Diagnostic methods in hematology I – Complete blood count

Doc. MUDr. Jan Živný, Ph.D. jzivny@LF1.cuni.cz

22496-5865

Institute of Pathophysiology 1.LF UK

Outline

- Diagnostic methods in hematology
 - General manifestation of hematologic diseases
 - Complete blood count
 - Basic evaluation of anemia
 - White blood cell count

What we analyze?

- 1. Blood
- 2. Bone marrow
 - bone marrow aspiration
 - trepanobiopsy
- 3. Lymph nodes extirpation

Hematopoietic Cells

Bone marrow

Blood / Lymph nodes

Manifestation of hematologic diseases

Manifestation of hematologic diseases

- Hypoxia
 - local
 - tissue ischemia tissue damage Inflammation - necrosis

systemic

- cardiovascular signs, dyspnea, acidosis
- Chronic or Frequent infections
- Bleeding / Thrombosis
- Inflammation (autoimmunity)

Basic mechanisms of hematologic disease manifestation

Polycytemia

 \rightarrow hyperviscose blood \rightarrow thrombosis \rightarrow embolia \rightarrow hypoxia

- Cytopenia
 - Leukopenia

- \rightarrow frequent infections
- Anemia \rightarrow hypoxia
- $\begin{array}{ll} \mbox{Thrombocytopenia} & \rightarrow \mbox{bleeding} \rightarrow \\ \mbox{hypovolemia} \rightarrow \mbox{shock} \rightarrow \mbox{tissue hypoxia} \end{array}$
- Pathologic leukocytosis (blasts)
 - − →obstruction of lung capillaries → dyspnea → pulmonary hypertension → hypoxia

Laboratory Tests

Basic:

• Complete blood count

Specialized:

- Tests for iron metabolism
- Measurement of soluble factors (e.g. cytokines, antibodies, complement subunits.....)
- Cytogenetic and genetic analysis (mutations)
- Immunophenotyping of BM or PB cells
- Detection of antibodies to self antigens (e.g. RBC)
- Histochemical analysis of cell enzymatic activity
- Functional tests (Clonogenic assay)

Complete Blood Count (CBC)

Complete Blood Count (CBC)

- Hemoglobin concentration (Hb)
- Hematocrit (Hct)
- RBC count
- RBC parameters
- WBC count
- WBC differential count
- Platelet count
- Platelet parameters
- Description of blood smear

Hematology Analyzers

First automated cell counters came out in the 1950s

How the analyzers work ?

- Electrical impedance principle (Coulter)
 - cells break an electric circuit as they pass though the aperture between electrodes
 - indicate the presence of a cell (number) and the size of a cell

How the analyzers work ?

- Optical principle
 - cells break the laser beam the number of events (cell number) and light scatter property of the cells are recorded
 - size of the cell (forward scatter)
 - granularity of the cell (side scatter)

When to do CBC?

Suspected disease

hematologic, inflamatory, neoplastic, or infection

Screening

- infants (<1yr.), pregnant women, elderly patients, and patients with nutritional abnormalities
- Controversial values during routine patient evaluation

Hemoglobin concentration (Hb) and Hematocrit (Hct)

- Depends on age and sex of the patient
- Depends on hydratation of the patient (e.g. pregnancy)
- F: Hb 121-151 g/L Hct 36-44%
- M: Hb 138-170 g/L Hct 41-50%
- Less then 70 g/L usually symptomatic tissue hypoxia

ANEMIA

Anemia is clinical sign!! not a disease

- is considered to be present if the Hb (or Hct) is below the lower limit of 2 standard deviations (-2SD) or the 95% confidence interval for the normal population
- **Statistics:** 2.5% of normal individuals are classified as anemic.
- WHO criteria: Hb < 125 g/L in adults
- US criteria:
 - M: Hb < 135 g/L
 - F: Hb < 125 g/L
- 1.LF criteria
 - M Hb < 135 g/L
 - F Hb < 116 g/L

Anemia

- Absolute if the RBC mass is decreased
- Relative if associated with an increased plasma volume
 - e.g.
 - overhydration (volume overload)
 - pregnancy
 - macroglobulinemia
 - postflight astronauts ©

Causes of anemia

- Insufficient RBC production: deficient erythropoiesis
- Excessive RBC loss

Insufficient RBC production

- Nutritional deficiencies (iron, folate, vitamin B12, vitamin B6)
- Anemia of chronic disease
- Renal, liver, or endocrine disease
- Bone marrow failure (aplastic anemia, pure red cell aplasia, sideroblastic anemia)
- Bone marrow infiltration (myelophthisic anemia)

Complete loss of erythropoiesis results in Hb decline of
????????

Insufficient RBC production

Complete loss of erythropoiesis results in Hb

decline of about 10% / wk

Wk	1	2	3	4
M [g/L]	160	144	129	116
F [g/L]	140	126	113	102

– WHY??

Insufficient RBC production

 Complete loss of erythropoiesis results in Hb decline of about 10% / wk

– WHY??

- Physiologically ~ 1 2 % of RBC are reticulocytes
- Reticulocytes mature in 1 day to erythrocytes

Excessive RBC loss

- Bleeding
 - Acute: shortly after massive blood loss Hb normal due to vasoconstriction (normochromic normocytic)
 - Chronic leads to depletion of iron which results in insufficient RBC production
- Hemolysis
 - intrinsic
 - extrinsic
- Hemoglobin disorders (hemoglobinopaties, thalasemia) 23

Red blood cell (RBC) count

- F: 3.9 5.0 x 10¹² erythrocytes / L
- M: 4.5 5.7 x 10¹² erythrocytes / L

RBC parameters (indices) - 1

Differential diagnosis of anemia (morphologic criteria)

MEAN CORPUSCULAR VOLUME = MCV

- MCV (fL) = Hct / RBC count
- Histological classification of anemias
 - microcytic anemia (< 80 fL)
 - normocytic anemia (80 95 fL)
 - macrocitic anemia (> 95 fL)
- Not useful to detect anisocytosis = variation in cell size
- Reticulocytosis may increase MCV

RBC parameters (indices) - 2

MEAN CORPUSCULAR HEMOGLOBIN = MCH

- MCH (pg/cell) = Hb / RBC count
- MCH 32.7 33.7 pg / cell
- Hypochromia MCH < 27 pg / cell</p>

MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION = MCHC

- MCHC (g/L of RBC)= Hb / Hct
- MCHC: 267 355 g / L

hypochromic microcytic anemia

macrocytic anemia hypersegmented neutrophil

RDW – red cell distribution width

- Measure the variation of red blood cell (RBC) size (volume)
- RDW can be reported statistically as
 - coefficient of variation (RDW-CV) in %
 - = 1 standard deviation of RBC volume / MCV x 100%
 - affected by the average RBC size
 - standard deviation (RDW-SD) in fL
 - is measured by calculating the width (in fL) at the 20% height level of the RBC size distribution histogram

RDW - red cell distribution width

Normal RDW

- RDW-CV 11.6 14.6 %
- RDW-SD 39-46 fL
- Higher RDW values indicate greater variation in RBC size = anisocytosis

• WHY TO CALCULATE RDW??

WHY TO CALCULATE RDW?

- More sensitive for diagnosis of early nutritional deficiency (iron, folate, or vitamin B12)
- Along with MCV narrowing the cause of anemia
- Flagging samples that may need manual peripheral blood smear examination (red cell fragmentation, agglutination, or dimorphic red blood cells)

Narrowing the cause of anemia using RDW and MCV EXAMPLES

Elevated RDW and normal MCV:

- Early iron, vitamin B12, or folate deficiency
- Dimorphic anemia (for example, iron and folate deficiency)
- Sickle cell disease
- Chronic liver disease
- Myelodysplastic syndrome

Narrowing the cause of anemia using RDW and MCV EXAMPLES

- Elevated RDW and low MCV:
 - Iron deficiency
 - Sickle cell-β-thalassemia
- Normal RDW and low MCV:
 - Anemia of chronic disease
 - Heterozygous thalassemia
 - Hemoglobin E trait

Narrowing the cause of anemia using RDW and MCV EXAMPLES

• Elevated RDW and high MCV:

- Folate or vitamin B12 deficiency
- Immune hemolytic anemia
- Cytoxic chemotherapy
- Chronic liver disease
- Myelodysplastic syndrome

• Normal RDW and high MCV:

- Aplastic anemia
- Chronic liver disease
- Chemotherapy/antivirals/alcohol

Reticulocyte count

- Daily RBC replacement 40,000 50,000 /μL –0.5 – 1.5% of RBC count
 - -Maturate within 1 day in peripheral blood
- Criteria of marrow activity
 - -Reticulocytosis
 - response to blood loss (hemolytic anemias, severe bleeding)
 - response to therapy of anemia (e.g. B12 or Fe def.)
 - -Reticulocytopenia
 - deficient erythropoiesis (nutrient, hormonal, etc.)

Reticulocyte count

 Reticulocyte index = RI corrects the reticulocyte count for the severity of anemia

> RI < 2% indicates hypoproliferative component of anemia RI = Reticulocyte Count x (HCT / normal HCT)

Flow cytometry Reticulocyte count

Figure 2 FSC vs SSC dot plot showing gate drawn around red blood cell population.

Platelet count and indices

- Highly dependent on blood collection method
- Platelet count
 - 140 440 K /µL
- Platelet indices
 - MPV
- Platelet function

Will be discussed in week 3

WBC count

- Total leukocytes: 4 11 x 10⁹ / L
 - -> 11 x 10⁹ / L: Leukecytosis
 - < 4 x 10⁹ / L: Leukepenia
 - In normal pregnancy
 - total leukocytes <14.5 x 109/L (increase of neutrophils)
 - Neutrophils: 2.5–7.5 x 10^9 / L
 - Lymphocytes: 1.5–3.5 x 10⁹ / L
 - Monocytes: 0.2–0.8 x 10⁹ / L
 - Eosinophils: 0.04-0.4 x 10⁹ / L
 - Basophils: 0.01-0.1 x 10⁹ / L

Leukopenia

- Supply of leukocytes is depleted
 - e.g. infection or treatment (chemotherapy or radiation therapy)
- Hematopoietic stem cell abnormality
 - growth/maturation is affected
 - myelodysplastic syndrome
 - leukemia
- Most often due to a lower number of neutrophils, i.e. neutropenia (neutrophil count < 1.5 x 10⁹/L)

Leukocytosis

- Reactive leukocytosis
 - response to infection, stress, inflammatory disorders
- Abnormal production
 - leukemia
- Individual cell component or a combination, depending on the cause

Clinical manifestation of leukopenia and leukocytosis

- Malaise
- Chills
- Fever (related to infection)
- Extreme leukocytosis
 - capillary obstruction (leukemia blasts)

Reactive leukocytosis

 can be classified on the basis of the white blood cell type affected.

Neutrophilic leukocytosis (>7.5 x 109/L)

- Acute bacterial infections
- Sterile inflammation/tissue necroses
 - myocardial infarction
 - burns
 - crush injuries

Eosinophilic leukocytosis (> 0.4 x 109/L)

- Allergic disorders
 - asthma
 - hay fever
- Parasitic infections
- Drug reactions

Basophilic leukocytosis (> 0.1 x 109/L)

- Allergic reactions (IgE mediated)
- Blast crisis of AML

Monocytosis (> 0.8 x 109/L)

- Chronic infections
 - tuberculosis
 - Bacterial endocarditis
 - Rickettsiosis
 - Malaria
- Collagen vascular disease
- Inflammatory bowel disease

Lymphocytosis (> 3.5 x 109/L)

- Accompanies monocytosis (chronic infections)
- Viral infections
 - e.g. hepatitis A, cytomegalovirus (CMV), Epstein-Barr virus (EBV)
- Bordetella pertussis

Abnormal clones of white blood cells

- Lymphoid and myeloid neoplasms depending on the type of white cell proliferation
- Characterized by
 - maturity and differentiation of the individual cell types
 - genetic abnormalities
- Divided into
 - acute leukemias
 - acute myeloid leukemia
 - acute lymphoblastic leukemia
 - chronic leukemias
 - chronic myeloid leukemia
 - chronic lymphocytic leukemia

WBC differential count

- Segmented neutrophils: 34-75%;
- Band neutrophils $\leq 8\%$;
- Lymphocytes: 12 50%;
- Monocytes: 3-15%;
- Eosinophils \leq 5%;
- Basophils $\leq 3\%$.

Immature granulocytes "left shift" of differential count

Include metamyelocytes, myelocytes, promyelocytes, and/or blasts

Infections

- growth factor therapy
- chronic leukemia
- acute leukemia

Blood smear

- In case of pathologic values in automated analysis of blood count
- Morphology of blood elements
 - <u>Anisocytosis</u> = variation in size
 - <u>Poikilocytosis</u> = variation in shape (schistocytes = RBC fragments; ovalocytes; spherocytes)
 - Atypical leucocytes (e.g. blasts)

Erythrocytes

Platelet

Band Neutrophil

Eosinophil

Neutrophil

Lymphocyte

Monocyte

Basophil

← spherocytes

(RBC spherical in shape w/o area of central pallor)

schistocytes \rightarrow

(RBC fragments)

Sickle Cell Disease

Hemoglobin (Hb) S: záměna valinu za glutamin v pozici 6 Hb beta řetězce

Peripheral blood film chronic myeloid leukemia

many mature granulocytes (arrow) and occasional blast cell (double arrow)

