
Introduction to Solid State Physics, 

version 2

1

Úvod do fyziky pevných látek

Václav Holý

Katedra fyziky kondenzovaných látek

Verze 2



Introduction to Solid State Physics, 

version 2

2

Gert R. Strobl, Steven P. Brown: Condensed Matter Physics: Crystals, Liquids, Liquid Crystals, 

and Polymers, Springer Verlag; (September 2003) ISBN: 3540003533

R. A. L. Jones, Soft Condensed Matter, OUP 2002, ISBN 0-19-8505892

Neil W. Ashcroft, N. David Mermin, David Mermin: Solid State Physics, International Thomson 

Publishing; 1st edition (1976) ISBN: 0030839939 

Ch. Kittel: Introduction to solid state physics, various editions (also in Czech)

Ch. Kittel: Quantum theory of solids, various editions (also in Slovak)

J. R. Hook, H. E. Hall, Solid state physics, J. Wiley 2000

H. Ibach, H. Lueth, Solid state physics, Springer 2003

R. E. Hummel, Electronic properties of materials, Springer 1992

P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University 

Press 2000.



Introduction to Solid State Physics, 

version 2

3

I STRUCTURE OF CONDENSED MATTER IN 3D

Several numbers at the beginning:

characteristic distance on an atomic scale is the angstrom 10-8 cm. The electrostatic energy at this scale

is of the order e2/(1 Å) ~ 2.3x10-11 erg  14eV  1.6x105 K.

The kinetic energy associated with localizing an electron in a box of side 1 Å is

These two energies are comparable and much larger than room temperature 300K ~ 0.025 eV. Thus 

a large number of ions could form a very stable salt like NaCl with binding energy several eV per 

atom.

In a metal – the binding energy can be approximated by allowing some electrons to extend over the 

whole solid – this lowers the kinetic energy by several eV per atom.

Two main effects – Coulomb attraction (or repulsion) and delocalization of quantum states of 

free electrons

ℏ2

2𝑚

1

Å

2

≃ 6.1 × 10−12erg ≃ 3.8 eV ≃ 4.4 × 104K
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I.1. Inter-atomic and inter-molecular bonds

Types of bonds and their energies:

1. covalent 4 - 6105 J/mol,

2. metallic 2 - 4105 J/mol,

3. ionic 2 - 4105 J/mol,

4. hydrogen 0,2 - 0,3105 J/mol,

5. van der Waals 0,04 - 0,08105 J/mol

Usually, several types of bonds are present in a 

solid. In graphite, for instance the strong covalent 

bonds give rise to carbon hexagons, the inter-plane 

bonds are weak
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Directional and non-directional bonds:

directional covalent bonds in the molecule CH4; the bonds between the molecules are non-

directional and weak (van der Waals bonds)
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Covalent bond

Overlap of atomic orbitals occupied by single electrons with opposite spins – semiconductors (Si, 

Ge) and dielectrics (C-diamond) with the gaps 0.67 eV (Ge), 1.1 eV (Si) and 5.5 eV (C).

sp3 hybridization in a C atom (electron configuration 1s22s22p2)
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In methane: In ethane:

In Si
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Hydrogen bond

Crystal structure of ice:

induced dipole moment of the hydrogen atom mediates the attractive interaction 

between the oxygen atoms
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van der Waals bond

between molecules or neutral atoms

Equilibrium position:

Attractive interaction: electrical interaction between permanent and/or temporary dipole moments.

Electric field of a dipole moment                    the energy of the interaction

Repulsive interaction – due to the Pauli principle; the r−12 dependence is only empiric!

𝑢 𝑟 = 4𝑢𝐿
𝑟𝐿
𝑟

12

−
𝑟𝐿
𝑟

6

ቤ
𝑑𝑢(𝑟)

𝑑𝑟
𝑟𝑚𝑖𝑛

= 0 ⇒ 𝑟𝑚𝑖𝑛 = 𝑟𝐿2
1/6

∝ 𝑟−12 ⇒ ∝ 𝑟−6
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H2 molecule – electron density, 

antibonding orbital
H2 molecule – electron density, 

bonding orbital
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A(1)B (2) + A(2)B (1)

A(1)B (2) - A(2)B (1)

A(1)B (2) ,  A(2)B (1)

experiment



Introduction to Solid State Physics, 

version 2

12

Lattice energy

Potential energy of a lattice

For the Lennard-Jones potential we get

The lattice sum

a is the distance of nearest neighbors. From we obtain a

𝑈𝐵 =
1

2
෍

𝑗≠𝑘

𝑢(𝑟𝑗𝑘)

𝑈𝐵 = 4𝑢𝐿
𝑁

2

𝑟𝐿
𝑎

12

𝑆12 −
𝑟𝐿
𝑎

6

𝑆6

𝑆𝑛 = ෍

𝑘≠0

1

𝑠0𝑘

𝑛

, 𝑠𝑗𝑘 = 𝑟𝑗𝑘/𝑎

𝜕𝑈𝐵
𝜕𝑎

= 0
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Ionic bond

Empiric potential

only for nearest neighbors

The lattice energy

The Madelung constant

Cohesion energy

𝑢 𝑟 = 𝑢𝐵exp −
𝑟

𝑟𝐵

±𝑄2

4𝜋𝜀0𝑟

𝑈𝐵 =
𝑁

2
𝑧𝑢𝐵 exp −

𝑎

𝑟𝐵
− 𝛽

𝑄2

4𝜋𝜀0𝑎

𝛽 = −෍

𝑘≠0

sign(𝑄0𝑄𝑘)

𝑠0𝑘

This sum is only conditionally convergent, i.e., its value depends on the summation order. The 

summation over expanding cubes converges to the correct value. In rocksalt lattice 𝛽 = ±3.495

𝑈𝑐𝑜ℎ = 𝑈𝑡𝑜𝑡 − 𝑈𝑔𝑎𝑠, 𝑈𝑡𝑜𝑡 = 𝑈𝐵 + 𝑈𝑘𝑖𝑛B



Introduction to Solid State Physics, 

version 2

14

Energy of the molecule NaCl

Iont Cl- je stabilnější než neutrální atom Cl. Připojením elektronu k atomu Cl se uvolní energie 

3.7 eV (elektronová afinita). Energie potřebná k odtržení elektronu od neutrálního atomu Na a 

ke vzniku iontu Na+ je 5.1 eV. Energie potřebná ke vzniku páru izolovaných iontů Na+ a Cl- je 

tedy 1.4 eV. Přiblížíme-li ionty k sobě, jejich energie klesá díky elektrostatické přitažlivé síle. Je-

li vzdálenost iontů dostatečně malá, je celková energie molekuly Na+Cl- záporná a vzniká 

iontová vazba.

Iontová kohezní energie krystalu NaCl na jeden pár Na+ Cl- je 7.8 eV, atomová kohezní 

energie na pár neutrálních atomů Na Cl je 7.8-5.1+3.6 eV=+6.3 eV
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Thermal expansion

For T>0 K, the equilibrium value of a corresponds to the minimum of free energy

The vibration-induced part of the free energy follows from the Bose-Einstein statistics of phonons

harmonic approximation: Fvib does not depend on a

anharmonicity: with increasing a the bonds get weaker 

the Grüneisen constant

𝐹𝑣𝑖𝑏 = 𝑘𝐵𝑇෍

𝑗

ℏ𝜔𝑗

2𝑘𝐵𝑇
+ ln 1 − exp −

ℏ𝜔𝑗

𝑘𝐵𝑇

𝐹 = 𝑈 − 𝑇𝑆 = 𝑈𝐵 + 𝐹𝑣𝑖𝑏 ቤ
𝜕𝐹

𝜕𝑎
𝑒𝑞

= 0

𝜕𝐹𝑣𝑖𝑏
𝜕𝑎

< 0

𝛾 =
𝜕ln𝜔𝑗

𝜕𝑉



Simple example of a nonlinear oscillator: Lennard-Jones (LJ) potential

𝑈 𝑥 = 𝑈0
𝑥0
𝑥

12

− 2
𝑥0
𝑥

6

Equilibrium point is 𝑥0, 𝑈 𝑥0 = −𝑈0

Results of numerical simulations for 𝑈0 = 1, 𝑥0 = 1:

With increasing maximum displacement, i.e., with increasing total energy, the mean position x increases and the frequency 

decreases
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With increasing temperature the mean inter-atomic distance increases  thermal dilatation

The coefficient of thermal dilatation is therefore connected with the decrease of the frequency of oscillations with increasing inter-

atomic distance – Grüneisen parameter

𝛾 =
𝛼𝐾𝑇
𝐶𝑣𝜌

= −
𝑉

𝜔0

𝜕𝜔0

𝜕𝑉
= −

1

2𝑑

𝑈′′′ 𝑥0 𝑥0
2 + 𝑑 − 1 [𝑈′′ 𝑥0 𝑥0 − 𝑈′ 𝑥0 ]

𝑈′′ 𝑥0 𝑥0 + (𝑑 − 1)𝑈′ 𝑥0

𝛼…thermal dilatation coefficient

𝐾𝑇…isothermal bulk modulus

𝐶𝑉…heat capacity at constant volume 𝑉
𝑑…dimension of the system

For the LJ potential: 𝑈′′ 𝑥0 = 72
𝑈0

𝑥0
2 , 𝑈

′′′ 𝑥0 = −1512
𝑈0

𝑥0
3 ⇒ 𝛾 =

189

19
for a 1D system (𝑑 = 1)

Negative thermal expansion materials: 𝑈′′′ 𝑥0 𝑥0 > −(𝑑 − 1)𝑈′′ 𝑥0

Example: zirconium tungstate Zr(WO4)2 , 𝛼 ≈ −7.2 × 10−6 𝐾−1

https://commons.wikimedia.org/w/index.php?curid=15786797

ZrO6 octahedron

WO4 tetrahedron

NTE is probably caused by correlated rotation of the ZrO6 octahedra and WO4

tetrahedra
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I.2. Crystal structure

gas phase

liquid phase

solid phase

krystalografie_tutorial/obr/obr1-1.gif
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natural quartz crystals

Si ingots (single crystals)

(ON-Semi, Rožnov p. R.)

Polished surface of a Be ingot
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Nanocrystals – magic clusters:

C60 fullerene

Magic clusters of Kr atoms  with 13, 

55, 147, 309, 561,... atoms. 
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nematic liquid crystals (orientational order of 

molecules)

smectic liquid crystals (position 

order in one direction)
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Primitive lattice (prostorová mřížka)

𝑹𝑛 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝑛3𝒂3, 𝑛1,2,3 ∈ ℤ
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All unit cells of the primitive lattice have the same volume

Symmetry properties of primitive lattices:

• translation symmetry

• point symmetry

- inversion

- mirror symmetry

- rotation symmetry

All the symmetry elements of a primitive lattice create the space group of the lattice

Two subgroups:

- translation group (generated by the vectors Rn)

- point group
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Examples of elements of point symmetry

1-fold, 2-fold, 3-fold, 4-fold and 6-fold rotation axis: 1,2,3,4,6

mirror plane: m

inversion: i

Combination of point symmetry operations – inversion axes
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Standard (Schoenflies) notation:

E = Identity

Cn = rotation through 2/n

= reflection in a plane

h = reflection in a ”horizontal" plane

v = reflection in a ”vertical" plane

d = reflection in a ”diagonal" plane

i = inversion

Sn = improper rotation through 2/n, which consists of a rotation by 2/n followed by a reflection in 

a horizontal plane

iCn = ത𝑛 compound rotation-inversion, which consists of a rotation followed by an inversion.

ത3 ≡ 𝑆6 ≡ 𝑖𝐶3, ത6 ≡ 𝑆3 ≡ 𝑖𝐶6
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All point symmetries of a cube, the 3-fold axis is the inversion axis 3
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7 point groups of primitive lattices exist (the holoedric groups)



Introduction to Solid State Physics, 

version 2

29

Simple and centered lattices

simple primitive lattice – a unit cell exists with a full point symmetry

centered primitive lattice – all unit cells have lower point symmetry than the full lattice
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Crystal lattice (crystal structure)

The point group of a crystal lattice is a subgroup of a holoedric group; 32 subgroups exist  32

crystallographic classes

230 space groups of crystal lattices

non-primitive symmetry operations:

- glide planes

- screw axes
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crystallography point groups
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32 point groups
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CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=922694

https://en.wikipedia.org/wiki/List_of_space_groups

https://en.wikipedia.org/wiki/List_of_space_groups
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The symmetry operations are: E; 8C3; 3C2 = 3C4
2, 6C2 and 6C4. To get Oh we combine these

24 operations with inversion to give 48 operations in all.
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screw axis

possible screw axes:
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glide plane
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Close-packed structures
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2nd layer 3rd layer, hcp stacking 3rd layer, fcc stacking
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hcp structure
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fcc structure
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hcp stacking

𝑐

𝑎
=

8

3
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fcc stacking
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fcc primitive lattice, one atom in 

the lattice point (Al, for instance)

fcc primitive lattice, two  identical 

atoms in the lattice point (Si, for 

instance)

fcc primitive lattice, two  different 

atoms in the lattice point (GaAs 

(left), NaCl (right)
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Cs (bcc lattice) CsCl (simple cubic with a 2atom-base)

Mg (hcp lattice) GaN (wurtzite = hcp with a 2atom base)
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BaTiO3 – perovskite structure (almost simple cubic)
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Graphite (graphene)

Bernal stacking (ABAB)
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I.3. Crystallographic directions, crystallographic planes

][)( hklhkl ⊥ only for cubic crystals!!!

Miller indices
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For hexagonal crystals, usually 4 Miller indices are used

The miller indices of crystallographic directions and planes are always defined with 

respect to a simple lattice!!

Example – GaN:
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I.4. Reciprocal lattice

Reciprocal lattice is a primitive lattice, the basis vectors of which are

Properties:

- lattice reciprocal to a reciprocal lattice is the original lattice

- primitive lattice and its reciprocal lattice belong to the same syngony

- (hkl)⊥ [hkl]* always!

- V* = 83/V

- the net plane distance 𝑑ℎ𝑘𝑙 = 2𝜋/ ℎ𝒃1 + 𝑘𝒃2 + 𝑙𝒃3

𝒂𝑖 ∙ 𝒃𝑗 = 2𝜋𝛿𝑖𝑗

෡𝐀 =

𝑎1𝑥 𝑎1𝑦 𝑎1𝑧
𝑎2𝑥 𝑎2𝑦 𝑎2𝑧
𝑎3𝑥 𝑎3𝑦 𝑎3𝑧

෡𝐁 = 2𝜋 ෡𝐀−1
𝑇Sem zadejte rovnici.
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A mathematical discursion – periodic functions in 3D

Periodic function in 3D primitive lattice

can be expressed by a Fourier series in reciprocal lattice

Special cases:

𝑓 𝒓 = 𝑓 𝒓 + 𝑹 ,𝑹 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝑛3𝒂3, 𝑛1,2,3 ∈ ℤ

𝑓 𝒓 =෍

𝒈

𝑓𝒈𝑒
𝑖𝒈∙𝒓 , 𝑓𝒈 =

1

𝑉𝑐
න

𝑉𝑐

𝑑3𝒓 𝑓(𝒓)𝑒−𝑖𝒈∙𝒓

𝑓 𝒓 =෍

𝑹

𝑣(𝒓 − 𝑹) , 𝑣 ∈ 𝐿2 ⇒ 𝑓𝒈 =
1

𝑉𝑐
න

𝐸3

𝑑3𝒓 𝑣(𝒓)𝑒−𝑖𝒈∙𝒓

𝑓 𝒓 =෍

𝑹

𝛿(3)(𝒓 − 𝑹) ⇒ 𝑓𝒈 =
1

𝑉𝑐
⇒෍

𝒈

𝑒𝑖𝒈∙𝒓 = 𝑉𝑐෍

𝑹

𝛿(3)(𝒓 − 𝑹)
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I.5. Brillouin zones

2D reciprocal lattices:
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Reciprocal lattice to a fcc lattice, the 1st Brillouin 

zone

Reciprocal lattice to a bcc lattice, the 1st Brillouin 

zone
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real space reciprocal space

bcc

fcc
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Higher Brillouin zones:

2D square lattice:

fcc lattice:

1st zone 2nd zone 3rd zone
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The Wigner-Seitz cell

The 1st Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice
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I.6. Stereographic projection
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The Wulff chart
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Standard projection of a cubic 

crystal, surface (100)



Introduction to Solid State Physics, 

version 2

66

I.7. Elements of x-ray diffraction

Assumptions:

• elastic scattering ⇒ ℰ𝑖 = ℰ𝑓, 𝑲𝑖 = 𝑲𝑓

• kinematical scattering  1st Born approximation

• far-field limit  Fraunhofer approximation:

K0

Kf

Q

𝑒𝑖𝐾|𝑹−𝒓|

|𝑹 − 𝒓|
≈
𝑒𝑖𝐾 𝑹

𝑹
𝑒−𝑖𝑲𝑓∙𝒓, 𝑲𝑓 = 𝐾

𝑹

|𝑹|

𝑸 = 𝑲𝑓 −𝑲0
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Scattering of x-rays by a free electron

scattering processes

elastic (energy is conserved) – Thomson scattering

inelastic (energy is not conserved) – Compton scattering

From a quantum description it follows that scattering of x-rays from free electrons is always inelastic.

Elastic scattering from a free electron exists only in a classical limit (classical electrodynamics)

Elastic (Thomson) scattering
The primary wave is plane and monochromatic:

The scattered wave is spherical and monochromatic with the 

same frequency:

𝑬0 𝒓, 𝑡 = 𝑬0𝑒
−𝑖(𝜔𝑡−𝑲0∙𝒓)

𝐸 𝑹, 𝑡 = −
𝑟𝑒𝑙

|𝑹 − 𝒓|
sin𝜑 𝐸0(𝒓, 𝑡) 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝐸 𝑹, 𝑡 = −𝐸0
𝑟𝑒𝑙

|𝑹 − 𝒓|
sin 𝜑 𝑒−𝑖(𝜔𝑡−𝑲0∙𝒓)𝑒𝑖𝐾|𝑹−𝒓|

sin 𝜑 = 𝐶 = ቊ
1 in S polarization

cos 2Θ in P polarization
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Scattering from a single atom

𝐸 𝑹 = −𝐸0𝐶𝑟𝑒𝑙න𝑑3𝒓
𝜌 𝒓

𝑹 − 𝒓
𝑒𝑖𝑲0∙𝒓𝑒𝑖𝐾 𝑹−𝒓 ≈ −𝐸0𝐶𝑟𝑒𝑙

𝑒𝑖𝐾𝑅

𝑅
න𝑑3𝒓𝜌 𝒓 𝑒𝑖𝑸∙𝒓

Fourier transformation of the electron density of an atom – atomic form-factor
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The scattered intensity is proportional to the Fourier transformation of the electron density:

structure factor geometrical factor

Maximum of the geometrical factor is for 𝑸 = 𝒈

Bragg diffraction condition

𝐸 𝑸 = 𝐴𝐸0න𝑑3𝒓𝜌(𝒓)𝑒−𝑖𝑸∙𝒓

𝜌 𝒓 =෍

𝑅

𝜌𝑐(𝒓 − 𝑹)Ω(𝑹)

𝐸 𝑸 = 𝐴
𝐸0
𝑉𝑐
𝜌𝑐

𝐹𝑇(𝑸)෍

𝒈

Ω𝐹𝑇(𝑸 − 𝒈)

𝑔 = 2𝐾 sin Θ𝐵 ⇒ 2𝑑ℎ𝑘𝑙 sin Θ𝐵 = 𝜆
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Structure factor of simple and centered 2D 

square lattices, forbidden diffractions

bravais.exe



Introduction to Solid State Physics, 

version 2

71

The Ewald construction
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I.8 Quasicrystals

Structures with a perfectl long-range order but no translational symmetry

Description projection from a 5 or 6-dimensional primitive lattice to 3D space

Example – 1D quasiperiodic Fibonacci chain

quasiperiodic sequence of L and S 

segments

http://www.jcrystal.com/steffenweber/JAVA/jfibo/jfibo.html



Fibonacci multilayer: F = ABAABABAABAAB...

GaAs/AlAs Fibonacci multilayer (superlattice) structure and X-ray reflectivity
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Penrose tilings two types of tiles, no translational

periodicity, seflsimilarity

http://www.jcrystal.com/steffenweber/JAVA/jtiling/jtiling.html

Types of QCs:

• quasiperiodic in 2 dimensions (octagonal, decagonal, dodecagonal)

• quasiperiodic in 3 dimensions (icosahedral)

• incommensurately modulated structures

Regular icosahedron (dvacetistěn)

Icosahedral point group 𝐼ℎ

Public Domain, https://commons.wikimedia.org/w/index.php?curid=642240
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Fourier transformation of the atomic positions (x-ray diffraction)

octagonal decagonal dodecagonal icosahedral



Examples of icosahedral quasicrystals

Single-grain sample of a quasicrystaline compound AlPdRe
http://www.stanford.edu/group/fisher/research/quasicrystals.html

Quasicrystal of an AlCuFe alloy displaying an external 

form consistent with their icosahedral symmetry
http://www.answers.com/topic/quasicrystal
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The electron density can be expressed as the 

Fourier sum:

𝜚 𝒓 =
1

𝑉𝑐
෍

𝑔

𝜚𝒈𝑒
𝑖𝒈.𝒓

In a usual crystal:

𝒈 = 𝑔1𝒃1 + 𝑔2𝒃2 + 𝑔3𝒃3, 𝑔1,2,3∈ ℕ

In an icosahedral quasicrystal:

෥𝒈 = ෍

𝑛=1

6

𝑔𝑛෩𝒃𝑛 , 𝑔𝑛∈ ℕ, ෥𝒈, ෩𝒃𝑛 ∈ 𝐸6
∗

𝒈 is obtained from ෥𝒈 by projection into 𝐸3
∗, all 

possible 𝒈’s fill densely the reciprocal space 𝐸3
∗
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III. RESPONSE OF A CONDENSED BODY TO AN EXTERNAL IMPULSE

III.1. General description – Kramers Kronig relation

External force: F(t) (we neglect the space variables, we assume a scalar force)

Reaction of the system: x(t)

We assume a linear response:

After Fourier transformation

The functions x(t), F(t) are real, function () is a complex function of a complex variable :

𝑥 𝑡 = න

−∞

𝑡

𝑑𝑡′𝛼 𝑡 − 𝑡′ 𝐹 𝑡′ = න

−∞

∞

𝑑𝑡′𝛼 𝑡 − 𝑡′ 𝐹 𝑡′ 𝑖𝑓 𝛼 𝜏 = 0 for 𝜏 < 0

𝑥 𝜔 = 𝛼 𝜔 𝐹(𝜔)

𝛼 𝜔 = න

0

∞

𝑑𝑡𝛼(𝑡)𝑒𝑖𝜔
′𝑡𝑒−𝜔"𝑡 , 𝜔 = 𝜔′ + 𝑖𝜔"
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() is analytic for ’’0. The singularities of () exist only in the lower half-plane <0. Let us 

consider the function

This function is analytic in the upper half-plane except for =, where it has a singularity. Let us 

integrate this function over a closed loop

Inside this loop, the function is analytic, thus the integral is zero:

𝛼(𝜔)

𝜔 − 𝜔0
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Now we perform the limits lim
𝛿→0+

lim
Δ→+∞

and we obtain

The Kramers-Kronig relations are

Example: orientation polarization

singularity in 𝜔 = −𝑖/𝜏

0 = ර𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0
= න

−Δ

𝜔0−𝛿

𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0
+ 𝑖 න

𝜋

0

𝑑𝜑𝛼(𝜔0 + 𝛿𝑒𝑖𝜑) + න

𝜔0+𝛿

Δ

𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0
+

+𝑖න

0

𝜋

𝑑𝜑𝛼(𝜔0 + Δ𝑒𝑖𝜑)

𝑖𝜋𝛼 𝜔0 = 𝑃 න

−∞

∞

𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0
= lim

𝛿→0+
න

−∞

𝜔0−𝛿

𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0
+ න

𝜔0+𝛿

∞

𝑑𝜔
𝛼(𝜔)

𝜔 − 𝜔0

𝛼′ 𝜔0 =
1

𝜋
𝑃 න

−∞

∞

𝑑𝜔
𝛼′′(𝜔)

𝜔 − 𝜔0
, 𝛼′′ 𝜔0 = −

1

𝜋
𝑃 න

−∞

∞

𝑑𝜔
𝛼′(𝜔)

𝜔 − 𝜔0

𝛼 𝜔 =
𝛼0

1 − 𝑖𝜔𝜏
⇒ 𝛼′ 𝜔 =

𝛼0
1 + 𝜔𝜏 2 , 𝛼′′ 𝜔 =

𝜔𝜏𝛼0
1 + 𝜔𝜏 2
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Example: atomic polarization

Singularities in

𝛼 𝜔 =
𝑍𝑒2

𝑚(𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔)

⇒

𝛼′ 𝜔 =
𝑍𝑒2 𝜔0

2 − 𝜔2

𝑚 𝜔0
2 − 𝜔2 2+ 𝛾𝜔 2

, 𝛼′′ 𝜔 =
𝑍𝑒2𝛾𝜔

𝑚 𝜔0
2 − 𝜔2 2+ 𝛾𝜔 2

𝜔 = −𝑖
𝛾

2
± 𝜔0

2 −
𝛾

2

2
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III.2. Response to an electric field

Summary of basic quantities

Polarization

Relative permittivity (dielectric constant) 𝜀 = 1 + 𝜒

E is the macroscopic field in the sample

The connection of E with the external field E0:

Depolarization factors:

flat disc:

𝑷 =
1

𝑉
෍

𝑗

𝒑𝑗 = 𝜀0𝜒𝑬

𝑬 = 𝑬0 + 𝑬1

𝐸1𝑗 =
1

𝜀0
𝑁𝑗𝑘𝑃𝑘 , 𝑗, 𝑘 = 𝑥, 𝑦, 𝑧

𝑁𝑗𝑘 = −
1

3
𝛿𝑗𝑘sphere: ෡𝐍 =

−1 0 0
0 0 0
0 0 0



Introduction to Solid State Physics, 

version 2

82

The local field acting on an atom EL:

The Lorentz formula for the local field:

The Clausius-Mossotti relation (called Lorentz-Lorenz 

formula if we replace 𝜀(𝜔) by 𝑛2(𝜔)) [Ludvig Lorenz, 

Hendrik Lorentz] 

Electric displacement

𝒑 = 𝛼𝑬𝐿

𝑬𝐿 = 𝑬0 + 𝑬1 + 𝑬2 + 𝑬3

𝑬3 = 0 symmetry , 𝑬2 =
𝑷

3𝜀0

𝑬𝐿 = 𝑬 +
𝑷

3𝜀0

𝜀 − 1

𝜀 + 2
= 𝛼

𝑁

3𝜀0

𝑫 = 𝜀0𝑬 + 𝑷 = 𝜀𝜀 0𝑬
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Orientation polarization

Orientation of permanent electric moments in an external field. Let us assume that a molecule has a 

permanent dipole moment p. The interaction energy with the local field EL is 

Let us consider a system of non-integrating permanent dipoles. The mean value of the component of 

p parallel to EL is

Possible polarization mechanisms:

1.Orientation polarization

2.Ionic (displacement) polarization

3.Atomic polarization

Polarizability  is a microscopic 

quantity. Its value depends on the 

polarization mechanism.

ℰ = −𝒑 ∙ 𝑬𝐿

𝑝∥ =
𝑑2𝒑0𝑝∥𝑒׬

𝑝∥𝐸𝐿/(𝑘𝐵𝑇)

𝑑2𝒑0𝑒𝑝∥𝐸𝐿/(𝑘𝐵𝑇)׬
=
0׬
2𝜋
𝑑𝜑 0׬

𝜋
𝑑𝜗 sin 𝜗 𝑝 cos 𝜗 𝑒𝑝∥𝐸𝐿 cos 𝜗/(𝑘𝐵𝑇)

0׬
2𝜋
𝑑𝜑 0׬

𝜋
𝑑𝜗 sin 𝜗 𝑒𝑝∥𝐸𝐿 cos 𝜗/(𝑘𝐵𝑇)

= 𝑝ℒ
𝑝𝐸𝐿
𝑘𝐵𝑇
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where is the Langevin function

Typical values: (displacement of 1e by 0.6 Å)

or smaller

at room temperature x ≈ 0.02 and we can replace the Langevin function by ℒ(𝑥) ≈ 𝑥/3 and

ℒ 𝑥 = coth 𝑥 −
1

𝑥

𝑝 ≈ 10−29 Cm

𝐸𝐿 ≈ 107 V/m

𝑝∥ ≈
𝑝2𝐸𝐿
3𝑘𝐵𝑇

⇒ 𝛼 ≈
𝑝2

3𝑘𝐵𝑇
Roughly, 

𝛼

4𝜋𝜀0
≈ 10−28 m3
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For such large polarizabilities the Clausius-Mossotti relation is not correct. From this relation it follows:

Example: liquid water therefore

at 300K. Thus, a negative value of  follows. Experimental value 

The Lorentz formula for the local filed is not valid for a material with polar molecules

Response of a system of polar molecules to a time-dependent electric field

Debye relaxation equation:

The time-averaged value of the polarization

For a monochromatic primary wave 𝑬 𝑡 = 𝑬0𝑒
−𝑖𝜔𝑡 we assume 𝑷~𝑒−𝑖𝜔𝑡 and the stationary

𝜀 =
2
𝑁𝛼
𝜀0

+ 3

3 −
𝑁𝛼
𝜀0

𝑝 ≈ 0.62 × 10−29Cm,𝑁 ≈ 4 × 1028m−3
𝑁𝛼

𝜀0
≈ 12

𝜀 ≈ 80

𝑑𝑷

𝑑𝑡
=
1

𝜏
𝑷 − 𝑷

𝑷 = 𝜒 0 𝜀0𝑬, 𝜒 0 = 𝜒(𝜔 = 0)

solution is 𝑷 𝑡 =
𝜀0𝜒 0

1 − 𝑖𝜔𝜏
𝑬0𝑒

−𝑖𝜔𝜏 ⇒ 𝜀 𝜔 = 1 +
𝜒 0

1 − 𝑖𝜔𝜏
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from the simple model:

experimental results (water):
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Displacement polarization – see Chap. V

Atomic polarization

Exact calculation – quantum mechanical perturbation method, here only a simple classical model:

Z electrons are uniformly distributed in a sphere of radius r, x is a displacement of the nucleus from 

the centre of the sphere. The restoring electric field generated by the electrons is

The applied filed EL is balanced by E

atomic polarizability

by approx. two orders smaller than the orientation polarizability

𝐸 = −
𝑍𝑒

𝑥
𝑟

3

4𝜋𝜀0𝑥
2 = −

𝑍𝑒

4𝜋𝜀0𝑟
3 𝑥

𝒙 =
4𝜋𝜀0𝑟

3

𝑍𝑒
𝑬𝐿 ⇒ 𝒑 = 𝑍𝑒𝒙 = 4𝜋𝜀0𝑟

3𝑬𝐿

𝛼

4𝜋𝜀0
= 𝑟3 ≈ 10−30m3
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measured

simulated



Introduction to Solid State Physics, 

version 2

89



Introduction to Solid State Physics, 

version 2

90

Response of a system of non-interacting atoms to a time-dependent electric field

The equation of movement of the sphere filled with electrons with respect to an immobile nucleus:

Stationary solution

Resonance frequency

Permittivity

Polarizability

its static value:

𝒙 =
𝑒

𝑚 𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾

𝑬0𝑒
−𝑖𝜔𝑡

𝜔0 =
𝑍𝑒2

4𝜋𝜀0𝑟
3𝑚

1/2

𝛼 =
𝑍𝑒2

𝑚 𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾

𝜀 =
2
𝑁𝛼
𝜀0

+ 3

3 −
𝑁𝛼
𝜀0

𝜀 0 =
8𝜋𝑟3𝑁 + 3

3 − 4𝜋𝑟3𝑁
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More in the lecture on optical properties of solid, the Lorentz formula:

𝑛2 𝜔 = 𝑛𝑟 𝜔 + 𝑖𝜅 𝜔 2 = 1 + 𝜒(𝜔) = 1 +෍

𝑗

𝑓𝑗𝜔𝑝𝑗
2

𝜔0𝑗
2 − 𝑖𝜔𝛾𝑗 −𝜔2



Combination of the Lorentz model with the Lorentz-Lorenz formula

K. E. Oughstun and N. A. Cartwright, Optics Express 11, 1541 (2003)
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IV. MEAN-FIELD THEORY

IV. 3. Spontaneous ordering of electric moments - Ferroelectric state

Is a spontaneous polarization possible?

We have found

Thus, if 𝑁𝛼 = 3𝜀0 we obtain 𝑷 ≠ 0 for 𝑬 = 0

Another hypothetic example – an 1D chain of ions with alternating charges

𝑷 = 𝜀0𝜒𝑬 = 𝑬
𝑁𝛼

1 −
𝑁𝛼
3𝜀0
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Equation of motion:

We assume a solution in the form of a plane wave

and we obtain the dispersion relation

A wave vector k exists, for which  = 0 – a weak phonon  spontaneous polarization

𝑚𝑗

𝑑2𝑢𝑗

𝑑𝑡2
= 𝐾 𝑢𝑗+1 + 𝑢𝑗−1 − 2𝑢𝑗 +෍

𝑛<𝑗

𝑄𝑗𝑄𝑛

4𝜋𝜀0(𝑥𝑗 − 𝑥𝑛)
2
−෍

𝑛>𝑗

𝑄𝑗𝑄𝑛

4𝜋𝜀0(𝑥𝑗 − 𝑥𝑛)
2

𝑚𝑗

𝑑2𝑢𝑗

𝑑𝑡2
≈ 𝐾 𝑢𝑗+1 + 𝑢𝑗−1 − 2𝑢𝑗 −

1

2𝜋𝜀0𝑎
3 ෍

𝑛<𝑗

𝑄𝑗𝑄𝑛(𝑢𝑛 − 𝑢𝑗)

(𝑛 − 𝑗)3
−෍

𝑛>𝑗

𝑄𝑗𝑄𝑛(𝑢𝑛 − 𝑢𝑗)

(𝑛 − 𝑗)3

𝑢𝑗~𝑒
−𝑖(𝜔𝑡−𝑗𝑘𝑎)

𝑚𝜔2 = 2𝐾 1 − cos(𝑘𝑎) + 2𝐴෍

𝑗=1

∞

−1 𝑗
1 − cos 𝑗𝑘𝑎

𝑗3
, 𝐴 =

𝑒2

2𝜋𝜀0𝑎
3
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𝑓 𝑥 =෍

𝑗=1

∞

(−1)𝑗
cos(𝑗𝑥) − 1

𝑗3
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The most common ferroelectric material – BaTiO3
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Lattice parameters and permittivity of BaTiO3
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The Landau theory of phase transitions

Variables: P (polarization), T

Helmholtz free energy F(P,T)

The equilibrium condition

Due to the inversion symmetry

Spontaneous polarization

T

P

Tc

up to 𝑃4, 𝑐4 > 0:

ቤ
𝜕𝐹

𝜕𝑃
𝑒𝑞

= 0

𝐹 𝑃, 𝑇 = 𝐹 0, 𝑇 + 𝑐2𝑃
2 + 𝑐4𝑃

4 + 𝑐6𝑃
6 +⋯

𝑐2 = 𝑏(𝑇 − 𝑇𝑐)

𝑃𝑠 ≡ 𝑃𝑒𝑞 = 𝑏
𝑇𝑐 − 𝑇

2𝑐4
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Gibbs free energy with an external electric field:

Dielectric susceptibility:

Therefore:

Phase transition of the 2nd order

Φ = 𝐹 − 𝐸𝑃 = 𝐹 0, 𝑇 + 𝑐2𝑃
2 + 𝑐4𝑃

4 + 𝑐6𝑃
6 +⋯− 𝐸𝑃

ቤ
𝜕Φ

𝜕𝑃
𝑒𝑞

= 0 ⇒ 𝐸 = 2𝑏 𝑇 − 𝑇𝑐 𝑃𝑒𝑞 + 4𝑐4𝑃𝑒𝑞
3

1

𝜀0𝜒
= ቤ
𝜕𝐸

𝜕𝑃
𝐸=0

= 2𝑏 𝑇 − 𝑇𝑐 + 12𝑐4𝑃𝑒𝑞
2

𝑇 > 𝑇𝑐: 𝜒 =
1

𝜀0

1

2𝑏(𝑇 − 𝑇𝑐)

𝑇 < 𝑇𝑐: 𝜒 =
1

𝜀0

1

4𝑏(𝑇𝑐 − 𝑇)
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Up to 𝑃6, 𝑐4 < 0, 𝑐6 > 0:

The critical temperature:

T

P

Tc

Phase transition of the 1st order

 does not diverge at Tc

ቤ
𝜕𝐹

𝜕𝑃
𝑒𝑞

= 0 = 2𝑏 𝑇 − 𝑇∗ 𝑃 + 4𝑐4𝑃
3 + 6𝑐6𝑃

5

⇒ 𝑃𝑒𝑞
2 =

1

3𝑐6
−𝑐4 ± 𝑐4

2 − 3𝑐6𝑏(𝑇 − 𝑇∗)

𝑇𝑐 = 𝑇∗ +
𝑐4

2

3𝑏𝑐6
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Gibbs free energy with an external electric field:

Dielectric susceptibility:

Therefore:

Φ = 𝐹 − 𝐸𝑃 = 𝐹 0, 𝑇 + 𝑐2𝑃
2 + 𝑐4𝑃

4 + 𝑐6𝑃
6 +⋯− 𝐸𝑃

ቤ
𝜕Φ

𝜕𝑃
𝑒𝑞

= 0 ⇒ 𝐸 = 2𝑏 𝑇 − 𝑇∗ 𝑃𝑒𝑞 + 4𝑐4𝑃𝑒𝑞
3 + 6𝑐6𝑃𝑒𝑞

5

1

𝜀0𝜒
= ቤ
𝜕𝐸

𝜕𝑃
𝐸=0

= 2𝑏 𝑇 − 𝑇∗ + 12𝑐4𝑃𝑒𝑞
2 + 30𝑐6𝑃𝑒𝑞

4

𝑇 > 𝑇𝑐: 𝜒 =
1

𝜀0

1

2𝑏(𝑇 − 𝑇∗)

𝑇 < 𝑇𝑐: 𝜒 =
1

𝜀0

1

8𝑏 𝑇∗ − 𝑇 +
2𝑐4

2

3𝑏𝑐6
+
𝑐4

2

𝑏𝑐6
1 −

3𝑏𝑐6
𝑐4

2 (𝑇 − 𝑇∗)
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Phase transition of the 1st orderPhase transition of the 2nd order
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III. 4. Response to an external magnetic field

Basic quantities

magnetic dipole moment induced by an orbital moment of electron:

magnetic dipole moment induced by a spin moment of electron:

the Bohr magneton:

electron g-factor:

III. RESPONSE OF A CONDENSED BODY TO AN EXTERNAL IMPULSE

Magnetic moment of a current I in a  loop with the area S:

𝒎𝑆 = −𝑔0𝜇𝐵𝑺

𝑔0 ≈ 2.0023 ≈ 2
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Macroscopic quantities:

Magnetization

Susceptibility:

Magnetic induction:

Statistical average:

Free energy:

Susceptibilty again:

𝑴 =
1

𝑉
෍

𝑗

𝒎𝑗

𝑴 = 𝜒𝑯, 𝜒 =
𝜕𝑀

𝜕𝐻

𝑩 = 𝜇0 𝑯+𝑴 = 𝜇𝑯, 𝜇 = 𝜇0(1 + 𝜒)

𝑀 =
σ𝑛𝑀𝑛𝑒

−ℰ𝑛/(𝑘𝐵𝑇)

σ𝑛 𝑒
−ℰ𝑛/(𝑘𝐵𝑇)

, 𝑀𝑛 = −
1

𝑉

𝜕ℰ𝑛
𝜕𝐵

𝑍 = 𝑒−𝐹/(𝑘𝐵𝑇) =෍

𝑛

𝑒−ℰ𝑛/(𝑘𝐵𝑇)

𝜒 =
𝜕 𝑀

𝜕𝐻
= 𝜇0

𝜕 𝑀

𝜕𝐵
= −𝜇0

𝜕2𝐹

𝜕𝐵2
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Comment: CGS units:

magnetic induction  B (magnetic flux density): SI: 1 Tesla (T) = kg s-2 A-1

CGS: 1 Gauss (G) = 10-4 T

magnetic intensity H: SI: 1 A/m

CGS: 1 Oersted (Oe) = 103/4 A/m = 79.5775 A/m
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Interaction of electrons with an external magnetic field

Non-relativistic Hamiltonian of a free electron without spin in an external magnetic field

(electron charge is −e)

The vector potential of the field is A:

We can choose

The spin term in the Hamiltonian:

We obtain for the Hamiltonian

Perturbation theory (up to the 2nd order and 2nd power of B):

෡𝐻 =
1

2𝑚𝑒
ෝ𝒑 + 𝑒𝑨 2

𝑩 = 𝑟𝑜𝑡𝑨, 𝑑𝑖𝑣𝑨 = 0

𝑨 = −1
2(𝒓 × 𝑩)

෡𝐻𝑆 = −𝒎𝑆. 𝑩

෡𝐻𝑆 =
1

2𝑚𝑒
෍

𝑗

ෝ𝒑𝑗
2 + 𝜇𝐵 ෠𝑳 + 𝑔0෡𝑺 . 𝑩 +

𝑒2

8𝑚𝑒
𝐵2෍

𝑗

ො𝑥𝑗
2 + ො𝑦𝑗

2
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linear term quadratic terms

Langevin diamagnetism

Ions with fully occupied shells: ෠𝑳 ۧ0 = ෡𝑺 ۧ0 = 0 in the ground state

Energy shift of the ground state:

Diamagnetic susceptibility:

∆ℰ𝑛 = 𝜇𝐵𝑩. 𝑛 ෠𝑳 + 𝑔0෡𝑺 𝑛 +
𝑒2

8𝑚𝑒
𝐵2 𝑛 σ𝑗 ො𝑥𝑗

2 + ො𝑦𝑗
2 𝑛 + ෍

𝑚≠𝑛

𝜇𝐵𝑩. 𝑛 ෠𝑳 + 𝑔0෡𝑺 𝑚
2

ℰ𝑛 − ℰ𝑚

∆ℰ0 =
𝑒2

8𝑚𝑒
𝐵2 0 σ𝑗 ො𝑥𝑗

2 + ො𝑦𝑗
2 0 =

𝑒2

12𝑚𝑒
𝐵2 0 σ𝑗 Ƹ𝑟𝑗

2 0

𝜒 = −
𝜇0𝑒

2

6𝑚𝑒

𝑁

𝑉
𝑍 𝑟2
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Properties:

•  is a constant, independent of field strength;

• induced by the external field;

• always negative because of Lenz rule;

• always present in an external field, however often covered by the positive 

paramagnetic susceptibility;

• for atoms with closed shells, the Langevin diamagnetism is the only magnetism 

available;

•  is proportional to the area of an atom, important for chemistry;

• all noble metal atoms are diamagnetic

• temperature independent.
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

He -1.9 x 10
-6

cm
3
/mol

Xe -43 x 10
-6

cm
3
/mol

Bi -16 x 10
-6

cm
3
/g

Cu -1.06 x 10
-6

cm
3
/g

Ag -2.2 x 10
-6

cm
3
/g

Au -1.8 x 10
-6

cm
3
/g

Examples for Langevin Diamagnetism:

The Langevin diamagnetism does

not depend on temperature



Diamagnetic levitation – a diamagnetic material moves in an inhomogeneous magnetic field in the 

direction of negative gradient of B. The condition of levitation is

𝐵
𝑑𝐵

𝑑𝑧
≥ 𝜇0𝜌

𝑔

𝜒

Water levitates at 𝐵
𝑑𝐵

𝑑𝑧
≥ 1400 T2/m, graphite levitates at 𝐵

𝑑𝐵

𝑑𝑧
≥ 375 T2/m

Pyrolytic graphite 
By en:User:Splarka - English Wikipedia, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=1004783

A live frog levitates inside a 32 mm diameter vertical bore of a solenoid in a 

magnetic field of about 16 T
By Lijnis Nelemans - English Wikipedia, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=1004796
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Diamagnetism can exhibit spatial anisotropy in crystals

Example: Li3N
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Ground state of an ion with a partially occupied shell

orbital quantum number l of the electrons in the partially occupied shell, the maximum 

possible number of electrons in the shell is 𝑛 = 2(2𝑙 + 1)

The degeneracy of the state with n electrons in the shell is removed by the LS-coupling. The state 

of the shell is described by the quantum numbers

The Hund rules:

𝐿, 𝐿𝑧, 𝑆, 𝑆𝑧, where ෠𝑱 = ෠𝑳 + ෡𝑺, ෡𝑺 =෍

𝑗

ො𝒔𝑗 , ෠𝑳 =෍

𝑗

መ𝒍𝑗



Introduction to Solid State Physics, 

version 2

115

1. The term with the maximum multiplicity lies lowest in energy  S has a maximum 

possible value
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2. For a given multiplicity, the term with the largest value of L lies lowest in energy. 

For large L value, some or all of the electrons are orbiting 

in the same direction. That implies that they can stay a 

larger distance apart on the average since they could 

conceivably always be on the opposite side of the 

nucleus. For low L value, some electrons must orbit in 

the opposite direction and therefore pass close to each 

other once per orbit, leading to a smaller average 

separation of electrons and therefore a higher energy.
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3. For atoms with less than half-filled shells, the level with the lowest value of J lies lowest in 

energy. 
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Magnetic moments of ions with partially filled shells

1. Let 𝐽 = 0:

Then 0 ෠𝐿𝑧 + 𝑔0 መ𝑆𝑧 0 = 0

If we suppose that only the ground state is occupied, we obtain

van Vleck paramagnetism (a weak effect)

2. Let 𝐽 ≠ 0 :

Complication!!!!

H

L
S

S

J

L+2S

m i.e. J+S will precess fast about J, and J will 

precess much slower about H. Thus, for 

magnetism only the time average component of the 

magnetisation m|| parallel to J counts.

negative positive

𝜒 = 𝜒𝑑𝑖𝑎 + 2𝜇𝐵
2
𝑁

𝑉
෍

𝑛

𝑛 ෠𝐿𝑧 + 𝑔0 መ𝑆𝑧 0
2

ℰ𝑛 − ℰ0
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Wigner-Eckart theorem:

Landé factor

The full magnetic moment of the shell is

Its component parallel to J is

The potential energy of the shell in an external magnetic field

𝐽𝐿𝑆𝐽𝑧 ෠𝐿𝑧 + 𝑔0 መ𝑆𝑧 𝐽𝐿𝑆𝐽𝑧′ = 𝑔(𝐽, 𝐿, 𝑆)𝐽𝑧𝛿𝐽𝑧𝐽𝑧′

𝑔 𝐽, 𝐿, 𝑆 = 1 +
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 + 𝑆(𝑆 + 1)

2𝐽(𝐽 + 1)

ෝ𝒎 = −𝜇𝐵 ෠𝑳 + 𝑔0෡𝑺

ෝ𝒎∥ = −𝑔𝜇𝐵෠𝑱

ℰ = 𝑔𝜇𝐵𝐵𝐽𝑧
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Paramagnetic susceptibility

The Brillouin function

𝑒−𝐹/(𝑘𝐵𝑇) = ෍

𝐽𝑧=−𝐽

𝐽

𝑒−𝑔𝜇𝐵𝐽𝑧/(𝑘𝐵𝑇) , 𝑀 = −
𝑁

𝑉

𝜕𝐹

𝜕𝐵
=
𝑁

𝑉
𝑔𝜇𝐵𝐽𝐵𝐽

𝑔𝜇𝐵𝐽𝐵

𝑘𝐵𝑇

𝐵𝐽 𝑥 =
2𝐽 + 1

2𝐽
coth

2𝐽 + 1

2𝐽
𝑥 −

1

2𝐽
coth

1

2𝐽
𝑥



Introduction to Solid State Physics, 

version 2

124

Examples
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Asymptotic behaviour:

saturated value: 

small arguments of the Brillouin function:

Paramagnetic susceptibility:

The Curie law
paramagnetic

diamagnetic

T

𝑇 → 0 or 𝐵 → ∞:𝑀 →
𝑁

𝑉
𝑔𝜇𝐵𝐽

𝑇 → ∞ or 𝐵 → 0:𝑀 →
𝑁

𝑉
𝑔𝜇𝐵

2
𝐽(𝐽 + 1)

3𝑘𝐵𝑇
𝐵

χ =
𝑁

𝑉
𝜇0 𝑔𝜇𝐵

2
𝐽(𝐽 + 1)

3𝑘𝐵𝑇
=
𝐶

𝑇
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Magnetic moments of ions in a condensed system

The Curie law

3d ions:

Example: FeCl2 with ionicity Fe2+: Atomic Fe has the electronic configuration 3d64s2, in the 

compound the configuration is 3d6, i.e. the 6 electrons in the d-shell are left. 

Level scheme for the d-shell according to Hund’s rule:

-2

-1

0

1

2
Spectroscopic term for Fe2+: 5D4

χ =
𝑁

𝑉
𝜇0

𝜇𝐵𝑝𝑒𝑓𝑓
2

3𝑘𝐵𝑇

𝑆 = 4 ×
1

2
= 2, 𝐿 = 2 ⟹ 𝐽 = 𝐿 + 𝑆 = 4
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Expected gj value:

from which we calculate the effective moment  𝑝𝑒𝑓𝑓 =
3

2
20 ≈ 6.7

Considering only J = S, then peff=4.9. 

Experimental value: peff= 5.4 

 closer to J = S then to J = L+S

In most cases of transition metal ions, the orbital moment appears to be quenched.

𝑔 = 1 +
4 × 5 + 2 × 3 − 2 × 3

2 × 4 × 5
=
3

2
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Magnetic moments of 3d transition metal ions as a function of electrons in the d shell 

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

7

p
j
calculated

p
S

calculated

p
eff

experimental

Electrons in the d shell

p e
ff
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Example of the Slater-Pauling curve
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What is the reason for orbital quenching in transition metal ions?

•3d electrons take part in chemical binding (i.e. FeCl2, FeF3);

•The 3d electrons are subject to strong crystal electric fields (CEF) of the neighbouring ions;

•The CEF lifts the 2L+1  degeneracy of the dn - electrons;

•Lifting of degeneracy leads to an energy splitting of the d-shell:



eg

t2g

spherical symmetry     octhahedral symmetry

 is the CEF splitting between orbitals of different symmetry; Orbital angular moments 

of non-degenerate levels have no fixed phase relationship;

The time average expectation value for the orbital moments is then <L>=0; L is not a 

good quantum number.
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0 2 4 6 8 10 12 14

electrons in 4f shell

0

1

2

3

4

5

6

7

8

9

10

11

Calculated 

Measured 

Pm Eu

Effective magnetic moments of rare metal ions

p e
ff
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IV. MEAN FIELD THEORY

IV.4. Spontaneous ordering of magnetic moments

Types of the magnetic ordering:

paramagnetic ferromagnetic antiferromagnetic
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some types of the ferromagnetic ordering

some types of the antiferromagnetic ordering

some types of the ferrimagnetic ordering
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Hematite Fe2O3 is a weak antiferromagnetic below 250K, canted 

antiferromagnetic (or weakly ferromagnetic) between 250K and 

948K, above 948K paramagnetic

(wüstite)
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The reason of the ordering cannot be the magnetic dipole interaction – too weak!!

Exchange interaction can explain the ordering

We assume a 2-electron system, we neglect the spin-dependence of the hamiltonian. The non-

perturbed hamiltonian is
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The wave function (with spin variables)

The non-perturbed hamiltonian

Perturbance

We consider two one-electron eigenstates of H0:

ba,=j,rψE=rψH jjj )()(ˆ
0

The energy level is 4 times degenerated. We choose the following eigenfunctions:

)()()]()()()([:1,1

)]()()()()][()()()([:0,1

)()()]()()()([:1,1

)]()()()()][()()()([:0,0

2112212

1
3

122112212
1

2

2112212

1
1

122112212
1

ssSS

ssssSS

ssSS

ssssSS

babaTz

babaTz

babaTz

babaSz

−=−==

+−===

−===

−+===

rrrr

rrrr

rrrr

rrrr

Ψ 𝒓1, 𝑠1, 𝒓2, 𝑠2 = 𝜓(𝒓1, 𝒓2)𝜒(𝑠1, 𝑠2)

෡𝐻′ =
𝑒2

4𝜋𝜀0 𝒓1 − 𝒓2
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The 1st iteration, perturbation theory – shifts of the energies:

J+E=Ψ'HΨ=E=jJ,E=Ψ'HΨ=E SSSTjTjT 11
ˆ1,2,3,ˆ   −  

)()(ˆ)()()(ˆ)( 2

*

21

*

12

3

1

32

2

2

12

3

1

3

1 rψrψ'Hrψrψrdrd=J,|rψ|'H|rψ|rdrd=E abbaba   

J is the exchange integral. From one 4times degenerated level, one non-degenerated (singlet) and 

one 3times degenerated (triplet). 
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Numerical calculations: H2 molecule

the singlet state has lower energy than the triplet  the singlet state 

(antiferromagnetic)  is bonding, the triplet state (ferromagnetic) is antibonding



By Zureks - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=9788329

Bethe-Slater curve – the dependence of the exchange integral on the interatomic distance for 3d 

metals

Ferromagnetic – the exchange integral is positive

Antiferromagnetic – the exchange integral is negative
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Direct exchange – important in 3d metals

Indirect exchange: mediated by the spins of 

conduction electrons – important in 4f metals

Super-exchange interaction:

If J > 0, prefer triplet state or FM

If J < 0, prefer singlet state or AF

RKKY interaction (Ruderman-Kittel-Kasuya-Yosida)

4RKKY
)2(

)2cos()2sin(2

rk

rkrkrk
J

F

FFF −




Ferrimagnetism: Typical example – Fe3O4 ≡ (Fe2+O)(Fe3+
2O3)

Magnetite crystal structure (inverse spinel)

A …tetrahedral sites

B …octahedral sites
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The Fe2+ ion (3d6) has m = 4mB while the Fe3+ ion (3d5) has m = 5mB

The B-O-B bond angle is 90 deg, the A-O-A angle is 80 deg and the A-O-B angle is 125 deg.

The super-exchange interaction is therefore strongest across the A-O-B bond, so that magnetic

moments on A sites anti-align with those on the B sites.

There are two principal arrangements of the 8 divalent and 16 trivalent metal ions onto the 8

tetragonal A sites and 16 octahedral B sites of the spinel structure. The first, called normal spinel

has divalent metal ions on A sites and trivalent ions on B sites. This is sometimes written

(M2+)[M3+]O4, where the brackets indicate the A() and B[] sites. Inverse spinel has half the

trivalent ions on A sites, the other half on B sites, and all the divalent ions also on B sites. This

can be written as (M3+)[M2+M3+]O4. Most simple ferrites (such as Fe3O4) have this inverse spinel

structure. In this case, the anti-ferromagnetic superexchange interaction between ions on sites A

and B is such that the magnetic moments of the trivalent ions (e.g. Fe3+) anti-align.
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Ferromagnetic double exchange interaction Resulting spin alignment
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The Heisenberg spin hamiltonian

Phenomenologically constructed operator acting on the spin wave function having the same 

eigenvalues and eigenfunctions as the full hamiltonian.

Let us assume a 2-spin systems with the effective spin operators 
21
ˆˆ S,S

The following formulas hold:

)s,s)+(=)s,χ(s|+=|)s,χ(sS

),(sχ=)(s)χ+(SS=)(sχS jjjjjjjjj

212121

2

2121

2

2

(.2
2

3ˆˆˆ

4

3
1ˆ

SSSS

Therefore, )=(Sχχ),=(Sχ=χ 1
4

1
+=ˆ.ˆ0

4

3ˆ.ˆ 2121 SSSS −

2121
ˆ.ˆ2ˆ.ˆ3

4

1ˆ SSSS Jconst=)E(E)E+(E=H TSTSS −−−We define

and )=χ(SE=)=χ(SH),=χ(SE=)=χ(SH TSSS 11ˆ00ˆ

The Heisenberg hamiltonian for a spin system j

ji

iijS J=H SS ˆ.ˆˆ 


−

since S1,2 = ½

With an external magnetic field:  −−
 j

jBj

ji

iijS gμJ=H SBSS ˆ.ˆ.ˆˆ
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The Weiss theory of molecular field

The terms in the Heisenberg hamiltonian containing S(R):

effB

RR'

BS (R)gμgμ+)(R')R'J(R(R)=HΔ BSBSS .ˆˆ.ˆˆ −







−− 



The mean-field approximation: we replace S(R’) by its average value – we neglect fluctuations. 

On the spin in point R, the following effective filed is acting 

  


−
RR'B

)(R')R'J(R
gμ

+B=B Ŝ
1

eff

where

Bgμ

M

N

V
=Ŝ We obtain Mλμ+B=B 0eff 2

0

0

)(gμμ

)J(

N

V
=λ

B


R

R

Equation for the spontaneous magnetization 






 m
=

T

M
MM 0

0








 m
m=

Tk

SBg
SBg

V

N
TBM

B

B
JB)/(0

where



Introduction to Solid State Physics, 

version 2

148

Numerical solution:

Beff

M
M=M0(Beff)

M=Beff/(m0)

A non-zero solution exists if

CTT c =

00

0

00eff

0

00eff

0 1111

m


m
=

m
=





m
=





T

C

H

M

B

M

The critical (Curie) temperature:




+
=+

m
m=

0

2

0 )(
3

)1(
)1(

3

)(

RBB

B
c J

k

SS
SS

k

g

V

N
T R
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For T>Tc we define the susceptibility

0

0
0

eff

eff 1
)1(

−


=+=








=




=

H

H

H

M

H

M

Since 
T

C
=0

we obtain
cTT

C

−
=

The Curie-Weiss law

Numerical example:

L=0,J=S=1/2, g=2:
C

Vk

N
T

B

B
c =

mm
=

2

0

if N/V  9.1028 m-3, we obtain  C  1K,   1000

The exchange integral:   zJJ and we obtain J  0.03 eV 
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Spontaneous magnetization for T<Tc:

for small x, the Brillouin function behaves as
3)( BxAxxBJ −

From







 m
=

T

M
MM 0

0

we obtain 35.0,)( − TTM c
Experimental values for all materials:

2/1)( TTM c −

Susceptibility above Tc: the mean field theory predicts
1)( −− cTT

Experiment (Fe+0.16%W):

33.1,)( − −

cTT

Critical fluctuations at Tc are important!
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Mean field theory for antiferromagnets – the Néel model

Possible cubic antiferromagnetic structures:

complication in case of fcc:

the orientations of spins in a given 

coordination sphere is not constant!
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Two sublattices with opposite spins:

)(),( 0eff0eff A

B

B

A
MHBMHB −m=−m=

Mean-field approach:









=








=

T

B
MM

T

B
MM BA

B

eff
0

A

eff
0 ,

high temperatures:

0

B

eff

0

A

eff

2
,

2 m
=

m
=

T

CB
M

T
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Spontaneous magnetization follows from the equation analogous to the ferromagnetic case:








 m
=







 m
=

T

M
MM

T

M
MM B

B
A

A
0

0
0

0 ,

since .BA MM −=

susceptibility below and above the Neel temperature:

Susceptibility of 

MnF
2
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Ferromagnetic domains

Exchange interaction  parallel ordering of spins 

Dipole interaction  antiparallel ordering of spins
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Structure of a domain wall

such a wall costs less energy than an abrupt wall

Energy of an abrupt wall per spin pair 2JS

Energy of a wall with the thickness of n spins ))2/(()/cos( 222 nnJSnnJS −



Magnetic anisotropy

Magnetisation of Fe, Ni and Co single crystals along different crystallographic directions. For a 

sufficiently large magnetising field, the saturation magnetisation Ms is always reached, however 

this occurs for a much smaller field when oriented along the <100> direction for Fe, Co, or <111> 

direction in Ni (easy axis).

Magnetisation anisotropy energy for cubic crystals

( ) ++++= 2

3

2

2

2

12

2

1

2

3

2

3

2

2

2

2

2

11 KKE

Where 1,2,3 are the direction cosines between the magnetisation vector M and the <100> 

crystallographic axes
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Something about multiferroics:
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Free energy:

𝐹 𝑬,𝑯 =

linear magnetoelectric effect

However: i.e., the magnetoelectric effect can only be large in ferroelectric

and ferromagnetic materials

high-order terms
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Typical multiferroic material

Critical temp. approx. 1110K Neel temp. approx. 670K
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Magnetic (PEEM)

Electric (PFM)

Switching of FE domains (PFM tip) ⇒ switching of AFM domains in BiFeO3 films at 300 K
Introduction to Solid State Physics, 

version 2

160



Introduction to Solid State Physics, 

version 2

161



Introduction to Solid State Physics, 

version 2

162



Introduction to Solid State Physics, 

version 2

163



Introduction to Solid State Physics, 

version 2

164



Introduction to Solid State Physics, 

version 2

165



Magnetic nanoparticles

The magnetic properties are affected by size and magnetic anisotropy

Assembly of magnetic clusters (each comprised of many ferromagnetically aligned elemental 

moments) acting independently – Superparamagnetic material

The transition between the superparamagnetic and ferromagnetic states depends on the cluster size
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Relaxation theory:

In a nanoparticle, the magnetic moment has usually only two stable orientations antiparallel to each 

other, separated by an energy barrier. The stable orientations define the magnetic easy axis of the 

nanoparticle. At finite temperature, there is a finite probability for the magnetization to flip and 

reverse its direction. The mean time between two flips is called the Néel relaxation time

𝜏 = 𝜏0exp
𝐾𝑉

𝑘𝐵𝑇

𝑉 is the particle volume and 𝐾 is the magnetic anisotropy energy density. Let us assume that the 

measurement takes time 𝜏𝑚. If 𝜏 ≪ 𝜏𝑚 the particle will flip many times during the measurement 

and in zero field the average moment is zero  superparamagnetic state. If 𝜏 ≫ 𝜏𝑚 the particle 

will not flip  blocked state.

In a usual experiment  𝜏𝑚 is constant and temperature is varied. The sample transforms from the 

blocked state to a paramagnetic state at the blocking temperature 𝑇𝐵, in which 𝜏 = 𝜏𝑚

𝑇𝐵 =
𝐾𝑉

𝑘𝐵ln
𝜏𝑚
𝜏0
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Zero field cooled (ZFC)/field cooled (FC) measurements of Fe3O4 

particles infiltrated into porous silicon, carried out at a small applied 

magnetic field of 5 Oe and in a temperature range of between 4 K and 

360 K. The blocking temperature (maximum peak of the ZFC-branch) at 

135 K indicates dipolar coupling between the particles. Inset: Shift of TB 

towards lower temperatures with increasing applied magnetic field from 

about 135 K (H = 5 Oe) to 75 K (H = 500 Oe) and 50 K (H = 1,000 Oe) 

Petra Granitzer and Klemens Rumpf: Magnetic Nanoparticles Embedded in a Silicon Matrix, Materials 2011, 4, 908-928; doi:10.3390/ma4050908 

Magnetization of porous silicon (pore-diameter ~50 nm, pore-distance ~50 nm) with embedded magnetite nanoparticles of 5 nm in size. This sample 

exhibits no magnetic anisotropy between the two magnetization directions perpendicular (full line) and parallel (dotted line) to the surface; (b) Zero 

field/field cooled magnetization of porous silicon with the same morphology with infiltrated 5 nm magnetite nanoparticles shows a blocking temperature 

(TB) of about 10 K
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V. CHARGE CARRIERS, ELECTRIC CURRENTS

V.1. Electrons in metals

The Drude model
Density of the electron gas

A
ZNn m
A


=

32322 cm 1010 −n

Density of an ideal gas at room temperature

319 cm 107.2/ −= AA VNn
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The mean distance between the

electrons – the radius of an equivalent

sphere

n
rs

13

3
4 =
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The basic assumptions:

1. The electrons in the gas are free  no forces act on the electrons between the collisions 

(we neglect the electrostatic interaction with the ions)

2. The electrons in the gas are independent  we neglect the electron-electron interactions

3. The collisions of the electrons are instantaneous events altering abruptly the electron 

velocities; the velocity after collision does not depend on the velocity before it

4. The electron gas is in a thermodynamic equilibrium with its surroundings; the distribution of 

the velocities of electrons obeys the Maxwell-Boltzman statistics (classical statistic)

The probability than an electron experiences a collision in time dt is dt/

 is the relaxation time

DC electrical conductivity of a metal

vdt

vj ne−=
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Time-averaged velocity of an electron in an external electric field

t

v

−=−=
m

e
t

m

e
v

E
v

E
v ,0

The Ohm law in a differential form:

m

ne 
==

2

,Ej

Electron mobility:

m

e
−=mm= ,Ev

Mean free path 2vl =
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Temperature dependences of the resistivity 

of metals

Temperature dependence of the conductivity of 

a metal and a semiconductor
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Time-evolution of the averaged electron momentum 

0.
dd

1]d)([)d(


+









−+=+

tt
tttt Fpp

F
pp

+


−=
td

d

vp m=

Thermal conductivity of an electron gas

The Wiedemann-Franz Law

const
T

L =



=

L is the Lorenz number



The temperature dependences

Thermal conductivity Lorenz number
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This law was explained within the Drude model:

The density of the heat flow TQ −=j

The one-dimensional model:

high T low T

x

))](())(([
2

1
+−− vxTvxTnvjQ EE

x

T

T
nvjQ

d

d

d

d2 E
−

since
Vzyx c

T
nvvvv ====

d

d
,

3

1 2222 E
we obtain in 3D: VVQ cvTcvj =−= 22

3

1
,

3

1
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since Tkmvnkc BBV
2

3

2

1
 and 

2

3 2 == we obtain

28

2

/K W1011.1
2

3









=




= −

e

k

T
L B factor 2 is missing!!!

Thermoelectric figure of merit: ZT= S2/L=TS2/

Including the lattice

From H. Ohta, Materials Today 10, 44 (2007)

𝑍𝑇 =
𝑆2𝑇𝜎𝑒𝑙

𝜅𝑒𝑙 + 𝜅𝑙𝑎𝑡𝑡
=

𝑆2

𝐿 1 +
𝜅𝑙𝑎𝑡𝑡
𝜅𝑒𝑙



Introduction to Solid State Physics, 

version 2

179

If )e)(Re()( i tt −= jj we obtain
m

ne 
=

−


==

2

0
0 ,
i1

)(),()()( Ej

But: 

• can we neglect the magnetic force? Yes, since 

• can we neglect the space inhomogeneity of the electric field? Only if 

cvFF // elmag 
l If this is not fulfilled,

a non-local approach must be used

The Maxwell equations: EDHBBDj
D

H
B

E =m===+



=




−= 00 ,,0div,div,rot,rot

tt

Two models:

1. electrons in vacuum: 0,1 = )(i)()( 02

2

m+


=− EEE
c

2. a homogeneous continuum without free charges: 0,1 = )()()(
2

2




=− EE
c

Thus:
−




+=




+=

i1

i
1)(

)(
i1)( 0

00

AC conductivity of a metal – optical properties of an electron gas

)e)(Re()( i tt −= EE

We suppose the solution of the time-evolution equation for p in the form )e)(Re()( i tt −= pp

(the Fourier transformation of the equation) )(
)(

)(i −



−=− E
p

p e
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The plasma frequency:

m

ne
p

0

2


=

)1(
i

1
1)(

22

2

22

22

+


+

+


−=

pp

Long relaxation times:

2

2

1)(



−→

p

normal-incidence reflectivity

2

1)(

1)(
)(

+

−
=R
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The plasma frequency is the frequency of free oscillations of the electron gas

Continuity equation )(i)(divdiv =



−= jj
t

The Gauss law:

00

)(
)(divdiv




=




= jE

The frequency of the charge eigenoscillations is 

)(for  0
)(

i1
0

→==



+ p
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Simple interpretation of the plasma frequency

0

2



ne
xF −=

0
0

2

2

=x
ε

ne
+

dt

xd
m

2

The force from the cations acting on a single free electron

Equation of movement of the electron

n
m

ne
pp 


=

0

2

The resonance frequency

2222

pkc −=

The dispersion relation for the electromagnetic field 

in the electron gas

pAn evanescent wave for

2

2

2

22

1)(



−=


=

pkc



Electron energy loss spectroscopy

Hachtel, Jordan A., Scientific Reports | (2018) 8:5637 | 

DOI:10.1038/s41598-018-23805-5

http://www.globalsino.com/EM/page4780.html
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Classical Hall effect

ne
RRjBEnevjeBvFeE HH

1
,, −=====

using the equation of movement F
pp

+


−=
td

d
B

p
EF −−=

m
ee

Stationary state: 0,0
d

d
== y

x p
t

p
We obtain BRj

ne

Bj
E x

x
y =−=

The sign of the Hall constant R depends on the sign of the charge carriers
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Electric conductivity is a tensor

z
z

yxc
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xyc
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E
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E
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e
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v

−=


−=+


−=−


where
m

eB
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0 ,
)(1
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)(1

=
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
=−=

+


== zz

c

c
yxxy

c

yyxx

The longitudinal conductivity is independent 

from the field B, however it has been 

discovered in 1930’s that above a critical 

field Bc oscillations in xx appear in 2D 

systems – Shubnikov deHaas effect (SdH). 

Stair-case dependence of the Hall 

resistance rH=rxy=UH/I on B in 2D systems 

is explained by the quantum Hall effect 

(QHE)
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The Sommerfeld model

Obvious discrepancy: the Wiedemann-Franz law can be explained withing the Drude model (except 

the factor 2) but the thermal capacity for one electron (3/2 kB) is too high!!

Explanation: Fermi-Dirac statistics instead of the classical Maxwell-Boltzmann statistics

all the other assumptions of the Drude model are still valid

The ground state of an electron gas

Independent and free electrons  an one-electron problem

)(
2

2
2

rr E=)ψ(
m

−


How to choose the boundary conditions? We do not consider the surfaces, we investigate only the 

bulk properties. Therefore we choose periodic Born-von Kármán boundary conditions

),,(),,(),,(),,( LzyxzLyxzyLxzyx +=+=+=
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plane-wave solution rk

k r
.ie

1
)(

V
= V = L3 is the volume of the Born-von Kármán region

From the boundary conditions, the possible values of k follow:

integers are  ,
2

,,,,,, zyxzyxzyx nn
L

k


=

The energy eigenvalues

The functions k(r) are the eigenfunctions of velocity and momentum with the eigenvalues

The one-electron eigenstates create a simple cubic lattice in reciprocal space with the lattice 

parameter 2/L
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In the ground state, all the single-electron states with lowest possible energy are occupied by 2 

electrons with opposite spins. The occupied states occur in a sphere, the radius of which is the 

length of the wave vector of the highest-energy occupied state (the Fermi radius)

3/12

3

3

3
4

)3(
2

2 nk

L

k
N F

F =





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 


=

or
ss

F
rr

k
92.1)4/9( 3/1




=

The Fermi energy:

kF is in the order of few Å-1

The Fermi velocity: For room temperature:
m

Tk
v B
F

3


The Fermi temperature:
2

4

)/(

K102.58

Bs

FBF
ar

Tk


=E
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The total energy of the ground state of the electron gas is

Mean energy per one electron is

FNE E
5

3
/ =

In the Drude model we obtained

FBB TkTkNE
5
3

2
3/ =

States of an electron gas at T > 0K

The Fermi-Dirac statistics:

Probability of finding an electron in an one-electron state i of a N-electron system at temperature T:

1e

1
/)(

+
=

m− TkEi
Bi

f

𝐸 = 2 ෍

𝑘<𝑘𝐹

ℏ2𝑘2

2𝑚
≈ 2 න

𝑘<𝑘𝐹

𝑑3𝒌
𝐿

2𝜋

𝟑 ℏ2𝑘2

2𝑚
= 𝑉

ℏ2𝑘𝐹
5

10𝜋2𝑚
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The chemical potential follows from the normalization condition:

 =
i

i Nf
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For T→0 we obtain





m

m
=

k

k

k
E

E

for  0

for  1
f thus FT E=m→0lim

Let us calculate again the total energy of an electron gas
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is the energy density of one-electron states
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Two-dimensional electron gas:

How many one-electron states have the energy between E and E+dE?

One-dimensional electron gas:

𝑑𝑁 = 2
2𝜋𝑘𝑑𝑘

2𝜋/𝐿 2 =
𝑚𝐿2

𝜋ℏ2
𝑑𝐸 ⇒ 𝑔 𝐸 =

1

𝐿2
𝑑𝑁

𝑑𝐸
=

𝑚

𝜋ℏ2
= 𝑐𝑜𝑛𝑠𝑡.

𝑑𝑁 = 2
2𝑑𝑘

2𝜋/𝐿
= 𝐿

2𝑚

𝜋ℏ 𝐸
𝑑𝐸 ⇒ 𝑔 𝐸 =

1

𝐿

𝑑𝑁

𝑑𝐸
=

2𝑚

𝜋ℏ 𝐸
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normalization:



==
0

)()(d EEE fg
V

N
n

The integrals for E and n can be calculated only numerically. If the temperature is not too high, 

one obtains:
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specific heat of the electron gas is

( )
2

21
, ( ) ~ *

2 3

B
V B B F

n F

k Tu π
c = = nk = γT k g m

T E

 
 =  

 
E

within the Drude model

VBV cnkc =
2

3Drude

Back to the calculation of the total energy in a 3D gas:
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Consequences to the transport properties:

mean free path
Drudelvl F =

the Wiedemann-Franz law:
2Drude22

2
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Only the electrons at the Fermi surface do contribute to the electric or heat transport.

Fvv 
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Pauli paramagnetism of free electrons

Spin magnetic moment of electron: Sm BS g m0−=

In an external magnetic field B the magnetic spin moments are either parallel or 

antiparallel to B. The interaction energy with the magnetic field is

BSBSBm .2.. 0 BBS g mm=−= E

Resulting magnetization: )()(0para 
−m−m= nnnnSgM BB

Populations of spin-ups and spin-downs:

1
d ( ) ( )

2

F B

F B

B

B

B

n n g g B

−m

 

−m

− =  m
E

F

E

E E E

2 2

para 0( ) ( )B F B FM g B g H= m = m mE E
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Pauli susceptibility 2

0 F( )Bg = m m E

External magnetic field interacts also with the orbital magnetic moment of electron, leading 

to a diamagnetic contribution (Landau diamagnetism)

paradia
3

1
MM −=

so that the total suceptibility is

2 2

0 F 0

F

2
( )

3
B B

n
g = m m = m mE

E

The susceptibility is independent of the temperature, 

paramagnetism of atoms is temperature dependent

Paramagnetic

susceptibility [10-5]

FeO 720

U 40

Pt 26

W 6.8

Cs 5.1

Al 2.2

Li 1.4

Mg 1.2

Na 0.72
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V.2. Electrons in a periodic crystal field

Electron gas in a periodic crystal field – the electrons are independent but not free  the many-

particle wave function is a direct product of one-particle wave functions


=

=
N

j

jjNN sss
1

11 )()(),,,,( rrr 

We do not consider the spins, i.e. we solve the one-particle Schroedinger equation

The potential energy is periodic, i.e.

332211),()( aaaRRrr nnnUU ++=+=

It can be expressed in the form of the Fourier series

332211

.i ,e)( bbbgr
g

rg

g gggUU ++== 

−
ℏ2

2𝑚
Δ𝜓 𝒓 + 𝑈 𝒓 𝜓 𝒓 = 𝐸𝜓 𝒓



Introduction to Solid State Physics, 

version 2

200

The solution of the Schroedinger equation is the Bloch wave

)(e)(,e)(),(e)( .i.i.i
rRrrrr k
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rk

k nnnnnn uuu =+== 
usually, BZ 1 stk , n is a positive integer (index of the energy band)

Proof of the Bloch theorem:

Let us define the translation operator )+ψ(=)ψ(TR Rrrˆ

Then

0ˆˆˆˆˆ =]H,T[,T=TT RR'R+R'R

The Bloch waves are the eigenfunctions of RT̂ and Ĥ simultaneously

)ψc(=ψTEψ=ψH RR
ˆ,ˆ

Then )'()()'( RRRR ccc =+ and we can always write jx

jc
i2

e)(


=a and

332211

.i ,e)( bbbkR
Rk xxxc ++==

and thus ψe=)ψc(=ψTR

Rk
R

.iˆ q.e.d.

and therefore

෠𝑇𝑅 ෡𝐻𝜓 = ෠𝑇𝑅𝐸𝜓 = 𝐸 ෠𝑇𝑅𝜓,

෡𝐻 ෠𝑇𝑅𝜓 = −
ℏ2

2𝑚
Δ𝜓 𝒓 + 𝑹 + 𝑈 𝒓 + 𝑹 𝜓 𝒓 + 𝑹 = 𝐸 ෠𝑇𝑅𝜓(𝒓)
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Born-von Kármán boundary conditions

)()()()( 332211 arararr NNN +=+=+=

Possible values of k are

The Born-von Kármán region contains N1N2N3 unit cells


=

=
3

1j j

j

j
N

m
bk

Usually, we choose k from the 1st BZ. If we choose k from the 2nd BZ, for instance, then 

BZ 1',' st+= kgkk

and )('ee)(e)(e)( .i.i.i.i

' rrrr k

rkrg

k

rk

k

rg

k nnnn uu ===

If we do not choose k from the 1st BZ, then we do not need the band index n. 

The number of one-electron states in the 1st BZ equals the number N1N2N3 of the unit cells in 

the Born-von Kármán region 
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Putting the Bloch wave into the Schroedinger equation, we obtain

The solutions of this equation are indexed by the band index n. (k.p method)

If we allow k to range through all the k -space, for given n,

)()(),()( rrkgk kgk nnnn ==+ +EE (repeated band scheme)

Comments:
1.        is the pseudo-momentum

2. the mean velocity of the electron in state nk is

This is a contradiction to the Drude model, in which the mean velocity is zero!!

෡𝐻𝑘𝑢𝑛𝑘 𝒓 =
ℏ2

2𝑚
(−𝑖𝛻 + 𝒌)𝟐+𝑈(𝒓) 𝑢𝑛𝑘 𝒓 = 𝐸𝑛(𝒌)𝑢𝑛𝑘 𝒓

ℏ𝒌 𝒗𝑛 𝒌 =
1

ℏ
𝛻𝑘𝐸𝑛(𝒌)
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Fermi surface

Insulators, intrinsic semiconductors: completely filled and completely empty bands at 0K

Metals: partially filled bands at 0K

Fn EE =)(kEquation of the Fermi surface:

Density of states

  




=


=
01

3

3
1

)()(d)(d
4

)(2 EEEEEE gfVf
V

fE
n BZ

nn

n BZ

nn kkk k

k

k

Total energy of the electron gas

The density of states  


==
BZ

n

nn

ngg
1

)3(3

3
))((d

4

1
)()( kk E-EEE

E

EEE,E
E

d

 d energies  with the bandin  states ofnumber 
)(

V

n
gn

+
=
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 


=
)(

2

3
||d

4

1
d)(

E

EE

nS

n Sg k

 
=

)(

2

3 |)(|

d

4

1
)(

E
E

E

nS n

n

S
g

kk

If 0)( = kk nE , the slope                  diverges – van Hove singularity
E

E

d

)(d ng
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How to solve the one-electron Schroedinger equation?

Several methods, we discuss 

1. Nearly-free electron method

2. Tight-binding method

Nearly-free electron method

 +==
g

rgk

g

rk
rr

).i(.i e)(e)( uu

We look for the solution of the Schroedinger equation in the form of the Bloch wave

We express the potential energy using the Fourier series

=
g

rg

gr
.ie)( UU

We obtain an infinite system of linear algebraic equations for the coefficients ug:

This system can be solved, if we limit the number of terms in the expression for (r)

ℏ2

2𝑚
𝒌 + 𝒈 2 − 𝐸 𝑢𝒈 +෍

𝒈′

𝑈𝒈′𝑢𝒈−𝒈′ = 0



Introduction to Solid State Physics, 

version 2

206

The simplest case – empty lattice 0=gU

The condition for the existence of a non-trivial solution 0gu

1D case – periodic chain of atoms:

all bands are non-degenerated

𝐸𝒈 𝒌 =
ℏ2

2𝑚
𝒌 + 𝒈 2, 𝒌 ∈ 1st 𝐵𝑍
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3D case – cubic lattice; some bands are degenerated 
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simple cubic empty lattice

R M
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fcc empty lattice – the numbers of the dots in the lines denote the degeneracy
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Another simple  case: cosine-like potential

1D case: ( )
a

G
U

GxUxU Gx-Gx 
=+==

2
,ee

2
)cos()( ii0

0 Seminar
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Peierls distortion  spontaneous metal to insulator transition (visible at low temperatures)

the total energy is reduced!!
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Charge-density waves
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Atomically resolved STM topographies (10 nm × 10 nm) of doped NbSe2, showing a hexagonal 

lattice and triangular impurities. (a) Topography taken at temperature below the CDW transition. 

The CDW is well defined and has a three-atom periodicity. (b)Topography taken at a temperature 

above the transition temperature. Above the transition the long-range phase coherence is broken 

and the CDW is pinned to impurities.

http://hoffman.physics.harvard.edu/research/STMresearch_replaced_2014_06_12.php

Anjan Soumyanarayanan et al., PNAS 110,1623-1627 (2013).
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3D case – simple cubic lattice:

a
GGzGyGx

U
U


=++=

2
)],cos()cos()[cos(

3
)( 0r

The crystal field removes the degeneracy
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Along the line in the 1st Brillouin zone:

R M



Introduction to Solid State Physics, 

version 2

216

Neighborhood of a boundary of the Brillouin zone

We consider only 2 terms in the series  +==
g

rgk

g

rk
rr

).i(.i e)(e)( uu

We put U0 = 0 and *gg UU =−

We investigate the neighborhood of the 

boundary of the 1st BZ:

2/gk −

22

004
1

002
1 ||)]()([)]()([)( ggkkgkkk U++−++= EEEEE

We obtain

where

Seminar

ℏ2

2𝑚
|𝒌|2 − 𝐸 𝑢0 + 𝑈𝒈

∗𝑢𝒈 = 0

ℏ2

2𝑚
|𝒌 + 𝒈|2 − 𝐸 𝑢𝒈 + 𝑈𝒈𝑢0 = 0

𝐸0 𝒌 =
ℏ2𝑘2

2𝑚
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At the Brillouin zone boundary

At the Brillouin zone boundary, the gradient of the energy is parallel to the boundary

 the iso-energetic surfaces are perpendicular to the Brillouin zone boundaries

The eigenfunctions:
gk grgr U+= )(for  |)2/.cos(||)(| 0

22 EE

gk grgr U−= )(for  |)2/.sin(||)(| 0

22 EE

𝛻𝒌𝐸 𝒌 ≈
ℏ2

𝑚
𝒌 +

𝒈

2
if 𝐸0 𝒌 = 𝐸0 𝒌 + 𝒈
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Qualitative construction of the Fermi surface – 2D quadratic lattice

Z
a

kF = 2
1

1,1 == nZ

1,2 == nZ 2,2 == nZ

Seminar
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4,4 == nZ3,4 == nZ

2,4 == nZ1,4 == nZ
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bcc lattice fcc lattice

1st BZ

2nd BZ

3rd BZ

Fermi surfaces, 3D lattices
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fcc lattice, the Fermi surfaces for Z=1,..,4.

http://lampx.tugraz.at/
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Examples of Fermi surfaces:

Alkali metals: The radius of the Fermi sphere in bcc alkali metals is 

less than the shortest distance from the center of the zone to a zone 

face and therefore the Fermi sphere lies entirely within the first Brillouin 

zone. The crystal potential does not distort much the free electron 

Fermi surface and it remains very similar to a sphere.

The noble metals: The Fermi surface for a single half-filled free 

electron band in an fcc Bravais lattice is a sphere entirely contained 

within the first Brillouin zone, approaching the surface of the zone 

most closely in the [111] directions, where it reaches 0.903 of the 

distance from the origin to the center of the hexagonal face. For all 

three noble metals therefore their Fermi surfaces are closely related 

to the free electron sphere. 
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The cubic divalent metals: With two electrons per primitive cell, 

calcium, strontium, and barium could, in principle, be insulators. In the 

free electron model, the Fermi sphere has the same volume as the first 

zone and therefore intersects the zone faces. The free electron Fermi 

surface is thus a fairly complex structure in the first zone, and pockets 

of electrons in the second. The question is whether the effective lattice 

potential is strong enough to shrink the second-zone pockets down to 

zero volume, thereby filling up all the unoccupied levels in the first zone. 

Evidently this is not the case, since the group II elements are all metals. 

Calculations show that the first Brillouin zone is completely filled and a 

small number of electrons in the second zone determine the non-zero

conductance.



Trivalent metals: The Fermi surface of aluminum is close to that of the free electron surface for 

fcc cubic monoatomic lattice with three conduction electrons per atom. The first Brillouin zone is 

filled and the Fermi surface of free electrons is entirely contained in the second, third and fourth

Brillouin zones. When displayed in a reduced-zone scheme the second-zone surface is a closed

structure containing unoccupied levels, while the third-zone surface is a complex structure of

narrow tubes (see above). The amount of surface in the fourth zone is very small, enclosing tiny 

pockets of occupied levels. The effect of a weak periodic potential is to eliminate the fourth-zone 

pockets of electrons, and reduce the third-zone surface to a set of disconnected "rings" (above).

Aluminum provides a striking illustration of the theory of Hall coefficients. The high-field Hall

coefficient should be 
𝑅 = −1/[𝑒 𝑛𝑒 − 𝑛ℎ ], 

where 𝑛𝑒 and 𝑛ℎ are the number of levels per unit volume enclosed by the particle-like and hole-

like branches of the Fermi surface. Since the first zone of aluminum is completely filled and 

accommodates two electrons per atom, one of the three valence electrons per atom remains to 

occupy second- and third-zone levels. Thus 𝑛𝑒
(2) + 𝑛𝑒

(3) = 𝑛/3

On the other hand, since the total number of levels in any zone is enough to hold two electrons 

per atom, we also have 𝑛𝑒
(2) + 𝑛ℎ

(2) = 2𝑛/3 ⇒ 𝑛𝑒
(3) − 𝑛ℎ

2 = −𝑛/3

Thus the Hall coefficient should have a positive sign and yield an effective density of carriers a third 

of the free electron value

From https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/index.shtml
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Comparison of the results of the Kroning-Penney model (blue) with the nearly-free electron 

method (red) with various numbers of the plane-wave components; U0 = 5eV, a = 5nm, 

b = 0.1nm, only the lowest bands are shown
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Tight-binding method

The eigenstates of an isolated atom lying in origin:

If the crystal hamiltonian H differs from Hat at distances, where n(r) 0, then a superposition of 

functions n centered around different atoms is a good approximation of a full solution. In order to 

keep the translation symmetry (the Bloch wave!!) we perhaps could choose

 −=
R

nn )(e)( .i
Rrr

Rk

k

Evolution of the atomic s and p orbitals into valence 

and conduction bands in a semiconductor with 

tetragonal bonds (after Yu & Cardona)

෡𝐇𝑎𝑡𝜑𝑛 𝒓 = 𝐸𝑛𝜑𝑛 𝒓
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A better choice that accounts also for degenerated atomic levels, is

i . i .( ) e ( ) en n n

R n R n

b b n =  −  =   k R k R

k r r R k R

where bn are unknown constants. This function obeys the Bloch theorem.

We also denote )ΔU(+H=H at rˆˆ and

The Ritz variation method: we minimize the functional
*

,

*

,

ˆ
( )

n m nm

n m

n m nm

n m

b b H

b b S
= 





k k
k

k k
E

H

The condition for the minimum is
*

0
mb


=



E

From which we get for each m (free index)

෡𝐇| ۧ𝒌 = ℰ(𝒌)| ۧ𝒌

We have denoted

𝐴𝑛𝑚(𝒌) =෍

𝑹

෍

𝑹′

𝑒𝑖𝒌.(𝑹−𝑹
′) 𝑹′𝑚 ෡𝐇 𝑹𝑛 − ℰ(𝒌) 𝑹′𝑚 𝑹𝑛 = 𝑁෍

𝑅

𝑒𝑖𝒌.𝑹 𝑹𝑚 ෡𝐇 𝟎𝑛 − ℰ(𝒌) 𝑹𝑚 𝟎𝑛

෍

𝑛

𝑏𝑛 𝐻𝑛𝑚 − ℰ 𝒌 𝑆𝑛𝑚 ≡෍

𝑛

𝑏𝑛𝐴𝑛𝑚(𝒌) = 0
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Special case: a s-band only one term in the sum 
n

nb

Then

𝐴𝑛𝑚 𝒌 = 𝑁 ℰ𝑎𝑡 − ℰ 𝒌 𝛿𝑛𝑚 + 𝛼𝑛𝑚 𝒌 − 𝛽𝑛𝑚 − 𝛾𝑛𝑚(𝒌)

where

෡𝐇𝑎𝑡| ۧ𝑹𝑛 = ℰ𝑎𝑡 | ۧ𝑹𝑛 𝛼𝑛𝑚 𝒌 = ෍

𝑹≠0

𝑒𝑖𝒌.𝑹 𝑹𝑚 𝟎𝑛

𝛽𝑛𝑚 = − 𝟎𝑚 Δ𝑈 𝟎𝑛 𝛾𝑛𝑚 𝒌 = −෍

𝑹≠0

𝑒𝑖𝒌.𝑹 𝑹𝑚 Δ𝑈 𝟎𝑛

ℰ 𝒌 = ℰ𝑎𝑡 −
𝛽 + 𝛾 𝒌

1 + 𝛼 𝒌
≈ ℰ𝑎𝑡 − 𝛽 − 𝛾 𝒌 = 𝑐𝑜𝑛𝑠𝑡 +෍

𝑹≠0

𝑒𝑖𝒌.𝑹 𝑹 Δ𝑈 𝟎 =

= 𝑐𝑜𝑛𝑠𝑡 − σ𝑹≠0 𝑒
𝑖𝒌.𝑹𝛾 𝑹
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Simplification: we include only the nearest neighbors in the sum 
0R

Simple cubic lattice: )]cos()cos()[cos(2)( akakakE zyxs ++−−=kE

effective mass in point :

R M

𝑚 ∗ =
ℏ2

2𝛾𝑎2

Since the nearest neighbors are crystallographically equivalent,

ℰ 𝒌 ≈ 𝑐𝑜𝑛𝑠𝑡 − 𝛾 σ𝑹∈(𝑛.𝑛.) 𝑒
𝑖𝒌.𝑹
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fcc lattice:

)]2/cos()2/cos(

)2/cos()2/cos()2/cos()2/[cos(4)(

akak

akakakakE

xz

zyyxs

+

++−−=kE

effective mass in point :

𝑚 ∗ =
ℏ2

2𝛾𝑎2
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a p-band: three terms in the sum 
n

nb

The dispersion relation:

simple cubic lattice, nearest neighbors only:

Then from symmetry it follows:























==

z

y

x

ijijij

00

00

00

,

)]cos()cos()cos([2

)],cos()cos()cos([2

)],cos()cos()cos([2

122

212

221

akakak

akakak

akakak

zyxz

zyxy

zyxx

++=

++=

++=

The 3-fold degeneracy is removed:
zyxpzyx E ,,,, )( −−=kE

we choose

det 𝐴𝑛𝑚 𝒌 = det ℰ𝑎𝑡 − ℰ 𝒌 𝛿𝑛𝑚 + 𝛼𝑛𝑚 𝒌 − 𝛽𝑛𝑚 − 𝛾𝑛𝑚 𝒌 = 0

| ۧ𝟎𝑛 = 𝑥𝑛𝑓 𝑟 , 𝑥𝑛 = 𝑥, 𝑦, 𝑧

(0,0,0)𝑝𝑥 ∆𝑈 𝑎, 0,0 𝑝𝑥 = 𝛾1, (0,0,0)𝑝𝑦,𝑧 ∆𝑈 𝑎, 0,0 𝑝𝑦,𝑧 = 𝛾2
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R M



Graphene:

Each C atom has a free pz orbital | ۧ𝑹 , the orbitals px and py are used in the sp2 hybridized bonds

The LCAO test function can be written in the form

| ۧ𝒌 =෍

𝑅

𝑒𝑖𝒌.𝑹[𝑐1 ۧ𝑹 + 𝑐2 ۧ𝑹 + 𝒅 ]

where                                    is the position of the 2nd atom in the cell𝒅 = (𝒂1 + 𝒂2)/3

For the unknown coefficients c1,2 we obtain the equations

𝜀 − 𝐸(𝒌) −𝑡 [1 + exp −𝑖𝒌. 𝒂1 + exp −𝑖𝒌. 𝒂2 ]

−𝑡 [1 + exp 𝑖𝒌. 𝒂1 + exp 𝑖𝒌. 𝒂2 ] 𝜀 − 𝐸(𝒌)

𝑐1
𝑐2

= 0

where 𝜀 = 0 Δ𝑈 0 , 𝑡 = − 0 Δ𝑈 𝒅
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therefore

𝐸 𝒌 = ε ± 𝑡 1 + 4 cos
3

2
𝑘𝑥𝑎 cos

1

2
𝑘𝑦𝑎 + 4 cos

1

2
𝑘𝑦𝑎

2

1st Brillouin zone



Another example - MoS2:

MoS2: direct bandgap, large mobilities, spin-valley correlations due to LS coupling

E Ridolfi et al., J. Phys. Cond. Mat. 27,365501 (2015).

Lattice:
1BZ: DFT calculation:

direct bandgap
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Comparison between the band structures obtained with 

the DFT-HSE06 (blue squares) and with the optimized 

tight-binding model using the parameters from the CB–

VB optimization (red circles) near the gap region.
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Comparison between the band structures obtained with 

the DFT-HSE06 (blue squares) and with the optimized 

tight-binding model using the parameters from the VB 

optimization (red circles) near the gap region. 
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Group IV semiconductors: from the Cardona textbook:
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Stoner model for band ferromagnetism

Spin-dependent electron energies

( )1
( ) ( ) ( )

2

( )1
( ) ( ) ( )

2

n n
k k I k

n

n n
k k I k

n

 



 



−
= − = − 

−
= + = + 

E E E

E E E

Difference in electron populations

==−


)(
2

1

4

3
F

F

E
E

g
n

nn

I…Stoner parameter describing the electrostatic 

repulsion of the electrons with opposite spins in the 

same state (the Hubbard model)

At T=0K, the criterion for ferromagnetic ordering is I.g(EF)>1

Where g(EF) is the density of states normalized per one electron



bcc Fe is ferromagnetic, 

fcc Ni is ferromagnetic
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Fe: weak ferromagnet

Co: strong ferromagnet



Comment on electron-electron interactions
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Many-particle wave function Ψ 𝒓1, 𝑠1, … , 𝒓𝑁, 𝑠𝑁 is a solution of the many-particle Schroedinger

equation

෡𝐇Ψ =෍

𝑗=1

𝑁

−
ℏ2

2𝑚
Δ𝑗Ψ− 𝑍𝑒2෍

𝑹

1

|𝑹 − 𝒓𝑗|
Ψ +

1

2
෍

𝑗≠𝑘=1

𝑁
𝑒2

|𝒓𝑗 − 𝒓𝑘|
Ψ = ℰΨ

It is impossible to solve this equation and one has to find suitable approximation(s). One possible 

approximation is to replace the electron-electron interaction term by an effective potential:

𝑈 𝒓 = 𝑈𝑖𝑜𝑛 𝒓 + 𝑈𝑒𝑙 𝒓 = −𝑍𝑒2෍

𝑹

1

𝑹 − 𝒓
− 𝑒න𝑑3𝒓′

𝜚(𝒓′)

|𝒓 − 𝒓′|

where 𝜚 𝑟 = −𝑒෍

𝑗=1

𝑁

|𝜓𝑗 𝒓 |2 is the charge density calculated from the one-electron wave

functions. From this we obtain the one-electron Schroedinger equation (the Hartree equation):.

−
ℏ2

2𝑚
Δ𝑗𝜓𝑗 𝒓 + 𝑈𝑖𝑜𝑛 𝒓 𝜓𝑗 𝒓 + 𝑒2න𝑑3𝒓′෍

𝑘=1

𝑁
𝜓𝑘 𝒓′ 2

𝒓 − 𝒓′ 2
𝜓𝑗 𝒓 = ℰ𝒋𝜓𝑗 𝒓

This equation is nonlinear and can be solved by iterations. The equation contains a non-physical 

term 𝑗 = 𝑘. 



In the Hartree equation, the many-electron wave function is replaced by a product of one-electron 

wave functions

Ψ 𝒓1, 𝑠1, … , 𝒓𝑁, 𝑠𝑁 =ෑ

𝑗=1

𝑁

𝜓𝑗(𝒓𝑗 , 𝑠𝑗)

However, this function does not obey the Pauli principle. The simplest generalization of the Hartree

approach is the Slater determinant obeying the Pauli principle

Ψ 𝒓1, 𝑠1, … , 𝒓𝑁, 𝑠𝑁 =

𝜓1(𝒓1, 𝑠1) 𝜓1(𝒓2, 𝑠2)
𝜓2(𝒓1, 𝑠1) 𝜓2(𝒓2, 𝑠2)

…
𝜓1(𝒓𝑁−1, 𝑠𝑁−1) 𝜓1(𝒓𝑁, 𝑠𝑁)
𝜓2(𝒓𝑁−1, 𝑠𝑁−1) 𝜓2(𝒓𝑁, 𝑠𝑁)…
…

𝜓𝑁(𝒓1, 𝑠1) 𝜓𝑁(𝒓2, 𝑠2)…𝜓𝑁(𝒓𝑁−1, 𝑠𝑁−1) 𝜓𝑁(𝒓𝑁, 𝑠𝑁)

1st electron in position (𝒓2, 𝑠2)
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The Slater determinant is used for the calculation of mean energy:

ℰ =
Ψ ෡𝐇 Ψ

Ψ Ψ

From the condition of minimum mean energy the Hartree-Fock (HF) equation follows:



−
ℏ2

2𝑚
Δ𝑗𝜓𝑗 𝒓 + 𝑈𝑖𝑜𝑛 𝒓 𝜓𝑗 𝒓 + 𝑒2න𝑑3𝒓′෍

𝑘=1

𝑁
𝜓𝑘 𝒓′ 2

𝒓 − 𝒓′ 2
𝜓𝑗 𝒓

− 𝑒2෍

𝑘=1

𝑁

𝛿𝑠𝑗𝑠𝑘න𝑑3𝒓′
𝜓𝑘

∗ 𝒓′ 𝜓𝑘(𝒓)𝜓𝑗(𝒓
′)

|𝒓 − 𝒓′|
= ℰ𝒋𝜓𝑗 𝒓

Electron-electron Coulomb repulsion

Electron-electron exchange interaction

The nonphysical terms 𝑗 = 𝑘 cancel mutually. Relatively simple solution of the HF equation exists 

only for free electron gas, see specialized lectures on many-particle theory.
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V. 3. Electrons in external fields – quasiclassical approximation

Bloch electrons in an external field – how to describe their motion?

The Bloch electrons are described by a stationary solution of the Schroedinger equation, their velocity is

The interaction with the crystal field does not lead to an energy dissipation.

In the quasiclassical approximation, the external 

field is described classicaly. This is possible, if 

the wave packet describing a Bloch electron is 

much smaller than a characteristic size of the 

external field (wavelength). On the other hand, 

the wave packet is much broader than the crystal 

unit cell (thus, the crystal field is described using 

a quantum approach).

In the following we do not consider the collisions (i.e.             ) →

𝑣𝑛 𝒌 =
1

ℏ
𝛻𝒌𝐸𝑛(𝒌)
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Basic assumptions of the quasiclassical approach:

1. The band index n is constant (inter-band transitions are not considered)

2. Equations of motion:

3. The wave vector k is defined within an additive reciprocal lattice vector g

Consequence for the transport properties: A filled band remain filled during the motion

The electric current density:

The contribution of a fully filled band 0=nj

ሶ𝒓 = 𝒗𝑛 𝒌 =
1

ℏ
𝛻𝒌𝐸𝑛(𝒌)

ℏ ሶ𝒌 = −𝑒 𝑬 𝒓, 𝑡 + 𝒗𝑛(𝒌) × 𝑩(𝒓, 𝑡)

𝒋𝑛 = −𝑒 න

filled

𝑑3𝒌
1

4𝜋3
1

ℏ
𝛻𝑘𝐸𝑛(𝒌)
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The contribution of a partially filled band:

= 0 Holes

Equation of the hole motion:

(the same as for an electron)

Close to an extremal value of )(knE

2

00 ||)()( kkkk −+ Ann EE we denote

m* is the effective mass

Then

Local minimum in k0  positive effective mass – electron

Local maximum in k0  negative effective mass - hole

We can also define a positive hole effective mass, then the hole charge is positive

𝒋𝑛 = −𝑒 න

filled

𝑑3𝒌
1

4𝜋3
1

ℏ
𝛻𝑘𝐸𝑛 𝒌 = −𝑒 න

BZ

𝑑3𝒌
1

4𝜋3
1

ℏ
𝛻𝑘𝐸𝑛 𝒌 + 𝑒 න

empty

𝑑3𝒌
1

4𝜋3
1

ℏ
𝛻𝑘𝐸𝑛 𝒌

ℏ ሶ𝒌 = −𝑒 𝑬 𝒓, 𝑡 + 𝒗𝑛(𝒌) × 𝑩(𝒓, 𝑡)

ℏ2

2𝑚∗ = 𝐴

𝒗𝑛(𝒌) ≈
ℏ(𝒌 − 𝒌0)

𝑚∗
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In a general case – effective mass tensor

and the equation of motion is

 BkvE
v

k  )()( n+e=
dt

d
m

Electron in an external magnetic field

Equations of movement: The energy and the component of k along H 

are constant during the motion

ෝ𝑚−1
𝑗𝑘 = อ±

1

ℏ2
𝜕2𝐸𝑛(𝒌)

𝜕𝑘𝑗𝜕𝑘𝑘
𝒌=𝒌0

ሶ𝒓 = 𝒗𝑛 𝒌 =
1

ℏ
𝛻𝒌𝐸𝑛(𝒌)

ℏ ሶ𝒌 = −𝑒𝒗𝑛(𝒌) × 𝑩(𝒓, 𝑡)
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open orbit in a repeated zone scheme:
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Quasiclassical electron trajectory in direct space:

the component of the position vector perpendicular to B:

The equation of motion:

After integration:

𝒓⊥ = 𝒓 − 𝑩0 𝑩0. 𝒓 , ሶ𝒓⊥ = ሶ𝒓 − 𝑩0 𝑩0. ሶ𝒓 = 𝑩0 × ( ሶ𝒓 × 𝑩0)

𝑩0 × ℏ ሶ𝒌 = −𝑒𝑩𝟎 × ሶ𝒓 × 𝑩 = −𝑒𝐵 ሶ𝒓⊥

𝒓 𝑡 − 𝒓 0 = −
ℏ

𝑒𝐵
𝑩0 × (𝒌 𝑡 − 𝒌 0 )
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Period of the movement around a closed orbit:

For a free electron:

cyclotron frequency:
m

eB
c =

cyclotron frequency of the Bloch electrons:
c

c
m

eB

*
=

the cyclotron effective mass depends on the effective mass tensor  m* and on the direction of H

t1

t2

k

E+E

E

k
𝑡2 − 𝑡1 = න

1

2

𝑑𝑡 = න
1

2

𝑑𝑘
𝑑𝑡

𝑑𝒌
=
ℏ2

𝑒
න
1

2 𝑑𝑘

𝛻𝑘𝐸 𝒌 × 𝑩

=
ℏ2

𝑒𝐵
න
1

2

𝑑𝑘
∆𝑘

∆𝐸
=
ℏ2

𝑒𝐵

𝜕𝐴12
𝜕𝐸

𝑇 =
ℏ2

𝑒𝐵

𝜕𝐴

𝜕𝐸

𝐴 = 𝜋𝑘⊥
2 = 𝜋

2𝑚

ℏ2
𝐸 − 𝑘𝑧

2 ⇒ 𝑇 =
2𝜋𝑚

𝑒𝐵



https://slideplayer.com/slide/5261837/
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Quantization of the cyclotron orbits

Beyond the quasiclassical approximation!!

Free electrons in a homogeneous magnetic field:

The electron spin is not considered.

The magnetic field: )0,0,(),0,0( yBB −== AB

We assume the wavefunction in the form

)(e),,(
)(i
yzyx

zkxk zx =
+

Then

Harmonic oscillator equation. The eigenenergies are

1

2𝑚
ෝ𝒑 − 𝑒𝑨 2𝜓 𝒓 = 𝐸𝜓(𝒓)

−
ℏ2

2𝑚

𝑑2𝜑

𝑑𝑦′2
+
1

2
𝑚𝜔𝑐

2𝑦′
2
𝜑 = 𝐸′𝜑, 𝑦′ = 𝑦 +

ℏ𝑘𝑥
𝑒𝐵

, 𝐸′ = 𝐸 −
ℏ2𝑘𝑧

2

2𝑚

𝐸𝑛 𝒌 =
ℏ2𝑘2

2𝑚
+ ℏ𝜔𝑐 𝑛 +

1

2
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energy bands density of states

There are about 104 levels up to EF (for the magnetic field of about 1 T).



de Haas-van Alphen effect: the inverse susceptibility oscillates in magnetic field as the field 

intensity is increased. The period of the oscillation is

(1/ ) 2 / ( )e S  = 

where S is the area of the Fermi surface normal to the direction of B
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This is similar to Shubnikov-de Haas effect (oscillation of xx in 2D systems in magnetic field) 

and to the quantum Hall effect: 

𝜌𝑥𝑦 =
1

𝑛

ℎ

𝑒2
, n is integer

n =

fractional QHE:
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Longitudinal Rxx and transverse Rxy magnetoresistance versus magnetic field at 50mK, 

AlGaN/GaN heterostructure. The inset shows the low field part of the SdHO after normalization by 

the low field resistance value, R0, and the fit of the SdHO amplitude. The arrowmarks the magnetic 

field corresponding to ν = 7. W Knap et al 2004 J. Phys.: Condens. Matter 16 3421
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The difference of the neighboring levels

The period is given by

The Lifshitz-Onsager quantization rule:

𝐸𝑛+1 𝑘𝑧 − 𝐸𝑛 𝑘𝑧 =
𝑒ℏ𝐵

𝑚
=
ℎ

𝑇

𝑇 =
ℏ2

𝑒𝐵

𝜕𝐴

𝜕𝐸
≈
ℏ2

𝑒𝐵

𝐴𝑛+1 − 𝐴𝑛
𝐸𝑛+1 − 𝐸𝑛

𝐴 𝐸𝑛 𝑘𝑧 , 𝑘𝑧 = (𝑛 + 𝜆)
2𝜋𝑒𝐵

ℏ



Anomalous Hall effect

The anomalous Hall effect AHE occurs in solids with broken time-reversal symmetry, typically in a

ferromagnetic phase, as a consequence of spin-orbit coupling. Sometimes it could be much larger 

than the normal Hall effect.

See Nagaosa N. et al., Rev. Mod. Phys 82, 1539 (2010).

Introduction to Solid State Physics, 

version 2

252



Introduction to Solid State Physics, 

version 2

259

Electron in an external electric field

Equations of movement:

We consider a 2D square lattice. The tight-binding band structure is

)]cos()[cos(2)( 0 akak yx +−−=EE k

Therefore

The Bloch oscillations, it generates THz electromagnetic waves
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Quasiclassical description of the scattering of electrons 

Sources of scattering:

• scattering from impurities and structure defects

• scattering from thermal vibrations

• electron-electron scattering (less important)

Simple description of the scattering (as used in the Drude and Sommerfled models) using the 

relaxation time is not correct. Let us make it better now.

The same assumptions as in the semikinematical approach: the band index n is constant, the 

electron spin is preserved during the scattering process, and the collisions are localized both in 

direct (r) and reciprocal (k) spaces.

We denote                          the probability of scattering of an electron with the wave vector k into 

d3k’ in dt
3

3

'
8

'dd



k
kk

t
W

We define the non-equilibrium distribution function gn(r,k,t) so that gn(r,k,t) d3rd3k/(43)

equals the number of electrons in time t and in element d3rd3k

))((),,(0
kkr nn ftg E=In equilibrium (f is the Fermi-Dirac distribution function)
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Total probability per unit time of scattering of an electron with the wave vector k is (we omit the 

variables r and t)

)]'(1[
8

'd

)(

1
'3

3

k
k

k
kk gW −


=

 

Let us calculate the changes of the non-equilibrium distribution functions due to collisions

Due to the scattering from the state k

)]'(1[
8

'd
)(

)(

)(

d

)(d
'3

3

out

k
k

k
k

kk
kk gWg

g

t

g
−


−=


−=










Due to the scattering into the state k

)'(
8

'd
)](1[

)(

)(

d

)(d
'3

30

in

k
k

k
k

kk
kk gWg

g

t

g
 

−=


=








Total change of the distribution function

)]}'(1)[()](1)['({
8

'd

)(

)()(

d

)(d
''3

30

tot

kkkk
k

k

kkk
kkkk ggWggW

gg

t

g
−−−


=



−
=









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If the relaxation time approximation is not fulfilled, the time development of the non-equilibrium 

distribution function cannot be reconstructed. Instead, we can calculate the distribution function in time 

t+dt from its value in time t.

In the quasiclassical approximation, the electron in point (r,k,t) was also in point

if no collisions occurred in this time interval. Therefore, without collisions

With collisions

Expanding the distribution function, we get the Boltzmann transport equation

𝒓 − 𝒗 𝒌 𝑑𝑡, 𝒌 −
𝑭 𝒓, 𝑡 𝑑𝑡

ℏ
, 𝑡 − 𝑑𝑡

𝑔 𝒓, 𝒌, 𝑡 = 𝑔 𝒓 − 𝒗 𝒌 𝑑𝑡, 𝒌 −
𝑭 𝒓, 𝑡 𝑑𝑡

ℏ
, 𝑡 − 𝑑𝑡

𝑔 𝒓, 𝒌, 𝑡 = 𝑔 𝒓 − 𝒗 𝒌 𝑑𝑡, 𝒌 −
𝑭 𝒓, 𝑡 𝑑𝑡

ℏ
, 𝑡 − 𝑑𝑡 +

𝑑𝑔(𝒓, 𝒌, 𝑡)

𝑑𝑡
out

𝑑𝑡 +
𝑑𝑔(𝒓, 𝒌, 𝑡)

𝑑𝑡
in

𝑑𝑡

𝜕𝑔

𝜕𝑡
+ 𝒗. 𝛻𝑟𝑔 +

1

ℏ
𝑭. 𝛻𝑘𝑔 =

𝑑𝑔

𝑑𝑡
tot

= −
𝑔 𝒌 − 𝑔0(𝒌)

𝜏(𝒌)
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Scattering from impurities:

𝑊𝒌𝒌′ =
2𝜋

ℏ
𝑉𝒌𝒌′

2𝛿(𝐸 𝒌 − 𝐸 𝒌′ )

Where

𝑉𝒌𝒌′ = 𝒌 𝑉 𝒌′ =
1

𝑉
෍

𝑛

ei 𝒌−𝒌
′ .𝑅𝑛𝑣𝒌𝒌′ =

1

𝑉
෍

𝑛

ei 𝒌−𝒌
′ .𝑹𝑛 𝑢𝒌 𝑣(𝒓) 𝑢𝒌′

is the matrix element of the perturbation potential due to the impurity atoms, the sum runs over the 

impurity atoms, uk(r) is the periodic part of the Bloch wave.

Finally, we obtain the collision integral in the form

 −










))()'((||

2 2

'

tot

kk
k

ggvdSn
dt

)dg(
kkEi



i.e., it is proportional to the density ni of the impurities
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Matthiessen rule

Two independent sources of scattering (impurities and thermal vibrations):
)2()1( WWW +=

In the relaxation-time approximation

)2()1(

)2()1(

111
+=


+


=



Beyond this approximation

)2()1( +

If the relaxation time depends on k, this formula is not valid, even in the relaxation-time approximation



Kondo effect – scattering of conduction electrons from magnetic impurities due to a strong 

coupling of the itinerant electron spins with the spins of fixed impurity atoms.

From the theory it follows the following temperature dependence of the specific resistivity:

𝜌 𝑇 = 𝜌0 + 𝑎𝑇2 + 𝑐ln
𝜇

𝑇
+ 𝑏𝑇5

from phononsfrom Fermi liquid properties

Kondo term

Kondo, Jun (1964). "Resistance Minimum in Dilute Magnetic Alloys". Progress of Theoretical Physics. 32: 37
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From L. Kouwenhoven and L. 

Glazman, Physics World  33 (2001)
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V. 4. Semiconductors

The width of the energy gap smaller than approx. 3 eV. 

The density of the electrons in the conduction band is proportional to )]2/(exp[ TkBgE−

For Eg = 4 eV and room temperature we obtain
3510)]2/(exp[ −− TkBgE

For Eg = 0.25 eV it is 
210)]2/(exp[ −− TkBgE
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Direct gap:

k

E
cb

vb

k

E

cb

vb

Eg Eg

Indirect gap:

Close to the extrema of the bands, the energy can be approximated by

electrons

holes

𝐸 𝒌 = 𝐸𝑐 +
ℏ2

2
෍

𝑗𝑙

(𝑘𝑗−𝑘0𝑗) ෝ𝑚 𝑗𝑙
−1(𝑘𝑙−𝑘0𝑙)

𝐸 𝒌 = 𝐸𝑣 −
ℏ2

2
෍

𝑗𝑙

𝑘𝑗( ෝ𝑚)𝑗𝑙
−1𝑘𝑙
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a=3.567A, Eg=5.46eV

mL=1.40m, mT=0.36m

mLH=0.70m, mHH=2.12m

mSO=1.06m
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a=5.431A, Eg=1.12eV

mL=0.98m, mT=0.19m

mLH=0.16m, mHH=0.49m

mSO=0.24m



N. F. Hinsche et al. J. Phys.: Condens. Matter 23 (2011) 295502
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a=5.657A, Eg=0,67eV

mL=1.6m, mT=0.08m

mLH=0.043m, mHH=0.33m

mSO=0.084m
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a=5.632A, Eg=1.42eV

me=0.063m,

mLH=0.082m, mHH=0.51m

mSO=0.015m
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a=3.189A, c=5.186A, Eg=3.39eV

me=0.2m,

mLH=0.3m, mHH=1.4m

mSO=0.6m



Introduction to Solid State Physics, 

version 2

275

a=3.533A, c=5.693A, Eg=1.9eV

me=0.11m,

mLH=0.27m, mHH=1.63m

mSO=0.65m



http://www.tf.uni-kiel.de http://web.tiscali.it

https://www.quora.com/
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Direct bandgap of GaxIn1-xAs

W. Porod, D.K. Ferry, Phys. Rev., B27, 2587 (1983).
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Density of carriers in a homogeneous semiconductor

we denote: nc, pv the densities of electrons in cb and of holes in vb, respectively, gc(E), gv(E) are 

the densities of states, f(E) is the FD distribution function. Then





−

−m

−



+
=−=

=

v

B

v

c

Tkvvv

cc

gfgTp

fgTn

E

E

E

E

EEEEE

EEE

1e

1
)(d)](1)[(d)(

,)()(d)(

)/()(

Numerically complicated – we do not know m(T). Simplification: non-degenerated semiconductor:

TkTk BvBc −mm− EE  and 

Then

1

exp
𝐸 − 𝜇
𝑘𝐵𝑇

+ 1
≈ exp −

𝐸 − 𝜇

𝑘𝐵𝑇
if 𝐸 > 𝐸𝑐

1

exp
𝜇 − 𝐸
𝑘𝐵𝑇

+ 1
≈ exp −

𝜇 − 𝐸

𝑘𝐵𝑇
if 𝐸 < 𝐸𝑣
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and

“conservation law”
)/(

e
Tk

vcvc
BgPNpn

E−
=

a special case: intrinsic semiconductor

)2/(
e

Tk

vcivc
BgPNnpn

E−
==

the chemical potential:











++=m

c

v
Bgvi

N

P
Tk ln

2
1

2
1EE

𝑛𝑐 𝑇 = 𝑁𝑐 𝑇 𝑒
−
𝐸𝑐−𝜇
𝑘𝐵𝑇 , 𝑁𝑐 𝑇 = න

𝐸𝑐

∞

𝑑𝐸𝑔𝑐(𝐸)𝑒
−(𝐸−𝐸𝑐)/(𝑘𝐵𝑇) =

1

4

2𝑚𝑐𝑘𝐵𝑇

𝜋ℏ2

3/2

𝑝𝑣 𝑇 = 𝑃𝑣 𝑇 𝑒
+
𝐸𝑣−𝜇
𝑘𝐵𝑇 , 𝑃𝑣 𝑇 = න

−∞

𝐸𝑣

𝑑𝐸𝑔𝑣(𝐸)𝑒
+(𝐸−𝐸𝑣)/(𝑘𝐵𝑇) =

1

4

2𝑚𝑣𝑘𝐵𝑇

𝜋ℏ2

3/2
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Semiconductor with impurities (extrinsic semiconductor)

The impurity levels are affected by: 

1. screening of the electric field of the impurity ion

2. small effective mass of the free carriers

The binding energy of an electron to the impurity ion eV 613,
*1

2
.

m

m
=


= RRE
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We denote NA, ND the concentrations of the donor and acceptor impurities

nD,pA are the densities of electrons on the donor level and holes on the acceptor level, respectively

−+ +=+ AcDv NnNp

mean densities of the electrons and holes on the impurity levels:

The donor level:

1ee

e

)/()(

2
1)/()(

)/()(

+
=

m−m−−

m−−




Tk

D

j

TkN

j

TkN

j

DD
BDBjj

Bjj

N
N

Nn
EE

EThe level population:
Nj

Ej

0 0

1  ED

1  ED

2 2ED

Electric neutrality:
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The acceptor level:

1ee

e

)/()(

2
1)/()(

)/()(
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


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BABjj
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N
N

Np
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EThe level population:
Nj

Ej

0 2EA

1  EA

1  EA

2 0

For simplicity, we consider a semiconductor with a single donor level only – the n-type
)/(

e
Tk

vcvc
BgPNpn

E−
=The conservation law is still valid

Electric neutrality: ++= Dvc Npn
1e2

)/()(
+

=
−m

+

Tk

D
DD

BD

N
pN

E

Special case: low temperatures: DcDv pnNp  +

1e2
e

)/()(

)/()(

+
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DTk

c
BD
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N
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E

 equation for m
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Solution:
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

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
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


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Special case: high temperatures Dvc Npn +=
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compensation

http://www.nextnano.com
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p-n junction en.wikipedia.org

http://wanda.fiu.edu



a n-type and a p-type semiconductors are in contact in a thermodynamic equilibrium  m is 

constant thorough the sample

Quasiclassical approximation: for a given energy band, the hamiltonian is

The electrostatic potential must be a slowly varying function

We restrict us to the equilibrium case, then








 m−−
−=

Tk

xe
TNxn

B

c
cc

)(
exp)()(

E







 +−m
−=

Tk

xe
TPxp

B

v
vv

)(
exp)()(

E

The potential is determined self-consistently using the Poisson equation

2 1
( )x−  = 



AADDvcAD NxNNxNxpxnxNxNex +−−= −+−+ )(,)()],()()()([)(

෡𝑯𝑛 = 𝐸𝑛
𝒑

ℏ
− 𝑒𝜑(𝑥)

𝑒[𝜑 𝑥 + 𝑎 − 𝜑 𝑥 ] ≪ 𝐸𝑔
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The potential difference )()( −−= can be estimated as follows

Far from the junction at the n-side, the density of the free electrons approx. equals the density of 

the donor atoms (we assume all donor atoms are ionized):








 m−−
−=

Tk

e
NNn

B

c
cDc

)(
exp)(

E

and similarly
( )

( ) exp v
v A v

B

e
p N P

k T

 m − +  −
−  = − 

 

E

thus 









+=

vc

AD
Bg

PN

NN
Tke lnE

depleted zones of thicknesses dn, dp:
1

0
,

2( / )A D
n p

A D

N N
d

N N e

  
=

+

numerically ~ 102  104 Å.

The field strength in the depleted region is roughly V/m 1010~ 75 
+



pn dd
for Eg = 0.1 eV
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Rectification effect of a p-n junction

the depletion layer has much smaller carrier density  much smaller electric conductivity

If we apply an external voltage V, the potential difference across the depletion layer is

VV −= )0()(

and the width of the depletion layer is

)0(

)(
1)0()( ,,




−=

V
dVd pnpn

The carrier currents across the junction:

1. the generation current of the minority carriers – independent of V

2. the recombination current of the majority carriers – depends on V

)/(])0([

rec e)(
TkVe BVj

−−


Equilibrium for V = 0:
eehh jjjj genrecgenrec )0(,)0( ==

therefore
( )1e)()(

)/(

gengen −+=
TkeVhe BjjVj
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Bipolar junction transistor
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npn bipolar junction transistor

We define
E

C

B

C

I

I

I

I
== , then

−


=

1

Usually, →1 so that  is large  amplification of the current



Introduction to Solid State Physics, 

version 2

292

VI. ELEMENTARY EXCITATIONS IN SOLIDS – PHONONS, MAGNONS

VI.1. Classical theory of a harmonic crystal

Basic assumptions:

1. The mean positions of the atoms corresponds to the Bravais lattice sites ( no diffusion 

assumed)

2. The amplitude of the atomic oscillations is much smaller than the inter-atomic distance (

harmonic approximation is applicable)

We denote u(R,t) the displacement of the atom in the site R. The potential energy of the crystal is




−−+=
'

2
1 )),'('),((

RR

RuRRuR ttU

Due to the assumptions:

harmeq
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4
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2
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U N
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
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RRRuRu
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The harmonic part of the potential energy is

kj

jkkkjkjj
xx

uuuuU



=−−−= 



)(
)(,))'()()('())'()((

2

'

4
1

harm

r
rRRRRRR

RR

The components of the matrix  can be calculated ab-initio by a exact quantum-mechanical 

approach or using empirical potentials. In these calculations, the adiabatic approximation is 

used (i.e., the role of the electrons is neglected).

Normal modes of an one-dimensional monoatomic lattice

Assumption: harmonic interaction of nearest neighbors:


=

+



=−=

j ax

jj
x

KuuKU
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2
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12
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Equation of movement:

Periodic Born-von Kármán boundary conditions:

)()( 11 tutuN =+

i.e., the nearest neighbors of atom N are the atoms N-1 and 1

We seek the solution of the equations of movement in the form

)(ie)( kjat

j tu −−

Possible values of k:
Na

mkm
kNa 

==
2

1ei

We choose N values of k from the 1st Brillouin zone: }12/,12/,2/{ −+−− NNNm 

𝑀 ሷ𝑢𝑗 = −
𝜕𝑈harm
𝜕𝑢𝑗

= 𝐾 𝑢𝑗+1 + 𝑢𝑗−1 − 2𝑢𝑗 , 𝑗 = 1, … , 𝑁
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We obtain the dispersion relation

)sin(2)(
2
1 ka

M

K
k =

MK /2

the group velocity )cos(
2
1 ka

M

K
avg =

the phase velocity
ka

ka

M

K
av

2
1

2
1 )sin(

=

N/2 possible frequencies and N normal modes
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Comment on transversal oscillations 

( )
2

2 21
harm 12

( )j j

j

U K u u a l+= − + −

Harmonic part of the potential energy (l is the length of free spring):

Equation of movement (approximation of small displacements):

Effective stiffness constant

T

a l
K K K

a

−
= 

𝑀 ሷ𝑢𝑗 = −
𝜕𝑈harm
𝜕𝑢𝑗

= 𝐾
𝑎 − 𝑙

𝑎
𝑢𝑗+1 + 𝑢𝑗−1 − 2𝑢𝑗 , 𝑗 = 1, … , 𝑁
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Normal modes of an one-dimensional diatomic lattice

The harmonic part of the potential energy:

 +−+−=
j

jj

j

jj uuGuuKU 2

1,12,2
12

2,1,2
1

harm )()(

The equations of movement (we assume the same masses of the atoms but different force constants):

We seek the solution of the equations of movement in the form

)(i

22

)(i

11 e)(,e)( kjat

j

kjat

j utuutu −−−− ==

𝑀1 ሷ𝑢𝑗,1 = −𝐾 𝑢𝑗,1 − 𝑢𝑗,2 − 𝐺 𝑢𝑗,1 − 𝑢𝑗−1,2
𝑀2 ሷ𝑢𝑗,2 = −𝐾 𝑢𝑗,2 − 𝑢𝑗,1 − 𝐺 𝑢𝑗,2 − 𝑢𝑗+1,1 , 𝑗 = 1, … , 𝑁
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Then we obtain

and the dispersion relation is

two frequencies for a given k  two frequency branches

Ratio of the amplitudes (for 𝑀1 = 𝑀2):

𝑢2
𝑢1

= ∓
𝐾 + 𝐺𝑒𝑖𝑘𝑎

𝐾 + 𝐺𝑒𝑖𝑘𝑎

𝑀1𝜔
2 − 𝐾 − 𝐺 𝑢1 + 𝐾 + 𝐺𝑒−𝑖𝑘𝑎 𝑢2 = 0

𝐾 + 𝐺𝑒𝑖𝑘𝑎 𝑢1 + 𝑀2𝜔
2 − 𝐾 − 𝐺 𝑢2 = 0

𝜔2 =
𝑀1 +𝑀2

2𝑀1𝑀2
𝐾 + 𝐺 ± (𝐾 + 𝐺)2−8

𝑀1𝑀2

𝑀1 +𝑀2
2𝐾𝐺(1 − cos(𝑘𝑎))

2
𝐾 + 𝐺

𝑀

2
𝐾

𝑀

2
𝐺

𝑀
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The lower (acoustic) branch: around k = 0:

around k = /a:
1,11,21 , + jj uuuu

1,11,21 , +− jj uuuu (if K > G)

The upper (optical) branch: around k = 0:

around k = /a:
1,11,21 , +− jj uuuu

1,11,21 , +−− jj uuuu (if K > G)



Three atoms in a molecule, 1D chain, longitudinal polarization
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one acoustic branch, two optical branches
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3D-case

GaAs

3 acoustic branches, 3(p-1) optical 

branches, p is the number of atoms 

in the primitive unit cell

Pb
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BaTiO3 in cubic symmetry has several instabilities:

1. FerroElectric (FE) instability at Γ (0,0,0) reciprocal point

2. AntiFerroElectric (AFE) instability at X (0.5,0,0)

3. AntiFerroDistortive (AFD) instabilities at M (0.5,0.5,0)

and R (0.5,0.5,0.5)

4. Freezing in the eigenvector at Γ (0,0,0), reduces

the symmetry to Tetragonal (P4mm)
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Weak phonons in -Ti

R.E. Lechner: Diffusion Studies of Solids by Quasielastic Neutron Scattering, DOI: 10.1007/3-540-30970-5_3
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VI.2. Heat capacity of a crystal lattice

The classical approach:

The energy density of a lattice

NNTk
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The total energy of the lattice is
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Let us make the substitution )(~)(),(~)( 2/12/1
RpRpRuRu

−− ==
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Then
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



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
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and the entire integral is independent of temperature.
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the rule Dulong-Petit
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The quantum-mechanical approach:

where         is the quantum number of a harmonic oscillator in the state sk

the sum 
i

is calculated over all possible values of the quantum numbers

We obtain

The Bose-Einstein statistics

)(i

ksn

)(i

ksn
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+
1

2
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෍
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+
1

2
)ℏ𝜔𝑠(𝒌) =

ෑ

𝑘𝑠

෍

𝑛=0

∞

exp −𝛽෍
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𝑒−𝛽ℏ𝜔𝑠(𝒌)/2

1 − 𝑒−𝛽ℏ𝜔𝑠(𝒌)

𝑢 =
1

𝑉
෍

𝑘𝑠

ℏ𝜔𝑠 𝒌 𝑛𝑠 𝒌 +
1

2
, 𝑛𝑠 𝒌 =

1

𝑒𝛽ℏ𝜔𝑠(𝒌) − 1
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Exact calculation of cV: 1D monoatomic chain

Specific heat capacity per one atom:

max= 1014 s−1

𝑐 =
1

𝑁

ℏ2

𝑘𝐵𝑇
2 ෍

𝑛=−𝑁/2

𝑁
2
−1

𝜔𝑛

exp
ℏ𝜔𝑛
𝑘𝐵𝑇

− 1

2
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Calculation of cV in 3D case:

1. High temperatures:

and 







++−

−
)(

122
1

1

1)exp(

1 3
2
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xx
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Finally we obtain

2− T
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classical limit
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2
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1
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ℏ2

12(𝑘𝐵𝑇)
2

1

3𝑁
෍

𝑘𝑠

(𝜔𝑠 𝒌 )2
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2. low temperatures:

Then only the lowest-frequency modes contribute to the specific heat (long-wave acoustic phonons)

because )()( 0
kk ss kc=

for long-wave acoustic phonons

Then where  
=

s scc 30

02

3 )]([
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3. Whole temperature range, the Einstein model:

assumption – all phonons have the same frequency 

4. Whole temperature range, the Debye model:

assumptions – all phonons have the same phase velocity kc=

– the 1BZ is replaced by a sphere of radius kD




−









=

T

x

x

D

B

D

V

D x
x

T
nkc

/

0

2

4
3

)1e(

e
d9 D is the Debye temperature

𝑐𝑉
𝐸 = 𝑛𝑘𝐵

ℏ𝜔

𝑘𝐵𝑇

2 exp
ℏ𝜔
𝑘𝐵𝑇

exp
ℏ𝜔
𝑘𝐵𝑇

− 1
2

𝑘𝐵Θ𝐷 = ℏ𝑐𝑘𝐷 = ℏ𝜔𝐷
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Magnetic transitions influence the heat capacity:
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Density of phonon states:

calculation of the mean value of quantity Q depending on frequency:

 

 

−


=

=


=



s BZ

s

s BZ

s

s

s

g

QgQQ
V

q

|1

3

3

0|1

3

3

))((d
8

1
)(

)()(d))((d
8

1
))((

1

kk

kkk
k

monoatomic 1D, 2D or 3D cubic lattices, 

a direct calculation:
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The Debye model, density of phonon states:








=

D

D

D

c
g

for 0

for )2/(3
)(

322

phonon dispersion relation and density of states in Si
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IV. 6. Interaction of a ionic crystal with light - polaritons

Polarizability of an ionic lattice – relative displacement of cations with respect to anions in an 

external electric field. Equations of movement of the positive and negative sublattices

Equation for the relative displacement

long-range electrostatic interaction 

between the ions is included in Eloc

Amplitude of the stationary solution

M

K

M

e
=

−
= 2

22

0
0 ,

)(

E
w

E0 is the amplitude of Eloc

The amplitude of the dipole moment of one molecule is p0= ew0 and the polarizability is 

)( 22

2

0

0

−
==
M

e

E

p

long-wave phonons are assumed (k << 1BZ)  all the ions of the same kind have the same 

displacements

𝑀+ ሷ𝒖+ = −𝐾 𝒖+ − 𝒖− + 𝑒𝑬𝐿𝑜𝑐
𝑀− ሷ𝒖− = −𝐾 𝒖− − 𝒖+ − 𝑒𝑬𝐿𝑜𝑐

ሷ𝒘 = ሷ𝒖+ − ሷ𝒖− =
𝑒

𝑀
𝑬𝐿𝑜𝑐 −

𝐾

𝑀
𝒘,𝑀 =

𝑀+𝑀−

𝑀+ +𝑀−
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How to include the polarizability of the ions (electron polarizability)?

The resonant frequency of the electrons is roughly

eV 10001000 

meV 10010  Dwhile

Since M  104 me, both polarizabilities are comparable at frequencies close to 

Intuitively: 

)( 22

2

−
++= −+
M

e

“Static” case 0











++


=

+

−
−+ 2

2

03

1

2)0(

1)0(

M

e

Vc

High-frequency case

See the Clausius-Mossotti equation

( )−+ +


=
+

−

cV03

1

2)(

1)(

0



Introduction to Solid State Physics, 

version 2

320

Since









−
++


=

+

−
−+

)(3

1

2)(

1)(
22

2

0 M

e

Vc

we obtain

2)0(

2)(
,

1

)0()(
)()( 22

2

2
+

+
=

−




−
+= T

T
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Frequency gap for 
LT   total reflection of light

With absorption

TT 


+−





−
+=

i1

)0()(
)()(

2

2

Reflectivity of light at normal incidence

2

1

1

+

−
=R
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Long-wave optical phonons

we assume that all equivalent ions have the same displacements.

The Maxwell equations

0rot

,0div,0





−=

=+=

t

B
E

DPED

(electrostatic approximation)

we restrict ourselves to cubic crystals, where  is a scalar  D||E||P; we assume plane 

monochromatic waves.

kPEDDDkD ⊥=== ,,  0 0.0div 00 or

rk

P

E

D

P

E

D
.i

0

0

0

e
















=
















Then

kPEDEEkE ||,,  000rot 00 or===
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Longitudinal optical phonon:

00|| == DkP frequency L

Transversal optical phonon:

==⊥ 0EkP frequency T

Lyddane-Sachs-Teller formula (LST):

)(

)0(
2

2




=





T

L

Dispersion relation for phonons/photons for small k
















−










+


+=


=

)0(

)(
4

)(

)(

)(

)(

2

1

)(

2
2

2
2

2
2

22 kckckcck
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)/( Lck

0/ ck

/ck

collective excitation - polariton
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IV. 7. Magnons

The Heisenberg hamiltonian

The ground state of the Heisenberg hamiltonian is =
R

R
S0 , in which all spins are parallel to 

the external field

What is the first excited state? Let us consider the state, in which in a given position R the value of 

Sz is S-1 (instead of S)

We have denoted the creation and annihilation operators

R is NOT an eigenvector of the Heisenberg hamiltonian.

Let us express an eigenvector of the Heisenberg hamiltonian as a linear combination of the states R

෡𝐻𝑆 = −෍

𝑖≠𝑗

𝐽𝑖𝑗෡𝑺𝑖 . ෡𝑺𝑗 − 𝑔𝜇𝐵𝐵෍

𝑗

መ𝑆𝑧𝑗

| ۧ𝑹 =
1

2𝑆
መ𝑆− 𝑹 | ۧ0

መ𝑆± = መ𝑆𝑥(𝑹) ± 𝑖 መ𝑆𝑦(𝑹)

መ𝑆± 𝑹 | ۧ𝑆𝑧 𝑹 = 𝑆 ∓ 𝑆𝑧 (𝑆 + 1 ± 𝑆𝑧)| ۧ𝑆𝑧 ± 1 𝑹



Introduction to Solid State Physics, 

version 2

327

If the exchange integrals depend only on the distance R – R’ , an eigenstate of the Heisenberg 

hamiltonian can be expressed as a linear combination

BZ
N

1,e
1 .i =  kRk

R

Rk
spin wave – magnon 

Let us calculate the corresponding eigenvalue of energy

We obtain
( )i .

0( ) ( ) 1 eBg B S J= + m + − k R

R

k RE E

For small k, 
2

0( ) k− kE E For an antiferromagnet kE )(k

Since J(R) = J(−R) we obtain for zero field
2

0( ) 2 ( )sin ( . / 2)S J− = 
R

k R k RE E

෡𝐻𝑆| ۧ𝒌 = 𝐸 𝒌 | ۧ𝒌
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ferromagnetic -Fe
Magnon dispersion in antiferromagnetic 

Sr2CuO2Cl2

M. Guarise et al. Phys. Rev. Lett. 105, 157006 

(2010)

S. V. Halilov et al. Europhys. Lett. 39, 91 (1997).

The total spin of the state k is NS – 1. The probability of finding a reduced spin value in point R

const.
1

'e
1

2

'

'.i2

=== 
NN

-

R

Rk
RRRk
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Let us calculate the mean value of the correlation of the transversal components of the spins

We obtain

𝒌 ෡𝑺⊥(𝑹)෡𝑺⊥(𝑹′) 𝒌 where ෡𝑺⊥ 𝑹 ෡𝑺⊥ 𝑹′ = መ𝑆𝑥 𝑹 መ𝑆𝑥 𝑹′ + መ𝑆𝑦 𝑹 መ𝑆𝑦 𝑹′

𝒌 ෡𝑺⊥(𝑹)෡𝑺⊥(𝑹′) 𝒌 =
2𝑆

𝑁
cos[𝒌. 𝑹 − 𝑹′ ]
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Magnon statistics:

The mean number of magnons with the wave vector k in the unit volume of sample

1
( )

( )
exp 1

B

n

k T

=
 

− 
 

k
kE

The mean value of magnetization 







−= 

 BZ

n
NS

MTM
1

)(
1

1)0()(
k

k

for small T only the lowest magnon states are occupied, therefore

*
3

*
3

1

3 2

3
1

1

3 2

3

( ) d exp 2 ( )sin ( . / 2) / ( ) 1
(2 )

d exp ( )( . ) / (2 ) 1
(2 )

B

BZ E

B

E

V
n S J k T

V
S J k T

−



−

  
 −   

   

  
 −  

   

 



k R

R

k k R k R

k R k R

Using the substitution Bk T=k q we find

( )
*
3

1

3/2 3 2 3/2V
( ) (0) 1 ( ) d exp ( )( . ) 1 (0) 1 const.

2
B

E

S
M T M k T J M T

NS

−    
 − − = −   

    


R

q R q R

The Bloch T3/2-law
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F. Holtzberg et al., J. Appl. Phys. 35, 1033 (1964)
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