
Recall Union-find Set datastructure Binary search trees AVL-trees

Algorithms and datastructures I
Lecture 7: tree based data-structures

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

March 24 2020

Recall Union-find Set datastructure Binary search trees AVL-trees

Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V ,E) and weight function w with unique weights

1. Sort edges by weights; w(e1) ≤ · · · ≤ w(em)

2. T ← (V , ∅)
3. For i = 1, . . .m:

4. u, v ← vertices in edge ei

5. If u and v are in different components of T :

6. T ← T + ei .

Output: Minimum spanning tree T .

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Recall Union-find Set datastructure Binary search trees AVL-trees

Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V ,E) and weight function w with unique weights

1. Sort edges by weights; w(e1) ≤ · · · ≤ w(em)

2. T ← (V , ∅)
3. For i = 1, . . .m:

4. u, v ← vertices in edge ei

5. If u and v are in different components of T :

6. T ← T + ei .

Output: Minimum spanning tree T .

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find using arrays

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: O(m log n + m + n2) = O(m log n + n2)

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the
size of the component. (it does improve time complexity).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find using arrays

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: O(m log n + m + n2) = O(m log n + n2)

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the
size of the component. (it does improve time complexity).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find using arrays

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: O(m log n + m + n2) = O(m log n + n2)

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the
size of the component. (it does improve time complexity).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find using arrays

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: O(m log n + m + n2) = O(m log n + n2)

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the
size of the component. (it does improve time complexity).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find using arrays

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem
Kruskal algorithm finds minimal spanning tree in time O(m log n + mTf (n) + nTu(n)) where Tf is time complexity
of FIND and Tu is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: O(m log n + m + n2) = O(m log n + n2)

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the
size of the component. (it does improve time complexity).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. P(b)← a

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root). H on a root vertex holds the height of its tree.

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. If H(a) < H(b): P(a)← b

4. If H(a) > H(b): P(b)← a

5. If H(a) = H(b): P(b)← a, H(a)← H(a) + 1

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root). H on a root vertex holds the height of its tree.

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. If H(a) < H(b): P(a)← b

4. If H(a) > H(b): P(b)← a

5. If H(a) = H(b): P(b)← a, H(a)← H(a) + 1

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with “Shrubs” (Gallner, Fisher 1964)

Array P holds predecessor of a vertex (and ∅ for root). H on a root vertex holds the height of its tree.

Root (v)

1. While P(v) 6= ∅:
2. v ← P(v)

3. Return v .

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of
a shrub.

Union (u, v)

1. a← Root (u), b ← Root (v)

2. If a = b: return

3. If H(a) < H(b): P(a)← b

4. If H(a) > H(b): P(b)← a

5. If H(a) = H(b): P(b)← a, H(a)← H(a) + 1

Smart optimization: remember height of a tree and
always orient new edge from smaller to bigger tree.

Invariant
Shrub of height h has at least 2h vertices

Theorem
Time complexity of UNION and FIND is O(log n).

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with path compression

Root (v) with path compression variant 1

1. While P(v) 6= ∅:
2. u ← v

3. v ← P(v)

4. if P(v) 6= ∅ then:

5. P(u)← P(v)

6. Return v .

Root (v) with path compression variant 2

1. u ← v

2. While P(v) 6= ∅:
3. v = P(v)

4. While P(u) 6= ∅:
5. w ← P(u)

6. P(u)← v

7. u ← w

8. Return v .

Robert Tarjan

In 1975 Robert Tarjan shown that adding the path compression reduces the time to
O(α(n)) where α is the inverse of Ackerman function.
Ackerman function is very fast growing function. A(4) is approximately

222216

Thus we can think of it as an O(1) implementation.

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with path compression

Root (v) with path compression variant 1

1. While P(v) 6= ∅:
2. u ← v

3. v ← P(v)

4. if P(v) 6= ∅ then:

5. P(u)← P(v)

6. Return v .

Root (v) with path compression variant 2

1. u ← v

2. While P(v) 6= ∅:
3. v = P(v)

4. While P(u) 6= ∅:
5. w ← P(u)

6. P(u)← v

7. u ← w

8. Return v .

Robert Tarjan

In 1975 Robert Tarjan shown that adding the path compression reduces the time to
O(α(n)) where α is the inverse of Ackerman function.

Ackerman function is very fast growing function. A(4) is approximately

222216

Thus we can think of it as an O(1) implementation.

Recall Union-find Set datastructure Binary search trees AVL-trees

Union-find with path compression

Root (v) with path compression variant 1

1. While P(v) 6= ∅:
2. u ← v

3. v ← P(v)

4. if P(v) 6= ∅ then:

5. P(u)← P(v)

6. Return v .

Root (v) with path compression variant 2

1. u ← v

2. While P(v) 6= ∅:
3. v = P(v)

4. While P(u) 6= ∅:
5. w ← P(u)

6. P(u)← v

7. u ← w

8. Return v .

Robert Tarjan

In 1975 Robert Tarjan shown that adding the path compression reduces the time to
O(α(n)) where α is the inverse of Ackerman function.
Ackerman function is very fast growing function. A(4) is approximately

222216

Thus we can think of it as an O(1) implementation.

Recall Union-find Set datastructure Binary search trees AVL-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum.
We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set

SHOW: Print whole set

MIN: Return minimum

MAX: Return maximum

SUCC(v): Find successor

PRED(v): Find predecessor

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)

Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)

Today: We design datastructure that does all in an logarithm.

Recall Union-find Set datastructure Binary search trees AVL-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum.
We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set

SHOW: Print whole set

MIN: Return minimum

MAX: Return maximum

SUCC(v): Find successor

PRED(v): Find predecessor

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)

Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)

Today: We design datastructure that does all in an logarithm.

Recall Union-find Set datastructure Binary search trees AVL-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum.
We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set

SHOW: Print whole set

MIN: Return minimum

MAX: Return maximum

SUCC(v): Find successor

PRED(v): Find predecessor

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)

Today: We design datastructure that does all in an logarithm.

Recall Union-find Set datastructure Binary search trees AVL-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum.
We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set

SHOW: Print whole set

MIN: Return minimum

MAX: Return maximum

SUCC(v): Find successor

PRED(v): Find predecessor

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)

Today: We design datastructure that does all in an logarithm.

Recall Union-find Set datastructure Binary search trees AVL-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : x < v and

2. ∀y∈R(v) : y > v .

Recall Union-find Set datastructure Binary search trees AVL-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : x < v and

2. ∀y∈R(v) : y > v .

Recall Union-find Set datastructure Binary search trees AVL-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : x < v and

2. ∀y∈R(v) : y > v .

Recall Union-find Set datastructure Binary search trees AVL-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : x < v and

2. ∀y∈R(v) : y > v .

Recall Union-find Set datastructure Binary search trees AVL-trees

Operations on binary search trees

Show(v): Print all values in a tree with root v

1. If v = ∅: return

2. Show (l(v))

3. Print v

4. Show (r(v))

Find(v ,x): Find key x in a tree with root v

1. If v = ∅: return ∅
2. If x = k(v): return v

3. If x < k(v): return Find(l(v),x)

4. If x > k(v): return Find(r(v),x)

Min(v): Return minimum of a tree with root v

1. If v = ∅: return ∅
2. If l(v) = ∅: return v

3. Return Min(l(v))

Insert(v ,x): Insert x to a tree with root v

1. If v = ∅: create new vertex v with key x
and return it

2. If x < k(v): l(v)← Insert (l(v),x)

3. If x > k(v): r(v)← Insert (r(v),x)

4. If x = k(v): then x already exists in the tree and
there is nothing to do.

Homework: Figure out implementation of SUCC and PRED

Recall Union-find Set datastructure Binary search trees AVL-trees

Operations on binary search trees

Show(v): Print all values in a tree with root v

1. If v = ∅: return

2. Show (l(v))

3. Print v

4. Show (r(v))

Find(v ,x): Find key x in a tree with root v

1. If v = ∅: return ∅
2. If x = k(v): return v

3. If x < k(v): return Find(l(v),x)

4. If x > k(v): return Find(r(v),x)

Min(v): Return minimum of a tree with root v

1. If v = ∅: return ∅
2. If l(v) = ∅: return v

3. Return Min(l(v))

Insert(v ,x): Insert x to a tree with root v

1. If v = ∅: create new vertex v with key x
and return it

2. If x < k(v): l(v)← Insert (l(v),x)

3. If x > k(v): r(v)← Insert (r(v),x)

4. If x = k(v): then x already exists in the tree and
there is nothing to do.

Homework: Figure out implementation of SUCC and PRED

Recall Union-find Set datastructure Binary search trees AVL-trees

Operations on binary search trees

Show(v): Print all values in a tree with root v

1. If v = ∅: return

2. Show (l(v))

3. Print v

4. Show (r(v))

Find(v ,x): Find key x in a tree with root v

1. If v = ∅: return ∅
2. If x = k(v): return v

3. If x < k(v): return Find(l(v),x)

4. If x > k(v): return Find(r(v),x)

Min(v): Return minimum of a tree with root v

1. If v = ∅: return ∅
2. If l(v) = ∅: return v

3. Return Min(l(v))

Insert(v ,x): Insert x to a tree with root v

1. If v = ∅: create new vertex v with key x
and return it

2. If x < k(v): l(v)← Insert (l(v),x)

3. If x > k(v): r(v)← Insert (r(v),x)

4. If x = k(v): then x already exists in the tree and
there is nothing to do.

Homework: Figure out implementation of SUCC and PRED

Recall Union-find Set datastructure Binary search trees AVL-trees

Operations on binary search trees

Show(v): Print all values in a tree with root v

1. If v = ∅: return

2. Show (l(v))

3. Print v

4. Show (r(v))

Find(v ,x): Find key x in a tree with root v

1. If v = ∅: return ∅
2. If x = k(v): return v

3. If x < k(v): return Find(l(v),x)

4. If x > k(v): return Find(r(v),x)

Min(v): Return minimum of a tree with root v

1. If v = ∅: return ∅
2. If l(v) = ∅: return v

3. Return Min(l(v))

Insert(v ,x): Insert x to a tree with root v

1. If v = ∅: create new vertex v with key x
and return it

2. If x < k(v): l(v)← Insert (l(v),x)

3. If x > k(v): r(v)← Insert (r(v),x)

4. If x = k(v): then x already exists in the tree and
there is nothing to do.

Homework: Figure out implementation of SUCC and PRED

Recall Union-find Set datastructure Binary search trees AVL-trees

Operations on binary search trees

Show(v): Print all values in a tree with root v

1. If v = ∅: return

2. Show (l(v))

3. Print v

4. Show (r(v))

Find(v ,x): Find key x in a tree with root v

1. If v = ∅: return ∅
2. If x = k(v): return v

3. If x < k(v): return Find(l(v),x)

4. If x > k(v): return Find(r(v),x)

Min(v): Return minimum of a tree with root v

1. If v = ∅: return ∅
2. If l(v) = ∅: return v

3. Return Min(l(v))

Insert(v ,x): Insert x to a tree with root v

1. If v = ∅: create new vertex v with key x
and return it

2. If x < k(v): l(v)← Insert (l(v),x)

3. If x > k(v): r(v)← Insert (r(v),x)

4. If x = k(v): then x already exists in the tree and
there is nothing to do.

Homework: Figure out implementation of SUCC and PRED

Recall Union-find Set datastructure Binary search trees AVL-trees

Delete in binary search tree

Delete(v ,x): Insert x to a tree with root v

1. If v = ∅: return ∅
2. If x < k(v): l(v)←Delete(l(v),x)

3. If x > k(v): r(v)←Delete(r(v),x)

4. If x = k(v) :

5. If l(v) = r(v) = ∅: return ∅

6. If l(v) = ∅: return r(v)

7. If r(v) = ∅: return l(v)

8. s ←Min(v)

9. k(v)← k(s)

10. r(v)←Delete(r(v),s)

Recall Union-find Set datastructure Binary search trees AVL-trees

Delete in binary search tree

Delete(v ,x): Insert x to a tree with root v

1. If v = ∅: return ∅
2. If x < k(v): l(v)←Delete(l(v),x)

3. If x > k(v): r(v)←Delete(r(v),x)

4. If x = k(v) :

5. If l(v) = r(v) = ∅: return ∅
6. If l(v) = ∅: return r(v)

7. If r(v) = ∅: return l(v)

8. s ←Min(v)

9. k(v)← k(s)

10. r(v)←Delete(r(v),s)

Recall Union-find Set datastructure Binary search trees AVL-trees

Delete in binary search tree

Delete(v ,x): Insert x to a tree with root v

1. If v = ∅: return ∅
2. If x < k(v): l(v)←Delete(l(v),x)

3. If x > k(v): r(v)←Delete(r(v),x)

4. If x = k(v) :

5. If l(v) = r(v) = ∅: return ∅
6. If l(v) = ∅: return r(v)

7. If r(v) = ∅: return l(v)

8. s ←Min(v)

9. k(v)← k(s)

10. r(v)←Delete(r(v),s)

Recall Union-find Set datastructure Binary search trees AVL-trees

Delete in binary search tree

Delete(v ,x): Insert x to a tree with root v

1. If v = ∅: return ∅
2. If x < k(v): l(v)←Delete(l(v),x)

3. If x > k(v): r(v)←Delete(r(v),x)

4. If x = k(v) :

5. If l(v) = r(v) = ∅: return ∅
6. If l(v) = ∅: return r(v)

7. If r(v) = ∅: return l(v)

8. s ←Min(v)

9. k(v)← k(s)

10. r(v)←Delete(r(v),s)

Recall Union-find Set datastructure Binary search trees AVL-trees

Time complexity

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h
is a height of the tree.

Sadly the height of a binary search tree can be n.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if ∀v :
∣∣ |L(v)| − |R(v)|

∣∣ ≤ 1.

Depth of perfectly balanced tree is blog nc.

Theorem
The time complexity of insert on perfectly balanced tree is Ω(n).

Put n = 2k − 1 and then perform Insert(1), Insert (2),. . . , Insert(n).
Continue by Delete(1), Insert(n + 1), Delete(2), Insert(n + 2), . . .

Recall Union-find Set datastructure Binary search trees AVL-trees

Time complexity

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h
is a height of the tree.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if ∀v :
∣∣ |L(v)| − |R(v)|

∣∣ ≤ 1.

Depth of perfectly balanced tree is blog nc.

Theorem
The time complexity of insert on perfectly balanced tree is Ω(n).

Put n = 2k − 1 and then perform Insert(1), Insert (2),. . . , Insert(n).
Continue by Delete(1), Insert(n + 1), Delete(2), Insert(n + 2), . . .

Recall Union-find Set datastructure Binary search trees AVL-trees

Time complexity

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h
is a height of the tree.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if ∀v :
∣∣ |L(v)| − |R(v)|

∣∣ ≤ 1.

Depth of perfectly balanced tree is blog nc.

Theorem
The time complexity of insert on perfectly balanced tree is Ω(n).

Put n = 2k − 1 and then perform Insert(1), Insert (2),. . . , Insert(n).
Continue by Delete(1), Insert(n + 1), Delete(2), Insert(n + 2), . . .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1
Observe An ≥ 2

n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2 = 2
n
2

(
2−

1
2 + 2−1

)
> 2n(0.707 + 0.5) > 2

n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1
Observe An ≥ 2

n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2 = 2
n
2

(
2−

1
2 + 2−1

)
> 2n(0.707 + 0.5) > 2

n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1

Observe An ≥ 2
n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2 = 2
n
2

(
2−

1
2 + 2−1

)
> 2n(0.707 + 0.5) > 2

n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1
Observe An ≥ 2

n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2

= 2
n
2

(
2−

1
2 + 2−1

)
> 2n(0.707 + 0.5) > 2

n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1
Observe An ≥ 2

n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2 = 2
n
2

(
2−

1
2 + 2−1

)

> 2n(0.707 + 0.5) > 2
n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has depth Θ(log n)

Proof.
Denote by An the minimal number of vertices of an AVL-tree.
Show that A0 = 0, A1 = 1, An = An−1 + An−2 + 1
Observe An ≥ 2

n
2 :

An = An−1 + An−2 + 1 ≥ 2
n−1

2 + 2
n−2

2 = 2
n
2

(
2−

1
2 + 2−1

)
> 2n(0.707 + 0.5) > 2

n
2 .

Recall Union-find Set datastructure Binary search trees AVL-trees

Insert operation

Remember for every vertex a sign δ(v) = h(l(v))− h(r(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Recall Union-find Set datastructure Binary search trees AVL-trees

Insert case −−

Recall Union-find Set datastructure Binary search trees AVL-trees

Insert case −+

	Recall
	Union-find
	Set datastructure
	Binary search trees
	AVL-trees

