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Regression

In this chapter we build on the concept of correlation with ordinary least squares
(OLS) regression, cven though the latter was invented first.'*® [f we think about
our scatier plot, we could draw one line through the data that best fits all of our
data points. Correlation is a statement about how close the points are to the line.
The objective of regression is to determine the best fitting line for the data. Using
regression, we can determine the average effect of our independent variable and
make predictions about cases outside our sample. We will begin with the simplest
regression model, bivariate, where the dependent variable is a function of a single
independent variable, before expanding to consider multivariate models with
multiple independent variables.

Bivariate Regression

As social scientists we primarily want to explain why variables of interest vary and
vary together. Regression allows us the ability to measure the effect of one variable
on another. 1t tells us the effect of an independent variable on a dependent
variable. Furthermore, it provides us with the degree of the effect, thereby provid-
ing more explanatory leverage than in any other technique we have discussed thus
far. Not unlike correlation we can find the strength and direction of association
between two variables. Here, however, we can also get at the specific nature of the
relationship; i.e., how much variance in the dependent variable is “explained” by
the independent variable.

In discussing correlation we implied without much specificity that one could draw
a straight line that passed through the sct of points in a manner that represented the
overall pattern, positive or negative, steep or shallow. In addition to moving to
thinking about causal relationships between independent and dependent variables
(which was not required for correlation), with regression we also ask: Which lincar
relationship? In other words, of all the lines in Figure 22.1 that pass through the
graph centroid - the point where X and Y intersect and marked in the figure by the
intersection of the dotted lines - which fits the data the best?

Before delving into the math, it is useful to graphically illustrate the characteristics
of the best fitting regression line, as in Figure 22.2. For any line, we can measure the
vertical distance between the line and each observation, which is called a residual. Our
goal is to mininize these residuals; or more specifically, the sum of squared residuals,
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because if we did not square them our residuals would sum to zero - as you might

recall from the previous chapter. The line which does so is the best fit.

Qbviously, choosing possible lines by trial and error and calculating the sum o
squared residuals for each line would not be very efficient. Fortunately, determin
ing the correct line can be casily done using some of the values we calculated las

time for the correlation coefficient r. We just need the sum of products and the sum :
of squares. In fact, the gencral process should be quite familiar. We will begin by .
summarizing the data into a single cquation which states the relationship between :
X and Y. This equation produces two test statistics, @ and b, that describe the :
relationship. Next we translate them into t-ratios to test the null hypothesis, at :

which point the rest of the procedure for checking significance is the same as the
previous examples with t-ratios (e.g., correlation, difference of means test),

Bivariate Regression

The regression line is based on a simple mathematical equation similar to what
you used to draw a line in clementary geometry:

Y=a+bX +e (22.1)

The regression line is a statement about the relationship between X and Y in the
population. The equation simply states that the predicted valuc of Y is the sum of
three components: ¢, which is a constant that applics to each case; X, which is the
product of an average effect b and the specific value of the independent variable X S
and ¢, which is a random component that varies by observation.

Generally, « is referred to as “the constant” and b “the coefficient.” In ordet to
determine the best fitting regression line, we calculate a specific numerical value for
these terms. The error term, ¢, however, is not determined. Thus we will not
calculate e, but it is important nonctheless from a statistical inference perspective.
In the equation, ¢ is mercly a symbol to represent the fact that our relationship is
probabilistic, not deterministic. For any given case, we would not expect our raw
value of Y to equal the predicted value of ¥ (spoken “y-hat”) because of this
factor. We place a hat over Y for the predicted value to show that it is calculated
from the equation and not the same as the Y variable in the data. More colloqui-
ally, we can think of the crror term as collecting all the junk in the cquation. It
represents the random error in the stochastic model that makes our predictions less
than perfect. However, for a large number of cases and on average, we would still
expect the predicted value of ¥. Since we do not calculate the random error term,
the actual regression line we calculate looks like:

Y =a+bx. (22.2)
But, again, this does not mean we can ignore the theoretical importance of e.

To claborate with the help of Figure 22.3, a geometrically represents the
y-intercept, the point where the line crosses the y-axis. Substantively, this question

Figure 22,3 Regression line i
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asks about our expected value for ¥ when the value of the independent variab|, i
zero (x == 0):

Y=a-+bx0
= d. (22.3)

The key part of the regression equation is the bX term. The b term tellg yq
the average effect of a unit change of X on Y. More simply stated, it tells g
how much Y changes, AY, as X changes, AX. Thus, if we take our observed value
of X and multiply it by our average effect b, and then add this product to
the constant a, we would get our predicted value of Y, which is the regression
line. Of course, the value of b also has a geometric interpretation: the slope of the
regression line. Unlike our correlation coefficient, the slope is not limited in range.
The value of the slope can be zero, or any positive or negative value. The eng
exception, of course, is that the slope cannot be infinite, as this would imply a
vertical line.

In order to solve the regression equation we begin by calculating b, which is
simply the sum of the products divided by the sum of squares:

SP )
b= (22.4
b =35 )
We can then solve for «:
a=Y —bX. (22.5)

With numeric values for both ¢ and b we can rewrite the regression equation in
terms of the predicted valuc of ¥, ¥. Again, we use ¥ instead of ¥ to denote that
it is expected or predicted, as opposed to actual or observed. In other words, if you
compute the disturbances over several trials (the differences between ¥ and Y)

and sum them, you should get 0. At this point we can interpret the relationship -

between X and Y.

When interpreting a regression equation, the two most important substantive
findings relate to the values of ¢ and 5. We want to relate these values to our real-
world question. Foremost we note the interpretation of b. For every onc unit

increase in the value of X, we expect a b unit increase in the value of Y, on
average. Notice this sounds very much like the mathematical interpretation of a

slope, for obvious reasons.

Although we do not determine a specific value for ¢, we can make a statement :

about how much of our rclationship is systematic (the bX term) and how much is
random (e). This too is related to the concepts we discussed with correlation.
Correlation told us about the strength of a relationship. The stronger the relation-

ship, the less important the random component is in determining individual vajues -

of Y. The weaker the relationship, the more important the random component is
in determining the values of Y. Here, when we say random we mean that the

explanation is due to something outside of the equation. The ¢ term is picking up

any variance we cannot explain with our independent variable. Remember that

Bivariate Regression

our regression line is the one that minimizes the squared residuals. However, how
small we can actually make that sum depends on the correlation. If the relation-
ship is weak, we can only minimize that sum to a small extent. In fact, we can think
about the residuals as the random component itself, [or cach individual
observation,

Regression is flexible. Although hypothesis testing with it requires that we have
an interval and normally distributed dependent variable, the independent variable
can be of any level of measurement: nominal, ordinal, or interval. The regression
line allows us to make a number of statements about the predicted value of Y
given values of X. That is, rather than interpreting a single statistic, in regression
we modily the value of X in line with our research questions to calculate substan-
tively meaningful predictions of Y. The researcher must ask herself what valuc of
X makes substantive sense, which does, of course, relate to the variable’s level of
measurement. We might be interested in what the average of an interval level
independent variable explains and thus set X to X. Alternatively, we might be
interested in what the lowest value of X tells us about Y by setting X to its
minimum value. We might even be interested in knowing what the highest levels
of X predict in terms of Y, or anything in between. In sum, we choose a value or a
serics of values for X that make sense given the question we are asking and solve
for V.

For one value of X we can make a statement that leverages the information
given to us by the constant. When X is at zero, Visa Itis important to note,
however, that the interpretation of @ depends on zero being a substantively
meaningful value for X". For example, we would not think to ask about how many
partics we would expect in a country with zero issue dimensions because all
countrics deal with at least some issues. Thus, though mathematically this is a fair
interpretation, it does not always make substantive sense. The constant merely

Relatedly, the regression line also allows us to make out-of-sample predictions,
or extrapolations, about Y. Extrapolation is the process of making predictions
about cases outside the range of the X variable in the sample. First, note that we
do not take ¢ into consideration when making predictions. The random compon-
ent is exactly that, so we do not make predictions about it. Besides, this prediction
is just an expected value. Just as we do not make statements about the constant
that would not make substantive sense, we also exercise caution in making
predictions beyond the sample. For example, we would not want to make predic-
tions about countries with negative issue dimensions, which makes no sense
though we could extend the regression line into the negative values of X. Nor
would we want to predict Y for a hypothetical country with 250 issue dimensions,
which is also substantively goofy. In sum, when making predictions, we always
want to consider whether we are making extreme or nonsensical counterfactuals.

Interpolation is the process of making predictions about cases within the range
of the X variable for the sample but for which no values in the sample exist. For
example, if X ranged from 0 to 100 but no units in the sample had valucs between
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30 and 70, interpolation involves making predictions of the value of Y for Xy
between 30 and 70. In general, and as should be obvious from Figure 22.4,
extrapolation requires more caution than interpolation.

At this point we should be curious about the kind of leverage that regression
actually provides. In the context of regression r? is referred to as the coefficient of
determination. In the context of correlation, this does not give us a lot of additional
information since 2 is completely determined by the value of r. In regression, this
statistic takes on a more important interpretation, particularly when we have a
multivariate regression with more than one independent variable, which we discuss
in the next section,

With a strong rclationship, the independent variable explains more of the
variance in the dependent variable. This means that the fit of the linc is better;
the sum of residuals is smaller, and the correlation is higher. This is where the 2
statistic comes in. Squaring r gives us the amount of variation in Y explained by
X. Thus the remainder, | — #% is random variation, i.e., not explained by the
variables in our equation.

The notion of explaining variance can be difficult to grasp. Fortunately, there is
a more intuitive way of looking at this information. The r? statistic also belongs to
a class of statistics called proportionate reduction in error statistics (PRE). This
interpretation is mathematically equivalent to the variance explained description,
but the logic is somewhat different. The power of our regression comes from its
ability to make accurate predictions. OQur regression allows us to make a specific
prediction about the valuc of Y for a given observation. However, these predic-
tions are not perfect even for our sampile; there are residuals.

But, if we did not have information about the X variable, what predictions
would we make about Y? The most logical answer is that we would guess the mean
of Y. Recall that a central tendency gives us a good summary description of Y. So
the question becomes: How much more accurate are our predictions using our
regression instead of just guessing the mean of Y every time? The answer is the 12

Bivariate Regression

value. By knowing X" and the resulting regression equation, we are able to reduce
the amount of prediction error relative to the mean. Thus the calculated » tells us
how much variance in Y is accounted for by our predicted relationship (a -+ bX )\

Barlier we noted that Pearsons » has the following equation: .

Ae e PIIRE

e ar (22.6)
\/Z(X ~X)5(Y -7,
which can be rewritten in simpler terms:
_sr
TS sss (22.7)

While we could square r to get the cocfficient of determination, 12, in a regres-
sion equation, we can also derive r? based on our knowledge of the standard error.
R? is a ratio of the expected or explained sum of squares to the total sum of
squares. The explained sum of squares (£SS y) is the difference in the predicted and
mean values of Y:

ESSy =5(¥ —T)%. (22.8)

Recall that the total sum of squarcs for ¥ (SSy) is

sSy =2(¥ - 7). (22.9)

This ratio gives us the /* as well:

= ?;s - (22.10)
y

Similarly, we can just as easily calculate * based on the residuals instead of the
expected values. We take | less the residual snm of squared errors (RSS,) over the
total sum of squares. The RSS, is the sum of the squared differences between
the actual and predicted values of Y

RSS, =3(Y - ¥)%. 22.11)

Thus r? can be thought of in terms of unexplained variance, since the remainder
is a simple ratio of uncxplained variance in the model’s errors to the total variance
in the data:

2RSS, (22.12)

It should be clear now that the formulac for #? are equivalent:

2o - RSS, N ESSy

= . 22.13
SSy SSy ( )
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Having arrived at an understanding of how fo calculate and interpret ou
regression equation, we next move (o testing our hypothesis about the populaijg
given the sample data. That is, in practice we also need to check the Statistica]:
significance of our resulls, as we have done in the past {e.g., difference of meang
and correlation). In particular, we need to make sure that b is relevant in oue
relationship. But why b7

In regression our null hypotheses refer to the coeflicients. The null hypothegig
for the constant is that @ == 0. If we can reject the null, we can be confident that the
value of Y is greater than zero, when X = 0. Of course, this is likely to pg
substantively uninteresting.

The null hypothesis for the coefficient, b, however, is the one we typically care
about. Thus in regression our null hypothesis predominantly refers to 2 b = 0. In
other words, the null holds that the independent variable has no cffect on the
dependent variable. Thus we focus on b because it modilics the independent
variable, X. Graphically, the null hypothesis predicts a horizontal regression line,
i.c., a slope of 0. If we can reject the null hypothesis, we arc confident that the
relationship we find in the sample between the independent variable and depend-
ent variable exists in the population. Again, this is our major concern in hypothesis
testing. The eftect could be substantively large or small, but we need to test
whether it s likely to cxist beyond the sample.

As in the past, in order to test the null hypothesis for statistical significance we
need formulac for the t-ratio and the standard error of the coefficient. The
standard error of b depends on the ratio between the mean squared errors (MSe),
which captures the average variance in ¥ that is unexplained by X, and a product
of sample variance and size. In the bivariate case, we calculate it as such:

_E(r-1)

MSe == = (22.14)

Notice that the numerator of this equation is what we referred to above as the
sum of squared crrors. Thus we can abbreviate the equation for the mean squared
errors,

RSSe
N -2

and calculate the standard error of b accordingly:

MSe
s , 22.16
PN XN -1 (22.16)

Again, the test statistic is simply a ratio between the cocfficient and its standard
error:

MSe = (22.15)

= 'I—) (22.17)
Sh

Example: Education and Income

Alter calculating the t-ratio and standard esror we proceed as usual by sclecting
a level of statistical significance (conventionally, a = 0.05), noting the degrees of
freedom, and checking the t-distribution table (Appendix Table A.2) for the
corresponding p-value in order to decide whether or not to reject the nulf,'®?

Example: Education and Income

I R R R
R baoanun

We can demonstrate regression with a simple rescarch question: Does education
lead to greater income? Perhaps part of the value of an education is that it provides
skills that translate into more lucrative job opportunitics. We thus hypothesize a
positive relationship wherein years of post-secondary education predict annual
income. The null hypothesis is that education is not related to income. We are
going to use regression to solve for the predicted relationship:

Income = a - b x Education + e, (22.18)

Assume that Table 22.1 contains data from a simple random sample survey
of ten adults’ levels of income and education. The second and third columns
contain our collected data and we use the subsequent columns to calculate our
statistics. We begin by calculating the necessary statistics for use in the formulae.
In the data, the mean of income, Y == 38.6 and the mean of education is ¥ == 2.8.
The variance for income is 142.93 and for education it is 3.29. The process for
calculating the sum of squares {or income, 1286.4, should be familiar by now.

Table 22.1 Calculating regression for income and education

Incomein  P-S (X - X)x
Respondent  Thousands Education ¥ ~¥ XX (¥ ) Y-v" x-x7

1 44 4 54 1.2 6.48 29.16 1.44
2 30 3 -86 02 -1.72 73.96 0.04
3 51 2 124 -0.8 -9.92 153.76 0.64
4 40 4 1.4 12 1.68 1.96 1.44
5 14 0 -246 -2.8 68.88 605.16 7.84
6 44 5 54 22 11.88 29.16 4.84
7 34 2 -46 ~0.8 3.68 21.16 0.64
8 56 5 174 22 3828 302.76 4.84
9 42 3 34 0.2 0.68 11.56 0.04
10 31 0 -76 -28 21.28 57.76 7.84
Sum ZY == 386 XX == 28

Sum of products SP==141.2

Sum of squares SSy = 1286.4 SSX = 29.6




w0 0| Regression Example: Education and Income

: " : v SP .
Recall that our covariance can be abbreviated as 5 where i o St 2o g v
N Table 22.2 " Calculating the sum:of squared errors . -

SP=3%(X -X)x (Y -Y) e P-S
~ 1412, (22.19) thousands Education v Y- ¥ (Y - 7Y
With these statistics, calculating the slope of the linc is trivial: 44 4 44.32 -0.32 0.10
30 :
Sp o ; 39.55 ~9155 91.20
- _S_S_‘__ 0 3478 16.22 263.09
* ! 4 r ~432 18.66
1412 (22.20) L 0 25.24 1124 126.34
=506 44 5 49.09 ~5.09 2
34 > 5.91
=4.717. 6 SR -0.78 0.61
5 49.09 6.91 47.75
To situate the line on the x-axis we calculate the constant: 42 3 39.55 2.45 6.00
o 31 0 25.24 5.76 33.18
a=Y —bX Sum of squares RSSe = 612.84
= 38.6 ~4.77 x 2.8 (22.21) :
= 25.24.
i 1Q 1 ¢ : .1 1% Sl . 5 . Q- .
Ad this point we can interpret our regression results substantively. For instance, = Figure 22.5 Plot regression fine for
we might be interested in l}ow often those of average income participate. To that . education and income @
end, we calculate our predicted value of Y at the mean of X: 8- ®
Y=a+bX o o 2 ©
o < o}
=2524 +4.777 x 2.8 (22.22) 5 o
[
= 386 - 8 - o o)
Thus we expect an individual with the average amount of education to earn about o
$38,600. What would we expect for an individual with the highest amount of - OO
education in our sample to make? o
o _|

With the regression paramecters in hand we move to testing statistical signifi-
cance. We will continue with the tabular format to illustrate the calculation of
the sum of squared errors in Table 22.2. Our first step is to calculate the Y for
cach of the values of X. This allows us to draw our regression line, as in
Figure 22.5.

We begin by finding the mean sum of squares:

— F 4 & 1 I
¢ 1 2 3 4 5 B

Education

With the mean sum of squares we can calculate the standard error of b:

RSSe
MSe = - ~-——.--.-.—;——‘
N ~2 . o MSe
_z(y_.. y) sy X N —1
TN -2) (22.23)
22.2
_612.84 L 51269_61* (22.24)
i 29 %9

= 76.61. = 1.0l
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Finally, we can calcuate the t-ratio,

4.77 (22.25)

We now check the t-ratio against the t critical value in Appendix Table A.2°
for the appropriate degrees of freedom and confidence level. We find that:
we can reject the null hypothesis of no relationship between income and
participation. :

In addition, consider what this relationship means [or education more generally,
To what extent does education predict income? To answer this question we cap
calculate the coefficient of determination:

RSS,
2 __ ¢
s SS,
- ¥)?
- <\ 2
(Y -7) (22.26)
o 612.84
12864
=]+« 0.48
= 0.52.

In this example, the postulated relationship explains 52% of variation in Y.
In other words, 48% (1 — %) of the variation in income is unexplained by
education.

Note that we can do some rearranging of our formulae to arrive at the same
answers. We begin by calculating the sample standard error of the estimate, SEc
(also written as s,). This can be interpreted much like a typical standard devia-
tion, but this time in terms of the regression line. Given normally distributed
errors about 68% of the observations will fall within one standard error of the
line, 95% within two and and over 99% within three.

S’I,;J(.’ =

Y .
-2 (22.27)

Multivariate Regression

Then the standard error of b can be calculated with either the SEe or the MSE:

Mo (22.28)

SSx

\/ZG.GI
V296

= 1.61.

Similarly, here is the way to calculate #*> from Pearson’s r:

SP

P = M:;.L
SxSy
141.2
)
1.81 x 11.96 (22.29)

0.72
rF=Exr

= .72

= 0.52.

In order to present our regression results we collect these statistics into an casy-
to-read table. Typically regression tables list the names of the independent variable(s)
in rows of the first column with their corresponding coefficients and standard
errors in one or more subseguent columns headed by the name of the dependent
variable. Standard errors are presented in parentheses to distinguish them from the
coefficients. Oftentimes the coefficicnts are followed by stars that serve as a visual
heuristic denoting that the standard crror is small enough to reject the correspond-
ing null hypothesis. In Table 22.3 we have done exactly this. The star, as indicated
by the note at the table, tells us what we discovered above: that the ratio of the
coetficient on the education variable, 4.77, to its standard error is larger than
the critical value for ¢ at the 95% confidence level. Thus it is clear that we reject the
null hypothesis of no relationship between education and income.

fi

Multivariate Regression
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n this section we provide an introduction to the multivariate version
ordinary lcast squares regression model introduced above. We focus on de
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Table 2.3 Explaining income with

education

Dependent variable;
Income

Education 477*
2.13)

Constant 25.24*
{5.29)

N 10

R 0.52

Note: *p<0.05

the major intuition behind multivariate models and the interpretation of the
statistics in this context, while avoiding the matrix algebra necessary to calculate
the statistics in this section by hand. In addition, we note that the regression model
depends on several assumptions, which can be casily violated — and often are.
Therefore we also provide a discussion of the most {requent assumption violations
and their potential effects on model-based inferences.

The purpose of multivariate regression is the same as in the bivariate case. We
would like to estimate the effect of an independent variable on a continuous
dependent variable. However, in the multivariate case we also want to control
for and estimate the effects of other independent variables. Control in multivariate
statistics is a process of parsing out the specific effect .of each of two or more
independent variables on a dependent variable. That is, with multivariate analysis
we can “hold constant” the effects of one or more independent variables in order
to get a more precise estimate of the effect of another independent variable.

Controlling for multiple independent variables is important when the researcher
believes there to be a confounding relationship. Recall our discussion of confoun-
ders in Chapter 6. We think of a confounding variable as one that is correlated
with both the independent and dependent variable. In terms of causality — a topic
we return to in Chapter 23 - the concern is that change in the confounder leads to
change in both the independent and dcpendent variables, which is not perceived by
the researcher when the confounder is excluded from the model. Indeed the
researcher may incorrectly infer that the independent and dependent variable are
related, when in truth it is the omitted confounder that causes the variables in the
model to appear to correlate. In contrast, when we include the confounder in the
model with the other independent variable, we can estimate the specific effect of
each independent variable on the dependent variable, thereby ensuring that our
estimates are not the result of the previously omitted variable. The bias introduced
from omitting a relevant variable in the linear regression model is eponymously

called omitted variable bias and is a violation of onc of the major assumptions ol
the regression model, which we further discuss below.

To claborate on how multivariate regression can help us control for confoun-
ders, consider two independent variables, Xy and X, and a dependent variable,
Y. If X, is related to both Xy and Y, in a simple bivariate model of

Y =a-+bX, +e (22.30)

some portion of the explained variance in Y attributed to X; may be duc to the
potential confounder X;. In regression we control for X, by including it in the
model, which now has an additional coefficient as well:

Y=a+bXi+bXs+e. (22.31)

Regression will estimate partial slopes for each independent variable. Thus the
estimate of by is the average change in Y for each unit change in X'y, controlling
for X,. And, similarly, the estimate of #, is the average change in Y for cach unit
change in X3, controlling for X ;. We can expand the regression equation (o
include % independent variables:

Y=a+hX +6X+...+b Xy +e. (22.32)

Accordingly, the substantive interpretation of multivariate regression coeffici-
ents is akin to the bivariate model with the slight addition of the control, or “holding
constant,” terminology. That is, we would again describe the relationship between
each independent variable and the dependent variable in terms of the respective
slope coefficient by calculating ¥ for a particular value of, say, X1, while holding
X, constant, or at a set value. In a multivariate context it is particularly useful to
look at the change in ¥ as a result of changing X from onc substantively
meaningful value to another, perhaps a full unit or a standard deviation increase
or decrease. Importantly, when we do so we hold X', constant, as well as any other
independent variables in the model, to convey the specific effect of a change in one
variable, X in this case, on an expected change in the dependent variable, while
holding constant the other independent variables in the model.

In multivariate regression the interpretation of the coefficient of determination,
1%, takes on a new meaning as well. Specifically, the proportionate reduction in
error interpretation expands such that r? should still be thought of in terms of
explained variance, but now for all independent variables in the model. The
remainder, the variance in Y which is not explained by either X'; or X3, is the
ratio of unexplained variance in the errors to the total variance; i.e., the variance in
Y unexplained by all the independent variables in the model.

Assumptions

BN QG OPNO 2N 0N AdPADO 008N IA0CId000aNDSN0URI0RYU0NIB2ANLAR0O0NG0UPNeIR30000COE0CIA00Q000080¢

Like our other models, the linear regression mode! depends on a series of assumps

tions about the data-gencrating process that are required in order for us to arrive =
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o Figure 22.6 Nonlincar relationship
o
o o0 O .
7 Lo
0 .
P8 0 g
- OO oOO QO
059
> %o
4 ©
o ©
o
e
| T i i f T )
X

at good ecstimates. These are gencrally called the Gauss-Markoy assumptions.

While a full description of these is beyond the basic treatment we offer in this
book, we focus on the general intuition behind these assumptions and note the
most common violations that can lead to problems with inference.

As should be clear by now, regression models expect that the dependent variable
is a linear function of a specific set of independent variables, plus the error term.
We violate the linearity and additivity specification assumption when we misspecify

the relationships in the model. We typically do so when we try to model a -

relationship that is nonlincar or include the wrong set of variables in our model.
We discuss each of these in turn.

In the first case, modeling a relationship that is nonlincar (IFigure 22.6), recall
that the regression equation solves for a line. If the expected functional form of the
relationship is not lincar, the regression estimates will not properly capture the
relationship. We assume that the change in Y associated with a unit increase in Xy,
holding all other variables constant, is the same across all values of X';. That is, the
effect of a unit increase in X| does not depend on the value of X,. Violations of
this nature are typically dealt with in the regression context by transforming the
data. One or more variables of a nonlincar function can be mathematically
transformed (e.g., taking the log or a quadratic function) so as to create a lincar
relationship. One can ecither transform the independent variables or the entire
equation via the dependent variable. To make these decisions one often relies on
previous work and strong theory about the expected relationships.

Furthermore, because it is an additive model we are also assuming that the
change in Y from a unit X; is constant regardless of the values of the other
independent variables in the model. We can therefore state the relationship
between X and Y in terms of the average expected change while holding the
other varjables constant,

Assumptions

Additive 7 Interactive

: Xy 0

Figure 22.7 Additive and interactive relationships B

Frequently in social science we would like to consider cases where the relation-
ship between X and Y is not constant, but instead depends on a third variable,
say, X 5. These conditional relationships are called interactions and can be modeled
in regression. Consider first what it would mean to have a relationship between X
and Y that differs depending on X5. Most basically, we would expect different
slopes for the effect of X on Y depending on the value of X;. If so, the standard
posited linear and additive model is an incorrect depiction of the relationship.

For an interaction we adjust the linear regression model by making the rela-
tionship between X' conditional on X5 via a multiplicative term: Xy x X3. When
we rewrite the regression line we maintain the direct, or lower order, effects and
solve for the coefficient of the conditional relationship between X | and X;:

Y =a+ b Xy 4 02Xy + b3 X 1 X e (22.33)

Figure 22.7 shows two hypothetical graphs of relationships. The left graph
shows what we should cxpect from the standard regression model with two lines,
distinguished by their different values of X5, of similar slopes suggesting an addi-
tive relationship. The right graph shows a clearly non-additive relationship of the
effect of X on Y. Conditional on X the slope of the relationship between X | and
Y differs. In this example, those with a value of 1 for X, have a positive rela-
tionship and those with a value of 0 have a negative relationship.

In the second case, omission of a relevant variable, the remaining cocfficients will
be biased. Omitting a relevant variable can either raise or lower an estimatot’s mean
squared error, depending on the relative size of the variance reduction and the bias.
Of secondary concern, the estimate of the variance will be biased upward. To
understand why, recall from above our discussion of omitted variable bias and the
problem of attributing explained variance when there are potential confounders.

The idea of explained variance in the multivariate context is often aided by
Venn diagrams. These diagrams convey shared relationships between variables as
represented by overlapping circles. Figure 22.8, for example, shows three vari-
ables, each explaining some variance of the other. In regression, for example, we
would like to estimate the partial slope for the relationship between X and Y. In

doing so we would like to hold constant the effect of X, on Y. What the diagram :
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Figure 22.8 Venn diagrams by degree of collincarity “

rightly suggests about multivariate regression is thatin order to control for the effect
of X5 the slope coefficient for X| must not include the variance in Y thatisexplained
by both X| and X3, the darkest shading area in the diagram. That is, the partial
slope coefficient for Xy is the effect we get after removing the variance that is
explained by both X and X,. Likewise, the partial slope coefficient for X7 is the
effect we get after removing the variance that is explained by both X and X,. Thus
by including the confounder in the model we get an estimate of the effect of each
variable on the dependent variable that is not tainted by the effects of the other.

We also note that the inclusion of an irrelevant variable is not helpful either,
While the estimate of the explained variance remains unbiased in this case, the
estimate will not be cfficient. That is, we unnecessarily lose degrees of freedom as
the means squared error is raised.

The second assumption we make about regression is that the errors have an
expected value of zero. This mecans that on average and with enough data we get it
right and the errors balance out. Related to discussion of sampling from the
population, our model assumes that our estimates of the relationship will not be
perfect, but that our errors will be randomly distributed around a mean value,
which is correct, and thus zero. That is, to the extent we are off it is due to
random errot.

@ur crrors should also have the same variance and be uncorrelated with each
other. The former assumption is referred to as homoscedasticity, which basically
holds that the variance of each error term for each unit of observation is the same
for each independent variable. Furthermore, it assumes that knowing something
about the disturbance term from one observation tells us nothing about the
disturbance term for another observation. Violations here are referred to as
heteroscedastic errors, where the disturbances do not all have the same variance.
The latter assumption of uncorrelated errors is referred to as independence, which
is especially common when we have time-series or longitudinal data. IHere, repeat
obscrvations create correlation between consecutive errors, which are often called
autocorrelated errors, since the disturbances are correlated with one another.

We further assume that the independent variables are non-random and have
finite variances. That is, we require that our measures of our independent variables
are fixed, or reliable, such that if we were to repeat the data-gathering process (rom
the same sample we would arrive at the same values on the independent variables.
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Violations of this: assumption can occur when: measuring the independent vari-
flb]c; autoregrcsgng, or using a lagged valuc of the dependent variable as an
independent variable; and in simultancous equation cstimation, or situations in
which the dependent variables are determined by the simultaneous interaction of
several relationships.'*

Even more basic then the Gauss-Markov assumptions, it is also important to note
that the mathematics behind the regression equation depends on a couple of key
properties of the data. Foremost, the data must be full rank matrix for the regression
estimator to work. This requires that we have at least as many if not more observa-
tions than we have independent variables. In solving equations we must have more
knowns than unknowns or it is mechanically impossible to compute the estimates. In
addition, there can be no exact lincar relationships between the variables. These
violations lead to multicollinearity problems, where the variables are so strongly
correlated that it becomes difficult to parse out the partial effects of each.

In the presence of multicollinearity our estimates arc still good; however, the
variances of the estimates are quite large and unstable leading to potentially
invalid predictions from particular independent variables, even though the [ull
extent of prediction across all the variables will be correct. This is because there is
not enough independent variation in a variable to precisely estimate its impact.
Consider IFligure 22.8. As the shared explained variance increases, it becomes more
difficult to parse out the independent effects of each variable. Keep in mind that
this is because the model only calculates the partial slopes. Typically, the best
remedy for multicollinearity is to collect more data.

In sum, if the Gauss-Markov assumptions are met then the estimates we retrieve
from our ordinary least square models are good. But what do we mean by good? If
we change these assumptions (or they do not hold) then the regression estimator
may no longer be optimal; indeed in almost all cases it will not be optimal if one of
the assumptions is violated and we would want to choose a different kind of
model. If it holds, then the estimator can be shown to be the best estimator among
all the unbiased estimators, or all those that tell us how close our estimate is to the
true parameter value (if it can be known). Usually there are several unbiased
cstimators and in choosing between them we like the estimator that has a sampling

distribution with the smallest variance, i.e., the one that is the most efficient. Thus
mecting the assumptions leads to the best linear unbiased estimator (BLUE), or an
estimator that is lincar and unbiased and has the minimum variance among all the
linear unbiased estimators.

Example: Turnout by Region and Income

Consider the relationship between voter turnout rates in different states and the
region of the country. It is not unreasonable to test this relationship as different
regions of the country have had different historical experiences with the electoral
system. We might suspect that those in the North, for example, with their longer
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Table 22.4 - Voter turnout by South-
and non-South regions

Dependent variable:

Turnout
Region: South ~12:89*
(1.63)
Constant 57.23*
{0.92)
N 50
R? 0.57
Note:  *p<0.05

history of enfranchisement, to turn out to vote al greater rates. Thus our hypoth-
esis is that state turnout is a function of region of the country (South vs. non-
South). We can measure turnout simply as the percentage of those who showed up
at the polls out of all those who are eligible to vote.'?! South is a dummy variable
where southern = | and non-southern = 0. The null hypothesis is that there is no
relationship between region and turnout.

Table 22.4provides the results (from hypothetical data) of our bivariate regression
model. Given what we have discussed in the sections above, we should be able to
interpretevery statistic in themodel. Most importantly, we would fook to seeif wecan
reject the null hypothesis for our question about the relationship between region and
turnout. Looking at the row for the South variable, we can interpret the average
difference between two kinds of states on turnout. Notice that we do not include both
the South variable as well as a non-South variable in the model. This is because the
values of the singular dummy variable already represent both. We need a baseline for
comparison when cach dummy variable is set at 1 in order to substantively interpret
the line. Thus when dummying out a single variable into its composite categories we
always include k - 1 categories, and we interpret the coefficient as moving from
baseline category to particular dummy category in the model, holding all ¢lse con-
stant. Comparing a state in the non-South to the South (a one unit change from 0 to 1)
we see that the average turnout drops by nearly 13% (b = ~-12.89) for the South. This
result is statistically significant at p < 0.05 with a standard error of 1.63.

Of course, carcful observers of modern political behavior might raise a qucstion
about the regional diversity of the United States. Perhaps the differences across it
are greater than just the historical geographic divide. That is, the South non-South
dichotomy may capture more than just the South’s history of disenfranchising -
blacks. The reason for today’s lower turnout in the South may be due to any
number of characteristics prevalent in the South other than its history of disen- -
franchisement. For example, we know there is greater poverty in the South, If -
poverty is likely to be associated with both the independent variable, South, and

Example: Turnout by Region and Income

‘Table 22.5 Voter turnout b&/ fe.gi‘f)h' "
and income AR

Dependent variable:

Turnout
Region: South -10.12¢
(1.68)
Income 0.004*
(0.001)
Constant 36.66"
(6.02)
N 50
R 0.65
Note:  *p<0.05

the dependent variable, turnout, how can we be sure then that poverty is not
driving the low turnout rates instead of the history of disenfranchisement? To use a
term we introduced above: is it possible that poverty is confounding the relation-
ship we found in the bivariate model above?

Mu]tivariate regression allows us to test the effect of both our original regional
varl.able as well as the new income variable (per capita income) in the same model.
By including them both as additive terms we can look at the effect of each on
turnout while holding the other constant:

Y == g+ b(South) + b{Income) +- e. (22.34)

Ix} Table 22.5 we present the results of the multivariate regression model. Inter-
preting the constant we note that states in the North with a zero per capita income
bavc an average turnout rate of only 37%. Of course no state has a zero average
income so such an interpretation tells us substantively little. As before, we sce a
negative sign on the South coefficient. We interpret the slope of the line here to
mecan that in comparison to the North the southern states have about 10% lower
turnout on average, holding income constant. On the contrary, the income coeffi-
cient tells us that there is a positive relationship between a state’s per capita income
and turnout. For a one unit increase in income we should expect a 0.004% increase
in turnout. Of course, that is a very small increase given that the variable ranges
several thousand points over the 50 states. We can make use of the standard
deviation to provide a more substantively informative interpretation. Given a
standard deviation of 614.47, we can say that a one standard deviation increase
inincome leads to a 2.5% increase in turnout. For both variables the relationships
are significant, given the relatively small size of the standard errors. Finally, the r?
indicates that 65% of the variance in turnout is explained by the independent
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variables. Note that including the income variable moves the explained variance
up 15% from the bivariate model.

CONCLUSIONS

Regression is a frequently utilized tool for understanding the relationship between
one or more independent variables of any level of measurement on a continuous
dependent variable. It provides more explanatory leverage than any other tech-
nique we have discussed thus far by estimating the average effect of a unit change
in the independent variable on the dependent variable. However, like all paramet-
ric models, regression makes various assumptions that are easily violated in
practice. As such, a careful employer of regression will look to diagnose how well

their model meets the assumptions before trusting their results.
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Causal Inference

Much of social scicnce rescarch is concerned with causal relationships. In this
chapter we explore the general framework for making causal statements using
different methodological approaches. With experiments as our point of reference,
we revisit regression in the context of a causal treatment variable, and then
introduce a technique to evaluate the causal cffect of a treatment with observa-
tional data by matching treated and control units. Before doing so we lay out the
specific assumptions necessary for causality and the different motivating factors
for cach causal model.

Assumptions and Assignment

Why causal inference? Our statistical objective thus far has been to infer associ-
ations among variables, From these associations we can estimate probabilities of
events with the statistical methods introduced above, provided that the external
conditions remain the same. This allows us to answer important questions, like:
What is the mean number of parties in democracies? Are turnout and geographic
regions related? Are greater issue dimensions associated with greater numbers of
partics? On the contrary, we need causal inference when we would like to infer
probabilities under different conditions. That is, when we would like to know what
would happen if something else happened. When we expect probabilities to change
in response to external factors we must rely on causal analysis. Thus, causal
questions ask somewhat different questions: What are the effects of worker-
training programs? Does smoking catise cancer? Does viewing a campaign adver-
tisement change vote preferences? In each case we arc asking a question that posits
different probabilities under different conditions; attending versus not attending a
worker-training program; smoking versus not smoking; viewing versus not
viewing a campaign ad.

Throughout the statistics section of this book we have identified hypothesis tests
that are based on covariance between suspected cause and effect. However, the
tests themselves are only covariational; that is, they are not explicitly causal. As we
discussed in Chapters 21 and 22, in order to make claims of causality we need
more than the evidence of covariation between cause and effect that we can attain
from these statistical methods. Minimally, we also need the cause to precede the
effect and to be able to climinate plausible alternative causes. Thus, causal
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