxk = 0 to an
equation and express the same element). X is a basis if it is a maximal set
of linearly independent elements.

The free group F (G) has the following universal property :

Theorem 3.17 (Universal property). Whenever φ : G → H is a homomor-
phism, then there exists a unique homomorphism u : F (G) → H such that the
diagram below commutes. Briefly stated: every homomorphism φ : G → H
extends uniquely to a homomorphism from F (G) to H.

G F (G)

H

e

φ
u

Proof. Every non-zero element x ∈ F (G) is a linear (finite) equation of the
form n1eg1 + · · ·+ nkegk . Define

(3.2) u(n1eg1 + · · ·+ nkegk) = n1φ(g1) + · · ·+ nkφ(gk).

6However, note that e is not a homomorphism and so we cannot identify G with a
subgroup of F (G) by means of e: for all g ̸= h ∈ G, eg+h ̸= eg + eh. In general, there
cannot be any other embedding of G into F (G) unless G is free by Dedekind’s theorem.
However, we can always identify eg+h and eg + eh via a congruence, obtaining that G is
a quotient of F (G), see Corollary 3.20. Note that by Theorem 3.24 a free resolution of a
group H splits iff H is embeddable into F (H).

70F (G) is represented as the “empty” sum, and it is the only way how to represent it.
8The notion of linear independence is usually reserved for vector spaces, i.e. modules

over a field: there one can show that every vector space has a basis (a set of linearly
independent vectors), and is therefore a free object in the category of modules. This is
false for abelian groups in general (not all abelian groups are free). However, a free abelian
group is precisely a free module over the ring Z of integers. The term “linear independence”
is sometimes used for abelian groups as well if there is no danger of confusion.
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The diagram commutes because for every g ∈ G,

φ(g) = u(eg).

The mapping u is by definition a homomorphism into H, disregarding whether
φ is a homomorphism or not. However, φ being a homomorphism implies
that u ◦ e = φ is a homomorphism. In particular we have

u(eg+h) = φ(g + h) = φ(g) + φ(h) = u(eg) + u(eh).

□

Remark 3.18. The mapping u in the previous theorem is well-defined be-
cause all the elements of the basis {eg | g ∈ G} of F (G) are “independent”
in the sense that for any equation n1g1 + · · · + nkgk, where gi are in G,
n1eg1 + · · · + nkegk ̸= eh for any h ∈ G. For instance, it always holds
eg+h ̸= eg+eh because they “formally different”, but u(eg+h) = u(eg)+u(eh).

Corollary 3.19 (Extension of functions on basis, universal property). Sup-
pose F (B) is the free abelian group generated by basis B and let H be an
abelian group. Let u′ : F = B → H be any function. Then there is a unique
homomorphism u : F (B) → H such that u↾B = u′.

Proof. Define u as in the previous theorem:

(3.3) u(n1b1 + · · ·+ nkbk) = n1u
′(b1) + · · ·+ nku

′(bk),

where the bi’s range over the elements of the basis. □

Corollary 3.20 (Quotients of free groups). Every abelian group is a quotient
of a free group.

Proof. Apply Theorem 3.17 with H = G and φ the identify function on G.
Then u : F (G) → G is a surjective homomorphism because im(φ) = G which
identifies eg+h with eg + eh. □

3.4. Short exact sequences

Definition 3.21. We say that a sequence of abelian groups together with
homomorphisms is a short exact sequence,

0 →f3 N →f2 G →f1 H →f0 0

iff im(fi+1) = ker(fi) for all i > 0, where 0 denotes the trivial one-element
group.

In this case, f3 maps 0 to 0N , and by {0N} = im(f3) = ker(f2), f2 is an
injective homomorphism and N can be identified with a (normal) subgroup
of G (see Lemma 3.14). Identifying N with its image, we obtain im(f2) =
N = ker(f1). Since f0 is surjective and maps the whole H to 0, H =
ker(f0) = im(f1) implies that f1 is surjective. Thus H is a surjective image of
a homomorphism from G onto H with kernel N , by Theorem 3.15 G/N ∼= H.

Recall that by Corollary 3.20, every abelian group G is a quotient of the
free group F (G) generated by G. Let u : F (G) → G be the surjective
homomorphism from Corollary 3.20. The notation for short exact sequences
captures the properties of this quotient analysis succinctly as follows:

(3.4) 0 → ker(u) →1ker(U)
F (G) →u G ∼= F (G)/ker(u) → 0.
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Definition 3.22. The short exact sequence from (3.4) is called a free reso-
lution of G.

Note that by Dedekind’s theorem, ker(u) is a free subgroup of F (G), hence
F (G) is equal up to isomorphisms to Z(κ) and ker(u) to some Z(µ) for some
finite or infinite cardinals 1 ≤ µ ≤ κ.

Remark 3.23. The fact that G ∼= F (G)/ker(u), with i : F (G) ∼= Z(κ) and
j : ker(u) ∼= Z(µ) isomorphisms for some µ ≤ κ, might lead to the false
idea that G ∼= Z(κ)/Z(µ) which would imply that there are very few non-
isomorphic abelian groups (for instance there would be just countably many
abelian groups of size ℵn for n < ω). The problem with this argument is
that to conclude G ∼= Z(κ)/Z(µ), we would need to assume that i ↾ ker(u)
is an isomorphism between ker(u) and Z(µ), which is not guaranteed by our
assumption.9 In fact, it is known that there are 2κ many non-isomorphic
abelian groups of size κ for all infinite κ. There seems to be no elementary
proof in the literature, but it follows from the complicated machinery dealing
with stable but not superstable theories developed by Shelah and others.

Let us now return to splitting homomorphisms (see Definition 3.1).

Theorem 3.24 ([9], Thm 2.3). H is free iff every short exact sequence

0 →f3 N →f2 G →f1 H ∼= G/N →f0 0

splits, i.e. there exists f ′
1 : H → G such that 1H = f1 ◦ f ′

1.

Proof. Suppose first that H is free, and B is a basis of H. For each x ∈ B,
define f ′

1(x) as an arbitrary element from the preimage of x, {g ∈ G | f1(g) =
x}. By the universal property of H in Corollary 3.19, f ′

1 extends uniquely
to the whole H, and by definition satisfies 1H = f1 ◦ f ′

1.
Conversely, suppose that every exact short sequence splits and let H be

given. Let

(3.5) 0 → ker(u) →1ker(U)
F (H) →u H ∼= F (H)/ker(u) → 0.

be a free resolution of H. Let u′ be a splitting homomorphism from H into
F (H). Note that u′ must be injective because if x ̸= y ∈ H, then the
preimages of x, y are disjoint, {g ∈ F (h) |u(g) = x} ∩ {g ∈ F (H) |u(g) =
y} = ∅, and u′(x) ∈ {g ∈ F (h) |u(g) = x} and u′(y) ∈ {g ∈ F (h) |u(g) = y}.
Then im(u′) is an isomorphic copy of H in F (H), and hence by Dedekind’s
theorem H is free. □

Note that for the converse direction (from right to left), it suffices if all free
resolutions of H split. Thus Whitehead’s problem is whether the assumption
that all free resolutions of H with ker(u) ∼= Z split implies that all free
resolutions of H split, and hence that H is free.

9From the logical perspective, we would need to assume that i is not only an isomor-
phism between the abelian groups ⟨F (G),+,−, 0⟩ and ⟨Z(κ),+,−, 0⟩ but an isomorphism
between the richer structures ⟨F (G),+,−, 0, ker(u)⟩ and ⟨Z(κ),+,−, 0,Z(µ)⟩, where ker(u)
is viewed as a unary predicate.
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Remark 3.25. Theorem 3.24 provides an if and only characterization for
being free which works more generally for modules over PIDs ([12], Theorem
5.1 – this gives the full proof for bases of arbitrary size – works for abelian
groups as well). See Section ?? for more details on generalizations of being
free: while the notion of being “free” requires the notion of “basis” (models
over PIDs have bases), the categorical notion of being “projective” is more
general (and equivalent to being free if there is a basis).

3.5. More on direct sums and quotients, homology

If A,C are abelian groups we can form the direct sum A⊕ C = {(a, c) | a ∈
A, c ∈ C}, with operations defined pointwise, and (0, 0) being the neutral
element.

Lemma 3.26. If B is given, and A,C are two subgroups of B with A∩C =
{0}, then we can identify A ⊕ C with A + C = {a + c | a ∈ A, c ∈ C}, i.e.
A⊕ C ∼= A+ C.

Proof. Set f : (a, c) 7→ a+ c. Then the function f : A⊕ C → A+ C is onto
by definition. The function f is injective: Let us distinguish two case: (i) if
a ̸= a′ and c = c′ (or conversely), then a+ c = a′ + c′ ↔ a− a′ = 0 implies
a = a′ which is a contradiction; (ii) if a ̸= a′ and c ̸= c′ and hence a− a′ ̸= 0
and c− c′ ̸= 0, a− a′ = c− c′ together with a− a′ ∈ A and c− c′ ∈ C imply
that the intersection A ∩ C contains more than just 0. Finally, f respects
the operations: f((a, c) + (a′, c′)) = f(a + a′, c + c′) = a + a′ + c + c′ =
a+ c+ a′ + c′ = f(a, c) + f(a′, c′). □

Suppose that A,C are subgroups of an abelian group B, and A∩C = {0}
hence ⊕ is interpreted as +. Then we can use the direct sum to describe an
associated quotient: If B = A ⊕ C, then {A + c | c ∈ C} forms a partition
of B, and C ∼= B/A, with C containing exactly on element from each coset
B/A (and symmetrically, A ∼= B/C).

Lemma 3.27. With the assumptions above, C ∼= B/A.

Proof. It is easy to check that a mapping π which maps c to A+c is bijective
and preserves operations: π is injective by Lemma 3.26 (and surjective by
definition) and it preserves operations: π(c+ c′) = A+ (c+ c′) = (A+ c) +
(A+ c′) = π(c) + π(c′). □

However, it is not the case that every quotient B/A can be written as a
sum A⊕C: if {A+ b | b ∈ B} is the partition B/A, then finding C amounts
to finding a set of representatives for the equivalence classes {A+ b | b ∈ B}
which together have a group structure, thus giving C. This is possible exactly
when the homomorphism onto B/A splits:

Theorem 3.28. Assume f : G → H is a surjective homomorphism between
abelian groups with ker(f) = N and f ′ : H → G is its splitting homomor-
phism. Then G contains a subgroup isomorphic to H, and G = N ⊕H.

Proof. We know that f ′ is injective, so we can identify H with a subgroup
of G. Since H ∩ N = {0}, we get N ⊕ H = {x + f ′(y) |x ∈ N, y ∈ H} =⋃
{N + f ′(y) | y ∈ H} = G. Compare also with [12], Lemma 4.6 □
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Corollary 3.29. If f : G → H ∼= G/ker(f) is a surjective homomorphism
and H is free, then G = ker(f)⊕H.

Proof. This is a consequence of Theorem 3.24 from left to right and of The-
orem 3.28. □

Remark 3.30. Thus if f splits, N,H completely determine G because G =
N ⊕H: this fact is denoted by Ext(H,N) = 0 in the homological notation
(more details on homology notation are beyond the scope of this article). In
this notation Whitehead’s problem is whether Ext(H,Z) = 0 implies that H
is free.

Remark 3.31. Note that there is a canonical example for the kernel to be
equal to Z: if f : G = H ⊕ Z → H is a surjective homomorphism defined
by f(x, n) = x (the projection), then ker(f) = Z because f(0, n) = 0 for all
n ∈ Z.

3.6. Where does (non-trivial) set theory come in?

Before we start, let us recall some theorems which we will use as facts without
giving proofs.

An abelian group A is called torsion-free if no element except 0 sums
up to 0 after added together finitely many times, i.e. x + · · · + x ̸= 0 for
every x ̸= 0.10 If A is torsion-free then a subgroup B of A is called pure if
A/B is torsion-free.11 A group A is finitely generated12 if there is a finite
set X ⊆ A such that every element of A can be obtained by application of
group operations on some members of X. For instance every free abelian
group with finite basis is finitely generated.

The following hold:

Theorem 3.32. (i) All finitely generated torsion-free abelian groups are
free.

(ii) Every Whitehead group is torsion-free. Hence if A is a finitely generated
Whitehead group, it is free.

(iii) Every subgroup of a Whitehead group is Whitehead.

These results show that Whitehead groups share some conceptual simi-
larity with free groups. The case of finitely generated abelian groups is well
understood, with the concept of being free is equivalent to being torsion-free
and to being Whitehead. However, even countable abelian groups which are
not finitely generated are very complex and not fully understood (but it is

10A group A is a torsion group if every element has finite order, i.e. for every element
x there is n such that nx = 0. Hence begin torsion is stronger than the negation of being
torsion-free.

11The primary definition of a pure subgroup is different, but it is equivalent to this one
for torsion-free groups A. The primary definition states that being pure is stronger than
being just a subgroup because it requires being closed under certain additional equations:
B is pure in A if for every b ∈ B and every n ∈ Z, if there is some x ∈ A such that
nx = b, then there is y ∈ B such that ny = b. Compare also with the notions of ω1-free
in Definition 3.41 and of ω1-pure in Definition 3.42.

12Every finitely generated abelian group is uniquely representable as a direct sum of
a free group and of a finite abelian group. Thus finitely generated torsion-free abelian
groups must be free.
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known that in the countable case Whitehead is equivalent to free, see Theo-
rem 3.39). The case of uncountable abelian groups is even more complicated.

Let us define the notion of a smooth chain of groups which is central for
understanding the structure of free and Whitehead groups.

Definition 3.33. Let η ≥ ω be a limit ordinal. We say that a ⊆-increasings
sequence of countable abelian groups ⟨Aα |α < η⟩ is a smooth chain if for
every limit γ, Aγ =

⋃
{Aα |α < γ}. The chain is called strictly increasing if

Aα ̸= Aα+1 for every α < ω1. We say that it is a chain of groups if Aα is a
subgroup of Aα+1 for every α < ω1.

It would be tempting so say that the union of a smooth chain of free groups
is free, but the problem is that the union of the bases may not be a basis
of the union. A stronger condition of Aα+1/Aα being free is required which
implies that every element of the chain is free, but moreover allows one to
extend the bases: if Aα+1/Aα is free, then by Theorem 3.24, the surjective
homomorphism from Aα+1 with kernel Aα splits, and hence by Theorem 3.28
and Corollary 3.29, Aα+1 = Aα ⊕ Aα+1/Aα and the basis of Aα is disjoint
from the basis of Aα+1/Aα. See also Corollary 2.5 in [9].

Theorem 3.34 ([9], Theorem 2.6). Let A be an abelian group. Then the
following are equal:

(i) A is free.
(ii) A is the union of a strictly increasing smooth chain of groups ⟨Aα |α <

η⟩ such that A0 is free and for every α < η, the quotient Aα+1/Aα is
free.

Proof. From (i) to (ii). Let ⟨xα |α < η⟩ be some enumeration of a basis
of A. Set Aα to be generated by ⟨xξ | ξ < α⟩. This is a strictly increasing
smooth chain of groups with Aα+1/Aα being free with basis {xα} which can
be computed by a direct argument (in particular, Aα+1

∼= Aα ⊕ Z). Note
that it also holds that A/Aα is free with basis {xξ |α < ξ < η}.

From (ii) to (i). This is implicit in the previous paragraph as the readers
can check for themselves: using Aα+1 = Aα ⊕ Aα+1/Aα and continuity of
the sequence (“smoothness”) it is possibly to glue the basis of Aα’s together
because they are disjoint, and take unions at limit stages. □

3.6.1. Being free as a compactness property

Recall the notion of compactness of first-order logic: somewhat vaguely
stated, it asserts that first-order properties which are true in all its finite
substructures reflect up to the whole (infinite) structure. For instance if
(G,E) is a non-directed graph and there exists n < ω such that all its finite
subgraphs are n-colorable, then the whole graph (G,E) is n-colorable. This
is because being n-colorable for a fixed n can be expressed by a first-order
formula. However, it it clearly false to assert that if every finite subgraph of
G is finitely-colorable, then the whole G is finitely colorable (because there
are infinite G which are not finitely colorable). It follows that being “finitely
colorable” is not a first-order property. This leads to the following general
question:

(Q1). Are there some interesting properties of mathemat-
ical structures like abelian groups or graphs which are not
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first-order but there is a useful notion of compactness behind
them? And subsequently, is the extent of such compactness
dependent on the underlying axioms of set theory?

For instance can we assert that the following principle F (κ) holds for some
infinite κ?

(3.6) (F (κ)). Suppose A is an abelian group of size κ ≥ ω

such that every subgroup B of A of size < κ is free. Then A is free.

To make F (ω) meaningful, we understand F (ω) as saying that if A is a
countable abelian group such that every finitely generated subgroup of A is
free, then A is free.

As it turns out, this is a quite complicated question which heavily depends
on the underlying axioms of set theory and the answer moreover dependent
of the cardinal κ.

Let us give some examples:

Lemma 3.35. The principle F (ω) is false.

Hints. Let us consider the abelian group (Q,+) of rationals with addition.
This is a countable torsion-free group which is not free. To see that it is
non-free realize that if q1 ̸= q2 are any two distinct rationals, then they are
linearly dependent in Q, and hence there is no basis of Q with more than
one element. However, Q is not isomorphic as a group to Z, so Q does
not have a basis of size 1 either. It follows Q is not free. Note that since
finitely generated and torsion-free implies free, it follows that Q is not finitely
generated. To falsify F (ω) it suffices to show that every finitely generated
subgroup of Q is free: Suppose r1/s1, . . . , rk/sk are distinct rationals and
look at subgroup B generated by them. Little reflection shows that this
is an infinite subgroup of a subgroup of Q generated by the single rational
1/s1 · · · sk, and being generated by one element and being torsion-free implies
it is isomorphic to Z. Since an infinite subgroup of Z must be isomorphic to
Z again, it follows that B is free. □

We will see below that F (ω1) is provably false in ZFC as well. In fact, for
every regular κ < ℵω2 , F (κ) is provably false in ZFC. However, surprisingly,
there is extension of ZFC which implies that for all κ ≥ ℵω2+1, F (κ) is true.

Remark 3.36. Without going into details, F (κ) is always true for suffi-
ciently big large cardinals. For instance if κ is weakly compact, then F (κ) is
true: this is a straightforward consequence of weak compactness which ex-
tends the compactness of first-order logic to a certain infinitary logic (which
is strong enough to express the notion of being free). The true challenge of
obtaining F (κ) for an uncountable κ is the case of successor cardinals µ+,
and typically we are interested in µ+ as small as possible. The successor
cardinal ℵω2+1 is the least cardinal where F (κ) can be true.

To return to F (ω), a weaker version of F (ω) holds if we include the notion
of a pure subgroup. Suppose A is countable abelian group. We say that pure
finitely-generated subgroups are dense in A if for every finitely generated
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subgroup B0 ≤ A, there is some finitely-generated pure B ≤ A such that
B0 ≤ B.

(3.7) (F (ω)∗). Suppose A a countable torsion-free group
such that finitely generated pure subgroups are dense in A. Then A is free.

See Theorem 3.37 for the proof of F (ω)∗.

3.6.2. All countable Whitehead groups are free

The following theorem gives an equivalent condition for a countable abelian
group to be free, and one can show that Whitehead groups satisfy it as well.

Theorem 3.37 (Theorem 4.2 in [9], principle F (ω)∗). Suppose A is a count-
able torsion-free group such that every finitely-generated subgroup B0 of A is
contained in a finitely generated pure subgroup B of A. Then A is free.

Hints. The proof proceeds by constructing a strictly increasing chain of
groups ⟨An |n < ω⟩ with union A which satisfies the conditions laid out
in Theorem 3.34. In some detail, let A = {an |n < ω}. Let A0 = 0. If An

is defined, let An+1 be a finitely generated pure subgroup of A containing
An ∪ {an}. The quotient An+1/An is torsion-free because An is pure in A
and it is finitely generated because An+1 is finitely generated. Therefore
An+1/An is free.

Note that since the chain has length ω, the condition of being “smooth”
(continuous) in Definition 3.33 is trivial. □

Remark 3.38. Note that if A is uncountable and satisfies the assumptions
of Theorem 3.37, it may fail to be free. This follows from arguments for the
consistency of the fact that there may be Whitehead groups which are not
free (see Section ??). Countable and uncountable groups are quite different,
which is reflected in many arguments in set theory with respect to many other
structures (recall for instance that while every ω-tree has cofinal branches,
there are ω1-trees without cofinal branches).

The main result which motivated Whitehead’s question is that for count-
able groups, the notions of free and Whitehead coincide.

Theorem 3.39 (Stein [23], Theorem 4.1 in [9]). Every countable Whitehead
group is free.

Hints. The proof is by contradiction: assume A is a countable Whitehead
groups which is not free, and hence does not satisfy the property in Theorem
3.37. Then there exists a finitely generated subgroup B0 of A which is not
contained in a finitely generated pure subgroup. Let B be the least pure sub-
group containing B0. By our assumption B is not finitely generated. Hence
B is a union of a strictly increasing chain of finitely generated Whitehead13

groups ⟨Bn |n < ω⟩ such that

(3.8) Bn+1/Bn is a torsion group for all n < ω.

13Recall that for finitely generated groups this is equal to being free and also to being
torsion-free.
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This holds because B is countable and the least torsion-free group extending
B0, and hence B/Bn is torsion-free for each n < ω, and thus Bn+1/Bn

cannot be torsion-free.14

We aim to prove that B is not Whitehead, contradicting Theorem 3.32(iii)
because B is a subgroup of A.

The proof proceeds by constructing another strictly increasing chain of
groups ⟨Cn |n < ω⟩, such that for each n, the domain of Cn is equal to
Bn × Z and for C =

⋃
nCn, with domain of C being B × Z, there is a

homomorphism π : C → B with kernel Z which does not split, and thus π is
a witness that B is not Whitehead. The proof has two key steps (K1) and
(K2) which we have extracted from the usual proof to isolate the analogies
and differences between the countable and uncountable cases.

(K1) The first key ingredient of the proof (which cannot be mimicked for
uncountable groups) is that Bn+1/Bn being torsion implies that ev-
ery possible splitting homomorphism ρ for π from B to C is uniquely
determined by its restriction to B0 by an inductive argument: Ev-
ery x ∈ B is in some Bn; if n > 1, then x ∈ Bn \ Bn−1, and since
Bn/Bn−1 is torsion, then must be some kn such that knx ∈ Bn. By
repeating this argument finitely many times there must be some k
such that kx ∈ B0.

(K2) The second key ingredient of the proof (which can be in some sense
mimicked for the uncountable case and also resolve the problem with
missing (K1)) is that since B0 is finitely generated, there is a finite set
S0 such that every splitting homomorphism ρ : B → C is uniquely
determined by its restriction to S0. It follows that all such restrictions
can be enumerated in countably many stages ⟨gn |n < ω⟩, and for
each n, Cn+1 is chosen to prevent gn from being extendible to a
splitting homomorphism from B to C.

The combination of (K1) and (K2) implies that B is not a Whitehead group
contradicting the fact that it is a subgroup of Whitehead group A. □

For later reference let us observe that the fact every ρ is determined by its
restriction to S0 is essential for the argument. Suppose this fails and let Sn be
a finite basis of Bn for every n < ω and let F enumerate all countably many
functions from Sn to C for n < ω, uniquely extending to homomorphisms
f̃ : Bn → C. Note that the Sn’s do not need to extend each other, but it
still holds that if ρ : B → C is a homomorphism, then its restriction to Bn

is a homomorphism determined by ρ ↾Sn, for all n < ω. Then we have the
following weaker property:

(3.9) ∀ρ : B → C ∃n < ω ∃f ∈ F ρ↾Bn = f̃ .

In fact, there are infinitely many such n for every ρ in (3.9). Anticipating
the role of ♢(S) in the proof of Theorem 3.45, we could prove Theorem 3.39
just using (3.9) if we had the following principle ♢(ω) which asserts that the
finite functions in F can be enumerated in type ω in such a way that the

14However, as we discussed, being non-torsion-free is weaker than being torsion so one
needs to be more careful here: using the countability of B we can choose inductively Bn+1

so that Bn+1/Bn has the property that every element of the quotient is torsion (not only
some of them which is implied by being non-torsion-free).
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index n of gn ∈ F is greater or equal to the size of the domain Sm which is
handled in stage n and every subset ω is captured at least once on a non-zero
index:

(3.10) ∃⟨gn | gn : n → 2, n < ω⟩ ∀f : ω → 2 ∃n > 0 f ↾n = gn.

However, little reflection shows that (3.10) is false: for every ⟨gn |n < ω⟩
there are f : ω → 2 which are never guessed, for instance h : ω → 2 defined
so that h(n) = 0 if gn+1(n) = 1, and h(n) = 1 if gn+1(n) = 0, for n ≥ 0.
It is instructive to realize that this falsification of ♢(ω) is possible because
the domain of gn+1 has the greatest element, something which is false for
gα : α → 2 for a limit ordinal α. The fact that ♢(ω1) is consistent15 and
hence an analogue of (3.9) suffices to prove Theorem 3.45 underscores the
difference in arguments in the countable and uncountable cases.

Remark 3.40. Note that theorem 3.39 implies that every Whitehead group
of any size is ω1-free.

3.6.3. All Whitehead groups of size ω1 can be free

Let us analyze Theorem 3.34 in an effort to weaken (ii) substantially. Let
us define some notations which will be useful:

Definition 3.41. We say that an abelian group A is ω1-free if every count-
able subgroup B of A is free.

Definition 3.42. We say that a subgroup B of A is ω1-pure if B/A is ω1-free.

It is easy to see that if A/Aα is ω1-free, then Aα+1/Aα is free since
Aα+1/Aα is a subgroup of A/Aα (a consequence of the third group isomor-
phism theorem) and countable because Aα+1 is countable.

With this setup we can improve Theorem 3.34 by allowing a small set
of stages which do not have the property that Aα+1/Aα is free. This im-
bues these algebraic arguments with a set-theoretic notion of a “measure”,
formulated in terms of the club filter on ω1, and provides an important im-
provement of Theorem 3.34.16

15However, the diamond principle at ω1 is false for non-stationary sets: The following
is false: There exists a non-stationary set E ⊆ ω1 and a sequence ⟨gα |α ∈ E⟩ such that
for every f : ω1 → 2 there exists α ∈ E, α ≥ ω, such that f ↾α = gα. Hint: Assume for
contradiction ⟨gα |α ∈ E⟩ is a diamond sequence. Let C be a club such that C ∩ E is
empty and let ⟨cα |α < ω1⟩ be an increasing and continuous enumeration of C, starting
above ω. We will define f : ω1 → 2 by induction on cα. First look at c0; there are 2ω

many subsets of ω, but the set F0 = ⟨gδ ↾ ω | δ < c0⟩ is only countable, so that you can
choose f0 with domain c0 which is different from all functions in F0 on ω (and hence no
gα, ω ≤ α < c0, can guess f0 ↾ α correctly). Continue like this, defining fβ+1 on the
segment [cβ , cβ+1) and using the interval [cβ , cβ + ω) the way we used interval [0, ω) for
the construction of f0. Set fδ =

⋃
{fγ | γ < δ} for a limit ordinal cδ in C. Since the limit

stages are never in E, the resulting function f =
⋃
{fδ | δ < ω1} is guessed nowhere at E.

Note that if we look at the interval [ω, ω + ω) when constructing f0, and combine it with
the argument for the falsity of (3.10), we can get an f that is not guessed on any element
in E, not even on n < ω, n > 0.

16There is no obvious way how to introduce a similar measure on ω and find an analogue
of Theorem 3.43 for ω: if Bn+1/Bn is not free, it does not imply that it is torsion and
hence an argument from Theorem 3.39 cannot be used in a straightforward way.
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Theorem 3.43 (Theorem 5.3 in [9]). Let A be an abelian group of size ω1.
Then the following are equal:

(i) A is free.
(ii) A is the union of a strictly increasing smooth chain of groups ⟨Aα |α <

ω1⟩ such that A0 is free and

(3.11) C = {δ < ω1 |A/Aδ is ω1-free} contains a club,

or equivalently

(3.12) E = {δ < ω1 |A/Aδ is not ω1-free} is non-stationary.

Proof. Let us give some comments on (ii)→(i). Let C∗ ⊆ C is a club
and let ⟨ν(α) |α < ω1⟩ be its increasing continuous enumeration. Then
⟨Aν(α) |α < ω1⟩ is a strictly increasing smooth chain of groups such that
Aν(δ+1)/Aν(δ) is free (because A/Aν(δ) is ω1-free and Aν(δ+1)/Aν(δ) is count-
able and isomorphic to a subgroup of A/Aν(δ)). Then the result follows by
Theorem 3.34. □

Remark 3.44. Note that we needed to know that A/Aδ is free for δ ∈ C∗,
not only that Aδ+1/Aδ is free because δ+1 may be different (strictly smaller)
than the next element δ+ of C∗ above δ, hence Aδ+1/Aδ being free is not
sufficient to conclude that Aδ+/Aδ is free. For further reference notice that
if

(3.13) E1 = {δ < ω1 |Aδ+1/Aδ is not free} is stationary,

then

(3.14) E2 = {δ < ω1 |A/Aδ is not ω1-free} is stationary

because E1 ⊆ E2.

The following Theorem 3.45 is the combinatorial heart of Shelah’s original
construction from [20], finding a connection between being a Whitehead
group and the largeness of E in (3.12) (see Remark 3.44) which leads to the
result that consistently all Whitehead groups are free.

Theorem 3.45 (Theorem 6.3 in [9]). Let A be a union of a strictly increasing
smooth chain of groups ⟨Aα |α < ω1⟩ such that

(3.15) E = {δ < ω1 |Aδ+1/Aδ is not free}
is stationary in ω1. Then if ♢(E) holds, then A is not a Whitehead group
(and in particular not a free group either).

Hints. The key idea of the proof is to replace the properties (K1) and (K2) in
the proof of Theorem 3.39 by ♢(E) which ensures that we can enumerate all
countable functions relevant for the argument in such a way that they cap-
ture all possible splitting homomorphisms. As we mentioned in paragraphs
discussing (3.10), such an enumeration does not exist for ω.

The rest of the argument is quite similar to Theorem 3.39: Using ♢(E),
one can fix a family of functions ⟨gα |α < ω1⟩,
(3.16) {gα | gα : Aα → Aα × Z, α ∈ E},
such that for every ρ : A → C (where C is the union of a chain ⟨Cα |α < ω1⟩
and has domain A × Z, as in Theorem 3.39) there are stationarily many α
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such that ρ ↾α = gα. At stage α, we prevent all functions ρ : A → C which
extend gα from being splitting homomorphism from A to C.

Note that the use of diamond cannot be avoided because it is consistent
with ZFC that there are non-free Whitehead groups (see Section ??). □

Finally, we obtain the theorem which shows that consistently every White-
head group is free:

Theorem 3.46 (Theorem 1.3(i) in [9] proved on page 784). Assume ♢(E)
holds for every stationary E ⊆ ω1. Then every Whitehead group is free.

Proof. Let A be a Whitehead group. It can be shown (we omit the details)
that A is a union of a strictly increasing smooth chain of groups ⟨Aα |α < ω1⟩
such that for each α, Aα+1 is ω1-pure in A. Let
(3.17)
E = {δ < ω1 |Aδ is not ω1-pure in A} = {δ < ω1 |Aδ+1/Aδ is not free}.

By Theorem 3.45, E cannot be stationary. It follows that E is non-stationary,
and hence A must be free. □
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