Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Algorithms and datastructures I Lecture 7: tree based data-structures

Jan Hubička

Department of Applied Mathematics Charles University Prague

March 24 2020

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
•	000	0	0000	0000

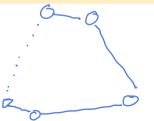
Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ..., m:
- 4. $u, v \leftarrow$ vertices in edge e_i
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree T.



Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
•	000	0	0000	0000

Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ..., m:
- 4. $u, v \leftarrow$ vertices in edge e_i
- 5. If *u* and *v* are in different components of *T*:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree **T**.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n)) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Recall O	Union-find ●○○	Set datastructure O	Binary search trees	AVL-trees
Union-find	using arrays			

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Recall O	Union-find ●○○	Set datastructure O	Binary search trees	AVL-trees
Union-find	using arrays			

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
Links and Const				
Union-tind	using arrays			

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v)) UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
		U U U U U U U U U U U U U U U U U U U		0000
Union-tinc	d using arrays			

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v)) UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + (mT_f(n) + (nT_u(n))))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: $O(m \log n + (n^2)) = O(m \log n + n^2)$

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
		U U U U U U U U U U U U U U U U U U U		0000
Union-tinc	d using arrays			

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v)) UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

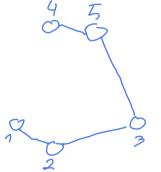
Theorem

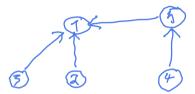
Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: $O(m \log n + m + n^2) = O(m \log n + n^2)$

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the size of the component. (it does improve time complexity).

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000





Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Array *P* holds predecessor of a vertex (and Ø for root).

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Array *P* holds predecessor of a vertex (and \emptyset for root).

Root (v)

1. While $P(v) \neq \emptyset$:

2.
$$v \leftarrow P(v)$$

3. Return v.

ROOT

Recall	Union-find	Set datastructure	Binary search trees	AV
0	000	0	0000	00

Array *P* holds predecessor of a vertex (and Ø for root).

Root (v)

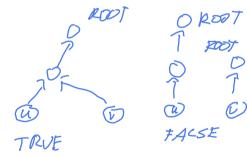
1. While $P(v) \neq \emptyset$:

2.
$$v \leftarrow P(v)$$

3. Return v.

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).



Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Array *P* holds predecessor of a vertex (and Ø for root).

Root (v)

1. While $P(v) \neq \emptyset$:

- 2. $v \leftarrow P(v)$
- 3. Return v.

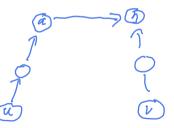
Union (*u*, *v*)

1.
$$a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$$

- 2. If *a* = *b*: return
- 3. $P(b) \leftarrow a$

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).



Recall	Union-find	Set datastructure	Binary search trees	AVL-t
0	000	0	0000	000

Array *P* holds predecessor of a vertex (and Ø for root).

Root (v)

1. While $P(v) \neq \emptyset$:

2. $v \leftarrow P(v)$

3. Return v.

Union (*u*, *v*)

1.
$$a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$$

3. $P(b) \leftarrow a$

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

-trees

Recall	Union-find	Set datastructure	Binary search trees
0	000	0	0000

Array *P* holds predecessor of a vertex (and Ø for root).

Root (v)

1. While $P(v) \neq \emptyset$:

2. $v \leftarrow P(v)$

3. Return v.

Union (*u*, *v*)

1.
$$a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$$

- 2. If *a* = *b*: return
- 3. $P(b) \leftarrow a$

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

AVL-trees

Set datastructure

Binary search trees

AVL-trees

Union-find with "Shrubs" (Gallner, Fisher 1964)

Array *P* holds predecessor of a vertex (and \emptyset for root). Hon a root vertex holds the height of its tree.

Root (v)

Recall

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (*u*, *v*)

1.
$$a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$$

2. If $a = b$: return

3. If
$$H(a) < H(b)$$
: $P(a) \leftarrow b$
4. If $H(a) > H(b)$: $P(b) \leftarrow a$
5. If $H(a) = H(b)$: $P(b) \leftarrow a$

5. If
$$H(a) = H(b)$$
: $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

Find (*u*, *v*)

a

3

5

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

4

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

b

ecall			
)			

Set datastructure

Union-find with "Shrubs" (Gallner, Fisher 1964)

Array *P* holds predecessor of a vertex (and Ø for root). *H* on a root vertex holds the height of its tree.

Root (v)

1. While $P(v) \neq \emptyset$:

- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (*u*, *v*)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If *a* = *b*: return
- 3. If H(a) < H(b): $P(a) \leftarrow b$
- 4. If H(a) > H(b): $P(b) \leftarrow a$ 5. If H(a) = H(b): $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

n-1 5 / /3=>/

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

2 - + 2 - 7 = 2 4 1/

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Invariant

6=0

Shrub of height *h* has at least 2^{*h*} vertices

lecall			
)			

Set datastructure

Union-find with "Shrubs" (Gallner, Fisher 1964)

Array *P* holds predecessor of a vertex (and Ø for root). *H* on a root vertex holds the height of its tree.

Root (v)

1. While $P(v) \neq \emptyset$:

- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (*u*, *v*)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If *a* = *b*: return

3. If
$$H(a) < H(b)$$
: $P(a) \leftarrow b$

- 4. If H(a) > H(b): $P(b) \leftarrow a$
- 5. If H(a) = H(b): $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

Find (*u*, *v*)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Invariant Shrub of height *h* has at least 2^h vertices

Theorem

Time complexity of UNION and FIND is $O(\log n)$.

Recall O	Union-find ○○●	Set datastructure O	Binary search trees	AVL-trees
Union-find wit	th path compress	sion		

Roo	t (v) with path compression variant 1
1.	While $P(v) \neq \emptyset$:
2.	$u \leftarrow v$
3.	$v \leftarrow P(v)$
4.	if $P(v) \neq \emptyset$ then:
5.	$P(u) \leftarrow P(v)$
6.	Return v.
	R DOOT

R	pot (v) with path compression variant 2
	1. $u \leftarrow v$
:	2. While $P(v) \neq \emptyset$:
;	3. v = P(v)
	4. While $P(u) \neq \emptyset$:
1	5. $w \leftarrow P(u)$
	$b. \qquad P(u) \leftarrow v$
	7. $u \leftarrow w$
1	3. Return v.

Recall O	Union-find ○○●	Set datastructure O	Binary search trees	AVL-trees
		len		

Union-find with path compression

Roo	Root (v) with path compression variant 1				
1.	While $P(v) \neq \emptyset$:				
2.	$u \leftarrow v$				
3.	$v \leftarrow P(v)$				
4.	if $P(v) \neq \emptyset$ then:				
5.	$P(u) \leftarrow P(v)$				
6.	Return v.				

Root (v) with path compression variant 2

1. $u \leftarrow v$ 2. While $P(v) \neq \emptyset$:

3. v = P(v)

4. While $P(u) \neq \emptyset$:

5. $w \leftarrow P(u)$

6. $P(u) \leftarrow v$ 7. $u \leftarrow w$

8. Return v.

In 1975 Robert Tarjan shown that adding the path compression reduces the time to $O(\alpha(n))$ where α is the inverse of Ackerman function.

log Log Log n

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
		lan		

Union-find with path compression

Root (v) with path compression variant 1				
1. Whi	le $P(v) \neq \emptyset$:			
2.	$u \leftarrow v$			
3.	$v \leftarrow P(v)$			
4.	if $P(v) \neq \emptyset$ then:			
5.	$P(u) \leftarrow P(v)$			
6. Reti	urn <u>v</u> .			

Root (v) with path compression variant 2

1. $u \leftarrow v$ 2. While $P(v) \neq \emptyset$:

3. v = P(v)

4. While $P(u) \neq \emptyset$:

5. $w \leftarrow P(u)$

6. $P(u) \leftarrow v$ 7. $u \leftarrow w$

8. Return v.

In 1975 Robert Tarjan shown that adding the path compression reduces the time to $O(\alpha(n))$ where α is the inverse of Ackerman function. Ackerman function is very fast growing function. A(4) is approximately

Thus we can think of it as an O(1) implementation.

Set datastructure

Binary search trees

AVL-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set DELETE(v): Delete v from the set FIND(v): Find v in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum SUCC(v): Find successor PRED(v): Find predecessor

=, <,	
A5716K	EQUAL

Basic implementations						
	INSERT	DELETE	FIND	MIN/MAX	SUCC/PRED	
Linked list	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	

Recall O	Union-find	Set datastructure	Binary search trees	AVL-trees
Set datast	ructure			

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

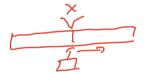
INSERT(v): Insert v to the set DELETE(v): Delete v from the set FIND(v): Find v in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum SUCC(v): Find successor PRED(v): Find predecessor

INSERTDELETEFINDMIN/MAXSUCC/PREDLinked listO(n) or O(1)O(n) or O(1)O(n)O(n)	Basic implementations					
		INSERT	DELETE	FIND	MIN/MAX	SUCC/PRED
	Linked list	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Array $O(n)$ or $O(1)$ $O(n)$ or $O(1)$ $O(n)$ $O(n)$ $O(n)$	Array	O(n) or $O(1)$	O(n) or $O(1)$	O(n)	O(n)	O(n)

Recall O	Union-find	Set datastructure	Binary search trees	AVL-trees
Set datast	ructure			

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(*v*): Insert *v* to the set DELETE(*v*): Delete *v* from the set FIND(*v*): Find *v* in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum SUCC(*v*): Find successor PRED(*v*): Find predecessor



Basic implementation	าร				
	INSERT	DELETE	FIND	MIN/MAX	SUCC/PRED
Linked lis	t <i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Array	O(n) or $O(1)$	O(n) or $O(1)$	O(n)	O(n)	O(n)
Sorted ar	ray 0(<i>n</i>)	<i>O</i> (<i>n</i>)	$O(\log n)$	O(1)	$O(\log n)$ or $O(1)$

Recall O	Union-find	Set datastructure	Binary search trees	AVL-trees
Set datast	ructure			

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(*v*): Insert *v* to the set DELETE(*v*): Delete *v* from the set FIND(*v*): Find *v* in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum SUCC(*v*): Find successor PRED(*v*): Find predecessor

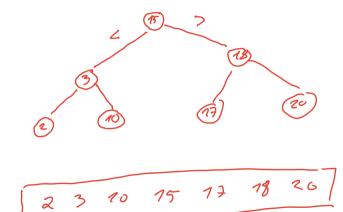
Basic implementations					
	INSERT	DELETE	FIND	MIN/MAX	SUCC/PRED
Linked list	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Array	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)
Sorted array	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(\log n)$	<i>O</i> (1)	$O(\log n)$ or $O(1)$

Today: We design datastructure that does all in an logarithm.

Recall O	Union-find	Set datastructure O	Binary search trees	AVL-trees

Binary search trees

2



Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	●000	0000

Binary search trees

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

Root L R C

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	●000	0000

hlv

PCV)

r(v

R(V)

L(V)

T(v)

Binary search trees

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by

```
l(v) and r(v) the left and right son of v,
```

p(v) the parent of v.

```
T(v) the subtree rooted in v,
```

L(v) and R(v) the subtree rooted in left and right son of v,

h(v) the height of T(v).

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	●000	0000

Binary search trees

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by

 $\overline{I(v)}$ and r(v) the left and right son of v,

p(v) the parent of v.

```
T(v) the subtree rooted in v,
```

L(v) and R(v) the subtree rooted in left and right son of v,

h(v) the height of T(v).

L(W) X B R(V)

Definition (Binary search tree)

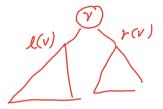
Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

- 1. $\forall_{x \in L(v)} : x < v$ and
- 2. $\forall_{y \in R(v)} : y > v$.

Recall O	Union-find 000	Set datastructure O	Binary search trees	AVL-trees

Show(v): Print all values in a tree with root v

- 1. If $v \neq \emptyset$: eturn 2. Show (I(v))
- 3. Print v
- 4. Show (*r*(*v*))



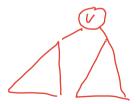
0	000	0	0000	0000
Recall	Union-find	Set datastructure	Binary search trees	AVL-trees

Show(v):	Print a	all	values	in a	tree	with	n root v
--------	----	---------	-----	--------	------	------	------	----------

- 1. If **v** = ∅: return
- 2. Show (*I*(*v*))
- 3. Print v
- 4. Show (*r*(*v*))

Find(v, x): Find key x in a tree with root v

- If *v* = Ø: return Ø
 If *x* = *k*(*v*): return *v* If *x* < *k*(*v*): return Find(*l*(*v*),*x*)
- 4. If x > k(v): return Find(r(v), x)



Recall O	Union-find 000	Set datastructure O	Binary search trees	AVL-trees
_				

Show(v): Print all values in a tree with root v

1. If **v** = ∅: return

2. Show (*I*(*v*))

3. Print v

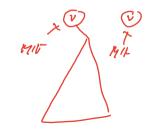
4. Show (*r*(*v*))

Min(v): Return minimum of a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If $l(v) = \emptyset$: return v
- 3. Return Min(l(v))

Find(v,x): Find key x in a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v), x)
- 4. If x > k(v): return Find(r(v), x)



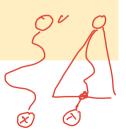
Recall O	Union-find 000	Set datastructu O	re Binary search trees	AVL-trees

Show(v	'):	Print al	values	in a	tree	with	root v
--------	-----	----------	--------	------	------	------	--------

- 1. If **v** = ∅: return
- 2. Show (*I*(*v*))
- 3. Print v
- 4. Show (*r*(*v*))

Min(v): Return minimum of a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If $l(v) = \emptyset$: return v
- 3. Return Min(l(v))



Find(v,x): Find key x in a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v), x)
- 4. If x > k(v): return Find(r(v), x)

Insert(v, x): Insert x to a tree with root v

- 1. If $v = \emptyset$: create new vertex v with key x and return it
- 2. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$
- 4. If x = k(v): then x already exists in the tree and there is nothing to do.

Recall O	Union-find 000	Set datastructure O	Binary search trees	AVL-trees
Operations	on binary search tr	ees		

Show(v): Print all values in a tree with root v	Find(v,x): Find key x in a tree with root v
1. If $v = \emptyset$: return	1. If $v = \emptyset$: return \emptyset
2. Show ($l(v)$)	2. If $x = k(v)$: return v
3. Print v	3. If $x < k(v)$: return Find($l(v), x$)
4. Show ($r(v)$)	4. If $x > k(v)$: return Find($r(v), x$)
Min(v): Return minimum of a tree with root v 1. If $v = \emptyset$: return \emptyset 2. If $l(v) = \emptyset$: return v 3. Return Min($l(v)$)	Insert(<i>v</i> , <i>x</i>): Insert <i>x</i> to a tree with root <i>v</i> 1. If $v = \emptyset$: create new vertex <i>v</i> with key <i>x</i> and return it 2. If $x < k(v)$: $l(v) \leftarrow$ Insert $(l(v),x)$ 3. If $x > k(v)$: $r(v) \leftarrow$ Insert $(r(v),x)$ 4. If $x = k(v)$: then <i>x</i> already exists in the tree and there is nothing to do.

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
 - 5. If $l(v) = r(v) = \emptyset$: return \emptyset

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $l(v) = r(v) = \emptyset$: return \emptyset
- 6. If $l(v) = \emptyset$: return r(v)

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Delete in binary search tree

Delete(v, x): Insert x to a tree with root v

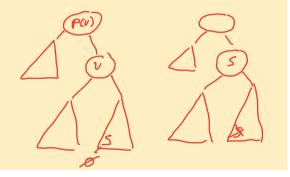
- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $l(v) = r(v) = \emptyset$: return \emptyset
- 6. If $l(v) = \emptyset$: return r(v)
- 7. If $r(v) = \emptyset$: return l(v)

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $l(v) = r(v) = \emptyset$: return \emptyset
- 6. If $l(v) = \emptyset$: return r(v)
- 7. If $r(v) = \emptyset$: return l(v)
- 8. $s \leftarrow Min((v) \rightarrow r(v))$
- 9. $k(v) \leftarrow k(s)$
- 10. $r(v) \leftarrow \text{Delete}(r(v), s)$



Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

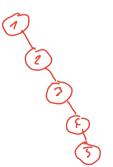
Time complexity

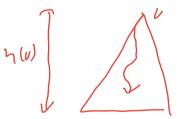
Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Sadly the height of a binary search tree can be *n*.

1,2,3,4,5





Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Time complexity

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if $\forall_v : ||L(v)| - |R(v)|| \le 1$.

Depth of perfectly balanced tree is $\lfloor \log n \rfloor$.

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Time complexity

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Ch

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if $\forall_v : ||L(v)| - |R(v)|| \le 1$.

Depth of perfectly balanced tree is $\lfloor \log n \rfloor$.

Theorem

The time complexity of insert on perfectly balanced tree is $\Omega(n)$.

Put $n = 2^k - 1$ and then perform Insert(1), Insert (2),..., Insert(*n*). Continue by Delete(1), Insert(n + 1), Delete(2), Insert(n + 2), ...

	Union-find	Set datastructure	Binary search trees	AVL-trees
AVL-trees (1962)				•••••

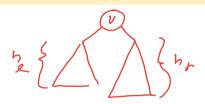
Georgy Adelson-Velsky

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{\mathbf{v}}: |h(l(\mathbf{v})) - h(r(\mathbf{v}))| \leq 1.$



Recall O	Union-find	Set datastructure O	Binary search trees	AVL-trees
AVL-trees ((1962)			

Lemma

Georgy Adelson-Velsky

Evgenii Landis

Every AVL-tree with *n* vertices has depth $\Theta(\log n)$

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{\mathbf{v}}: |h(l(\mathbf{v})) - h(r(\mathbf{v}))| \leq 1.$

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
	(1000)			
AVL-trees	(1962)			

Georgy Adelson-Velsky

Evgenii Landis

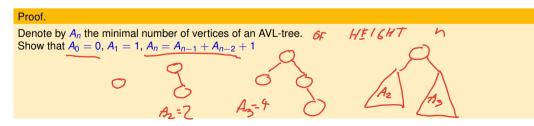
Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{v}: \left|h(l(v)) - h(r(v))\right| \leq 1.$

Lemma

Every AVL-tree with *n* vertices has depth $\Theta(\log n)$



Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
AVI -trees (1062)			

Georgy Adelson-Velsky

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{v}: \left|h(l(v)) - h(r(v))\right| \leq 1.$

Lemma

Every AVL-tree with *n* vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree. Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$ Observe $A_n \ge 2^{\frac{n}{2}}$:

$$A_n = A_{n-1} + A_{n-2} + 1 \ge 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}}$$

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
AVI -trees	(1962)			

Georgy Adelson-Velsky

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{v}: \left|h(l(v)) - h(r(v))\right| \leq 1.$

Lemma

Every AVL-tree with *n* vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree. Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$ Observe $A_n \ge 2^{\frac{n}{2}}$:

$$A_n = A_{n-1} + A_{n-2} + 1 \ge 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}} = 2^{\frac{n}{2}} \left(2^{-\frac{1}{2}} + 2^{-1}\right)$$

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000
AN (1)	(1000)			
AVL-trees	(1962)			

Georgy Adelson-Velsky

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

 $\forall_{\mathbf{v}}: |h(l(\mathbf{v})) - h(r(\mathbf{v}))| \leq 1.$

Lemma

Every AVL-tree with *n* vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree. Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$ Observe $A_n \ge 2^{\frac{n}{2}}$: $A_n = A_{n-1} + A_{n-2} + 1 \ge 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}} = 2^{\frac{n}{2}} \left(2^{-\frac{1}{2}} + 2^{-1}\right) > 2^{\frac{n}{2}} (0.707 + 0.5) > 2^{\frac{n}{2}}$.

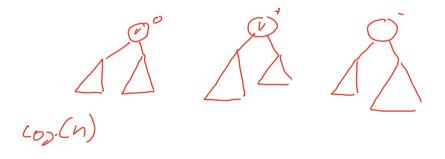
Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
0	000	0	0000	0000

Insert operation

Remember for every vertex a sign $\delta(v) = h(l(v)) - h(r(v))$

Insert(v,x)

- 1. Insert element to a binary search tree
- 2. Re-balance the tree



Recall O	Union-find 000	Set datastructure O	Binary search trees	AVL-trees

Insert case ---

Recall	Union-find	Set datastructure	Binary search trees	AVL-trees
O	000	O		○○○●
Insert case -+				