Vaclav Hampl

Regulation of homeostasis

- Nerves
 - √ fast
 - ✓ governing
- · Hormones
 - mainly metabolism, growth, differentiation, reproduction

Hormone

- Substance produced by a specific cell type usually accumulated in one (small) organ
- Transport by blood to target tissues
- Stereotypical response (receptors)

Hypothalamus:

- ·GHRH, CRH, TRH, GNRH
- ·Somatostatin
- ·ADH

Pituitary:

- ·Growth hormone
- ·Prolactin
- ·ACTH, MSH
- ·TSH
- ·FSH & LH
- ·Oxytocin
- ·ADH

Pancreas:

- ·Insulin
- · Glucagon

Ovaries:

- Estrogens
- Progesterone

Hormone production: "Classic" glands

Epiphysis:

· Melatonin

Thyroid gland:

- ·T3, T4
- · Calcitonin

Parathyroid glands:

·Parathyroid h.

Adrenal cortex:

- · Cortisol
- · Aldosterone
- Androgens

Adrenal medulla:

· Catecholamines

Hormone production: Less traditional sources

Endothelium:

- · Endothelins
- ·NO
- ·Prostanoids,...

Immune system:

·Cytokines

Platelets, mesench

·Growth factors

Placenta:

· All hormones

Adipocytes:

·Leptin

Cardiocytes:

·ANP

Kidney:

- ·Erythropoietin
- ·RAS

GIT:

- ·Gastrin
- · Cholecystokinin
- ·Secretin,...

Gonads:

- ·Inhibins
- · Activins

Hormones, cytokines, growth factors

- Common aspects:
 - ✓ small quantities
 - ✓ regulate other cells
 - ✓ act through receptors
- Tight interactions between immune and endocrine systems

	Hormones	Cytokines	Growth factors
Production	Only specialized cells	Many cell types	
	Few places	Many places	
Action	Long-range	Mostly short- range	Short- range
Pleiotropy	Low	High	Medium
Redundance	Low	High	Medium
Regulation	Tight	Loose	
Function	Homeostasis	Defence	Remo-
	Ontogenesis		deling

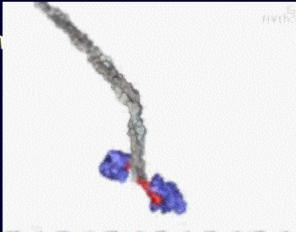
Endocrine and nervous systems

- Many common aspects:
 - ✓ small quantities
 - ✓ regulate other cells & tissues
 - ✓ act through receptors
 - functional overlap between some hormones & neurotransmitters
 - √ excitability
 - ✓ both can secrete into blood

Types of humoral signalization

- Endocrine
 - · from gland via blood to a distance
- Neurocrine
 - · via axonal transport and then via blood
- Paracrine
 - neighboring cells of different types
- Autocrine
 - neighboring cells of the same type or the secreting cell itself

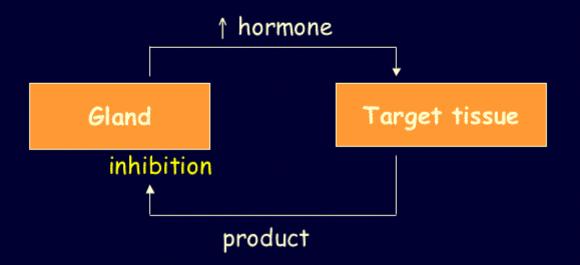
Chemical characteristics of hormones

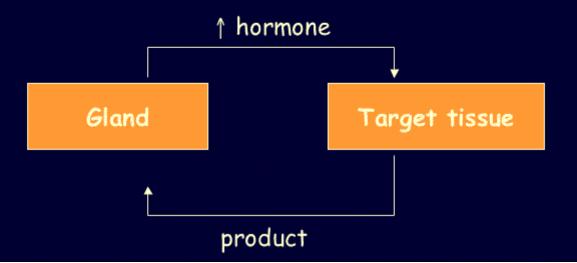

- Amines (from tyrosine)
 - · hydroxylation catecholamines
 - · iodination thyroid hormones
- Peptides/proteins
- Steroids (from cholesterol)
 - · adrenocortikoids
 - · sex hormones
 - · active metabolites of vitamin D

Genetic disorders

- Peptides/proteins:
 - Often gene coding the hormone
 - · -> ↓ activity (e.g. insulin)
- Amines & steroids:
 - gene coding enzyme catalyzing the synthesis
 - -> ↓ hormone level
 - · and/or ↑ precurzor level
 - e.g. ↑ androgens in deficient estrogen synthesis

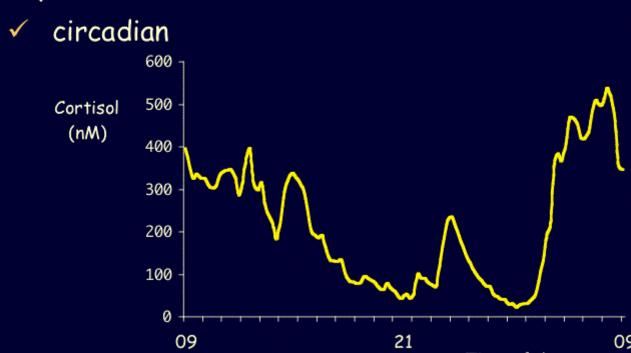
Hormone release


- Proteins & catecholamines:
 - secretory granules, exocytosis
 - for incorporation into granules often special sequences cleaved off in granules or after release
 - stimulus →
 ↑ [Ca²⁺]_i (influx, reticulun
 → granules travel along
 microtubules towards
 cell membrane
 (kinesins, myosins)
 → fusion


Hormone release

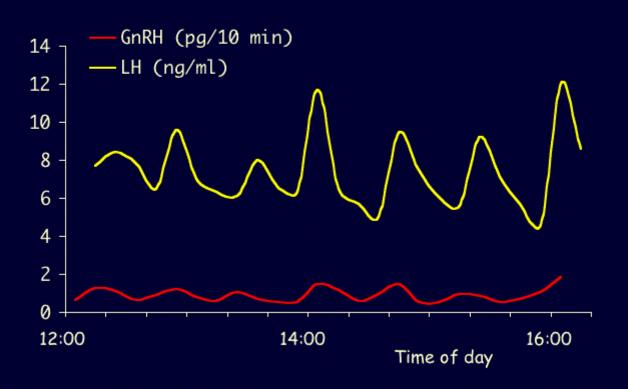
- Thyroid hormones:
 - ✓ made as part of thyroglobulin
 - ✓ stored in folicles
 - √ T3 & T4 secreted by enzymatic cleavage
- Steroid hormones:
 - leave the cell across cell membrane right after synthesis (no storage)

- Feedback
 - Negative


- Feedback
 - ✓ Negative
 - Positive (only narrow dose range)

- Feedback
 - Negative
 - ✓ Positive (only narrow dose range)
- Nerve regulation
 - ✓ pain, emotions, sex, injury, stress,...
 - e.g. ↑ oxytocin with nipple stimulation

Stress etc. CRH secretion in hypothalamus stimulation ACTH secretion in pituitary plasma ACTH cortisol secretion in adrenals plasma cortisol


Rhythms

Time of day

- Rhythms
 - ✓ circadian
 - light/dark fine/tune endogenous rhythm of cells & suprachiasmatic nucleus of hypothalamus
 - · melatonin, cortisol
 - ✓ monthly
 - ✓ seasonal (day length; atavistic)
 - developmental (puberty, menopause)
- Pulsations/oscillations
 - · gonadotropins

Pulsatility in GnRH & LH release

Hormone action

- Receptor
 - specificity of a response to a given hormone
- (Second messenger)
- ∆ activity or concentration of enzymes, transcription factors, or structural proteins

Hormone action

Peptides/proteins Catecholamines

Receptor in cell membrane

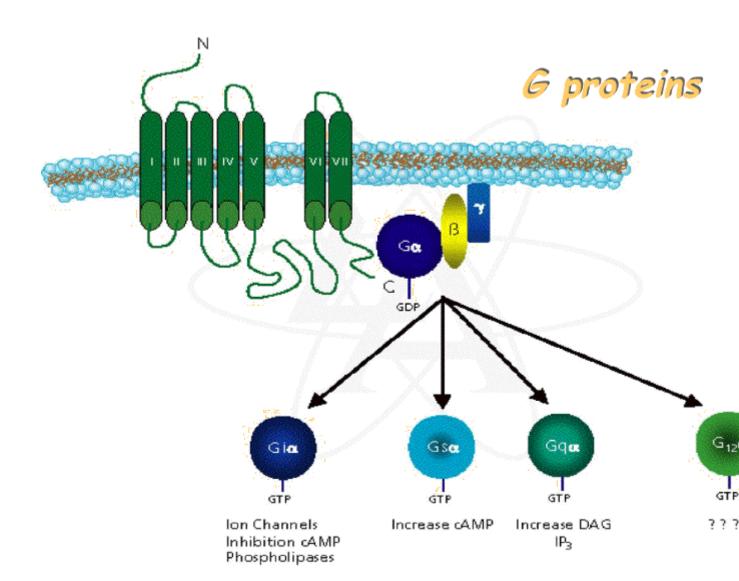
Second messengers → ∆ protein activity

Fast

Steroid & thyroid hormones

Receptor in cytosol or nucleus

 Δ gene expression

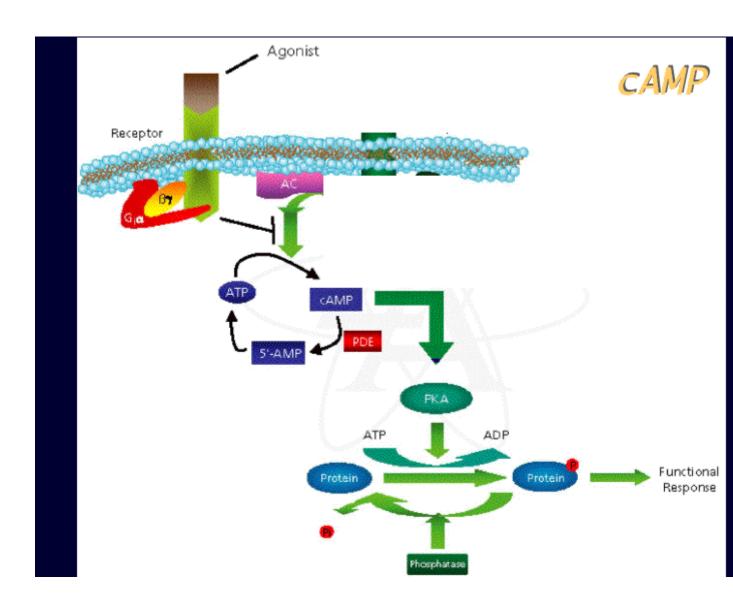

Slower

Receptors

- ∆ affinity or expression modulates hormone action
 - · e.g. phosphorylation, pH, osmolarity,...
- down-regulation
- up-regulation

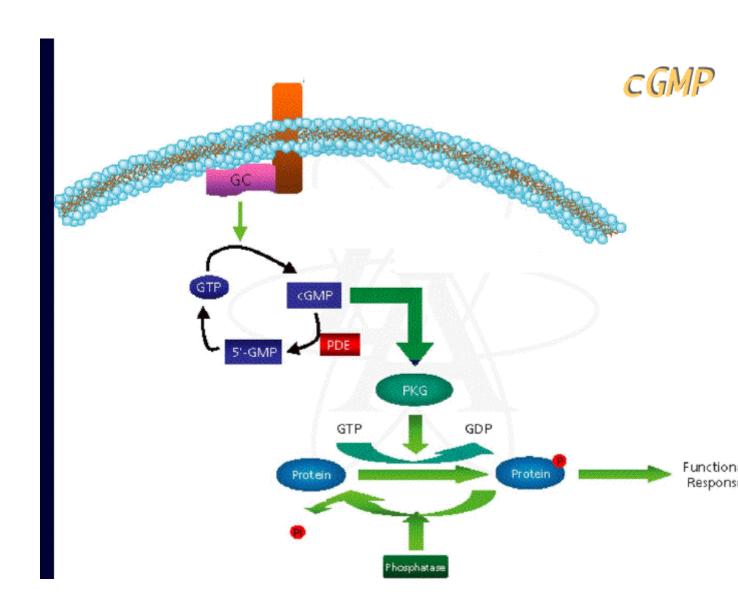
Membrane receptors

- Large glycoproteins, often several subunits
- Typically 7x through membrane
- After activation:
 - dissociation from the hormone
 - or endocytosis of the complex, then degradation in lysozomes, recycling



G proteins

- a subunit binds activated receptor
- releases GDP, binds GTP
- ✓ dissociates from its b subunit & the receptor
- ✓ binds & activates/inhibits effector
 (adenyl/guanylate cyclase, phospholipase C)
- ✓ hydrolyzes GTP to GDP
- ✓ re-associates with its b-g dimer


Intracellular signal transduction (second messengers)

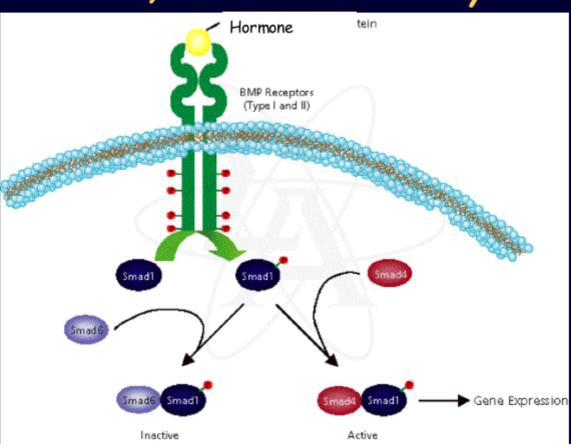
- ✓ cAMP
- ✓ cGMP
- ✓ IP₃
- ✓ Ca/calmodulin
- ✓ tyr kinases
- ✓ Smad
- ✓ MAP kinases
- One hormone can use several systems (in various cells or for different functions)

Adenylate cyclase - cAMP - protein kinase A

- ✓ PKA phosphorylates target enzymes (in/activation)
- ✓ sometimes complementary (e.g. Ca channel activation + Ca pump inhibition)
- can affect gene expression
 - cAMP regulatory element (CRE) on DNA binds transcription factor, CRE binding protein (CREB)
- cAMP hydrolysis: phosphodiesterases

Ca-calmodulin

- ✓ G proteins activate Ca channels (ROC)
- ✓ Ca influx stimulates Ca release from endoplasmic reticulum (CICR)
- Ca, mainly by binding calmodulin, modulates many enzymes, often via protein kinase C


Phospholipase C - IP3 & DAG

- from cell membrane phospholipids
- ✓ IP₃ activates Ca channel of the endoplasmic reticulum
- ✓ DAG: ↑↑ PKC affinity to Ca

Tyrosin kinases

- Receptor autophosphorylation upon hormone binding unmasks tyr-kinase activity
 - typically insulin (& growth factors)
- Or conformational change of the receptor upon hormone binding attracts & activates cytoplasmic tyr-kinases
 - e.g. growth hormone
- tyr-kinases phosphorylate cascades of tyr & ser kinases & phosphatases

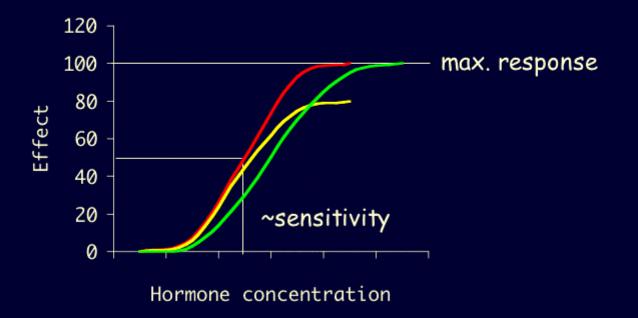
Inhibins, activins & TGF system

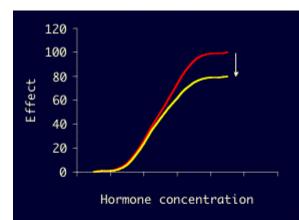
Intracellular receptors

- Lipophilic hormones:
 - ✓ Thyroid
 - ✓ Steroid
 - ✓ Vitamin D
- Enter the cell or all the way to nucleus, where they bind the receptor (large oligomeric protein)

Intracellular receptors

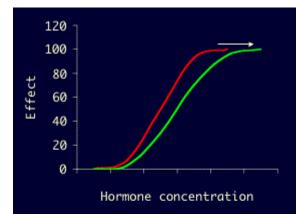
- C-terminal domain binds hormone
 - ✓ hormone specificity
- Central domain binds DNA
 - ✓ (HRE, hormone regulatory unit, 8-15 bases)
 - ✓ gene specificity
- N-terminal domain activates RNA polymerase


Function of intracellular receptors


- Hormone displaces inhibitory protein (e.g. HSP)
 - → translocation to nucleus, DNA binding
 - · corticoids
- Or hormone binding displaces the receptor from resting, inhibitory association with DNA
 - · thyroid hormones

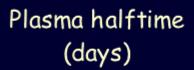
Magnitude of response

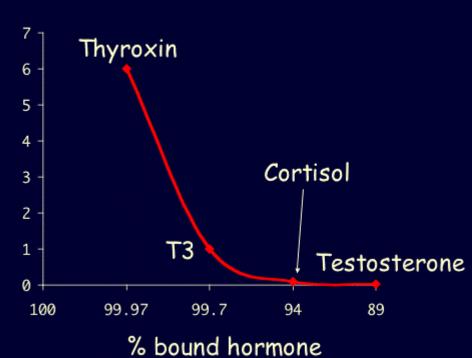
- hormone concentration
- number of receptor molecules
- duration of exposure
- intracellular conditions (second messengers, kinases,...)
- synergistic or antagonistic influences


Dose/response

Decrease in max. response

- less target cells
- less receptors
- less/lower activity of enzymes activated by hormone
- less substrate for final product
- more non-competitive inhibitor


Drop in sensitivity


- less receptors
- lower receptor affinity
- modulating factors
- faster hormone degradation
- antagonistic hormones

Transport of hormones

- Freely in blood:
 - ✓ Catecholamines
 - ✓ Most peptides
- Specific transport globulins (from liver):
 - ✓ Steroids
 - ✓ Thyroid hormones

Transporter binding lengthens hormone halftime

Inactivation of hormones

- Target tissue uptake
- Metabolic degradation (plasma, <u>liver</u>, kidney)
- Excretion in urine
 (\$\psi\$ by transporter binding; low for proteins also re-absorbtion & degradation in kidneys)