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I STRUCTURE OF CONDENSED MATTER IN 3D

Several numbers at the beginning:

characteristic distance on an atomic scale is the angstrom 10-8 cm. The electrostatic energy at this scale

is of the order e2/(1 ¡) ~ 2.3x10-11 erg @14eV @1.6x105 K.

The kinetic energy associated with localizing an electron in a box of side 1 ¡ is

These two energies are comparable and much larger than room temperature 300K ~ 0.025 eV. Thus 

a large number of ions could form a very stable salt like NaCl with binding energy several eV per 

atom.

In a metal ïthe binding energy can be approximated by allowing some electrons to extend over the 

whole solid ïthis lowers the kinetic energy by several eV per atom.

Two main effects ðCoulomb attraction (or repulsion) and delocalization of quantum states of 

free electrons
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I.1. Inter-atomic and inter-molecular bonds

Types of bonds and their energies:

1. covalent 4 - 6Ö105 J/mol,

2. metallic 2 - 4Ö105 J/mol,

3. ionic 2 - 4Ö105 J/mol,

4. hydrogen 0,2 - 0,3Ö105 J/mol,

5. van der Waals 0,04 - 0,08Ö105 J/mol

Usually, several types of bonds are present in a 

solid. In graphite, for instance the strong covalent 

bonds give rise to carbon hexagons, the inter-plane 

bonds are weak
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Directional and non-directional bonds:

directional covalent bonds in the molecule CH4; the bonds between the molecules are non-

directional and weak (van der Waals bonds)
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Covalent bond

Overlap of atomic orbitals occupied by single electrons with opposite spins ïsemiconductors (Si, 

Ge) and dielectrics (C-diamond) with the gaps 0.67 eV (Ge), 1.1 eV (Si) and 5.5 eV (C).

sp3 hybridization in a C atom (electron configuration 1s22s22p2)
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In methane: In ethane:

In Si
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Hydrogen bond

Crystal structure of ice:

induced dipole moment of the hydrogen atom mediates the attractive interaction 

between the oxygen atoms
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van der Waals bond

between molecules or neutral atoms

Equilibrium position:

Attractive interaction: electrical interaction between permanent and/or temporary dipole moments.

Electric field of a dipole moment                    the energy of the interaction

Repulsive interaction ïdue to the Pauli principle; the r-12 dependence is only empiric!
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H2 molecule ïelectron density, 

antibonding orbital
H2 molecule ïelectron density, 

bonding orbital
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jA(1)jB (2) + jA(2)jB (1)

jA(1)jB (2) -jA(2)jB (1)

jA(1)jB (2) ,  jA(2)jB (1)

experiment
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Lattice energy

Potential energy of a lattice

For the Lennard-Jones potential we get

The lattice sum

a is the distance of nearest neighbors. From we obtain a
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Ionic bond

Empiric potential

only for nearest neighbors

The lattice energy

The Madelung constant

Cohesion energy
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This sum is only conditionally convergent, i.e., its value depends on the summation order. The 

summation over expanding cubes converges to the correct value. In rocksaltlattice  σȢτωυ
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Energy of the molecule NaCl

Iont Cl-je stabilnŊjġ² neģ neutr§ln² atom Cl. PŚipojen²m elektronu k atomu Cl se uvoln² energie 

3.7 eV (elektronov§ afinita). Energie potŚebn§ k odtrģen² elektronu od neutr§ln²ho atomu Na a 

ke vzniku iontu Na+ je 5.1 eV. EnergiepotŚebn§ ke vzniku p§ru izolovanĨch iontŢ Na+ a Cl- je 

tedy 1.4 eV. PŚibl²ģ²me-li ionty k sobŊ, jejich energie kles§ d²ky elektrostatick® pŚitaģliv® s²le. Je-

li vzd§lenost iontŢ dostateļnŊ mal§, je celkov§ energie molekuly Na+Cl-z§porn§ a vznik§ 

iontov§ vazba.

Iontov§ kohezn² energie krystalu NaCl na jeden p§r Na+ Cl-je 7.8 eV, atomov§ kohezn² 

energie na p§r neutr§ln²ch atomŢ Na Cl je 7.8-5.1+3.6 eV=+6.3 eV
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Thermal expansion

For T>0 K, the equilibrium value of a corresponds to the minimum of free energy

The vibration-induced part of the free energy follows from the Bose-Einstein statistics of phonons

harmonic approximation: Fvib does not depend on a

anharmonicity: with increasing a the bonds get weaker Ý

the Gr¿neisen constant
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Simple example of a nonlinear oscillator: Lennard-Jones (LJ) potential

Ὗὼ Ὗ
ὼ

ὼ
ς
ὼ

ὼ

Equilibrium point is ὼȟὟὼ Ὗ

Results of numerical simulations for Ὗ ρȟὼ ρ:

With increasing maximum displacement, i.e., with increasing total energy, the mean position x increases and the frequency 

decreases
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With increasing temperature the mean inter-atomic distance increases Ý thermal dilatation

The coefficient of thermal dilatation is therefore connected with the decrease of the frequency of oscillations with increasing inter-

atomic distance ïGr¿neisenparameter
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éthermal dilatation coefficient
ὑéisothermal bulk modulus
ὅéheat capacity at constant volume ὠ
Ὠédimension of the system

For the LJ potential: Ὗ ὼ χς ȟὟ ὼ ρυρςᵼ for a 1D system (Ὠ ρ)

Negative thermal expansion materials: Ὗ ὼ ὼ Ὠ ρὟ ὼ

Example: zirconium tungstate Zr(WO4)2 ,  χȢς ρπ ὑ

https://commons.wikimedia.org/w/index.php?curid=15786797

ZrO6 octahedron

WO4 tetrahedron

NTE is probably caused by correlated rotation of the ZrO6 octahedraand WO4

tetrahedra
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I.2. Crystal structure

gas phase

liquid phase

solid phase

krystalografie_tutorial/obr/obr1-1.gif
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natural quartz crystals

Si ingots (single crystals)

(ON-Semi, Roģnov p. R.)

Polished surface of a Be ingot
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Nanocrystals ïmagic clusters:

C60 fullerene

Magic clusters of Kr atoms  with 13, 

55, 147, 309, 561,... atoms. 
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nematic liquid crystals (orientational order of 

molecules)

smectic liquid crystals (position 

order in one direction)
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Primitive lattice (prostorov§ mś²Ĥka)

╡ ὲ╪ ὲ╪ ὲ╪ȟὲȟȟᶰᴚ
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All unit cells of the primitive lattice have the same volume

Symmetry properties of primitive lattices:

Åtranslation symmetry

Åpoint symmetry

- inversion

- mirror symmetry

- rotation symmetry

All the symmetry elements of a primitive lattice create the space groupof the lattice

Two subgroups:

- translation group (generated by the vectors Rn)

- point group
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Examples of elements of point symmetry

1-fold, 2-fold, 3-fold, 4-fold and 6-fold rotation axis: 1,2,3,4,6

mirror plane: m

inversion: i

Combination of point symmetry operations ïinversion axes
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Standard (Schoenflies) notation:

E = Identity

Cn = rotation through 2p/n

s= reflection in a plane

sh= reflection in a òhorizontal" plane

sv= reflection in a òvertical" plane

sd= reflection in a òdiagonal" plane

i = inversion

Sn = improper rotation through 2p/n, which consists of a rotation by 2p/n followed by a reflection in 

a horizontal plane

iCn = ὲcompound rotation-inversion, which consists of a rotation followed by an inversion.

σḳὛḳὭὅȟφḳὛḳὭὅ
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All point symmetries of a cube, the 3-fold axis is the inversion axis 3
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7 point groups of primitive lattices exist (the holoedric groups)
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Simple and centered lattices

simple primitive lattice ïa unit cell exists with a full point symmetry

centered primitive lattice ïall unit cells have lower point symmetry than the full lattice
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Crystal lattice (crystal structure)

The point group of a crystal lattice is a subgroup of a holoedric group; 32 subgroups exist Ý 32

crystallographic classes

230 space groups of crystal lattices

non-primitive symmetry operations:

- glide planes

- screw axes
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crystallography point groups
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32 point groups
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CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=922694

https://en.wikipedia.org/wiki/List_of_space_groups

https://en.wikipedia.org/wiki/List_of_space_groups
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The symmetry operations are: E; 8C3; 3C2 = 3C4
2, 6C2 and 6C4. To get Oh we combine these

24 operations with inversion to give 48 operations in all.
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screw axis

possible screw axes:
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glide plane
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Close-packed structures
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2nd layer 3rd layer, hcp stacking 3rd layer, fcc stacking
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hcp structure
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fcc structure
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hcp stacking
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fcc stacking
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fcc primitive lattice, one atom in 

the lattice point (Al, for instance)

fcc primitive lattice, two  identical 

atoms in the lattice point (Si, for 

instance)

fcc primitive lattice, two  different 

atoms in the lattice point (GaAs 

(left), NaCl (right)
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Cs (bcc lattice) CsCl (simple cubic with a 2atom-base)

Mg (hcp lattice) GaN (wurtzite = hcp with a 2atom base)



Introduction to Solid State Physics, 

version 2

49

BaTiO3ïperovskite structure (almost simple cubic)
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Graphite (graphene)

Bernal stacking (ABAB)
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I.3. Crystallographic directions, crystallographic planes

][)( hklhkl ^ only for cubic crystals!!!

Miller indices
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For hexagonal crystals, usually 4 Miller indices are used

The miller indices of crystallographic directions and planes are always defined with 

respect to a simple lattice!!

Example ïGaN:
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I.4. Reciprocal lattice

Reciprocal lattice is a primitive lattice, the basis vectors of which are

Properties:

- lattice reciprocal to a reciprocal lattice is the original lattice

- primitive lattice and its reciprocal lattice belong to the same syngony

- (hkl) [̂hkl]* always!

- V* = 8p3/V

- thenetplane distanceὨ ς“ȾὬ╫ Ὧ╫ ὰ╫

╪ɇ╫ ς“
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A mathematical discursion ðperiodic functions in 3D

Periodic function in 3D primitive lattice

can be expressed by a Fourier series in reciprocal lattice

Special cases:
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I.5. Brillouin zones

2D reciprocal lattices:
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Reciprocal lattice to a fcc lattice, the 1st Brillouin 

zone

Reciprocal lattice to a bcc lattice, the 1st Brillouin 

zone
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real space reciprocal space

bcc

fcc
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Higher Brillouin zones:

2D square lattice:

fcc lattice:

1st zone 2ndzone 3rd zone



Introduction to Solid State Physics, 

version 2

61

The Wigner-Seitz cell

The 1st Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice
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I.6. Stereographic projection
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The Wulff chart
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Standard projection of a cubic 

crystal, surface (100)
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I.7. Elements of x-ray diffraction

Assumptions:

Åelastic scattering ᵼ꜡ ꜡ȟ╚ ╚

Åkinematical scattering Ý 1st Born approximation

Åfar-field limit Ý Fraunhoferapproximation:

K0

Kf

Q

Ὡ ȿ╡ ►ȿ

ȿ╡ ►ȿ

Ὡ ╡

╡
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Scattering of x-rays by a free electron

scattering processes

elastic (energy is conserved) ïThomson scattering

inelastic (energy is not conserved) ïCompton scattering

From a quantum description it follows that scattering of x-rays from free electrons is always inelastic.

Elastic scattering from a free electron exists only in a classical limit (classical electrodynamics)

Elastic (Thomson) scattering
The primary wave is plane and monochromatic:

The scattered wave is spherical and monochromatic with the 

same frequency:
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Scattering from a single atom
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Fourier transformation of the electron density of an atom ïatomic form-factor
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The scattered intensity is proportional to the Fourier transformation of the electron density:

structure factorgeometrical factor

Maximum of the geometrical factor is for ╠ ▌

Bragg diffraction condition
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Structure factor of simple and centered 2D 

square lattices, forbidden diffractions

bravais.exe
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The Ewald construction
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I.8 Quasicrystals

Structures with a perfectl long-range order but no translational symmetry

Description projection from a 5 or 6-dimensional primitive lattice to 3D space

Example ï1D quasiperiodic Fibonacci chain

quasiperiodic sequence of L and S 

segments

http://www.jcrystal.com/steffenweber/JAVA/jfibo/jfibo.html



Fibonacci multilayer: F = ABAABABAABAAB...

GaAs/AlAs Fibonacci multilayer (superlattice) structure and X-ray reflectivity

73Introduction to Solid State Physics, 

version 2
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Penrose tilings two types of tiles, no translational

periodicity, seflsimilarity

http://www.jcrystal.com/steffenweber/JAVA/jtiling/jtiling.html

Types of QCs:

Åquasiperiodic in 2 dimensions (octagonal, decagonal, dodecagonal)

Åquasiperiodic in 3 dimensions (icosahedral)

Åincommensurately modulated structures

Regular icosahedron (dvacetistŊn)

Icosahedral point group Ὅ

Public Domain, https://commons.wikimedia.org/w/index.php?curid=642240
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Fourier transformation of the atomic positions (x-ray diffraction)

octagonal decagonal dodecagonal icosahedral



Examples of icosahedral quasicrystals

Single-grain sample of a quasicrystalinecompound AlPdRe
http://www.stanford.edu/group/fisher/research/quasicrystals.html

Quasicrystal of an AlCuFealloy displaying an external 

form consistent with their icosahedral symmetry
http://www.answers.com/topic/quasicrystal
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The electron density can be expressed as the 

Fourier sum:

′►
ρ

ὠ
′▌Ὡ

▌Ȣ►

In a usual crystal:

▌ Ὣ╫ Ὣ╫ Ὣ╫ȟὫȟȟᶰᴓ

In an icosahedral quasicrystal:

▌ Ὣ╫ȟὫᶰᴓȟ ▌ȟ╫ ᶰὉᶻ

▌is obtained from ▌by projection into Ὁᶻ, all 

possible ▌ôs fill densely the reciprocal space Ὁᶻ
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III. RESPONSE OF A CONDENSED BODY TO AN EXTERNAL IMPULSE

III.1. General description ðKramers Kronig relation

External force: F(t) (we neglect the space variables, we assume a scalar force)

Reaction of the system: x(t)

We assume a linear response:

After Fourier transformation

The functions x(t), F(t) are real, function a(w) is a complex function of a complex variable w:

ὼὸ Ὠὸὸ ὸὊὸ Ὠὸὸ ὸὊὸ ὭὪ† πÆÏÒ† π
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a(w)is analytic for wôô²0. The singularities of a(w)exist only in the lower half-plane w<0. Let us 

consider the function

This function is analytic in the upper half-plane except for w=w0, where it has a singularity. Let us 

integrate this function over a closed loop

Inside this loop, the function is analytic, thus the integral is zero:
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Now we perform the limits ÌÉÍ
ᴼ

ÌÉÍ
ᴼ

and we obtain

The Kramers-Kronig relations are

Example: orientation polarization

singularity in  ὭȾ†
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Example: atomic polarization

Singularities in
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III.2. Response to an electric field

Summary of basic quantities

Polarization

Relative permittivity (dielectric constant) ‐ ρ …

E is the macroscopic field in the sample

The connection of E with the external field E0:

Depolarization factors:

flat disc:
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The local field acting on an atom EL:

The Lorentz formula for the local field:

The Clausius-Mossottirelation (called Lorentz-Lorenz 

formula if we replace ‐ by ὲ ,LudvigLorenz] (( 

Hendrik Lorentz] 

Electric displacement

▬ ╔
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Orientation polarization

Orientation of permanentelectric moments in an external field. Let us assume that a molecule has a 

permanent dipole moment p. The interaction energy with the local field EL is 

Let us consider a system of non-integrating permanent dipoles. The mean value of the component of 

p parallel to EL is

Possible polarization mechanisms:

1.Orientation polarization

2.Ionic (displacement) polarization

3.Atomic polarization

Polarizability ais a microscopic 

quantity. Its value depends on the 

polarization mechanism.
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where is the Langevin function

Typical values: (displacement of 1e by 0.6 ¡)

or smaller

at room temperaturex å 0.02 and we can replace the Langevinfunction by flὼ ὼȾσand

flὼ ÃÏÔÈὼ
ρ

ὼ

ὴ ρπ #Í

Ὁ ρπ6ȾÍ

ὴ᷆
ὴὉ

σὯὝ
ᵼ

ὴ

σὯὝ
Roughly, ρπ Í
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For such large polarizabilities the Clausius-Mossotti relation is not correct. From this relation it follows:

Example: liquid water therefore

at 300K. Thus, a negative value of efollows. Experimental value 

The Lorentz formula for the local filed is not valid for a material with polar molecules

Response of a system of polar molecules to a time-dependent electric field

Debye relaxation equation:

The time-averaged value of the polarization

For a monochromatic primary wave ╔ὸ ╔Ὡ we assume ╟ͯ Ὡ and the stationary

‐
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from the simple model:

experimental results (water):
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Displacement polarization ðsee Chap. V

Atomic polarization

Exact calculation ïquantum mechanical perturbation method, here only a simple classical model:

Z electrons are uniformly distributed in a sphere of radius r, x is a displacement of the nucleus from 

the centreof the sphere. The restoring electric field generated by the electrons is

The applied filed EL is balanced by E

atomic polarizability

by approx. two orders smaller than the orientation polarizability
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measured

simulated
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Response of a system of non-interacting atoms to a time-dependent electric field

The equation of movement of the sphere filled with electrons with respect to an immobile nucleus:

Stationary solution

Resonance frequency

Permittivity

Polarizability

its static value:
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More in the lecture on optical properties of solid, the Lorentz formula:

ὲ  ὲ  Ὥ‖ ρ … ρ
Ὢ

 Ὥ 



Combination of the Lorentz model with the Lorentz-Lorenz formula

K. E. Oughstunand N. A. Cartwright, Optics Express 11, 1541 (2003)
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IV. MEAN-FIELD THEORY

IV. 3. Spontaneous ordering of electric moments - Ferroelectric state

Is a spontaneous polarization possible?

We have found

Thus, if ὔ σ‐we obtain ╟ πfor ╔ π

Another hypothetic example ïan 1D chain of ions with alternating charges

╟ ‐…╔ ╔
ὔ

ρ
ὔ
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Equation of motion:

We assume a solution in the form of a plane wave

and we obtain the dispersion relation

A wave vector k exists, for which w = 0 ïa weak phonon Ý spontaneous polarization

ά
Ὠό

Ὠὸ
ὑό ό ςό

ὗὗ

τ“‐ ὼ ὼ

ὗὗ

τ“‐ ὼ ὼ

ά
Ὠό

Ὠὸ
ὑό ό ςό

ρ

ς“‐ὥ

ὗὗ ό ό

ὲ Ὦ

ὗὗ ό ό

ὲ Ὦ

ό Ὡͯ

ά ςὑρ ÃÏÓὯὥ ςὃ ρ
ρ ÃÏÓὮὯὥ

Ὦ
ȟὃ

Ὡ

ς“‐ὥ



Introduction to Solid State Physics, 

version 2

95

Ὢὼ ρ
ÃÏÓὮὼ ρ

Ὦ



Introduction to Solid State Physics, 

version 2

96

The most common ferroelectric material ïBaTiO3
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Lattice parameters and permittivity of BaTiO3
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The Landau theory of phase transitions

Variables: P (polarization), T

Helmholtz free energy F(P,T)

The equilibrium condition

Due to the inversion symmetry

Spontaneous polarization

T

P

Tc

up to ὖȟὧ π:
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