Algorithms and datastructures I
Lecture 11: Master theorem, Strassen algorithm, k-th smallest element

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

April 282020

Divide \& Conquer

"Divide and conquer is an algorithm design paradigm based on multi-branched recursion. A divide-and-conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem."

John von Neumann

MergeSort (x_{1}, \ldots, x_{n}), John von Neumann, 1945

1. if $n=1$: Return $\left(x_{1}\right)$.
2. $\left(y_{1}, \ldots, y_{\left\lfloor\frac{n}{2}\right\rfloor}\right) \leftarrow \operatorname{MergeSort}\left(x_{1}, \ldots, x_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$
3. $\left(z_{1}, \ldots, z_{\left\lceil\frac{n}{2}\right\rceil}\right) \leftarrow$ MergeSort $\left(x_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, x_{n}\right)$
4. Return Merge $\left(\left(y_{1}, \ldots, y_{\left\lfloor\frac{n}{2}\right\rfloor}\right),\left(z_{1}, \ldots, z_{\left\lceil\frac{n}{2}\right\rceil}\right)\right)$.

Time complexity (for $n=2^{k}$)

$$
T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)
$$

$$
T(1)=1
$$

Multiplication (Karatsuba 1960)

$$
\begin{aligned}
X & =A \left\lvert\, B=A \cdot 10^{\frac{n}{2}}+B\right. \\
Y & =C D=C \cdot 10^{\frac{n}{2}}+D \\
X \cdot Y & =A C \cdot 10^{n}+(A D+B C) \cdot 10^{\frac{n}{2}}+B D \\
& =A C \cdot 10^{n}+((A+B)(C+D)-A C-B D) \cdot 10^{\frac{n}{2}}+B D
\end{aligned}
$$

Anatolii Alexeievitch Karatsuba

$$
T(n)=3 T\left(\frac{n}{2}\right)+c n
$$

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log n}\left(\frac{3}{2}\right)^{i} c n=c n \cdot \frac{\left(\frac{3}{2}\right)^{\log n+1}-1}{\left(\frac{3}{2}\right)-1}=\Theta\left(n \cdot\left(\frac{3}{2}\right)^{\log n}\right)=\Theta\left(n \cdot\left(\frac{3^{\log n}}{2^{\log n}}\right)\right)=\Theta\left(3^{\log n}\right) \\
& =\Theta\left(\left(2^{\log 3}\right)^{\log n}\right)=\Theta\left(2^{\log 3 \log n}\right)=\Theta\left(\left(2^{\log n}\right)^{\log 3}\right)=\Theta\left(n^{\log 3}\right)=\Theta\left(n^{1 \cdot 59 \cdots}\right)
\end{aligned}
$$

What about general case?

General recurrence

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =a T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+\Theta\left(n^{c}\right)
\end{aligned}
$$

What about general case?

General recurrence

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =a T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+\Theta\left(n^{c}\right)
\end{aligned}
$$

\# of subprob	size of subprob.	time per subprob	time per level

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{i c}}\right)
$$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{i c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{i c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{i c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1$: $T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $q>1: T(n)=\Theta\left(a^{k}\right)$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $q>1: T(n)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1$: $T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $q>1: T(n)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(\left(b^{\left.\left.\log _{b} a\right)^{\log _{b} n}\right)}\right.\right.$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $a>1$: $T(n)=\Theta\left(a^{\kappa}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(\left(b^{\left.\left.\left.\log _{b} a\right)^{\log _{b} n}\right)=\Theta\left(\left(b^{\log _{b} n}\right)^{\log _{b} a}\right), ~\right) ~}\right.\right.$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $a>1: T(n)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(\left(b^{\left.\left.\left.\log _{b} a\right)^{\log _{b} n}\right)=\Theta\left(\left(b^{\log _{b} n}\right)^{\log _{b} a}\right)=\Theta\left(n^{\log _{b} a}\right), ~\right)}\right.\right.$

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1$: $T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $a>1: T(n)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(\left(b^{\left.\left.\left.\log _{b} a\right)^{\log _{b} n}\right)=\Theta\left(\left(b^{\log _{b} n}\right)^{\log _{b} a}\right)=\Theta\left(n^{\log _{b} a}\right), ~\right)}\right.\right.$

Question

What if $n \leq b^{k}$ for some integer k ?

Lets do the math

$$
T(N)=\Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{i c}}\right)=\Theta\left(N^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i}\right)
$$

Put $q=\frac{a}{b^{c}}$ and consider cases:

1. $q=1: T(n)=\Theta\left(n^{c} \log n\right)$
2. $q<1: T(n)=\Theta\left(n^{c} \sum_{i \geq 0} q^{i}\right)=\Theta\left(n^{c}\right)$
3. $q>1: T(n)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(\left(b^{\log _{b} a}\right)^{\log _{b} n}\right)=\Theta\left(\left(b^{\log _{b} n}\right)^{\log _{b} a}\right)=\Theta\left(n^{\log _{b} a}\right)$

Question

What if $n \leq b^{k}$ for some integer k ?
Easy: Put $b^{k} \leq n \leq b^{k+1}$ and then $T\left(b^{k}\right) \leq T(n) \leq T\left(b^{k+1}\right)$

Master theorem

Theorem (Master theorem)

Master theorem

Theorem (Master theorem)

Given $a \in \mathbb{N}^{+}, b \geq 1, c \geq 1$ recurrence:

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =a T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+\Theta\left(n^{c}\right)
\end{aligned}
$$

has solution:

1. $T(n)=\Theta\left(n^{c} \log n\right)$ if $\frac{a}{b^{c}}=1$.
2. $T(n)=\Theta\left(n^{c}\right)$ if $\frac{a}{b^{c}}<1$.
3. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $\frac{a}{b^{c}}>1$.

Master theorem

Theorem (Master theorem)
Given $a \in \mathbb{N}^{+}, b \geq 1, c \geq 1$ recurrence:

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =a T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+\Theta\left(n^{c}\right)
\end{aligned}
$$

has solution:

1. $T(n)=\Theta\left(n^{c} \log n\right)$ if $\frac{a}{b^{c}}=1$.
2. $T(n)=\Theta\left(n^{c}\right)$ if $\frac{a}{b^{c}}<1$.
3. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $\frac{a}{b^{c}}>1$.

Strassen's algorithm

Strassen's algorithm, 1969

Volker Strassen
$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \cdot\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)$

Strassen's algorithm

Strassen's algorithm, 1969

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)=\left(\begin{array}{cc}
T_{1}+T_{4}-T_{5}+T_{7} & T_{3}+T_{5} \\
T_{2}+T_{4} & T_{1}-T_{2}+T_{3}+T_{6}
\end{array}\right),
$$

where:

$$
\begin{aligned}
& T_{1}=(A+D) \cdot(P+S) \\
& T_{2}=(C+D) \cdot P \\
& T_{3}=A \cdot(Q-S) \\
& T_{4}=D \cdot(R-P) \\
& T_{5}=(A+B) \cdot S \\
& T_{6}=(C-A) \cdot(P+Q) \\
& T_{7}=(B-D) \cdot(R+S)
\end{aligned}
$$

Strassen's algorithm

Strassen's algorithm, 1969

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{cc}
P & Q \\
R & S
\end{array}\right)=\left(\begin{array}{cc}
T_{1}+T_{4}-T_{5}+T_{7} & T_{3}+T_{5} \\
T_{2}+T_{4} & T_{1}-T_{2}+T_{3}+T_{6}
\end{array}\right)
$$

where:

$$
\begin{aligned}
& T_{1}=(A+D) \cdot(P+S) \\
& T_{2}=(C+D) \cdot P \\
& T_{3}=A \cdot(Q-S) \\
& T_{4}=D \cdot(R-P) \\
& T_{5}=(A+B) \cdot S \\
& T_{6}=(C-A) \cdot(P+Q) \\
& T_{7}=(B-D) \cdot(R+S)
\end{aligned}
$$

7 multiplications instead of $8 \Rightarrow$ time complexity $T(n)=7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.808}\right)$.

Strassen's algorithm

Strassen's algorithm, 1969

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)=\left(\begin{array}{cc}
T_{1}+T_{4}-T_{5}+T_{7} & T_{3}+T_{5} \\
T_{2}+T_{4} & T_{1}-T_{2}+T_{3}+T_{6}
\end{array}\right)
$$

where:

$$
\begin{aligned}
& T_{1}=(A+D) \cdot(P+S) \\
& T_{2}=(C+D) \cdot P \\
& T_{3}=A \cdot(Q-S) \\
& T_{4}=D \cdot(R-P) \\
& T_{5}=(A+B) \cdot S \\
& T_{6}=(C-A) \cdot(P+Q) \\
& T_{7}=(B-D) \cdot(R+S)
\end{aligned}
$$

7 multiplications instead of $8 \Rightarrow$ time complexity $T(n)=7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.808}\right)$.
Current record: $\left(n^{2.373}\right)$ with really big constant factors

Quickselect

Problem: Find k-th smallest element of a sequence $\left(x_{1}, \ldots, x_{n}\right)$.

Sir Tony Horae

QuickSelect $\left(\left(x_{1}, \ldots, x_{n}\right), k\right)$, Sir Tony Horae 1961

1. Choose pivot p.
2. Split $\left(x_{1}, \ldots, x_{n}\right)$ to $L=\left\{x_{i}: x_{i}<p\right\}, E=\left\{x_{i}: x_{i}=p\right\}, R=\left\{x_{i}: x_{i}>p\right\}$.

Quickselect

Problem: Find k-th smallest element of a sequence $\left(x_{1}, \ldots, x_{n}\right)$.

Sir Tony Horae

QuickSelect(($\left.\left.x_{1}, \ldots, x_{n}\right), k\right)$, Sir Tony Horae 1961

1. Choose pivot p.
2. Split $\left(x_{1}, \ldots, x_{n}\right)$ to $L=\left\{x_{i}: x_{i}<p\right\}, E=\left\{x_{i}: x_{i}=p\right\}, R=\left\{x_{i}: x_{i}>p\right\}$.
3. If $k \leq|L|$: return QuickSelect (L, k).

Quickselect

Problem: Find k-th smallest element of a sequence $\left(x_{1}, \ldots, x_{n}\right)$.

Sir Tony Horae

QuickSelect($\left.\left(x_{1}, \ldots, x_{n}\right), k\right)$, Sir Tony Horae 1961

1. Choose pivot p.
2. Split $\left(x_{1}, \ldots, x_{n}\right)$ to $L=\left\{x_{i}: x_{i}<p\right\}, E=\left\{x_{i}: x_{i}=p\right\}, R=\left\{x_{i}: x_{i}>p\right\}$.
3. If $k \leq|L|$: return QuickSelect (L, k).
4. If $k \leq|L|+|E|$: return p.

Quickselect

Problem: Find k-th smallest element of a sequence $\left(x_{1}, \ldots, x_{n}\right)$.

Sir Tony Horae

QuickSelect(($\left.\left.x_{1}, \ldots, x_{n}\right), k\right)$, Sir Tony Horae 1961

1. Choose pivot p.
2. Split $\left(x_{1}, \ldots, x_{n}\right)$ to $L=\left\{x_{i}: x_{i}<p\right\}, E=\left\{x_{i}: x_{i}=p\right\}, R=\left\{x_{i}: x_{i}>p\right\}$.
3. If $k \leq|L|$: return QuickSelect (L, k).
4. If $k \leq|L|+|E|$: return p.
5. return QuickSelect $(L, k-|L|-|E|)$.

Quickselect

Problem: Find k-th smallest element of a sequence $\left(x_{1}, \ldots, x_{n}\right)$.

Sir Tony Horae

QuickSelect(($\left.\left.x_{1}, \ldots, x_{n}\right), k\right)$, Sir Tony Horae 1961

1. Choose pivot p.
2. Split $\left(x_{1}, \ldots, x_{n}\right)$ to $L=\left\{x_{i}: x_{i}<p\right\}, E=\left\{x_{i}: x_{i}=p\right\}, R=\left\{x_{i}: x_{i}>p\right\}$.
3. If $k \leq|L|$: return QuickSelect (L, k).
4. If $k \leq|L|+|E|$: return p.
5. return QuickSelect $(L, k-|L|-|E|)$.
6. Assume that p is always maximum.
7. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p). Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p). Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

Proof.

Method 1:
$\mathbb{E}[\#$ of trials $]=\sum_{i \geq 1} i \cdot \operatorname{Pr}[$ we do precisely i trials $]$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

Proof.

Method 1:
$\mathbb{E}[\#$ of trials $]=\sum_{i \geq 1} i \cdot \operatorname{Pr}[$ we do precisely i trials $]$
$\operatorname{Pr}[$ we do precisely i trials $]=(1-p)^{i} p$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

Proof.

Method 1:
$\mathbb{E}\left[\#\right.$ of trials] $=\sum_{i \geq 1} i \cdot \operatorname{Pr}[$ we do precisely i trials $]$
$\operatorname{Pr}[$ we do precisely i trials $]=(1-p)^{i} p$
Method 2 :
$\mathbb{E}[\#$ of trials $]=D=1+p 0+(1-p) D$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

Proof.

Method 1:
$\mathbb{E}[\#$ of trials $]=\sum_{i \geq 1} i \cdot \operatorname{Pr}[$ we do precisely i trials $]$
$\operatorname{Pr}[$ we do precisely i trials $]=(1-p)^{i} p$
Method 2:
$\mathbb{E}[\#$ of trials $]=D=1+p 0+(1-p) D$
$D(1+1+p)=1$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.

Proof.

Method 1:
$\mathbb{E}\left[\#\right.$ of trials] $=\sum_{i \geq 1} i \cdot \operatorname{Pr}[$ we do precisely i trials $]$
$\operatorname{Pr}[$ we do precisely i trials $]=(1-p)^{i} p$
Method 2:
$\mathbb{E}[\#$ of trials $]=D=1+p 0+(1-p) D$
$D(1+1+p)=1$
$D=\frac{1}{p}$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.
5. Random choice of pivot.

Stage of algorithm ends by finding almost median.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.
5. Random choice of pivot.

Stage of algorithm ends by finding almost median.

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.
5. Random choice of pivot.

Stage of algorithm ends by finding almost median.
$\mathbb{E}[\#$ steps in stage $]=2$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.
5. Random choice of pivot.

Stage of algorithm ends by finding almost median.
$\mathbb{E}[\#$ steps in stage $]=2$
$\mathbb{E}[$ time for stage $]=\Theta(N)$

1. Assume that p is always maximum.

Time complexity: $\Theta\left(N^{2}\right)$.
2. Assume that p is median.

Time complexity: $T(N)=T\left(\frac{N}{2}\right)+\Theta(N)=\Theta(N)$.
3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Time complexity: $T(N)=T\left(\frac{3 N}{2}\right)+\Theta(N)=\Theta(N)$.
4. Randomized choice of almost median: $\operatorname{Pr}[$ random element is almost median $] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p.
The expected number of trials to first occurrence of V is $\frac{1}{p}$.
Expected number of trials is 2 ; time complexity $\Theta(N)$.
5. Random choice of pivot.

Stage of algorithm ends by finding almost median.
$\mathbb{E}[\#$ steps in stage $]=2$
$\mathbb{E}[$ time for stage $]=\Theta(N)$
Every stage reduces problem to $\frac{3}{4}$.
Time complexity: $\Theta(N)$.

