Zavlečení nepůvodních organismů a jejich dopady

Princip, teoretické modely a příklady hodnocení impaktu IAS
Souvislost s definicí IAS

KAREL DOUDA

KATEDRA ZOOLOGIE A RYBÁŘSTVÍ, ČZU

k.douda@gmail.com

DOPAD / IMPAKT Přímá souvislost s definicí invazních druhů Co je invazní nepůvodní druh?

zavlečený > zdomácnělý > invazní

- Klíčové kritérium je, že invazní druh se rychle šíří a obsadí rozsáhlé území
- Některé definice přímo zahrnují jako nezbytné kritérium negativní vliv impakt, dopad
- Definice IUCN považuje za invazní druhy pouze druhy invadující na přirozených a polopřirozených stanovištích

DOPAD / IMPAKT Co je invazní nepůvodní druh?

- Neustálená definice generuje nedorozumění při diskusi o řešení problematiky invazních druhů

DOPAD / IMPAKT klíčové kritérium pro prioritizaci managementu

- Impakt: každá signifikantní změna (zvýšení/snížení) nějakého ekologického stavu nebo procesu, bez ohledu na hodnotu vnímanou člověkem
- dopad na:

EKOSYSTÉMY

EKONOMIKU

ZDRAVÍ

- Většina nepůvodních druhů nemá žádný prokazatelně negativní dopad v žádné z těchto oblastí
- Mnoho druhů má neznámý vliv
- Nejistota: bez vlivu x neznámý vliv

Otázky důležité pro určení vlivu nepůvodních druhů:

1) Directionality

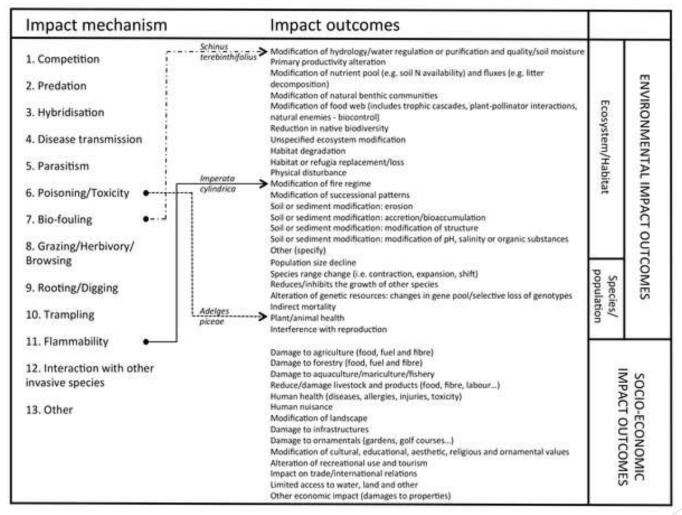
 Are only unidirectional changes considered or are bidirectional changes considered?

3) Ecological or socio-economic changes

 Are ecological or socio-economic changes considered, or both?

Defining impact

2) Classification and measurement


- Is the definition as neutral as possible or are human values explicitly included?
- Is the term impact only used if the change caused by a non-native species exceeds a certain threshold, or is it used for any change?

4) Scale

- Which spatio-temporal scale is considered?
- Which taxonomic or functional groups and levels of organization are considered?
- Consideration of per-capita change, population density, and range?

Conserv Biol. 2014 Oct; 28(5): 1188-1194.

Figure 1. Impact scheme of the Global Invasive Species Database, implemented by the IUCN Species Survival Commission (SSC) Invasive Species Specialist Group.

Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, et al. (2014) A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLOS Biology 12(5): e1001850. https://doi.org/10.1371/journal.pbio.1001850

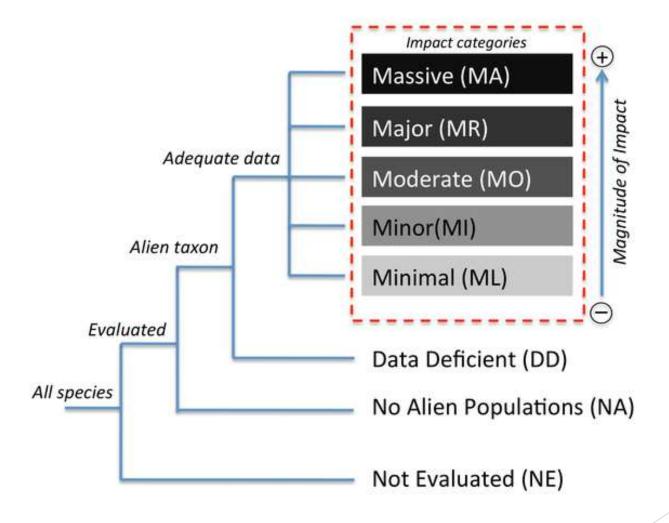

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001850

Figure 2. The different categories in the alien species impact scheme, and the relationship between them.

BIOLOGY

FIFTEENTH ANNIVERSARY

Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, et al. (2014) A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLOS Biology 12(5): e1001850. https://doi.org/10.1371/journal.pbio.1001850

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001850

Table 1. Impact criteria for assigning alien species to different categories in the classification

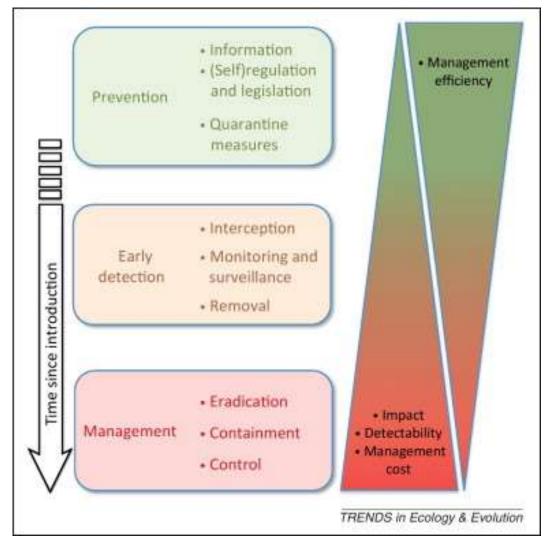
Impact Class	Massive (MA)	Major (MR)	Moderate (MO)	Minor (MI)	Minimal (ML)
Categories should adhere to the following general meaning	extinction of species, community composition, population densities, individual fits		Causes reductions in Individual fitness, but no declines in native population densities	No effect on fitness of individuals of native species	
Competition (1)	Competition resulting in replacement or local extinction of one or several native species; changes in community composition are irreversible	Competition resulting in local or population extinction of at least one native species, leading to changes in community composition, but changes are reversible when the alien species is removed	Competition resulting in a decline of population size of at least one native species, but no changes in community composition	Competition affects fitness (e.g., growth, reproduction, defence, immunocompetence) of native individuals without decline of their populations	Negligible level of competition with native species; reduction of fitness of native individuals is not detectable
Predation (2)	Predators directly or indirectly (e.g., via mesopredator release) resulting in replacement or local extinction of one or several native species (i.e., species vanish from communities at sites where they occurred before the alien arrived); changes in community composition are irreversible	Predators directly or indirectly (e.g., via mesopredator release) resulting in local or population extinction of at least one native species, leading to changes in community composition, but changes are reversible when the alien species is removed	.g., via indirectly (e.g., via indirectly (e.g., via mesopredator release) mesopredator release) affecting fitness (e.g., extinction of at population size of at least stive species, one native species but no changes in changes in community composition, but reversible when		Negligible level of predation on native species
Hybridisation (3) Hybridisation between the alien species and native species is common in the wild; hybrids are fully vigorous and fertile; pure native species cannot be recovered by removing the alien, resulting in replacement or local extinction of native species by introgressive hybridisation (genomic extinction)		Hybridisation between alien species and native species is common in the wild; F1 hybrids are vigorous and fertile, however offspring of F1 hybrids are weak and sterile (hybrid breakdown), thus limited gene flow between alien and natives; individuals of alien species and hybrids discernible from pure natives, pure native populations can be recovered by removing the alien and hybrids.	Hybridisation between alien species and native species is regularly observed in the wild; hybrids are vigorous, but sterile (reduced hybrid fertility),limited gene flow between alien and natives, local decline of populations of pure native species, but pure native species persists	Hybridisation between alien species and native species is observed in the wild, but rare; hybrids are weak and never reach maturity (reduced hybrid viability), no decline of pure native populations	No hybridisation between alien species and native species observed in the wild (prezygotic barriers), hybridisation with a native species might be possible in captivity
Transmission of diseases to native species (4)	Transmission of diseases to native species resulting in replacement or local extinction of native species	Transmission of diseases to native species resulting in local or population extinction of at least one	Transmission of diseases to native species resulting in a decline of population size of at least one native	Transmission of diseases to native species affects fitness (e.g., growth, reproduction, defence,	The alien species is not a host of diseases transmissible to

Blackburn 7 Magnitude

https://jou

(i.e., species vanish from communities at sites where they occurred

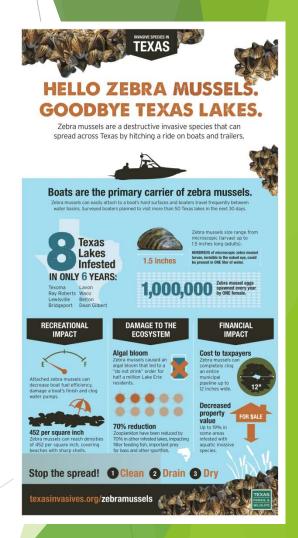
native species, leading to changes in community composition, but changes


species, but no changes in community composition

immunocompetence) of native individuals without very low level of NNIVERSARY decline of their populations transmission of

native species or

BIOLOGY


Dopad biologické invaze je závislý na hustotě populace

Simberloff, Daniel, et al. "Impacts of biological invasions: what's what and the way forward." Trends in ecology & evolution 28.1 (2013): 58-66.

Souhrnný efekt invazních druhů?

- Druhé nejčastější riziko spojené s druhy které vyhynuly
- Odhadované škody působené invazními druhy přesahují \$1.4 bilionů (10 12) ročně -5% světové ekonomiky (Pimentel, David, et al. "Economic and environmental threats of alien plant, animal, and microbe invasions." Agriculture, Ecosystems & Environment 84.1 (2001): 1-20.)
- Riziko pro zdraví člověka

Are invasive species a major cause of extinctions?

Jessica Gurevitch and Dianna K. Padilla

Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA

The link between species invasions and the extinction of natives is widely accepted by scientists as well as conservationists, but available data supporting invasion as a cause of extinctions are, in many cases, anecdotal, speculative and based upon limited observation. We pose the question, are aliens generally responsible for widespread extinctions? Our goal is to prompt a more critical synthesis and evaluation of the available data, and to suggest ways to take a more scientific, evidence-based approach to understanding the impact of invasive species on extinctions. Greater clarity in our understanding of these patterns will help us to focus on the most effective ways to reduce or mitigate extinction threats from invasive species.

Ecologists, conservation biologists and managers widely believe that invasions by non-native species are a leading cause of recent species extinctions [1,2]. The introduction and spread of non-native species has become a global ecological and conservation crisis as invasive organisms are increasingly altering terrestrial and aquatic communities worldwide. The loss of biodiversity and species

correlation is too often assumed to imply causation. For example, severe habitat alteration (e.g. deforestation), decline or extinction of native plants, and the proliferation of exotic plant species commonly co-occur. Are non-native plants causing the decline of natives, or are the decline of the natives and the proliferation of the exotics both a result of habitat alteration? It is important to distinguish between these alternatives: is removing exotics essential to prevent the extinction of endemic natives, or is it largely a waste of managers' time and effort? Multiple threats can also act synergistically to cause declines or extinctions. However, if invasives are not a primary cause of extinction or major contributors to declines of species (locally or globally) but are instead merely correlated with other problems, the resources and efforts devoted to removing exotics might be better focused on more effective means to preserve threatened species.

The overarching category 'threatened by aliens' might also be misleading, for two reasons: we must distinguish the relative importance of different functional groups in causing extinctions, and also examine whether broad groups of invasives, or merely particular species, are

Are invasive species a major cause of extinctions?

Jessica Gurevitch and Dianna K. Padilla

Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA

The link between species invasions and the extinction of natives is widely accepted by scientists as well as conservationists, but available data supporting invasion as a cause of extinctions are, in many cases, anecdotal,

speculative and based a pose the question, are a widespread extinctions? critical synthesis and ev and to suggest ways to the based approach to under species on extinctions, standing of these pattern most effective ways to threats from invasive species.

Ecologists, conservation I believe that invasions by a cause of recent species extand spread of non-native ecological and conservation are increasingly altering to ties worldwide. The loss

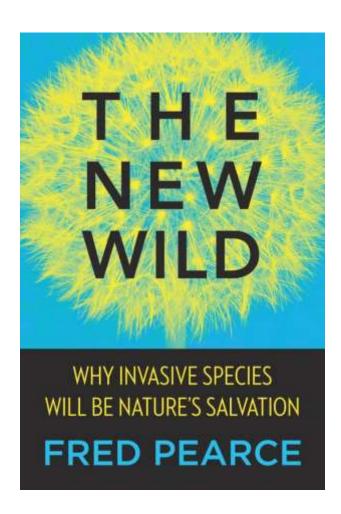
correlation is too often assumed to imply causation. For example, severe habitat alteration (e.g. deforestation), decline or extinction of native plants, and the proliferation of exotic plant species commonly co-occur. Are non-native

110 Update

TRENDS in Ecology and Evolution Vol.20 No.3 March 2005

Invasive species are a leading cause of animal extinctions

Miguel Clavero and Emili García-Berthou


Institute of Aquatic Ecology, University of Girona, E-17071 Girona, Spain

In a recent Opinion article in TREE [1], Gurevitch and

several reviews of particular taxa by expert groups that

Denialismus invazní biologie

- podobný proces, který ovlivnil vědu o klimatu minulou dekádu

Trends in Ecology & Evolution

Science & Society

The Rise of Invasive Species Denialism

James C. Russell^{1,2,@,*} and Tim M. Blackburn^{3,4,@}

Scientific consensus on the negative impacts of invasive alien species (IAS) is increasingly being challenged. Whereas informed scepticism of impacts is important, science denialism is counterproductive. Such denialism arises when uncertainty on impacts is confounded by differences in values. Debates on impacts must take into account both the evidence presented and motivations.

"It is a mistake to misdirect valuable and increasingly scarce conservation funds into unwinnable wars, especially when the enemy is not especially damaging."

"Trying to control Himalayan balsam throughout England, just because it is alien, is a waste of effort."

Thomas (2013) The Anthropocene could raise biological diversity. Nature 502, 7.

"We are still ill-equipped to predict the biological effects of climate change. It would therefore be foolish from the standpoint of both ecology and evolution to stop protecting pre-Anthropocene ecosystems and species from the onslaught of climate-driven newcomers."

Caro (2013) Anthropocene: keep the guard up. Nature, 502, p. 624

Komunikace negativních dopadů invazních druhů veřejnosti

Vojenské metafory ve vědecké i ochranářské komunikaci (nepřítel, zbraně, boj, vetřelec) umožňují přitáhnout pozornost k invazním druhů v krátkodobém horizontu, ale z dlouhodobého hlediska ochrany přírody to může být kontraproduktivní

Koupit levněji

Pro štěňata

malých plemen

HOBBY.cz

iDNES.cz > Zprávy | Kraje | Sport | Kultura | Ekonomika | Bydlení | Technet | Ona | Revue | Hobby | Domov | Zahrada | Dílna | Mazlíčci | Grilování | Rybaření | Houby | Atlas psů | Atlas hub | Herbář | Gorily | Komerční články

Asijský vetřelec hubí v Česku ryby. Přivezli si ho sami rybáři

15. února 2012 12:41

Do českých řek se dostal "vetřelec z východu" a vážně v nich ohrožuje přirozenou rovnováhu. Jmenuje se škeble asijská. Dovezli ho lidé spolu s rybami určenými k chovu.

Škeble asijská (Sinanodonta woodiana) je u nás invazivním druhem. I foto: Tenki jp

"Neustále roste počet exotických druhů, které se na nová místa dostávají s pomocí lidí, ohrožují původní společenstva živočichů a rostlin i celé ekosystémy," varuje Martin Reichard z brněnského Ústavu biologie obratlovců Akademia věd

Bezpečnostní rozváděč 6násobný GAO.

Čtvrtek 7. února 2019 Veronika Přihlásit

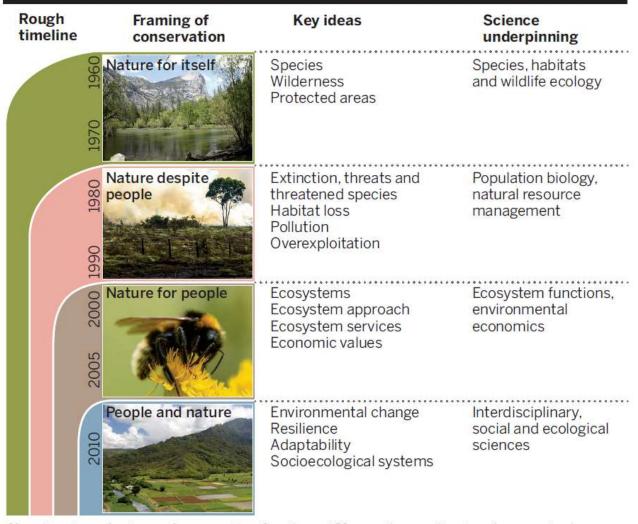
Vestavná CEE-Cara zástrčka, 811.100...

Pro dospělé psy s nadváhou

Koupit levněji

Existují alternativní cesty jak komunikovat problematiku invazních druhů, více konzistentní s hodnotami ochrany přírody

- analogie se zdravotním stavem ekosystému
- narušení rovnováhy, stability ekosystému


CONCEPTS AND QUESTIONS _____

The war of the roses: demilitarizing invasion biology

Brendon MH Larson

495

Biologické invaze a ochrana přírody

Changing views of nature and conservation. Over the past 50 years, the prevailing view of conservation has changed several times, resulting, for example, in a shift in emphasis from species to ecosystems. None of the framings has been eclipsed as new ones have emerged, resulting in multiple framings in use today.

Mace, Georgina M. "Whose conservation?." Science 345.6204 (2014): 1558-1560.

Potenciální hodnota nepůvodních druhů pro ochranu přírody Conservation Biology

Review

The Potential Conservation Value of Non-Native Species

MARTIN A. SCHLAEPFER,*† DOV F. SAX,‡ AND JULIAN D. OLDEN§

*State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, U.S.A., email mschlaepfer@esf.edu

†INRA, Ecologie et Santé des Ecosystèmes, 35042 Rennes, France

‡Department of Ecology and Evolutionary Biology, 80 Waterman Street, Brown University, Providence, RI 02912, U.S.A.

§School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, U.S.A.

Table 1. Examples of positive (+) and negative (-) roles of non-native species that were not intentionally introduced for conservation purposes.*

Purpose	Example	Reference
Habitat, shelter, and food for native species	+non-native tamarisk (<i>Tamarix</i> spp.) provides nesting habitat for Southwestern Willow Flycatcher (<i>Empidonax traillii extimus</i>) + native butterflies oviposit or feed on non-native	Sogge et al. 2008; Stromberg et al. 2009 Graves & Shapiro 2003
Catalysts for	plants in California, U.S.A. + non-native guava trees (<i>Psidium guajava</i>) support	Berens et al. 2008
restoration	native frugivorous birds and promote forest regeneration via seed dispersal in Kenya + non-native trees established on abandoned pastures facilitate restoration of native tree species	Lugo 2004
	in Puerto Rico	
	 + non-native zebra mussel (Dreissena polymorpha) filters water and control toxic cyanobacteria in shallow eutrophic lakes 	Elliot et al. 2008; Dionisio Pires et al. 2009
Ecosystem engineers	+ non-native birds in Hawaii disperse native plant seeds	Foster & Robinson 2007
	+ non-native Pacific oyster (Crassostrea gigas) colonizes unvegetated tideflats and forms hard reefs thereby increasing densities of native invertebrate species relative to native oyster beds	Ruesink et al. 2005
	 + non-native ascidian in intertidal waters in Chile creates dense three-dimensional structural matrix that increases local and regional species richness 	Castilla et al. 2004
Ecosystem services	+ non-native African honey bees (Apis mellifera) pollinate native plants in fragmented forest landscapes in Brazil and Australia	Dick 2001; Gross 2001
	+ pollination of the ieie vine (Freycinetia arborea)	Cox 1983
Cata	in Hawaii by non-native Iapanese White-eye	

Potenciální hodnota nepůvodních druhů pro ochranu přírody Conservation Biology

Conservation Biology

Review

Comment

The Potential Conso

MARTIN A. SCHLAEPFER,*† DOV F

*State University of New York, College of Envir email mschlaepfer@esf.edu

†INRA, Ecologie et Santé des Ecosystèmes, 350 ‡Department of Ecology and Evolutionary Biole §School of Aquatic and Fishery Sciences, Unive

Revisiting the Potential Conservation Value of Non-Native Species

JEAN RICARDO SIMÕES VITULE,* CAROLINA A. FREIRE,† DIEGO P. VAZQUEZ,‡ MARTIN A. NUÑEZ,§ AND DANIEL SIMBERLOFF§ **

*Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Setor de Tecnologia, Universidade Federal do Paraná, 81531, 980, Curitiba, Paraná, Brazil

†Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, 81531, 980, Curitiba, Paraná, Brazil

‡Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET; Instituto de Ciencias Básicas, Universidad Nacional de Cuyo, Mendoza, Argentina

\$Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, 1610, U.S.A.

Human travel and transportation of goods are increas-

fects of non-native species (e.g., gorse [Ulex europaeus],

Situace v ČR: klasifikace vlivu invazních

druhů

NeoBiota 28: I-37 (2016) doi: 10.3897/neobiota.28.4824 http://neobiota.pensoft.net

RESEARCH ARTICLE

Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental impacts and management strategy

Jan Pergl¹, Jiří Sádlo¹, Adam Petrusek², Zdeněk Laštůvka³, Jiří Musil⁴, Irena Perglová¹, Radek Šanda⁵, Hana Šefrová6, Jan Šíma², Vladimír Vohralík8, Petr Pyšek¹.²

1 Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-252 43 Prühonice, Czech Republic 2 Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic 3 Department of Zoology, Fisheries, Hydrobiology and Apidology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic 4 T.G. Masaryk Water Research Institute, Department of Aquatic Ecology, Podbabská 30, CZ-60 00 Prague 6, Czech Republic 5 National Museum, Department of Zoology, Václavské náměstí 68, CZ-115 79 Prague 1, Czech Republic 6 Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic 7 Ministry of the Environment of the Czech Republic, Department of Species Protection and Implementation of International Commitments, Vršovická 1442/65, CZ-100 10 Praha 10, Czech Republic 8 Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic

the state of the s

Corresponding author: Jan Pergl (pergl@ibot.cas.cz)

Tomáš Görner

INVAZNÍ NEPŮVODNÍ DRUHY S VÝZNAMNÝM DOPADEM NA EVROPSKOU UNII

jejich charakteristiky, výskyt a možnosti regulace

METODIKA AOPK ČR

PRAHA 2018

Situace v ČR: klasifikace vlivu invazních

druhů

NeoBiota 28: 1–37 (2016) doi: 10.3897/neobiota.28.4824 http://neobiota.pensoft.net

RESEARCH ARTICLE

Black, Grey and Watch Lists of alien species in the

the state of the s

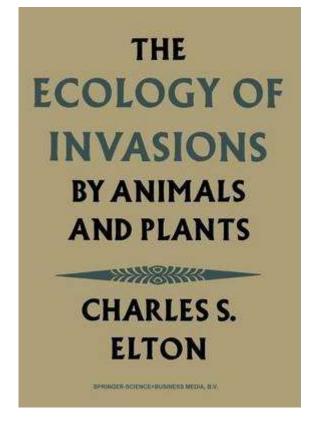
Taxon group	List categ.	Species (scientific name)	Czech name	Family	Environ- ment	Life history/ taxon group	Note	Mode of current spread	Distribution	Environ- mental impact	Human (socio-economic) impact	Management strategy
animal	BL3	Corbicula fluminea (O. F. Müller, 1774)	korbikula asijská	Cyrenidae	aquatic	invertebrate		Spontaneous	Regional	Moderate	Limited	Stratified approach
animal	BL3	Diaspidiotus perniciosus (Comstock, 1881)	štítenka zhoubná	Diaspididae	terrestrial	invertebrate		Spontaneous	Regional	Limited	Moderate	Stratified approach
animal	BL3	Dikerogammarus villosus (Sowinsky, 1894)	blešivec ježatý	Gammaridae	aquatic	invertebrate		Spontaneous	Regional	Massive	Limited	Stratified approach
animal	BL3	Dreissena polymorpha (Pallas, 1771) slávička mno- hotvárná Dreissenidae aquatic		aquatic	invertebrate		Spontaneous	Regional	Massive	Moderate	Stratified approach	
animal	BL3	Eriosoma lanigerum (Hausmann, 1802)	vlnatka krvavá	Aphididae	terrestrial	invertebrate		Spontaneous	Regional	Limited	Moderate	Stratified approach
animal	BL3	Harmonia axyridis (Pallas, 1773)	slunéčko východní	Coccinellidae	terrestrial	invertebrate		Spontaneous	Regional	Moderate	Moderate	Stratified approach

Corresponding author: Jan Pergl (pergl@ibot.cas.cz)

http://neobiota.pensoft.net

Table 2. Categories of Black and Grey Lists with indication of recommended management, handling restrictions, species examples and classifying criteria that are doi: 10.3897/neobiota.28.48 derived from environmental and socio-economic impact, population status and distribution of the target species. See Table 1 for details of the categories of recommended management.

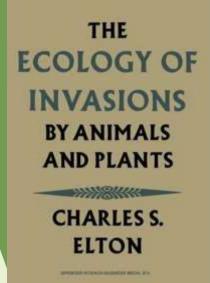
Lists category	Grouping criteria	Population status, dynamics and distribution of target species	Recommended local management	Handling and release restrictions	No. of plant species	Plant examples	No. of animal species	Animal examples
BL1	High environmental and socio- economic impact.	Abundant, distributed in a wide range of habitats, throughout the country. Species showing high population growth rate and colonization potential.	Complete eradication; eradications or containment everywhere, disposal of abandoned plantations.	No release; application of trade regulations.	2	Ambrosia artemisiifolia, Heracleum mantegazzianum	3	Neovison vison, Procyon lotor, Varroa destructor
BL2	Moderate to massive environmental impact. Species depending highly on human actions that promote their spread.	Species often found as remnants of planting in gardens and plantations, or in case of animals introduced for hunting and fishing (released or escaped). Usually species with wide distribution, occurring in urban as well as in (semi-)natural habitats.	Stratified approach; instead of economically important species, alternative native species should be promoted. If necessary for economic activities in areas with low conservation value, keeping in capture could be permitted, with prerequisite of prevention escape, and removal of the captive population once the economic activity has ceased. In case of plants disposal of the remnants of abandoned plantations is needed.	No release, legislative regulations of trade and handling, regulation for planting in suburban and rural landscape, some of the economically important species (marked by *) can be planted outside areas of high natural value.	49	Acer negundo, Ailanthus altissima, Robinia pseudoacacia, Asclepias syriaca, Helianthus tuberosus, Solidago sp. Symphyotrichum sp., Telekia speciosa, Pinus strobus, Quercus rubra	8	Cervus nippon, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Oncorhynchus mykiss, Ovis musimon, Salvelinus fontinalis
BL3	Moderate to massive environmental impact. Current distribution results from spontaneous spread and unintentional introductions.	Species usually with wide distribution which results mainly from spontaneous spread. Species occur in urban as well as in (semi-)natural habitats.	Stratified approach; due to spontaneous distribution there is no need to tolerate in any area.	No release.	27	Abutilon theophrasti, Bunias orientalis, Conyza canadensis, Echinochloa crus-galli, Iva xanthiifolia, Rumex alpinus, Senecio inaequidens	28	Ameiurus melas, Arion vulgaris, Cameraria ohridella, Dikerogammarus villosus, Harmonia axyridis, Myocastor coypus, Ondatra zibethicus, Trachemys

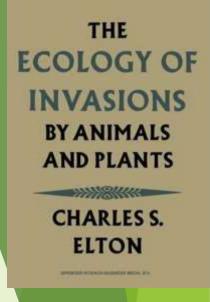


Lists category	Grouping criteria	Population status, dynamics and distribution of target species	Recommended local management	Handling and release restrictions	No. of plant species	Plant examples	No. of animal species	Animal examples
GL	Currently with limited environmental impact.	Scattered distribution throughout the country, resulting from spontaneous spread and escape from planting or captivity. Can be regionally or locally distributed.	Tolerance; outside areas of a high conservation value no need to take direct actions.	Where appropriate, change in management can be employed to reduce their distribution.	47	Bidens frondosus, Erigeron annuus, Impatiens parviflora, Juglans regia, Lonicera caprifolium, Rubrivena polystachya, Sedum hispanicum	16	Ameiurus nebulosus, Astacus leptodactylus, Eriocheir sinensis, Fascioloides magna, Gyrodactylus cyprini, Rupicapra rupicapra

Princip předběžné opatrnosti - predikce, vědecký výzkum

"The ecology of invasions by animals and plants" (Elton 1958)


2018: sixtieth anniversary


1958

- Elton předpověděl výrazný nárůst počtu invazí s masivním dopadem
- Zejména zdůrazňoval rizika související s organismy způsobujícími "biofouling" a význam balastní vody v lodní dopravě jako cestu šíření invazních druhů
- Upozornil na to, že druhy které mají nějak odlišný způsob života od domácích druhů mají největší šanci stát se invazními a mít negativní dopady

1958

- Elton předpověděl výrazný nárůst počtu invazí s masivním dopadem
- Zejména zdůrazňoval rizika související s organismy způsobujícími "biofouling" a význam balastní vody v lodní dopravě jako cestu šíření invazních druhů
- Upozornil na to, že druhy které mají nějak odlišný způsob života od domácích druhů mají největší šanci stát se invazními a mít negativní dopady

80. léta - slávička mnohotvárná se poprvé objevila v severní Americe a stala se miliardovým ekonomickým problémem a hrozbou pro biodiverzitu

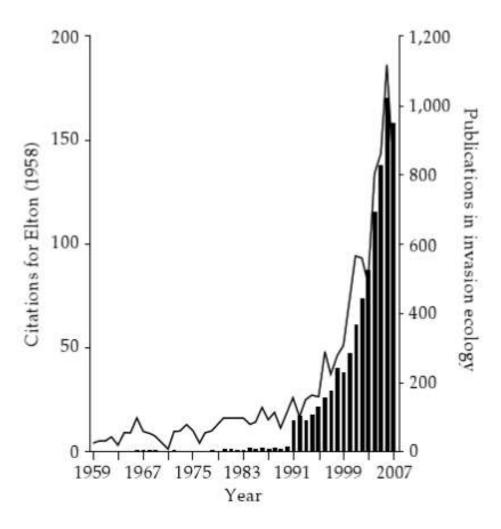
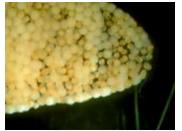


Fig. 1.1 The number of biological invasion publications since Elton published *The ecology of invasions by animals and plants* in 1958 (columns). Also shown are the number of publications that cited Elton's 1958 book during this time period (linegraph). Redrawn and printed, with permission, from Ricciardi and MacIsaac (2008), copyright Nature Publishing Group.

Zavlečení nepůvodních organismů a jejich dopady


VELCÍ MLŽ

k.douda@gmail.com

HELLO ZEBRA MUSSELS **GOODBYE TEXAS LAKES.**

Zebra mussels are a destructive invasive species that can spread across Texas by hitching a ride on boats and trailers.

Boats are the primary carrier of zebra mussels.

Zebra mussels can easily attach to a boat's hard surfaces and boaters travel frequently between water basins. Surveyed boaters planned to visit more than 50 Texas lakes in the next 30 days.

Texoma Lavon Ray Roberts Waco Belton Lewisville Bridgeport Dean Gilbert

1.5 inches

Zebra mussels size range from microscopic (larvae) up to 1.5 inches long (adults).

HUNDREDS of microscopic zebra mussel farvae, invisible to the naked eye, could be present in ONE liter of water.

Texas Lakes Infested **IN ONLY 6 YEARS:**

Texoma Lavon Ray Roberts Waco Lewisville Belton Bridgeport Dean Gilbert

1.5 inches

Zebra mussels size range from microscopic (larvae) up to 1.5 inches long (adults).

HUNDREDS of microscopic zebra mussel larvae, invisible to the naked eye, could be present in ONE liter of water.

RECREATIONAL **IMPACT**

Attached zebra mussels can decrease boat fuel efficiency, damage a boat's finish and clog water pumps.

452 per square inch

Zebra mussels can reach densities of 452 per square inch, covering beaches with sharp shells,

DAMAGE TO THE **ECOSYSTEM**

Algal bloom

Zebra mussels caused an algal bloom that led to a "do not drink" order for half a million Lake Erie residents.

70% reduction

Zooplankton have been reduced by 70% in other infested lakes, impacting filter feeding fish, important prey for bass and other sportfish.

FINANCIAL IMPACT

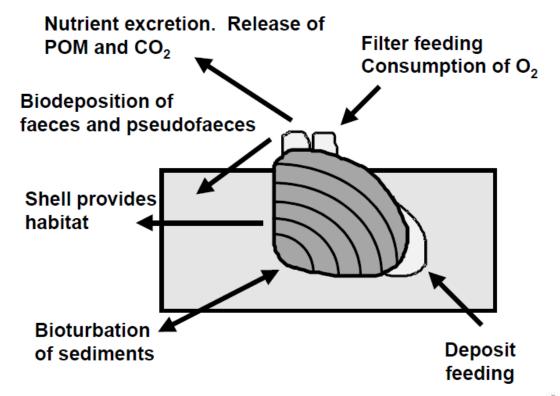
Cost to taxpayers

Zebra mussels can completely cloq an entire municipal pipeline up to 12 inches wide.

Decreased property value

Up to 19% in some areas infested with aquatic invasive species.

Stop the spread! 1 Clean 2 Drain 3 Dry


texasinvasives.org/zebramussels

DECDEATIONAL

DAMAGE TO THE

CINIANCIAL

Freshwater Biology (2001) 46, 1431-1446

FRESHWATER BIOLOGY SPECIAL REVIEW

The functional role of burrowing bivalves in freshwater ecosystems

CARYN C. VAUGHN* and CHRISTINE C. HAKENKAMP* *Oklahoma Biological Survey and Department of Zoology, University of Oklahoma, Norman, OK, U.S.A. †Department of Biology, James Madison University, Harrisonburg, VA, U.S.A.

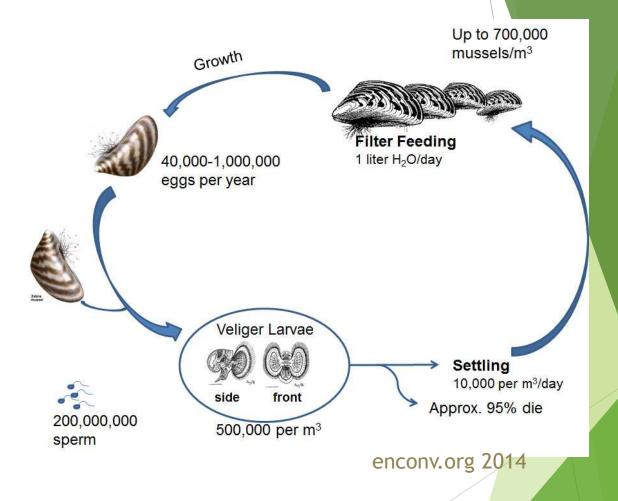
Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance

Freshuster Biology (2006) 51, 460-474

35

doi:10.1111/j.1365-2427.2005.01507.x

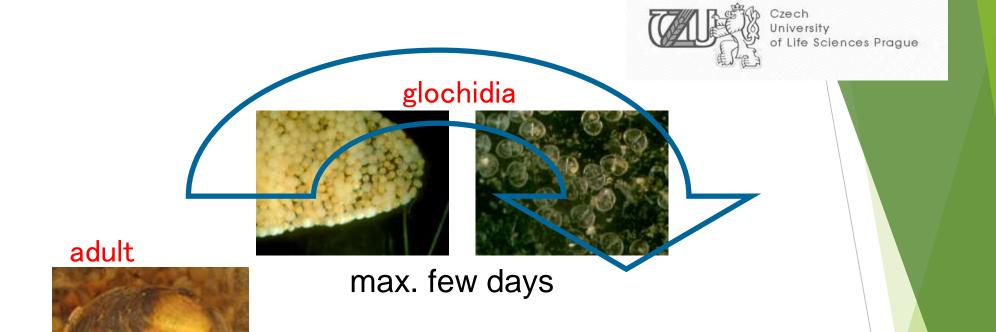
Caryn C. Vaughn^{1,*}, Keith B. Gido^{1,2} & Daniel E. Spooner¹

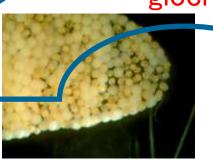

The functional role of native freshwater mussels in the fluvial benthic environment

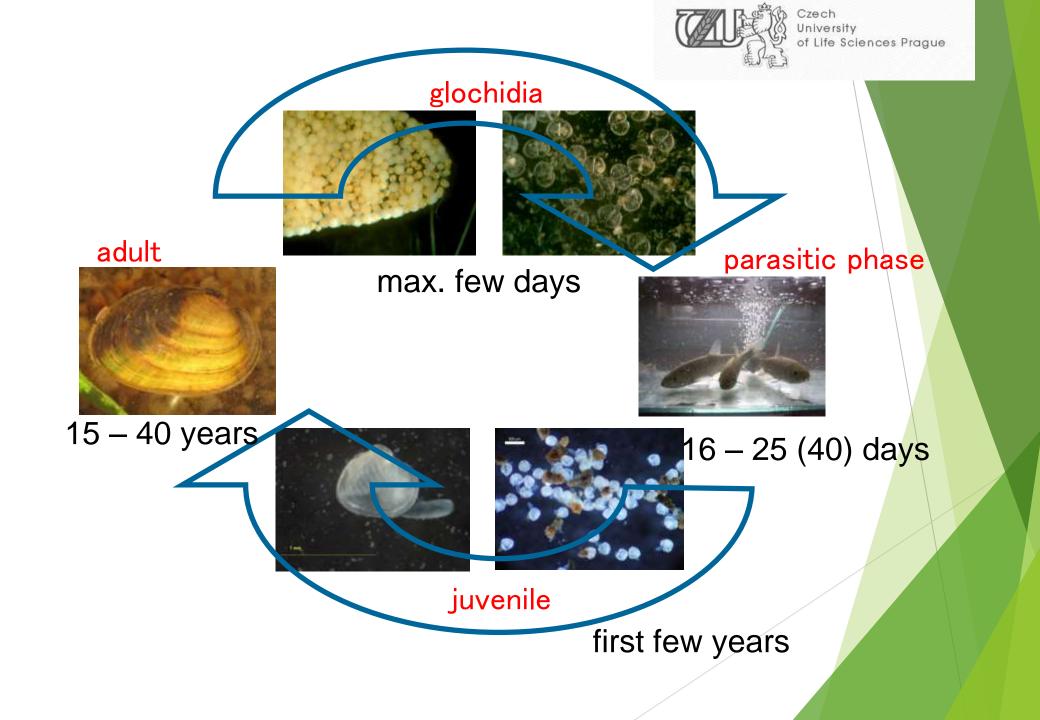
JEANETTE K. HOWARD AND KURT M. CUFFEY Department of Geography, University of California, Berkeley, CA, U.S.A.

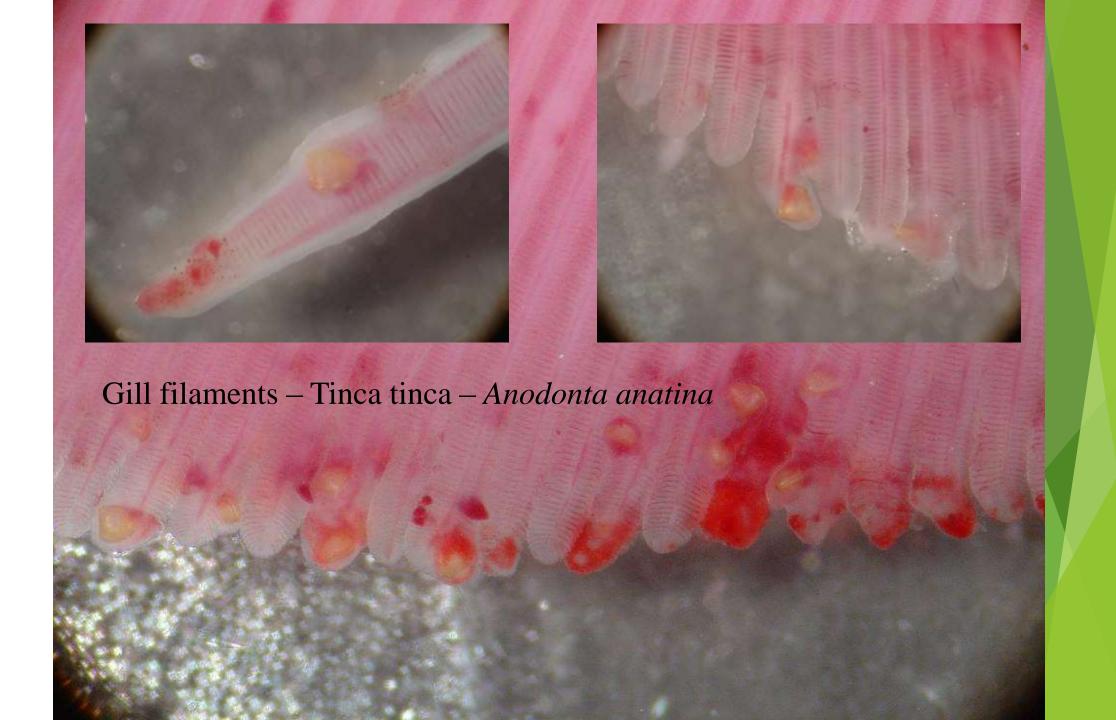
Hydrobiologia 527: 35-47, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

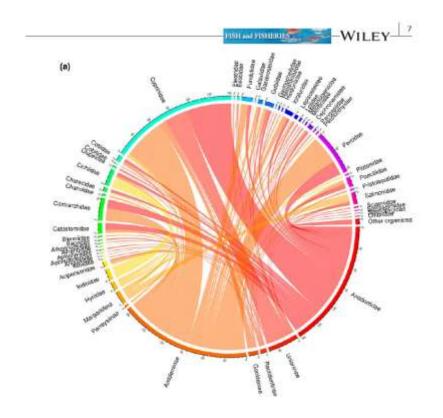
 The most invasive freshwater bivalve species - simple life cycles (directly release juveniles, free living dispersal larvae)



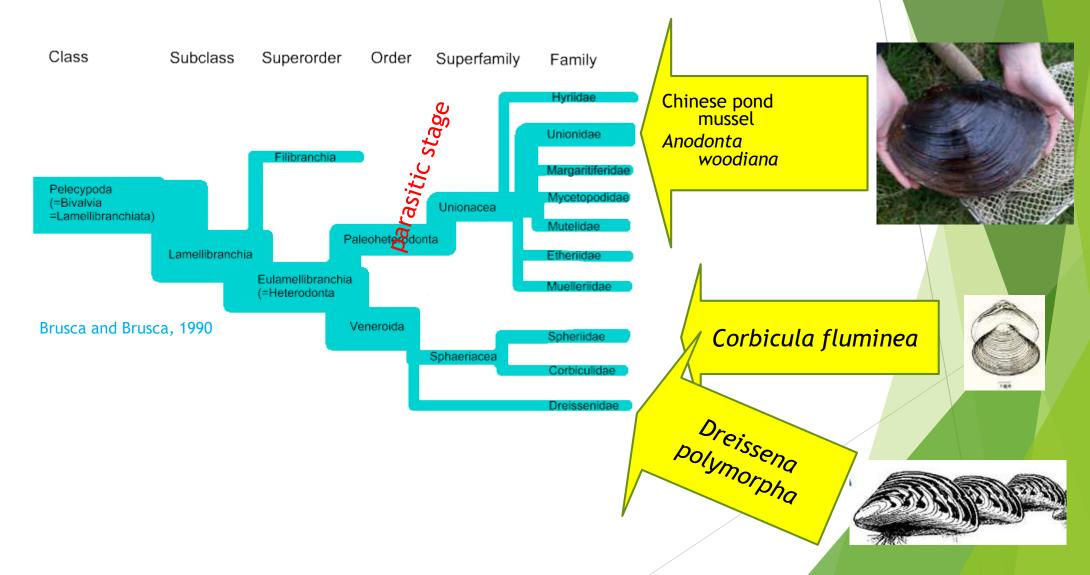


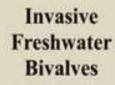

adult


parasitic phase



16 – 25 days





• Diverse life histories

Filtration

Bioturbation

Shells

Feces and pseudofeces

Resource subsidy

Bioamplification and biomagnification of contaminants

Biotic interactions (e.g. predator/prey; introduction of diseases and parasites)

Genetics

Hybridization Natural selection

Allelic diversity

Physiology

Fecundity Energy storage Growth Survival

Dynamics

Recruitment Age structure Sex Ratio Abundance and biomass

Distribution

Habitat quantity and quality Ecological niche Range size

Community productivity

Biomass quantity and quality Richness and evenness Energy and matter flux Disturbance frequency

Ecosystem functions and services

Habitat structure Primary and Secondary Production Functions (biogeochemical cycling, erosion/sedimentation, contaminant cycling) Services (water, raw materials)

Individuals

Populations

Communities and Ecosystems

Sousa et al. 2014

JAKÉ JSOU DOPADY BIOLOGICKÝCH INVAZÍ V PŘÍPADĚ VELKÝCH MLŽŮ?

PŘÍKLADY VLIVŮ:

- 1. Biotická homogenizace a hostitelské zdroje
- 2. Lokální adaptace a interakce s hostiteli
- 3. Přímé dopady invazních druhů

1. ZMĚNA VE SPOLEČENSTVECH HOSTITELSKÝCH RYB

Biotic homogenization

- gradual increase in biological similarity of regions as a result of combined effects of species invasions and extinctions (Olden, Rooney 2006)

-former co-evolutionarily balanced inter-specific relationships are lost

-many parasites and host species begin interact with novel partners

Unio crassus
high degree of host specificity

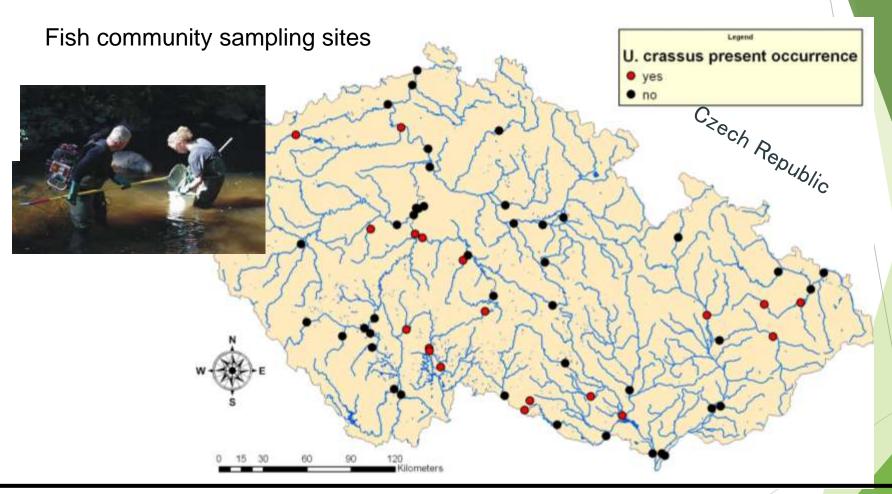
Anodonta anatina

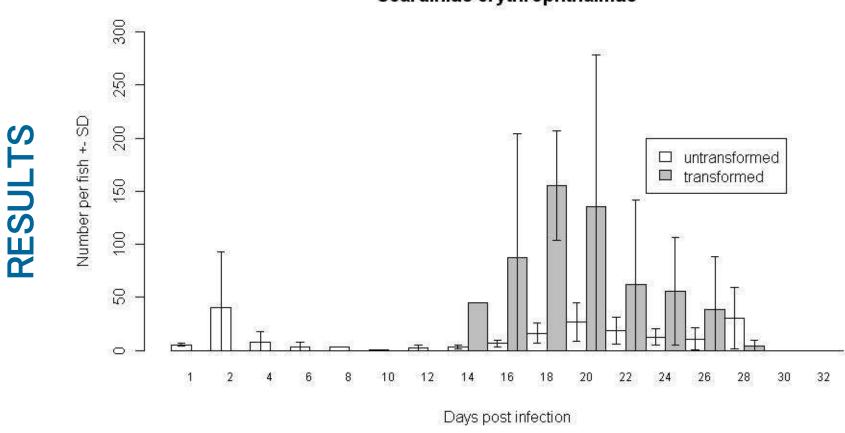
low level of host specificity

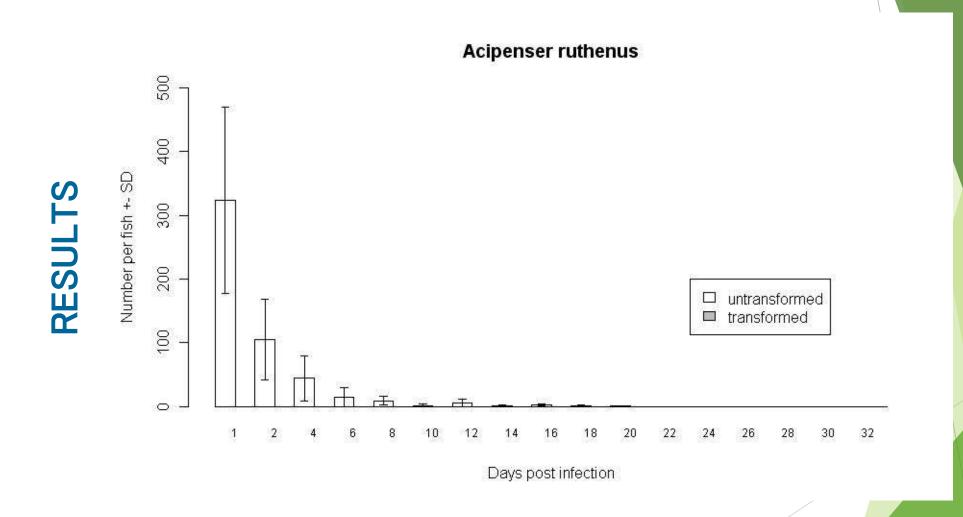
Metody:

- (1) Analýza hostitelské kompatibility na druhové úrovni
- (2) Analýza životaschopnosti populací na lokalitách s různým druhovým složením

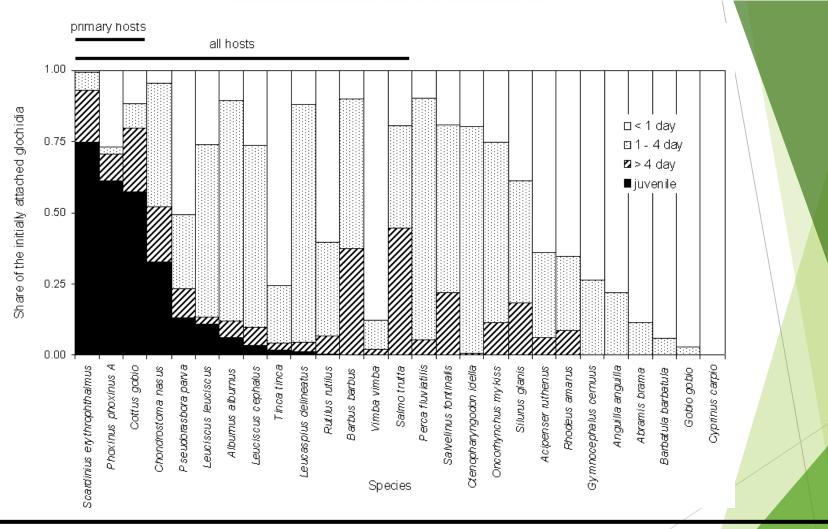
Analýza kompatibility

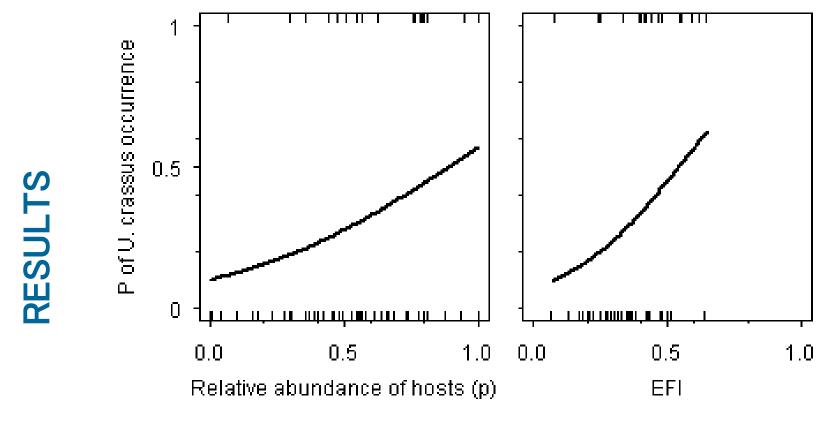





Douda, K., Horký, P., Bílý, M. (2012), Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species. Animal Conservation, 15: 536-544.

Scardinius erythrophthalmus





Douda, K., Horký, P., Bílý, M. (2012), Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species. Animal Conservation, 15: 536-544.

Probability of recent occurrence of *U. crassus* in relation to the relative abundance of all suitable hosts (a) and in relation to European Fish Index (b) fitted by logistic regression (p<0.05). *Unio crassus* presence (symbols at upper axis) and absence (symbols at lower axis) are also shown.

Přežívání populací velevruba tupého souvisí s přítomností nepůvodních a invazních druhů ryb na lokalitách.

Animal Conservation, Print ISSN 1367-9430

Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species

K. Douda, P. Horký & M. Bílý

Department of Applied Ecology, Water Research Institute TGM, Prague, Czech Republic

Keywords

Bivalvia; Europe; experimental infestation; freshwaters; glochidia; host spectrum; *Unio crassus*; Unionidae.

Correspondence

Karel Douda, Department of Applied

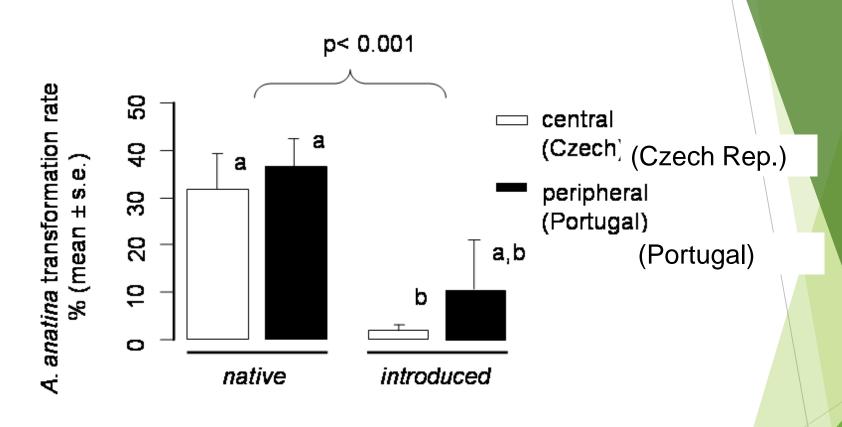
Abstract

The conservation of endangered affiliate species, which are critically dependent on the presence of another species, is often hindered by a poor understanding of the relationships between the interacting partners. The parasitic stage of endangered unionid bivalves constitutes a tight host–affiliate linkage between the mussels and their host fishes. However, the threats resulting from potential shortages of the

Douda, K., Horký, P., Bílý, M. (2012), Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species. Animal Conservation, 15: 536-544.

Anodonta anatina

Douda, K., Lopes-Lima, M., Hinzmann, M. et al. (2013): Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel's host resources. Diversity and Distributions, 19: 933-942.



		Fish Species	Trial	Number of fish (N)	Fish length (mm)	Mean (juveniles per fish)	Mean attached glochidia/fish *	Transformation rate (%)
Native		Achondrostoma oligolepis		9	82.2 ± 40.1	7.9	23.9	33.1
	Portugal	Cobitis paludica		6	78.8 ± 9.3	0.5	4.9	10.2
		Luciobarbus bocagei		8	140.3 ± 56.2	4	19.0	21
		Pseudochondrostoma dui	iens	9	110.8 ± 49.3	10.3	18.3	56.4
		Salmo trutta fario		6	170.1 ± 10.7	16.5	39.0	42.3
		Squalius alburnoides		16	86.9 ± 38.2	12.8	27.0	47.4
		Squalius carolitertii		7	100.1 ± 47.2	16.4	37.2	44.1
	Czech Republic	Scardinius erythrophthaln	В	5	67.2 ± 16.9	154.9	211.0	73.4
		Perca fluviatilis	Α	10	54.3±3.2	126.2	220.9	57.1
		Barbus barbus	В	8	90.4 ± 10.6	413.3	729.0	56.7
		Vimba vimba	В	6	44.3 ± 4.4	23.0	103.0	22.3
		Leuciscus cephalus	В	8	56.3 ± 7.9	34.3	216.0	15.9
		Rutilus rutilus	Α	5	100±3.4	17.8	566.6	3.1
		Tinca tinca	Α	7	45±5.4	0.1	101.6	0.1
		Gobio gobio	С	5	51.8±7.2	12.8	53.8	25.3
		Abramis brama	С	6	69.3±20.2	33.8	142.5	22.2
		Leuciscus leuciscus	С	6	60.2±2.8	27.8	73.0	39.8
Introduced	Portugal	Cyprinus carpio		4	150.2 ± 58.1	0	33.2	0
		Gobio Lozanoi		16	100.2 ± 24.3	0	47.1	0
		Lepomis gibbosus		18	98.2 ± 45.9	0	0	0
		Micropterus salmoides		4	145.2 ± 66.7	0	12.1	0
		Oncorhynchus mykiss		6	165.2 ± 9.2	12.5	24.2	51.7
	Czech Reput	Cyprinus carpio *	Α	6	63±8.3	0.5	312.2	0.2
		Rhodeus amarus *	В	12	30.7 ± 2.4	1.5	20.0	7.6
		Pseudorasbora parva	В	8	62.4 ± 5.7	0.8	209.0	0.4
		Carassius gibelio	В	8	82.3 ± 4.7	0.5	463.0	0.1
		Carassius auratus	С	15	79.5±6.4	0.1	82.9	0.001

Fish origin

 Výrazné rozdíly ve schopnosti využívat nepůvodní druhy - riziko pro reprodukční úspěšnost i u hostitelských generalistů jako je škeble říční

Journal of Conservation Biogeography

Diversity and Distributions, (Diversity Distrib.) (2013) 19, 933-942

Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel's host resources

Karel Douda^{1*}, Manuel Lopes-Lima^{2,3}, Mariana Hinzmann^{2,3}, Jorge Machado^{2,3}, Simone Varandas⁴, Amílcar Teixeira⁵ and Ronaldo Sousa^{2,6}

¹Department of Zoology and Fisheries,
Faculty of Agrobiology Food and Natural
Resources, Czech University of Life Sciences
Prague, Kamýcká 129, Prague, CZ 165 21,
Czech Republic, ²CIMAR-LA/CIIMAR

— Centre of Marine and Environmental
Research, University of Porto, Rua dos
Bragas 289, 4050-123 Porto, Portugal,

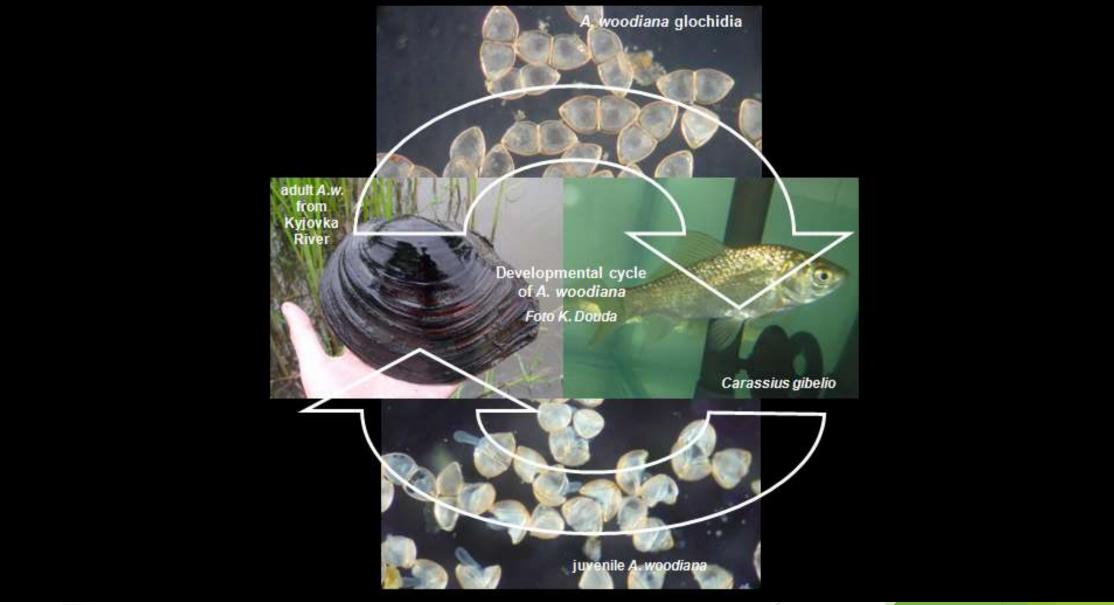
³ICBAS — Instituto de Ciências Biomédicas
de Abel Salazar, Universidade do Porto,
Lamo Prof. Abel Salazar, 2, 4090-003 Porto

ABSTRACT

Aim The indirect consequences of biotic homogenization, the process of a gradual increase in the similarity of regional biotas driven by the combined effects of species invasions and extinctions, are still poorly understood. In this study, we aimed to assess the ability of a native affiliate species to maintain its host resources under the condition of biotic homogenization of host communities.

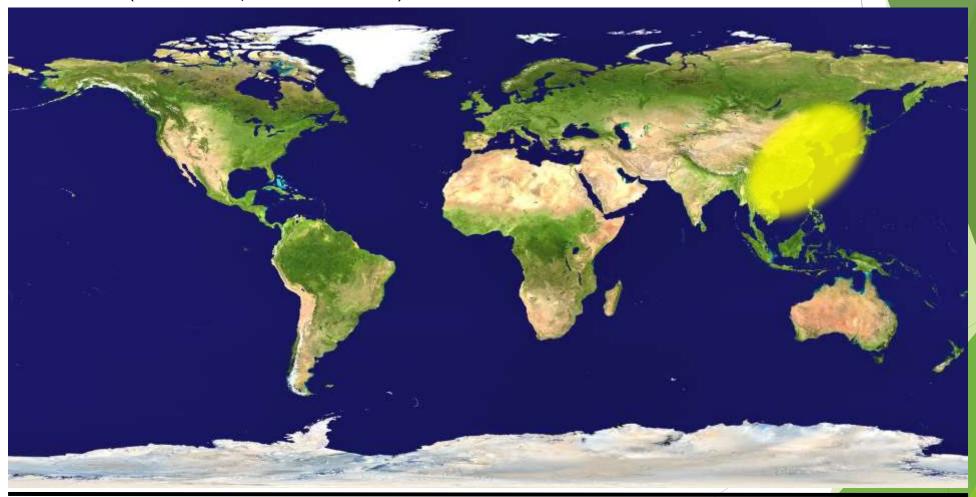
Location Central (Vltava River Basin, Czech Republic) and western (Douro River Basin, Portugal) Europe.

Douda, K., Lopes-Lima, M., Hinzmann, M. et al. (2013): Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel's host resources. Diversity and Distributions, 19: 933-942.

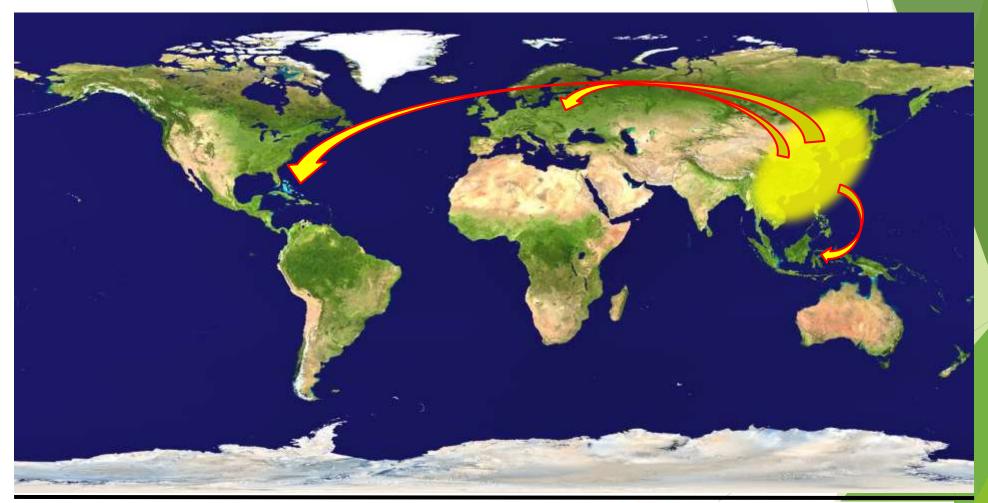

1. Vlivy na populační úrovni a invazní druhy velkých mlžů

INVESTMENTS IN EDUCATION DEVELOPMENT

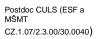
Postdoc CULS (ESF a MŠMT CZ.1.07/2.3.00/30.0040)

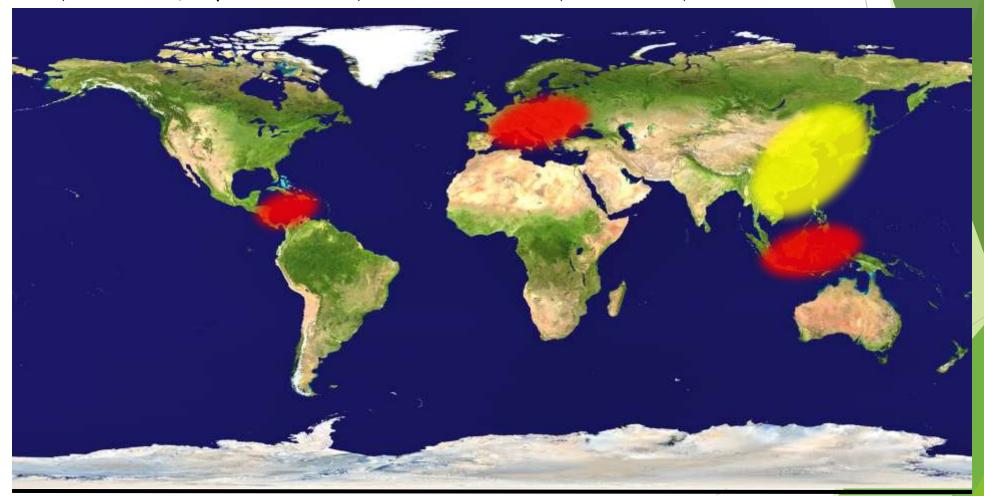


 Anodonta woodiana is native to south eastern Asia, specifically Indochina and southern China to Korea, Japan, Taiwan, Primorye and the Amur Basin in eastern Russia (Graf 2007; Watters 1997).



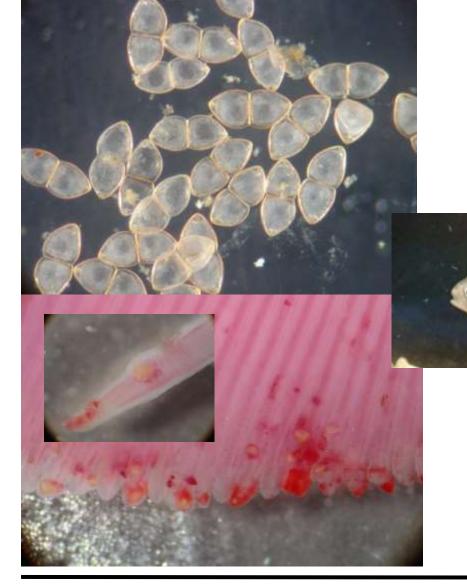
 Anodonta woodiana range expansion has been attributed to its parasitic stage and the notion that infected host fishes serve as a vector for spreading.





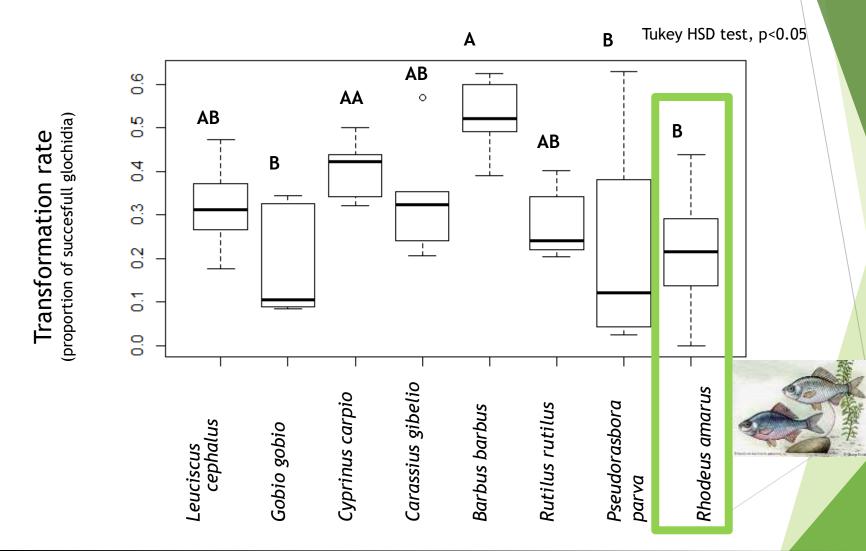
• The expansion of A. woodiana's range began in the second half of the 20th century; today, A. woodiana can be found in the Indonesian islands (Djajasasmita 1982), Central America (Watters 1997), Europe (Kraszewski 2007; Sárkány-Kiss et al. 2000), the Asian part of Turkey (M. Reichard, unpublished data) and North America (Benson 2011).

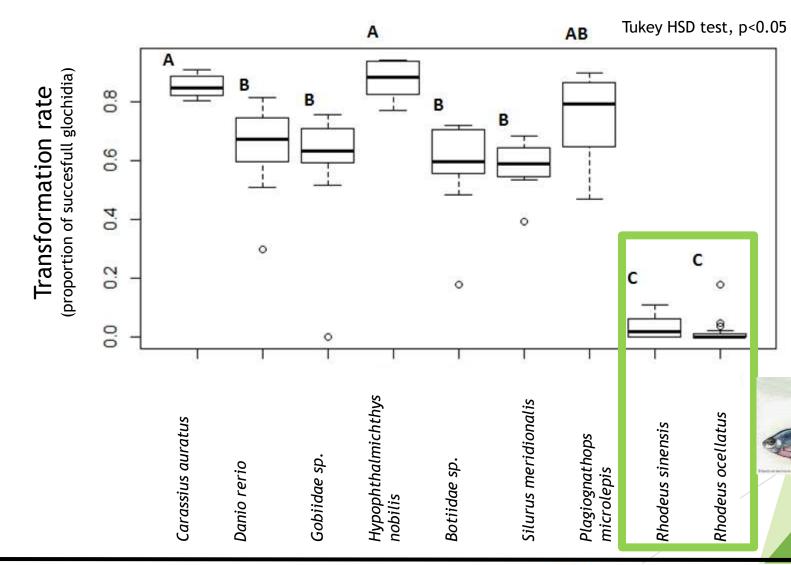
Central China (Hubei province)

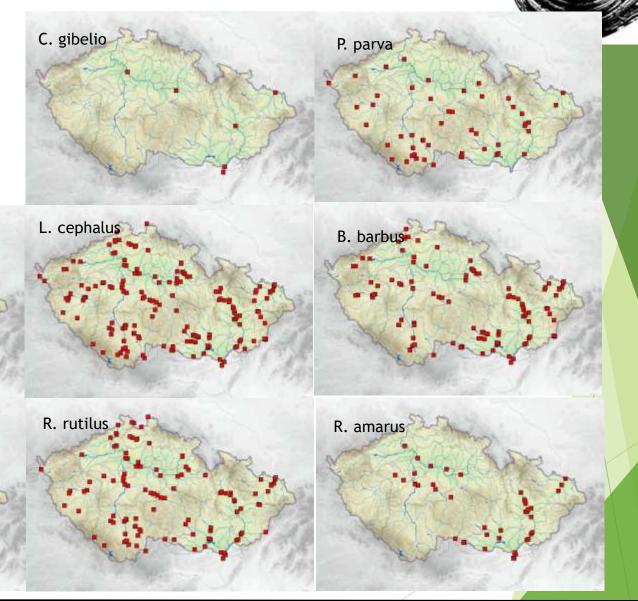


INVESTMENTS IN EDUCATION DEVELOPMENT

Postdoc CULS (ESF a MŠMT CZ.1.07/2.3.00/30.0040)





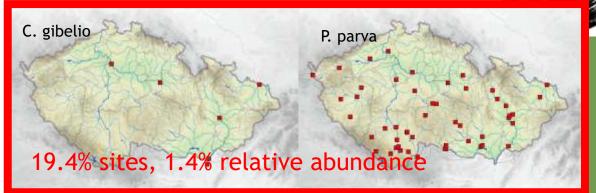


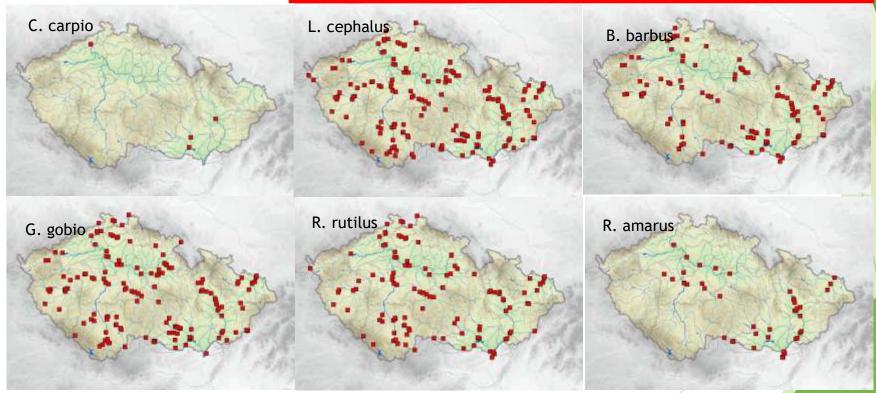
Results

C. carpio

G. gobio

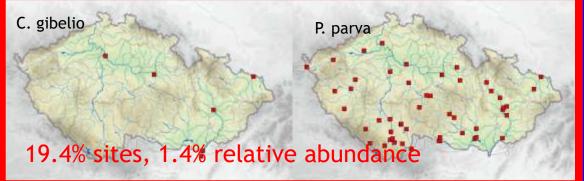
Host availability

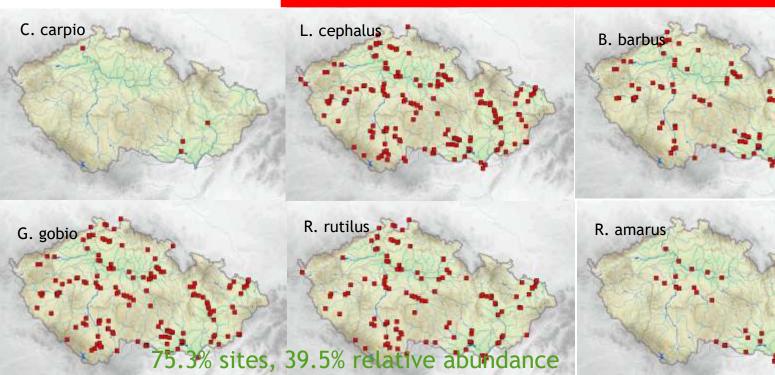




Results

Host availability





Results

Host availability

- Rezistence hostitelů vůči globálně generalistickému druhu je nízká napříč oblastmi i populacemi
- Malá šance na omezení šíření druhu vlivem koevoluce

Biol Invasions (2012) 14:127–137 DOI 10.1007/s10530-011-9989-7

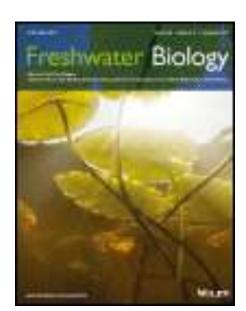
ORIGINAL PAPER

The role of host specificity in explaining the invasion success of the freshwater mussel *Anodonta woodiana* in Europe

K. Douda · M. Vrtílek · O. Slavík · M. Reichard

Postdoc CULS (ESF a CZ.1.07/2.3.00/30.0040)

Douda, K., Liu, H. Z., Yu, D., Rouchet, R., Liu, F., Tang, Q. Y., ... & Reichard, M. The role of local adaptation in shaping fish-mussel coevolution. Freshwater Biology.


Accepted: 17 August 2017

DOI: 10.1111/fwb.13026

ORIGINAL ARTICLE

The role of local adaptation in shaping fish-mussel coevolution

Karel Douda¹ | Huan-Zhang Liu² | Dan Yu² | Romain Rouchet³ | Fei Liu² Qiong-Ying Tang² | Caroline Methling^{3,4} | Carl Smith^{3,5,6} | Martin Reichard³

¹Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic

²The Key Lab of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan,

3Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic

⁴Technical University of Denmark, Copenhagen, Denmark

5School of Biology and Bell-Pettigrew Museum of Natural History, University of St Andrews, St Andrews, UK

Abstract

- 1. The survival of affiliate (dependent) species in a changing environment is determined by the interactions between the affiliate species and their available hosts. However, the patterns of spatial and temporal changes in host compatibility are often unknown despite host shifts having direct impact on the persistence of local populations. Bivalves of the order Unionida (freshwater mussels) are a functionally important but declining group of affiliate species, which are dependent on freshwater fish to host their parasitic larvae. The role of local adaptations and host fish resistance in shaping freshwater mussel host relationships remains poorly understood.
- We used an invasive Fast Asian unionid hivalve Singnodonta woodigna and its

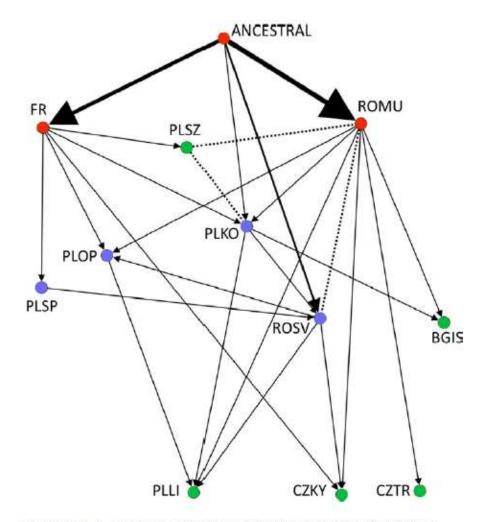


FIGURE 4 The most likely colonization pathways (indicated by arrows) of S. woodiana in Europe inferred by ABC pairwise comparisons between 11 populations and a putative ancestral source. The relationships are derived from the single-winner

Evolutionary Applications

Evolutionary approaches to environmental, biomedical and socio-economic issues

ORIGINAL ARTICLE

Modelling the invasion history of Sinanodonta woodiana in Europe: Tracking the routes of a sedentary aquatic invader with mobile parasitic larvae

Adam Konečný^{1,2} Oana P. Popa³ | Veronika Bartáková^{1,2} | Karel Douda⁴ Josef Bryja^{1,2} | Carl Smith^{1,5,6} | Luis O. Popa³ | Martin Reichard¹

¹The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic

Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic

³Grigore Antipa National Museum of Natural History, Bucharest, Romania

⁴Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic

Department of Ecology & Vertebrate Zoology, University of Łódź, Łódź, Poland

⁴School of Biology and Bell-Pettigrew Museum of Natural History, University of St. Andrews, St Andrews, UK

Correspondence

Martin Reichard, The Czech Academy of Sciences Institute of Vertebrate Biology

Abstract

Understanding the invasive potential of species outside their native range is one of the most pressing questions in applied evolutionary and ecological research. Admixture of genotypes of invasive species from multiple sources has been implicated in successful invasions, by generating novel genetic combinations that facilitate rapid adaptation to new environments. Alternatively, adaptive evolution on standing genetic variation, exposed by phenotypic plasticity and selected by genetic accommodation, can facilitate invasion success. We investigated the population genetic structure of an Asian freshwater mussel with a parasitic dispersal stage, Sinanodonta woodiana, which has been present in Europe since 1979 but which has expanded rapidly in the last decade. Data from a mitochondrial marker and nuclear microsatellites have suggested that all European populations of S. woodiana originate from the River Yangtze basin in China. Only a single haplotype was detected in Europe, in

Results

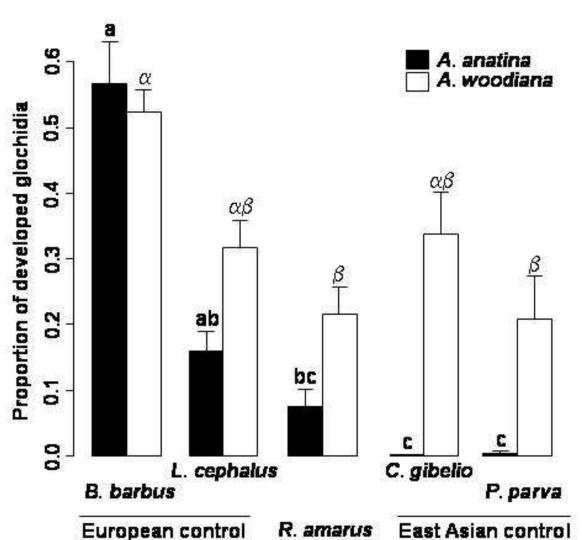
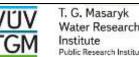
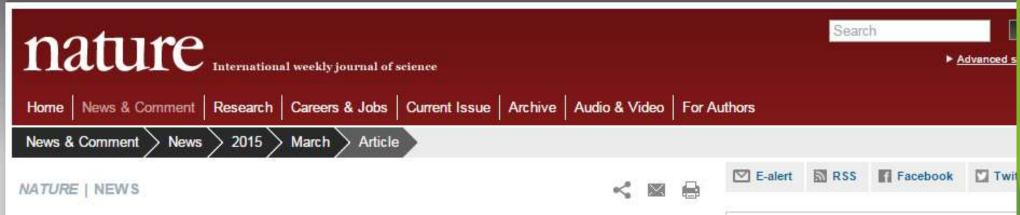




Figure 2. Relative development success (proportion that metamorphosed into juveniles) of glochidia of native A. anatina and invasive A. woodiana mussels on fish hosts. Error bars represent one SE. Different letters denote pairwise differences between treatment groups.

Invasive species turns parasites into hosts

Asian mussels take the advantage from European bitterling fish.

Jessica Marshall

15 February 2012

Rights & Permissions

The arrival of an alien species can turn an ecosystem on its head. Researchers have found an invasive mussel that has caused a complete ecological role reversal, turning a host into a parasite and vice versa.

In a study published today in Biology Letters 1, the team focused on ecosystems involving European bitterling (Rhodeus amarus) — small, pale-silver freshwater fish that lay their eggs in the gills of mussels. The mussels, for their part, release their larvae into the water, where they colonize and develop on fish, including bitterling. Both bitterling — most of which are found in East Asia, except the single species in Europe — and the family of mussels they colonize have evolved mechanisms to resist the other: in some sites throughout the world, one or other may prevail, whereas in others, pogleads.g.doubleclick.net/aclk?sa=L&ai=BIyAx72oKVd6MJ...

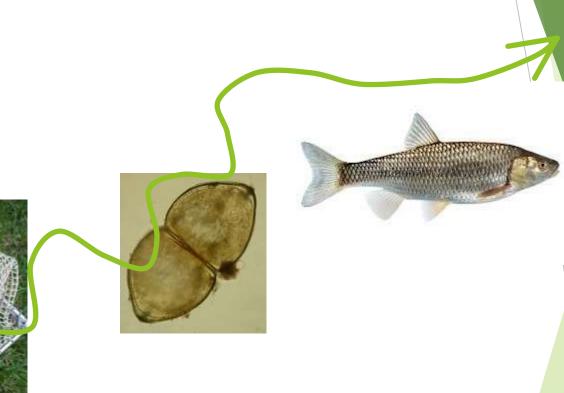
Top story Scientists sound alarm over DNA editing of human embryos Experts call for halt in research to work out safet and ethics issues.

1. Structural biologist named president of Royal Society Nature | 18 March 2015

Commented

Email

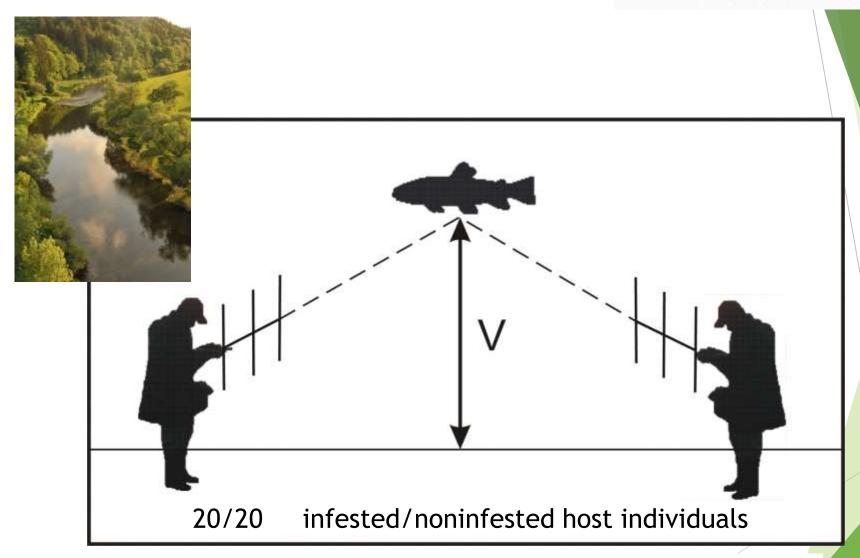
Read

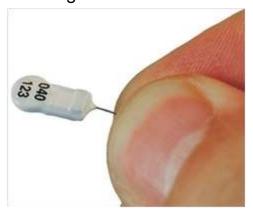

Recent

2. Plant sciences: Seeds and civilizations Nature | 18 March 2015

3. Theatre: Performing rituals

1. PŘÍMÉ DOPADY INVAZNÍCH DRUHŮ





telemetry

nanotag

SRX 600

Freshwater Biology

Freshouter Biology (2014) doi:10.1111/fwb.12387

Parasite-induced alterations of host behaviour in a riverine fish: the effects of glochidia on host dispersal

PAVEL HORKÝ*, KAREL DOUDA*, MATÚŠ MACIAK**, LIBOR ZÁVORKA** AND ONDŘEJ SLAVÍK* *Department of Zoology and Fisheries, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

*Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada

*Department of Biological and Environmental Sciences, Animal Ecology, University of Gethenburg, Gethenburg, Sonden

SUMMARY

- 1. Parasitic species can affect host behaviour in various ways. Freshwater mussels of the superfamily Unionoidea have a glochidia larva that is parasitic on fish. Our aim was to evaluate whether fish exposed to glochidia have distinct behaviour that could affect the upstream dispersal of the parasite
- 2. Many freshwater mussels are highly endangered, and understanding the relationships with their hosts is important for their conservation. However, research on the behavioural effects of parasitism on fish host activity and/or the upstream dispersal of mussel larvae in nature has received little attention.
- 3. Specifically, we examined a fish (the chub, Squalius critialus) that hosts the larval stage of a freshe histologi American anatimi) and incontinuous alterations in bost behaviour induced by the paraing passive integrated transponde

Journal of **Experimental Biology**

About us For authors Journal info Contacts Home Articles

ACCEPTED HANUSCRIPT

RESEARCH ARTICLE

Altered thermoregulation as a driver of host behaviour in glochidia-parasitised fish

Pavel Horky, Ondřej Slavík, Karel Douda

Journal of Experimental Biology 2018 | job. 184903 doi: 10.1242/job.184905 Published 23 October 2018

Article Info & metrics

Abstract

Parasites after their host behaviour and vice versa as a result of mutual adaptations in the evolutionary arms race. One of these adaptations involves changes in host thermoregulation, which has the potential to harm the parasite and thereby act as a defence mechanism. We used a model of the brown trout Salmo trutta experimentally parasitised with ectoparasitic larvae called glochidia from the endangered freshwater pearl mussel Marganit/fera marganit/fera to reveal whether parasitation alters

Physiology & Behavior 171 (2017) 127-134

freshwater fish

Contents lists available at ScienceDirect

Physiology & Behavior

Parasite-induced increases in the energy costs of movement of host

Ondřej Slavík a.*, Pavel Horký a, Karel Douda a, Josef Velíšek b, Jitka Kolářová b, Pavel Lepič b

- * Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 21, Czech Republic
- b Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/IL 389 25 Vodňany, Czech Republic

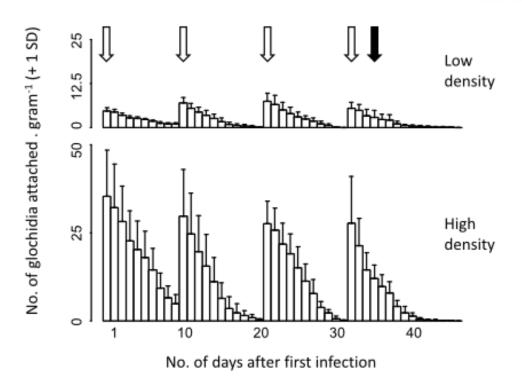
HIGHLIGHTS

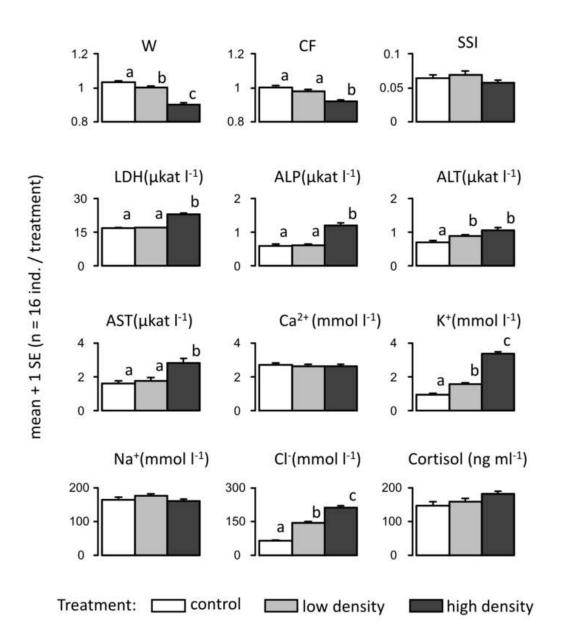
- Fish infected by ectoparasitic bivalve larvae paid higher energy costs for movement.
- . The energy costs of movement varied over time according to parasitic phase and diurnal cycle.
- . Higher values of ASP, ATP, K+ and Cl- occurred in the blood plasma of the hosts.
- . The physiological status of the fish hosts deteriorated during parasitization.

ARTICLE INFO

Article history: Received 27 June 2016 Received in revised form 12 December 2016 Accepted 6 January 2017 Available online 10 January 2017

ABSTRACT


Parasitization by the larvae (glochidia) of freshwater mussels can cause harm to a fish's gills, resulting in less effective respiration and/or reduced activity by the host fish. The impact of glochidia infections on the host's physiology remains poorly understood, and no information is available concerning energy consumption in parasitized fish. Hence, we obtained glochidia of the invasive unionid mussel Sinanodonta (Anodonta) woodiana and experimentally infected common carp, Cyprinus carpio, tagged with physiological sensors to measure energy consumption. We tested the hypothesis that parasitization affects energy consumption in the host fish, reflected as higher energy costs for movement and reduced movement activity over eight days post-infection within a twenty-four-


Vliv na fyziologii hostitelů

Time course for S. woodiana glochidia parasitization in control fish (S. cephalus, n= 7+7) in the low- and high-density treatments. Bars represent mean (+SD) glochidia attached to fish on the respective day gained by calculation from shed glochidia and juvenile mussels. White arrows indicate inoculations (day 0, 10, 21, and 32). A black arrow indicates sampling for fish physiological parameters.

Changes in body weight (W), condition factor (CF), splenosomatic index (SSI), and biochemical parameters in blood plasma (see text for description) of the host (S. cephalus), infested with parasitic larvae of the invasive bivalve S. woodiana. Experimental fish (n= 16 + 16 + 16) were exposed during four consecutive infestations in glochidia baths containing zero, 1170±130 and 8578±687 glochidia liter-1 (mean±SE) in the control and low- and high-density treatments, respectively. Different letters (a, b, c) indicate significant differences among groups (Wilcoxon-Mann-Whitney test, p<0.05).

Zdroje pro argumentaci důvodů k omezení šíření u zainteresovaných skupin

Biol Invasions (2017) 19:989–999 DOI 10.1007/s10530-016-1319-7

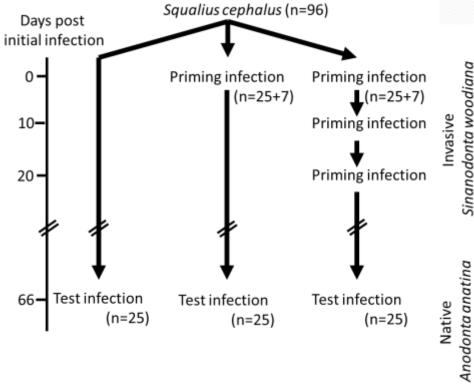
ORIGINAL PAPER

Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: evidence and implications

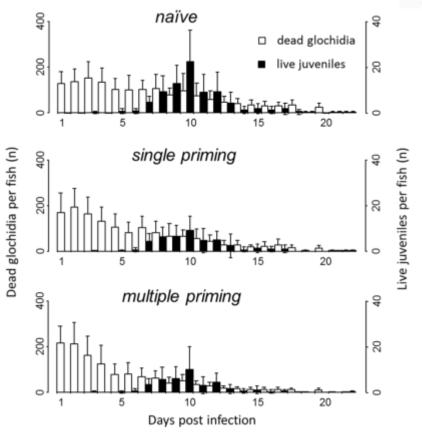
Karel Douda · Josef Velíšek · Jitka Kolářová · Kateřina Rylková · Ondřej Slavík · Pavel Horký · Iva Langrová

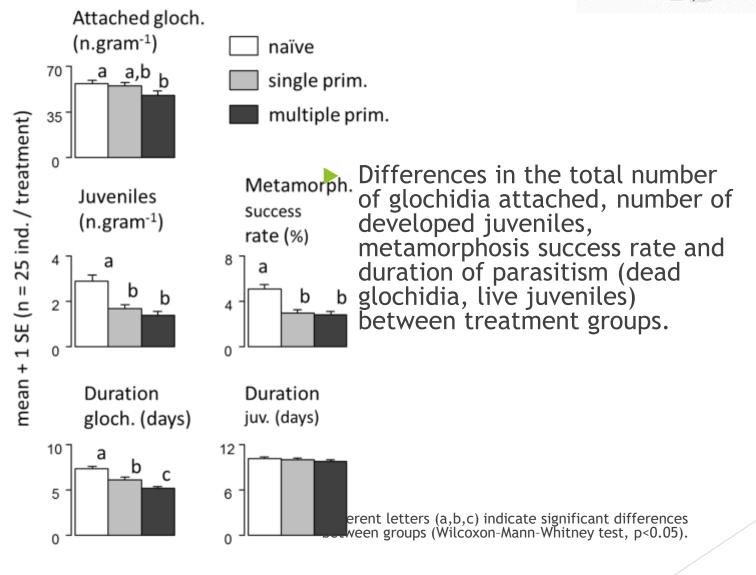
Received: 17 May 2016/Accepted: 31 October 2016/Published online: 5 November 2016 © Springer International Publishing Switzerland 2016

Abstract Direct and potentially damaging effects of invasive alien species can remain unnoticed or insufficiently quantified, resulting in a lack of stakeholder awareness. We report for the first time that parasitic larvae (glochidia) of the invasive freshwater mussel Sinanodonta (Anodonta) woodiana (Unionidae, Bivalvia) cause an unexpected reduction in the condition factor of parasitized native fish species. The reduction in the body mass and condition factor of experimentally infested European chub (Squalius cephalus) was


associated with changes in several physiological parameters measured in host fish plasma. Ion concentrations (potassium, chloride) and enzymes activities (aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, alkaline phosphatase) were significantly affected; hence, the results reveal the complex effects of non-native glochidia on the homeostasis of the individually tested fish. Changes in host physiology and condition status were recorded also in environmentally relevant infestation intensities (mean

Konkurence o hostitelské zdroje





The timing of priming (S. woodiana) and experimental (A. anatina) inoculations. Numbers of host fish individuals used are stated in parentheses.

Developmental dynamics of freshwater mussel A. anatina glochidia on naïve (a), "single priming" (b) and "multiple priming" (c) S. cephalus with glochidia of S. woodiana. Bars represent mean (+SD) glochidia or juveniles detached from fish in the respective day after infestation.

AQUATIC CONSERVATION Marine and Freshwater Ecosystems

Received: 13 June 2016

Revised: 15 November 2016

Accepted: 8 January 2017

DOI 10.1002/aqc.2759

WILEY

RESEARCH ARTICLE

Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish

Seth W. Donrovich¹ | Karel Douda¹ | Věra Plechingerová¹ | Kateřina Rylková¹ | Pavel Horký¹ | Ondřej Slavík¹ | Huan-Zhang Liu² | Martin Reichard³ | Manuel Lopes-Lima^{4,5} | Ronaldo Sousa⁶

Abstract

- The effects of invasive alien species (IAS) on host-affiliate relationships are often subtle and remain unnoticed or insufficiently quantified. The global decline of freshwater unionid mussel species has been attributed to many causes, but little is known about the interactions of IAS, with their complex life cycle, which includes an obligatory parasitic stage (the glochidium) that develops on fishes.
- 2. The capacity of a European freshwater mussel, Anodonta anatina, to develop on its widespread

Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic

² The Key Lab of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

³ Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic

Velcí mlži a dopady biologických invazí

- Hostitelské vazby jako klíčový faktor ovlivňující dopady invazí na domácí druhy i šíření invazních druhů
- Několik dosud nepopsaných mechanizmů dopadu invazních druhů
- Nově se objevující rizika

