Practical introduction in creating and analyzing child language transcripts and using the CHILDES databases

Filip Smolík (smolik@praha.psu.cas.cz)

August 11, 2019

Child language transcripts

- One of the traditional methods in child language research
- Probably first after diaries
- Material for creating corpora of child language
- Source of dependent variables in experimental work
- Source with good ecological validity

Roger Brown

- A First Language: The Early Stages (1973)
- Analyzed transcripts of Adam, Eve and Sarah
- Introduced the use of MLU
- MLU
- Mean length of utterance
- Brown measured in morphemes
- Analyzed the order of emergence of 14 grammatical morphemes
- Pointed out that frequency in adult lanugage

CHILDES

- Child Language Data Exchange System https://childes.talkbank.org/
- Conceived by Brian MacWhinney at Carnegie Mellon University (Pittsburgh)
- https://www.cmu.edu/dietrich/psychology/people/core-training-faculty/macwhinney-brian.html
- Originally, a repository of child language transripts using a shared format
- CHAT - format used in Childes transripts
- CLAN - a set of analytic software tools

CHILDES content

- A number of transcripts from various languages
- Important to read the documentation
- ... walktrough though the web...
- Possible to download or browse the transcripts

Other formats of transcripts

- SALT - used in speech-language pathology, esp. in US
- Language may be transcribed as a part of broader observational data
- Interact (Mangold), Observer (Noldus)
- ELAN - free alternative
- You can make up your own
- The improtant thing is to have the format
- Clear, unequivocal, consistent

LENA

- Not really language trancript analysis, but it is increasingly use to study communication
- Device worn by the child
- Records communication over the whole day, automatically calculates the number of words and syllables produced and heard
- Can be used to examine the general amounts of communication and its time distribution

Basic format of CHAT transripts

- Three types of lines ("tiers")
- Distnguished by the first character
- Only three characters allowed: @, *, \%
- @ - headers, context, end of file
- Are relevant for the whole transcript or for a larger section.
- Minimum content of headers and file intro/ending is described in the minCHAT specification (manual p. 22)
- * - main tiers, contain the transcript material
- Often "orthographized"
- \% - dependent tiers
- Modify, explain, code details of the content of the main tier
- Always belong to the closest main tier above

Format requirements

- Minimum file structure
- minCHAT specification (manual p. 22)
- There is CLAN utility for checking whether the structure
- @Begin, @End
- Identification of participants in the transcript
- Identification of the target child, should include age
- Languages used in the transcript

General principles

- The manual shows many types of codes
- You don't have to use all
- It gives you a "grammar" of the coding system
- You can choose which devices you will be using
- Or adapt and expand the system in line with these "grammatical principles"

@ "regulatory" tiers

- @Begin, @End
- Identifying info in the header
- @ID:
- Also defines speaker label, always uppercase 3-letter (CHI)
- Description of the context
- @Location
- Comments about the context and situation
- @Comment, @Situation
- May occur in the middle, refer to a longer stretch of the transcript

main tier

- Always followed by speaker ID, colon and tab:
- Must end with . or ! or ?
- *CHI: mommy like [*] tea.
- Contain the main transcript material
- Usually in "adult" orthography
- Type and level of standardization depend on the project
- The standardization should facilitate search for various types of content
- You must have a criterion for what is an utterance

Other main tier notes

- Special form markers @
- samál@f (family specific form)
- Unintelligible material
- xxx, yyy
- Part words, omissions
- He Ois sit(ting) here;
- Errors [*]
- Scope codes
- Eg. <want that one> [!= cries] - paralinguistic material across multiple words

Main tier terminators

- . ! ?
- Can be combined for special meanings
- +... trailing off
- +/. Interruption
- etc...

What is an utterance

- Important decision
- Children will often chain sentences with "and"
- or without any connective but without pauses
- You need to set criteria

\% dependent tiers

- Provide additional information or coding for material contained on the above
- Many types, new types can be created specifically for a project
- \%err: - describes and explains an error
- \%com - general commentary
- \%pho - phonetic transcript
- \%act - describe accompanying action
- \%cod - general-purose coding line
- \%mor - morphological coding
- See manual around page 85
- There can be mutiple dependent tieres for any main tier

Tips for recording transcripts

- Digital recorders common and inexpensive today, do good job
- You want to test them, test recording modes, test how well they pick up
- Today, not much reason to use external mics
- Perhaps if you want the child to wear the recorder
- But if needed, common clip-on mics are sufficient
- LED lights on the recorder may attract the child's attention, if the recorder has them, consider covering

Tools

- A good text editor
- Text editor = word processor (like Word)
- An editor that shows all contents of a text file
- Saves no hidden formatting information
- A lot of them available, typically used by programmers
- Or people using (La)TeX
- Notepad++, https://notepad-plus-plus.org/
- Free to use, easy to install
- Good for writing and reading transcripts, and also for searching in them

Analyzing transripts

- Usually involves some amount of manual data extraction
- Reading the transripts and searching for varous things - Words, morphemes, structures
- Completely automatic analysis usually not possible - And not desirable, if you want to get a good idea about the data
- But you can facilitate the analysis with some automatic steps
- The best way: learn Perl or Python
- But before you do that, you can get pretty far using simpler tools

CLAN

- The basic analytic utility for childes transcripts
- Can be quite complicated and awkward
- But probably the easiest way to calculate basic quantitative indices line MLU
- Analyses have to be done in a command-line style interface

Basic quantitative indices

- MLU
- Mean length of utterance
- May be measured in morphemes, words, syllables
- Words is simple, others require more detailed coding (or syllable boundary estimation)
- Number of tokens
- Number of different words, number of types
- Type-token ratio (TTR)
- Used to be popular, but depends a lot on the transcript length

MLU in CLAN

- CLAN MLU utility
- If you don't have the \%mor tier, you have to use this
- mlu @ +t*CHI-t\%mor
- mlu @ +t* $\mathrm{CHI}-\mathrm{t} \% \mathrm{mor}+\mathrm{d}$
- Creates Excel file (excel may complain while opening but it will do it eventually)

Searching for specific material

- Oftentimes you will be interested in specific words, sequences, or codes
- Find all errors
- Find all instances of the auxiliary
- Find all prepositions "on", "in", "at"
- Some automation can help you with these tasks
- Regular expressions in Notepad++

Searching for things

- Find all nouns
- Impossible unless you have explicit coding
- Or unless you have a list of words that will be coded as nouns
- Find all instances of "be"
- Possible if you can list all possible forms of "be" (be, is, was, were, am, are)
- Often we have to manually review the search results
- But it is still much faster than fully manual search

Search considerations

- It is generally easy to search for specific forms or a small set of forms
- Harder/effortful if you have a longer list of forms, but possible
- Probalby some CLAN utility could help you
- Or you can program a search utility in Perl
- Much can be achieved using text editor search
- All searching is facilitated by regular expressions

Regular expressions

- Allow you to search for patterns of characters
- Using various "wildcards" and other specifications of what you are searching for
- E. g. find the string "is" when it is preceded by "John" anywhere on the line
- Especially useful to limit the search to children's material in the transript
- E. g. find the string "is" on lines that begin with *CHI:

Examples in Notepad++

- ^*CHI.*(je|jsou)
- All occurrences of ,,je" or „,jsou" on *CHI lines
- Better put spaces around (je |jsou):
- ^*CHI.* (je|jsou) ; or even better
- ^ ${ }^{*} \mathrm{CHI} .{ }^{*} \backslash \mathrm{~b}(\mathrm{je} \mid$ jsou) $\backslash \mathrm{b}$ - here, $\backslash \mathrm{b}$ is a zero-width wordboundary marker
- ^ $\backslash * \mathrm{CHI} . * \backslash[\backslash * \backslash]$
- Find all children's lines with error markers
- ^ ${ }^{*} \mathrm{CHI} . * \mathrm{jsou}$? $[\backslash . \!\backslash ?] \$$
- Find all children's lines with "jsou" at the end
- Lines ending with ., ! or ?
- A space may but may not precede the sentence-ending punctuation
- Does not match sentences with complex ending punctuation (+... etc.)

