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PREFACE 

This book is a product of love and respect. If that sounds rather odd I initially 
apologise, but let me explain why I use those words. The original manuscript was 
of course Freudenthal’s, but his colleagues have carried the project through to its 
conclusion with love for the man, and his ideas, and with a respect developed 
over years of communal effort. Their invitation to me to write this Preface ena- 
bles me to pay my respects to the great man, although I am probably incurring his 
wrath for writing a Preface for his book without his permission! I just hope he 
understands the feelings of all colleagues engaged in this particular project. 
Hans Freudenthal died on October 13th, 1990 when this book project was well in 
hand. In fact he wrote to me in April 1988, saying “I am thinking about a new 
book. I have got the sub-title (China Lectures) though I still lack a title”. I was 
astonished. He had retired in 1975, but of course he kept working. Then in 1985 
we had been helping him celebrate his 80th birthday, and although I said in an 
Editorial Statement in Educational Studies in Mathematics (ESM) at the time 
“we look forward to him enjoying many more years of non-retirement” I did not 
expect to see another lengthy manuscript. Most people in their 80s do not aspire 
to write yet another book (particularly if they have already written nearly 200 pre- 
vious publications in mathematics education -- see the list at the end of this book). 
But of course Freudenthal was not like most people, and that is one reason why 
this book is so important. Although it wasn’t his last piece of academic writing, 
it was his last major contribution to our field and it offers the reader a kind of syn- 
opsis of his perspectives. It is the definitive Freudenthal. 
Not that there is anything final about the book nor about its messages. As Leen 
Streefland said in his tribute in ESM 21/6 “he himself already prepared the first 
milestone of the post-Freudenthal era”, namely this book. In particular the book 
poses the kinds of questions and issues which Freudenthal himself enjoyed grap- 
pling with, and which in another way show the love and respect he had for chil- 
dren. He rarely spoke overtly about this, but shines through all his writing as a 
beacon to all of us in mathematics education, and in education generally. His 
writing focuses as always on the essential concerns of mathematics education, as 
he saw them, and children are our principal concern. 
The book is sprinkled with anecdotes and stories, with references to colleagues 
in the pursuit of understanding and wisdom, both adult and children, with respect 
to the predecessors on whose shoulders he stood, and with criticisms of those 
whose ideas he did not approve of. The language is “Freudenthal-English” and I 
do not say this in any unkind way. He enjoyed languages so much, and he was so 
aware of the dangers of words controlling his thoughts, that he tried to be creative 
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craftsman with his languages. He said in his letter of May 1989, when he sent me 
his draft manuscript: “I did it by text processor -- a time-consuming activity be- 
cause the easiness of correcting makes it difficult to stop correcting”. 
If you have read Freudenthal before, you will know something of what to expect 
-- the insights, the reflections, the charming and apposite examples, the scathing 
criticisms, the amusing asides, the wisdom -- they are all here. If you haven’t read 
any of his writings before, then I have only one piece of advice -- don’t try to 
skim-read, or to read too quickly. You need to engage with his words, in order to 
relate to his ideas. If you can manage to do that, I am sure that you, like everyone 
else who has engaged with them, will never be quite the same person again. That 
is, I believe, what he would have wanted. 

Alan J. Bishop 



APOLOGY AND EXPLICATION 

This is neither preface nor introduction but rather an apology and a warning: the 
present book adds nothing but itself to work that I have published in the past in 
various places. I have renounced originality, I have refrained from offering the 
reader any new experiences, aspects, or ideas he might feel entitled to expect -- 
reason to apologise. Resuming old ideas, my aim is now one of comprehensive- 
ness, not by compiling but by selecting and streamlining, by including essentials 
and eliminating contradictions. Views, even when supported by evidence, are 
susceptible to change. My present viewpoint is “here and now”, that of review 
rather than of overview. I felt prompted by two experiences. Negative: reading 
dated quotations from my own work where I did not recognise myself. Positive: 
a visit to China, where in lectures, seminars, and discussions I tried to display and 
illustrate my view on mathematics education in all its aspects. The present book 
somehow reflects these talks, albeit in no way textually. Therefore the subtitle, 
meant as an homage to my listeners who, by their critical curiosity, induced me 
to improve on clarity and concreteness. 

Hans Freudenthal 

xi 
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CHAPTER 1 

MATHEMATICS PHENOMENOLOGICALLY 

1.1 WHAT IS MATHEMATICS? 

1.1.1 Sure and certain 

What is mathematics? A thorny question. Don’t look it up in a dictionary! When- 
ever I did the answer was wrong. 
“Mathematics” looks like a plural as it still is in French “Les Mathématiques”. 
Indeed, long ago it meant a plural: four arts (liberal ones worth being pursued by 
free men). Mathematics was the quadrivium, the sum of arithmetic, geometry, as- 
tronomy, and music, held in higher esteem than the (more trivial) trivium: gram- 
mar, rhetoric, and dialectic. Only when this plural was no longer understood, was 
its final ‘s’ usurped by sciences, like physics and economics, that historically did 
not deserve it. 
On closer inspection it appears that I have answered the question “What was 
mathematics?”, to wit in Greek-Roman era, in the Middle Ages, and even some- 
what thereafter. 
As far as I am familiar with languages, Dutch is the only one in which the term 
for mathematics is neither derived from nor resembles the internationally sanc- 
tioned Mathematica. The Dutch term was virtually coined by Simon Stevin 
(1548-1620): Wiskunde, the science of what is certain. Wis en zeker, sure and cer- 
tain, is that which does not yield to any doubt; and kunde means knowledge, sci- 
ence, theory. Indeed, since Stevin, and even before, mathematicians have be- 
haved as though this were the proper definition of mathematics; but since it 
seemed to be pretentious rather than a definition it could not find favour in the 
eyes of dictionary authors. 
Even though it does Seem to be pretentious it was a lucky strike of Stevin’s to 
name a science (and quite a few others) after what he grasped to be its most char- 
acteristic property, rather than after its subject. The most characteristic property 
of mathematics was certainty, or so he believed. But how certain is “certain”? 
Isn’t common Sense the first, the nearest certainty, and is there anything as remote 
from common sense as mathematics? Common sense takes things for granted, for 
good reasons or for bad ones. Mathematics asks for good reasons, as does any sci- 
ence, maybe even for better ones than any other. The need for certainty in science 
is not satisfied by taking things for granted; certainty has to be pursued, and in 
mathematics this is done by a quite peculiar mental activity. It is this mental ac- 
tivity rather than its subject matter that characterises mathematics as the field 
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2 CHAPTER 1 

where this activity can be exercised most adequately and most efficiently. We 
shall keep this in mind in order to deal with it more specifically in due course: 
that is, mathematical method as a mental activity which, for some mysterious rea- 
son, creates certainty and does so, it would seem, beyond compare. 
Mathematics as the field of the most adequate and efficient use of the mathemat- 
ical method? So there are fields outside mathematics where mathematical method 
does apply, maybe less adequately and efficiently. Or are these really outside 
mathematics? How far does mathematics as a field extend? Let us turn back to 
Stevin! He did not, in fact, use the word wiskunde but wisconst, or as we would 
spell it nowadays, wiskunst. Kunde means science while kunst means art. At our 
medical schools they teach geneeskunde, the science of curing, while the medical 
doctor’s practice is geneeskunst, the art of curing. As a name-giver for domains 
of research Stevin preferred the noun kunst above kunde, art above science. “Art” 
in “Arts and Sciences” sounds different from “art” in “Arts and Crafts”. With 
which second noun did Stevin combine “art”? Stevin was an engineer, but I am 
sure he understood it both ways, as many before and after him had done and 
would do. 
Mathematics as an art, a mental art to be sure, which for most people will be clos- 
er to crafts than to sciences, a tool rather than an aim in itself, more relevant be- 
cause it works than because it is certain. But why does it work? Because it is cer- 
tain? Although many people trust mathematics more than it deserves, it works 
only when it is rightly applied. But what is right or wrong? Is there any way to 
verify it and if so, isn’t such an verification again mathematics and -- if it is -- to 
which degree? Once one has admitted that mathematics is an art, one cannot shirk 
the responsibility of judging whether, in particular cases, it is being properly used 
or rather being abused; while trying to decide, one behaves once again like a 
mathematician. Let us illustrate this with a well-known historical example: 
In spite of precursors, probability began with the discussion of two problems. The 
second was the problème des partis. Let me present it in a simplified version: 
Two persons A and B have agreed on a series of games (with equal chance of 
winning for either): the first to earn five points will collect all the stakes. It so 
happens that the series must be broken off with the score standing at 

How should the stakes be divided? People could not agree. Some said: in the ratio 
4 : 3; others said: (5 - 3) : (5 - 4). Indeed, there is something to be said for each 
view. But what does mathematics say? Or rather, what did the mathematician 
Pascal say when he was asked his opinion? Nowadays we would say: Let us auc- 
tion the state of affairs! How much would A’ and B’ pay in order to continue? If 
B’ evens the score the stake must be divided fifty-fifty but the chance that he 
would do so is in fact 50%. Therefore he can claim just one-fourth of the stake 
and so the fair ratio of sharing is 3 : 1. 
Behold the mathematician called to decide upon the right or wrong way to apply 
the art of arithmetic! Indeed, it was in no way obvious at the start that the deci- 
sion, rather than being a matter of opinion or taste or of weighing pros and cons, 

A: 4 B: 3. 
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was again one of arithmetic, that is of mathematics; and a mathematician was 
sorely needed to reveal this perspective. 
As a useful tool, mathematics has conquered a rich variety of fast expanding ar- 
eas of science and society, and as a tool it has proved indispensable for a rapidly 
growing host of people, who use mathematics because they cannot do without it. 
Yet again: how sure and certain is this mathematics? 
Voyager 2 arrived one second late at its meeting with Neptune -- after having 
travelled for 12 years, it is true. So sure and certain is mathematics. Or is it? As- 
tronomers count by millions of years, and on the scale of millions of years the one 
second would be one day -- at least if one admits proportionality. But sure and 
certain? When they predicted the moment of closest approach, they added some 
‘+’ - to account for the “mean error”. Mathematics knows precise numbers only - 
- I once heard a purist affirm. And what about error calculus? -- I asked him. That 
is physics, geodesy, astronomy -- he retorted; contrived, indeed, by mathemati- 
cians involved with mathematics “outside” mathematics. Judging how sure and 
certain some applied mathematics may be is again mathematics -- formal mathe- 
matics in error calculus; as such it is sure and certain as long as it is rightly used, 
that is, with insight rather than as a recipe, which unfortunately happens more of- 
ten than not in its educational version. Nowadays, streamlined error theory no 
longer suffices for judging how sure and certain mathematics is “outside” math- 
ematics. How about the numerous “mathematical models”? Mathematics is sure 
and certain to the extent that one faces the question how sure and certain it is. 
Yet let us not forget mathematics as an aim in itself, which allured adepts as early 
as Babylonian Antiquity, and which historically has proved indispensable as a 
forceful motor for its own long-term development. It is an important aspect, al- 
though of less concern to us here, since our subject of mathematics education em- 
braces a much larger group than only future professionals of whom once again 
only a small minority choose mathematics as an aim in itself. 
Even if the “inside” certainty of mathematics is taken for granted, there still re- 
mains something to be said about its “outside” certainty. The answer to this is 
predesigned: it depends on the mathematical behaviour of the one who ventures 
out -- a point for further discussion. Anyway, Simon Stevin may have had good 
reasons to characterise mathematics as what is sure and certain, and his predeces- 
sors and successors had to behave accordingly, even if they failed to reflect on it. 
But what about the great majority? Are we too bold in assuming that, even to the 
man in the street certainty is mathematics’ most significant feature, far beyond 
the limits of his ability to handle it? If this assumption is correct, one may ask 
how this confidence in the certainty of mathematics has come about. The answer 
is determined by the extent to which and the way in which people have become 
acquainted with mathematics. 
Most people have been taught mathematics as a set of rules of processing or, as 
we call it in mathematics, of algorithms -- an agreeable experience where they 
have learned to master them, and a disagreeable one if they have failed, One rea- 
son why teachers teach it this way is tradition: it is the way they learned it them- 
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selves, while they have forgotten that it was not the way they really understood 
mathematics if ever they did. The other reason is the structure of mathematics 
which, unlike any other art or science, can be mounted in rules and algorithms. It 
is an astonishing fact that these rules never fail or -- if they do fail -- that it is the 
user who feels guilty, looks for errors of his own and tries to repair them. But to 
whom is this fact astonishing? Or is it simply an unfounded belief -- subjectively 
unfounded? Let me close this subsection by telling a little story: 
A 75 year-old woman whose help is regularly invoked by children and students 
stuck in their homework, met -- perhaps for the first time in her life -- a profes- 
sional mathematician, just when she had taught a college student the (Euclidean) 
algorithm for finding the greatest common divisor of two whole numbers. She 
asked the mathematician why this works or rather, whether there were any reason 
why. The mathematician helped her to answer the question on her own. Maybe it 
is worth mentioning how he did this. He gave a mere hint: If a and b are two num- 
bers and a >b (in fact he chose a pair of such numbers), compare the greatest com- 
mon divisor of a and b with that of a and a-b! 
The next time she asked him a question it was about an old-fashioned algorithm 
for finding the square root, in which she had believed all her life. Now the math- 
ematician refused and instead taught her a more efficient algorithm, which she 
accepted comprehendingly. 
Still another time she asked him why under addition, subtraction, and multiplica- 
tion of two numbers the sum of digits behaved in correspondence with the origi- 
nal numbers -- a phenomenon that was easily explained. 
Never did she ask the mathematician why, performing arithmetic, the inverse op- 
eration “proves the sum”, why the algorithms of the various arithmetical opera- 
tions work, why operations are commutative, why prime factorisation is unique. 
Why did she doubt some rules (or did she?) and accepted others? Later on we will 
try to answer this question. 

1.1.2 Mathematics as common sense 

Earlier on I asked whether common sense isn’t the primordial certainty, the most 
abundant and reliable source of certainty. In a sense it is, although from olden 
times onwards philosophers and explorers have sounded warning notes against 
that very common sense, which is easily deceived by cunning Nature. 
Iron is colder than wood -- this is common sense, at least as long as one uses the 
common sense thermometer of one’s fingers. Unfortunately, sometimes this 
statement ceases to be true; for instance, when exposed to the blazing sun, iron 
feels hotter than wood. “Conduction of heat” helps us out of this dilemma. This 
is “uncommon” sense, yet common to physicists and to people who learned and 
didn’t forget their physics lessons. It is the weakness of school lessons to be for- 
gotten, and physics is not exempt from this rule. Whenever this happens, it is 
good luck if the matter learned wasn’t worth remembering, and ill luck if it was 
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worthwhile. In due course we shall reconsider and discuss the poor permeability 
of the membrane separating classroom and school experience from life experi- 
ence and we will ask for measures on how to improve it. 
My example confronted the physicist’s “uncommon” sense with the “common- 
er’s’’ common sense. But is it really that simple? Whether something is common 
sense is witnessed by how it is verbalised in common language. According to 
common sense the sun rises and sets. On authority it has been accepted that this 
statement is amended, if necessary, by the adverb “apparently”. Moreover, the ar- 
guments substantiating why reality is different are accepted on authority, as is ap- 
parent from the almost verbal way in which they are repeated. I wonder how 
many people would be able to tell which phenomena and arguments in this par- 
ticular case moved astronomers to distinguish between appearance and reality. 
But many distinctions between appearances and realities have likewise moved to 
the state of common sense and are verbalised in common, even daily language. 
However, sunrise and sunset occur in this context of appearance and reality only 
as far as astronomy is concerned, and even astronomers aren’t astronomers all the 
time. 
According to common sense the Earth used to be flat. This common sense state- 
ment differs essentially from the preceding one because in (what mathematicians 
call) a first approximation the Earth is indeed locally flat and allows us even now 
to behave as though it were so. However, not only as astronomers are we engaged 
by its roundness, but also as travellers, and as early as we are shown globes and 
maps. Nevertheless, even adults sometimes wonder why the sun is the hottest at 
noon rather than in the morning and evening when it is “closer to earth”. Yet this 
common sense conflict is nothing but a low level example of a behaviour which 
is not unusual even on higher cognitive levels; in fact, it is an example, and at that 
a striking one, of applying simplistic rather than readily available sophisticated 
models. 
If things have not changed in the mean time, it is the didactical principle in phys- 
ics and chemistry to fight common sense by exorcising it: common sense ideas 
obstruct scientific ones. Researchers wonder why people -- even those who had 
been taught physics at school -- still adhere to common sense ideas, which should 
long ago have been expelled. Take the following example: 

Again and again subjects are given tests of the following kind: A cyclist, two opposite 
arrows on the ground, and the question of whether the forward force is stronger than 
the backward one (that of friction). Or the parabolic path of a ball tossed up, and the 
question of at which point it experiences the maximum force. Researchers search 
again and again for new explanations of why most people fail these tests. They forget 
that more often than not force is associated with velocity (rather than with accelera- 
tion). Descartes and Leibniz mathematised force as a function of speed (though they 
disagreed about the kind of function) and even in the past century conservation of 
force meant conservation of energy. Even today (and even in technical language) the 
Newtonian definition of force has not at all displaced other uses. Although the physi- 
cist on the merry-go-round feels the centrifugal force, the physicist outside calls it ap- 
parent. Would it not be wise to recognise this fact in instruction and to deal compara- 
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tively with various concepts of force and appreciate them according to their merits? 

In general I believe that in instruction it would be more recommendable to start 
with common sense ideas rather than to reject them as outdated and better being 
suppressed. This belief is supported in any case by the fact of the more or less 
spontaneous development of mathematics. 
Among mathematics rooted in common sense the most striking example is, of 
course, whole number. (Similarity is another, though superficially less striking, 
example.) Children acquire number in the stream of their physical and mental ac- 
tivities, which makes it difficult for researchers to find out how this happens in 
detail. The acquisition of number is strongly supported (if not made possible) by 
the corresponding numerals in spoken language, the acquisition of which can be 
more easily traced through observational research. As the child acquires the syn- 
tactical structural means to build new sentences so it occurs with the morpholog- 
ical structural means to build spoken numerals, beyond necessity and need, and 
far beyond the physical and (at least initial) mental grasp of number. Going on 
and on in this sequence is the first verbalised expression of the mathematical 
mind, an astonishing feature which can hardly be overestimated, though it has not 
drawn much attention, due to being simply a matter of fact, and experienced as 
common sense, which is not to be questioned. The morphology of spoken numer- 
als is, moreover, the first algorithm of mathematical character the child acquires: 
a common sense algorithm acquired by means of common language. 

My statement that researchers have paid little attention to children’s first and sponta- 
neous arithmetical activities would seem to be contradicted by the title of Piaget’s 
work (with Szeminska) “La génèse du nombre chez l’enfant” (1941). The contradic- 
tion, however, lies only in the title, since the work itself is not at all concerned with 
the genesis of number. In fact, the genesis of mind had been thoroughly studied by Pi- 
aget in his earlier work. This genetic approach should be sharply distinguished from 
the epistemological one he chose in his later work. In order to make clear what this 
switch involved, let me briefly sketch the history of the number concept and its teach- 

In contrast to his geometry, Euclid’s arithmetic is rooted in the whole number of com- 
mon sense and, up the middle of the 19th century, the scientific approach to number 
remained common sense. As soon as infinities are to be dealt with arithmetically, this 
common sense approach becomes blemished by paradox. Cantor removed this blem- 
ish by abandoning the then common sense approach in favour of a more sophisticated 
one, later on extended by Frege-Russell in an even more refined way from infinities to 
finite natural number and its foundation. 
In Piaget’s epistemology, episteme means a state of knowledge as advanced as acces- 
sible to himself, which in the case of number happened to be the Frege-Russell ap 
proach, at least such as he interpreted it (and at a later stage, for mathematics in gen- 
eral, Bourbaki’s system). This highly sophisticated number concept is Piaget’s touch- 
stone, his tool for assessing children’s understanding of number at various ages, in far 
from common sense situations, and using an artificial language, both created for the 
sake of assessment. Obviously, this is no way to trace the genesis of number. It proved 
instead to be the source of such oddities as non-conservation, never observed in the 
unfortunately rare examples of genetic research. It is a pity that Piaget’s monumental 
work has not yet been appreciated as a whole. I even wonder whether his switch from 

ing. 
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genesiology to epistemology has ever been noticed. 
Later on I will return to this question. 

Let me add the remark that the common sense roots of number extend further (or 
are extended) alongside learning language, which proceeds from speaking to 
reading and writing. Isn’t it noteworthy that in written and printed language the 
mathematical symbols for natural numbers precede their phonetically construct- 
ed alphabetical equivalents of spoken numerals (“3” precedes “three”, “100” pre- 
cedes “one hundred”)? Anyway the mathematical symbols for natural numbers 
are integrated into written language. Literacy and numeracy overlap in this re- 
gion, and even beyond. The place value principle, though deviating from the se- 
riation principle prevailing in common written language, participates in the inte- 
gration as do -- to a higher or lower degree in various languages -- the basic op- 
erations on natural numbers. 
I have adduced these striking examples of the overlapping and integration of 
mathematical and common language as witnesses of the common sense origin of 
early arithmetic. The tree of knowledge, rooted in common sense, has, as it were, 
sprouted arithmetic as a branch in its own right -- historically as well as in indi- 
vidual life histories. In the course of life, common sense generates common hab- 
its, in particular, where arithmetic is concerned, algorithms and patterns of ac- 
tions and thoughts, initially supported by paradigms, which in the long run are 
superseded by abstractions. These products of common sense acquire in turn the 
behavioural status of common sense, while their common sense ancestry may 
have even been forgotten. Historically viewed, there have been stages, or even 
levels of common sense, and the same holds for individual development: what is 
common sense may depend on the community that shares it. 
Is common sense then something like the greatest common divisor of insight, 
shared by the members of a certain community? Indeed, but it is then a quite large 
common divisor with relatively small mutual divergences, at least as long as 
emotion is checked by cognition. In the case of the problème des partis the parties 
quarrelled about how to divide the stakes until a judge resolved the quarrel, albeit 
not on the strength of common law but by common sense. This was a sounder 
common sense than that of the quarrelling parties, which was spoiled by badly 
understood law-like algorithms. The judge’s decision created a new paradigm of 
common sense. 
Whereas historians are able to trace the cognitive development of mankind as a 
development of common sense, it is difficult to attempt the same with individu- 
als, whether by observation or reflection; wrong application of rules, however, 
and wrong transfer of patterns may provide indications. At any developmental 
stage of common sense it may be significant how much the learner has contrib- 
uted to this progress. One extreme is learning without being intentionally taught, 
and the other is learning what has been bluntly imposed; and since the first is 
more deeply rooted in previous common sense, it may matter some time in the 
future how the development took place in the past. It matters whether, for in- 
stance, an arithmetic algorithm was acquired as an abridged and streamlined ver- 
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sion of former common sense activities, or whether abridging and streamlining 
(or even the algorithm itself) were imposed. Sure, some, algorithmically gifted 
people, learn to apply even imposed algorithms adequately; others -- perhaps the 
majority -- fail to identify the new algorithmic procedures with the common-sen- 
sical ones from which they should have originated through abridging and stream- 
lining. They fail because some time in the past they were asked to take mental 
leaps which exceeded their mental powers. Even though they flawlessly learned 
the algorithm, they will fail to use it in true life situations where common sense 
counts; they will instead depend on less efficient lower level operations. 
The following is a well-known example: We are taking a trip of 215 km; how 
much do we still have to drive after 88 km? 
Children reason: 88 + 12 = 100, +100 = 200, +15= 215, The subtraction is not 
recognised (or not ventured); to such pupils the minus key on the calculator is of 
no use. 
Researchers have signalled this “relapse” and marvelled on it. Rarely, however, 
has it been diagnosed as a consequence of instruction, since no alternative in- 
struction was envisaged alongside the imposition of the new algorithm (which 
was sometimes embroidered with explanations for conscience’s sake). The new 
algorithm, however, never did have the opportunity to reach the state of common 
sense; afraid of applying a wrong algorithm or the right algorithm wrongly, the 
learner instead relies on what has remained common sense to his mind. 
Let us now answer the question posed at the end of the story of the 75 year-old 
algorithmic performer! The fact that after more than half a century she still mas- 
ters the various algorithms well enough to teach them, characterises her as an al- 
gorithmically gifted person. Why did she worry about one kind of rule but take 
others for granted? Well, common sense is taken for granted. Rules learned by 
imposition will be taught the same way, at least if the learner who became a 
teacher is able to teach. But having been imposed they never had a real chance to 
develop into common sense of a higher order. Is it a privilege of old and wise peo- 
ple to doubt what looks like common sense, or can you not teach this behaviour 
to the young? 
Why “sure and certain”, I asked earlier on, and I announced that this might be a 
question of behaviour. Of common sense? Yes, but also -- I would add now -- of 
a tendency to doubt common sense. 
Where common sense as the root of mathematics is concerned, up until now I 
kept silent about geometry (except for one clause in parentheses). Yet I am con- 
vinced that geometry even precedes arithmetic in individual development. One 
of the earliest symptoms -- I believe -- is awareness of similarity of figures; this 
is found so early that it looks like innate (or might it even be so?) 
“Similarity” is even characteristic for what happens with geometry by the token 
that every day language has no word for it. (This was already the case in Greek, 
and Greek mathematicians had to think up a word for it, which they did by re- 
stricting to geometry a word that in everyday language means any Similarity 
whatsoever.) It also characterises the individual development of geometry to- 
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wards mathematics: Until the higher grades a term for the striking feature of sim- 
ilarity is withheld from the pupils -- obviously because one does not dare to speak 
about geometric similarity until one feels able to define it formally. This parsi- 
mony with regard to geometrical language, which is more difficult, indeed, heav- 
ily contrasts with the way in arithmetical instruction, where the number sequence 
is handed to the learner, as it were, on a plate. 
Geometry is doomed to fall behind arithmetic in the development of verbal ex- 
pression. Geometrical arguing is kept on the level of “I can see it”, and when an 
attempt is made to raise it to a higher one, it may be too late in most cases. Com- 
mon sense does not get the opportunity to develop into more common sense -- a 
consequence of lacking instruction. 

1.1.3 Why mathematics is different 

Let us be clear about one thing: to the view and mind of most people, mathemat- 
ics, though deeply rooted in common sense, is more remote from it than anything 
else. What made it move so far away? The deeper the root the higher the top? 
Mathematics is different, indeed, and we will take notice of this fact when we will 
turn to education. From the very beginning it has been different. It is the oldest 
among the sciences, even preceding astronomy by more than two millennia. 
Mathematics was more easily invented, as it was simply a question of common 
sense -- only better organised. And it developed in this way, becoming more and 
more organised, according to a pattern I am going to describe. 
You know that 3+2=5 and the area of a rectangle by common sense. But as soon 
as Nature gets involved common sense becomes misleading as everybody knows. 
For common sense is even more urgently in need of expression and enrichment 
by transfer of knowledge than is mathematics -- and ever more urgently the far- 
ther removed a science from mathematics; and even where common sense is a 
nuisance it may persist alongside more educated views. Unlike the law of inertia 
or Newton’s theory of gravity, the elements of mathematics have been invented 
independently of one another at various places in the world. While sciences un- 
derwent revolutions mathematics evolved, even during these revolutions and un- 
der their influence. How to explain this difference, what dynamic granted math- 
ematics this apparent continuity of development? 
Common sense, in order to become genuine mathematics and in order to 
progress, had to be systematised and organised. Common sense experiences, as 
it were, coalesced into rules (such as the commutativity of addition), and these 
rules again became common sense, say of a higher order, as a basis of even higher 
order mathematics -- a tremendous hierarchy, built thanks to a remarkable inter- 
play of forces. 
I have stressed earlier and I stress again that our first verbalised mathematics -- 
that of number -- distinguishes itself from any other verbalised knowledge by the 
fact that its mere form, detached from its contents, foreshadows (if not radiates) 
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its mature form and contents. Its tremendous structure -- strictly regular after a 
short archaic start --stands unrivalled by any other linguistic phenomenon: and in 
this respect the phenomenon is interlinguistic as far as languages have been cre- 
ated in need of number. By the same token, number is even more common sense 
than any other human idea. Moreover, this fact itself is common sense to such a 
degree that it is hardly noticed and rarely made explicit, although it has greatly 
influenced mathematical thought as well as thinking about mathematics. The for- 
mal isomorphism between the mental object “number” and its numeral expres- 
sion, which looks like substantial identity, has been the source of thinking about 
the relationship between mathematics and language, of identifying mathematical 
language with the language of mathematics, and of viewing mathematics as a 
mere language. 
Properly said, it has not been as simple as that: what is considered to be true 
mathematics started by impoverishing that primordial structure of whole number, 
depriving it of the positional strait-jacket (the primordial fall as it were) by which 
mathematics escaped and outgrew common language. It was New Math’s histor- 
ical fault not to notice the depth of this fall, which eventually became a jump, 
from the positionally structured numeral to the more abstract free whole number. 
Number is the first realm where symbolism acquires a reality of its own, a reality 
apparently independent of its creator, who in turn tries to reorganise his creation, 
and by means of it his environment. But even this organisation would seem to 
have existed for eternity, at least as long as the view is restricted to whole 
number, which Kronecker believed to have been created by God, only to be 
spoiled by human efforts to transcend it. 
Structuring, whether applied to products or to processes, means emphasising 
form. The first non-trivial structure as such, i.e. whole number as the product of 
the process of counting, begot rich process and product content which, organised 
by ever new structures, in turn begot new contents -- a never ending cyclic proc- 
ess. 
Through reflecting on his own activity man discovers paradigms, which are ab- 
stracted into patterns of mental action, and made conscious as schemes by which 
thought is organised on behalf of new progress -- adaptable schemes, that is, 
which allow for varieties of use, as well as, in the same right, rigid single-purpose 
schemes which, thanks to their rigidity, can lead a life of their own, called algo- 
rithms. These forms in turn can become subject matter, a nucleus, as it were, of 
higher order contents -- again a repeating process, an interplay of form and con- 
tent, which characterises mathematical thought. This interplay includes the lin- 
guistic expression by means of which mathematics is communicated as a product 
and a process. New content and form require new terminology which, in order to 
be efficient, has to be streamlined, both symbolically and notationally. Symbols 
and notations, in the course of reflection, again become subject matter handled as 
such. 
Content is the result of primordial discovery as form is that of organisation, al- 
though of course organisation is also a matter of discovery (albeit secondary). 
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Historically, discoverers incessantly switched duties. In fact, each discoverer be- 
haves as an organiser as soon as he sets out to make his discoveries known, al- 
though this is not a specific feature of mathematics. In mathematics, however, or- 
ganising and reorganising is a continuing affair, and the newly acquired organi- 
sation forms may become content in the sense of subject matter to be examined 
as such. As far as longevity is concerned, no system of mathematics can equal 
Euclid’s, which came near to suffocating its subject. Yet only a brief breathing 
space was allowed to Bourbaki’s: it became outmoded almost at the same pace 
as it was developed; outmoded as a system, that is, while giving birth to new con- 
tent. 
This is why mathematics is different and why it looks even more different to 
more people. Schemes of thought can be imposed, algorithms can be taught as 
rigidly as computers are programmed, and, to be sure, such efforts are not lost on 
algorithmically gifted people; concepts can be taught by linguistic definitions, 
and this again works very well with people who are good verbalisers themselves. 
Last but not least, the interplay between form and content includes what is com- 
monly called applied mathematics, provided the environment to which mathe- 
matics is applied is already being seen through the spectacles of mathematics. 
“Mathematical model” is the fashionable term for form, abstracted from paradig- 
matical application, and again models and their use become the subject matter of 
mathematical reflection, as though they were part of the environment. Modelling 
too can be taught by imposition -- successfully or to no avail -- depending on the 
preparedness of the learner. 
All in all, this explains why mathematics is different, both objectively and sub- 
jectively, and it also explains why people do not grasp the reason why it is differ- 
ent. Content must be assimilated, while form can be imitated for the purpose of 
reproduction. It seems to be easier to teach and learn structured form than struc- 
tureless content. It is as easy to yield to this temptation as it is difficult to resist 
it. This, then, is the familiar image of mathematics: a set of algorithms, as worth- 
less as it is strict if one does not understand how and why it works. It is a mis- 
leading view, which is given the lie as soon as less strict schemes are to be ap- 
plied. 
We will recall the reason why mathematics is different when we discuss educa- 
tion. There we will explain why mathematics is learned differently and therefore 
should be taught differently, that is, neither as form nor as content but while 
maintaining respect for the interplay between them, acted out in the teaching/ 
learning process! Learning is progress in knowledge and ability. Their interplay 
does not sound like that of instruments and voices in a concerto. It is rather a 
change of viewpoint from content to form, and conversely, leading to ever higher 
levels, by jumps as high as the learner can perform, and guided but not lifted by 
the teacher. 
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1.1.3.1 Examples 

Let us dwell upon the interplay between form and content! As stressed above, the 
origin of the number sequence is form, even linguistic form. While used for 
counting it acquires content -- a rich variety of content. When in turn abstracted 
from this variety of counted phenomena, it acquires the status of the mental ob- 
ject that is: more or less formal whole number, though still laced in the formal 
strait-jacket of the decimal system, and still attached by short strings to counting 
something, which aims at content. Addition and subtraction are meaningful as 
content operations in preparation for their formal practice, which for a certain 
time remains supported by models which arose as content. Commutativity of ad- 
dition is suggested by what addition meant as content before it acquired the -- at 
least implicit -- state of a formal rule; it can then, on a higher level, become a mat- 
ter of mathematical content, when studied, for instance, with its consequences, in 
the context of operative laws. The relation between addition and subtraction aris- 
es as a matter of content before it is formally applied, in order to become once 
again subject matter and content in the context of algebraic structures. 
Let us skip multiplication, which shows similar features, and turn to divisibility. 
This arises in the context of distributing, which is content, but more rapidly than 
anything else in arithmetic it acquires a most surprising formal status, only to re- 
cover that of content in number theory. There it becomes a matter of arithmetic 
scrutiny, in particular stimulated by the phenomenon of prime number, which 
means, as far as content is concerned, number resisting any arrangement in rec- 
tangular patterns. The search for prime numbers and research on prime numbers 
is largely one of mathematical content. Yet the convention not to admit the 
number 1 as a prime number, is formally motivated, namely by the preference for 
an easy formulation of the theorem on unique prime factorisation. Extending di- 
visibility to other domains (such as polynomial rings) is a formal procedure, 
where the part played by 1 is taken over by the inversible elements. 
The sum of digits (in decimal number notation) provides a formal criterion for 
divisibility by 9, although its proof, at least at a low level, requires content rea- 
soning, for instance, by displacing balls on the bows of the abacus. The clock dial 
suggests arithmetic modulo 12. Operating modulo a whole number is a formal ac- 
tivity, from which such mathematical objects arise as finite rings and fields, 
which in their turn become mathematical contents. Manipulating formally 
“as though its square were 2”, acquires mathematical content in the polynomial 
domain modulo x² - 2. 
Positive number owes its existence to the geometric context of distances. Positive 
and negative numbers (together with 0) form what is called real number, beyond 
which is imaginary or complex number. In brief, historically (for more of it, see 
[146], Chap. XV) as early as Babylonian Antiquity there were methods -- one 
might even say, formulas -- to solve linear and quadratic equations arising in ge- 
ometry or in puzzles. Was it not a pity -- in particular viewing the fine formulas 
for the quadratic equation -- that frequently one of its “roots” or even both of 
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them had to be rejected as being “false”, and then merely because one only knew 
positive numbers? Eventually, around 1500, courageous mathematicians took the 
plunge. In spite of their being “false”, one could marvellously reckon with these 
numbers by preserving and extending the old arithmetical laws. And lo and be- 
hold, one century later, the “negative” numbers were assigned a -- geometrical - 
- place, left of 0 on the number array pointing at the right. Formal number ac- 
quired a content, thanks to which the whole plane could be co-ordinatised. The 
formal requirement that all algebraic equations can be solved brought forth a con- 
tent-rich geometric-algebraic activity on the entire plane. We hardly need to add 
that soon this content again turned formal -- a new link in the long chain of form 
and content. Thanks to Gauss’ geometric representation complex numbers 
(which had come into being as formally required solutions of algebraic equations 
and had long been repudiated as ontological monsters) acquired respectability 
and content status. 
Common formal properties of certain algebraic structures led to define the field 
concept through formal requirements, with the obvious preconception of adding 
a new object -- the field -- to mathematical contents. Efforts to lend content to 
formal divisions by 0, and to formal (divergent) series such as 1-1+1-1+. . . are 
other examples of the dramatic historical interplay between form and content. In 
ancient history formal patterns for solving quadratic equations geometrically by 
the so-called application of areas led to the discovery of curves, afterwards rec- 
ognised as conic sections and redefined as such by Apollonios, only to be rede- 
fined anew by means of formal equations in Cartesian geometry. 
The term “variable”, as it is used today, embodies the symbiosis of form and con- 
tent in the most striking way. Originally letters, whether indicating arbitrary 
points as in Greek geometry or arbitrary numbers as in Vieta’s algebra, were 
nothing but easy generic names for these kinds of objects; yet, in the kinetic im- 
agination of the inventors of Calculus and their followers, as well as in analytical 
mechanics, letters became symbols for mathematical and physical objects which 
varied time-dependently or due to mutual dependence. Initially the law of this de- 
pendence was not made explicit but implicitly given by the surrounding mathe- 
matical or physical context, which could be a curve or a mechanical event, in- 
volving these mathematical or mechanical objects. When the first literal function 
symbols appeared, that is, for solving the differential equation of the vibrating 
taut string, they were again no more than generic names of mathematical objects; 
as soon as necessity required it, they then became variable objects themselves. In 
the course of history as well as in mathematics acted out day by day, we may no- 
tice this incessant switch back and forth between letters as symbols for “empty 
places” (indeterminates or unknowns) and as symbols for variable mathematical 
objects. 
As if out of necessity our exposition led us to the role of language in the interplay 
of content and form. Linguistic form should be well distinguished from abstract 
(mental) form. Language serves to express both (abstract) form and content. His- 
torically, addition, subtraction, and equality were formal mental objects, present- 
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ed in clumsy colloquial language, long before shorthand use of the plus, minus, 
and equality symbols appeared (which later even crossed the frontiers of mathe- 
matics and penetrated into colloquial language); and this is the way it still hap- 
pens nowadays in individual histories. On the other hand, reasoning about such 
symbols, for instance about meaning and use of the equality sign, involves deal- 
ing with them as subject matter, that is, lending them the status of content. The 
same holds true for brackets as tools for structuring formal expressions and for- 
mulas. The need to linguistically express x² as a function of x requires the crea- 
tion of linguistic tools, which resemble content. It may be a matter of content 
whether in a group structure the group operation itself is called addition or mul- 
tiplication; but this very choice formally decides whether the neutral element is 
then called 0 or 1. Interpreting (in highbrow style) a group as a quadruple, con- 
sisting of (1) a set G, (2) a mapping of G x G on G (multiplication), (3) a (neutral) 
element of G, (4) a mapping of G on G (inverse), and thereby fulfilling certain 
(group axiom) conditions, means that mathematical language is being dealt with 
as if it were content. 

1.1.4 Mathematics as an activity 

When we distinguished stages or levels of common sense we noticed that attain- 
ing them depends on the individual’s own contribution, on his activity. Common 
sense takes things for granted, as I mentioned, while mathematics asks for good 
reasons. Certainty has to be pursued, and the way this is done, characterises math- 
ematics as an activity, leading to ever improved versions of common sense. 
Most of the Dutch names Simon Stevin proposed for the various sciences involve 
activities rather than objects and instruments. Mathematics is a quite peculiar ac- 
tivity. Thinking logically? It depends on what “logic” is intended to mean. Logic 
as an established science or as common sense? Let us postpone tackling this ques- 
tion! 
Mathematics as an activity is a point of view quite distinct from mathematics as 
printed in books and imprinted in minds. To be sure, mathematics is a precious 
treasure-chest of tools, precious that is for those who can put them to good use. 
This is true for any instrument, many of which can be handled by an inexperi- 
enced child: a switch to light a room, a key to open a door, a bell to ring; and 
many more, which require more sophisticated, yet narrowly streamlined pro- 
grams in order to be handled, such as algorithms in mathematics. 
Every researcher, every producer of mathematics will readily admit that mathe- 
matics is an activity -- his private activity, the product of which may or may not 
be published. Indeed, any author is entitled to have his privacy respected. More- 
over, why should he annoy the public with the tale of the production process as 
it took place? Indeed, the author should not lead the reader of his work along all 
the wrong trails and into the blind alleys explored by him and eventually aban- 
doned. But would it not contribute to the reader’s understanding if he were al- 
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lowed to watch the process leading to the result as it would have taken place if 
the author had somehow suspected all along what he finally came to know for 
sure? In the past some textbooks and even research papers were written in this 
way, but the fraction of mathematicians who prefer this style of editing has been 
declining steadily. 
Let us avoid any source of misunderstanding! If I speak about products of math- 
ematical activity, I do not do it in the narrow sense of new propositions and the- 
orems. I include proofs, even definitions and notations, as well as the layout, in 
print and thought. Reading mathematics and listening to it is also mathematics, 
the mathematical activity of reproducing what is being offered, as though it were 
the receiver’s own production. Reproducing should be an easier task than produc- 
ing. Unfortunately, the ever more common style of presentation frustrates rather 
than favours this opportunity. The style of modern presentation creates the illu- 
sion that what is sure and certain, has  been so from eternity rather than since its  
discovery was completed and its presentation polished. Yet our certainties are in- 
cessantly menaced, if not by confutation -- which has become rare -- then by a 
longing for more certainty, deeper insight and broader understanding which has 
become quite common. In this respect at any rate there is no reasonable certainty 
about what will be considered sure and certain in the future. 
Mathematicians, even when reproducers rather than producers, tend to restrict the 
right to practice mathematics as a mental activity to an elite -- to those who enrich 
mathematics as a subject matter by new discoveries. Those who do not belong to 
this elite are required to purchase a stock of knowledge and abilities from the 
shelves of the mathematics supermarket. If some choice is indeed granted, is this 
at least left to the consumer, or does somebody else even do the shopping for 
him? 
Does this profusion of metaphoric language bother you? Mathematicians are or- 
ganisers, albeit in other fields and with other aims than those who are active in 
industry, trade, traffic and administration. A similar, if not identical mental 
make-up is characteristic of all of them. But in no other field does organising dis- 
play itself in such purity, impose itself with such force and infiltrate so profound- 
ly as it does in mathematics. Mathematics grows, as it were, by its self-organising 
momentum. 
No wonder mathematicians like to present their subject in a well-organised state, 
and textbooks are frequently judged according to their degree of organisation. 
But for the great majority neither mathematics nor its organisation is an aim in 
itself. As a useful tool mathematics has conquered and covered a rich variety of 
fast expanding fields of science and society, and as a tool it has become indispen- 
sable to a quickly growing crowd of people. People increasingly use mathematics 
more often than they are aware of. They use mathematics because they cannot do 
without it. 
That is mathematics as an activity of discovering and organising in an interplay 
of content and form; later on we will have to ask the question of whether mathe- 
matics teaching has really caught up with this development. 
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1.1.5 Mathematics and reality 

If I were to continue in the same way, that is, by focusing on the mathematical 
process, I would imprudently be neglecting the medium in which this process 
takes place, which provokes this process and which is affected by it. Let us have 
a closer look at it! 
Common sense reveals itself in those actions -- physical and mental -- which are 
common to people who share common realities. There is no reason, were it even 
possible, to restrict “reality” to the mere experience of sensual impressions. Even 
at the lowest level, reality is an inextricable mix-up of interpretation and of what 
a purist would call sensual experience. If somebody says 

when I heard the doorbell ring, I looked out the window and saw Alice and smelled  
her perfume 

one may believe him and take for granted that this is the report on something that, 
in the reporter’s eye, really happened. There is no reason why one should listen 
to vulgar positivists who object that “in reality” the ear  of the person calling him- 
self “I” was struck by noise of a certain pitch, interpreted as that of a doorbell, his 
eye by a flood of light waves, interpreted as issued by some source called Alice, 
and his nostrils were invaded by a stream of molecules, interpreted as Alice’s 
scent. In fact, the “I” could have been a dog, and the above sentence could have 
been part of a story on the animal’s behaviour, told in the first person’s style. The 
doorbell’s ring, and Alice’s look and scent are primitives, hardly suitable for fur- 
ther analysis. Questions like “how do you know that it was the doorbell’s ring and 
Alice’s look and scent?” may or may not elicit reflection. “It is windy” may be a  
primitive indoor observation, which only afterwards is justified by references to 
moving branches and clouds. “A bang” and “a short-circuit” may be descriptions 
of the Same event on various cognitive and linguistic levels. A number of atomic 
events read by a Geiger counter, a passing K-meson, and a supernova burst are 
primitives to the physicist or astronomer who observed and reported these events, 
although to be reduced to more pedestrian ones, they need profound theories. 
“Cheerful” and “sad”  may be irreducible predications (whether pronounced with 
regard to other people or oneself), and reducible only by reflection. To some 
readers, Homer’s characters may be real persons, and their adventures real facts, 
as real as the world on the stage may be to the spectator. There can be little doubt 
that, as early as the lowest cognitive level, the species canis is as real as any par- 
ticular dog, with whom it even shares a common name. I once told the story of a 
little boy to whom at an early stage “Utrecht” meant any place he spotted which 
resembled the neighbourhood of his home; a few years later this became a vague 
territory, later on he was able to localise it on a map, and after a few more years 
it became an administrative-political entity, which finally acquired a new, and to 
him even more vigorous dimension -- that of history. This all happened within an 
ever expanding reality, which included such institutions as The University, The 
Railways, The Government. As an example of one object within a variety of re- 
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alities let us ask what a micro-computer means to various people: a commodity 
with a certain price to the seller, a weight in kilograms to the deliverer, unex- 
plored land to the novice, and to the expert a part of his life’s world, which has 
long since been abstracted from the tangible instrument. 
How real concepts are depends on the conceiver, and under given circumstances 
cognitive grasps can be more vigorous than manual and sensual ones, which are 
in fact always mixed up with cognition. Mathematical realities are early phenom- 
ena in individual development, that is, not only geometrical realities but arithmet- 
ical ones as well. Numbers which are represented by observed and imagined 
quantities, named by spoken and written numerals, and mutually connected by 
actual, imagined and symbolised relations, belong to a realm which can extend 
from the nucleus of everyday life experience to the far frontiers of mathematical 
research, depending on the involvement of who is concerned. In spite of hundreds 
of years of resistance -- even on the part of mathematicians -- negative and com- 
plex numbers and their operations have become as real to mathematicians as pos- 
itive ones had been for centuries, and whole numbers for millennia, and at they 
now belong to the reality of most people who have learned some mathematics. 
Reality is historically, culturally, environmentally, individually, and subjectively 
determined. Lawler’s “micro-worlds” are less objective and Bauersfeld’s “do- 
mains of subjective experience” less subjective than these terms may suggest. 
Solipsism is as artificial a construct as is all-embracing objectivism. I prefer to 
apply the term “reality” to that which at a certain stage common sense experienc- 
es as real. 
“Real” is not intended here to be understood ontologically (whatever ontology 
may mean), therefore neither metaphysically (Plato) nor physically (Aristotle); 
not even, I would even say, psychologically, but instead commonsensically as 
when one uses is meant by the one who uses the term unreflectingly. It is not 
bound to the space-time world. It includes mental objects and mental activities. 
What I called “expanding reality” is accounted for on ever higher levels of com- 
mon sense and witnessed by levels of everyday language or various technical lan- 
guages. 
The farther one’s reality extends, the more often and more sharply one needs to 
zero in on more or less manifest fragments, isolated by aspects of reality. This 
may turn out to be an advantage or a disadvantage. Transfer of electricity is 
served by insulation, yet transfer of ideas by short-circuits. In between there is 
the cellular structure of biological life, defined by membranes with a highly se- 
lective and effective permeability, which is the amazing result of long evolution. 
The permeability of the membranes dividing individual realities may depend on 
the active or passive origin of these fragments: whether they are due to internal 
evolution or imposition from outside. 
This is the key, in my opinion, to understanding the poor permeability of the 
membrane separating classroom and school experience from life experience, 
which I alluded to and promised to analyse in due course when I will deal with 
mathematics education; in spite of the fact that mathematics, as well as its various 
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domains and aspects, is already a striking example of the poor, or even the lack 
of, permeability of membranes. The specific relation between content and form - 
- the emphasis on form, reinforced by the existence of a particularly efficient lan- 
guage -- favours the growth of watertight membranes between mathematical and 
“outside” contents, between mathematical language and everyday life or more 
technical languages. And this takes place in spite of the fact that mathematics 
could be an outstanding example of broad-minded integration into reality. In- 
deed, as pointed out earlier, mathematics, unlike any other science, arises at an 
early stage of development in the then “common sense reality” and its language 
in the common language of everyday life. Why does it not continue in this way? 
How can one strengthen this integrated existence in order to resist the temptations 
of separation and isolation? “Mathematics starting and staying in reality” was the 
title of a lecture I once gave on several occasions to answer these questions. In 
due course I will repeat these answers, which are of an educational character. 

1.1.6 Concepts or mental objects? 

What is the difference between number and number concept, between ratio and 
the concept of ratio, between triangle and the concept of triangle, between simi- 
larity and the concept of similarity, between X  (an object) and the concept of X? 
This is a meaningful question for non-mathematical objects X  as well, as are: 
force, mass, heat, evolution, content, form, science, government, race, humanity, 
poetry, pop art. The above sequence looks like one of increasing distance be- 
tween “X” and “concept of X .  There is at any rate a difference between both of 
them. “Concept of X ” seems to mean how one conceives of an object X  in a cer- 
tain perspective, say, by inspection, reflection, analysis, scrutiny, or whichever 
you wish. 
There would be no cause to ask that question were there not a tendency to deco- 
rate terms for objects, for dignity’s sake, with the prefix “concept of‘; even this 
would hardly matter if one could disregard the consequences, in particular for 
teaching where cognitive learning is concerned. Unfortunately teaching concepts 
looks more dignified than mere teaching. Teaching concepts is likely to create the 
illusion of adding more understanding to what is learned. 
There have been various number concepts -- Euclid’s, Cantor’s, Dedekind’s, 
Peano’s, Frege’s, Russell-Whitehead’s, Kleene’s -- which differ formally as well 
as substantially from each other. This difference, however, is a matter of expert 
sophistication, and of more concern to researchers in Foundations of Mathemat- 
ics than to the great majority, even among mathematicians. There have been var- 
ious concepts of force -- Aristotle’s, Descartes’, Leibniz’s, Newton’s. Physicists 
decided in favour of Newton, but they have so far failed to prevent people from 
nourishing less educated ideas on force. 
Cognition does not start with concepts, but rather the other way around: concepts 
are the result  of cognitive processes. Mathematics allows explicit definitions at 
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an earlier stage than any other field of knowledge. For instance, “odd” and “even” 
can be defined on the basis of “whole number”. Indeed, the first mathematical 
science, that of the Pythagoreans, was about Odd and Even. But what about 
“whole number”? It is generated by a process, that of counting, rather than by an 
explicit definition, only to become a matter of common sense rather than a con- 
cept. At least since Euclid, mathematicians have searched for deeper foundations, 
and they have succeeded. New Math adherents believed that children should not 
be denied this benefit. They fought common sense number, without success. 
Back to Basics eventually meant back to common sense. 
Specimens of circles suffice to explain what are common sense circles, and no- 
body who is shown a circle doubts that it has a centre (which may be found by 
trial and error, or in a more sophisticated way). But at least since Euclid, circles 
were defined as locuses, and in Cartesian geometry by algebraic equations. New 
Math adherents fought the common sense approach, and in a sense they succeed- 
ed, at the price of expelling geometry entirely from mathematics instruction. 
In the mean time it has become clear to increasingly more people that, where non- 
mathematicians are concerned, teaching the concept of X is not the appropriate 
way to teach X. Cautious researchers now admit that concepts are preceded by 
something less formal, by initiations, preconcepts, or whatever they call it, which 
in the long run means that the proper goal is still that of teaching concepts. In my 
view, the primordial and -- in most cases for most people -- the final goal of 
teaching and learning is mental objects. I particularly like this term because it can 
be extrapolated to a term that describes how these objects are handled, namely, 
by mental operations. 
Whole number, the number line (even if drawn on the blackboard), geometrical 
shapes (even if materialised): all are mental objects, so far as it is understood (and 
it is understood) that visual images are  rough representations of mental objects. 
How do mental objects develop to become concepts, and what criteria reveal 
whether this has indeed happened? In the case of whole number, shedding the 
strait-jacket of the positional system may be the symptom. Most often verbalisa- 
tion and formalisation may indicate concept formation. It is worth mentioning 
that historically the mental object of group preceded the group concept by about 
half a century. Leibniz and John Bernoulli used the word “function” for some- 
thing that was no more than a mental object, and only upon the first  appearance 
of a letter symbol for a function in papers of d’Alembert and Euler was the road 
paved for the function concept. 
The distance between mental object and concept will depend on the subject mat- 
ter, but even more on the individual and his particular situation. This is the reason 
why it must be respected in instruction. When we deal with the teaching/learning 
process the question “Concepts or mental objects?” will be parallelled by the di- 
dactical one: “Concept attainment or constitution of mental objects (by mental 
operations)? ” 
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1.2 STRUCTURE AND STRUCTURES 

Structure is form abstracted from its linguistic expression. We will focus on 
structure with regard to mathematics, although much of what we have to say ap- 
plies to a broader context. In mathematics the relationship between form and con- 
tent is reflected by that between something having or being a structure. Structur- 
ing is a means of organising phenomena, physical and mathematical, and even 
mathematics as a whole. 

1.2.1  Structures -- poor and rich 

A few examples will give us a clearer view of what structure means in mathemat- 
ics. 
A tetrahedron may be taken as a structure consisting of four vertices, six edges, 
and four faces in their mutual relation of “this vertex lying on that edge and in 
that face, this edge containing that vertex and being contained in that face, this 
face containing that vertex and that edge”; it is what one calls a combinatoric 
structure, which in this particular example entails restricting oneself to the rela- 
tions of containing and being contained in, and forgetting about what points, edg- 
es, and faces actually are, i.e. that edges are straight and faces are flat. What is 
the use of so poor a structure? Well, with sets of such combinatoric tetrahedra one  
can build abstract polyhedra by identifying faces of different tetrahedra with each 
other -- sticking them together as it were. Tetrahedra can thus be used as building 
blocks for larger structures, which may become the subject of profound research 
known as combinatoric topology. 
We need not, however, content ourselves with the combinatoric structure of the 
tetrahedron. It is more natural to consider it as a solid in space, with true points, 
edges, and faces. This is again a structure, a geometric structure. As a geometric 
structure a tetrahedron is a richer structure than combinatorically. There is more 
one can say about it; within this structure one can, for instance, measure distanc- 
es, edges, angles, surfaces and volume. 
A tetrahedron is also called a triangular pyramid. Or is it the other way round, is 
the triangular pyramid a tetrahedron? No. If this were true, how could it happen 
that a regular triangular pyramid need not be a regular tetrahedron? Well, trian- 
gular pyramids and tetrahedra are different  structures. By definition, a pyramid 
has a bottom and a top (even though one is allowed to turn the pyramid upside 
down). A tetrahedron can be converted into a triangular pyramid in four different 
ways, as a matter of fact, by appointing one of its vertices to its top, and the op- 
posite face to its bottom. The triangular pyramid is a richer structure than the tet- 
rahedron. 
Let us now knead the solid tetrahedron as though it were clay or dough, let us 
press and deform it but refrain from tearing apart what is connected, and connect- 
ing what is disconnected. The result maybe a nice ball, or a potato or, say, a 
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dumb-bell, The vertices, edges, faces have disappeared. The thing is still con- 
nected, and is so in a very special manner, spherelike (and certainly not like a 
ring). It is a topological structure, poorer than the previous one of the geometrical 
tetrahedron: no role has been assigned to distances, angles, rectilinearity, and so
forth. 

1.2.2 Structures defined by relations 

So far we could have contented ourselves with calling our objects figures rather 
than structures. In order to become structures they must be described structurally. 
Figures can be constructed out of their parts. Something that is finished can be 
described structurally. One focuses on certain relations between the elements of 
the figure, and chooses among them a set that characterises the figure in mind. 
The easiest case is the combinatoric tetrahedron: four arbitrary objects are called 
vertices, each pair of them is assigned to be an edge, and each trio to be a face, 
with the mutual relations of containing and being contained. The geometric tet- 
rahedron, on the other hand, can be described as a metric structure, by assigning 
a mutual “distance” to each pair of its points (or vertices only). It is less easy to 
explain how a topological structure is described: by telling what is near to each 
other, with no appeal to quantitative distance, that is, in a qualitative way; indeed, 
topology forbids tearing and glueing, which would affect qualitative distance. As 
a topological structure the border of a disk is the same as a whimsical closed 
curve, but it is different from a straight or curved line segment, which on their 
part are topologically both the same. 
More -- as well as more stringent -- relations increase the wealth of a structure. 
Dropping relations impoverishes and appending relations enriches structures in 
the same medium. 

1.2.3 Algebraic structures 

The system of whole numbers 1,2,3, ... can be interpreted as a structure in various 
ways. While postponing the cardinal aspect, I start with the ordinal one, the 
counting sequence, which is an order structure of the kind “somehow it starts and 
each has its successor”, while the names of the particular things do not matter. An 
addition can be derived from the order in such a structure: to each pair of things 
it assigns a third, its sum. Now imagine you have forgotten how this addition has 
arisen! Then all that is left is an infinite system of things, distinguished by sym- 
bols, and a table with two entries which, for every pair of these things, tells what 
you want to be their sum. The relations in this system are of the form a + b = c . 
It is what one calls an addition structure. The present one has some remarkable 
properties, for instance, that a + b is always the same as b + a. Maybe, next to this 
table you allow for a second one (which may or may not be dependent upon the 
first) which of every pair of things tells what you want to be its product. This en- 
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riches the structure with relations of the kind u .v=w. 

Such systems are  called algebraic structures. There are plenty of them, with two 
or even more operations, which may satisfy widely different conditions. 

1.2.4 Structures ---from smaller to larger 

The best known among the algebraic structures are the number structures  

of the natural numbers 0,1,2, . . . 

,  of the integers. . . , -2,-1,0, 1,2, .  . . 

of the rational numbers, represented by fractions of integers, such as 
5.33 

of the real numbers, among which, for instance, e, 

, of the complex numbers a + b i where i = 

It is a sequence of structures of increasing size, although not primarily -- and not 
even necessarily -- of increasing richness. 

The operations of addition and multiplication are the same in all these examples, 
as are structuring relations of the kind 

whereas some of their properties may change. The equation 

is in general solvable for x only if negative numbers are admitted, the equation 

only if rational numbers are involved, the equation 

only in the domain of non-negative real numbers. For instance, the solution of 
x²=2 cannot be obtained as a fraction of integers, although it can be approximated 
by such fractions. . . . are increasingly better approximations of 
“Approximating” is a topological concept. Beside with the algebraic structure, 
the domain of real (as well as that of complex numbers) is provided with a topo- 
logical structure. In  this sense it is not only larger but also richer than that of the 
integers. In another sense the structure of natural numbers, is richer than 

, and . Indeed, divisibility is a rich concept in but a poor one in , and 

a + b = c ,  u . v = w ,  

a + x = c  

u . x = v  (u   0) 

x . x = k  (k>0) 
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1.2.5 Generating the number system  

The system of real numbers is geometrically represented by the number  line, 
where each point, by its distance from the point 0, represents a number, positive 
at one side and negative at the other. In this model the algebraic operations are 
visualised by simple geometric mappings. 
In the Greek tradition this was the common sense approach to (positive) real 
number, which was inundated by the “arithmetisation” wave in the past century. 
Arithmetisation meant disavowing the traditional geometrical foundation, and 
founding conversely geometry on number. The real numbers were to be defied 
by sequences of (approximating) rational numbers, the rationals as fractions of 
integers, and the integers as natural numbers preceded by a plus or minus sign. 
One long step backwards was taken when inatural number in turn was founded 
on nude sets, deprived of any structure (and ultimately all sets on the empty set). 
Sets were to be compared with each other by mapping, that is, by laying them 
mentally elementwise along each other. If the sets A and B fitted each other they 
were said to have the same cardinal; if they did not, even though A could be fitted 
to a part of B, then A was said to have a smaller cardinal than B. 
The common sense counting number, and the common sense measuring number, 
as visualised on the numberline ruler, were derived from one common root by 
this profound analysis: the structureless set. Lack of structure may be an advan- 
tage in Foundations of Mathematics, which is high level mathematics, but much 
too high to start with. Indeed, the proper beginning is or should be common sense. 
At present most people will agree that New Math’s contempt for common sense 
has been a historical mistake. But has everybody really learned this lesson? 

1.2.6 Geometric structures 

The geometric structure most familiar to us from early childhood onward is the 
space we live in -- euclidean geometry as it is called. Solid bodies allow us to  
compare, or rather to define, distances, and according to this system of distances 
the straight vision lines are experienced to be the shortest. From early childhood 
onwards we are familiar with faithful pictures of objects, obtained by shrinking 
and enlarging, called similar in mathematics. No doubt similarity even precedes 
number in cognitive development. 
During the 19th century poorer geometric structures than the euclidean one began 
drawing the attention of geometers. Impoverishing a structure -- provided this 
means removing what under certain conditions look like scrolls and curls -- can 
lead to greater profundity. It is an art creative mathematicians have learned to 
practise and master during the past century. 
In euclidean space we are dealing with distances, angles, straight lines, circles, 
planes, spheres. A first step towards impoverishing this structure is to forget 
about the general comparability of distances and angles, while preserving recti- 
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linearity and parallelism. This leads to affine geometry. In affine geometry all 
parallelograms are the same: rectangles and squares cannot be distinguished from 
other parallelograms, nor can circles be distinguished from ellipses. 
A next step is to forget about parallelism, while preserving rectilinearity. This 
produces projective geometry, where all quadrilaterals are the same and all con- 
ics are the same. 
One more step, and then even rectilinearity disappears as a structuring property. 
Space is being impoverished to become what we formerly called a topological 
structure, where we can still distinguish open curves from closed ones, the inte- 
rior of a closed surface from its exterior, see whether or not a closed curve in  
space is knotted, and whether or not a pair of closed curves is linked. 
More than a century ago this kind of classification was introduced into geometry 
by Felix Klein, when proclaiming his Erlanger program. This was the first mod- 
em attempt at structuring mathematics itself, or rather a part of it: geometry. 

1.2.7  Structure of mathematics 

It is one thing to interpret a small or large object as a structure, and quite another 
one to attempt this with an entire area of scientific cognition. When compared 
with creating, organising scientific cognition seems to be an inferior activity. Yet, 
as stressed before, in no science are these two activities so densely interwoven as 
they are in mathematics. A century ago such an organisation was attempted in ge- 
ometry and for half a century the much broader task of organising the whole of 
mathematics remained dormant. After the second World War this task was un- 
dertaken by the French group Bourbaki. Although their work required a large 
amount of creativity, its eventual result could not in principle be anything but a 
deductive codification of existing mathematics. To be sure, Bourbaki’s work is a 
monumental system of mathematics, which -- although now out of date on essen- 
tial points -- has contributed enormously to the growth of mathematics. Even so, 
it has in the mean time been overtaken by mathematics itself. I doubt whether a 
fresh attempt can or will be tried in the future. 
Bourbaki’s hierarchy is primarily oriented   from poorer to richer structures and - 
- accidentally, and certainly not as a matter of principle -- from smaller to larger 
ones. As a matter of fact this is indeed the most natural strategy for a systematic 
build-up: from poorer to richer. It starts, as it were, with a tabula rasa, with that 
which lacks any structure, i.e. the clean set. But after all, how can rich structures 
be created from this poor start? 
If A is a set, one may consider the set P(A) of its subsets, which in fact has a re- 
markable structure, effected by the structuring relation of containing and being 
contained in. 
Or, starting with two sets A and B, one gets their product, the set of pairs; it is 
obtained by steadfastly taking one element of A together with one of B -- a con- 
struction which can be visualised by a rectangular drawing where, for instance, 
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each of three boys (set A) is paired with each of four girls (set B). 

Fig. 1 

This product set is heavily structured, both horizontally and vertically. Similarly, 
the whole plane can be structured as the product of two straight lines, where each 
of its points is represented by a number pair -- the way this is done in coordinate 
geometry. 
These are mere examples of how to impose structures on given or ad hoc con- 
structed sets -- order structures, algebraic structures, topological structures, and  
combinations of structures. They can be built into a hierarchy, in order to impose 
a hierarchy upon mathematics as such -- one hierarchy among many conceivable 
possibilities. There is not, and never will be anything like the hierarchy of math- 
ematics. This fact is evident from the variety of textbooks, which differ remark- 
ably from another. There is certainly an inclination, at university level, in partic- 
ular, to teach mathematics as a hierarchy, although one teacher will put more wa- 
ter into the hierarchic wine than the other, depending on the degree of immediate 
utility of the mathematics taught. 
Even so, consumers of mathematics should be introduced to mathematical struc- 
tures wherever it matters, and maybe even be made aware of their structural as- 
pects to a certain degree. This does not, however, mean that mathematics as such 
should be presented to them as a structure, either according to Bourbaki’s or any 
other conception. It would be a futile attempt, to be sure. 
Moreover, a system like Bourbaki’s, or any variant whatsoever, does not do jus- 
tice to mathematics as a servant rather than a master. The most striking shortcom- 
ing of any system of mathematics may be its treatment of natural number: most 
often a disregard for the numeration structure, i.e. the decimal system. From the 
most pedestrian to the most sophisticated practice of numbers, the decimal struc- 
ture is its dominating feature. From the (merely linguistic) learning of numerals 
to operating efficiently with numbers, this structure is indispensable. Yet in no 
system of mathematics is it ever mentioned. Indeed, high level mathematics has 
been objectified and stripped of such human rudiments like the decimality of our 
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fingers and toes. True mathematics behaves universally rather than anthropomor- 
phically. 
This, then, is the most striking feature of the epistemological and practical inad- 
equacy of Bourbaki-like systems. There are more misfits. Visual geometry has 
no place in them. Similarity, which in cognitive development even precedes 
number, is far remote in this hierarchy, and even then is detached from its visual 
origin. No place is assigned to computers, which are functional structures. Math- 
ematical modelling of structures for the benefit of even the simplest applications 
is incompatible with the hierarchic rigidity of such systems. No attempts have 
ever been made to structure mathematics as seen from reality as epistemological 
source and domain of applying mathematics, although such attempts would be 
extremely desirable -- psychologically, pedagogically, educationally and didac- 
tically. By their mere existence the deductive systems prevent these attempts 
from being undertaken. 

1.2.8  Structures as viewed from reality 

This is not to belittle mathematical structures. By discovering structures within 
mathematics we have learned to better understand the inherent organisation of 
our knowledge. Many psychologists and educationalists still perceive cognitive 
development as concept attainment. Superficially this is evident from the numer-  
ous titles of research papers which contain the word “concept”, and in a more pro- 
found way from innumerable experiments where the possession or development 
of concepts is said to be tested. 
Knowledge as a hierarchy of concepts is a prominent feature of the Aristotelian 
theory of science and epistemology. Its methodological inadequacy has become 
manifest, mainly under the influence of mathematics. Aristotelian hierarchy is 
oriented from the general to the particular, the general embracing the particular. 
It is most perfectly realised in biological taxonomies, where one descends along 
the lines of groups, divisions, classes, subclasses, families, species, varieties. Yet 
outside botany and zoology concept formation by classification has proved un- 
satisfactory. Knowledge is not just more than but quite a different category from 
a reference flora or fauna, as is structuring, when compared with classifying. 
Classes contain each other, or are contained within each other; in this way gener- 
ality and particularity are expressed by mere size. If, in the case of structures, one 
speaks of general versus particular -- which I do not -- the poorer structure would 
be the more general, and particularity would develop by enrichment. 
By structuring rather than forming concepts we get a grip on reality. We do this 
with rich or with poor structures according to our needs. Impoverishing may 
mean generalisation in the sense of wider applicability. Among the poorest sci- 
entific structures, those of mathematics are distinguished by their large measure 
of applicability as exemplified by numbers and geometrical objects. Mathemati- 
cal structures are also more easily discerned than structures in general. 
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As I stressed before, the identification of learning with concept attainment is a 
superficial view, even though it is not unusual with psychologists and education- 
alists. It is to Piaget’s merit that he stressed structure, at least in theory, though 
not as consequentially in practice. 

1.2.8.1 Structure of science, and development 

I wish to stress once more the distinction between structures within a science -- 
in particular mathematics -- and the structure of a science. It is an old adage that 
cognitive development proceeds from the particular to the general, and this direc- 
tion is therefore considered compulsory for the educational process. Yet it lacks 
sophistication as an adage, mainly because of the multifarious interpretation of 
“general versus particular”. It may be taken for granted that, for a child, being ac- 
quainted with a particular dog (or with a few of them) precedes acquaintance with 
the species “dog”, but classbuilding is only one aspect of cognitive development 
and, for that matter, quite a modest one. Generalisation starts with situations rath- 
er than with objects and the function of a particular situation is paradigmatic rath- 
er than classbuilding. 
Piaget’s view is more sophisticated than the traditional adage, if not its direct 
converse. According to Piaget, development takes place along epistemological 
lines, where episteme is not individual cognition but, with regard to its contents, 
independent of the developing individual. As a consequence, the structure that is 
manifest in the present state of science is at the same time the pattern of the indi- 
vidual’s cognitive development. Experiments serve to corroborate this parallel- 
ism, and they were designed with this purpose in mind, or at least this was their 
intention. 
Piaget nourished this conviction before Bourbaki built his system, or at least be- 
fore he could have become aware of it. He fully practised it in his work on geom- 
etry’. He chose the structure of geometry familiar to him as the canvas on which 
the child’s development must be recorded. This structure was Felix Klein’s, al- 
though geometry had by that time already outgrown it, if ever it had fitted at all. 
According to Piaget development progresses from the poorer to the richer struc- 
tures as he found them in Felix Klein’s hierarchy; it goes from topology via pro- 
jective and affine to euclidean geometry and, according to him, this is true as well 
for the perceptive, the representative, and the cognitive aspects of development. 
Piaget’s view betrays a high degree of confidence in -- or should I say, obedience 
to -- mathematics’ hierarchies, although this has been belied by his own experi- 
ments as well as by those of others. At an early stage a child who is unable to 
draw neat squares and circles, can easily distinguish neat copies of squares and 
circles from bad ones. 
When Piaget was confronted with Bourbaki’s system of mathematics, he accept- 
ed it as an epistemology which can be interpreted genetically, or so it would 
seem. In fact, I believe this to be a misinterpretation of Piaget’s reaction. I rather 
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think that Piaget’s own conception of cognitive structure had been entirely com- 
pleted by that time. His acknowledgment of Bourbaki’s structure of mathemat- 
ics², rather than being a recognition, was an attempt to adapt the Bourbaki system 
to his own conception. This has, however, often been interpreted as a support lent 
by psychology to the enterprise of teaching mathematics according to the struc- 
ture of this science, an enterprise which became famous under the name of New 
Math and eventually proved to be a failure. 
Piaget can hardly be blamed for this. Even though he believed in the genetic-epis- 
temological value of a structure of science, there is no proof that he advocated 
teaching according to curricula patterned on the structure of a science. 
This brings us to the next point, which will anticipate later discussion. 

1.2.8.2 Structure of science, and instruction 

In spite of their failure in mathematics, curricula patterned on the structure of a 
science, are becoming fashionable in other areas. As a pure mathematician I am  
able to view more clearly the relativity of what is offered as a structure of math- 
ematics. If I place mathematics within the larger context of knowledge and abil- 
ities, I am struck by the large gaps in what is often propagated as structure of 
mathematics; for example, the lack of the numeration structure and the disdain 
for visual geometry and for even the simplest applications. As a mathematician I 
also feel obliged to turn against the structure of science as a means to structure 
education, because my personal experience has shown me how easily mathema- 
ticians yield to this temptation. 
Piaget’s work supplied me with no argument from developmental psychology in 
favour of a science structure curriculum, nor can this be justified by educational 
theory. A science structure codifies systematically (and in the case of mathemat- 
ics this means deductively) the state of that science at a given moment and, for 
that matter, of a science that is not even the subject of the instruction envisaged. 
Moreover, there are serious arguments against science structure curricula. Sys- 
tems of mathematics reveal a hierarchy oriented from poorer to richer structures 
which the curriculum designer tries to imitate. “From poor to rich” is, viewed 
mathematically-didactically, a questionable principle. Poor structures are utterly 
abstract as is evident from the poorest of all, the structureless set. Didactically 
one cannot come to grips with it, or it should be by concretising, by filling out the 
abstract form, and in practice this is done by creating artificial, and often even 
false concretisations. In genuine mathematics, sets as well as all of these struc- 
tures serve goals; they are because they are operational. At the level where sci- 
ence structure curricula start, however, there is nothing mathematical one can do 
with sets. So, as a curriculum designer, one arbitrarily invents things to do with 
sets, which have nothing to do with the need for sets in mathematics -- false con- 
cretisation and operationalisation; nor do these have anything to do with the need 
for learning -- false didactisation. At best there will be no effect at all -- sets and 
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other poor structures in elementary instruction are introduced with no other aim 
than to pay lipservice to the science structure. 
If these are but unfortunate slips, there are also more profound arguments against 
the precedence of poor  over rich structures, even from the viewpoint of develop- 
mental psychology. What is usually called abstracting, is most often nothing but 
impoverishing a structure. Mathematical structures have arisen in richer contexts 
and be created in order to be applied where they have arisen and beyond. The ori- 
entation from poor to rich has been suggested by ready to hand mathematics. In 
due course we will deal with learning “mathematics in action”, which is re-creat- 
ing mathematics, not aimlessly of course, but under guidance. If this is agreed 
upon, the didactically recommendable direction will be the Same as that in which 
mathematics arises, that is, from rich to poor. 

1.2.8.3  Structuring rich context mathematically 

Didactically I have opposed rich to poor mathematical structure. This, however, 
is not enough. One should not be satisfied by staying within mathematics. The 
rich structures to be offered should also be sought for outside mathematics, albeit 
with a mathematical-didactical afterthought. After the failure of science structure 
curricula, teams of developers chose another way: that of offering non-mathe- 
matical rich structures in order to familiarise the learner with discovering struc- 
ture, structuring, impoverishing structures and mathematising. By this means he 
may discover the powerful poor structures in the context of the rich ones in the 
hope that, by this approach, they will also function in other (mathematical as well 
as non-mathematical) contexts. Starting with poor mathematical structures may 
mean that one will never reach the rich non-mathematical ones, which are in fact 
the proper goal. 
Let us illustrate this by an example! 
Who is not familiar with the so-called logical blocks, 24 in number, available in 
a rich variety of models, for instance, red/blue, circle/square/ triangle, big/small, 
thick/thin? They are a paragon of an entirely prestructured world: one piece for 
each combination of the four criteria. Abstract operations on sets can be concre- 
tised marvellously by means of such a model. I have opposed to this system an- 
other one which I have called a little world, although I have never insisted on 
teaching it: it is, as it were, a toy shop containing cars, animals, dolls, buildings, 
and so on, of various sizes, kinds of material, colours, grades of mobility, and so 
on. The criteria of classification are not imposed a priori but are discovered and 
developed by the learner himself -- characteristics of colour, size and so on, 
which need not be sharply determined but may be susceptible to shades. In this 
little world, combinations of characteristics may be represented by many objects 
as well as by none, for instance, no big black wooden house but many little red 
tin cars. In brief, it is not a prestructured world but rather a world to be structured. 
In this case, structuring is performed by classifying. I chose this example not be- 
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cause I may believe in classifying as an important cognitive activity, but rather 
as an example that, thanks to its simplicity, sharply features the difference be- 
tween poor and structured on the one hand, and rich and to be structured on the  
other. Logical blocks are a striking example of the implementation successes 
which can be reaped with sharply structured material -- cheap successes obtained 
thanks to love of ease. Rich material, open to structuring, which provides for 
more didactical opportunities, is more demanding and therefore less easy to im- 
plement. 

Let us finish here! A large number of rich contexts for mathematics instruction is 
now available, more than anybody can imagine. The main problem is that of im- 
plementation, which requires a fundamental change in teaching attitudes before 
it can be solved. 

1.3 MATHEMATISING 

1.3.1 The term 

After this discussion on the context and the internal and external structure of 
mathematics, we turn again to mathematics as an activity and look at one of its 
main characteristics: mathematising. Who was the first to use this term, which 
describes the process by which reality is trimmed to the mathematician’s needs 
and preferences? Such terms usually emerge during informal talk and discussion 
before they enter the literature, and nobody can tell who invented them. In any 
case, mathematising is a process that continues as long as reality is changing, 
broadening and deepening under a variety of influences, including that of math- 
ematics, which in turn is absorbed by that changing reality. 
Mathematising as a term was very likely preceded and suggested by terms such 
as axiomatising, formalising, schematising, among which axiomatising may have 
been the very first to occur in mathematical contexts. Axioms and formulas are 
an old heritage, although the meaning of “axiom” (or “postulate”), and the form 
of formulas has changed in the course of time. Euclid’s Elements are no paragon 
of flawless deductivity, as people believed for centuries, nor were they ever in- 
tended as such, as some people still seem to believe. Axiomatics, as we now use 
this term, is a modem idea, and ascribing it to the ancient Greeks is, in spite of 
precursors, an anachronism. Nevertheless, reshuffling an area of knowledge so 
that ends are chosen as starting points, and conversely, using proven properties  
as definitions to prove what was a definition originally -- this structuring “upside 
down” is a mathematical activity of long standing. It is as old as Greek mathe- 
matics, or perhaps even older, although never until modem times has it as con- 
sciously, as systematically, as passionately been exercised as it was by the Greeks 
who greatly enjoyed organising and reorganising knowledge. Nowadays, mush- 
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rooming axiomatic systems are the result of attempts to reorganise fields of math- 
ematical research. This technique is called axiomatising, and is well understood 
and mastered by modem mathematicians. Its first striking example was groups. 
From the turn of the 18th century onwards, mathematicians were confronted with 
mappings of sets upon themselves, often singled out by invariance properties,  
and were led to compose such mappings. In this way they became acquainted 
with sets of transformations which, under composition, automatically satisfied  
the well-known postulates, required later on for groups. Cayley, in 1854, took the 
unifying step to define, by means of these postulates, the (finite) object he called 
a group; yet not before 1870 did this new conception become whole-heartedly 
accepted by leading creative mathematicians, and then also in infinite substrates. 
Formulas, in everyday life as well as in symbolic language, are as old a feature 
as axioms, or even older. Improving the linguistic expression by increasingly ef- 
fective symbols and symbolisms has been a long process, which first concerned 
mathematical subject matter and only later also affected the language in which 
this subject matter was expressed. This process of trimming, adjusting, and trans- 
forming language is called formalising. 
To be sure, as popular as axioms and axiomatising might be in modem mathe- 
matics, they are only the highlights and the finishing touches in the course of an 
activity where the stress is on form rather than on content. The same holds true 
with regard to formulas and formalising. Axioms arise from paradigms or sets of 
paradigms, and axiomatising means generalising experienced paradigms. It is an 
old human habit to make one’s experiences and actions paradigmatical, to gener- 
alise them by abstracting them into laws and rules, to create schemes to fit reality. 
This last activity is called schematising, which is the counterpart to axiomatising 
and formalising insofar as contents rather than abstract form and language are 
concerned. 
The preceding exposition serves to explain the origin of the term mathematising 
as an analogue to axiomatising, formalising, schematising. I pay so much atten- 
tion to it since it is not unusual, in particular in education, to restrict the term to 
one of its components. I myself insist on including in this one term the entire or- 
ganising activity of the mathematician, whether it affects mathematical content 
and expression, or more naive, intuitive, say lived experience, expressed in eve- 
ryday language. But let us not forget about the individual and the environmental 
dependence of “lived” and “everyday life” on expanding reality and progressing 
linguistic sophistication! 

1.3.2 Some aspects 

Modelling 
Moreover, with regard to schematising there is a tendency to identify schemas 
with such things as solving formulas and procedures within formalised mathe- 
matics. Nowadays the term “schema”, in the broad sense, seems to have been su- 
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perseded by more topical “model” -- a valuable term, but unfortunately devalu- 
ated by thoughtless use and misuse. I have castigated this practice often enough, 
or so it seems to me. [87] 
Mathematics has always been applied in nature and society, but for a long time it 
was too tightly entangled with its applications for it to stimulate thinking on the 
way it is applied and the reason why this works. Counting was indeed, common 
sense; surveyors acted as though their pegs and rods  were geometrical points and 
lines, and money changers, merchants, and ointment mixers behaved as though 
proportionality were a self-evident feature of nature and society. Even the astron- 
omers in Babylonian Antiquity stuck as long as feasible, or even longer, to linear 
inter- and extrapolations in their attempts to describe celestial phenomena numer- 
ically; which meant, by means of piecewise linear and by zigzag functions, which 
their Greek heiresses eventually changed into goniometric ones. But goniometric 
functions did not drop from the sky they were studying. The underlying theory 
was that celestial movements ought to be circular. Efforts to save both this pos- 
tulate and the contradicting phenomena gave birth to what we now would call a 
model describing the celestial movements -- a contraption of circles, epicycles 
and excenters which, geometrically and numerically processed, required gonio- 
metric functions. This model survived for almost two millennia. Kepler, rather 
than offering a new model, formulated three general mathematical laws of plan- 
etary motion, derived afterwards by Newton as consequences of his theory of  
gravitation. Newton himself refused to contrive primitive mechanic models for 
explaining gravitation. So, as time went on, physicists had to accept, quite often 
grudgingly, attraction by the force of gravitation as a model in its own right 
which, second only to Huygens’ wave theory of light, was the first model in mod- 
em times to transcend common sense experience. History repeats itself: When 
elastic models of light propagation, suggested by 19th century’s common sense 
mechanics, to refine Huygens’ wave theory failed, physicists had to accept Max- 
well’s electro-magnetic light model. 
Modelling is a modern feature. Until modem times the application of rigorous 
mathematics to fuzzy nature and environment boiled down to more or less con- 
sciously ignoring all of what appeared to be inessential perturbations spoiling the 
ideal case. For a long period, simple geometry and arithmetic had sufficed to strip  
such ideals of their disguises. But what is ideal and what perturbation? The first 
example of a non-commonsensical split between ideal and perturbation was de- 
livered by Galileo: uniform motion as the ideal, perturbed by resistance or, as 
Newton put it, by force in general. In a way this methodology has survived up to 
the present day. Even if a “rigorous” theory is available, it is almost never applied 
as such but instead simplified in order to be accessible to actual processing, 
which afterwards may be refined by better approximations, or immediately by 
feedback models. The first great example of non-trivial idealisation of this kind 
is d’Alembert’s vibrating taut string: by neglecting, as it were, the string curva- 
ture, he succeeds “linearising” the differential equation which, once made linear, 
is easily solved. Indeed, physical remodelling with the aim of linearisation has 
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become a standard tool in applied mathematics. 
In natural sciences the first use of the word “model” is probably related to the 
well-known orrery models of the solar system, where the interplay of planetary 
and lunar movements caused by gravitation is rendered (coarsely simplified) by 
means of a mechanical device; being merely a model, justice is done to the kine- 
matics though not to the dynamics of the celestial motions, while for practical 
reasons the radii of the spheres representing the celestial bodies are dispropor- 
tionate to each other as well as when compared with the sizes of the orbits. Fa- 
miliar as the Rutherford-Bohr atom model may be, it describes the atom and its 
manifestations as a little solar system, with strange restrictions imposed on the 
possible orbits; its model character stems from the ad hoc conditions to which the 
orbits are  subjected, and the ad hoc assumptions regarding jumps from one orbit 
to another which are incompatible with the laws of classical physics. A more re- 
cent model is the drop model of the nucleus, in which protons and neutrons are 
smeared out as a fluid -- an idea typical of a simplifying model. A particularly 
revealing example is the cosmological model of the expanding universe. It was 
originally contrived as a purely kinetic explanation of the all-sided flight of the 
galaxies yet, as time went on, it became enriched by numerous features of dynam- 
ics and of elementary particle physics, although it was still understood as a gross- 
ly simplified model of the evolution of the cosmos. 
All these are idealising models, which introduce mathematical precision into a 
coarser physical reality or simplify a reality that is tacitly agreed to be more com- 
plex than its so-called model. Strangely enough the first use of the term “model” 
in mathematics aims at just the contrary: concrete models of abstract geometrical  
shapes, in plaster or wire and cardboard. The same mathematician who had a 
large collection of such geometrical models made -- Felix Klein -- was also, if I 
am not mistaken, the first to apply the term “model” within mathematics itself. I  
mean here the image of non-Euclidean within projective geometry -- Cayley’s in- 
vention which was interpreted as a model by Klein in order to concretise abstract 
looking non-Euclidean geometry within the frame of the more concrete looking 
projective geometry. Although not as palpable as gypsum models, this model is 
indeed more easily accessible to visualisation than its pre-image. Klein’s exam- 
ple was the root of the present model concept with regard to axiomatic systems: 
what is implicitly given by formal axioms is made explicit by means of a suitable 
mathematical object which, as it were, fills the axiomatic form with what looks 
like substantial content. For instance, a particular group or transformation groups 
in general function as models of the general, axiomatically defined, group con- 
cept. Or euclidean, in particular three-dimensional space may serve as a model of 
axiomatically defined linear or metric spaces. On the scale of concreteness, how- 
ever, one can progress even further, by stepping out of pure mathematics, and 
consider physical, or merely experienced space as a model of its axiomatically 
defined pre-image. 
Only for the sake of completeness did I mention this use of the term “model”, 
which is actually the inverse of the term we started with. As a matter of fact, in 
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the present context we are not concerned with models of axiomatic systems, 
which are lavishly used in foundational research, but rather with modelling in the 
sense of idealising. By this means we are able to simplify complex situations 
which are dominated by mathematical theories of too great a complexity to be 
practical, or which are only accessible by ad hoc mathematical theories. 
Since our subject is modelling as an aspect of mathematising, I would like to 
stress that in the present context I should readily include tangibly concrete mod- 
els such as wind-tunnels where aeroplane models are tested and laboratory sim- 
ulations of hydrodynamic theories. In other words, models that are evaluated by 
observation rather than by mathematics, even though their mere construction 
may require more mathematics than the processing of many less tangible models. 
I would not even exclude computer simulations of such tangible models, where 
the factual evaluation requires less mathematics than does the simulating activity. 
On the other hand I strongly oppose the fashion of slapping the label “model” on 
any system of algebraic, differential or integral equations (related to or arising in 
applied research) -- “mathematical model”, as they like to call it. According to 
my terminology, a model is just the -- often indispensable -- intermediary by 
which a complex reality or theory is idealised or simplified in order to become 
accessible to more formal mathematical treatment. I therefore do not like the term 
“mathematical model’’ in a context where it wrongly suggests that mathematics 
directly or almost directly applies to the environment. As a matter of fact, this 
only remained true as long as mathematics was tightly entangled with the envi- 
ronment. I lay so much stress on the role of the model as an intermediary because 
people are all too often unaware of its indispensability. Much too often mathe- 
matical formulas are applied like recipes in a complex reality that lacks any in- 
termediate model to justify their use. 
Probability and statistics are particularly striking examples. In probability the urn 
from which lots are drawn is, along with other random devices, the model by 
means of which one attempts to mathematise everything in the world that seems 
to be conditioned by chance: pollination of plant by another of the same species, 
marriages and deaths in a population, which are viewed -- rightly or not -- as if 
mating and dying were decided by casting lots. This model suffices for simple 
applications of probability in statistics. As far as I know, however, no models ex- 
ist for mediating the conventional -- or should I say, ritual -- use of correlation 
and regression coefficients and factor analysis in a certain kind of social, in par- 
ticular, educational research: these tools have simply been copied from other sci- 
ences where they are reasonably justified by intermediate models . 
Looking back I realise that I have dwelt more on models than on modelling, and 
in rather general terms at that. Maybe suspicion that this might happen was the 
proper reason why I hesitated so long to tackle the subject. Of course, I could 
have overwhelmed the reader with a catalogue of streamlined models, such as 
harmonic oscillators, electric networks, transition matrices, diffusion processes, 
games, steering devices, population dynamics, queuing, etc. Some of these mod- 
els, with a large domain of transfer, are certainly worth acquiring by students who 
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are expected to put them to good use. On the other hand, however vaguely I de- 
fined modelling -- as idealising and simplifying -- it did hit the nail on the head: 
to grasp the essentials of a (static or dynamic) situation and to focus on them 
within what I earlier called a rich context and, as things progress, within ever 
richer ones. This, then, is the viewpoint from which I will continue to look for 
aspects of mathematising. 

Looking for essentials, 
that is looking within a context, which can mean 

within a situation and across situations 
within a problem and across problems 
within a procedure and across procedures 
within an organisation and across organisations 
within a scheme and across schemes 
within an algorithm and across algorithms 
within a structure and across structures 
within a formulation and across formulations 
within a symbolisation and across symbolisations 
within an axiomatic system and across axiomatic systems. 

Why this multiplicity of “and across”? Because discovering common features, 
similarities, analogies, isomorphisms is the way towards 

as a subconscious habit or as a more or less conscious activity. More often than 
one tends to believe, generality is achieved by the aha experience of one single 

only to be reinforced by a few (albeit not necessarily many) more of them. Now, 

is the inverse of 

which, if imposed, is an instance of what I have tend to call the “antididactical 
inversion”, which I will deal with later on. However, 

is a valuable 

to be distinguished from fashionable heuristics, which is understood as a kit of 
prefabricated tools. 
When stressing the efficiency of the unique paradigm, I had in mind the sudden 
emergence of fresh mental objects and operations. Yet objects and operations can 
become routine through daily practice, and eventually tiring enough to provoke 

streamlining and short-cutting, 
which may lead to 

progressive 

generalising 

paradigm 

generalising paradigms 

exemplifying general ideas 

approaching problematic generality paradigmatically 

heuristic activity 

organising 
schematising 



36 CHAPTER 1  

structuring 
and, in particular, as far as clumsy language and symbolics are concerned, to 

progressive 
formalising 
algorithmising 
symbolising. 

A particularly important aspect of mathematising is that of 

which may instigate a 
change of perspective 

with the possible local result of 
turning things upside down 

and the global one of 
axiomatising 

which again, if imposed, are instances of antididactical inversion. 

reflecting on one own’s activities, 

1.3.3 Examples 

(to be continued in 1.3.5) 
1. Find the middle between 16 and 72 on the number line! Children I observed 

shifted the two points uniformly towards each other, first by units, and then 
by larger steps, in particular by steps of 10. Short-cuts led to halving the dif- 
ference, the half being added to the smaller number. In general terms this 
means the expression 

which by algebra equals the more usual one 
(a+ b). 

After I suggested that shifting away from each other the two numbers would 
as well keep the middle, the children eventually shifted the smaller one to 0, 
and consequentially the larger to a + b which, as it were, proves the usual ex- 
pression for the middle. 
Rather than imposing a method of finding the middle between two numbers, 
it is allowed to gradually develop through progressive schematising. To 
achieve generality of this scheme, one paradigm seems to suffice, even be- 
yond the domain of whole numbers. If verbalised, the general solution “I add 
the two given numbers and divide by 2” may be reformulated via the stage  
“half the sum of the two given numbers” in algebraic idiom and thereby con- 
tribute to motivating the creation and the use of algebraic language. 
Another generalising streak may be by asking the original question with re- 
gard to more than two numbers, with the aim of establishing the mental object 
of average and the scheme of averaging. Only if one is satisfied by formal 
generalisations this can be done by “the sum of the given numbers divided by 
how many there are given”, or its algebraic equivalent. On the other hand, as 

a + (b - a), 



MATHEMATICS PHENOMENOLOGICALLY 37 

soon as contents are aimed at, one should look for situations where the envis- 
aged addition imposes itself in a natural way or is even implicit to the situa- 
tion. I.e: not the adding of ages, sizes, prices, and so on, but rather daily con-  
sumptions of a certain food, working hours, one person’s receipts or expenses 
during a week or a month: or, given the total consumption of some food or 
other commodity by some population, ask for the consumption per capita, or 
as for speed per second, as derived from speed per hour. 
It would be too much to go into more detail in dealing with the concept of av- 
erage only on behalf of schematising and formalising. I will, however, men- 
tion one more generalisation of the concept of “middle”, namely, the “mid- 
dle” of a plane figure or a solid body. Many aspects of mathematising are re- 
quired for answering the questions which may be asked in this context. 

2. If one tap fills a basin in one hour and the other takes two hours, how long 
will it take both of them together to fill it? 
This problem of venerable age (together with venerable ones such as two la- 
bourers working together, two people surviving together on a certain quantity 
of food, and so on) looks ridiculous only as long as it is not integrated into a 
broader context of mathematising and is expected to be solved according to 
imposed traditional schemes. Children to whom I posed the problem divided 
the filled basin into two parts, each of which was assumed to be filled sepa- 
rately by one of the taps: two-thirds of the basin by the “larger” and one-third 
by the “smaller” one, so both of them were filled in two-thirds of an hour. 
Even when larger numbers were given children stuck to this visualised pro- 
portionality reasoning, supported, for instance, by the substitution of a 
number of “slow” taps for a “fast” tap. This strongly diverges from the tradi- 
tionally sanctioned scheme of reduction to one hour: If the two taps fill the 
basin in a and b hours, respectively, then in one hour the first fills and the 
second of the basin: therefore both of them together manage + of it, and 
the whole basin in 

hours. The children’s reasoning, however, corresponds to dividing the whole 
basin in the ratio 
b : a  
to be separately filled by the two taps, thus of the basin by the first, which 
is then the factor by which the original a hours have to be reduced. 
Surprisingly, as soon as this kind of problem takes the guise of two people 
walking towards each other with different speeds, adults familiar with this 
type of problem usually do not notice its isomorphism with the other ones but 
solve it by linear path-time graphs. It seems that distances to be distributed 
among two persons are more likely to elicit geometrical strategies than are 
quantities, such as tap water, work and food. 

1 
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Mental objects such as "speed" are basically schematised and formalised in 
two -- opposite -- ways: 
path per time  and time per path; 
the latter is particularly preferred when comparing sport achievements. Gaso- 
line consumption is another example of the twin schematisation: the driver 
figures out how far a full tank can take him, in order to know whether he can  
cover a certain distance with one tank.  
If one is aware of the manifold phenomena related to this twin schematisation 
and the important interrelatedness of its components, the basin and taps prob- 
lem and its companions begin to look less ridiculous. Harmonic adding and  
averaging (that is, after transformation into reciprocals) is indeed a precious 
scheme which, to be acquired, requires carefully guided schematising. 

3. The criterion for divisibility by 9, as learned at school, is hardly mathematics, 
but challenging its validity      The positional system, modelled by the abacus, 
can be a source of schematising: If the given number is represented by balls 
on the bows of the abacus, than transferring a ball from one bow to another 
means changing the number by a multiple of 9; so if all of them are transferred  
to the units bow, it appears that modulo 9 the number itself equals its sum of 
digits. This reasoning extends by generalising to other positional systems. 

4. With regard to schematising, percentages is too far-reaching an instrument to 
be dealt with at length here. We will only indicate one feature as it is of par- 
amount importance: the restructuring switch 
from p percent more or less 
to (1 + (1 - times. 

5. When do the two dial-hands of the clock cover one another? Infinite series, 
simple algebra, or linear graphs can answer the question but, once answered, 
a short-cut produces the very scheme: during one full turn of the short hand  
the long hand turns 12 times, thus overtaking the short hand 11 times within 
12 hours, at equal intervals. This is a far-reaching scheme, applying among 
others to explain a few astronomic phenomena. 

6. Ten children are at a birthday party; there are two more boys than girls. 
A milk-can with milk weighs 10 kg. The milk left in it weighs 2 kg more than 
the empty can. 
Chickens and rabbits on a farm: 13 heads and 36 feet. 
Starting by trial and error, which becomes less efficient with larger numbers, 
children begin to use a rich variety of preferably visual schemes to answer the 
related questions. Reasonings starting with If: If each girl takes a boy, . . . If 
each rabbit was a chicken, . . . Again the end of generalising is reached in al- 
gebra. 

7. In case you are not yet familiar with it, stop to think about the following prob- 
lem: In a crowd of people among any five people there are always two of the 
same age. Show that among 17 of them there are always 5 of the same age! 
Perhaps you will tackle it by various visualised schemes, only to finally 
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change the perspective: In fact there are no more than four year-classes. 
8. Two players, and a pile of 100 matches, from which they shall in turn remove 

at least one and at most ten. The player who takes the last matches, wins the 
game. Since the winner cannot but reveal the trick to the loser, almost all peo- 
ple know it. So let the couple play another game: 
A pile of matches, from which each may in turn remove a power of 2. Again 
the player who takes the last matches, wins the game. 
If the pile is 1 or 2, the player whose turn it is wins; if it is 3, he loses; if 4 he 
wins, and so he does with 5 by removing 2 and thus putting the other in the 
losing position 3. If 6, however, whether he removes 1,2 or 4 he cannot but 
yield the other a winning position, and therefore loses himself. 7 and 8 are 
saved by removing 1 or 2 respectively, but 9 is again on the wrong side. Going 
on one would guess that multiples of 3, and no others are losing positions for 
the player whose turn it is. How can you prove it? The result suggests arith- 
metic modulo 3. Powers of 2 modulo 3 equal 1 or 2. So all those high-brow 
powers of 2 do not matter at all but instead it all comes down to removing one 
match or two -- a slight variant of our old game. 
Another variant: only prime numbers (1 included) are allowed to be removed. 
Again we draw up a list of winning and losing positions for the player whose 
turn it is: 
Clearly 
1,2,3,5,6,7,9, 10, 11,. . . are winning positions 
4,8,12, . . . are losing positions. 
Indeed, whichever prime you subtract from 12, for instance, you grant the 
other a winning position; however, subtracting 1, 2, or 3 from a number on 
the upper line puts the other player into the lower line. This suggests arithme- 
tic modulo 4, which degrades the game to the old one with simply replacing 
10 by 3. 
Still another version: The numbers you may remove are 1 and 4. Then the po- 
sitions 
1,3,4,6,8,9, 11, . . . are winning positions, 
2,5,7,10, 12,. . . are losing positions. 
Modulo 5, 
1,3,4 are winning, 
and 0,2 are losing. 
Indeed, the player whose turn it is in the first kind of state can answer any 
move -1 by -4 and conversely, and thus preserve his state. 
The games proposed here show similar features to each other. What is the 
deeper nature of their similarity? Are they mere paradigms of a more general 
one and, if so, how to formulate this? 
Rather than starting paradigmatically in each case as we did, the usual way of 
presentation is to start with the final result in order to prove it -- the antididac- 
tical inversion. We presented an open end rather than a final result. 

9. A sequence of disks 1,2,3, . . ., one side black, the other side white. To start 
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with, all have the black side up. All even numbered disks are turned upside 
down, then all divisible by 3, then all divisible by 4, and so on. Which ones 
will in the long run again be black side up? People start experimentally, then 
look for prime divisors and suchlike, only to finish with the short-cut that any 
non-trivial divisor k of n has its counterpart divisor both of which coincide 
only in the case where n is a square. A neat exposition would start just at this 
point. 

10.Schematising experiences like the following leads to the idea of multiple 
counting: three edges meeting at each of the eight comers of the cube would 
Seem to result in eight times three edges, whereas in fact there are no more 
than twelve of them. 

11. Draw one broken line through the five points (fig.2) of the Five of 

the die, touching each point once and only once! How many different figures 
can be obtained? 
First, the idea of “different figures” must be schematised, which is done by 
what is called congruence. Then the counting procedure must be structured 
by classifying suitably, for instance, with respect to the midpoint of the Five: 
take it as the start, as first stop, as second stop, and continue this way with a 
comer. 

12. Quite another aspect of mathematising but that of the preceding problems is 
exemplified by the famous “grains on the chessboard: In order to estimate 
264, one replaces 210 by 10³ It is an example of numerical schematising. 

13. So far I have neglected the linguistic features of mathematising. So in order 
to make a choice, I consulted [87, IV,15]. Choosing means losing, which I do 
not like. So please, do as I did! 

14. I also didn’t pay enough attention to change of perspective. This is a particu- 
larly rich subject as appears from the examples in [87, IV, 16]. Meanwhile, I 
could add many more but I won’t. The subject deserves a more systematic 
treatment, which I do not dare to undertake. 

15. A barrel, closed on the upper side, except for four holes, which are arranged 
in a square (fig.3). Right beneath the holes there are four disks, one side 
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black and the other side white, although their colour is invisible. The player is al- 
lowed to choose one or two holes and turn the corresponding disks upside down. 
After this operation the barrel is rotated at random around its vertical axis into a 
new position, yet in a way that the player cannot identify the holes he chose be- 
fore. The operation is repeated ad libitum. As soon as all the disks show the same 
colour on their upper side, a bell rings and the game is finished. 
Look for a strategy which guarantees that eventually all the disks will show the 
same colour! 
This problem is a rich mine of mathematising features. Since I should not like to 
disappoint readers who would enjoy solving the problem by themselves, I have 
relegated the solution to an Appendix. 

1.3.4 Mathematising -- horizontally and vertically 

Treffers, in his thesis3 of 1978, distinguished horizontal and vertical mathematis- 
ing -- not sharply but with due reservations: Horizontal mathematising, which 
makes a problem field accessible to mathematical treatment (mathematical in the 
narrow formal sense) versus vertical mathematising, which effects the more or 
less sophisticated mathematical processing. For a long time I have hesitated to 
accept this distinction. I was concerned about the theoretical equivalence of both 
kind of activities and, as a consequence, their equal status in practice, which I was 
afraid would be endangered by this distinction. How often haven’t I been disap- 
pointed by mathematicians interested in education who narrowed mathematising 
to its vertical component, as well as by educationalists turning to mathematics in- 
struction who restricted it to the horizontal one (to use Treffers’ terminology)! 
Eventually I have reconciled myself with the idea of this distinction, even to the 
point of appreciating it positively; I do add certain nuances to its formulation, but 
in a way that still respects Treffers’ intentions, I believe. I have accepted the dis- 
tinction because of its consequences for mathematics education, and in particular, 
for characterising educational styles. I will explain this in detail when I will deal 
with theoretic frameworks of mathematics education (3.1.2). 
Let us characterise the distinction as follows: Horizontal mathematisation leads 
from the world of life to the world of symbols. In the world of life one lives, acts 
(and suffers); in the other one symbols are shaped, reshaped, and manipulated, 
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mechanically, comprehendingly, reflectingly; this is vertical mathematisation. 
The world of life is what is experienced as reality (in the sense I used the word 
before), as is symbol world with regard to its abstraction. To be sure, the frontiers 
of these worlds are rather vaguely marked. The worlds can expand and shrink -- 
also at one another’s expense. Something may belong in one instance to the world 
of life and in another to the world of symbols (road-systems, geographical maps, 
geometrical figures, bills, tables, forms to be filled out, and so on). Natural 
number can already belong to the world of life, while abstract addition still re- 
quires symbolic schemes. Abstract addition may have been incorporated into the 
world of life, while the cognition of its commutativity (or multiplication based on 
it) still need models which are processed and the equivalence of which is under- 
stood in the world of symbols. For the expert mathematician, mathematical ob- 
jects can be part of his life in quite a different way but for the novice. The distinc- 
tion between horizontal and vertical mathematising depends on the specific situ- 
ation, the person involved and his environment. Apart from these generalities, 
examples on various levels are the best way to explain the difference between 
horizontal and vertical mathematising. 

1.3.5 Examples 

1. Counting: In order to be counted an unstructured set of objects or events must 
be structured -- manually, visually, acoustically or mentally -- while in a more 
or less structured set the available structure must be uncovered or reinforced. 
This requires horizontal mathematising. Applying the counting sequence to 
this (created or uncovered) structure, on the other hand, is vertical mathema- 
tisation, which, depending on the structure, can take place in a more or les so- 
phisticated way: by using multiplication, for instance, to count a set presented 
or interpreted in a rectangular structure. 

2. More or less: Structuring two given sets simultaneously may be horizontal 
mathematisation, while finding out which is part of which may be vertical. 
Or, at another level, counting both of them may be horizontal mathematising, 
while in this case reciting the number sequence, and listening to which 
number precedes which, vertical. 

3. Adding: A problem requiring the addition of five and three imagined marbles 
to be added to each other may be mathematised horizontally by the “fingers 
schema”, while counting the fingers may still be vertical mathematisation. Or, 
at another level, the preceding problem is mathematised horizontally by the 
arithmetical sum 5+3, which is solved vertically by counting forth, or by the 
replacement 4+4, or by memory. 

4. Adding: If the number realm up to 10 belongs to the world of life, then solving 
8+5 by way of (10-2)+(5+2)=10+5 may be vertical mathematisation, while 
the structures of both summands have been obtained horizontally. 

5. Commutativity: Replacing 2+9 by 9+2 may be due to horizontal mathematis- 
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ing if 2 and 9 are visually or mentally combined as linearly structured sets and 
their combination is read backwards. It may be vertically interpreted as soon 
as the law of commutativity is generally applied. 

6. Addition: It is a sign of vertical mathematisation when addition is used in sit- 
uations like the following: After the distances from A to B and from B to C 
have been paced off, the distance from A via B to C, rather than being paced 
off anew, is obtained by adding. 

7. Multiplication: Five times eight (things) may be mathematised horizontally 
by the rectangular scheme of 5 rows of 8 each. In vertical mathematisation it 
is, for instance, read as the sequence 8,16,24,32,40. 

8. MuItipIication: In the long run, addition of equal summands is recognised and 
dealt with as an operation in its own right -- a process that starts horizontally 
and finishes vertically. 

9. Division: When dividing a number of objects among a number of persons 
(dealing playing-cards to players around a table, for instance), one can start 
by distributing the objects one by one, or by distributing an equal number of 
objects to each person, continuing until the objects are exhausted; this is hor- 
izontal mathematisation of the distribution problem. Vertical mathematising 
can be seen in the search for increasingly larger shares (eventually as large as 
is convenient) in order to shorten the process. This process is a conspicuous 
example of progressive schematising (in the present case, progressive algo- 
rithmising, eventually directed towards the standard algorithm of long divi- 
sion). 

10. Combinatorics: If A and B are joined by 3 roads and B and C by 4 roads, then 
how many ways lead from A via B to C? Horizontal mathematisation is rec- 
ognising the structure of the problem, which may start with clever counting, 
in order to finish with vertical mathematisation by means of the product. Ap- 
plying this “roads scheme” in other situations may be either horizontal or ver- 
tical mathematising, depending on the case. Replacing 3 and 4 by letter sym- 
bols is vertical mathematisation. 

11. Ratio: Mathematising of visual similarity geometrically and arithmetically 
may take place along a path where horizontal and vertical tracks alternate 
with each other, starting with statements like: what is double in size here, 
must also be double in size there. 

12. Ratio: Putting the football scores 2 to 1, and 3 to 2 on a par with each other 
may be refuted by comparing them with 4 to 3,5 to 4, and so on, which is a 
trick of vertical mathematisation. Trying to find a fair method of comparison 
may require the use of horizontally introduced and vertically processed geo- 
metric schemes or proportionality tables. 

13.Linearity: Ratio can be further mathematised vertically by the scheme and the 
straight line graph of the linear function, as can many everyday situations in- 
volving ratio be mathematised horizontally. The relation between constant ra- 
tio and straightness is a feat of vertical mathematisation, as is the relation be- 
tween the value of ratio and the steepness of a graph. The horizontal mathe- 
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matisation of commercial transactions involving both a fixed and a 
proportionally determined rate is followed by a vertical one of relating fa- 
mes of the transaction to features of the graph. 

14. Figurate numbers: Sizes and relations between figurate numbers may be a 
matter of horizontal mathematisation as long as they are geometrically repre- 
sented. For instance (fig. 4): the sum of the first n odd numbers equals the n- 
th square. Or (fig. 5): the sum of the (n -1)-th and the n-th triangular number 
equals the n-th square. As soon as such expressions and relations are put into 
formulas to be processed, vertical mathematisation takes over which, in the 
long run, is experienced horizontally. The inductional steps required for prov- 
ing such relations are again of a vertical character, even though in the long run 
they will be experienced as being horizontal. Verbalising complete induction 
such as what is used in the proof is again an occurrence of vertical mathema- 
tisation. 

Fig. 4 Fig. 5 

15. Pascal triangle: This situation is similar to the preceding one. As long as the 
triangle is given as such, then numerous relations between its elements are ob- 
tained by horizontal mathematisation. The usual algebraic expression of the 
binomial coefficients requires vertical mathematisation, as do well-known 
combinatorial problems related to the Pascal triangle. 

16. Area: Areas delimited by rubber strings on the geoboard are numerically ob- 
tained by horizontal mathematisation. In this vein the discovery that triangles 
having the same horizontal basis and equal heights also have equal areas ap- 
pears to surprise even quite a few adults who had learned geometry at school. 
Relating this experience to the formula for the triangular area requires vertical 
mathematising. 



CHAPTER 2 

DIDACTICAL PRINCIPLES 

Rather than being a didactical phenomenology of mathematical structures [146] 
the first chapter was one of mathematics itself, although I left “didactical” out of 
the title. Here it reappears. As far as the relation between teaching and learning 
is concerned I like “didactics” better than “education” -- influenced as I am by 
continental terminology. I therefore chose it also for the title of the second chap- 
ter, together with “principles”, which means trying to avoid details, certainly with 
respect to subject matter. The principles I will deal with are my choice. In fact I 
was led by one particular principle: doing didactical justice to the results of the 
phenomenological analysis. 
Didactics of a subject area means the organisation of the teaching/learning proc- 
esses relevant to this area. Didacticians are organisers: educational developers, 
textbook authors, teachers of any sort, maybe even students, who organise their 
individual or group learning processes. The present work is not primarily con- 
cerned with didactics, and not at all with ready-made didactics as opposed to di- 
dactics as an activity. Our view on didactics will reflect the one on mathematics 
presented in the first chapter: mathematics arising by mathematising is mirrored 
by didactics arising from didactising. Notice that the intended parallelism even 
extends to distinguishing horizontal and vertical didactising: from the didactical 
reality to becoming conscious of it on the one hand and to paradigmatising it on 
the other. 
Yet there is a difference: the view on mathematics was the result of a phenome- 
nological analysis, while mathematical didactics viewed as an activity is a postu- 
late, inspired by the character of the subject area. When we discuss the practice 
of mathematics education will be discussed (3.3), this parallelism will be elabo- 
rated in more detail; meanwhile it will remain implicit to the exposition of ideas, 
which were conceived and are to be reborn by didactising. So, by didactising, jus- 
tice shall be done to the results of the first chapter in the broader sense of this par- 
allelism. 

2.1 GUIDED REINVENTION 

“Problem Solving” and “Discovery Learning” have become catchwords. I never 
liked them as mere slogans, and I like them even less since I first time saw them 
exemplified. Problem solving: solving the teacher’s or the textbook author’s or 
the researcher’s problems according to methods they had in mind, rather than the 
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learner himself grasping something as a problem. Discovery learning: i.e. uncov- 
ering what was covered up by somebody else -- hidden Easter eggs. 
I shall not start an idle discussion on whether mathematics arises by discovery or 
invention, or to what degree it does so as a science or as an art. With regard to the 
subject matter to be organised I preferred the term “discovery”; in the context of 
teaching, however, my choice of long ago was “invention”, which embraces both 
content and form, fresh discovery and organisation. Inventions, as understood 
here, are steps in learning processes, which is accounted for by the “re” in rein- 
vention, while the instructional environment of the learning process is pointed to 
by the adjective “guided”. In the first chapter I analysed mathematics as an activ- 
ity. Indeed, mathematics in individual lives starts in this way. But is the learner 
allowed to continue like this? Curious children will not ask for permission; indif- 
ferent and lazy ones prefer to be guided. So in order to explain how I imagined 
mathematics would be learned I long ago4 chose the term “guided reinvention”. 
It didn’t catch. Should I have done otherwise? Fortunately I did not. 
Why not “heuristic”, for instance? Old Polya, in his marvellous books, guided 
young Polya, according to the heuristic method, to reinvent mathematics. Heure- 
ka -- I found it -- is what Archimedes exclaimed after an unexpected discovery. 

Some time ago, upon consulting English dictionaries, I could not locate the adjective 
“heuristic” between “hetman” and “hew”; only in a Dutch-English dictionary did I 
find it as the translation of its Dutch counterpart. So I went to a larger library. Neither 
the adjective nor the noun “heuristic” were recorded in any English encyclopedia, 
whereas they occurred in the oldest Dutch, French and German ones I consulted. With 
the dictionaries I fared a little better but I had to resort to the biggest ones to encounter 
at least the adjective “heuristic”; not until the nineteen-fifties and sixties of this centu- 
ry did either “heuristic” or “heuristics” emerge as a noun. Needless to say, in the con- 
tinental vocabularies the corresponding adjectives and nouns have long been terms in 
good standing. Of course, the lack of terms does not at all imply the lack of the con- 
cepts they cover. Believe it or not, up to a quarter of a century ago the geometric term 
“congruent” did not exist in standard English, although we may take it for granted that 
British teachers and students knew as much about congruent triangles as did their con- 
tinental peers. 

No doubt “heuristic” entered the English vocabulary via mathematics education. 
Unfortunately, it did so in the form “heuristics” where the additional “s” did not 
reflect that of physics and economics but was indeed meant as a plural. Unfamil- 
iar with the continental tradition, the anglophone authors did not mean by heuris- 
tics a didactical method but rather a set of tricks and wrinkles, helpful for solving 
mathematical problems. When I made my choice, I could not possibly have fore- 
seen this development. So it was mere good luck that I chose “reinvention” rather 
than “heuristic method”. I would not have liked to see ideas on learning mathe- 
matics which I tried to convey by “reinvention”, drowned by what is now fash- 
ionably known as “heuristics”. 
I also failed to choose another term of good standing -- the term “genetic method” 
-- because it does not allude to any activity of the learner; moreover, although it 
is not intended to do so, it does seem to describe a narrow-minded approach. 
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Learning as a genesis, as opposed to teaching as implementation would be a good 
metaphor, were it not for the biological associations of the adjective “genetic” as 
opposed to “societal”. 
On the other hand it can hardly be denied that the first appearance of mathematics 
in cognitive development does look like an almost biological genesis -- I mean 
here the emergence of similarity and of whole number. At the same time, the un- 
folding of number is driven by the learner’s dynamics, which manifests itself (as 
I pointed out earlier) in a constructive linguistic activity. The learner reinvents 
the number sequence more or less consciously and this reinventing activity may 
even extend to arithmetical operations. It is well-known that some children rein- 
vent arithmetic on their own, to various degrees indeed which depends on the 
children’s individual characteristics as well as on their environment. Is it there- 
fore too far-fetched to assume that. with some support, every normal child might 
be able to reinvent as much mathematics as needed in one’s future daily life? This 
does not in fact happen and it is difficult to ascertain whether it would be possible 
or not, because in general, after a promising start, the child is not given the op- 
portunity to reinvent anything whatsoever, at least in institutionalised learning. 
Instead, knowledge and action patterns are more or less imposed, as is most of 
the knowledge the child acquires by instruction. This is not the place to ask to 
what degree this is justifiable in general, since we are concerned here with math- 
ematics which, as I explained earlier on, is different. One of the reasons why it is 
different is history. Can the historical learning process of mankind somehow be 
repeated by individual learners? A clever youth can reinvent quite a lot of math- 
ematics on his own, I said. So why should less clever ones not be able to do so 
with the help and under the guidance of others -- adults as well as their peers? 
Why should they not be able to continue the way they began? 
Not all the way, to be sure. No individual needs to run through the whole histor- 
ical pedigree and conceptual hierarchy of knowledge and abilities which grew 
and were built through the incessant interplay of form and content. But why 
should people not get the chance to aspire, to climb and to dive to heights and 
depths as steep and as deep as they can reach and afford? Aside from this there 
must be, in whatever direction, some level within everybody’s reach. I confess 
that the horizon of these levels is the one thing in mathematics education that, 
over the years, I have become ever more interested in -- its natural extension and 
the opportunities and possibilities to extend it as far as feasible. 
This is a view at variance with that of prescribing to people a priori the mathe- 
matics they should learn. Learners should be allowed to find their own levels and 
explore the paths leading there with as much and as little guidance as each par- 
ticular case requires. There are sound pedagogical arguments in favour of this 
policy. First knowledge and ability, when acquired by one’s own activity, stick 
better and are more readily available than when imposed by others. Second dis- 
covery can be enjoyable and so learning by reinvention may be motivating. Third 
it fosters the attitude of experiencing mathematics as a human activity. 
Traditionally, mathematics is taught as a ready made subject. Students are given 
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definitions, rules and algorithms, according to which they are expected to pro- 
ceed. Only a small minority learn mathematics in this way. If you ask mathema- 
ticians how they read papers, most of them will answer that they try to reinvent 
their contents. I believe the young learner may claim the same privilege. 
To do justice to the phenomenological analysis I include definitions into the 
realm of things students are entitled to reinvent. A formal theory of ready-made 
mathematics starts with definitions and notations. Once upon a time each of them 
was coined. Gradually and in connection with each other they have been im- 
proved upon. Indeed, knowledge (however acquired) must be organised and sys- 
tematised in order to be efficient and effective, and fit to be communicated to oth- 
ers and to oneself (that is, to remember it). If the student is granted the Same op- 
portunity we may trust him to better grasp the need of definitions and notations. 
But definitions and notations are only the start of ready-made mathematics. I 
chose these as particularly striking examples, but all I said about them holds for 
the entire course of the more or less deductive ready-made system. 
History teaches us how mathematics was invented. I asked the question of wheth- 
er the learner should repeat the learning process of mankind. Of course not. 
Throughout the ages history has, as it were, corrected itself, by avoiding blind al- 
leys, by cutting short numerous circuitous paths, by rearranging the road-system 
itself. We know nearly nothing about how thinking develops in individuals, but 
we can learn a great deal from the development of mankind. Children should re- 
peat the learning process of mankind, not as it factually took place but rather as 
it would have done if people in the past had known a bit more of what we know 
now. 
New generations continue what their forbears wrought but they do not step in at 
the same level reached by their elders. They are consigned to much lower levels 
from which they resume the learning process of mankind, albeit in a modified 
way. Educators are charged with the task of helping them, not by prescribing but 
by allowing them to reinvent the mathematics they should learn. I agree this is far 
from easy, yet it is even more difficult to properly understand how far and why. 
The first and foremost thing is to become aware of this challenge and to prepare 
oneself to meet it as well as preparing those one wants to guide on the way of 
guiding their guided ones. “Teacher training” will give us the opportunity to 
resume this question (albeit entangled with the problem of reinventing didactics 
by didactising) but in the mean time I can say that common sense and guided re- 
invention of mathematics will again pave the road to the answer. 
It will not be a simple answer since guiding reinvention means striking a subtle 
balance between the freedom of inventing and the force of guiding, between al- 
lowing the learner to please himself and asking him to please the teacher. More- 
over, the learner’s free choice is already restricted by the “re” of “reinvention”. 
The learner shall invent something that is new to him but well-known to the 
guide. 
In any case reinventing is at least reinventing something. Let us discuss this first! 
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2.1.1 Guiding --where to? 

Governments, who consider themselves responsible for assessment, want educa- 
tional objectives to be formulated in terms of subject matter and neatly tailored 
abilities, the mastery of which can be tested “objectively” (as they call it) -- that 
is, by computers. It is for the teachers’ own good, our objectivists stress; teachers 
should be free to arrange their teaching at will, as long as their students are 
deemed likely to attain the prescribed goals. Educational authorities are support- 
ed by educators who promise to shape these kinds of instruments of assessment, 
and opposed by others who doubt their validity in advance. A justifiable doubt, 
it seems to me, but this doubt does not discharge them of their responsibility to 
look for better tools of assessment. This is a serious problem, which we must 
tackle in due course. 
Meanwhile we cannot evade the question of where to guide the reinventor. Not 
surprisingly, I shall not answer this question with catalogues of subject matter 
and neatly tailored abilities. To be sure, they are indispensable, that is, as indis- 
pensable as is the table of contents in works like the present one. But table of con- 
tents and indexes are not useful unless one is familiar with the content itself -- 
globally familiar, I mean. 
Whatever the importance of subject matter and neatly tailored abilities, they are, 
they are considerably less so in mathematics than in any other teaching. Since I 
stressed mathematics as an activity my answer to the question “where to?” will 
be: “to an activity”. In other words, the learner should reinvent mathematising 
rather than mathematics; abstracting rather than abstractions; schematising rather 
than schemes; formalising rather than formulas; algorithmising rather than algo- 
rithms; verbalising rather than language -- let us stop here, now that it is obvious 
what is meant. 
If the learner is guided to reinvent all this, then valuable knowledge and abilities 
will more easily be learned retained, and transferred than if imposed. 

For almost a century it has been known through experimentation that meaningful mat- 
ter is more easily learned and retained than meaningless matter. Whereas those exper- 
iments primarily involved verbal matter, more recent research focuses on mathemat- 
ics, on arithmetic, in particular. Multiplication tables are a striking example -- at least 
as long as they are considered worth learning and memorising, which I still think they 
are. Didactical methods have changed. The oldest method was to have children build, 
say, the table of 7 in the natural order 1x7,2x7,3x7, ..., perhaps acoustically supported 
by unison recitation; a student who had memorised it in this way, was expected to an- 
swer “6x7=” by whispering the table up to the stop “6x7=42”. This method has now 
yielded to methods of unguided incidental learning by unsystematic exercises of great 
frequency, much like memorising phone numbers and addresses. The newer method 
seems to be less successful than the old, but both of them are unacceptably wasteful. 
More recently, attention has been paid to what is called “children’s informal meth- 
ods”, such as doubling the better known 3x7 to get 6x7. Such examples of vertical 
mathematising should not only be permitted (which is not at all a trivial matter if seen 
from the children’s viewpoint) but indeed reinforced and encouraged, either directly 
or indirectly, that is, through the learners’ interaction among each other5. 
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There are also indications that transfer is favoured by guided reinvention, in particular 
if word problems are to be solved by column arithmetic. We will present the evidence 
now available in due course. 

The third member of this triplet deserves closer scrutiny. Once a more definite 
stage in the process of learning by reinvention has been attained, intermediate 
stages are likely to be wiped out of the reinventor’s memory; and as time goes on, 
the whole learning process may even be obfuscated as though it never took place. 
This is not necessarily a loss as long as its essentials can be restored in case of 
need. If not, there is nothing left to be transferred. What kind of measures can be 
taken to prevent this? We will try to answer this question when we deal with “ret- 
rospective learning” (2.4.5,3). 
When asked “where to” the reinventing learner should be guided, my answer 
was: to mathematising and its various aspects. The lack of more substantial ob- 
jectives can be made up for by asking what the learner is expected to mathema- 
tise. This can be answered in one word: Reality. What kind of reality? The learn- 
er’s own reality as laid open to him by his guide. This leads us to the next ques- 
tion. 

2.1.2 Guiding -- where? 

1. Counting is the child’s first verbalised mathematics; verbal counting may even 
precede counting something. So many kinds of things are present in the child’s 
world to be counted, so many are waiting to be counted, and so many new ones 
can be offered to be counted. Take the number of people around the table, the 
number of noses, eyes and ears, even feet, invisible under the table. Applying the 
sequence of numerals to such sets is horizontal mathematising. Wondering why 
some among these numbers are equal is asking a vertically mathematising ques- 
tion, which is answered by the extrapolating transfer of the “as many as” from 
one’s own body to the bodies in a group. This is a valid answer, even if the un- 
derlying one-to-one relation is not made explicit, and asking to provide it would 
be schoolmarmish. The same holds if the “earlier” and “later” of the sequence of 
numerals is horizontally transferred to the “less” and “more” of sets counted or 
viewed as being counted. Transitivity may evolve from a horizontal mathematis- 
ing experience into a vertical mathematising activity, only to become part of re- 
ality itself in the long run. For a long time in the long run, if not forever, the car- 
dinal aspect may remain an implicit feature of number, which needs no verbalis- 
ing, as it has been for millennia in the history of mankind; the same is true for 
transitivity of order. 
The things counted are structured sets, rather than structureless ones. Such a set 
structure may be more or less distinctly visible in the given situation, or else, the 
task of structuring can be left to the learner. 
The set of guests around the table or of children sitting in a circle on the floor is 
structured by its cyclic order -- “didn’t you forget anybody”? Or the children may 
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count themselves, each adding 1 to the number of his neighbour at the right. Or 
number one, as soon as it is his turn, may continue numbering himself, one more 
round, two, three, in infinitum -- unwinding, as it were, the cyclic order. In a 
group of seven, which numbers does the first one get? And what kind of num- 
bers? And the seventh, the third? And who gets number 100? Have it marked on 
the number line -- unwinding the circle as it were! This is a marvellous example 
of prospective learning (2.4.5,3) of multiplication and its tables, as well as of di- 
vision and, if reflected upon, of vertical mathematising. Strangely enough I have 
never seen this most natural example of guidance applied. 
The set of eyes in a company is structured by the set of people. Or is it structured 
as a set of pairs? If counted by means of 2,4,6, . . . it is vertical mathematising, 
at least the first time it happens. How many seats in a theatre, how many occu- 
pied? How many places in the parking lot, how many cars? How many days until 
the holidays? How many pages left to read? To be sure, one can count all of them 
one by one, or more cleverly, by looking for structures or creating them. The ba- 
sic arithmetic operations are likely to be applied in counting; they may even be 
given new meanings by the counting activity -- examples of horizontal as well as 
vertical mathematising. 
Conversely, counting can serve to structure a situation: take the third street comer 
from here! How many blocks are needed to build a tower as high as that? How 
many layers of bricks to build this house? A lot. 
How to count large quantities? Or is there any need to count them? It depends on 
what is worth knowing. On December 31,1974, there were 

people living in The Netherlands. How for heaven’s sake did they count them? 
Elsewhere their number is given in thousands of people, 

Except for 82 people the sum is correct. How far off could it have been? 
2. Mathematics education developers, who believed in mathematics arising in the 
reality, and in having this reality organised and mathematised by the learner, 
looked first for primordial sources. There are plenty of them. Make your choice! 
But isn’t it a pity to choose one source, say of addition or subtraction, and to for- 
get about the others? Well, the others may still get their turn. Once the said oper- 
ations are mastered, they are to be applied. This is what they call word problems, 
disliked by students as well as by their teachers. Indeed, would you like to leave 
the safe harbour of routines and venture into the open sea? Each word problem is 
a new one, and if you are not told how to solve it, you must then remember what 
addition and subtraction mean and return to their sources -- which might have 
been clogged by the algorithmic routines. 
There is an alternative. When mathematics education developers looked for pri- 
mordial sources, they were nearly drowned by the variety they found. They could 
not make a choice or else they did not want to; if they did, they preferred not to 
make a single choice, but to have a rich variety. They did not want to narrow the 
wide real world on display, nor to degrade world problems to word problems. 

13,599,082 

6772 men and 6827 women. 
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So an all-round approach is needed, or so it seems: at the very beginning a broad 
display of situations to be mathematised with a view to learning addition and sub- 
traction, telling and drawing little stories, played by the teacher or invented by 
the children themselves. Wins and losses, spending and saving, growth and de- 
cay, jumps on the numberline (there is a big one in any classroom), bus stops with 
people getting on and off, signposts suggesting distances to be added and sub- 
tracted, block towers to be built and compared -- let us stop here! 
3. Addition and subtraction are learned as activities, and there is no need to ob- 
literate this origin, to freeze the dynamics of adding 3 to 4 into the static interpre- 
tation, prescribed by New Math, where 4 + 3 is merely another name for 7; even 
having a try makes little sense as long as no situations are available where such 
ideas can be reinvented rather than being imposed upon the learner. 
4. When addition is incorporated into the learner’s reality, it may serve as a 
source for multiplication: adding a sequence of equal summands. Yet it should 
not be the only source, as was in traditional teaching. It should not even be a pri- 
mordial source but rather an auxiliary one. Indeed, why should one add sequenc- 
es of equal summands? This “why?” is readily answered by numerous situations 
where summands are equal, and all of them are sources of multiplication, and for 
that matter, are richer than the more formal source of merely adding equal numer- 
ical summands. (Notice that this procedure may, thanks to the richer approach, 
afterwards even resemble vertical rather than horizontal mathematising.) 
5. Division is rooted both in subtraction and in multiplication, more formally in 
the latter, that is, as its inversion. Elementary divisions are most easily performed 
by making use of just this fact. But this does not matter here. The root of division 
in subtraction is twofold: exhausting one measure copying a smaller one, and dis- 
tributing. Formally, both look the same, even with regard to the numerical pro- 
cedures applied. But division, like multiplication, requires the use of quite differ- 
ent sources: real-world exhaustion and distribution problems. Experimental re- 
search9 has proved that disguising long division problems as “word problems” 
consistently and for the entire length of the learning period not only solves the 
old didactical “word problems” problem with regard to division, but also favours 
the process of learning long division: much better results being obtained in a 
much shorter time. We will try to explain this experience when we will discuss 
learning algorithms in general. 
6. When the wealth of sources in reality is concerned, fractions is second only to 
ratio, and both of them are closely connected with each other in real-world situ- 
ations. In cognitive development -- as I have often stressed -- similarity, thanks 
to its visual expression in proportionality, even precedes number, which in turn 
is much more easily verbalised than ratio. Although situations involving ratio and 
proportionality are as easily and as early accessible (in particular visual and vis- 
ualised ones) as are those involving number, they are hardly considered worth 
paying attention in traditional instruction. Why? Number is so much more easily 
verbalised than ratio, and verbal introduction of concepts is in general preferred 
to non-verbal formation of mental objects. Even at present few mathematics ed- 
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ucation developers are aware of the educational opportunities lost by the lack of 
attention to ratio, and research done in this field is negligible compared with that 
on number and separated as it is from development, hardly to the point. One of 
the few exceptions is L. Streefland’s Thesis6, in which the learning of fractions 
and ratio are interrelated. Although the emphasis, even in Streefland’s work, is 
on the one traditional didactical access to fractions -- cake divided into equal por- 
tions -- it is distinguished by the much more abundant exploitation of this source. 
In fact, in Streefland’s approach not one cake -- or rather pizza -- is divided by 
fair sharing but a varying number of them, which moreover takes place at a var- 
ying number of tables. By this simple artifice this single source of ratio and frac- 
tions is explored and exploited to such a great depth that a whole world of frac- 
tions and ratio is displayed. 
7. I must admit that one important source (at the same time application) of frac- 
tions and ratio has amply drawn the attention of developers: probability. But 
where it did so this source has most often been tapped on behalf of probability 
rather than fractions and ratio. I don’t feel that much progress has been made 
since the first attempts. We know nearly nothing about the individual learning 
processes by which probability as a mental object is constituted and eventually 
mathematised. I would guess that by necessity they are unusually long and de- 
pend on an unusually great variety of facts being experienced in reality. In spite 
of this, the examples of teaching probability I saw developed, were aimed at rel- 
atively short term and rather compact learning processes. As soon as long term 
learning processes will are considered, probability will have to be discussed 
anew. 
8. It seems to me that the teaching of probability suffers from the emphasis on 
combinatorics, which through the feedback of the teaching/learning process is 
likely to be transfigurated from a tool serving probability into a safe algorithmic 
shelter, protecting against it. Of course, this does not mean we should reject com- 
binatorics as such as a matter to be reinvented. On the contrary, combinatorics - 
- and figurate numbers in particular -- is a most appropriate matter for reinven- 
tion: Starting with numerical paradigms, guessing general relations, experiencing 
and satisfying needs for good definitions and convincing proofs, encountering 
mathematical induction thanks to these efforts, and using mathematical induc- 
tion, first instinctively, then intentionally, and eventually in a more or less for- 
mally verbalised manner -- all this together appears to be a most efficient course 
in reinvention. 
9. Let us pass to less elementary mathematics! Nowadays exponential growth is 
on the verge of becoming an everyday idea if it has not already. On the other 
hand, mathematising the idea of growth has been a rather recent feature in math- 
ematics history. Logarithm tables and the logarithmic function (the integral of 
as a function of x) preceded exponential functions. If history is allowed to be re- 
invented, emphasis must be shifted from the exponential as the inverse of the log- 
arithm to the exponential as a growth function. As a matter of fact, compound in- 
terest as an instance of discreet exponential growth had been cultivated much 
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longer; extending it to continuous growth is a historically rather recent acquisi- 
tion, which only afterwards was formalised by means of the well-known expo- 
nential functions. In teaching, however, supported by a rich variety of examples, 
it should be a source for and a guide to reinventing exponential (and in its slip- 
stream, logarithmic) functions. 
10. As a matter of fact, “growth” as meant here, includes shrinking --negative 
growth as it were. “As it were”? It has become a linguistic habit (even far outside 
mathematics) when speaking about values, magnitudes, forces, trends, or what- 
ever, to quasi-mathematise opposite of -- in any sense whatsoever -- by negative 
of. This transfer of an arithmetical relation is a most striking example of formal 
transfer which carries momentous consequences for contents. Acquired as it is 
much earlier in the learning process, it certainly deserves to be made conscious, 
and growth and shrinking is perhaps the best opportunity to accomplish this. 
11. At a more formal level, the isomorphisms mediated by exponential and loga- 
rithmic functions between addition and multiplication are a matter of construc- 
tive reinvention. Indeed, it starts operationally in the interpolation process lead- 
ing from discreet to continuous growth, only to become paradigmatical, and if 
subjected to reflection, a generally formulated feature of real number. 
12. Another case of history which must be revised by reinvention is the sine (and 
other goniometric functions). 
It so happened that the 75 year-old woman I introduced earlier on once asked me 
what sines were good for. Though for many years 1 had already cherished ideas 
on this subject at variance with the traditional ones, I was for a moment in danger 
of relapsing into the old habit of citing trigonometry. Fortunately I did not. In- 
stead I told her about oscillations, vibrations, and superposing sine functions. 
This is a more convincing answer, in particular if trigonometry as such is no long- 
er remembered. 
The sine (as well as other goniometric functions) was once upon a time invented 
for the computation of mangles -- first astronomical and later also survey-geo- 
detic ones. In the law of refraction it was still related to right triangles. Not until 
the cycloide was studied and its equation discovered, did the sine occur as a func- 
tion. Its importance greatly increased when it reappeared in the mathematical de- 
scription of the oscillations of the pendulum, and of the shape and the vibrations 
of the taut string. At present, vibration phenomena of all kinds is the vast domain 
of application of sine and cosine. 
Triangles are not the first and certainly not the only source for reinventing sines. 
They should rather be reinvented on the level of functions, more precisely, as 
graphically represented functions of time: While a wheel is uniformly spinning 
on its axle, a luminous point on its rim moves periodically up and down. The 
graph of its variable height is easily drawn and can be shown on a TV screen; The 
graph’s dependence on the wheel’s radius, on its speed, on the spinning sense, on 
the point observed (with consequences for the relation between sine and cosine) 
can be studied in this context, long before triangles are computed. When this 
comes up for discussion, the right triangles in question will emerge as though 
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produced by instantaneous exposures of the spinning wheel. The occurrence of 
sines in the description of phenomena of oscillation and vibration should at this 
stage simply be accepted as an empirical matter of fact, which nevertheless adds 
much to their importance. 
(Note that I used the plural “sines” more often than the singular “sine”. The plural 
sounds like one is speaking about exponential and logarithmic functions along- 
side with the exponential and the logarithmic function. This is a mere conse- 
quence of the spinning wheel approach, with all its parameters. As soon as one 
has settled on the unit for both the radius and the circular speed, on a counter- 
clockwise spin, on the luminous point at time 0 at the “right” end of the “horizon- 
tal” diameter, and its height measured “above” the “horizontal” axis, one has got 
the sine. Is this mathematical slang? I believe it is rather terminological flexibil- 
ity.) 
13. Neither Calculus nor Analysis is included in this overview, not because I have 
renounced comprehensiveness, but because both of them, if taught at all, should 
be preceded didactically by something I propose to call Differential and Integral 
Methods. This topic deserves a place in an early stage of the learning process 
where algorithmisation has not yet been developed far enough as to allow teach- 
ing Calculus or even Analysis. It is an approach (in principle by graphic repre- 
sentations) initially merely qualitative and later on quantitatively refined (if pos- 
sible). It aims at understanding and interpreting such ideas as the steepness of a 
graph and areas covered by the moving ordinate segment, maybe even curvature, 
in contexts where the drawing of the curve mathematises a given situation or oc- 
currence in primordial reality -- we hardly need stress the vast opportunities here 
for reinvention. In our exposition, Calculus is better discussed alongside with al- 
gorithms. Analysis was once invented as a safeguard against false Calculus. It 
still waits for justifying as a subject at Highschool level. By justification I mean 
guiding the learner to avoid the pitfalls of automatically applied Calculus by re- 
inventing more critical Analysis. As long as I have yet to see any didactical at- 
tempt at repeating this very historical origin of Analysis, I think that “Differential 
and Integral Methods” is a didactically more trustworthy safeguard than Analysis 
can be trusted to be. 
14. In my overview I did not strive for comprehensiveness. Two serious gaps, 
however, are still left: Algorithms, and Geometry. There are reasons to delay fill- 
ing them. 

2.1.3 Guiding -- how? 

Guiding means striking a delicate balance between the force of teaching and the 
freedom of learning. It depends on such a perplexing manifold of hardly retriev- 
able and only vaguely discernible variables that it seems inaccessible to any gen- 
eral approach. Observational reports on guiding may be a source of understand- 
ing and a help for teaching guidance. Unfortunately, most of the reports available 
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are concerned with single lessons or short sequences, and little is known about 
long term learning processes. 
My own teaching experiences, on which I have reported incidentally and unsys- 
tematically, are concerned with individual children. Let me mention two more 
systematic reports [73;154]. The first, though concerned with a 5 year-old boy’s 
experiments on a physical subject, is essentially mathematical reinvention. The 
second publication is unfortunately only a short summary of a larger report on the 
long-term teaching arithmetic and mathematics to a 12-14 year-old fractions; 
negative numbers and vectors; linear graphs, functions, equations and inequali- 
ties; powers. Let me quote myself from the above publication: 

It was my instructional principle to put her in concrete, if possible, visual situations 
and to let her work intuitively. Never did I explain anything to her. never did I formu- 
late any rule, nor did I ask her to formulate rules. When I had the impression that she 
was still behaving as acting intuitively and insightfully, whereas she had already algo- 
rithmised the type of problem, I exaggerated the numerical data in the problem in order 
to make the algorithmic procedure visible. I asked the question “why?” only if I was 
sure she knew the answer. 

The method was conditioned by the learner. With other children, for instance, I 
insisted much more on reflection. With others I did on occasion suggest an an- 
swer, but when this happened with her I inserted this symptom of impatience into 
the report and blamed myself for it. 
Never explain anything -- how is it possible? Well, the situations this girl was 
placed in were self-explanatory, and the only thing I added was something resem- 
bling the caption to a picture. For instance: 

That is the x-axis; 
that is a vector; 
that is putting into brackets; 
2.2.2.2.2 = 25 reads 2 to the power 5. 

I can extract two principles from my report: 
a) Choosing learning situations within the learner’s current reality, appropriate 
for horizontal mathematising. 
b) Offering means and tools for vertical mathematising. 
It may rightly be argued that individual instruction like the above cannot be nor- 
mative for the reality of instruction in general. This is correct, not because of the 
mere fact that it is individual instruction but because of the unlimited opportunity 
the teacher for improvisation granted in this setting, by which he can reinforce 
the learner’s attempts at reinventing. In the average classroom -- one would say 
-- only pedagogical geniuses can act this way, but the average teacher needs in- 
structional plans, predesigned by able developers. Yes, indeed, but then prede- 
signed in a style that does not unnecessarily restrict the teacher’s freedom to take 
advantage of the class situation as it presents itself at any given moment, so that 
the situation can be grasped by the teacher’s intuition and experience, and fitted 
according to the teacher’s principles. This requires a system of 
c) Interactive instruction, interactive, not only in the sense of a class-teacher re- 
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lation, but -- maybe even more so -- in that of a mutual relation between the learn- 
ers, leaving the teacher in the background more room and time for efficient im- 
provising. The teacher’s apparent withdrawal is manifest in allowing and stimu- 
lating 
d) The learner’s own production, which includes the reinvention not only of so- 
lutions but also of problems -- a most effective kind of training. Viewed from the 
curricular perspective, improvising is facilitated by intertwining teaching 
strands, which should result in 
e) Intertwining learning strands, an idea that shall be elucidated in connection 
with long-term learning processes (2.4.5,4). 
The Five Tenets a-e are from A.Treffers7. I would not be able to formulate more 
concisely what, in my view, guidance means in “guided reinvention”. This brief 
exposition covers the principles and at the same time leaves plenty of room for 
further elaboration. 

2.1.4 Algorithmising 

1. Algorithmising aims at the mastery of particular algorithms to be acquired. Or 
rather, let us consider it for a moment from this viewpoint: Mastery of algorithms 
is as crucial for individual progress as it has been historically for that of mankind. 
Algorithms allow us to act automatically for long stretches of time, avoiding the 
perturbing or delaying interference of insightful thought. But algorithms are ex- 
acting; mastery means either complete mastery or none. Less than 100% mastery 
can mean that everything is wrong. Of course, nobody is infallible -- not even 
computers. Mastery includes the ability to identify and to correct one’s mistakes, 
casual ones such as computational slips, and fundamental ones such as applying 
an algorithm where it does not fit. Mastery, moreover, includes lost mastery to be 
recovered. 
Algorithms can be taught. The learner is offered a paradigm to be imitated. One 
paradigm may suffice. The paradigm donner suffices to teach the first conjuga- 
tion of French verbs (except the irregular ones). One paradigm may suffice to 
teach an algorithm. If not, a few more are offered, or as many as are needed. Usu- 
ally it works. If not, the pupil is considered a failure. 
Learn first, understand afterwards! For a long time this was the adage for teach- 
ing, and maybe it still is to many teachers. Was the “first” ever justified by an “af- 
terwards”? Anyway, instruction has proved to be a success story. Otherwise how, 
for heaven’s sake, would you explain the undeniable fact that so many mathema- 
ticians are ready to produce so much mathematics as is published today? Well, 
there are people who can learn mathematics this way. I am one of this sort. Or 
rather, I was -- up to the moment when I discovered that what I had learned was 
no mathematics at all. (Let me forget geometry for a moment, which is our next 
case.) 
There are algorithmically gifted people who can learn a lot of algorithms in this 
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way. Moreover some can apply them if needed, and a few can remember even 
those they never applied. Still fewer somehow get the opportunity of experienc- 
ing mathematics to be quite another thing than they had thought it to be. 
Algorithmically gifted people seem to form a small minority. Nevertheless, even 
those outside this group still had to learn algorithms and to apply them. This is 
still true in the age of computers and calculators, perhaps even more so. One has 
to know which button to push, and hardware buttons are no easier than brain but- 
tons. 
Learn first, understand afterwards. I don’t remember when I myself eventually 
understood. Rather late, I guess. Too late, at any rate. I mention it, by the way, in 
order to argue that the medicine I am going to prescribe is also meant for those 
who will understand eventually. 
As a matter of fact, “understanding first” isn’t a new medicine. At the beginning 
of our century (or even earlier) textbook authors started justifying the algorithms 
they were going to teach (or have taught by the teachers) in advance, and so did 
teacher trainers, or at least they pretended to. Did teachers follow suit? It is a use- 
less question. “Justify beforehand” is not an effective medicine. “Justify before- 
hand” implies “forget afterwards”. It is a tenet of the logic of separating form 
from content which, if at all, works after rather than before understanding. Even 
if argued beforehand, an algorithm is not better learned than if argued not at all. 
Algorithmising means that arguing is left to the learner, even if it remains implicit 
to the learning process for some time or forever. If argued, algorithms create the 
illusion of simplicity because they were tailored to look simple. Reinventing al- 
gorithms, however, can be a tedious and time-consuming activity, and it sophis- 
ticated strategies are necessary to convince teachers, textbook authors, develop- 
ers and researchers that the final result is worth the labour and time spent. Rein- 
venting algorithms involves a progression of schematisings, which is shortened 
again and again by the reinventor, who is allowed to approach the standard algo- 
rithms as closely as learning needs and abilities urge and permit. Let me illustrate 
this by a few classic examples from teaching arithmetic8. 
2. Palpable material, at present available to learners to fill the linguistically ac- 
quired formal number sequence with contents, is intended to stimulate schema- 
tising by packing units (fig. 6) 

Fig. 6 

shortened by the scheme of the positional abacus, where each bead is worth the 
rank of its position (fig. 7). 
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Fig. 7 

and tens of bead units are readily exchanged for higher ones (fig. 8). 

Fig. 8 

Addition is schematised on the drawn and written abacus (fig. 9), 

Fig. 9 

again schematised by the position card (fig. 10) 

Fig. 10 

which is the last step before the final schematisation of column addition. 
Actual reinvention is less streamlined than the above example. For instance, 
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choosing the order of processing the particular columns is left to the learner. The 
latitude is even greater in reinventing column subtraction, where heterodox tools, 
such as (implicit) negative numbers, are allowed: 
43 
-19 
36 
= 24 
where the underlined 6 means 3-9 = - 6. 
Column multiplication allows for an even larger number and greater variety of 
reinvention paths. A problem such as 

A directory of 62 pages has 45 names per page; how many names are there? 

may first be interpreted as 62 times adding 45 -- a process that is gradually short- 
ened and schematised by using (and at the same time improving) the knowledge 
of multiplication tables, and by taking ever larger groups of tens in the multiplier 
(fig. 11). The students are allowed to work on different levels of shortening and 
schematising and to proceed at their own pace towards the standard pattern of 
multiplication. 

Fig. 11 



DIDACTICAL PRINCIPLES 61 

An even greater diversity of learning processes may be observed in 

the progressive algorithmising of long division (fig. 12), which has already been 
mentioned in (1.3.5, 9). The progression of shortening consists of subtracting 
ever larger chunks of the divisor from the dividend. 
During the entire process of learning column multiplication and division, all ex- 
ercises are formulated by way of “word problems”, which aid rather than impede 
learning. Even when column addition has become part of the learner’s reality, the 
redundant support from a reality acquired earlier is still valuable, or so it seems; 
and the same is true for long division with respect to subtraction and multiplica- 
tion. When we put Reality in its didactical context, we will deal with this question 
once more. Using Treffers’ terminology we call this teaching strategy integrated 
progressive algorithmisation. Experiments9 have proved it to be much superior to 
the traditional “isolated progressive complication”, as labelled by Treffers. In 
spite of the integrated learning, almost all children reach the stage where the al- 
gorithm can be detached from the learning context and attains the status of having 
a reality of its own, although in the case of long division, however, not everyone 
gets as far as the standard form, which can hardly be considered a “must” in the 
age of calculators. 
3. Fractions are a case apart, at least in the eyes of L. Streefland as set out in his 
Thesis6. Fractions are a subject of schematising, not only to a greater degree than 
the arithmetic of whole number, but also in a more sophisticated way, even 
though this is less so with regard to algorithmising. Mastering the algorithms for 
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fractions is not aspired to, and perhaps in many cases not even desirable, lest it 
be degraded to blind mastery. There is nothing lost if the goal of algorithmic frac- 
tions is relegated to those parts of algebra where they are really needed, although 
I judge it feasible even in arithmetic, provided the teacher is allowed to observe 
the utmost restraint in guiding the learner. 
This view is based on the teaching experiences [154] I mentioned above (2.1.3), 
where algorithmic rules were never explicitly formulated, but where the learner 
acquired them by tacit generalising. For instance, after a large sequence of exer- 
cises such as 

2 4 8 ... 
made on the numberline, 

and suchlike were made without any visual support. One operation after the other 
was tacitly detached from its visual source. When, after a time the child’s teacher 
noticed her progress and taught her the algorithmic rules for fractions, she needed 
three weeks to recover from this intervention, which had seriously damaged her 
mastery of fractions. I must confess that I did not teach her division by fractions 
until it occurred automatically in algebra. Although she never explicitly learned 
the famous rule on the multiplicative behaviour of the decimal point, she did ap- 
ply it correctly. 
4. In the same vein I had her reinventing algebra, that is, by algorithmising. In- 
deed, algebra offers a profusion of algorithms, less standardised than those of 
arithmetic, and for each particular problem a greater choice. One may question 
whether negative number properly belongs to arithmetic or to algebra. In one re- 
spect -- computations with letters -- it does not. On the other hand, the algebraic 
permanence principle is didactically crucial for operating on and with negative 
numbers. I applied it in the form I have called the geometric-algebraical perma- 
nence principle in [146, Chap. 15], from which I also borrowed the teaching strat- 
egy: first the “thermometer”, then vectors in the coordinatised plane, in order to 
step finally with linear equations and inequalities into algebra. Let me give a typ- 
ical example of progressive algorithmising: Up to a certain day the same girl had 
the habit of solving equations like 

2 
3 

= a 

by first multiplying by 3, and then dividing by 2. On that particular day it so hap- 
pened that she drew the direct conclusion 

5 3 
5 

from = a to x = 
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which then became a tacitly applied rule. I never intervened to suggest such 
short-cuts. She had, in fact, discovered them long before but didn’t dare apply 
them overtly because she was unsure of my approval; indeed, sometimes when 
she took short-cuts, she cast a playful glance as though asking for my permission. 
(I attach great value to the above experience, although people usually shrug about 
the fuss I make of it. “People” -- I mean non-mathematicians. Creative mathema- 
ticians have experienced similar developments by themselves) 
Another example of short-cuttings: Exercises like 

a . a  = 

were initially dealt with by way of 

8 = a 

until larger exponents provoked short-cuts. Never was any rule formulated on the 
behaviour of exponents under multiplication and division. 
Still another example: For a long time she clumsily calculated expressions like 

(a+b)², (a-b)² (a+b) (a-b) 

before applying short-cuts toward the usual formulas. 
How fast do algorithms learned in this way stick? I will try to answer this ques- 
tion later on (2.4). 
5. I promised to deal with Calculus from the viewpoint of algorithmising. As a 
matter of fact, Calculus was invented as an algorithm, or rather, one of its inven- 
tors, Leibniz, was obsessed by a passion for algorithms. To his regret and our sat- 
isfaction, this passion was satisfied once and only once, by the invention of Cal- 
culus. The advantage of Leibniz’ notation above Newton’s is that, with its differ- 
entials, differential quotients, and integral symbols, it candidly exposes its origin. 
I know very well that Leibniz’ suggestive notations are in the black book of au- 
thors who fear the wrath of the rigorous mathematician and I agree that teaching 
differential and integral methods while doing justice to Calculus as an algorithm 
requires more sensibility than imparted in teacher training. On the other hand I 
firmly believe we are not allowed to deprive the learner of such great values. In 
[40, chap. 17], I tried a synthesis of Calculus as an algorithm and as Differential 
and Integral Methods. Reinvention is here a bigger problem than in the domains 
I have dealt with so far. Reinventing something that since Archimedes has waited 
for about two millennia to be invented the first time is not that easy. It requires 
stronger but nevertheless more subtle guidance. It seems to me that we are just 
beginning to understand and tackle this problem. 
6. At the beginning of this subsection I announced a more comprehensive view 
on algorithms and algorithmising. Algorithms are, as it were, the shop-windows 
of mathematics, that is, of ready-made mathematics. For many, if not for most 
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people, the result of mathematics instruction is a view of mathematics as a basket 
of formulas and recipes, which at a closer glance may be as full or as empty as 
suits its owner. Algorithms are indispensable. One can get quite far with algo- 
rithms -- also far astray. Algorithms are tempting. Mastering an algorithm may 
make one feel happy. Algorithms are easily taught and when taught as such, they 
are likely to be remembered in the same way. But how to rectify this picture of 
mathematics as a basket of algorithms? How to cure this aberration? 
An ounce of prevention is better worth a pound of cure. The treatment I propose 
is: algorithmising. Reinventing algorithms may be a means of preventing them 
from becoming calcified, and mathematics from being identified with algo- 
rithms. It may indeed be a means but will it suffice as such? Probably not, but 
perhaps it will, provided the algorithm once acquired does not wipe out the mem- 
ory of its acquisition. Keeping this alive, at least in a dormant state, is a subject 
we will discuss when dealing with learning processes. 

2.1.5 Reinventing geometry 

Viewed developmentally, geometry is the direct opposite of arithmetic. Space 
and the bodies around us are early mental objects, the results of structuring and 
being structured. To what degree are they mathematical objects? To what degree 
are distances viewed as lengths, chunks of matter as volumes, bodies as figures? 
Name-giving is a first step toward consciousness. But a name for geometric sim- 
ilarity, for instance (which is one of the earliest geometric experiences), is still 
far away at the time it is experienced. It has to be invented. The Greeks did this 
by lending the general word for similarity a specific geometrical meaning, but 
even nowadays this has hardly influenced everyday language. One says: copying, 
reducing, enlarging. “They are the same, uh, this one is big, that one small, uh, 
the same shape.” Geometry, though omnipresent, too often lacks the linguistic 
means for expression. 
Arithmetic, however, starts as it were as a language, of counting, which eventu- 
ally becomes the language of counting something. It is an algorithmic language, 
which provides the first algorithm -- an automatism producing the number se- 
quence. And so it goes on in arithmetic: Every idea is as quickly verbalised as it 
arises, by existing as well as by fresh vocabulary. Verbalisation propels abstrac- 
tion. 
But abstraction starts earlier, as early as language or even earlier. It is implicit to 
the processing of sensual and motor experience, and not until linguistic support 
is needed, is abstraction adopted or created. I think that this is the reason for the 
lack of geometric vocabulary in everyday language: it is simply not needed. In 
our world there is a need for words like chair and table, and for words that help 
us to distinguish different chairs and tables from each other. There is a need for 
topographical terms like above and below, left and right, inside and outside. Ge- 
ometrical ideas, however, are formally and intuitively suggested with a visual 



DIDACTICAL PRINCIPLES 65 

and palpable force that delays, if not impedes, their verbalisation. Moreover, var- 
ious modes of geometrical abstraction are competing with one another and, in 
particular, with the topographical mode. Pieces of a jigsaw puzzle are freely 
moveable; all that matters is their congruence class, or so it would seem. But the 
picture they are expected to compose may not be hung upside down, and this in- 
formation imparts such stigmas (edges, sky blue, feet, smoke) to some of the 
pieces as may support the work of composing the picture. 
Geometrical abstractions are much more stringent than those leading to chairs 
and tables. They depend on contexts, which as a mere fact is trivial. They depend 
on a geometrical context, which as such is not at all trivial. I say a geometrical 
context because there are many, although which one is usually implicitly under- 
stood. 
Verbalisation propels abstraction. This cannot be less true in geometry than it is 
in arithmetic. Anyway it need not, but this need has been awfully wronged by tra- 
ditional instruction. Indeed, all means of verbalising geometrical ideas and oper- 
ations have always been available in little children’s language. They were simply 
not used because teaching geometry did not start until the age of 12 to 13 when 
children were judged mature enough for Euclid -- forgive me this venerable Brit- 
ish instructional terminology! They were judged mature enough, although almost 
everybody knew they were not. The need for propaedeutic courses was felt; in 
[40] I reported on some marvellous ones, but they did not solve the genuine prob- 
lem. Propaedeutics as such is a preposterous view on mathematics learning. If it 
is true that learning is a discontinuous process, then it is so by jumps rather than 
by cuts: jumps of reinvention rather than cuts of indoctrination. There is as much 
difference between schooling and preschooling as there is between suppositions 
and presuppositions, that is to say, none at all. But let us not anticipate too much 
what we still have to say about the unity of learning processes. 
If it is true that arithmetic and geometry develop mentally as direct opposites of 
one another, this does not imply that one of them should be dropped in favour of 
the other. Instruction should instead continue this development, that is, help ge- 
ometry to stride at a pace comparable to that of arithmetic, while respecting their 
opposite origins. Instruction should pay as much attention to geometry as to arith- 
metic, though a different kind of attention: broader to arithmetic and more pro- 
found to geometry. Whereas in arithmetic algorithms should be pursued watch- 
fully so as not to loosen the bonds with reality -- the primordial one included. In- 
deed, reality is omnipresent in geometry, both visually and palpably, waiting for 
non-algorithmic schematising, and supported by badly needed verbalisation. 
The variety of situations where arithmetic can start and stay, although much rich- 
er than traditionally displayed, is utterly poor if compared with those in which ge- 
ometry arises -- nay, can be made to arise: rather than gazing at “Euclid”, let us, 
in order to find out, pass in review the impressive row of more recent proposals 
and attempts. It is a precarious wealth, however. Choices have to be made, not as 
in arithmetic, of sources and approaches, but of subject matter. There is so much 
available, and the danger looms large of choosing too many. Or even if there are 
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not too many things to choose from, the choice may be too incidental: nice prob- 
lems, one nicer than the other, and each of ready to stimulate reinvention but as 
well ready to be lost in the stream of new experiences, a hapax legomenon, a 
nonce experience. Cautiously applied, the operational structure of arithmetic may 
provide a global guide-line for reinvention. Geometry can be structured deduc- 
tively, although this is of no use unless deductivity itself is reinvented. Little de- 
ductive steps -- why not? -- it is common sense; perhaps even a bit of local de- 
ductivity. But how to link together nice pieces of geometrical reinvention, to get 
chains of long-term learning processes, rather than leaving the learners with 
heaps of loose ends? I think that this is the very problem in teaching young chil- 
dren a kind of geometry that is likely to come too late for older children. 
Posing nice geometrical problems is particularly gratifying when little hints suf- 
fice to solve them Take, for instance, the following three: 
Find the centre of a given circle! 
The diagonals of a parallelogram bisect each other -- why? 
The angle inscribed over the diameter of a circle is a right angle -- why? 
The hint I have in mind is quite simple: cut out the figure! When cut out, a figure 
can be manipulated, folded, moved, turned around. Symmetry proves a lot of 
things, and as a principle it can concatenate quite a number of geometric reinven- 
tions. But this does not suffice to solve our problem. Or more pointedly, problem 
solving does not solve the problem. 
Let me recall the tenets d and e from (2.1.3)! One of them is the children’s own 
production, which includes reinventing not only solutions but also problems. 
This tenet has successfully been applied in arithmetic; so why should it not be ap- 
plied in geometry? The wealth of situations to be geometrised is an ever-lasting 
guarantee. 
The other tenet was the intertwining of learning strands. The strand “numberline” 
is long enough, and it can be broadened to the co-ordinatised plane, which in turn 
can be restricted to the geoboard. Ratio and measurement have geometrical com- 
ponents, which should be taken seriously: similarity and congruence. 
But don’t forget about it the very first key. I mean tenet b: offering means and 
tools for vertical mathematising. In the case of geometry this means, as empha- 
sised above: linguistic means and tools to geometrise spatial experience. 

2.2 BONDS WITH REALITY 

2.2.1 Primordial reality 

Mathematics has arisen and arises through mathematising. This phenomenolog- 
ical fact is didactically accounted for by the principle of guided reinvention. 
Mathematising is mathematising something -- something non-mathematical or 
something not yet mathematical enough, which needs more, better, more refined, 
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more perspicuous mathematising. 
Mathematising is mathematising reality, pieces of reality. But reality is not just 
one thing; it is as many things as there are people, and to one people it may be as 
many things as there are states of internal understanding and external circum- 
stances. Anyway, as soon as mathematising is didactically translated into rein- 
venting, the reality to be mathematised is that of the learner, the reality into which 
the learner has been guided, and mathematising is the learner’s own activity. 
What is reality to whom depends on many variables, as does what is mathemati- 
cal, what is non-mathematical, what is mathematical enough or not enough, what 
asks for more mathematising. Our world, described in a vernacular that shares 
names for arithmetical and geometrical ideas with mathematics language, has al- 
ready been mathematised so extensely that we are no longer aware of it unless it 
is brought to our attention. Much mathematics in our reality is common sense and 
taken for granted, and again, how much and how great its influence is depends 
both on the individual mind and its specific environment. 
In the preceding section I spoke casually about primordial reality. Let us focus 
on the learning process for the multiplication algorithm! In our setting questions 
like 

A directory of 62 pages has 45 names per page; how many names are there? 

are likely to be answered by clumsy procedures, to be shortened progressively, 
such as adding 62 times the number of names per page (while adding 62 numer- 
ical summands 45 is already within the range of the learner’s reality). What, then, 
is the rationale of this mode of instruction? Why, if at all, should progressive al- 
gorithmisation take place in an integrated way, rather than in splendid isolation? 
-- to use the former terminology. Why should clear essentials be disturbed by lot 
of noise? 
Simple as they are, both this particular piece of instruction and the query it pro- 
vokes is no more than a didactical paradigm for a principle intended to prevail on 
mathematics instruction in general. Noise is eliminated as soon as newly invented 
mathematics is published, and for it has long been a didactical principle to avoid 
noise as much as possible where basic abilities and concepts were to be taught. 
But when mathematics once learned is to be applied (even as schematically and 
straightforwardly as it is expected to happen in word problems); then noise could 
no longer be escaped, and its sound is likely to become the more disturbing how- 
ever less noisy the previous learning process had been. The world is noisy; math- 
ematising the world means looking for essentials, sensing the message within the 
noise. This, too, has to be learned, that is, reinvented by the learner, and the ear- 
lier the better; once the learner has fully been indoctrinated by ready-made 
schemes and algorithms it may be too late. 
This explains why mathematising should not start in a necessarily adjacent reality 
but in what I called a primordial reality. In still another respect our example is 
paradigmatic. Is there anything more obvious than having multiplication rein- 
vented as the addition of equal summands? But as one stops to think about it, one 
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asks oneself why, for whatever reason should one add equal summands? The an- 
swer is obvious, that is, to whoever knows it. But in fact there is not one answer, 
or rather, if one, it is an abstraction from many. Primordial reality yields a rich 
variety of answers to this question. Both are matters to be reinvented, the question 
and its many answers. 
With Treffers I distinguished horizontal and vertical mathematising. Vertical 
mathematising is the most likely part of the learning process for the bonds with 
reality to be loosened and eventually cut. Indeed, in the long run algorithmic hab- 
its, say in learning long division, will be formed to enfeeble the operative associ- 
ation of division with distributing or exhausting and to relegate it to the subcon- 
scious or even unconscious. It is this danger that should be prevented by a long 
lasting insistence on formulating problems in the primordial reality. Not only the 
product of the learning process but also the process itself are worth remembering 
and should remain accessible to the memory if they are needed. We will raise the 
question of whether this policy is indeed efficient enough when we deal with 
long-term learning processes (2.4). 

2.2.2 Odd worlds 

Strange as it may seem, it cannot be concealed that the bonds with reality may be 
endangered as early as horizontal mathematising albeit in another way than dur- 
ing vertical mathematising arises. The imminent danger is that of the wrong 
bonds -- wrong in principle rather than due to grave or minor errors. In order to 
explain what I mean let me cite a most interesting research entitled “Quel est 
l’âge du capitaine?” by the “Elémentaire” team of the IREM (Institut de la Re- 
cherche sur I’Enseignement Mathématique) of Grenoble. 

The team had posed the question 
On a ship there are 26 sheep and 10 goats. How old is the 
captain? 
to 97 CE 1-2 pupils (7-9 olds). 76 among the pupils succeeded in figuring out the cap- 
tain’s age on the strength of these data. 
Encouraged by this “success” the team administered a battery of six similar tests to 
seven classes CE and six classes CM (9-11 years olds): 
I have 4 peppermints in my right pocket and 9 in my left. How old is 
my father? 
A shepherd has 125 sheep and 5 dogs. How old is he? 
A shepherd has 360 sheep and 10 dogs. How old is he? 
In a class are 12 girls and 13 boys. How old is the teacher? 
On a ship are 36 sheep; 10 fall overboard. How old is the captain? 
There are 7 rows of 4 tables in a classroom. How old is the teacher? 
Every problem was followed by the question: What do you think about this problem? 
I will spare the reader the statistical result. Anyway, the harvest was indeed reaped. 
(From: N 19, décembre 1979, or Bulletin de l’APMEP, no.323, avril 1980.) 



DIDACTICAL PRINCIPLES 69 

For illustration, the Grenoble team has added a collection of word problems gath- 
ered from old and more recent French textbooks; these will give you the creeps. 
It is a welcome suggestion that instruction (and in particular instruction of a cer- 
tain kind of word problems) is responsible for the non-mathematical or rather 
anti-mathematical attitude adopted by the tested pupils, but I am not sure whether 
one should accept it at face value. Is instruction the real culprit, or is it not too 
easy to accuse instruction of having sinned, albeit only by negligence? Aren’t 
there more active causes that might have produced these failures, and if so which 
ones? Is the culprit really those word problems that give you the creeps? I am not 
that sure. 
In my youth the Sunday supplements of most newspapers and most weeklies con- 
tained a kind of puzzles -- I don’t know whether it still exists -- say, a drawing of 
an English garden -- a foliage vault with garden furniture and tools underneath - 
- with the caption question: “Where is the gardener?” By turning the drawing or 
one’s head and looking closely, one could discern somewhere between the 
branches, leaves and sunspots the contours of a person who looks like a gardener 
hidden in the foliage. This then was the answer to the question. 
Why do we accept such a solution and at the same time refuse similar answers in 
the case of the captain’s age? A gardener, even when hiding, does not hang him- 
self askew, feet up and head down, in treetops. This isn’t normal. But our ques- 
tion deserves to be taken seriously and tackled thoughtfully. It touches, or so it 
seems to me, the fundamentals of mathematics and mathematics teaching. The 
word logic is likely to be dropped when discussing this matter. The problems, 
parodied by that of the captain’s age, are indeed vested with a kind of logic that 
uniquely determines their solution, whereas problems like those of the gardener 
seem to assume nothing but visual abilities. I cautiously said “seem” since there 
are more sophisticated ones of this kind that do require intelligent reasoning com- 
bined with visual aptitudes. Anyway, the appeal to logic is too easy a solution. 
“Logic” and “lack of logic” are bromides to lull in nagging sceptics. 
I have dubbed this problématique: text and context. “Context” refers to (1.2.8.3), 
where it is dealt with in particular in the sense of rich contexts. “Text” means a 
linguistic vehicle, in particular of word problems or text problems as they are oc- 
casionally called. 
The context of the gardener problem is well-defined: the Sunday puzzle page -- 
the same kind of problems week after week, one generation telling the next how 
to solve them. The textbook problem “26 + 10 =” is first of all situated in the con- 
text of mathematics instruction, where one learns what these symbols mean, but 
its most important feature is that it remains meaningful outside any context, or if 
one prefers another formulation, that it fits or can be fitted into any context. This 
is, indeed, what characterises mathematics, or at least its formal aspect. 
Word problems are different: 

John has 26 marbles; he wins 10 more; how many does he have now? 

John is a boy, boys like to play marbles -- girls do too -- it is a game where you 
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win and lose, and with each marble won or lost the number of marbles in your 
pocket increases or decreases by one unit. The context is self-evident: the prob- 
lem stems from the plain reality of the child’s life, and whoever does not grasp it 
is advised to stop playing marbles -- nothing prevents him from continuing to do 
arithmetic. 
But let us now turn to butcher Smith whom I came across in a textbook (or was 
it on an achievement test?). Here the problem is not about 26 marbles but the 26 
kg of ham Smith had in his shop and the 10 kg more he ordered, and the question 
is about how much he has now. Again a context, let us guess, from the plain re- 
ality of a butcher’s life. Obviously there is some isomorphism assumed between 
two worlds, the child’s and the butcher’s world. “John” is replaced by “Smith”, 
“marbles” by “kg of ham”, “wins” by “orders”, and so everything is settled. More 
closely viewed, however, this isomorphism is all but perfect. Marbles are won 
and lost, while ham is bought and sold -- all right. But marbles won are put in 
your pocket, whereas the ham ordered by phone does not fly instantly into the 
shop, and when it arrives some of the 26 kg of ham -- I don’t know how much -- 
will have been sold. Indeed, this is why the butcher ordered more. 
The context of the butcher problem, rather than the butcher’s reality, is the text- 
book, or more precisely the vast domain of pseudo-isomorphic images of the 
marble problem, and everything I have said about the butcher problem applies as 
well to the whole treasure of word problems: the context is the textbook, rather 
than reality proper, or in other words, it portrays a world of pseudo-isomor- 
phisms. 
In the textbook context each problem has one and only one solution: There is no 
access for reality, with its unsolvable and multiply solvable problems. The pupil 
is supposed to discover the pseudo-isomorphisms envisaged by the textbook au- 
thor and to solve problems, which look as though they were tied to reality, by 
means of these pseudo-isomorphisms. Wouldn’t it be worthwhile investigating 
whether and how this didactic breeds an anti-mathematical attitude and why the 
children’s immunity against this mental deformation is so varied? 
Arithmetic applies because of true isomorphisms. In [ 146, p.58], besides the usu- 
al marbles added to each other in play I listed one under the other 

5 steps and 3 steps (of stairs) 
5 days and 3 days 
5 km and 3km 
5 florins and 3 florins 
5 times and 3 times 

a list I could have continued ad lib. Even though the mental process of adding 3 
to 5 belongs to the learner’s reality, these elementary additions still have to be 
performed and reflectingly understood in primordial reality in order to grasp their 
isomorphisms. Obviously this cannot be done in a mechanistic setting, which is 
likely to generate pseudo-isomorphisms, nor in the New Math fashion of cardinal 
interpretation of number and addition. 
But I think there is more to it -- there is more to be analysed and more profundity 
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is required. The tension between the contexts of reality proper and the textbook 
does not suffice to explain such phenomena as those signalled by the Grenoble 
team. There is still another context implicated in the evolution of that -- mathe- 
matical, or rather anti-mathematical -- attitude. Before giving it a suitable name 
I will introduce it by a few examples. 
“How old are you?” The answer -- “four” -- is accompanied by the gesture of lift- 
ing four fingers. The child does not know what “age” means, nor what the fingers 
lifted have to do with the “age”, with a number of years, nor with the question as 
such. According to children’s folklore a lady-bird is as old as one can count dots 
on its wings. Counting the number of rings of a cross-section, one learns the age 
of a tree, even though one cannot explain why. One asks the cuckoo the number 
of years one may still expect to live. The picture of a birthday cake together with 
the question “how old is she?” provokes counting the candles. A fly-agaric pic- 
tured as a gnome’s home betrays its owner’s age by its white dots. And, taking a 
long step into the adult world, you come face to face with hosts of people, jug- 
gling the Number of the Beast of the Apocalypse and the dimensions of the 
Cheops pyramid and the Stonehenge monument. This is a venerably old preoc- 
cupation, called hermeneutics if concerned with the Holy Scripture, but as a mat- 
ter of even older than the art of reading and writing. Looking for marks on flow- 
ers and leaves in order to know what ills they may cure, foretelling the future 
from the flight of birds and the livers of sacrificed animals, unveiling secrets of 
J.S.Bach’s profundity by counting beats and bars in his compositions, and -- let 
us not skip it -- expecting discoveries in psychology and education by means of 
regression analysis -- it is all cut from the same cloth hermeneutics, or else the 
term I would propose, the magic context. Stories about Pythagoras and his school 
tell us they practised witchcraft through numbers. Is it too bold an assumption to 
credit children with this kind of mentality? From my own childhood I remember 
this context only too well, which I succeeded in eliminating from my mathemat- 
ical activity. But what about many other people? To solve a problem they look 
for secret marks, for signals hidden by accident or intention, and in particular, for 
numbers that to put them on the right track. 
How old is the captain? I gave this problem (with 18 sheep and 16 goats to make 
it less easy and thus more stimulating) to an 8 year-old girl who lived at that time 
in a world of fairy tales and sorcerers where she played her small and large roles, 
with gnomes sitting on each toadstool. She beamed with joy because she had dis- 
covered the secret, and had calculated the captain’s age. Thanks to her enthusi- 
asm she was unaware of the mockery of her two years older brother, who is as 
sober-minded as she is imaginative, and so no illusions were cracked. When I 
tried to explain to the boy how others reasoned when they calculated the captain’s 
age by adding, subtracting, multiplying, and eventually by dividing, he shook his 
head: “I cannot understand what you mean; this yields at most the number of 
sheep per dog.” 

This brings me to tell of another experience with these two children I had half a year 
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earlier. At the end of a stroll we came to a huge sandpit, bordered by a circle of thick 
poles -- actually cuts of tree-trunks. I asked the children how many poles there were. 
Resolutely the boy paced around the pit, counted 38 steps (each step being 7 poles ac- 
cording to his reckoning), and then concluded 38 x 7 = 266. (It is a nice example of 
mathematising but this does not matter now.) Meanwhile his sister had effortlessly 
solved the whole problem. She said “60”, and when I asked “why?”, she answered: “It 
looks like a clock-dial, does it not, and that is 60 minutes. 
At the risk of being pronounced silly, I confess I like the girl’s answer better than the 
boy’s. It is the most beautiful nonsense, which promises more geometrical imagination 
than does her brother’s solution. In her fairy tale world she did with her beaming eyes 
what he had done in his prosaic world with his feet. I am sure that, had she been two 
years older, she would have parcelled out at sight an arc corresponding to five minutes, 
counted with her eyes the number of poles per arc and multiplied it by 12 (the direct 
converse of her brother’s kind of mathematisation). 

How old is the captain? The 26 sheep and 10 goats on board are like the data used 
by the astrologer to foretell the future. Children’s realities are worth studying, in 
particular the magic context as well as its influence on learning processes and the 
shaping of attitudes. Framing the children’s world in rich contexts may be a pre- 
ventative measure. This has been tried in various ways. Plain word problems, if 
disconnected, are probably not rich enough a context to prevent the pseudo-iso- 
morphistic temptation; they should be interrelated by constructive and reflective 
measures. Streefland’s approach (cf. 2.1.2,6, footnote) towards fractions, within 
one single but deeply excavated context, is promising, although it has not been 
continued as far as to reach formal fractions. IOWO’s abundantly rich contexts 
have been tried out successfully but dissemination of these ideas strongly de- 
pends on the teacher’s conception of which realities are accessible to the learner. 
We shall come back to this problem. 

Let me illustrate it right now by an experience had by an IOWO staff member in a 4th 
grade class with a worksheet which included: 
Railroad fares according to the number of kilometres travelled (half-price for the un- 
der ten years olds), a railroad map of distances, a story about Mum’s train trip with 
John (10) and Mary (9) from Hilversum to Enkhuizen, and the question how much she 
must pay? 
Annette could not solve it, even after she had correctly found the distance Hilversum- 
Enkhuizen. 
“What is the matter?” 
“I don’t know how old is the mother.” 
“What do you think?“ 
“I would guess: 39.” (Her own mother’s age.) 
‘‘All right. It is a good guess. Continue!” 
So she added 39 + 10 + 9 = 58, looked up the price in the 58 km row, which at that 
time was? 8.15. 
“And if the mother were 50 years old, she would pay more?” our staff member asked. 
“Of course she would.” 
“And the old people, the grand-dads and grannies, they pay even more, do they?” 
“Sure, they do.” 

This example shows that the reasonably rich context did not work as it was ex- 
pected to. The distance Hilversum-Enkhuizen, though figured out, was not used 
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at all. What is the reason for this? My guess is that the reality to be conveyed by 
this context is nothing but an adult prejudice. One should ask oneself at what age 
the railroad trips, tickets sold at the windows, and the very thing travellers pay 
for, represent a valid context. Or rather, under what condition, since it is not the 
mere age that counts. Would practical experience be a better guide for answering 
such questions? Our knowledge of instruction is covered by a thick layer of prej- 
udices, but I am afraid that this holds as well for the so-called practice. Moreover, 
people with much practical experience are prone to premature interventions, 
glossing over rather than revealing and bridging chasms between the child’s and 
the adult’s realities. 
Our colleague did not get the opportunity to do this, or he simply didn’t dare be- 
cause the chasm looked too wide. Remedial teaching starts at the roots, which 
may lie unexpectedly deep. Yet let us ask what should be done in the Grenoble 
case! The remedy to prescribe, which for that matter, could have already been ad- 
ministered along with the tests, does seem readily available. I mean problems 
where the applied methods will not work, such as: 

250 sheep and 120 goats aboard -- how old is the captain? 
360 sheep and one dog (or two, rather than the improbable 10) -- how old is 
the shepherd? 

I confess I am not sure whether this would be of much help. The children might 
object that there are not enough data available to answer the new questions while 
insisting that the previous ones did provide enough indications. This is no mira- 
cle. Magic sometimes works and sometimes does not. Or do the fresh examples 
provoke what is called a cognitive conflict? “Cognitive conflict” is an adult con- 
traption. Cognitive conflicts have first to be experienced as conflicting realities. 
If there are no bonds with reality, then conflicting realities cannot provoke cog- 
nitive conflicts. 

2.2.3 Rich contexts 

Fraught with relations was the term I chose in [40] for the mathematics I wanted 
to be taught. In the mean time the term has become mathematics in rich contexts. 
I used the term several times: for instance in 1.2.9.3, and again in the last subsec- 
tion, I opposed rich and poor9a contexts to one another. Let me briefly sketch the 
evolution of the terminology! 
As I pointed out in 1.3 mathematics, unlike any other science, has arisen and still 
arises in common sense reality -- broad-minded common sense and broad-mind- 
ed reality as I explained in 1.1.6. Where it was once invented, mathematics 
should now be reinvented. Contexts then means that domain of reality, which in 
some particular learning process is disclosed to the learner in order to be mathe- 
matised. 
When in the early nineteen-seventies developers, in particular for primary educa- 
tion, looked within the reality they judged accessible to the learner, for sources 



74 CHAPTER 2 

of specific mathematics to be learned and taught, they were overwhelmed by so 
rich a variety that they saw their task shifted from finding sources to choosing 
among them. Not: choosing one and rejecting all others. But: allowing for a vast 
space and a continuous flow, creating what was called context-rich mathematics 
instruction. Language is more than mere communication; it influences thought, 
whether one is aware of it or not. Somehow, maybe under the influence of “rich 
structures” (see 1.2.1), context-rich became rich contexts. Rather than discussing 
the difference, I shall explain the situation, that is, what kind of wealth is meant 
by “rich”? 
Bonds with reality is the title of this section, shortened from Creating, strength- 
ening, and maintaining bonds with reality. This, then, is what rich contexts have 
to effect as domains of reality disclosed to the learner to be mathematised. We 
once tried to group our experiences with contexts. Let me copy that unassuming 
list! 
First on the list, and at that time the most striking item, the location: a meaningful 
gathering of situations, which can be handled separately, or in more or less close 
connection with each other. Our best known example10 was “Waterland”, a Dis- 
ney-like island-- its large picture hung in the first grade classroom -- where lots 
of things were happening: there were landings for ships to moor, bus stops with 
people getting on and off, roads leading hither and thither, road signs placed and 
to be placed, block towers and mountains to be climbed, networks of streets to be 
walked on, play grounds, windmills -- a profusion of situations, where mathemat- 
ics could be discovered and acted out -- an incentive to stimulate the imagination 
of both teachers’ and children. 
A counterpart of this kind of rich context was the story, that is, rather than a gath- 
ering, something that, reeled off as a succession of worksheets, is structured in 
time. It may be a true story or fiction, a classic or invented ad hoc Examples11: 
“Gulliver in Lilliput”, where one string -ratio- is played on over and over, or 
“Grains on the Chessboard, with its powers of 2, or “Around the World in 80 
days”, where one tone -- travelling around the world -- is coloured by many over- 
tones, or “Ralph the Buccaneer” with the area of islands as the main theme, or 
“Ship Ahoy” (geometrical orientation implicated in the rescue of a ship), and 
many others. 
The third example was the project, which means reality to be created, such as 
building a bungalow (7th grade), or a peep-show box (kindergarten), or collect- 
ing and classifying all kinds of commercial packing material, or constructing reg- 
ular bodies. 
The fourth was the theme, a mathematically oriented strand of subject matter with 
varying relations to reality, such as “Light and Shadow” (7th grade), “Flying” 
(thematising goniometric functions), “Exponential Functions” (wholly integrated 
into the context of growth), “Matrices” (in various contexts, among which tran- 
sition processes), “Two Variables” (that is, surfaces as though abstracted from 
mountains). 
At this moment I would close this list with a fifth item, which has in the mean 
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time been tried out extensively and successfully. Let us call it: clippings -- mainly 
from newspapers and weeklies, but also from books and other media. Anyone in- 
tent on it has little trouble discovering a lot of mathematics in the printed and pub- 
lished reality -- meaningful as well as nonsense mathematics. Thanks to this large 
quantity, the small percentage that lends itself to mathematics lessons is still sig- 
nificant. Rethinking the author’s thoughts, analysing whether they were right or 
wrong, pursuing his ideas in order to review, strengthen, weaken, modify them, 
may provide valuable mathematising activities in the upper grades and in teacher 
training. Let me mention that each year one of the problems at on our final math- 
ematics school examinations is of this kind. But even in the middle and lower 
grades a variant -- let us call it pseudo-clippings -- may be useful. A pronounce- 
ment by somebody, or a quarrel in a group about some question, an explanation, 
or pairs of contradictory explanations, in particular, if the mathematics involved 
is still hidden, may be a useful context as soon as children are able to communi- 
cate. Should this happens in the classroom it deserves to be exploited, but invent- 
ing such stories can be an equally good idea. This then is what I would call pseu- 
do-clippings. 
Contexts were defined as domains of reality disclosed to the learner in order to 
be mathematised. In the cases of location, story, project, and theme such domains 
are purposefully -- and sometimes artificially -- delimited by the teacher or de- 
veloper, who wants the learner to reinvent certain processes and products of 
mathematising. The case of clippings is a bit different. Here it is not a domain but 
a small piece that is cut out, although its paradigmatical value for mathematising 
and for acquiring a mathematical attitude may be enormous in comparison. 
But in all cases it should be kept in mind that context is not a mere garment cloth- 
ing nude mathematics, and mathematising is quite another thing than simply un- 
buttoning this garment. Or, to give a former metaphor a new twist: Viewing con- 
text as noise, apt to disturb the clear mathematical message, is wrong; the context 
itself is the message, and mathematics a means of decoding. 

2.2.3.1 Contexts versus “material” 

No doubt once it was real progress when developers and teachers offered learners 
tangible material in order to teach them arithmetic of whole number. (In the case 
of fractions it never did work properly.) Even now I would not like do without it. 
Whether unstructured, at the start of arithmetic, or structured, as on the abacus, it 
is indispensable as part of the primordial reality. It is a small part, to be sure, one 
source among many others of whole number arithmetic. Relying solely or too 
strongly on it is dangerous, and since this is the habit in some kinds of instruction 
I feel obliged to warn against it. Low achievers have great difficulty detaching 
arithmetic from the palpable material -- according to remedial teachers and de- 
velopers of remedial teaching. This may unfortunately be true, that is, for a kind 
of inflexible instruction where from the start onwards learners have been tied too 
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tightly to palpable material. Flexibility should be allowed, and if need be, taught 
rather than fought. Moreover, one may ask, what is the use of low achievers 
learning an arithmetic they are judged in advance unable to detach from tangible 
material. 
Offering the learner tangible material was progress when drawing and writing 
tools were too expensive to be handed out lavishly in the classroom, when teach- 
ers on a platform watched classes of children sitting on benches, when instruction 
had to look like military drill and children’s initiative and activity were sup- 
pressed and nobody even thought about living contexts. Tangible material has a 
tremendous value in teaching geometry, provided the learner is allowed to struc- 
ture it himself. If we condemn the learner to the prison of prestuctured blocks -- 
whether counting ones or logical -- we should not wonder why they are not able 
to put the mathematics learned to good use. The best palpable material you can 
give the child is its own body. 
At this moment I cannot resist quoting myself from 2.1.2,1: 

The set of guests around the table or of children sitting in a circle on the floor is struc- 
tured by its cyclic order -- “didn’t you forget anybody’“? Or the children may count 
themselves, each adding 1 to the number of his neighbour at the right. Or number one, 
as soon as it is his turn, may continue numbering himself, one more round, two, three, 
in infinitum -- unwinding, as it were, the cyclic order. In a group of seven, which num- 
bers does the first one get? And what kind of? And the seventh, the third? And who 
gets number 100? Have it marked on the number line -- unwinding the circle as it 
were! This is a marvellous example of prospective learning (2.4.5, 3) of multiplication 
and its tables, as well as of division and, if reflected upon, of vertical mathematising. 
Strangely enough I have never seen this most natural example of guidance applied. 

2.2.4 Paradigms 

“Paradigm” would have deserved a section or subsection of its own in the first 
chapter, were it not that there, among the manifold occurrences of the term, it 
would have looked like a needless repetition. The present chapter, however, of- 
fers an opportunity to reconsider paradigms as places where bonds are attached 
to reality. 
“Paradigm” means “example”, although not as used in “for example”, where it 
properly means an after-example. If such a word existed, I would rather say that 
a paradigm is a fore-example. As far as I am familiar with the history of instruc- 
tion the term “paradigm” originated in teaching foreign languages (including na- 
tive language which may have looked or sounded to quite a few of the learners as 
though it was a foreign one). In (2.1.4) I cited the French donner as a teaching 
paradigm for the first conjugation, that is, for all the verbs ending in er (the irreg- 
ular ones, of course, excluded). To what degree are paradigms really needed? 
People acquire a great deal of their idiom -- structural paradigms included -- be- 
fore, without, and even in spite of institutionalised instruction. This certainly 
holds for their mother language and for languages acquired in daily life. They 
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learn languages by listening and by reproductive reinvention -- guided among 
other things by corrective measures. and possibly reinforced by increasing 
awareness -- and this process continues when listening and speaking are supple- 
mented by reading and writing. As far as I am familiar with modem methods, 
they take advantage of this experience by trying to approach an everyday life 
style in language teaching. Structures, such as paradigms, rather than being im- 
posed, are given the opportunity to be reinvented by the learner. A striking coun- 
ter-example is our Dutch spelling. It is one of the easiest of the world. Its notori- 
ously difficult part is the one governed by rules set in advance. 

2.2.4.1 Paradigms imposed 

Let us leave language teaching! The term “paradigm” has meanwhile conquered 
wider instructional ranges, which is why it was applied frequently to mathematics 
instruction in the first chapter. Why paradigms? Mathematics is a universal tool, 
the most flexible instrument to be handled. But universals are no teaching matter, 
or at least not in the manner of what is called concept attainment. Universals are 
learned by paradigms, and the most efficient paradigms are those which allow the 
easiest or the widest transfer. Improperly chosen, however, an intended paradigm 
can as well block the transfer, by its singularity or by lack of flexibility, or simply 
because of a wrong view on learning by means of paradigms. 
In everyday life, in language instruction, in science teaching, etc., paradigms are 
as abundant as they are unengaging. Mathematics can do with a relatively small 
number of paradigms, which engage the learner unambiguously, or so it would 
seem. Is an algorithm a paradigm? Of course not. But, traditionally, algorithms 
are taught by paradigms, long division, for instance, by means of a numerical ex- 
ample (or if need be, by a few of them), which promises transfer by inviting im- 
itation. Some children have a knack for algorithms and for learning them in this 
exemplary way, and some among them will even, at least implicitly, understand 
why they work, even though they are not interested in knowing why. Others will 
fail to learn algorithms this way. Does it matter? Long division is now the job of 
pocket calculators. But long division is only the bitter end. Let us look for the 
roots of arithmetical algorithms! 
Arithmetical algorithms used to be taught by numerical paradigms. I chose the 
plural “algorithms”, although properly understood, for one single arithmetical 
operation one paradigm should be just enough, or if really more are needed, they 
should virtually be one, in the sense of being somehow isomorphic. Indeed, non- 
isomorphic ones would instead endanger the intended uniform algorithmic-para- 
digmatic character and as a consequence confuse algorithmically less gifted 
learners. The ever lasting trouble, however, with the strategy of teaching arith- 
metical algorithms by numerical paradigms, was that, a from column addition on- 
wards, one paradigm was not enough. Neither teachers nor developers were 
aware of the problems created by a multiplicity of paradigms needed for one and 
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the same operation, a multiplicity that in turn creates just as many sources of fail- 
ure. I said “from column addition onwards”, which would seem a bit exaggerated. 
But do examples like 

24 24 
35 + 38+ 

really suffice as paradigms (at least for additions below 100) or are not sums 
taught in agreement with this strategy such as 

24 24 5 5 
5+ 8+ 32 + 38 + 

very likely to suggest to learners that they are just as many fresh paradigms, and 
wouldn’t teachers think they are needed as such in teaching? And what about, say 

24 24 24 2 7 
39 3 9 24 24 
19 12 19 3 19 

a list of new-looking paradigms, still far from complete yet long enough to frus 
trate learners, and for that matter their teachers as well? Long enough, I said, and 
yet I have restricted myself to additions below 100 of two or three summands. 
What about more summands, about more empty positions, multiple transfers, and 
so on? 
Although the other operations only involve two term, they certainly do not rank 
second to addition with regard to the variety of what may be looked upon by the 
learner as brand new paradigms. Think about all those perfidious zero digits in- 
volved in the other arithmetic algorithms, about decimal points, about comparing 
decimal fractions with one another -- each new difficulty to be conquered by a 
new rule, introduced by new paradigms! 
How real are these difficulties? To tell the truth, I did not invent this story, but 
took it from the literature; there has been plenty research to prove again and again 
that something is wrong with teaching column arithmetic, while little attention 
has been paid to what is wrong and why , though one thing is clear: that teaching 
arithmetical algorithms by numerical paradigms heavily clashes with the essence 
of what arithmetical algorithms are supposed to mean and to perform. Even if 
teaching column arithmetic is not such a failure as some researchers have con- 
cluded, learning arithmetical algorithms by numerical paradigms is a tremendous 
waste of time. 
I am not against numerical paradigms as such, and certainly not where they are 
meaningful -- see the numerous examples in (1.3.3 and 1.3.5). Numerical para- 
digms can be the key and stepping stone to general problems and algebraic rela- 
tions. But as patterns for learning algorithms they are doomed to fail. Of course, 
arithmetical algorithms are learned numerically, rather than by general rules, but 
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this principle must not be interpreted by numerically formulating ready-made 
general rules. In the process of reinventing, algorithms arise by progressive sche- 
matising, with the stress on shortening, and the very thing paradigmatical in this 
process is progression and short-cuts rather than numerical examples. 
Word problems are a similar case, or even worse if their context is a textbook 
page, headed by one item that looks like a paradigm, that shows how to solve all 
the other items on the same page. To be sure, it works. It does work until the con- 
text is extended to the textbook as a whole and the problem arises which page ap- 
plies under which circumstances. Didacticians of yesteryear liked to embroider 
all word problem paradigms on frames, intended as algorithms and looking like 
them. Or at least they tried, albeit unsuccessfully since learning these pseudo-al- 
gorithms was even harder than understanding the word problems they were to fa- 
cilitate. 
Algebra looks a bit different, or does it? Cuneiform texts show how Babylonian 
mathematicians solved linear and quadratic equations, or pairs of them with two 
unknowns, yet all they left us is numerical examples. Did teachers use them as 
paradigms, or did they explain to their students in general terms what to do? We 
don’t know anything about Babylonian didactics. Do we know any more about 
teaching algebra today? We know textbooks -- good ones and bad ones -- but 
what do we know about teaching? What do we know about how paradigms are 
used by teachers and interpreted by learners in instructional practice? Are they 
seen as a form to be filled out or, even worse, as a sequence of acts to be imitated? 
In [40, p.632] I gave an example of how problem solving is understood by stu- 
dents who might have been taught in this fashion. Let me repeat it! 

To prove that 3x² + 12x has a minimum and to determine the x where it is reached. 
(I) 3x²+12x = 3(x+2)²+4 has a minimum, which is assumed for x= -2. Reason: 
(x + 2) ² must become 0 --> -2 if this is multiplied by 3 --> still 0 then 4 added and 
one gets the minimum which is assumed: 4. 
(II) The expression 3x²+ 12x is a quadratic equation. If in both parts 3 is put out- 
side brackets the expression does not change. Then inside the brackets is (x²+4x), 
that does not equal (x+2)² for we have added 4. To make it correct, -4 must be 
subtracted. The -4 must be multiplied by 3. Then we get 3(x+2)²- 12 and this is 
entirely equal to 3x²+ 12x. The expression has a minimum of -12 since a square is 
always positive or 0. It must be multiplied by 3, thus it is at least 0, namely if x= 
-2 one gets 3 (-2+2) -12, and this is -12. The value of the square is always posi- 
tive, x 3 remains positive thus the minimum is -12. 
(Examples by J.van Dormolen, reported by J.S.ten Brinke in Euclides 45(1970), 
327-336.) 

What is wrong here and who is guilty? Too highbrow a paradigm is sheepishly 
applied in a common sense situation. Let us skip the question of whether the 
whole problem is worth the trouble. Anyway, one thing is clear: that the students 
acted out a paradigmatic sequence which had been imposed rather than reinvent- 
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ed, or so they saw it. 

2.2.4.2 Paradigms reinvented 

We don’t know how Babylonian mathematics teachers used their numerical par- 
adigms. Let us take a long step. To prove the infinity of the set of prime numbers, 
Euclid showed nothing more than how, given three prime numbers (indicated by 
letters), one can find a fourth, but his celebrated proof is what I called quasi-gen- 
eral12, that is, such that everybody understands how to generalis it and then to 
apply it to an arbitrary finite set of given prime numbers. For centuries general 
theorems on figurate numbers were proved by quasi-general methods, that is, 
paradigmatically, and even now numerical paradigms are a stepping stone to the- 
orems and proofs, in number theory in particular. But mind, this function of the 
paradigm vastly differs from the one I censured in the teaching of arithmetical al- 
gorithms and word problems, which was quasi-copying a pattern, while having 
too feeble an understanding of its essentials. 
Let us review a few examples from (1.3.3 and 1.3.5)! Finding the middle of 16 
and 72 on the numberline was just a paradigm. So were the three roads joining A 
and B and the four roads joining B and C, with the question of how many roads 
there are from A via B to C. When arriving at figurate numbers, I was sick of nu- 
merical paradigms, or so it would seem, but in Fig. 4 -- 5, as illustration, the dots 
represent five, rather than n odd numbers, and the fourth and fifth, rather than the 
(n - 1)-th and n-th triangular number, as I would have done in teaching. 
In the learner’s mind such numerical examples may exert their paradigmatical in- 
fluence unconsciously; it may be reinforced by consciousness, and even more by 
verbalising, certainly if supported by labelling variables through the use of let- 
ters, which is quite easy with the first and second example -- just say “the middle 
of a and b”, and “m and n roads”. The other two cases aren’t that easy. Euclid 
didn’t hesitate to denote numbers by letters (as he did with points and lengths in 
geometry) but he didn’t dare to speak about n prime numbers, and so he had to 
proceed quasi-generally, which in a way is paradigmatically. Archimedes13 didn’t 
do any better: where he needed an arbitrary number of line segments, he called 
them A,B,C,D,E,F,G,H14 and even introduced new letters for objects derived 
from them (for instance by addition) rather than create algorithmically construct- 
ed names. This then was the habit adhered to up to Vieta (16th century)15. Nev- 
ertheless as late as in Hilbert’s Grundlagen der Geometrie the Archimedean 
style, though somewhat refined, is still witnessed in such a sentence as 

Satz 6. Sind irgendeine endliche Anzahl von Punkten einer Geraden gegeben, so las- 
sen sich dieselben stets in der Weise mit A,B,C,D,E,. . ., K bezeichnen, daß der mit B 
bezeichnete Punkt zwischen A einerseits und C,D,E,. . .,K andererseits, ferner C 
zwischen A und B einerseits und D,E, . . ., K andererseits, sodann D zwischen A,B,C 
einerseits und E, . . ., K andererseits usw. liegt. . . 

The need for variables was felt quite early on in the history of mathematics (both 
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in the sense of indeterminates and of variable objects), and where names for them 
were required, Babylonian mathematicians used words like “length” and 
“width”. The Greeks did it with letters; yet there are not enough letters in the al- 
phabet to satisfy the need for a potentially infinite number of names for variables. 
Subscripts ranging through the entire infinity of whole numbers are a historically 
late invention in mathematics, and letters as subscripts are even of more recent 
date, as are subscripts of subscripts15. 
Why am I telling this story? I have repeatedly emphasised that history may be a 
good advisor to teaching us that things are not as simple as they Seem to habitual 
users. History may be able to warn us against having the learner step in at the 
present level of ready-made mathematics. In instruction too the use of letters for 
variables should answer a need, and developers and teachers should create situa- 
tions where this need is so urgently felt that it stimulates reinvention, and they 
should this strategy as the use of letters for variables gets more and more refined. 

Let me tell a story about a colleague of mine and his little son -- I don’t remember his 
age, but in the mean time the son has become a distinguished mathematician himself. 
The boy had calculated the number of diagonals of -- stop, one cannot tell this in Eng- 
lish so let me use the German terms -- the number of diagonals of a Viereck, Fünfeck, 
Sechseck -- I don’t remember how far he had proceeded, when his father asked him: 
“What about a n-Eck?” The boy answered: “k times n divided by 2.” 
3 is subtracted from n by going three steps back in the alphabet. Isn’t it logical? 

Even historically the trick for indicating the predecessor of n by n - 1 (and its suc- 
cessor by n + 1) had to wait for its invention, as well as for such things as indi- 
cating odd numbers by 2n - 1, but for a long while the sum of the first n odd num- 
bers had still to be written as 

Even the invention of subscripts and sum symbols hardly changed this style. 
Mathematicians have always been slow to change their notational habits, and 
they never did so unless they felt an urgent need for change. I am pleading, as I 
often have, for the same right to be granted to young learners, that is, to reinven- 
tors. 
“The fifth triangular number”, if understood according to its essentials, that is, as 
a paradigm for any triangular number, changes from content to form, only to 
change again into content in such statements as “any triangular number plus the 
preceding one equals the square of the same rank”. How to formalise and, in par- 
ticular, to algorithmise such a clumsy statement? The learner has to be guided 
along a road of alternating contents and forms, where no step may be skipped, 
and none shall be longer than the learner’s pace. 
It would take me too long to describe this road in detail but at a later opportunity 
I will try to make up for this. Combinatorics is of course not the only field (though 
in my view it is the most excellent one) where subtle mathematical language can 
be acquired paradigmatically, that is, as though it were one’s vernacular. Teach- 
ing mathematical language is a problem worthy of our attention. Let me illustrate 
this by a well-known example16. 

1 +3 + 5 +. . . + (2n -3)+ (2n - 1). 
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Let S be the number of students and P the number of professors at some college, where 
it happens that there are 6 times as many students as there are professors. Express this 
by a formula! 

The percentage of subjects (even among university people) that answered 

was distressingly large. What if S and P are replaced by X and Y or some other 
pair of letters? I was told this made no difference but I could not check it. But 
what about the following formulation: 

At some college there are 6 times as many students as there are professors. Put this 
statement into a formula! 

None could tell me whether this has ever been tried. Indeed, it is not the tradition- 
al way to formulate problems. But this does not matter. We don’t need new in- 
vestigations to know that something is wrong; we do need phenomenology based 
didactical research to know what is wrong and why. In the present case choice is 
between bluntly confronting learners with letters and formulas 16a, and guiding 
them to experience formulas as new content derived from paradigmatical form. 

Let me add a brief note on what phenomenology based didactical research may 
mean in the present case! 
Letters and letter combinations are put to use in mathematical and similar texts 
in various ways. Let me mention a few of these: 
Labelling fixed objects in a given context, for instance, to answer the question of 
how many orders are possible for three buses to leave a garage. 
Labelling, and thereby fixing arbitrary objects in a given context, for instance, 
points on a map in order to make statements on their particular mutual distance. 
Labelling, and thereby singling out arbitrary, but somehow equivalent objects in 
a given context, for use in general statements; points in the plane, for instance, or 
line segments, or numbers (as did Euclid). 
Labelling geometrical or physical objects that vary within a given context (ab- 
scissas, ordinates, angles, and so on in a figure; times, path lengths, and so on in 
a kinematic process), in order to express their mutual relations by formulas. 
Labelling numbers and other mathematical, or mathematised objects, that vary in 
dependence from one another, in order to express this dependence by formulas. 

Labelling fixed numbers, functions, and so on, by fixed conventional symbols such as 
e, log, # (number of), $ (mapping numbers on monies), cm (mapping num- 

bers on lengths), kg (mapping numbers on weights), and so on. 
Labelling logical objects, such as propositions, predicates, and so on, as occurs in sym- 
bolic logic. 
Labelling both some species and its members by the same letter or letter combination, 
often chosen as abbreviations, for instance F for females, M for males; A for Ameri- 
cans, B for British, C for Chinese, and so on. 
It is worth noting that the last kind is one of the oldest (or perhaps even the oldest) 
symbolic use of letters, which in traditional logic, and even in mathematics proper (al- 
though now looking old-fashioned) has coexisted up to our days with the modern ones. 
Even nowadays such formulas as “each A is a B”, dating at least as far back as Aris- 

6S = P  
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totle, and formalising such propositions as “all men are mortal”, are not yet out of use. 
Half a century ago, after such a definition as A topological space R is a set such that. 
. . it was decent mathematical style to casually continue Let S be an R and then to map 
R on S. Yet in a few other contexts, computer science, in particular, similar formula- 
tions are still not unusual. 
This is hardly surprising since it is a quite natural and therefore common use of letter 
symbols. In my opinion that coexistence amply explains the “6S = P” phenomenon, 
even in the case of adolescents and adults who should be acquainted with the now pre- 
vailing mathematical fashion; in addition to this influence, however, the unsatisfactory 
formalisation of the “number of. . .“ function in school mathematics should not be 
neglected either. It goes without saying that children, unacquainted with the present 
use of letter symbols in mathematical formulas, cannot at all be expected to react in 
the way the interviewer judges to be the only acceptable one, as happened in 16a. 
In the preceding analysis I did not include computer science, which would have re- 
quired a special study. 

2.2.4.3 Acts, actions and activities as paradigms 

If the fifth triangular number is taken as a paradigm for any triangular number, it 
is so as a mathematical object. When I spoke in the first chapter of paradigms, the 
things to be taken paradigmatically looked rather like activities. Let us reconsider 
paradigms from this viewpoint! Indeed, the mere act of taking the fifth triangular 
number as a paradigm for any triangular number may again be a paradigm for 
similar actions, for instance, if numerical squares or cubes are used paradigmat- 
ically for squares and cubes of whole numbers in general. Labelling some trian- 
gular number as the n-th in a sequence, its predecessor as the ( n - 1)-th and its 
successor as the (n + 1)-th may be paradigms along with other sequences for la- 
belling terms together with their predecessors and successors. Getting the n-th tri- 
angular number from its predecessor by adding n may be a paradigm for similar 
procedures such as getting the n-th square from its predecessor by adding the n- 
th odd number, and eventually for the strategy of viewing sequences as series. 
Stepping 

as expressions for successive squares, and calculating their difference as the n-th 
odd number 

may be paradigmatical for all such procedures where a given sequence is inter- 
preted as a series arisen from the sequence of the successive differences, and this 
procedure may in turn be paradigmatical for forming second, third, or any order 
difference sequences from a given one. 
If the (n -1)-th triangular number has been constructed as the part below the di- 
agonal of the n-th square, that is, 

from (n-1)² to n² 

2n -1 

finding the n- th triangular either by replacing n - 1 with n, or otherwise, by adding 
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n may be paradigmatical. Anyway the trick 
If the n- th triangular number is supposed 

then by adding n +1 the ( n + 1)th triangular 
number is proven to be 

which is the same as the result of replacing 
n with n + 1, and so it proves the expression 
for any triangular numbers so ever 

has a wide paradigmatical range. As a matter of fact, it is a paradigm for complete 
induction. 
The preceding exposition is not meant to be a didactical sequence. I was therefore 
able to abstain from overburdening it with more details. I also renounced refer- 
ences to the many back and forth switches involved between content and form. 
As a frame for viewing activities as paradigmatic, however, it is still too narrow 
and deserves to be broadened. 
“Looking for essentials” in (1.3.2) may serve very well as a check-list. Situations, 
problems, procedures, and so on, may be paradigmatical objects while the corre- 
sponding “across” may aim at a paradigmatical activity. Yet let us fix our atten- 
tion on one special kind of activity. Inventions are edited, prior to communica- 
tion, and so should reinventions as well. Redundancies are cut out, paths are 
shortened, concepts and notations are smoothed out, the matter is rearranged, of- 
ten to the degree of what I have called, putting things upside down. All this, as 
far as needed, can better be learned paradigmatically than by filling out pre- 
scribed forms. 
And, last but not least, what a paradigm is and how it works, is learned paradig- 
matically. 

2.2.5 Applications 

I began the first chapter with a historical explanation of the plural “mathematics”. 
The medieval quadrivium has now been superseded by a dualism: pure and ap- 
plied. By their very names the two oldest mathematical journals claimed to cul- 
tivate both of them, although applied mathematics had still to wait one more cen- 
tury to get a journal of its own. At universities there were (and in some places still 
are) separate chairs for each of them. The famous mathematician G.H. Hardy 
wrote a famous textbook “Pure Mathematics”. He was proud to assert he had not 
created anything mathematical that could ever be applied. He was wrong but he 
didn’t live long enough to see this. Indeed, in mathematics one never knows. 
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There are good reasons for researchers to specialise and for higher education to 
be departmentalised. But pure and applied is an awkward dualism, as are theory 
and practice, or (in textbooks) theory and exercises, or (in mathematics educa- 
tion) insight and drill, and so on. Reality is a virtual unity, where for practical 
purposes at any moment some part is focused and others are out of focus. Yet 
shifting focuses is no less important than focusing itself and it should not be im- 
peded by what I formerly called isolating impermeable membranes. This applies 
in particular to learning mathematics. So I propagated rich contexts, just to fight 
impermeability. 
The most serious trouble with dualisms like those above is the tendency to favour 
one-way traffic. In instruction this means: first theory and then exercises, first in- 
sight and then drill -- the first for conscience’s sake only and very likely to be 
skipped. After all, the mastery of the first does not imply that of the second 
whereas the second may bring about the first, or one would hope. 
If history means searching for the roots of the present in the past, then history of 
pure mathematics is a tree deprived of its strongest roots. Teaching is not differ- 
ent. In the past, most mathematics was never applied or meant to be applied by 
those who learned it at school, but things have changed spectacularly. More and 
more people use mathematics more often than they are aware of. When I said this 
I continued: They use mathematics because they cannot do without it. Indeed, the 
amount they use is astonishing, but have they learned the mathematics they even- 
tually use, only because they were once taught mathematics? Mind, I don’t ask 
whether they use the mathematics they were taught. One can readily deny it, since 
most of the stuff they learned is of no use at all for most of those who were sup- 
posed to learn it. My proper question was whether learning the mathematics they 
were taught has been conductive to educating mathematical behaviour. Or rather, 
if there was some influence, could it not as well have been detrimental? 
I agree that, in adaptation to social needs, views on teaching mathematics have 
changed. Henceforth, one now postulates, students shall also be taught to apply 
the mathematics they are to learn; so reformers and developers call and look for 
more applied mathematics alongside the pure. As so happens in the course of 
teaching, “alongside mathematics” is interpreted as “after”, and this is true at var- 
ious curricular levels: The eventual result is a pair of curricula, rather than one: 
first, pure theory; second, application -- a menu of applications, that is. Or the two 
curricula are shuffled into one another as packs of cards: parts or chapters alter- 
nate with one another -- theory first applications after. Or every bit of theory is 
followed by another bit of application. 
It does not matter which variant is chosen. The view itself is wrong and it is even 
worse if it is identified with mathematising, which is a learner’s rather than a 
teacher’s activity, or at least should be. Applying mathematics is not learned 
through teaching applications. The so-called applied mathematics lacks mathe- 
matics’ greatest virtue, its flexibility. Ready-made applications are anti-didacti- 
cal. Mathematising some problem situation in nature or society should not be 
demonstrated by the textbook author or the teacher but left to the learner to be 
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reinvented. In this regard applications are no different from mathematics as such, 
and for that matter the present section could as well not have been written, were 
it not for the urgent need of using every opportunity to propagate starting and 
keeping mathematics in reality, while switching back and forth between realities 
-- natural, social, and mathematical. Pure and applied is a highbrow dualism rath- 
er than a learner's concern. 
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2.3 LEARNING PROCESSES 

2.3.1 “Learning process” as a didactical principle 

What led me to deal with learning processes and their observation, in particular, 
in a chapter on Didactical Principles? Aren’t these rather tools and subjects of re- 
search? Unfortunately, whatever educational research may mean -- and it may be 
quite a number of things -- one cannot but agree that little attention has been paid 
in the past to learning processes and even less to their observation. Even at the 
present state of knowledge with regard to learning processes, didactics can hardly 
draw on a substantial capital of educational research. This, then, explains and jus- 
tifies the prevailing practice of short-cuts in education where, without much ado 
(let alone any reflection) and trusting one’s intuition, more or less conscious ex- 
periences on learning processes are applied wherever needed in didactical situa- 
tions. Let me account for this fact -- and where I consider it a gap try to mend it 
-- by dealing with learning processes in the present chapter! Mathematical learn- 
ing processes, that is, although most of what I have to say is also true for the di- 
dactical ones. 
Anyway, the use of and the emphasis on processes is a didactical principle. In- 
deed, didactics itself is concerned with processes. Most educational research, 
however, and almost all of it that is based on or related to empirical evidence, fo- 
cuses on states (or time sequences of states when education is to be viewed as de- 
velopment). States are products of previous processes. As a matter of fact, prod- 
ucts of learning are more easily accessible to observation and analysis than are 
learning processes which, on the one hand, explains why researchers prefer to 
deal with states (or sequences of states), and on the other hand why much of this 
educational research is didactically pointless. 
Why can -- even dense -- sequences of states if appropriately interpolated, never 
be equated with processes? The reason is again a didactical principle. In [87, 
p.165] I formulated and italicised the thesis: 
What matters in learning processes are the discontinuities. 
Interpolation between states obviously applies only to continuous processes. The 
process approach is fundamentally different, even if its scope is restricted to short 
processes. Let this be enough for the moment, and let me delay justifying my the- 
sis didactically and elaborating on it! 

2.3.2 Teaching/learning processes 

Since Herbart, if not earlier, views on teaching processes have influenced didac- 
tics and, though in instruction teaching and learning processes are strongly inter- 
related, there are few people left, even among practitioners, who profess the out- 
right identification of learning with teaching. Moreover, one cannot disregard the 
large part of learning -- even at school -- which is independent of teaching. To 
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my mind, the amount of what is learned by formal instruction is grossly overes- 
timated. But since my concern is didactics, more often than not when I speak of 
learning processes, this will be shorthand for “teaching/learning processes”, or 
“instructional processes” (which includes both learning and teaching). 

1. Pure and mired learning processes 
Knowledge of pure learning processes may greatly help us to understand and or- 
ganise instructional processes, but whatever pure learning processes may mean, 
this field still looks like a desert: shrubs of unconscious experience, incidental or 
intentional observations, and sparse efforts to organise this experience. There is 
one oasis in this desert: Piaget’s early work17, based on continuous observations 
of his own children during their first and part of their second year. Of course, ac- 
tive observation, too, is a kind of teaching but to a much lesser degree than the 
influences of the social environment in general. It is a pity that Piaget’s original 
records have never been published. 

Indeed, Piaget’s material, as selected and offered by himself, is processed to fit into 
the stream of his profound theory. It is chosen in order to describe what he calls the 
sensory-motor stage. One strange feature should be mentioned: his complete neglect 
of language. The subjects never say a word (as they never weep or cry). Did Piaget 
reserve language for another volume that never appeared. or did he underestimate the 
part language plays in the “construction of reality”? By the quite sophisticated tasks 
these little children are able to perform they distinguish themselves from animals to 
such a degree that one is inclined to conclude that this is due to their ability to name 
things, events and acts, and by this way to imprint them more strongly in their memo- 
ry. It should be noted that Piaget did not pay adequate attention to the part played by 
language in cognition in his later work either. 

Piaget’s original approach was time-consuming. The laboratory research carried 
out by his assistants represents methodologically another extreme: instantaneous 
exposures, as it were, where learning is considered to be a disturbing nuisance 
and therefore counteracted and eliminated as much as possible. 

Let us add one remark: Rather than the population of subjects, the only constant in the 
explored time sequence of states is the complex of tasks to be tested; yet, since they 
are propounded at linguistic levels corresponding to the subjects’ ages, one can, in 
each particular case, question what has actually been tested: levels of task performance 
or of linguistic proficiency. 

Factual learning processes are mixtures, depending on the involvement of unin- 
tentional and intentional, informal and formal teaching. However important ob- 
servations on everyday learning may be, didactics, which includes both teaching 
and learning, is best served by knowledge of more formal teaching/learning proc- 
esses and the interaction between the guides and those guided. 

2. Participation and reservation 
Another dilemma in learning processes is related to observation: Participation 
and reservation of the observer. Piaget himself, in his early work, behaved as a 
participant, although he did so with the utmost self-restraint: the success or fail- 
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ure of his subjects in doing tasks was fed back into his strategy as an observer. 
For instance, after an initial failure, the same task was offered anew, often ten to 
twenty times. Piaget’s assistants, however, used repetitions to make sure whether 
a subject’s reaction as was by chance or consistent. 
The teaching component increases along with the observer’s participation in the 
learning process,. Yet teaching/learning processes, say in the classroom, can be 
attended and registered just as well by non-participating observers. Personally, I 
do not like the idea of non-participatory observation. I even feel unable to refrain 
from intervening, and I still regret some cases in the past where I missed the op- 
portunity or lacked the readiness for intervention, for instance, when I failed to 
ask the person observed why he did what he did, and why he did think what he 
thought. 

3. Short-term and long-term learning processes 
As is the case with the interdependence of teaching and learning processes, I em- 
phasise here that my proper aim with regard to learning processes are long term 
ones, which is in fact the title of (2.4). Short-term learning processes look as if 
easy subjects, easier than they actually are. They are, indeed, easily accessible to 
direct observation, which no longer holds true for their long-term effects, wheth- 
er the short-term processes observed are embedded in long-term ones or not. Of 
course long-term learning processes are the most difficult thing to observe. 
When I objected, on the ground of the discontinuity of learning processes, to in- 
terpolating between consecutive states as a procedure to grasp and to guide proc- 
esses, I did not mean to exclude the reconstruction and the pre-construction of 
long-term learning processes from sequences of short-term ones. The conditions 
for realising these goals will be the main concern of this section and the following 
(2.3/4). 

2.3.3 Observation as a didactical principle 

1. Observing 
Observation is an indispensable tool for any research based on experience. Ob- 
serving natural phenomena under the microscope is quite different from observ- 
ing patients, or wildlife, or people in the supermarket, or children in the class- 
room. Inventive and influential methodologists have developed models for or- 
ganising classroom observations according to a pattern they themselves consider 
to be as characteristic of the natural sciences. Assistants, preferably students, 
armed with check-lists, are charged with observing teachers’ and children’s 
classroom behaviour, and according to the minutes spent on certain activities 
they are to classify the actors in a system of predesigned categories -- a method- 
ology that is a caricature of observation as understood in the natural sciences. 
Even the naturalist does not trust check-lists to explain unexpected events, which 
as a matter of fact may prove to be more important than the anticipated ones. His 
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strategy of observation is instead controlled by vast experience and a certain 
mount of theory. Proceeding according to check-lists is a good thing for starting 
an engine or any other predesigned and controlled process, but it is an impedi- 
ment to acquiring new experience or to learning new behaviour. 
All the same, educational research will be a subject of the next chapter. In the 
present chapter the observation of learning processes will be dealt with as a di- 
dactical principle. For many years I have propagated observing learning process- 
es, although in fact it is an art that is practised more often than people would ad- 
mit -- the observers themselves included. What I meant to ask for was to report 
on such observations, which presupposes getting conscious of them. Teaching 
and didactical experiences result from observing learning processes. Teaching 
and didactical behaviours are justified by experience, and more explicitly by ob- 
servations inside and outside the classroom which have consciously been regis- 
tered. 

2. Observing and recording 
Are conscious observations of learning processes as exceptional as they seem I 
don’t believe so. But if these are so many, then why do so few of them get a 
chance to be reported? Are non-professional observers afraid that reporting ob- 
servations would come across as telling classroom anecdotes? If so, they are right 
to avoid this appearance. Indeed, telling classroom anecdotes will not acquire sci- 
entific respectability unless it is organised by means of all-embracing educational 
or psychological categories. Or, rather, this postulate is the very reason why de- 
velopmental research as practised by Piagetians is blossoming: classroom or lab- 
oratory observations are classified according to categories and hierarchies or at 
any rate make a pretence of doing that. I admit there are no ready-made tools for 
organising observations of learning processes but, as long as no substantial ma- 
terial is available, the quest for organising it is meaningless. Nevertheless, there 
is one valid criterion for estimating whether observations are by chance worth be- 
ing reported or not: whether they are paradigmatical. As a matter of fact, this ex- 
tends to educational research, where paradigms play a part unrivalled by statis- 
tics, but in the present chapter we are concerned with the paradigm as a didactical 
principle. It was introduced here as an answer to the quest for experiences worth 
being reported, though this is not at the heart of the matter. As valuable as reports 
may be for those who are expected to read them, the didactical value of reporting 
resides first of all in its being an incentive to observation, with the aim of becom- 
ing conscious of one’s observations and having them analysed. 
Learning by paradigmatising would seem to be a vicious circle: on the one hand, 
the criterion for knowing what observations are worth recording resides in their 
paradigmatical character while, on the other hand, learning what is paradigmati- 
cal, must take place in the course of observations worth recording. It is circular, 
yet so are learning processes in general. In this particular case we are, indeed, 
concerned with a specific learning process which, first of all, has to be identified 
as such: theprocess of learning to observe, as passed by educational practitioners 
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and didacticians; this process is guided by the experience of observed learning 
processes -- those of their subjects -- and moreover, as happens or should happen 
in teacher training, reinforced by exterior guidance. It is an apparent circularity 
that is not vicious at all; and in the right perspective the process is a spiral rather 
than circular. 
Later on, we shall look for more objective criteria for what is worth being ob- 
served and recorded and at the same time fill in a gap in our argumentation. 
Meanwhile, we will consider the described process of learning by paradigmatis- 
ing, albeit lifted up to a higher plane. 

3. Self-observation 
Observing learning processes, whether formally recorded or not, is itself a learn- 
ing process - a meta-process, as it were. It becomes an opportunity to learn how 
to observe learning processes as soon and in the measure as the observer is aware 
of details of this meta-process. What kind of details? The answer is again: details 
of what is paradigmatical. (In [87, p.205] I described the paradigm in my own 
learning process as an observer that led me to shaping the idea of paradigm.) But 
this is too easy an answer. Observing oneself can be a difficult undertaking as 
everybody knows who has ever tried it; in particular, any mathematician who has 
tried to observe himself solving a mathematical (or for that matter, any other) 
problem knows that proving a hypothesis often means finding out the reason why 
one believed it to be true. Let me therefore deal for a moment with self-observing 
in a broader context than that of only observing learning processes; this antici- 
pates themes to be dealt with in (2.4.2). 
The difficulty of self-observation is that of being actor and spectator simultane- 
ously. It can be learned, to be sure, and where it may mean the observation of 
learning processes, teachers and didacticians should indeed learn it; but self-ob- 
servation is also worth learning with regard to the acquisition of subject matter, 
and particularly if this subject matter is mathematics. Anyway, it is a difficult 
thing to learn, which may require considerable endurance. There is, however, a 
short-cut. Let me first describe it in terms of first line mathematics learning and 
teacher training! 
Observing others is definitely easier than observing oneself. In the past I have 
fought individualised learning (which is fashionable today) even harder than the 
traditional teacher-centred classroom variant. I will come back to this point when 
dealing with “Mathematics for All” but let me say in advance that I favour small 
learning groups of, say, four learners, and that this preference extends to teacher 
training. Observing the learning processes of others is implicit to learning in 
small groups, and what happens in such groups should be made explicit by the 
learners themselves or by their supervisor, although this is hard to do and we 
know little about how to do it systematically. 
The counterpart for teachers and didacticians (and even for researchers) of what 
the classroom and teacher training learning groups mean for pupils and student 
teachers is workshops: learning to observe oneself by observing others. Indeed, 



92 CHAPTER 2 

observing others and oneself is a source of consciousness for one’s own physical 
and mental actions, and this again is an important aspect: reflecting on what one 
does and thinks. Of course, we would not be able to act in everyday life if tried 
to plan everything in advance and think about it afterwards. A large part of our 
incentives and intuitions are unconscious and will always remain so, but making 
unconscious things conscious as often as possible is a way to improve the opera- 
tional value of our unconsciousness. 
Was self-observation a misleading title? No, its scope has been extended quite 
naturally from the individual to the collective. 

4. Discontinuities in learning processes 
I promised more objective criteria than having a paradigmatic character for indi- 
cating what is worth observing and recording; at the same time I would like to fill 
a gap in my argumentation. To do this let me repeat my self-quotation: What mat- 
ters in learning processes is the discontinuities -- or jumps, as I prefer to call 
them. In what sense does this matter? First of all, it is the jump in a learning flow 
that superficially looks continuous -- the learners’ overt or covert aha -experienc- 
es -- that strikes the observer and challenges him to participate by reinforcing 
their influence. 
How to recognise jumps in the learning processes? There may be objective crite- 
ria, such as in the cases I reported in (2.1.4, 4): for instance, a clumsy procedure 
for solving linear equations like “first multiplying by the denominator, then di- 
viding by the numerator”, may after a long while be spontaneously shortened to 
multiplying “upside down”. Was this a chance event? To make sure whether such 
an occurrence is a jump, the observer should offer the learner a sequence of sim- 
ilar problems and after a while and as it happens resume testing once it is clear 
that the occurrence was not accidental. As a matter of fact, in all the cases I men- 
tioned above (and in many others) there was no relapse whatsoever, which proves 
that the jumps -- or what I had diagnosed as such -- were real. Clearly the girl did 
not dare to leave the beaten track until she was sure she would not get lost. I my- 
self was satisfied to reinforce through mere repetition, lest explicitation of rules 
should harm her. Indeed, as I mentioned earlier, her teacher (by supplying her 
with explicit rules for operations on fractions) had managed to undo the effects 
of many weeks of reinventive learning. So I was afraid that, unless she verbalised 
by herself, rules would prove harmful rather than helpful. It seems that she never 
had learned to verbalise mathematics on her own, in spite of her otherwise normal 
mastery of language. Attempts to rectify this shortcoming might seriously have 
confused her, or so I feared. Notwithstanding the lack of verbalisation, she under- 
stood very well what she was doing - later on I will report on how I tested her 
insight. 
Good verbalisers are easier subjects where learning processes are to be observed. 
My publications contain a large number of references to a boy whom I started ob- 
serving a few months after his second birthday (more systematic reports are being 
found in [58, 64, 73,84,98, 109,149]). It was an early habit of his to formulate 
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his intentions in advance as well as whatever plans he was going to carry out, and 
to reflect on his own speech and thought, sometimes even while speaking and 
thinking. On the other hand, great discoveries, or what he felt to be such, were 
accompanied by heavy emotions and explosive utterances. He was a most appro- 
priate subject for observing learning processes of all kind. Although my thesis 
about discontinuities being the significant thing in learning processes dates from 
long before his birth, he has taught me a lot, for which he has been credited in my 
various publications. 
I have just sketched two extremes of learners. From old material and as a “revis- 
itor” I could add a few more reports18. All they have in common are jumps with 
paradigmatical consequences - anyway they do not provide enough indications 
for attempts at categorisation. Still, let me mention what I personally learned 
from these experiences: all together they have helped me to get rid of the preju- 
dice that something learnable may be self-evident. What is now a matter of course 
was once a matter of learning. It sounds trivial but then it is one of the trivialities 
that one should be reminded of again and again. For this let me report a striking 
example! 

5. A group learning process 
The two cases I just reported were learning processes of individual children. For 
instance, if instead of the one girl, I had been teaching two together, I would have 
followed an entirely different strategy: The need for communication between the 
two of them would automatically have stimulated verbalisation, which I would 
have cautiously guided. 
Anyway teachers as well as developers are dealing in the classroom with collec- 
tive, rather than individual learning processes. My own first experiences in this 
respect, well over thirty years ago, are related to Dina van Hiele-Geldof‘s mar- 
vellous reports19 on classroom observations. She took notes while teaching; and 
I was astonished how many more -- and more important -- things she observed 
than I was able to do. Since then, modem technical tools have become a great 
help for observers in the learning environment. On the other hand, small groups 
are a better environment for observing learning processes than large classrooms. 
Let me give an example: 

After measuring a few angles, it is time to draw angles of a given sue. Mariska tries 
to draw an angle of 20°. She draws at random. She adapts the protractor to one leg, 
carries the pencil to the other one, reads off it is wrong. She erases the angle and draws 
another random angle, while taking into account the first measurement. She measures 
again, and again it is wrong. She erases the second angle, swearing at it. Her neighbour 
Monique is alarmed by her swearing. She watches the third attempt, and then she ex- 
plains how to do it at one go. Anja is listening; “that is how I did it” she says: “So I 
have done it.” Mariska draws the next angle -- 13° -- in the new way. Meanwhile, Cecil 
has learned how to do it from Anja. Cecil consoles Mariska: “I didn’t know it either.” 
The next misfortune is that a point to be marked falls outside the sheet of paper. Anja 
helps. Anja and Monique always wait for the others before going on to the next task. 

When I recommended observing learning processes as a treatment against unwar- 
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ranted prejudices on self-evidence, the above proceedings were one among many 
examples I had in mind; I found it a distressing experience, and at the same time 
a warning. Thirteen years old and behaving like this just to draw an angle of 20°, 
isn’t this sheer stupidity? Or were they really that stupid, these two among the 
four 13 year-old girls? Would they have acted the same way if the task had been 
to draw a line segment, say of 5.3 cm? Certainly not! Why weren’t they able to 
use the circular protractor in the same way as they would have used the linear 
scale of the ruler? Thirteen year-olds who behave like Mariska and Cecil, what 
have they missed in their most elementary education? In order to answer this 
question more profoundly, it should be posed in a much broader context. What is 
behind this distressing experience? 

6. Change of perspective 
It is not merely the switch from measuring to constructing. It is a kind of jump, 
which I have called change of perspective - an important and indispensable ac- 
tivity, characteristic of a mathematical attitude - in this particular case, from 
measuring a given thing to making a thing with a given measure and, more gen- 
erally, from examining a given thing and stating its properties to making a thing 
with prescribed properties (and of course if need be, the other way around). In 
traditional geometry teaching this duality was called analysis and construction. 
Geometry, though not necessarily of the traditional kind, is an excellent training 
field for changing perspective, although its domain of transfer is much wider, 
both inside and outside mathematics. Change of perspective takes place as soon 
as the child starts to conquer the so-called egocentrism which, in my experiences 
happens much earlier than Piaget’s laboratory experiments Seem to indicate. 
Learning processes are marked by a succession of changes of perspective, which 
should be provoked and reinforced by those who are expected to guide them. My 
diagnosis with regard to the failure of these two girls is: victims of rigid instruc- 
tion that never left any room for individual initiatives. Change of perspective de- 
velops most naturally in reinventive learning and, if consciously trained, allows 
for a wide area of transfer, as do all behavioural attitudes. Anyway one should 
begin exercising it quite early. Is 13 too late to recover what has been missed? 
Am I too pessimistic if I say it is? What a tremendous gap between the two girls 
who succeed and the two who fail! Can we do anything to narrow it? Or better, 
anything to avoid it? I am not at all hopeful as long as teacher trainers fail to teach 
their students how to observe learning processes. Or shall I call it learning to ob- 
serve when they send their students into classrooms with prefabricated question- 
naires or have them observe classrooms on the monitor? But let us not say too 
much about “teacher training” beforehand! 

7. Communication 
I almost forgot that the above story was meant as an example of a collective learn- 
ing process. It is, however, too short and too simple to be a good example. For 
two of the girls the jump was too easy, if there were any jump at all. The boost 
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the two others needed and received was too straightforward. I could repeat more 
sophisticated examples from earlier publications but this would take me too far 
afield, while high quality research is just now taking place in this domain. The 
general feature of the observational evidence at my disposal is: four children co- 
operate more or less efficiently to solve a problem. An accidental remark of one 
venturing may mean a hint for the other; or the one who, venturing the jump, can- 
not explain it herself but another can and thus enables other members of the group 
to follow suit. Linguistic tools arise from the need for communication. Discus- 
sions evolve, and participants are compelled to reflect on their own utterances 
and actions. The teacher, walking between the tables, whether or not requested 
for by a particular working group, should not intervene actively before having lis- 
tened to the - perhaps confusing - report on their previous learning process. The 
mere fact of reporting may mean such great progress in the learning process of 
the group itself that the teacher’s intervention can be restricted to polishing lan- 
guage and adapting ad hoc invented terms to the conventional terminology. Or 
the report may include keys to guide the group in the right direction. Or exchange 
with more successful groups may be helpful. 
This then is observing group learning processes - a scarcely explored field. 

8. Thought-experiment 
What use is the knowledge acquired in observing learning processes for the in- 
struction developer? Certainly, there is some use. As a developer he can profit 
from these pieces of knowledge, provided he views them in a broad sense as par- 
adigms. As early as 1961, if not even earlier, I propagated the thought-experiment 
as an instrument in educational development: 

Imagine a student, more or less distinctly defined, and have him in his mind reinvent 
a mathematical idea, observe his actions and analyse them by logical methods. [14, 

That is the Socratic method, or as I would prefer to say, the method of the thought- 
experiment. The latter expression comes from Mach, who described it as a method of 
theoretical physics; it was the central method from Galileo to Einstein (and maybe. still 
is today). In didactics, I mean by thought-experiment the attitude of a teacher or text- 
book author of imagining a student or a group of students and teaching them in men- 
tally while reacting in advance to their probable reactions. The imaginary students are 
active, and their activity allows the teacher to determine his way of proceeding. In a 
narrower sense I will assume, as Socrates did, that the teaching matter is reinvented or 
re-discovered in the course of teaching. Rather than being presented dogmatically, the 
subject matter originates before the students’ eyes. Though the students’ own activity 
is a fiction in the Socratic method, the students should be left with the feeling that the 
teaching matter arose while teaching, that it was born during the lesson, and that the 
teacher was in effect only a midwife. . . 
In the Socratic method “reinvention” was not understood literally; it was simulated 
rather than being true reinvention. It could not have been otherwise, could it? The 
teacher’s authority was still dominant. . . The initiative was only on the part of the 
teacher. Not only did he lead the student, he also showed him how rediscovery works, 
he rediscovered on behalf of the student. [40, p.100-102]. 

P.32] 
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The variants I proposed were, of course, thought-experiments for real, albeit 
guided, reinvention. Moreover, I postulated that textbook authors and develop- 
ers, whether or not they shared my educational philosophy, would reveal the very 
essentials of their thought-experiments (if there were any); this would, in my 
view, be the right way to prove, as it were, the soundness of their approach or at 
least to bring this point up for discussion; and it would eventually lead to having 
the thought-experiments checked in the classroom - let me stop here and not an- 
ticipate too much on “educational development” (3.2/3). 

2.3.4 Levels in the learning process 

What matters in learning processes are the discontinuities - quoting myself - or, 
another word that I have frequently used: the jumps. I owe the conception of the 
level structure of learning processes to my collaboration with the Van Hieles, a 
couple who embodied, as it were, the marriage of theory and practice. Let me 
quote from [40, p.121 sq.], which actually dates back to the spring of 1969, while 
pieces relevant to the present exposition are mere translations from the French 
[14, p.32-34], written in 1961, as I afterwards noticed to my own surprise: 

When the Van Hieles started teaching they were just as unprepared as many other 
young teachers; nobody had told them how to do it. They had, of course, passively un- 
dergone teaching, and maybe even observed how their teachers performed, but this 
was not enough. As time went on, they had the opportunity to discuss their own teach- 
ing with each other and with others. They subjected their own actions to reflection. 
They observed themselves while teaching, recalled what they had done, and analysed 
it. Thinking is continued acting, indeed, but there are relative levels. The acting at the 
lower level becomes an object of analysis at the higher level. This is what the Van Hie- 
les recognized as a remarkable feature of a learning process, namely in the learning 
process in which they learned teaching. They transferred this feature to the learning 
process that was the goal of their teaching, namely the learning processes of pupils 
who were learning mathematics. There they discovered similar levels. To me this 
seems an important discovery. 

In my exposition this is followed by a series of examples, which included the lev- 
els on the -- historical as well as individual -- road from the intuitive, unreflected 
and, as it were, incidental practice of complete induction (see 1.3.5, 14) to the 
formulation of Peano’s axiomatic system of natural number. Then it continues as 
follows: 

Here the levels of the learning process stand out in bold relief. On the lowest of the 
levels under consideration complete induction is acted out. On the next level it is made 
conscious as an organizing principle and can become a subject matter of reflection. On 
the same or a higher level it is put into a linguistic pattern. From here to the Peano sys- 
tem the path is no longer locally determined. Now the data is no more a bunch of math- 
ematical derivations in which a common principle (like that of complete induction) is 
hidden; it is rather the organization of an entire field, in which linguistic formulations 
(that of complete induction) among other mathematical activities become the subject 
matter of reflection; the complete induction then undergoes a re-interpretation; rather 
than describing a mathematical principle it is now interpreted as postulating a property 
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which, along with others, should characterize the natural numbers. 

How levels stratify this [the mathematical] activity has been shown by an example: the 
means of organization of the lower level become a subject matter on the higher level. 
Which phases the learning process passes through from one level to the next is a ped- 
agogical question, which should be answered in specific cases by pedagogical experi- 
ence. The relation, however, between one level and the next is overwhelmingly logical 
and accessible to logical analysis. Often the level-raising tools are heavy quantifiers - 
- over all properties of natural numbers in the case of complete induction. 

The learning process is structured by levels. The activity of the lower level, that is, the 
organizing activity by means available at this level, becomes an object of analysis on 
the higher level; the operational matter of the lower level becomes a subject matter on 
the next level. The pupil learns to organize by mathematical means, he learns to math- 
ematise his spontaneous activities. Or rather it would be desirable to have him taught 
in this way. 

Let me stop quoting from what I wrote early in 1969 and turn to similar passages, 
written in the late fifties and published in [13, p.26 sq.]: 

The analysis of mathematics as a ready-made subject presents a deductive system in 
which all steps are fundamentally equivalent. The analysis of mathematics as an activ- 
ity, however shows a layered structure. This feature is accounted for by the level the- 
ory of the Van Hieles. The stages through which the learning process passes from one 
level to the next, are of pedagogical concern (which can be disregarded by the present 
exposition). The relation between one level and the next, however, is preponderantly 

What it is that characterizes the level structure may be expressed in a few words by 
saying that the operational matter of a lower level may become subject matter on a 
higher level. If, on a certain level, complete induction has been a significant activity, 
this activity may become a matter of conscious consideration and, finally, of explicit 
formulation on the next level. The higher level is clearly indicated here by the heavy 
quantification over all properties of natural numbers which occurs in the statement of 
complete induction. ... Operations with integers such that multiples of a certain m are 
considered inessential, and operations with pairs of integers according to the equiva- 
lence relation for fractions are unproblematic activities. On a higher level they can be 
promoted to subject matter and finally described by the device of abstraction through 
equivalence classes. On a still higher level the equivalence relation and the abstraction 
by equivalence can become subject matter. 
In geometry, space phenomena are studied on the lowest level. The properties discov- 
ered on the lowest level are subject matter on the next level, where these properties are 
related to each other. The relations acquired on this level are then studied on the next 
one, in order to build up what are usually called theorems. The logical connections be- 
tween the theorems are subject matter on a yet higher level, which is still below that 
of logic as a subject matter. 
The level theory of learning is closely akin to what can be characterized in logic by the 
words “theory and metatheory”. It is not by chance that the Van Hieles seized upon 
this idea. To my knowledge they were the first who wrote a textbook in which the 
learning process is purposefully initiated and kept up as a process of re-inventing. Tra- 
ditional methods, however, often show the opposite tendency: to descend from higher 
levels to lower ones instead of climbing from the lower to the higher level. 

Let me finally yield the floor to the Van Hieles themselves20, for dealing with the 

............................... 

.................................. 

logical. To discover it, we can use logical analysis. ... 
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learning process in geometry at the secondary level: 

. . . Take the example of the rhomb! Before learning geometry children possess the 
“image” of the rhomb. They are acquainted with rhombs that are special concrete ob- 
jects. Now they will experience what “rhomb” means in the geometrical context. They 
discover properties of this figure, which the teacher calls “rhomb”. They form the 
“symbol” rhomb. In this symbol they condense all internal properties of the rhomb 
they have experienced. . . 
Thanks to the possession of a stock of symbols the pupil will be able to organize the 
subject matter. Mainly as a routine the symbols become signals. From the properties 
belonging to the symbol rhomb (equal sides, parallel sides, equal opposite angles, di- 
agonals that halve each other under right angles) the rhomb as a signal (equal sides) 
arises, or rather one property (equal sides) becomes a signal for the symbol rhomb as 
the complex of all its known properties. The pupil is able to anticipate . . . 
The pupil who has started at “level 0” with undifferentiated visual structures, is now 
at the first level. At level 0 concrete objects and images are the subject matter which 
is organized by the use of symbols and signals. At the first level the symbols and sig- 
nals of level 0 will become the subject matter. The system of properties of geometrical 
figures will be organised by means of relations connecting the geometrical figures to 
which the symbols and signals of level 0 refer. At the first level relations like congru- 
ency, similarity, parallelism appear. At first they have the character of symbols, later 
on that of signals (e.g. congruency of two figures is a symbol for the fact that the two 
figures cannot be distinguished in any geometrical aspect; a congruency theorem for 
triangles may be a signal). However, at this level relations are not yet a subject matter 
as are the properties of figures. 
At the second level the relations which have been devices of organizing at the first lev- 
el will become a subject matter. Here the organizing devices are relations between re- 
lations, mainly of a logical character. The symmetry of a relation between geometrical 
figures, the interrelatedness between relations by means of implication can be used at 
this level, but they can become a subject matter at the third only. 
At the third level the pupil will be able, e.g. to distinguish formally between a propo- 
sition and its converse. Finally at the fourth level (hardly attainable in secondary 
teaching) logical thinking itself can become a subject matter . . . 
Learning is a discontinuous process. The discontinuities are, as it were, the jumps in 
the learning curve. These jumps reveal the presence of levels. The learning process has 
stopped. Later on it will continue, as it were, by itself. In the meantime the pupil seems 
to have “matured”. The teacher no longer succeeds in explaining the subject. He (and 
also the other pupils who have reached the new level) seem to speak a language which 
cannot be understood by the pupils who have not yet reached the new level. . . 

The attentive reader will have noticed a fundamental distinction between the pic- 
ture unveiled in 1969 and that of a decade earlier. There are common elements: 
the discontinuity of the learning process; its level structure, discernable by a kind 
of mathematical analysis; and the levels as determinants of the discontinuities. 
The pictures diverge from one another with respect to the bonds by which suc- 
cessive levels are interrelated. 
In the fist version the learner’s operational matter on the lower level becomes 
his subject matter on the higher level. 
In the second version the learner’s lower level activity becomes an object of anal- 
ysis to him on the higher level, or in other words: on the next level this activity is 
made conscious and can become a subject matter of reflection. 
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The second version adds to the first the means by which operational matter on the 
lower level is transformed into subject matter on the higher level: 
Being made conscious and subjected to reflection is the means of level-raising, 
which is applied, to the - still intuitive (operational) - activities of the lower level, 
rather than to the subject matter. 
When did this change of view take place and why, or is such a historical query 
worth the soul-searching? There is some indication in the old exposition of a fore- 
shadowing of the newer view, and some relapse in the newer exposition to the 
older viewpoint, but I don’t believe that this really matters. Was the change of 
view caused by observations of learning processes made in between both events? 
There are a few of these I might conjecture to have caused the change but I am 
not sure whether they were really responsible for it. A great many observations 
of learning processes relevant to the level theory were made after the crucial date, 
although I would hardly have noticed them as such if I had not at that time been 
in full possession of that theory, or so I believe. So my guess would be that the 
theory was rationally acquired and only afterwards tested by observation. 
What kind of considerations could have guided me? In the first paragraph quoted 
at the start of the present subsection from [40], I related Pierre van Hiele’s own 
report on how he discovered levels in learning processes, that is, as a matter of 
fact, first in the process he and his wife went through as young teachers while 
learning to teach, and how he transferred those levels and their features to their 
pupils’ processes of learning mathematics. The remarkable feature was that of 
levels related by reflection: “At the higher level the acting at the lower level be- 
comes an object of analysis.” However, the levels as characterised in my first ver- 
sion, and as substantiated by themselves20 are of a quite different nature -- I will 
come back to this point. 
I think that the change between the two versions of level theory was influenced 
by my drawing the full consequences of Pierre van Hiele’s report on the discov- 
ery of the levels, which were caused by reflecting on their own learning process 
and then made parallel with the learning processes of their pupils. 
But there is more to it. While writing these lines, I discovered to my surprise that 
the change between the two versions took place as early as 1961. Let me quote 
from [14, p.33]: 

Ce qui caractérise I’hiérarchie des niveaux en général, c’est que la technique des 
opérations à un certain niveau devient matière à réflexion à un niveau supérieur - re- 
lation apparentée à celle qui, en logique, est caractérisée par les mots “théorie et me- 
tathéorie”. 

The main example illustrating this statement is what I described above as “the - 
historical as well as individual - road from the intuitive, unreflected and, as it 
were, incidental practice of complete induction to the formulation of Peano’s ax- 
iomatic system of natural number”, and with regard to which I asserted: 
Here the levels of the learning process stand out in bold relief. This, indeed, 
seems to me essential for the reconstruction of the change from the first to the 
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second version. Obviously I judged the level theory important enough to be ex- 
tended from geometry -- where it was discovered and in terms of which it was 
defined by Pierre van Hiele -- to other domains of mathematics teaching and 
learning. This, indeed, was in accordance with my main interest at that time, the 
middle and upper grades of secondary education. 
For two millennia mathematicians had practised complete induction12 -- the an- 
cient “side and diagonal numbers” being the most profound example12 -- when 
Pascal (and independently, James Bernoulli) couched it for the first time in the 
now well-known principle; there is not the slightest evidence for there having 
been any conscious reflection on this practice during this long historical period, 
although figurate numbers would have offered an excellent opportunity. The fol- 
lowing steps on the road to the modem theory of whole number took much less 
time in the learning process of mankind, but all of them seem to be due to reflect- 
ing on previously unreflected activities. 
In the first chapter I repeatedly emphasised reflection as being characteristic of 
mathematical thought, in particular in the interplay of form and contents (1.1.3); 
this was substantiated by some “examples” (1.1.3.1). I don’t remember when I 
discovered reflective thought as a forceful motor of mathematical invention. It 
certainly happened by introspection, that is, by tracing my own ways of thinking 
(which is itself reflective thought), long before I tried to discern it in the thoughts 
of others and in the learning process of mankind. Let me save the topic of reflec- 
tive thinking for the next subsection, where it will be dealt with more systemati- 
cally! For the moment let me confine myself to one example, which will explain 
why I attach such importance to reflective thought as the motor of mathematical 
invention -- it is an example I have adduced many times in lectures and papers. 

Why do the diagonals of a parallelogram divide each other in half each other? Of 
course you can prove they do by applying congruency theorems, but that isn’t the an- 
swer I expect to my question, since I am sure you were aware of this property of the 
parallelogram long before you had any idea of geometry. But how did you know it? 
What was the source of this knowledge? After so many years of mathematical instruc- 
tion you will not succeed recalling it “except you be converted and become as little 
children”. But such conversion requires greater effort than most people wish to spend. 
It is much easier to observe the little ones playing with such toys as sets of mosaic tiles. 
They know that any parallelogram turned around fits into its own hole, “which proves 
the theorem”; indeed, by this turn both diagonals are turned around as well while their 
intersection remains fixed. 
Try the experiment! Draw a parallelogram with its diagonals! Have the child discover 
properties of the figure, and if need be pave the way to the particular property you have 
in mind the diagonals dividing each other in halves! Ask: “why do you think they 
do?” “Because I can see it.” “How do you see it?” Insist on an answer! Depending on 
the age of the child you will eventually get one, which at that age can be considered as 
a valid proof, obtained by thought-searching, by reflection. 

If reflective thought is, indeed, a forceful motor of mathematical invention, it is 
only natural to put it to good use in such educational design as is based on the 
principle of learning by reinvention - by guided reinvention, which means that 
the guide should provoke reflective thinking. 
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But let us return to the start of this long story, where I asked when and why I 
switched from the first to the second version of the level theory! My first version 
is merely a report on the Van Hiele’s ideas, although illustrated by examples be- 
yond geometry (to which the Van Hieles had restricted themselves), in particular 
examples of complete induction. In the Van Hieles’ practice I had much earlier 
identified reinvention as the leading didactical principle, unless my memory de- 
ceives me. I certainly knew the part played by reflection in mathematical inven- 
tion and perhaps its level-raising function (at least with regard to my own math- 
ematical activity) and I judged it important enough to transfer it to reinvention. 
This then appears in my second version of the level theory: reflecting on the high- 
er level on one’s activities of the lower one. 
I always knew that my levels differed from those of the Van Hieles and at many 
opportunities and I stressed this at many occasions; my levels were relative rather 
than absolute ones, I said, although I gave Pierre Van Hiele the full credit for the 
level idea as such. I should confess that never before have I as consciously con- 
sidered that difference as I am doing now. 
This brings me back to a question I have delayed discussing. If you read my quo- 
tation from Van Hieles’ text20, you may notice that the last paragraph does not 
properly link up with the preceding text. This may be a fault of mine since I edited 
that text on the basis of their publications and other data, but I think there is more 
to it than this. Discontinuities that reveal themselves by transitory stops in the in- 
dividual learning processes are certainly more numerous and diversified than can 
sufficiently be explained by structuring geometry-learning according to three or 
four levels; these levels are moreover said to be determined by a structure of ge- 
ometrical thought which, though significant, is however too global. When I hit 
on reflection as the thing responsible for the jumps in the learning process, the 
road was prepared for as many discontinuities and levels in a multitude of learn- 
ing processes as there are significant occurrences of reflection. These, then, rath- 
er than three or four levels, were what I began to observe as levels in the learning 
process. As I am now looking back on my various reports on learning processes, 
I cannot but state that almost all of them include examples of learning by reflec- 
tion. I dealt with reflection in [97,98,137] more systematically, the contents of 
which will somehow be resumed in the next subsection. 
I still have to add another remark. Mathematising and reflecting are closely con- 
nected to each other. Indeed, I mentioned reflection among the various aspects of 
mathematising. Of course, routine mathematising does not require reflection. 
Similarly, there is routine reflection, that lacks the level-raising jump feature. 
Moreover, Treffers’ distinction between horizontal and vertical mathematising 
should not be confused with the relative height of level. Horizontal mathematis- 
ing may just as often mean a jump from reality to fresh mathematics and vertical 
mathematising a mere routine, as well as vice versa. 
When I asked the question of whether this whole story is worth that much soul- 
searching, I did so in such a way that the reader could have anticipated my answer 
to be: No! Reporting on one’s own learning processes (in the present context, 
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with regard to educational research) is likely to elicit the reproach of overestimat- 
ing one’s own importance; though it requires some courage, this is worth being 
felt as a challenge. Self-effacement is good style in scientific reports. As I have 
stressed often enough, keeping silent about the process of inventing may mean a 
loss to those who are expected to learn by reinvention. This is even more true in 
the social sciences than it is in the mathematical and natural sciences. The lack of 
hard and objective evidence can at least partially be made up for by knowledge 
of the soft and subjective experiences and considerations that were crucial in the 
development of some theory; thanks only to this frankness can it become acces- 
sible to understanding and criticism. 
By no means can I assert that I have been as faithful to the policy of disclosing 
my own learning processes (in which I firmly believe) as I have asked others to 
be. In the course of the years, however, thanks to my growing insight in the value 
of reflection, I have mended my ways. I could have shortened this subsection by 
keeping silent about the fact that only during this historical search did I discover 
I had introduced reflection as the bond connecting one level to the next as early 
as 1961. While preparing the next subsection, I met yet another explanation of 
the divergence between the first and the second version of the learning level the- 
ory. It would be unfair to conceal this fact, but let me save it for the next subsec- 
tion. 
Meanwhile let me add another remark, which I could not put at the place where 
it belonged without interrupting the historical report, that is, after the first quota- 
tion in the present subsection: The Van Hieles’ discovery is a striking example of 
a didactical insight obtained through horizontal followed by vertical didactising. 

2.3.5 Reflection 

1. Reflection discovered 
My memory includes much of what I would now call reflection. The least insig- 
nificant discovery I ever made in mathematics -- more than half a century ago -- 
was the work of probably less than half an hour, including theorems and sketches 
of proofs. Yet it took me at least a fortnight to fill the enormous gaps between the 
apparent mile-stones along the hazy road of reasoning -- soul-searching work that 
consisted in asking myself why I believed in the truth of one or another particular 
statement. To be sure, at that time I didn’t use the word reflection. Von Neumann 
once said: “A fortnight before you prove something, you have to know it is true, 
since verifying is easier than proving proper.” Maybe it stands for the same feel- 
ing as I -- and certainly many other mathematicians -- have experienced many 
times in the course of their mathematical life. 
I don’t remember when I first used the verb “to reflect” for such experiences of 
mine or others. If I may believe a conjecture uttered in [98], I even shed away 
from it for a long time because it seemed too colourless a term for a mental ac- 
tivity that I could describe more substantially. Indeed, more often than not peo- 
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ple, simply use it synonymously with ‘‘to think”. In [98] I even suggested that the 
divergence between the first and the second version of the learning level theory 
was due to my aversion of the term “reflection”. The story I dug up in the preced- 
ing subsection was different but, as a matter of fact, not until the sixties can I find 
any instance of “reflection” in my papers and, as far as I see, up to the late sev- 
enties it occurs only in the context of the level theory. 
My paper [98] starts as follows: 

About a year ago I suddenly realised that I may have overlooked precious evidence in 
the past when observing children. Did I look consciously enough for symptoms of re- 
flective thinking and of the growth of reflective thinking? -- this was my problem. The 
idea of a possible shortcoming occurred to me while I was preparing a paper for a con- 
ference of which the theme was “Proof in Mathematical Instruction”. 
I had set out to consider the activity of proving, not as an isolated activity with roots 
of its own, but as the final stage of activities that develop naturally and might be de- 
veloped didactically. The stage previous to proving I imagined was constructing 
which, when it happens mentally, means implicitly proving the truth of existence. But 
if constructing was a stage previous to proving, there must be an intermediate stage, 
which, I decided, was reflecting. 

The paper mentioned at the end of the first paragraph was [97]. As a matter of 
fact, the theme of that conference was: Beweisen im Mathematikunterricht. An- 
yway, I postulated that one should teach proving rather than proofs, as is the habit 
in traditional instruction; my examples were taken from geometry, which ex- 
plains why I considered constructing as proving existence -- as a matter of fact, 
this still applies outside geometry, provided ‘‘constructing” is broadly enough un- 
derstood. In no other field of reinventive learning does reflection play as conspic- 
uous a part as it does in geometry. That what is in the eye of the beholder is trans- 
ferred into the mind of the thinker, and this happens by reflection: Insist on asking 
yourself -- or others, as I did above -- why you see it like this, why you think like 
that. 
My notes include so many observations on reflection that I now believe my fear 
at the time that I could have overlooked precious evidence on learning by reflec- 
tion was ill-founded. Indeed, the first note of this kind dates as far back as July 
12, 1943: 

It concerns three brothers I will call Yed (7;7), Matthew (5;10), and Tom (3;10). John 
and Matthew attend different schools. Yed tells his father that, while playing on the 
street with Matthew, he was greeted by Matthew’s teacher “Hi, Yed!” “How did she 
know my name?”, Yed asks his father. “What do you think yourself?”, Father answers. 
“Maybe Matthew once told her about his brothers”, Yed explained and immediately 
continued “How did she know I was Yed (rather than Tom)?” ‘‘What do you think 
yourself?” “She saw that I was older than Matthew, instead of younger, as Tom would 
be”, said Yed answering his second question himself. 
My second relevant entry is a sentence taken from a technical exposition about fishing 
by aforesaid Matthew (at that time 6;9;15): 
Because then the fish think that the men are mistaken thinking they are dead. 

With a view on the evidence now available, I would describe my state of mind at 
the time I set out to prepare my paper [97] as reflecting more consciously than 
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ever before on the idea of reflecting, and more precisely, on how reflective think- 
ing develops. At that time21, while wrestling with the problem of how proving 
arises, I felt for the first time the need for a more compact term for thinking about 
one’s own (and other people’s) thinking, and when I hit on “reflection”, I realised 
it was not as colourless as I had thought before. If I now use the term, there is an 
undertone of physics in it: reflecting as mirrors do, mirroring. 

I don’t know whether philosophers or physicists were the first to pick up this term. In 
any case Latin speculum for mirror was not useful since speculatio means exploring; 
both, however, do have the common root specus, which means eye socket. 

Indeed, when I use the word “reflection”, I mean mirroring oneself in someone 
else in order to look through his skin, to explore him, to take him in. And, conse- 
quently, since somebody else is like oneself --a human -- this is an experience 
about human behaviour and, finally, knowledge about one’s own behaviour. So 
from mirroring oneself in someone else follows -- as the night the day -- the mir- 
roring of oneself in one’s own person, that is, introspection. It becomes reflecting 
on oneself, on what one did, felt, imagined, thought, on what one is doing, feel- 
ing, imagining, thinking. Reflecting, once started, is an activity we perform every 
moment, in order to determine our course of action, yet, as a mental exercise, it 
can become an aim itself. 

2. How does reflection arise? 
At the age of three, children start asking “why?”. It can be meant causally or pur- 
posively even though the adult may interpret it in a logical sense. The child’s 
“why?” may ask for arguments. If however, you wish the child to argue some- 
thing, you had better ask, “how do you know?” Perhaps authorities will be cited, 
parents or friends. Sometimes, in the cognitive field, the answer may be “I just 
know it”, or, if it is a representation ‘‘I see it”. May we find fault with the child 
for such a short answer? As adults, do we always know why we know something 
or haven’t we exercised reflection and introspection for a long time? 

I coupled the question of what is reflective thinking to that of its origins. In fact we 
know little about them. Lack of means of expression is one reason and the other -- 
more important -- is lack of attention to how we experience what we experience. Or 
rather than lack of attention shouldn’t I say: inability to pay attention? Nevertheless I 
ventured to assert that reflecting in one’s own mind is triggered by reflecting in anoth- 
er’s mind. 
I feel that this view is fortified by Piaget’s research on the origin of imitation22, which 
is based on observations of his own rather than of others. Imitation starts reflectively, 
or as Piaget says, circularly: initially the child imitates only those sounds and motions 
of the adult that are more or less faithful reproductions of sounds and motions pro- 
duced by his own, perhaps haphazard, activity. (The importance of this discovery is 
unfortunately obscured by such arbitrary terminology as “assimilation and accommo- 
dation”, which has been overextended in its application.) Imitation starts reflectively, 
that is not as self-imitation but the mirroring of one’s own behaviour in someone 
else’s. What about other utterances, intentions, thoughts? For instance, experiencing 
intention as such and making it conscious for oneself --- when does it start, before or 
after intention as such is ascribed to others? Noticing unexpected acts or unusual be- 
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haviour may or may not lead to questions like “why did you do it?’, “did you rightly 
do so?”, or “would other people do the same in this situation?” Is it a long step from 
here to asking oneself the same question? And, even then, what is asked for may be a 
reason rather than an intention. 

There is one argument why reflective behaviour in general should start with mir- 
roring someone else’s mind. The argument is language, or more generally, com- 
munication. The child learns to say “I feel, I want, I think“ from other people. 
Well, before saying it the child must interpret it. How does it succeed? The anal- 
ogy with what happens in imitation would indicate that the child succeeds inter- 
preting “I feel, I want, I think“ as his own action because he is prepared to, be- 
cause somehow he “knows” what it means. But even then, the outside stimulus 
is needed to make it explicit. 
Let us shelve these questions! We simply know too little to be able to answer 
them. Learning how to observe children is a prerequisite to more knowledge. The 
little I know are (translated) quotations from diaries. 

3. Modes of reflection -- shifting standpoints 
Let us turn to more easily accessible questions! Reflection unfolds itself under 
many aspects. One of them is what I would call shifting one’s standpoint -- shift- 
ing mentally though the standpoint itself may be physical or mental, while the 
shifting may take place in space, time, or any other, say, mental dimension. 
With respect to the “points” considered let us distinguish a few possibilities of 
shifting -- without any pretence of being exhaustive. One is 

which I call 

Another is 

which I call 

And finally 

which I call 

The most concrete realisation of reciprocal shifting is looking into a mirror in or- 
der to know how one appears to others. Another example is a reciprocal shift in 
time, concretised by a shift to an older or younger person: when I grow older, I 
will be able to climb higher than now; when I was younger I could not yet do what 
I can now. The mental reservation is also a reciprocal shift of standpoint: after I 
receive supplementary information I shall judge the present situation better. 
An example of directed shifts of standpoint, and then in succession, is describing 
a path. Well, the easiest way to do this is by pointing. 

We took our walk. Bastiaan (2;8) found the top of a bike-bell. When he dropped it, it 
made a sound. So he dropped it repeatedly. He threw it, he kicked it. I found it danger- 

shifting from A to B in order to look back at A, 

reciprocal shifting. 

shifting from A to B while considering C, 

directed shifting. 

shifting A’s environment to B’s, 

parallel shifting. 
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ous. “Let us go to New Clarenburg!” (a building with a broad terrace), I said and put 
the bell in my pocket. At New Clarenburg he asked for the bell. I warned him that it 
could fall down from the (one metre high) terrace, which indeed eventually happened. 
Bastiaan looked down at the bell and then said “get it, down the stairs” while pointing 
the way with his hand. This took place at a distance of about 10 metres from the stairs. 
Not only did he make a plan of how to recover the bell, but he also disclosed it verbal- 

Describing a path is an example of a directed shift of standpoint or of a sequence 
of such shifts in succession. As I said, the easiest way to do this is by showing, 
as Bastiaan did to recover the lost bell, albeit complemented by the verbal expla- 
nation “down the stairs”. 

ly. 

Monica (4;4) wants to define some place by means of the walk leading to that point. 
Her forefinger raised yet motionless, she exclaims: “and then you go so, and then you 
go like this, and then you go like this, . . .”. Her wide eyes betray her intuitive vision: 
she clearly sees the path in her imagination but she both lacks the mimic and verbal 
resources to describe it. Bastiaan (6;4) in a similar situation shows with his hand which 
direction to follow “after crossing the sluice gates”. 

Describing or explaining a real or imagined situation may require mentally shift- 
ing one’s standpoint. 

We passed a spot by car where an accident had happened there was a damaged car, 
and across the road something I could not identify, a tube or a pipe. Bastiaan (4;2) said 
something like: “It was a streetlamp, and I could see that because I am sitting on this 
side and you couldn’t because you are sitting on that side.” 

Bastiaan shifted as it were to my seat in order to explain why I couldn’t identify 
the fallen streetlamp. But, in general, one may ask whether shifting one’s stand- 
point is facilitated by assuming another standpoint or may in fact sometimes be 
blocked by this. In order to draw a child’s attention to some object, one may point 
to it or turn the child’s head in the desired direction, or move or lift the child to 
overcome some obstruction. The child is well acquainted with these procedures 
-- it is kind of baby language -- which may stall its learning what is relevant in 
particular cases and developing more sophisticated means. 

When the sun had just set, Monica (4;8) asserted she saw Venus near the crescent 
moon; probably she was right, whereas my eyes’ acuity failed. So she wanted me to 
sit on my heels in order to see the planet from her -- lower -- viewpoint. 
Her sister Daphne has always resisted having her body or her head moved as a device 
for showing her an object, and she refuses to be helped in almost all physical activities. 

Asking preliminary questions before tackling the main question may also be an 
example of directed shifting of one’s standpoint. Before interviewing someone 
on a certain subject, one tries to find out where he is standing, and in order to do 
so, one changes one’s own standpoint. In the long run, this may be the most strik- 
ing feature of reflective thinking. 
Reflecting oneself in someone else may be facilitated by family relations. The 
generation shift is an outstanding example of what I called parallel shifting. 

In Bastiaan’s case it started very early with the relation between family levels. At a 
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very young age he mirrored his relation to his younger sister Monica in the relation 
between his parents; (this was reinforced by the relation between his grandparents, 
who lived nearby). When they grew up, he said, both of them would live in a certain 
now vacant house nearby and would have a little Bastiaan of their own. From the intra- 
generation relation the stress was soon shifted to the inter-generation relation: when 
his mother was a child, Grandpa was her father and took walks with her, and when 
Grandpa was a child, he had also a grandpa. Quite early, Bastiaan structured the past, 
in particular the technical development, by means of the generation shift: “what did 
cars look like when you (grandpa) were as old as I am now?”, “was there T.V. when 
Mum was my age?’, and many more and more complicated questions. 

Of course in general, young children are not in Bastiaan’s situation to perform 
such clear double generation shifts. It is perhaps this situation that explains his 
early differentiation of the past. As a contrast let me cite a teaching experiment 
with third-graders, the vast majority of whom were unaware of any differentia- 
tion of the past until they were taught it (which also happened by means of gen- 
eration shifts)! 

4. Conclusion 
I could continue in this way for many more pages, although when rereading what 
I had written I asked myself repeatedly whether I should not spare the reader 
these stories. Indeed,. most of what I have recounted here about reflection does 
not properly belong in a chapter titled “Didactical Principles”. Or does it? 
I finally decided to include these stories (albeit shortened). I did so because of the 
concluding paragraph of [98] (from which these examples have been extracted): 

Reflective learning at school 

Unfortunately, this section, which should be the most important, is almost empty. Ob- 
servations of other children (except for Bastiaan, then 9;2) would not fit into the 
present frame. I never observed Bastiaan at school, nor did he grant me more than a 
few glances into the growth of his scholastic achievements. At that age he fully under- 
stands the meaning of the arithmetical operations, he knows how to perform them, 
though his performance is not yet flawless. He accepts all he learns without any criti- 
cism, and in scholastic matters he never asks the question “why?’, though he is still 
asking it in any other matter. He is not interested in questions like “why does 3 x 4 = 
4 x 3?”, let alone in reasoning about spelling. 
However, I think this is a transitional stage. School is a phenomenon he has still to 
learn to cope with. 

To what degree he eventually succeeded I am unable to judge, although later on 
I noted splendid examples of reflection in his diary [124, 137,140,141,142,143, 
145, 148, 160, 166, 184, 185], most of them related to mathematical experience 
though none of them to school mathematics, which, as a matter of fact, he man- 
aged to master as indifferently as easily. This was thanks to the character of the 
curriculum and instruction, which matched his algorithmic talent on the one hand 
and on the other lacked any bonds with reality, and moreover any challenge to 
reflect on his own activities. 
This is not exceptional. Little attention is paid to reflection in mathematics in- 
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struction, although this can hardly be blamed on the teachers alone, since not 
much more attention is paid to it in research, development, and teacher training. 
Let me characterise traditional mathematics instruction by copying a sentence 
from a few pages ago: 

In order to draw a child’s attention to some object, one may point to it or turn the 
child’s head in the desired direction, or move or lift the child to overcome some ob- 
struction. The child is well acquainted with these procedures -- it is kind of baby lan- 
guage -- which may stall its learning what is relevant in particular cases and develop 
ing more sophisticated means. 

2.3.6 Reflection and observation 

The present section started with my demand to observe learning processes. 
Jumps, I claimed, are the most striking ’observables’ -- blockades are perhaps 
just as easy to notice but less easy to appreciate and explain --jumps to higher 
levels. Look for the level-raising reflection, concealed or manifested in the 
jumps! The reflecting mirror is the observer’s most powerful tool, which closes 
the circle. Let me quote myself: 

So from the mirroring oneself at someone else it follows as on the night the day, mir- 
roring oneself at oneself, the introspection. It becomes reflecting on oneself, on what 
one did, felt, imagined, thought, on what one is doing, feeling, imagining, thinking. 
Reflecting, once started, is an activity we perform every moment, in order to deter- 
mine our course of action, yet, as a mental exercise, it can become an aim itself. 

Observation is the converse: mirroring the observed one in oneself. Or are things 
more intricate? Who is the actor, who the observer in a learning process? Look 
for the interaction in a learning group, while involved in solving a problem! 
Whether involved or not, it is easier to observe others than oneself. Does the other 
person understand you, does he approve or disapprove? Does he feel what you 
feel, can he help you better than you can help yourself to understand what you 
mean? What can a third person listening to the exchange of vague arguments 
learn from and contribute to it? Why do I not understand you, why don’t you un- 
derstand me, why do these persons not understand each other? Is it lack of infor- 
mation, or what information does one of them possess and consciously or uncon- 
sciously conceal, which prevents the other from understanding? Or is the other 
feigning that he does not understand? How can we know what to tell and what is 
too trivial to be told? 

We are driving by a shop belonging to the Jamin chain. The name “Jamin” appears 
twice in Neon letters on the front of the building, horizontally and vertically, but sep- 
arated. In the horizontal version the letter M is missing. I drew Bastiaan’s (8;2) atten- 
tion to it. He said This is only possible with [an] odd [number of letters]. I didn’t un- 
derstand what he meant. He became angry: “You know very well what I mean.” I told 
him, as I had often done in the past, that I never lost my patience if he didn’t under- 
stand me. (He should do likewise and think about the reason why I didn’t understand.) 
Finally he said “If they cross each other.” It was now clear what he meant. The 
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number of letters must be odd if the words are to be put together to form to form a reg- 
ular cross. -- Let me add that at that period the ideas of even and odd strongly occupied 
his mind. 

2.4 LONG-TERM LEARNING PROCESSES 

The present title was announced in (2.3) as being my actual aim. Again long - 
term learning processes means: long term teaching/learning processes. HOW 

long? Life long? Extending beyond the limits of school life? These questions are 
not to the point. The limits, whether reached or not, are set by the teaching goals 
as viewed by the designer. Well, there is no absolute limit: each goal, as definite 
as it may look, can be outdone by more ambitious ones, which, however, are 
meaningful only from the viewpoint of those previously viewed as definite. 
Textbook series are examples of long term planning of teaching/learning proc- 
esses. I mean another thing: planning long term teaching/learning processes. Lat- 
er on the difference will become clear. 

2.4.1 Learning to forget 

An ambiguous heading: learning how and what, or in order to forget? Both of 
them are worth discussion. As every teacher knows, breaks in learning processes 
may cause total losses of learning products. Starting a new school year often 
amounts to starting with a clean slate. In my country successful final examina- 
tions are celebrated by hanging satchels at the flagstaffs. Indeed, after the exam- 
ination, most of the stuff learned may be forgotten never to be remembered, and 
this extends even beyond the narrow limits of what was taught with the sole aim 
of the examination. It is too old a story to be told again: people who, though fail- 
ures in school mathematics, succeeded in life, or so they claim. Or even worse: 
people who assure you that, thanks to a mathematics they never used explicitly, 
they learned a lot of valuable things (especially logical thinking) and, whether 
asked for or not, substantiate this assertion by examples that are as many proofs 
to the contrary. 
No doubt, in every respect, discarding is no less important an issue than keeping. 
Beyond a multitude of subjects and activities, one has to learn which ones are 
worth forgetting and which ones remembering. Much depends on the learner, on 
individual inclinations and aversions, that foreshadow the learner’s future life. 
This does not absolve teachers and educational developers from the task of steer- 
ing and designing the process of forgetting as well as that of recalling. Mathemat- 
ics can again be distinguished from other areas of learning by this fact itself and 
by the way this task is to be tackled. 
We viewed mathematics as an activity, and learning mathematics as guided rein- 
vention. In contrast with traditional instruction, the stress was shifted from in- 
structional products to instructional processes. This shift cannot but influence the 
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line to be drawn between potential remembering and forgetting. Anyway, if 
learning processes are so important that they are specified by guided reinvention, 
it is quite improbable that their ultimate destination should be obliteration by 
their products, although this feature does seem characteristic of mathematics. I 
am going to explain why this is a serious misapprehension, caused by a wrong 
perspective. 
Let us take an example from geometry! A famous theorem, by folklore ascribed 
to Pythagoras, is learned by the great majority of young people, and the fact that 
it is famous proves that it is even remembered by a great many adults, or so it 
seems. Many teachers and even more textbook authors feel obliged to provide 
learners with some proof, though it is an undeniable fact that the theorem is suc- 
cessfully applied innumerable times by people who never learned proving it or 
forgot the proof they learned. To be honest, even in the highest regions of math- 
ematics, people often apply results obtained by others without checking the 
proofs or Caring at all how to prove them. 
So why learn proofs if afterwards they may be forgotten? Once one of my col- 
leagues was asked by a freshman: “Excuse me, Professor, isn’t it a curious habit 
of yours that in your course you prove each of your statements? Why do you do 
so? Are you afraid your students don’t trust you?” It is a question that can be an- 
swered in manifold ways. Mathematics is different, I claimed. It is a remarkable 
fact that, in mathematics, each statement can be corroborated by a proof, although 
it is not the fact that matters here where we are concerned with teaching and 
learning mathematics, rather than with mathematics as a deductive system. As we 
noted several times, the relation in mathematics between theorems and proofs is 
not akin to that between products and processes in mathematics instruction. 
What then can be the didactical value of mathematical proofs? The answer de- 
pends on how a particular proof is expected to function in a come as a whole. A 
proof can be held up as an example to what proving properly means, and let us 
hope that as such it is paradigmatical enough to convince the learner! Or a proof 
can be an opportunity to teach a number of isolated facts or activities in an inte- 
grated way, that is by logical linking, although the course of reinvention itself 
may be as forceful a linkage, or even more so. And finally, by analysing its proof, 
the teacher may discover how to guide the learner to reinvent the theorem it is to 
prove. Proofs refashioned for this aim are valuable in themselves as sources of 
insight. On the other hand, proofs with the sole aim of being forgotten after hav- 
ing produced the theorem they are to confirm, are didactically worthless. 
This, then, is the intrinsic didactic fallacy of traditional teaching of mathematics, 
as well as that of its all time high in New Math: the large extent of subject matter 
learned solely in order to be forgotten, aggravated by the eventual criterion of the 
examination. In addition to this there is the extrinsic problem of what school 
means for life: How to adapt the relation between remembering and forgetting to 
the diversity of demands of future lives? 
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2.4.2 Remembering learning processes 

“If learning processes are so important that they are specified by guided reinven- 
tion,” I said, “it is quite improbable that their ultimate destination should be ob- 
literation by their products”. Learning processes have a value of their own, which 
entitles them to be remembered. Not in detail., of course, as there are very few 
things we remember in detail, if any at all. Rather than details, we record essen- 
tials, or what we take to be such. Anyway, that is all we can recall and, if need 

Learning processes, or at least part of them, can be more essential than their prod- 
ucts. As far as they fulfil this condition, and in the way they doe this, they should 
remain accessible to memory. Not in detail, to be sure, but to the extent and in the 
fashion that they are essential. Few people, if any, remember how they learned 
arithmetic. This is a good thing if they learned it thanks or in spite of bad teach- 
ing. Fortunately there are people who can reconstruct the learning process as it 
would have taken place if they had been allowed to reinvent arithmetic. It is those 
people to which the old adage, cited in (2.1.4) applies: first learn, then under- 
stand. And the others? They are better served by guided reinventive learning, 
duly recorded. 
Written records, even the most circumstantial ones, are far from being complete, 
but a good record allows others and oneself to repeat the process recorded, maybe 
in a more streamlined way than it actually took place. Mental records are no dif- 
ferent. Mental records are due to reflection. This, then, is what makes processes 
of learning by guided reinvention accessible to memory: built-in opportunities to 
reflect, which can be reinforced by verbalisation and by communicative interac- 
tion with the guide and between the guided ones. 
Mathematising is to a great degree liable to obliteration by its result, that is, 
ready-made mathematics. Once schemes and forms have been consolidated, once 
concepts have been attained, once short-cuts have been performed, the stages of 
schematising, formalising, constituting mental objects and short-cutting may be 
dismissed as dispensable nuisances. Algorithms are an utterly extreme case. 
Once mastered, or believed to have been mastered, they are most likely to disa- 
vow their origin. Indeed, it is the great virtue of algorithms that they can be per- 
formed mechanically, as it is their drawback that they become useless or even 
dangerous as goals in themselves: mathematics identified with performing algo- 
rithms. It is algorithms that created what looks like the fundamental antinomy 
within didactics of mathematics: insight versus drill. 

be, put to good use. 

2.4.3 Insight23 

A cherished antinomy in teaching and learning mathematics is putting on one 
side of a deep gorge such noble ideas as 

insight, understanding, thinking, 
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and on the other side such base things as 

If I were malicious, I would add another pair of opposites 
theory versus practice, 

suggesting that learning by insight is a noble theory while base practice is learn- 
ing by rote and memorisation. However, it is not that simple, and it has never 
been so. Even in our computerised age, children memorise tables of addition and 
multiplication and acquire certain skills by rote, though one might argue that the 
balance has shifted in favour of the nobler activities due to the rise of the compu- 
ter. 
It is not that simple, firstly because the question is not which side of the gorge to 
choose but rather to bridge it by the learning process that I called schematising 
and formalising. Secondly, I do believe that, at any time more mathematics has 
been taught from the viewpoint of insight and more has been learned by insight 
than we are aware of -- indeed, common sense is insight. Everyone agrees and 
textbook writers have witnessed that elementary arithmetic cannot be learned in 
any other way than by insight, whether it is taught that way or not. But it is also 
true that, as things go on, as teaching proceeds to ever higher grades, to column 
addition and multiplication, to long division, to fractions (ordinary and decimal), 
to algebra, to learning mathematical language -- the part played by insight chang- 
es. The learner’s insight tends to be superseded by the teacher’s, the textbook 
writer’s, and finally by that of the adult mathematician. And the same tends to 
occur on the long winding road which leads from concretely understood word 
problems to highly formalised and badly understood applied mathematics. 
This is why people who advocate learning through insight, disagree about what 
insight is. New Math’s wrong perspective was to replace the learner’s insight 
with the adult mathematician’s. 
Yet this is not my main point. I have still to explain why we are not aware of how 
much is learned by insight nevertheless. It is quite natural that, once an idea has 
been learned, the learner forgets about the learning process, once the goal has 
been reached, the trail is blotted out. Skills acquired by insight are exercised and 
perfected by training, intentional and unintentional. This is a good thing. What is 
bad, is 

though that is what usually happens. It explains why upper grade teachers so of- 
ten complain about teaching habits in lower grades. If it is restricted to the first 
acquisition of some idea, learning by insight does not deserve this name. 
What is crucial, is 

retention of insight, 
which is gravely endangered by drill, that is 

premature training, 
too much training, 
training as such. 

The problem is 

rote, routine, drill, memorising, algorithms. 

sources of insight clogged by acquired routines, never to be reopened, 
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How can this goal be pursued? The solution I have proposed is 

As I explained earlier, mathematics is to a great degree reflection on one’s own 
and other people’s physical, mental and mathematical activity. The origin of 
proving theorems is arguing things that are apparently obvious. Nobody tries to 
prove a thing unless he knows it is true. This he knows by intuition, and the way 
to prove it is, as I claimed, to reflect on one’s intuitions. Successful learning proc- 
esses, if observed, should be made conscious to the learner in order to be rein- 
forced and in order to be recalled if needed. This, however, is not what usually 
happens. Let me illustrate this by an example I have cited many times. 

Many children and adults can tell you that in order to multiply by 100 “you have to 
add two zeros” (which is only true for whole numbers) yet most of them cannot ex- 
plain why. Even worse: most of them don’t even understand that the matter can be ar- 
gued and why this should be done. Did they learn such rules by rote? I don’t believe 
so. I have observed too many children applying such rules intuitively before they were 
verbalised and formally taught at school. Rather than being taught the rules, they 
should have been taught to argue their intuitions, to reflect on what appears to be ob- 
vious. But this requires more patience than teachers can afford. Indeed, compare this 
with my story of the girl who was taught the rules on fractions after she had acquired 
a good working knowledge of fractions. (See 2.1.4, 3.) 

how to keep the sources of insight open during the training process, 
how to stimulate retention of insight, in particular in the process of schema- 
tising and formalising. 

having the learner reflect on his learning process. 

2.4.3.1 Testing insight 

When, in 2.1.4,3, I discussed the jumps in the learning process of the girl I had 
been observing for a few years, I promised to provide an example to show how I 
tested her insight, that is, to see whether its sources had not been clogged during 
a period of training. 
She had come to the point that she solved equations like 

according to the rules of the art, automatically as it were. I had a strange feeling: 
the better she performed, the more urgently I asked myself whether she still un- 
derstood anything. Finally I was terrified by her excellent performance. On the 
other hand, as explained earlier, I didn’t dare to have her verbalise her behaviour. 
Then I got an inspiration. I drew a horizontal numberline, that is, without num- 
bers, having only an origin and equidistant marks. I took an interval between 
thumb and forefinger, around the origin yet not symmetrical, and asked her: “If 
x is here in between, show me where 2x is?” She did it with her thumb and fore- 
finger. “Where is ?” “Where is x + 2, x - 2?” “Where is -x?” This was the first 
hitch but it was soon conquered. Then I asked the converses. “If 2x is here in be- 
tween, where is x? If is here in between, where is x? After a series of questions 
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like these I gave her written problems. She already knew the notation -3 < x < 2 
for “ x between -3 and 2“. Step by step I led her to sums like 
if -5 < - 1 < 6 

what can you tell about x? Or 
if 

what can you tell about x? 
So I became convinced that her insight had been preserved in spite of training. 
As an afterthought, the above seems to be the didactically most promising means 
of formalising the mental object of variable. (Cp. [119a].) It is a pity that I didn’t 
mention it in [ 146]. 

2.4.4 Training 

Advocates of insightful learning are often accused of being soft on training. Rath- 
er than against training, my objection to drill is that it endangers retention of in- 
sight. There is, however, a way of training -- including memorisation -- where 
every little step adds something to the treasure of insight: training integrated with 
insightful learning. If I compare our mathematical textbooks -- from the lowest 
to the highest grades -- I cannot but notice a historical trend toward this kind of 
integration, In the past there was a clean separation between so-called theory (of- 
ten nothing more than a model) and its so-called applications (or rather, imita- 
tions of the model), which were as numerous as the theory was meagre; and the 
closer one gets to the present day the more deliberately a more vigorous theory is 
broken up into insightful steps, each of which may contain both a training and a 
reinventive aspect. Big problems, posed in contexts, can serve large scale training 
better than a flood of small applications. In other words, textbook authors have 
shifted from extensive to intensive training. For teachers who learned mathemat- 
ics the old way and accuse the new style of being chaotic, it is difficult to use such 
textbooks adequately. Students, however, adapt to them more easily. 
At the primary level there are clear indications

g 
that reinventive learning -- learn- 

ing column arithmetic by progressive schematisation, for instance -- is far less 
time-consuming than extensive training. This even extends to pure memorising, 
say of multiplication tables5, where children are allowed to use their own, so- 
called informal, methods. At the secondary level, comparisons are not so easily 
made because of the interweaving of subject matter and teaching style. A more 
fundamental divergence is, indeed, whether, for instance, exponential functions 
are introduced as a formal subject or as the result of exponential growth in real- 
istic contexts. The most intimate long-term integration of reinventive learning 
and intensive training with which I am familiar, is L. Streefland’s research6 on 
teaching fractions in grades 4 through 6; this research, moreover, includes 13 glo- 
bal learning histories. Streefland’s principal instrument was sketched briefly in 
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(2.1.2, 6) (dividing a number of pizzas among a number of children sitting at a 
number of tables, where the symbolic recording proceeds from a suggestive pic- 
torial notation towards the standard one by means of formal fractions) as shown 
in fig. 13-15 from 6, p.203, 269, 302. The learning process is an alternation be- 
tween what Streefland calls the children’s own constructions and productions, 
which may roughly be distinguished by catchwords like: open end and open start. 

Fig. 14 Fig. 15 
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2.4.5 Organising the learning process 

1. Levels 
Why did we pay so much attention to the level structure in learning processes? 
Let me quote myself from (1.1.2): 

Sure, some, algorithmically gifted people, learn to apply even imposed algorithms ad- 
equately; others -- perhaps the majority -- fail to identify the new algorithmic proce- 
dures with the common-sensical ones from which they should have originated through 
abridging and streamlining. They fail because some time in the past they were asked 
to take mental leaps which exceeded their mental powers. Even though they flawlessly 
learned the algorithm, they will fail to use it in true life situations where common sense 
counts; they will instead depend on less efficient lower level operations. Researchers 
have signalled this “relapse” and marvelled on it. Rarely, however, has it been diag- 
nosed as a consequence of instruction, since no alternative instruction was envisaged 
alongside the imposition of the new algorithm (which was sometimes embroidered 
with explanations for conscience’s sake). The new algorithm, however, never did have 
the opportunity to reach the state of common sense; afraid of applying a wrong algo- 
rithm or the right algorithm wrongly, the learner instead relies on what has remained 
common sense to his mind. 

What I stated there with regard to imposed algorithms applies more widely, I 
daresay, to almost all imposed mathematics,. Indeed, the fact that researchers sig- 
nal and marvel at such relapses is shared by a variety of fields. Whatever levels 
may mean theoretically, it is the duty of the organisers of learning processes to 
respect them. The fact that a few -- gifted people -- can get along on levels to 
which they have been lifted inconsiderately, does not justify ignoring levels in a 
teaching strategy. The question of how jumps in the learning process can be di- 
agnosed, has already been answered. Teachers (or peers in learning groups) need 
to insist on the justication of what appears to be new knowledge or new proce- 
dures, thereby requiring the inventor to reflect on what he -- consciously or un- 
consciously -- performed. This need not necessarily be done by verbalising, 
which anyway should not be enforced; a paradigmatical status, witnessed by rep- 
etitions, is enough to prove the jump in the learning process. 
If levels are to be respected, than learning processes must be organised flexibly 
enough to be adapted to the needs of learners or learning groups. This demand for 
flexibility also applies to the goals of the learning processes. 

2. Differentiation 
How fast and how far learning proceeds, depends greatly on the learner and on 
which way and whether the goals staked out are eventually attained. Reinventive 
learning cannot possibly be planned rigidly, but lack of planning may be even 
worse. In 2.1.2 both didactical extremes were presented within one example: the 
process of memorising the multiplication tables. If pupils are allowed their own 
methods and stimulated to reflect and, if possible, to verbalise the most appropri- 
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ate ones, a widely branched network of possible learning roads is then opened to 
them. It becomes even wider in the case of learning the algorithms of column 
arithmetic. The standard algorithms are theoretically much less compelling than 
is usually assumed; there are variants, indeed, which don’t commit teachers and 
learners beyond their didactical function as guidelines. Comparative research on 
such variants, if viewed didactically, has never been more than a hobby, and is 
unlikely to survive in the computer age. The advantage of reinventive learning, 
and in the present case of progressive algorithmising, is that individual learners 
or learning groups may advance at their own pace and eventually reach the best 
of the goals accessible to them. 
In general, this means organising instruction so that, rather than it being differen- 
tiated in advance, the learners differentiate it themselves, and do so on levels as 
high as are accessible to them: spontaneous versus imposed differentiation. In the 
instructional design, branches are preferred to dead ends and branches that may 
lead back to the main stream, to branches that lead nowhere. If we may use met- 
aphors I prefer that of the jump, if necessary produced by change of perspective, 
to the not unusual one of the sharp turn, where no perspective at all is involved. 

3. Prospective and retrospective learning 
It is a well-known experiential fact that column arithmetic may function both as 
a motivation and an opportunity to improve one’s knowledge of addition and 
multiplication tables. This experience will be viewed in a broader didactical con- 
text, as is indicated by the above heading. 
In former times, mental addition, subtraction, multiplication, and division were 
taught one after the other and separately; arithmetic teaching was divided into 
stages “up to 10, “up to 100”, “up to 1000”, and so on; fractions, measures, pro- 
portions were dealt with as separate subjects. Things have since changed and will 
change even more in the future. As everybody can observe, children who have 
just mastered additive arithmetic up to 10, are proud to tell you that 10 + 10 = 20, 
or even that 20 + 20 = 40, that 3 x 3 = 9, and to recite the multiplication table of 
1, of 10, even perhaps of 5. In their informal arithmetic, doubling and halving of- 
ten precede systematic learning of the multiplication tables, with as next best, 
squares which occupy a particularly cherished place in the tables. Rather than 
suppressing such predilections by premature systematisation, mathematics in- 
struction should take advantage of them, which is actually happening in more and 
more textbooks24. 
This is what I call prospective learning. (Other terms are “anticipatory learning” 
or “learning by advance organisers”.) There are many more examples. Ratio, for 
instance, has profound visual roots, which can be arithmetised early on by esti- 
mate and measurement. There are many informal opportunities in contexts for 
common sense ratio in everyday language before it is dealt with more systemat- 
ically and formally. Long before fractioning the traditional “cake”, the clock dial 
is divided according to halves and quarters of an hour, which, unlike the cake seg- 
ments, have an existence of their own. Functions have visual and numerical roots 
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in graphs and tables, and describe situations and processes, long before they are 
focused on as such. In general, deep roots should be preferred to virgin soil, and 
opportunistic to systematic learning. 
I chose the term prospective for this organisation of learning as a counterpart to 
what I call retrospective learning, which means recalling old learning matter 
whenever it is apt to do so and worth being reviewed from a higher stance or in 
a broader context. Retrospective learning serves dual purpose: it roots the new 
matter in the old one, and it strengthens the old roots. Learning a new idea is often 
nothing but becoming more conscious of a complex of previously less conscious 
pieces of knowledge and abilities and of their interrelatedness. If experienced as 
such, it is retrospective learning. When the laws concerning the arithmetical op- 
erations are formulated, their former occurrences should pass the retrospective 
review in full. This means including -- besides those of an arithmetical character 
-- also such geometric experiences as: when pacing a circumference to measure 
it, it does not matter where I start; when measuring areas of rectangles or volumes 
of beams, the length, width and height are interchangeable data. Combinatorics 
is a particularly fertile domain in which single paradigms may rule broad fields 
of isomorphic problems (cp. [87, chap.IV, 9]), antedating for a long stretch of 
time their general expression and its verbalisation; but as soon as this goal is 
reached, the old experiences should be renewed and their paradigmatical charac- 
ter should be understood as a general feature of isomorphism. 
It has been a habit of adult mathematicians to review old ideas over and over just 
as it has long been experienced that this activity leads to ever deeper understand- 
ing. Young learners should not be treated differently. Prospective learning should 
not only be allowed but also stimulated, just as retrospective learning should not 
only be organised by teaching but also activated as a learning habit. 

4. Intertwining learning strands 
Just as prospective and retrospective learning aims at an integration of past and 
future learning processes, so does intertwining learning strands25 locally, yet 
with a view on the involved learning processes as a whole. Rather than running 
on separate tracks which, except for incidental references and loans, are inde- 
pendent of one another, learning should be organised in strands which are mutu- 
ally intertwined as early, as long and as strongly as possible. When loose ends are 
inevitable, they are taken up at the first opportunity where they can be connected 
to other ones in order to be continued. In a sense, examples of prospective and 
retrospective learning can also serve as such for intertwining learning strands, or 
at least for points where intertwining can start in order to be continued more con- 
sequently. But let us look for other examples! 
Ratio and fractions can go together right from the beginning -- and I do mean the 
very beginning: visual comparison of separate objects is paralleled by comparing 
the parts of one object. Double scales on the numberline and proportionality ta- 
bles are expressions of the same idea as well as tools that connect ratio and frac- 
tions with each other. Conventional measures and decimal fractions are inter- 
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twined in various ways. Functions, graphs, and equations, which in many text- 
books form separate chapters, should be intertwined as learning strands. Thanks 
to the geometrical-algebraical permanence principle (cp.[ 146], chap.16]), learn- 
ing negative numbers, vector algebra and geometry, and linear graphs and func- 
tions can be so closely knitted that they appear to be one subject26. The intertwin- 
ing of algebra and geometry must not be restricted to traditional analytic geome- 
try; plane and solid geometry must not be dealt with as separate subjects. 
Teachers who prefer systematic instruction are likely to accuse this approach of 
being chaotic. They forget that systematics is an a posteriori contraption. What 
looks like chaos may be well-organised didactically, while, on the other hand the 
system as such may be a subject of guided reinvention. 

5. Active learning 
In the first chapter I approached mathematics phenomenologically as an activity, 
and the overruling principle of the second chapter was to do justice to the first, 
which I tried to do by advocating guided reinvention. Modern textbooks and oth- 
er recent literature are a wealthy source, providing examples of mathematics as a 
learner’s activity which can be stimulated and realised by guided reinvention. 
Rather than quoting some of them and keeping silent about others I preferred to 
look for a paradigm that displays as many features of the reinventing activity as 
possible. I didn’t find it in the literature, although I can hardly believe that it is 
indeed as new as it looks to me. 

Eeny, meany, miney, moe. 
Catch a tiger by the toe. 
If he hollers let him go. 
Eeny, meany, miney, moe. 

Isn’t this a way of counting? As a matter of fact, in a few languages with which 
I am familiar, the term for this game of reciting such a rhyme while moving the 
forefinger in the round is derived from the word for counting. It is counting; only 
the words are different. But how much do words matter in counting? After all, the 
children playing the game give the numbers different names, depending on their 
mother tongue. In some languages I know counting rhymes that start with an or- 
dinary number sequence; in German one even goes up to 20 and then continues 
in normal language, where eventually Danzig rhymes with zwanzig. 
So why not all the way count with genuine numerals? How far? One can agree 
on a limit. For instance, up to 100. This “why” or “why not” may become a point 
of discussion -- I mean in the classroom, before or after the lesson or sequence of 
lessons I have in mind. 
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Fig. 16 

Let the children be seated in a circle; let them count themselves rather than be 
counted off by one of them or an outsider but to count themselves. One of them 
starts with 1, the neighbour says 2, then comes 3, each adding 1 to the number of 
the predecessor, going on up to. . . No “up to”, because after the last in the circle 
the starter simply continues counting. One round, a second, a third, . . . 
In the drawing in figure 16 I numbered the four stages 0,1,2,3: at the start 0, 
after the first round 1, after the second 2, and after the third (and a little bit more) 
3. (I apologise: I drew it as though I myself had counted off the children, that is, 
clockwise. I venture a bet that if they counted themselves they would do it the 
other way round. As in writing things are being done from the left to the right. 
Two variants or additional activities: During the counting process a pile of 
number disks (bingo cards) are passed around, and each child takes one in turn 
while saying the number out loud. Or each writes his numbers on a sheet of paper. 
The sketch shows 16 children. Most classes are larger. But the circle need not in- 
clude the whole class. On the contrary, it is just to the purpose to start in a small 
way, preferably in pairs, speaking or writing down in turn the odd and even num- 
bers. After that, groups of 3,4,5, . . .; 10 is particularly nice. 
What has this game to do with mathematics? My answer is: all you can make of 
it. To prove it I will give you a list of questions I would put to individual children 
or the whole class: 

1. If in the present round you have got ..., what will you get in the next? And after 
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two rounds, after three,... ? What did you get a round ago, two rounds 
ago, ... ? What in the first? 

number ... had started as 1? 
2. What numbers would you have got, if number 1 had started as ... ? What if 

3. Who gets number 100, and after how many rounds? 
4. What will your first number above 100 be, and after how many rounds? What 

your last below 100, and after how many rounds? 
5. How do your numbers change if counting is inverted? 
6. If you did the game with... as many mates, how much faster would they reach 

And a more general question: 
7. What catches your eye if you look at your set of numbers? Any pattern, any 

100? 

regularity? 

It will be clear what I meant when I asserted that this game has as much to do with 
mathematics as one can make of it. Certainly the four fundamental operations -- 
the multiplication-tables, and even more striking, the division with remainder 
stand out in bold relief. What kind of division? N numbers divided among n chil- 
dren, or N numbers arranged in circular groups of n? It doesn’t matter, and this is 
one more aspect that does matter. 
Remember, the idea was to start with small groups, but in the long run it is didac- 
tical wisdom to resume the game again and again, as long as the children enjoy 
counting out. So it can serve as meaningful training. But since even little children 
can do it with large numbers, as can older children with small ones, it is a mar- 
vellous opportunity for prospective and retrospective learning. Another striking 
feature is the tight intertwining of learning strands. The learning processes will 
be differentiated according to how the problems are tackled on various levels, 
which can be discovered as such by reflection and transmitted by group cooper- 
ation. Last but not least, it is a rich context, the richest one can imagine: a child- 
ren’s game. 
As for the guide: an excellent opportunity to observe learning processes. 

2.4.6 Acquiring a mathematical attitude 

The original heading of this subsection was: Products of learning processes. In- 
deed, learning processes are not aims in themselves. But how to define their prod- 
ucts? Hard products, though interminable in high level mathematics and valuable 
as objectives of mathematical research, are not the motive for teaching and learn- 
ing mathematics at school, nor is their number significant. The pupils are expect- 
ed to develop certain abilities. Detached from the learning processes by which 
they were acquired, these abilities may lead lives of their own as methods and 
skills, and as such they may be exercised, studied and tested. One can try to list 
and classify them, but what is the use? It would not answer the question of why 
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they should be products of learning processes. After quite a few false starts I de- 
cided to attempt a comprehensive answer under the above heading. 
In 1975, in Hungary I happened to take part in a conference Evolving a Mathe- 
matical Attitude in Secondary Education - Age Range 14 -18 Years. I started my 
contribution27 by taking exception to the general theme. I did so for two reasons: 
First, 14 years is much too late to shape a mathematical attitude, although it is not 
too late to develop it further, provided one knows on what basis one can continue 
from 14 to 18 what was achieved at lower age levels. My second, and even more 
important argument, was that a mathematical attitude is more easily described for 
lower than higher ages if such descriptions are to be based on observations rather 
than on logical analysis. Indeed, what matters is the interior rather than the exte- 
rior attitude, and the older people grow, the more their interior and exterior lives 
will diverge from each other; the most extreme instance of this phenomenon is 
found in publications on mathematical discoveries, where any intellectual or 
emotional detail of the discovery process is carefully avoided. The only access 
left to the interior life of adults, is introspection, but this is a hard thing to realise. 
So, if attitudes are to be described on the basis of observations, one is very likely 
to find more useful material in the lower age bracket than in the one. 
How to describe a mathematical attitude? Such descriptions have often been at- 
tempted, though most often in too general terms -- thinking clearly and distinctly, 
criticism, looking for problems, killing problems. It is the drawback of such de- 
scriptions that by the way they are formulated, they do not properly refer to math- 
ematics. The opposite of this procedure can be found in Polya’s repeatedly men- 
tioned work, whose tendency, rather than whose details, can be a source of inspi- 
ration -- though less of subject matter -- for didacticians of mathematics. 
Mathematical attitude can, in my view, be described most efficiently as the mas- 
tery of big strategies, and this is the way I will use the term. I will deal with five 
strategies, while referring to experiences in actual teaching, most of them related 
to 3-13 year-olds, but viewed as an initial condition for developing attitudes at 
higher ages. 
1. Developing language above the ostensive and linguistically relative level, in 
particular at the level of conventional variables and functional description”. 
Although linguistic levels are reached by learning processes they should not be 
confused with the levels in learning processes. Levels in learning processes are 
there for staying on unless, for some particular reason (for instance as an educa- 
tion developer), one is required to descend. Linguistic levels, on the contrary, are 
there to for moving on however it works out, that is, at each opportunity on the 
level that best fits the situation. 
Besides the levels, I also distinguish two modes of expression: describing some- 
thing by means of an action or as a state of affairs. For instance: 
To get the mirror image of P with regard to 1, drop the perpendicular from P upon 
1 and extend it as much behind 1 as P is in front! 
P’ is the mirror image of P with regard to 1 if P and P’ are at the same distance 
from 1 at different sides. 
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I distinguished the following levels: 
ostensive language, where pointing with the index finger or pointing mentally 
may be accompanied by words like “this” and “that”; 
relative language, where objects are described by their relation to other ob- 
jects; 
conventional variables, which make relative language function more smooth- 

functional language. 
ly; 

To make things clear let me quote an example from algebra: define the square 
root! 

3² = 9 so 3 is the square root of 9, 
5² = 25 so 5 is the square root of 25, and so on. 

The square root of a number is found by looking for a number that squared repro- 
duces the given number. Or, in another mode: 
The square root of a number is the number, the square of which is the given 
number. 
Such clumsy names for variables as are “number” and “given number” are avoid- 
ed by the use of 

x = if x² = a. 
By means of a new concept the language becomes 

Functional: 
Taking the square root is the inverse of squaring. 

2. Change of perspective, a complex field of strategies whose common feature is 
that the positions of that which is given and that which is sought for (of data and 
unknowns) in a problem or a field of knowledge are -- partially -- being inter- 
changed; this includes the recognition of wrong changes of perspective”. 

3. Grasping the degree of precision that is adequate to a given problem27 28. 

4. Identifying the mathematical structure within a context, if any is allowed, and 
barring mathematics where it does not apply27. 
In fact, there are large fields where mathematics is more often illegally than le- 
gally applied. 

5. Dealing with one’s own activity as a subject matter of refection in order to 
reach a higher level. 

Ostensive: 

Relative: 

Conventional variables: 
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CHAPTER 3 

THE LANDSCAPE OF MATHEMATICS EDUCATION 

3.1 THEORY OF MATHEMATICS EDUCATION 

The heading is wrong but I could contrive no better one. What is wrong is the 
word “theory” that -- used by so many people on so many occasions with so many 
different meanings -- needs circumstantial explanations that do not contribute 
factually much to our subject. I recently read a paper on theories of “theory” 
where the author claims: 

When a mathematics educator studies the effects of lax and restrictive learning envi- 
ronments on children of different anxiety levels, she presumably has a theory that re- 
lates achievement to both anxiety and the structure of the learning environment. Or, 
when a cognitive psychologist examines classification tasks in the learning of early 
number concepts, the psychologist most likely has a hunch as to how these tasks are 
related. Or, when a doctoral candidate designs an experiment in which children are 
taught several different problem solving heuristics, she presumably has a theory that 
predicts which of these treatments will be the most effective. 

The middle sentence attests a terminology where a “hunch” may have the status 
of a theory. Indeed, in colloquial language the word “theory” is occasionally used 
in this way, although under these circumstances most people would prefer the 
word “hypothesis”. However, this is only one extreme of a broad spectrum of 
meanings. The other extreme (which will be described in what follows) deserves 
a name as well, and I would not know any name for it if “theory” is used in too 
liberal a way. 

3.1.1 Theory 

1. Domains and theories 
People familiar with the terms and with the domains they cover will agree about 
number theory being a theory, and about distinguishing, if need be, between al- 
gebraic and analytic number theory. All the same, they might disagree about 
some concept or proposition, for instance, whether it falls under analytic number 
theory or under complex function theory. In fact, depending on the context in 
which it occurs it may be attributed to both of them. The infinity of the number 
sequence is neither a theory nor a hypothesis but a mere fact, which nevertheless 
may be the subject of sophisticated theories. The infinity of even or odd numbers 
is a fact as well, as is the existence of an infinite number of primes, which -- re- 
quiring a non-trivial proof -- has the status of a theorem in number theory. 
Neither mathematics nor physics nor chemistry nor biology are theories, al- 
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though there are a great many -- sometimes competing -- mathematical, physical, 
chemical, biological theories, that cover various domains and sub-domains of 
these sciences or deal with their foundations. Mechanics is not a theory but Gal- 
ilei-Newton mechanics is, as are the theories of elasticity, relativity, and quantum 
mechanics. Originally, biological evolution was not a theory but a mere tool for 
organising fossil evidence, which proved successful long before the discovery of 
evolutionary mechanisms. On the other hand, almost from the onset, astronomic 
evolution has been a theory. 
History is, of course, no theory. Historiography, rather than being a theory, is the 
technology of historical research. There have been attempts to develop theories 
on history. “History does not repeat itself” is a theoretical statement on history, 
as is “History does repeat itself but then as a farce” (Hegel). Although theories 
on history are more sophisticated than such statements, I doubt whether they have 
been more successful. Or, in other words, they were topical as long as they did 
not have the time to outlive themselves. 
Language, or any particular language, is of course no theory, but there are a great 
many theories on various aspects of language and of particular languages, that is, 
on origins, structures, recording and social functions, interrelatedness, artificial- 
ity, and so on. 
Economy is no theory, though economics includes a large number of -- compet- 
ing -- theories. Strangely enough “education” is used in both ways, like “econo- 
my” as well as like “economics”. Rather than interpreting this twin use as a tes- 
timony to integration, I see it as evidence of a shortage of relations between them. 

2. “Theory versus practice” 
The saying “that’s mere theory yet practice is different” may mean various 
things. It may be used if an actual state of affairs does not match the one reported 
on or desired, or if some tool or recipe does not work the way it was told or ex- 
pected to. Pure theories are descriptive rather than normative, even though they 
might have been created under the influence of norms or with a view to establish- 
ing norms, and even in spite of a virtual interrelatedness between norm and de- 
scription. For instance, the all-embracing aristotelian-scholastic theory of poten- 
tia and actus, which arose from opposing female passivity to male activity, was 
both the result and the cause of social and sexual norms, although it was formu- 
lated to be understood as part of an ontology, that is, as a profound description of 
the way things are. 
The saying may as well be meant to express the more fundamental dissatisfaction 
about a theory or something like a theory that does not really apply. This can 
mean that it fails as a description of reality or that there is no reality at all to which 
it can be tied. In this case, the theoretician is very likely to charge the complaining 
practitioner with the crime of the so-called confusion of reality and (descriptive) 
model (see [87]), which is simply a lame excuse. It can also mean that the theory 
does not provide such norms for judging or handling real situations as it seems to 
promise (or actually promises) under the title of (normative) models (see [87]). 
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The theoretician might then appeal to the restrictions inherent to the use of mod- 
els -- an apology that may be accepted provided there is any use at all for the mod- 
el in question. 

3. Pure versus applied -- descriptive versus normative 
Antinomies can be illuminating. Yet rather than pitting theory against practice, I 
would like to pit the desire for cognition and understanding against that for ac- 
tion and change, pitting pure against applied research, descriptive against nor- 
mative models. To be sure, the interaction between them may be more frequent 
and fruitful than their contrast. Chapter 1 of the present book was written under 
the first aspect, chapter 2 under the second, but the result was not a clean separa- 
tion. Items such as mathematising, mathematics as an activity, mathematics in a 
context can be introduced as descriptive, pure concepts, even though they were 
created with application= in mind, in particular in education. Levels are descrip- 
tive structural features of learning processes, which are meaningful only from a 
particular didactical point of view. 
In (1.1) I signalled the difference between shades of meaning of the word “arts” 
in “arts and sciences” and “arts and crafts”. From the performer’s perspective, 
“arts” in the two pairs is interrelated, as are “artist” and “artisan”. If an integrating 
rather than differentiating term is desired, one may choose the word technique, 
as performed by technicians, which is derived from the Greek techne for art. Then 
the interaction between what was announced as opposites is known as technolo- 
gy. 
Education is a technique, and so is mathematics education. A teacher is a techni- 
cian, as is an engineer, a medical doctor, a lawyer, a clergyman, a social worker. 
They depend on more or less advanced technologies, which in character extend 
across the entire range from the mere mastery of a professional language to ap 
plications of hard science. In [87] I discussed this and many other related ideas 
in abundant detail, and with as much sophistication as I was able to produce, so 
I am wary of repeating myself, even in paraphrases, which I am afraid would not 
be any better or more convincing than the original. I didn’t even get the opportu- 
nity to defend my ideas since they were, as far as I know, never questioned. Far 
from believing that any of them was accepted, I even wonder whether they have 
been noticed at all -- silence does not imply consent29. 

4. Theorising 
The question that should occupy us here is not whether and under which condi- 
tions or circumstances a theory might be true or applicable. We should instead be 
concerned with the ill-founded belief that mere theorising in itself, if profound 
enough, produces theory. As valuable as theoretical statements and conceptual 
tools may be, they do not necessarily, even though assembled to form an exten- 
sive collection, constitute what to my mind what is worth being called a theory. 
As I see it, a theory should pursue understanding in a reasonably well-defined do- 
main, the extent of which does not matter much. It should do so in a reasonably 
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coherent and consistent way, and it should in principle provide its adepts with 
guidelines on how to tackle questions, relevant to that domain, and how to answer 
them with unequivocal explanations or by proposing appropriate instruments for 
action. 
This restrictive definition does not intend to underestimate the merits of theoris- 
ing, which I admitted may be the source of valuable theoretical statements and 
conceptual tools. But by granting more latitude I would then lack a term for what, 
in my eyes, is a full-grown theory. Indeed, much of what now rightly claims the 
status of a theory was for long periods no more than a collection of theoretical 
statements and conceptual tools, which in the course of time or by some lucky 
stroke was eventually forged into a theory. 
This statement is relevant to our general theme in so far as education, and math- 
ematics education, in particular, is a field of extensive and intensive theorising. 
The preceding chapters are an example. They display more conceptual tools than 
would be sensible to enumerate here, such as phenomenological approach, math- 
ematising with all its aspects, context, guided reinvention, levels in learning proc- 
esses, paradigm, reflection, insight, prospective and retrospective learning, inter- 
twining learning strands, mathematical attitude, and many more. All the same, I 
would not dare to claim that all together they constitute a theory. 
After writing the last paragraph I happened to remember a dozen occurrences -- 
even in the plural -- of “learning level theory” in 2.3.2. I could plead that these 
occurred in a context dating from more than a quarter of a century ago, while, in 
the mean time my way of using “theory” has changed. I cannot exclude the last 
possibility. Indeed, the lavish use of the term, in particular in education, might 
have aroused an increasing suspicion with regard to the prevailing pretensions, 
or at least doubts about its suitability; so I may have become more demanding in 
granting something the status of a theory. 
Yet this does not discharge me from the obligation to check whether learning lev- 
el theory is, indeed theory in the restricted sense proposed. My answer is: yes, it 
is. And although this answer may extend to other items mentioned in the same 
context, which I did not label as theories, but I am wary of checking it. What I 
actually denied was that they together constitute a theory of mathematics educa- 
tion, and I would now add: not even together with other conceptual tools that I 
dealt with in the past and did not recapitulate here (see, for instance [87, 

The fact that, with regard to theorising in education, I focused too sharply on my 
own results deserves an apology and an explanation: I am not nearly as well-ac- 
quainted with other people’s work as I am with my own. But it seems to me that 
I am not the only one who has lost his grasp on the abundant literature, although 
I guess that on closer inspection (if this is possible) one would find less diversity 
in results than in terminology. Long lists of references can be misleading. Theo- 
reticians are isolated or restricted to small groups where each understands the 
other; once or twice a year they meet in larger settings, but continue to speak only 
their own theoretical idiom. 

Chap.IV]). 
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Let us resume this question later on! 

3.1.2 Theoretic frameworks 

I should confess that I don’t feel at all happy with the gulf I created between what 
I called results of theorising (such as theoretical statements and conceptual tools) 
and theory proper. Theorising is organising fields of experience, and the result of 
this organisation, unlike a heap of sand, will be gifted with a structure, thanks to 
its origin in connected experiences and the processing that took place when they 
were organised. 
The term I propose to bridge the gulf is: Theoretic framework. I took the from 
Treffers, who indeed uncovered and analysed frameworks of various educational 
theories7. I will use the term here in a broader sense, that is, by also applying it to 
models of educational practice, such as those exhibited by textbook series or by 
products of experimental educational development, as well as by less formal 
classroom practice. 
Indeed, there can be little doubt about the theorising origin of models of mathe- 
matical instruction. From the outset they must have been framed, consciously or 
unconsciously, by cogitation, reflection and argumentation. If need be, such 
framework can be uncovered by interviewing the authors or by analysing their 
production. Besides and beyond this, theoretic framework can be designed ra- 
tionally beforehand in order to be realised by models of instruction, but most of- 
ten the frameworks will be shaped in an incessant interaction with the matter to 
be framed. Their relation is comparable to that between form and content or be- 
tween theoretically essential and accidental properties. 
Indeed, in any model of instruction we will notice pieces that are less essential 
than others, and which may be replaced by ones which are somehow equivalent. 
How far can we go with substituting and rearranging, while at the same time re- 
specting the spirit of the model? What do the eventual pièces de résistance look 
like? The answer to this question is an a posteriori definition of what I mean by 
theoretic framework. 
If I am asked an a priori definition of theoretic framework I would say it is a more 
or less connected set of theoretic statements and conceptual tools, obtained by 
theorising (and maybe even including mini-theories), and reflecting the essentials 
of an actual or imagined instructional system in a way that allows the expert read- 
er a reasonably faithful reconstruction. (In order to match the case in which Tref- 
fers used it, one has to replace “system” with “theory” in the last sentence.) 
“Theoretic framework” is a weaker notion than is “theory”. On the other hand, 
by its mere definition, it is bound more tightly to educational practice, which fact 
need not be a drawback. As a consequence, by the first token, it applies more 
broadly and by the second more narrowly than does “theory”. Goal description, 
when extended to all its dimensions (as understood by Treffers7) certainly match- 
es my definition, although the expert reader can be satisfied with less detail than 
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the novice. (By an expert reader I mean someone familiar with the theoretic back- 
ground, for instance, thanks to familiarity with the framework of the underlying 
theory.) 

3.1.3 Background Philosophy 

The first question I asked in [87] was: What is science? I tried to answer it some- 
how by means of certain necessary criteria (relevance, consistency, publicity), 
but otherwise I didn’t do much more than to oppose science to -- among others - 
- technique and faith, without involving any comparative appreciation. I could 
not, nor would I, restrict “technique” (or “practice” as I called it occasionally) to 
inanimate nature. Since, together with biotechnique, I had to include medical 
practice, I saw no reason why the term “technique” should not be applied to the 
practice of teachers and other practitioners, those of the so-called humanities not 
excluded. 
Until quite recently, almost all technique was practised with no technological 
support at all, or supported at most by some technology that for its part lacked 
significant scientific support. This still holds for many techniques, in particular 
for that of education and instruction -- a statement that again does not mean to 
suggest any kind of appreciation. 
In the past, even up to modern times, much of what is now called science, was 
part of philosophy -- just think of Newton’s Philosphiae Naturalis Principia 
Mathematica, published by the Royal Society, whose fellows called themselves 
philosophers. Step by step this all-comprehensive science has “de-umbilicated” 
the present specialised sciences -- to use a suggestive term of O. von Neurath’s - 
- but even today a great deal of what claims the name of science for itself still 
dwells in the womb of philosophy. I didn’t make this statement as a gesture of 
condescension. On the contrary, what I called background philosophy in [87] (or 
else ideology) is indispensable as the rationalisation of a faith that in turn com- 
prises the faithful one’s picture of world, man and society. It is indispensable, not 
only to any technique and wherever philosophy decides (implicitly or explicitly) 
on the choice of technical tools and objectives, but also in “pure” science with its 
rich choice of goals and methodology. 
Did I start my exposition too far from mathematics and mathematics education? 
Shouldn’t I speak rather more specifically about the picture of mathematics and 
mathematics education? In a sense this is true, since this is my proper aim. Yet 
more things taught than just mathematics, and in this totality, pictures of subject 
areas and their instruction are somehow related to each other by their relation to 
pictures of world, man and society. 
For any picture of mathematics and mathematics education one has in mind, it is 
important where one localises mathematics -- inside or outside the world, brack- 
eted or out of brackets, within brackets that close and open more or less easily. 
The values attributed to learners as humans determine the ways that they are ex- 
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pected to acquire their mathematics, how freely or slavishly, under guidance or 
bridled. They all determine the manner in which one thinks mathematics can con- 
tribute to the mutual benefits expected by society and its members from one an- 
other, and they depend, at least partially, on one’s picture of society and its inher- 
ent hierarchy. 
Do not misunderstand me! I say “picture of society” rather than merely “society”. 
In primitive societies -- as well as in “primitivising” ones (Freyre, Mellin-Olson) 
-- “society” and “picture of society” coincide, as they do with the picture of world 
and man. In our society, a broad spectrum extends between the naive and the uto- 
pian picture of society, and even “realistic” ones can differ widely from each oth- 
er. 

3.1.4 Pictures of mathematics and mathematics education 

Yet the picture of mathematics also influences that of mathematics education. in 
a direct way. Whoever cherishes a picture of mathematics outside the world -- a 
deductive system or a catalogue of formula -- is likely to systematise or to inter- 
pret mathematics instruction in the Same spirit. On the other hand, whoever ex- 
periences mathematics something in the making, vibrating under the impulses of 
world and society, will be inclined to teach it in the same way -- directly or as an 
educational developer. There is little need to refer to literature that shows this 
correlation, between the personal characteristics of teachers; but it is perhaps 
worthwhile recalling something of a more historic-anecdotal character. It is even 
great history I am referring to. The colloquium (Melun, 1952)², which was crucial 
on the one hand, for the development of mathematics education in the sixties and 
seventies, and on the other hand, significant for Piaget’s first meeting and con- 
frontation with Bourbaki, personified there by Dieudonné. At his colloquium, 
E.W.Beth claimed -- with far-reaching consequences for the future of mathemat- 
ics education -- that 

Le rôle de la formation mathématique dans l’enseignement secondaire consiste 
presque exclusivement, me paraît-il, à familiariser les élèves avec la méthode déduc- 
tive. 

Although this claim was disputed by no one -- implicitly or explicitly -- it nicely 
characterises the logician Beth -- the only thing that interested him about mathe- 
matics was its deductive system. Dieudonné, on the other hand, confronted the 
much more encompassing mathematics, exercised and represented by him, with 
traditional instruction, which, in his eyes, had run aground due to its lack of de- 
ductivity (in particular in geometry -- à bas Euclide!). New shipwrecks could be 
avoided, provided one trusted older and wiser people who have explored the 
world to the benefit of the young, and used Bourbaki’s compass to sail from the 
poor to the rich structures; many believed this along with Dieudonné. 
With the claim quoted above, E.W.Beth only followed his father H.J.E.Beth, 
who, as a designer of a new mathematics programme, had declared (text30 trans- 
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lated): 

It is the main objective of mathematics education to contribute to mental culture and 
development; transferring useful knowledge is a secondary objective. 

In the 19th century (and even before that in The Netherlands) the formal value of 
mathematics learning was claimed by preference by “modern” schools in their 
competition with grammar schools where Latin enjoyed a similar reputation. I 
cite here the formal value of mathematics as an instance of a faith that usurped 
the state of a theory, while in fact being a hypocrisy. Only a few people dared to 
unmask it as such -- teachers as well as research mathematicians like D.van Dan- 
tzig as is shown by the mere title of one of his articles31 (translated) ‘The social 
value of mathematics instruction”, which at that time (1925) was disregarded if 
not considered an insult. 
All my life I have fought this faith in the formal value of mathematics, only -- I 
confess -- to convert to in the end, although (and this is my excuse) with in mind 
another kind of mathematics instruction, which has its roots in the most recent 
past and where deductivity is assigned the place it rightly deserves. 
I called it a conversion, and this is no metaphoric language, because it happened 
in the sphere of faith, where the picture of mathematics is framed by the picture 
of the world, the picture of the mathematician by the picture of man, and the pic- 
ture of mathematics education by that of society. 
Pictures of mathematics education are made explicit and rationalised by frame- 
works. Later on (3.1.6), I shall discuss how they are related to background phi- 
losophies (3.1.3). Meanwhile, the question arises of whether designing mathe- 
matics instruction presupposes making a decision on a background philosophy. 
The answer is that it does not. Everything can remain implicit: it is a faith that is 
not being rationalised. On the other hand, the relation between a theoretic frame- 
work of mathematics education and the philosophy behind it now looks much 
closer. But beyond it one can imagine theory (or metatheory) charged with the 
task of relating theoretic frameworks of mathematics education to background 
philosophies. An excellent starting point here is Treffers’ classification7. 

3.1.5 Classifying mathematics education 

I never did like classifying, and I still distrust it for what I consider are sound rea- 
sons: I suspect it as both too easy an approach to problems and as too low a bid 
to buy scientific respectability. In (1.3) I explained my former resistance to Tref- 
fers’ distinction of horizontal and vertical mathematisation. Eventually I did ac- 
cept it as an effective tool to characterise various kinds of mathematics education. 
The present section shall be concerned with this subject. 
Treffers’7 four types of mathematics education are distinguished by a double di- 
chotomy with regard to horizontal and vertical mathematisation: presence or ab- 
sence of one or both of these characteristics in the intended learning processes. 
The unconditional “yes or no” predicts the emergence of ideal types, created with 
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a view to global orientation, yet accessible to refinement, depending on the de- 
gree to which the yes-no contrasts are toned down Treffers applied his classifica- 
tion to primary mathematics education, but this is in principle no restriction. 
The lack of horizontal mathematising characterises mechanistic and structuralist 
instruction: in the first case even the vertical component is lacking, whereas in 
the second it is in fact cultivated. Horizontal mathematising is fostered in the em- 
piristic and the realistic approach, in which the former neglects the vertical com- 
ponent and the latter does full justice in the second kind. Seen in a table: 

Fig. 15 

Let me illustrate this classification by a somewhat anecdotal report [176,180], a 
German educational tragedy, as it were: 
Lisa Hefendehl-Hebeker32 tells about a fifth-grader who could not answer the 
problem 
Why is 4 < 9 ? Give three arguments! 
and the child’s desperate family that, equally unable to do it, made an appeal to 
her as a mathematics education expert. By looking for the context, that is, the 
homework in which this problem was one item, she succeeded in suggesting 
three possible arguments, such as “because in the number sequence 4 precedes 
9”, “because on the numberline 4 is to the left of 9”, “because the 4-arrow is 
shorter than the 9-arrow”. One could also have suggested such answers as “be- 
cause 9 > 4”, “because 4 < 5 and 5 < 9”, “because 9 = 4 + 5”, “because 9 - 4 > 0”, 
though it is unlikely that these would have been accepted by the teacher. 
Let me remark that, in German, the <-symbol in “4 < 9” is read as what corre- 
sponds to “smaller than”. So a smart pupil could have objected that both figures 
are equally large. I mention this in order to point out that all three symbols mean 
something, and in order to know what they mean one has to consult the context, 
which is indeed what Lisa Hefendehl-Hebeker did. 
What has this to do with classifying mathematics education? 
Well, neither the mechanist nor the empirist would ask such a “why”, whereas 
the structuralist and the realist possibly would. The teacher who set the problem 
was obviously a structuralist; the answers as reconstructed match this view. The 
empirist and the realist would notice that 4 and 9 belong to the vernacular as do, 
say, 4 marbles and 9 marbles, 4 florins and 9 florins, 4 kg and 9 kg, 4 hours and 
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9 hours, 4 floors and 9 floors, 4 metres and 9 metres, and then, depending on the 
context, “4 < 9” can mean that 4 marbles are less than 9,4 florins is cheaper than 
9 florins, 4 kg lighter than 9 kg, 4 hours shorter than 9,4 years younger than 9,4 
floors lower than 9 floors, 4 metres shorter, smaller, shallower than 9 metres. 
Mathematics taught and exercised in rich contexts would provide for all of these, 
and many more, comparatives, and realistic mathematics instruction, as opposed 
to the empiristic version, would account for their isomorphism by vertical math- 
ematising. Then a question like “Why is 4 < 9?” may validly be answered by “be- 
cause 4 marbles are less than 9”, 4 florins is cheaper than 9 florins, “4 kg is lighter 
than 9 kg”, which would already be three arguments out of many more possible 
ones. 
Due to its rough schematism Treffers’ classification applies to theoretic frame- 
works rather than to theories. The latter should be uncovered by more profound 
search in actual instructional systems if they are not presented in detail by the de- 
signers themselves. Moreover, this classification describes ideal types. In text- 
books of the mechanistic trend, which boast a long tradition in teaching arithme- 
tic, concepts and operations may in some way be related to reality but this usually 
happens in a way that neither teacher nor learner are likely to take seriously. It is 
often an intellectual alibi for the developer’s or the teacher’s conscience, a misty 
cloud veiling an ideology, which in spite of its venerable age can best be de- 
scribed by a modem metaphor. This I will do in the next sub-section32. 
Meanwhile, let me add an indispensable remark. In Treffers’ double dichotomy 
it pays to replace “mathematising” with “didactising” in order to characterise 
styles of teaching mathematical didactics (rather than mathematics), which hap- 
pens, among other places, in teacher training and retraining. Philosophies of 
mathematics education should be judged according to both interpretations. This 
is not at all a triviality. More than once I have read and heard proponents of real- 
istic mathematics trying to implement their ideas in a way that, didactically 
viewed, appeared to be mechanistic-structuralist rather than realistic. The didac- 
tical attitude was not matched by its mathematical counterpart. 

3.1.6 Philosophies of mathematics education 

1. Mechanistic 
According to the mechanistic philosophy man is a computer-like instrument, that 
can be programmed by drill to perform, on the lowest level, arithmetic and alge- 
braic, maybe even geometric operations, and to solve applied problems, distin- 
guished by recognisable patterns and processed by repeatable ones. This, then, is 
the lowest level, where man is placed within a hierarchy of ever more skilful 
computers, which are related to one another as are programmers and programmed 
subjects. Skinner has forcefully propagated this kind of human society. New 
prospects have now been opened for this ideology by computer controlled in- 
struction. There are, however, good reasons to ask its proponents why people 
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should be educated to perform tasks on a level where, by many orders of magni- 
tude, computers are faster, cheaper, and more reliable than humans. 
2. Structuralist 
The structuralist view is also historically rooted, in particular in the traditional 
teaching of geometry. A well-structured system of mathematics or a mathemati- 
cal domain shall be taught. It is a human right and dignity to learn by insight and 
understanding and as a rational being he is judged able to perform deductions 
more efficiently the more systematically the subject matter is structured. In the 
ideal case, however, of the socratic method he needs the midwife who delivers 
him of his mathematical ideas -- Socrates says explicitly about the slave, “you see 
he has expressed nothing but his own opinion”. This, then, was mere “theory” 
since, in (Socrates’ and) the classroom’s practice, the learner was expected to 
obediently repeat the master’s deductions. In order to check the quality of the rep- 
etition -- whether it was mere parroting or full of insight -- problems were set, 
which in turn were deactivated by drill. In the nineteen sixties and seventies of 
our century, under the name of New Math, the structuralist view was advertised 
and propagated. Yet it became soon clear that this wrong perspective -- from the 
poorer to the richer structures -- was an obstacle to any kind of genuine mathe- 
matising. On behalf of the prestructured mathematics to be taught, a correspond- 
ingly structured world was invented of Venn diagrams, arrow schemes, “games” 
and so on, to be mathematised by the learner. This was, indeed, a kind of hori- 
zontally mathematising activity, yet it started from an ad hoc created world, 
which had nothing in common with the learner’s living world. It was mathemat- 
ics taught in the ivory tower of the rational individual, far from world and society. 
3. Empiristic 
To the empirist the world is a reality, where man can acquire useful experiences 
-- a respectable point of view provided reality and usefulness are broad-mindedly 
interpreted. Empirism is deeply rooted in English utilitarian education. Provided 
with material from their living world, learners get the opportunity to acquire use- 
ful experiences, but they are not prompted to systematise and rationalise these ex- 
periences in order to break the barriers of the environment and to expand the re- 
ality they are familiar with. This matches the picture of a society stratified into 
layers that correspond to separate realities. 
4. Realistic 
In realistic instruction the learner is given tasks that proceed from reality, that is, 
from within the learner’s ever expanding living world, which in the first instance 
require horizontal mathematising. The individual’s and the group’s progress in 
the learning process -- how far and how fast -- determine the spectrum of differ- 
entiation of learning output and the position of the individual learner therein. One 
example: If, in the course of progressive algorithmising, column multiplication is 
first carried out as successive addition, in order to gradually be shortened (by us- 
ing the tables of multiplication and the positional system), individual learners-- 
in the social context perhaps the whole group --- will eventually acquire the 
standard algorithm. In the case of long division, the learning output of progres- 
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sive algorithmising may be more differentiated -- an unavoidable differentiation, 
which nonetheless deserves a positive qualification. 
The realistic picture of mathematics fits without brackets into the world picture. 
The picture of man is that of the reinventor, who is stimulated to put his abilities 
to good use. The corresponding society is differentiated continuously, rather than 
by artificial layers. 

3.1.7 Use of the classification 

Two criteria have been singled out for the design and the analysis of mathematics 
education: horizontal and vertical mathematisation. There are many more. The 
choice of these two criteria may be justified by their relevance to background phi- 
losophies. It may be useful both for creators and reviewers of instruction to local- 
ise instructional creations within a non-trivial scheme. This may help creators to 
better understand themselves, and reviewers to more easily examine explicit or 
implicit pretensions of the creators. Whatever the objections may be to compar- 
ing instructional creations that start from different didactical -- and, basically, 
philosophical -- principles, they do not affect the submission of each of them to 
the test of their own principles. Wherever in the past the mechanistic view pre- 
vailed, textbook authors often pleased themselves by embellishing their produc- 
tion -- implicitly or explicitly -- with realistic or structuralist touches, and the 
same is likely to happen in the future as a defence of mechanism against a realis- 
tic trend that is gaining momentum. The classification can prevent educational 
developers from misleading themselves and others. 

3.1.8 A matter of faith 

We put forth a theory that relates kinds of mathematics education to philosophies. 
It is determined by the theoretical tool of (horizontal and vertical) mathematising 
and thus presupposes faith in (guided) reinvention. It is open to anybody to brand 
this faith as “irrealistic”: “Where in the world are those reinventors and those who 
are able and willing to guide them?” “How well-founded is this faith?” Answer- 
ing such questions is not easy. In matters of faith tolerance is becoming. If some- 
body believes in the hierarchical society of programmable human computers, that 
is his business, although of course tolerance does not extend to incorrect compu- 
ter programmes. 
Detecting errors in computer programs is no great feat, but it is quite another 
thing to evaluate instruction without any regard for its own basic principles. How 
to test whether one kind of instruction is better than another? Instruction serves 
goals. But what to do if the goals are formulated in terms of a philosophy, thereby 
being a matter of faith? Isn’t it a vicious circle? No, it is not if the testing criteria 
are given together with the -- implicit or explicit --‘objectives of the instruction. 
Sometimes they are, that is, with respect to the short-term objectives, where, in 
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the most favourable case, the term may extend up to graduation. 
Is there any way to at least compare the quality of various instructional systems 
under these favourable circumstances? Given an instructional system, collect all 
those exam items which are judged representative for it, each with its weight 
within the system; in order to compare two of them, form their intersection and 
put it to the test! For the higher levels and with regard to the mechanistic and re- 
alistic approach, one can safely predict that this intersection will be almost empty 
or at least negligible if compared with the remainder, and one can do so with even 
more certainty if the main goal of the realistic instruction is learning to mathema- 
tise. At lower levels, in particular if one restricts oneself to pure and applied ele- 
mentary arithmetic, the intersection might still be considerable and accessible to 
empirical comparison. 
Although some of the research carried out in my country seems to strongly sug- 
gest the superiority of the realistic view, I am still cautious of generalising its con- 
clusions. In one case9 a small sample of classes and schools adhering to the real- 
istic style were compared with those of other styles (or with the average of that 
half of schools which were taking a nation-wide test). Meanwhile, a large scale 
investigation33 took place, which also suggested the superiority of the realistic 
style. Unfortunately, because of flaws in the provisional report I must postpone 
my final conclusion. Yet this is not what matters. 
Realistic textbook series for primary education, patterned on the Wiskobas mod- 
el10 11, are a relatively recent feature in my country; they are supported by a ma- 
jority of educationalists. Realistic textbooks are gradually beginning to supplant 
older ones; and it is not far-fetched to assume that this process started at “better” 
schools and gradually began to affect more schools in an order corresponding to 
their quality. At present, somewhat more than 50% of the schools use realistic 
textbooks. If, in the course of this process of substitution, low-quality schools get 
involved, the trend that now seems to prove the superiority of the realistic style 
may become reversed -- a similar phenomenon has been observed in Hungary34. 
In the last paragraph I spoke about good and bad schools. This I did for simplic- 
ity’s sake. I was not referring to their overall quality but to the measure in which 
schools that switch textbooks -- in the present case most often from mechanistic 
to realistic -- are prepared to correspondingly switch philosophies and teaching 
habits. Indeed, one does not automatically imply the other. Working with realistic 
textbooks in the mechanistic instructional style to, which one is accustomed may 
even make things worse; in fact, this may explain the failures as mentioned 
above. 
We shall deal with implementation in due course: rather than selling textbooks, 
one has to sell a faith. 

3.1.9 Learning theories and philosophies 

Let me first remind the reader that learning theory is meant as shorthand for 



138 CHAPTER 3 

teaching/learning theory or instruction theory, which, for the moment, will in- 
clude theoretic frameworks. 
There are a great many general learning theories, where, according to the authors, 
‘‘general’’ means subject-area-independent; only as means or domain of exempli- 
fication and concretisation do subject areas -- by preference, mathematics, or 
what generalists consider to be mathematics - come into play. Usually the view 
is even held that the general learning theory leaves no room left for learning the- 
ories specific to any subject areas, other than those derived from the general one. 
I strongly distrust general learning theories, even if their validity is restricted to 
the cognitive domain. Mathematics is different -- as I emphasised before -- and 
one of the consequences is that there is no didactical analogue to guided reinven- 
tion in other fields. I don’t know about learning theories for other areas. I can im- 
agine some general learning theory derived from learning theories specific to a 
variety of subject areas. This inductive process is primarily the one by which new 
theoretical knowledge arises, rather than the other way around in a pseudo-de- 
ductive way. 
As I have emphasised repeatedly, I am allergic to armchair hierarchies of phases, 
stages, types, levels, and so on, often illustrated by examples from mathematics 
instruction. Very few of them have ever been properly and successfully applied 
or empirically corroborated. In [87] I analysed the only one I knew at that time to 
have been put to the test by its author (or perhaps by his ignorant assistants). It 
was a most amusing job. Unfortunately, more an more textbook series and mod- 
els of instruction are allegedly being based on such theories, which are arbitrarily 
interpreted in order to eventually be degraded to a kind of billboards. Treffers7 

more patiently analysed such general learning theories and convincingly showed 
how to justify any kind of mathematics instruction -- I mean each of the four 
styles -- by each of those general learning theories. Maybe one can also do the 
converse: justifying any general learning theory by any kind of mathematical in- 
struction. 
A particularly striking example is Piagetian instruction. In his early work17 22 “Pi- 
aget developed an empirically based descriptive learning theory, which has hard- 
ly received any notice17 -- it seems that he himself even forgot about it. A great 
many normative theories and practices claim the label “piagetian”, although it 
Seems to me that they have borrowed words rather than ideas from Piaget, by 
preference terms like operation35 

As promised in the heading, I will focus on the philosophical background of a few 
learning theories. 

3.1.9.1 Gal’perin, and materialism 

1. Gal’perin’s levels 
The levels distinguished by Gal’perin36 in any learning process are 

familiarisation with the task and its conditions, 



THE LANDSCAPE OF MATHEMATICS EDUCATION 

an act based on material objects, or their material representations or signs, 
an act based on audible speech without direct support from objects, 
an act involving external speech to oneself (with output only of the result of 
each operation), 
an act using internal speech. 

139 

“These levels indicate the basic transformation of an act as it becomes mental.” 
The terms require some explanations, which are easily extracted from Gal’per- 
in’s exposition (a few ambiguities may be ascribed to the translator). Western in- 
struction designers who base their work on Gal’perin usually describe his hierar- 
chy as follows: 

orientation basis, 
material act, 
verbal act, 
mental act, 

which in no way does justice to Gal’perin’s intention. 
The philosophical materialism behind Gal’perin’s level structure of the learning 
process is unmistakable, or so it seems to me. But is it as operational as it looks? 
“Material act” -- as it is called by Gal’perin’s followers -- evokes associations 
with manipulability as a way (particularly in arithmetic) to start with concrete, 
that is solid, material, which today is available in a great variety, indeed. If Gal’p- 
erin was aware of any of this material at all, he must have considered it irrelevant. 
It is clear from his description that material or -- as he later says -- materialised 
has a much broader -- or even quite different -- meaning from palpability. As em- 
phasised once more later on36, p. 253, he also admits -- or even prefers -- material 
representations or signs, which he equates straightforwardly with materials. To 
state this in the extreme, a tree the child can touch, a picture of a tree recognisable 
as such to the child, the printed word “tree” as soon as the child can read, a printed 
definition of “tree” as soon as the child can understand it, all belong to the same 
learning level (albeit in different learning processes), but as soon as they are 
voiced audibly or inaudibly or internally, they belong to the next levels, respec- 
tively, in the corresponding learning processes. 
In the same way is “verbal act” a misleading reproduction of Gal’perin’s inten- 
tion. According to Gal’perin, written or printed material is as “materialised” as 
are pictures. What matters at the third and fourth level is speech (to others or to 
oneself), and at the fifth its elimination. (This interpretation is confirmed by38, 

Although this sounds mad, it is absolutely rational and intelligible, as I will 
promptly explain. In order to understand it, one has only to forget about one’s 
own ideas on learning. The impression of madness is due to the extreme example 
of “tree”, which doesn’t fit in this context. The context that fits is that of teaching 
arithmetic, in particular column arithmetic, which becomes clear from the one 
example that has been elaborated in detail36, p. 270-273. Or, more precisely, So- 
viet instruction of arithmetic as it was familiar to Gal’perin at the time he applied 
his psychological ideas and wrote the article we are concerned with. Middle-aged 

1977, p. 33-38.) 
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readers in more Western countries will perhaps be able to relate column arithme- 
tic as they learned it themselves, to this frame -- it is a kind of instruction that is 
likely to have become obsolete much earlier in Western countries than in the So- 
viet Union, where it is now equally outdated, or so I think. The wine of gradually 
renewed instruction had better not be bottled in a dated learning theory, unless 
the “bottle” is adapted to the new contents, which implies a preposterous use of 
the original label if it should happen. 
“Dated” is not meant to blame Gal’perin. As a psychologist, he registered and an- 
alysed the then prevailing instruction, and did so carefully and not bent on edu- 
cational additions and ambitions. Maybe he emphasised the level structure that 
resulted from his analysis too strongly, and extended it too widely, but if some- 
body is to be blamed for this, then it is rather those who believe that such level 
structure is suitable to frame instruction of a quite different character. 

2. Gal’perin, and initial arithmetic 
Let us consider initial arithmetic as framed by Gal’perin’s levels! From the very 
start “material” means quite another thing than what is available as such in our 
classrooms. The “orientation base for action” in “abstract counting” (without 
numbers) is an instruction card with stairs picturing piles of an increasing 
number of objects, and the instruction: 

“Next number’’ means “one more object than on the pile shown”! 
“Preceding number” means “one less object than on the pile shown”! 

(Notice that the number of objects on the pile “far exceeds the arithmetical 
knowledge” of the pupil!) 
At any assignment the pupil first consults the instruction card in order to fulfil the 
task, which, when this is done, is materialised action. Then the card is turned 
over and eventually removed, in order to have the pupil repeat the task interpre- 
tation orally while fulfilling it, which is the vocalised form of action. Then the 
pupil is asked to “solve the problem silently, reporting only the result”, which is 
action at the intellectual level. 
This is to say that, after the instruction “name the next (preceding) number”, the 
pupil acting at the materialised level reads the card and points to the next higher 
(lower) pile (or does the whole class do so in unison?); at the level of audible 
speech, he does so without consulting the card; next he acts the same way while 
whispering before pointing, and finally he points immediately to the “number” 
asked for. 
It becomes clear from the above that, rather than referring to piles of objects, 

Gal’perin’s “material” refers to instruction cards. This is confirmed by the next 
example. 

3. Gal’perin, and column arithmetic 
Here the procedure looks somewhat different. One might expect that the way of 
using an instruction card would be again articulated according to the four stages 
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from “materialised” to “mentalised”, but things have now become complicated 
by a gradual transformation of the card itself. After a start restricted to two-digit 
numbers, the pupil gets a sheet of paper divided into columns to learn numbering, 
addition and 

Fig. 16 

subtraction. He also has small ready-made numerals at his disposal, which, when 
placed in the columns, create numbers to be read or formed, added and subtracted 
by the pupil. After the orientation basis has been laid he enters the stage of the 
materialised action. 
Next, the verbal descriptions are removed from the triple columns while the pu- 
pils still have to pronounce them. Then the thick lines are replaced by thin ones. In 
the next step, the figures above the columns disappear, while still being pro- 
nounced by the pupils. One step further, the horizontal lines are also removed, 
and eventually the entire grid disappears; the ready-made numbers are laid out on 
the table or else corresponding digits are recorded directly in the notebook but vo- 
calisation of numbers and operations is still maintained. Here the audible stage 
ends, and that of external speech to oneself begins, from which, finally, that of 
mental action takes over. 

4. Gal’perin, and geometry 
Gal’perin’s interpretation of “material” also extends to teaching geometry37. It is 
the most traditional and the barest form of concept formation: reading and learn- 
ing to apply definitions, such as those of straight line, angle, bisector. The GDR’s 
Lompscher38 has described this kind of instruction which is aiming at concept at- 
tainment. Although the example set forth in37 reminds one of a catechism rather 
than of geometry instruction, our point is how it fits into Gal’perin’s hierarchy, 
rather than its intrinsic quality. 
In this type of geometry instruction, geometrical figures don’t play any signifi- 
cant part as a material element. The materialised level is represented by written 
or printed orientation cards that disclose the various definitions of geometrical 
objects. With these instructions before their eyes the pupils have to decide wheth- 
er something is a straight line, an angle, a bisector, and so on. At the next level 
they must answer such questions without using the cards, while reciting aloud the 
defining criteria. Via the stage of whispering the pupils arrive at that of directly 
announcing the result; only if need be -- for instance in testing - -are they to re- 
produce the definitions. 
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5. Gal’perin: conclusion 
Gal’perin’s learning theory distinguishes itself by the refined elaboration of all 
details by means of the given examples and by the straightforwardness of the in- 
tended learning process. Properly stated, it is a pure teaching theory, inspired by 
a kind of instruction that allows the learner no initiative. If Gal’perin starts his 
article, saying 

Our basic hypothesis is that the formation of mental acts passes through a series of 
stages. At each stage a given activity is carried out in a new form and undergoes 
changes in several directions. 

and subsequently specifies this, among others, by his stages or levels, he un- 
doubtedly has in his mind a certain instructional system in which his basic hy- 
pothesis can possibly be tested. Within the limits of this system such a model can 
be considered to be descriptive, but in a broader frame it is a quite restrictive nor- 
mative model. Could it have been more liberal than suggested by the above ex- 
amples? Probably not! To corroborate this judgment let me quote Gal’perin39 

himself: 

If, however, we reproduce the material activity systematically step by step, first in its 
verbal and thanks to it in its ideal form, we can keep supervising it, whereas in the case 
of ‘‘spontaneous” transition we don’t know what has happened nor how it did. As soon 
as we lose the command of the process, we can no longer understand it. 

Gal’perin’s main concern is the checkability of the learning process; which is 
considered to be mere interiorisation. What is the use of it and what can one ex- 
pect from it? The answer depends on one’s picture of mathematics and mathe- 
matics education, that is, on one’s philosophy. If it fits philosophical materialism 
at all, then it does so according to a strange interpretation of “material”, or so it 
seems to me. In Treffers’ classification, Gal’perin’s learning theory is an extreme 
example of mechanism. 
For justice’s sake, let me add that more recently Gal’perin’s level theory -- in par- 
ticular his strong insistence on the material and materialised level in the teaching 
process -- has experimentally and with great success been challenged, which in 
fact has happened in his own school40. 

3.1.9.2 Constructivism, and “Kant” 

-The plenary sessions of the PME-11 meeting41, Montreal 1987, were dedicated 
to constructivism. Through personal talks during the meeting and by afterwards 
studying the literature I tried to find out whether and in what respect “construc- 
tivism” were more than a new slogan. To no avail -- I must confess. What follows 
is the result of my analysis. 

1. Language 
There are words that can mean everything and its opposite. “Construction” is one 
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of them. This doesn’t matter as long as it has a clear meaning to whoever pro- 
nounces, writes, hears or reads it -- clear not in analytic isolation but in a clear 
context. For topical words one creates a fitting context for oneself, which is not 
bad as long as one is aware of this fact. What is bad, is being unaware of the need 
for a meaningful context, at least for the user, who risks being deemed a misuser. 
I don’t aspire to the office of linguistic judge, and even less of legislator. On the 
contrary, flexibility is a great virtue of language, and can hardly be overestimat- 
ed. pictorial and metaphorical language can enrich both language and thought. 
But flexibility does not mean weakness; pictures should be focused. 

2. Language: Construction. 
“Construction” was soon extended from the building trade to other manual work 
and to mental work as well. It even came to signify poor work: artificial, a mere 
construction. 
“Construction” presupposes a maker. Who has made it? The designer, the fore- 
man, the bricklayer slave, the drawing board slave, the assistant to the architect 
or the architect himself? 
“Constructing” rings like “creating”, and if this is no more than a ring, then re- 
construction is mere re-creation. But reconstructions can also be of greater value 
than constructions. For instance, efforts to reconstruct a dilapidated or destroyed 
building, or an obscure course of affairs can by far surpass the efforts that once 
were needed for the original construction. 
“Construction” does not reveal anything about the constructor’s own contribu- 
tion, nor does the finished product do so. The “Do it yourself” package contains 
every little part as well as directions on how to form the desired object. Only by 
reflecting on the own activity can the re-creator become a re-creator. If the direc- 
tions are missing, the reconstruction of a decomposed jigsaw puzzle can require 
more inventiveness than many constructions. 

3. Constructivism -- philosophically 
Is our world picture a picture of the world, and if so, how faithful is it to the orig- 
inal? Since olden times this question has been asked again and again. How many 
tricks does not Nature play on us, and is not Reason the means to unmask Illu- 
sion? But how reliable is Reason? How often has the lie not been given to Rea- 
son? Yet there is one thing that cannot be denied: that in the course of history our 
world picture has become widely extended -- in the macro-world of the universe, 
in the sub-atomic micro-world, and towards ever and ever greater wealth in the 
intermediate dimensions of our direct sensation. 
Yet we have to put up with people who object that this whole picture is a mere 
reconstruction of what, albeit unconsciously and unintentionally, was construct- 
ed by ourselves beforehand -- reconstruction by the very means by which it was 
first constructed. Well, we need not bother about a question and an answer that 
are equally meaningless. But what about poor Kant, to whom the problem and the 
answer are ascribed by people, who probably never read a single word of his? My 
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answer to this question was to surround his name in the title of the present sub- 
section with quotation marks. This, of course, does not refute what philosophi- 
cally some people call constructivism. Instructionally it refutes itself by its irrel- 
evance. 

4. Construction and constructivism -- mathematically 
In Euclid, besides theorems (quod erat demonstrandum) we find constructions 
(quod erat faciendum) -- constructions by means of the ruler and the pair of com- 
passes. Although, in the past, definitions and theorems arose by construction as 
well, they are presented here as ready-made articles; yet this does not prevent 
constructive activities, such as drawing and producing lines and assuming points, 
from sneaking into the proofs. 
To be sure, in mathematics (and not only in mathematics), inventing and rein- 
venting must be distinguished from reporting. As emphasised repeatedly, a vari- 
ety of styles are possible. Reports can be restricted to the ready-made matter, but 
they can also do more or less justice to the process of making. Less, if it is mere 
phraseology; more, if the reporter tries to play the part of inventor, and thus 
smooths the road for the reinventor. 
If, from a given infinite set, Cantor forms the set of its subsets, is this a construc- 
tion or idle verbosity? Language on behalf of itself or transmission of something 
that can be transmitted in no other way? 
Constructivism in the foundations of mathematics means restricting oneself to 
activities that take place in time, or that are understood as such: In an unrestricted 
time, in a restricted time, arbitrarily accelerated, or reeling off with theoretically 
or practically constant speed. 
The set of subsets of a set is formed in one breath, provided these words are pro- 
nounced fast enough. With the natural numbers one can progress towards eterni- 
ty, or towards the endpoint of an interval halved again and again; with ever faster 
computers one gets a grip on ever larger numbers, whereas number language con- 
jures up an exhaustible number sequence. 

5. Constructivism in developmental psychology 
Construction starts as reconstruction, to wit by imitating oneself or others, yet the 
required physical-mental tools must first be shaped and improved by ever more 
purposeful efforts. At the same time, and entangled in this process, a powerful 
cognitive tool is developing and maturing: interpretation. With a profundity that 
can hardly be matched, let alone surpassed, Piaget, in his unnoticed early work17 

22, uncovered the roots of interpretation. Unfortunately, and for incomprehensible 
reasons, he didn't even touch here on the role played by language, which is equal- 
ly entangled in the process -- the children he observed never babble nor weep. Is 
this indifference to vocal utterances somehow related to his later habit of taking 
linguistic failures of his subjects for cognitive ones, as though this were obvious? 
It can be a neutral reconstruction of the play-pen if the child within it scans the 
sequence of the bars with eyes or fingers to close the cycle, but as a structure the 
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play-pen is so obvious that it provokes this cyclic interpretation. Invisibly struc- 
tured playthings, in particular mechanical ones, are different: most, if not all of 
them, are black boxes, where the reaction on the stimulus is a datum, inaccessible 
to analytic interpretation. 
We have already discussed construction in the sense of slavish obedience to as- 
sembly directions. The development of language is to be viewed quite different- 
ly: it is a reconstruction rather than imitation, which is extrapolated by the crea- 
tion of words and clauses never before heard, the novelty of which is witnessed 
by sins against morphology, grammar, and syntax. 
Reconstruction is again most productive where it is guided by global structures. 
An example we mentioned already is that of the first mathematics (or is it the 
first?) to emerge in development. When, by listening and speaking, the child ac- 
quires the number sequence (that is, the sequence of spoken numbers), counting 
starts with a verbal imitation of a fragment or of fragments, separated by gap. 
This is then superseded by imitation of the structure, introduced by interpretation 
into the linguistic system, which allows the learner himself to close gaps and 
playfully continue the sequence. Playfully, that is, beyond need and necessity. 
Without limit? New milestones are needed; million, billion, trillion, etc. suggest 
something fading away in limbo. More profound analysis is needed to transform 
“. . .illion” into a recursion exhausting the number sequence. (As a matter of fact, 
even with regard to the decimal positional system nobody bothers about the fea- 
ture that the size of numbers runs far ahead of the size of the means by which they 
are defined -- on a higher level, a source of paradoxes.) 
The preceding is cited as an example of where re-creation stands out in bold re- 
lief against the kind of construction and reconstruction -- manual or mental -- that 
is mere imitation, e.g.copying a drawing, blindly obeying assembly directions. 
What does the self-styled constructivist mean here by “construction”? “Construct 
the perpendicular bisector!”, whether the one charged with the task, already 
knows how to do it, or not? 

6. Constructivism -- didactically 
What matters here is teaching and learning, pedagogy and didactics. Only in or- 
der to show their irrelevance did I regard the constructivism of an empty philos- 
ophy and of a poor developmental psychology. 
For shaping teaching and learning processes there is as little need to discuss 
whether the world is a mere construction and the world picture a reconstruction 
of what was constructed by oneself as there is for the claim that the individual in 
his development constructs or reconstructs his world, that is, as long as this is a 
mere claim, and as long as this claim is not substantiated by any explanation of 
how the individual manages to do that -- indeed, only this knowledge could help 
one to better understand and to exploit the constructivist thesis. 
If “constructivism” is to mean anything didactical, it must indicate the one who 
is expected to “construct”. There are people who call themselves constructivists 
because they allow the teacher (rather than the textbook author or some other au- 
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thority) to construct education. Constructivism also means an artistic, say Bau- 
haus, style. The teacher who adheres to this necessarily creates structuralist math- 
ematics. If I were to accept the term “constructivism”, I would mean a pro- 
gramme having a philosophy that grants learners the freedom of their own 
activity. Then it doesn’t matter whether this activity is called construction or re- 
construction or whatever, as long as such words do not prejudice anything that 
concern the learners’ freedom. Whatever is imposed upon the learner remains im- 
posed, whether this is called construction or reconstruction or something else. 
There is no use pleading here that learning in freedom is more dignified than un- 
der coercion, since the hope that the first is more efficient than the second is being 
strengthened daily by an increasing number of examples. Lacking a convincing 
context, such terms as construction, reconstruction, and constructivism are 
doomed to remain slogans. The only context that counts didactically is instruc- 
tion itself, that is, instruction developed from the direction of the design onwards 
towards its realisation. If a term is, indeed, needed I prefer guided reinvention, 
which I discussed in (2.1). 

7. Von Glasersfeld 
One would expect Von Glasersfeld’s name to appear in this exposition. I didn’t 
mention him originally because I didn’t know where to place him, but a recent 
publication of his has made things easier. His paper starts as follows41a: 

During the last three decades faith in objective scientific knowledge, a faith that for- 
merly served as the unquestioned basis for most of the teaching in schools and 
academia, has been disrupted by unsettling movements in the very discipline of phi- 
losophy of science. 

Indeed, and this is a most striking symptom of the ever broadening and, to my 
mind, most deplorable gulf between the philosophy of scientists and the philoso- 
phy of philosophers of sciences, at least as preached by the noisiest among them. 
Would any scientist who lacks faith in objective knowledge have ever had Voy- 
ager 2 launched for a visit of the big planets -- as far as Neptune -- to gather 
knowledge about them? Would he have had big accelerators built that are to dis- 
cover missing elementary particles? Would he analyse long DNA strings in order 
to manipulate them? Would he excavate ancient cities and decipher ancient in- 
scriptions? These are just a few questions out of an interminable variety, and yet 
I did not even mention the mathematician searching for new knowledge. 
Rather than trying to uncover the scientist’s implicit philosophy and methodolo- 
gy, philosophers and methodologists of science, if unacquainted with real science 
or frustrated by it, dream up their own fancies. To be sure, Von Glasersfeld is in 
good company, but it is a company of spectators rather than of actors in science. 
Yet, in his particular case, it is a third kind of philosophy that should count: phi- 
losophy of education. These three may be mutually related provided they are not 
confused with each other. At any rate, I cannot see any bond between mathemat- 
ics instruction on the one hand and an alleged or assumed lack of faith in objec- 
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tive mathematical knowledge on the other hand, whether it is called constructiv- 
ism or anything else. 

3.2 RESEARCH IN MATHEMATICS EDUCATION 

3.2.1 Research 

Research is being carried out in ever more fields, by ever more people, albeit for 
a rather limited and invariable number of reasons. The question “what is the use 
of it?” can be answered differently as soon as one adds “for whom?”. Landau 
said: “Number theory is good, thanks to it one can get a Ph.D.” This is a good 
argument, which can be elaborated on by stating that, thanks to number theory, 
one can get papers published, make a living as a professor, become famous, earn 
prizes. Landau did not live to see number theory applied in cryptography. Well, 
ready mathematics as applied in cryptography was far below Landau’s highbrow 
level. But, once applied, it produced fresh flowers, reasonably comparable to 
number theory’s classics. 
99% (or even more) of contemporary mathematics research will never be applied, 
except to create new mathematics. This statement even extends (perhaps by a 
smaller percentage) to that brand of mathematics that is intentionally created to 
be applied outside mathematics. Anyway, my statement admits that some 1% (or 
is it 1%?) will eventually be applied in a near or distant future. The big problem, 
however, is to know which 1%. But what about the 99%? Much of it has proved 
useful enough to be recycled, or, when it is rejected, can be used to close off dead 
ends. 
What is the use of it? The question is answered differently according to whether 
we spend our money to buy the thing as a taxpayer or as a consumer. Art is use- 
less unless the artist is able to sell. Why, for heaven’s sake, do people produce 
things they are unable to sell? Obviously, because they like to. In the sense of 
Arts and Sciences, mathematics is an art as well as a science, and for many math- 
ematicians even more an art  than a science. A longing for abstract beauty has 
been a forceful motor and a trustworthy guide in mathematics and in the so-called 
exact sciences. Yet, whatever beauty may mean for its creator, it is aimless unless 
there are more people to enjoy it, and somehow they will have to pay for it, either 
as a buyer or as a taxpayer. Is beauty measured by its return? Few people are 
ready to appreciate the beauty in low-level mathematics, and fewer, including 
even experts, mathematics at the research level. Therefore, as far as mathematics 
research is concerned, beauty is not a convincing answer to the question “What 
is the use of it?”. 
There is, however, another aspect: mathematics is true. Wis en zeker -- sure and 
certain. Research results can be checked, errors can be tracked down, and, if ex- 
perts disagree, they may do so about good or bad, rather than about true or false. 
In the so-called exact sciences, checking becomes more troublesome the farther 



148 CHAPTER 3 

away one moves from mathematics. Anyway the ultimate judge is Nature, who 
rewards good questions with good answers. 
Man and Society are much less co-operative and reliable than is Nature, and this 
is the very reason why, in the social sciences research is a tremendously bigger 
problem than in mathematics and the natural sciences. It is a problem that, unfor- 
tunately, bothers the assiduous researcher less than it does the not so compliant 
user -- as long as it is useful to the former, in one way or another. 
As early as the beginning of the 17th century Thomas Mun and Edward Mis- 
selden discovered and explained the fluctuations of exchange rates by the balance 
of foreign trade42. It was true and useful; as a discovery it was beautiful and his- 
torically it is still so since it happened in a period where money meant coined 
metal and paper currency was at most embodied by bills of exchange. In the 20th 
century this is no longer true, let alone useful or beautiful. 
Research on Man and Society badly needs and distressingly lacks criteria of 
truth, which are present in all kinds of research on Nature. Just when the follow- 
ing lines were being written, it so happened that both professionals and the public 
at large were surprised by the announcement of a new and almost trivially simple 
method of nuclear fusion. Lo and behold, within a few days researchers all over 
the world undertook to imitate the experiments as described and to check the al- 
leged effects. Not even for a second did I doubt that, long before these same lines 
would be printed, it will have been settled for ever what was and was not true 
about it. To be sure, most often it is not as simple as that: it can take more time, 
greater trouble, and bigger machinery to test an alleged effect. Where Man and 
Society are concerned, however, each experimental falsification can be met by 
the objection that it is a fact life that two situations can never be the same; more- 
over, once an experiment has been terminated, later discovered mistakes in de- 
sign or execution (if admitted at all), cannot be undone, because the costs of rep- 
etition would be prohibitive. 
Can the lack of criteria of truth be reduced by trust in the capability and honesty 
of the researcher? The question is too rhetorical to be answered. Man and Society 
are developing at a much faster pace than Nature (if something at all like the so- 
cial version of evolution applies to Nature). Nature is more uniform, or so it 
Seems to the investigator, who can profit from centuries of experience provided 
by a stable Nature. This, to my mind, justifies or even requires a more utilitarian 
attitude towards social and societal research than one is inclined to grant the nat- 
ural sciences if the question “what is the use of it?” is to be answered. 

Keeping the problems we are concerned with here in mind, let me disregard what are 
called humanities, on the one hand, are as much an art as are their subjects, and, on the 
other hand, are on no score that matters here inferior to the so-called exact sciences. 
There are, however, examples of psychological research I like because of their beauty. 
For instance - I forgot the author’s name - the experiment where subjects were given 
a weight, a string, and a nail to be fixed on the wall in order to construct a pendulum: 
whether the subjects did or did not succeed to solve the problem depended on whether 
the string was attached to the weight beforehand. 
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There is a kind of inquiry that characterises itself by such attributes as listing, 
stock-taking, registering, recording and fact-finding. If carried on at secretary 
level these can be enormously useful. They can also be useful at research level, 
provided the attributes attest to modesty or are as critically handled as they de- 
serve. They can be useful as rough material according to the degree to which they 
are still rough material. The question “what is the use of it?”, however, becomes 
more urgent the more theorising attitudes dominate or reshape what once was (or 
never was) rough material. 
Henceforth, where research is concerned, my crucial question will be “what is the 
use of it?” I mean here its use for the consumer rather than for the producer, albeit 
in a broad-minded interpretation; so broad-minded that the mere intention of be- 
ing useful is counted as high as the result. 
But let us now approach the actual aim of our discussion more closely! 

3.2.2 Educational research 

1. What is the use of it? 
By education I mean a practice, though often enough this word is used as a syn- 
onym for “research on education”43. For the present moment, when I speak about 
educational research in general I intend it to include research on mathematics ed- 
ucation as long as, for the researcher, mathematics is no more than an easily 
available and easily handled subject matter, chosen to test and apply general ideas 
and methods, with no regard for the specific nature of mathematics and mathe- 
matics instruction. 
The enormously rich and useful educational literature, which addresses itself 
most directly to its presumed users - parents, teachers, trainers, counsellors - is to 
such a degree and so straightforwardly the result and the expression of everyday 
experience, craft and philosophy that however they might have been influenced 
by research, these influences can hardly, if at all, be retrieved nor their impact be 
evaluated in this vast and wealthy field. This is the reason why I shall restrict my- 
self to the more professional literature on education. Let me summarise my neg- 
ative feelings beforehand: as a general trend, the greater the pretention with 
which something is presented as research, the less satisfactorily it comes across 
as an answer to the question “what is the use of it?” Mind, I do not expect all re- 
search (or even a substantial part of it) to be somehow useful. I would simply like 
the researcher, whatever his undertaking, to ask himself the question “what is the 
use of it?”, and then in a way as though he were one of the intended users himself. 
To be sure, a great deal is demanded here. It is a hard thing to place oneself in 
another person’s environment, let alone in his mind; and, on the other hand it is 
a long way from the researcher’s armchair or laboratory to the user’s classroom, 
even though both of them may be located in the same building. Indeed, their mu- 
tual distance is properly determined by the length of the chain of mediators lead- 
ing from the one to the other, provided there are any mediators at all; or other- 
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wise, by the depth of a gulf that nobody is able or cares to bridge. In both cases, 
mediation means interpretation, either of facts, which is the most fortunate case, 
or of words, which can be preposterous -- producing a situation not unlike the one 
I depicted in (3.1.9). 
My statement about the long way from the researcher’s workshop to that of the 
user may be a source of misunderstanding. Rather than “from” I should have said 
“between”. It is a symmetric relation. Or rather, wherever fresh trails are to be 
laid, the trail-blazing should start in the classroom; it makes a difference here 
whether it is the researcher himself who starts the trail-blazing, or some delegates 
who are expected to carry out his prefabricated instructions, as well as whether 
the teacher is considered to be a fellow traveller or is expected to stay home. 
I failed to mention curriculum developers among the users of educational re- 
search; this gap will be closed in 3.2.3. Nor did I mention decision makers, policy 
agents and legislators. In what respect, if at all, can they be counted among the 
users of educational research? I do not know about other countries but at ours two 
kinds of government-advising bodies are to be distinguished: Fact-finding and 
opinion-shaping commissions on the one hand, and, on the other, councils of -- 
presumably scientific -- advice. When asked, they will commission groups of re- 
searchers to write reports, which, in the case of education, are no more than 
sources of vocabulary; this helps them to pretend that their final advice, whatever 
it may be, is not merely a product of common sense. Policy agents behave in a 
similar way. Whoever their advisors are and whatever their advice may be, they 
are not used for anything else than rationalising a politically based decision. 

2. Methodology 
Too much metaphorical language? Yes, because as far as I have been informed, 
trail-blazing is not what the future researcher is told and taught is his business in 
education. His business is rather: collecting data and processing them according 
to ever refined standard methods, which are neither argued nor questioned, but 
simply taught with the aim of being obediently applied to a variety of themes, de- 
pending on the prevailing fashion or the whims of the researcher, his director, or 
his client. I don’t remember when it happened but I do remember, as though it 
were yesterday, the bewilderment that struck me when I first heard that the train- 
ing of future educationalists includes a course on “methodology”. This is at any 
rate the custom in our country but, judging from the literature in general, this 
brain-washing policy is an international feature. Please imagine a student of 
mathematics, of physics, of -- let me be cautious, as I am not sure how far this list 
extends -- impregnated, in any other way than implicitly, with the methodology 
of the science he sets out to study; in any other way than by having him act out 
the methodology he has to learn! In no way do I object to methodology as such - 
- I have even stimulated the cultivation of it, but it should be the result of a pos- 
teriori reflecting on one’s methods, rather than as an a priori doctrine that has 
been imposed on the learner. 
I readily admit that the principle of “learn first, apply later” works in educational 
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methodology no better than it ever did in mathematics, that is, where it works it 
does so to the benefit of a small minority of learners only -- the future specialists 
of methodology. Yet, fortunately, the intimidated majority can count on the pre- 
cious assistance of this authoritative guild, the pure methodologists, whose 
strength consists in knowing all about research and nothing about education. 
They gladly leave the educational researcher a responsibility of his own to fill 
empty methodological vessels with educational contents, and they are uncon- 
cerned with the question of whether these fit or not. Mathematics can afford a 
vivid interplay between form and contents because in playing this game they can 
be neatly separated from each other. In educational research, however, separating 
form and content is not feasible, and, wherever this is attempted the consequence 
is estrangement. This is covered up, if need be, by distinctions like those between 
validity, which is the researcher’s business, and reliability, which is the method- 
ologist’s responsibility and which by mere convention is measured by a formula 
that, in fact., does not measure anything that deserves this name. Please imagine 
a biologist who has defined a measure for immunity against some plant disease 
that can be determined with a high degree of precision while it is most doubtful 
whether it has anything to do with resistance against that disease! Who would ac- 
cept such a measure, reliable up to the third decimal if nothing is known about its 
validity? This may be a rhetorical question in biology but not in educational re- 
search, where it can only be answered historically: formalised testing was first 
concerned with intelligence; when the query what, if anything at all, the I.Q. did 
measure, had to be shelved, one became satisfied with measuring this same thing 
as reliably as possible. From the I.Q. this easy answer spread to psychometric 
measures in general, as did the habit of measuring first and trying to explain later. 
This is a bad habit, since it might be a short step from bad to worse: as soon as 
scientific scruple and honesty are degraded to mere formalities, it is almost una- 
voidable that precision and accuracy will count only as far as they can be ex- 
pressed in numbers of decimal positions. 
This may sound exaggerated, and in a sense it is. Let me quote myself from [87, 

According to a well-worn joke there are three kind of lies: lies, damned lies, and sta- 
tistics. When the joke was invented, mathematical statistics had not yet come into be- 
ing. Otherwise one would have added three kinds of surreptitious credibility: by word 
of honour, by oath, and by mathematical statistics. Or, three methods to assume a 
learned air: footnotes, bibliography, and correlations tables. 

This is a witticism, to be sure. But even so it is the gist of many years of -- some- 
times disgusting -- experiences, which I gained as a reader, reviewer, referee, and 
editor, and of which only a small but paradigmatical part has been published. At 
no point have my detailed scrutinies of small and large pieces of educational re- 
search ever been refuted, nor, to the best of my knowledge, has anybody ever se- 
riously tried to challenge them on minor or major points, whether published [99, 
102, 116] or not. 
Matters are even worse. The collection of poor research I criticised was nothing 

p.145]: 
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more than a sample chosen from what I came across. My actual target was the 
underlying research method, imposed by means of the authority of a misleading 
and misled methodology, which is still taught today, although I feel its authority 
is waning. Anyway, I don’t know of any attempt to defend this methodology or 
parts of it against my criticism. Or is this a policy of killing by silence? Yet I re- 
ceived no positive signals either. As far as I know, up to now nobody has ever 
tried to explain the mathematical meaning and the cognitive function of correla- 
tions within the various contexts -- where educational researchers have computed 
them by tens of thousands and arranged the min tables -- and their use other than 
for impressing laymen and sponsors. Nobody has ever tried to vindicate the nor- 
mality of distributions that, by definition, are not normal, or to justify linear re- 
gression as such, in particular, if applied to connections which are obviously non- 
linear, as in the case of stable equilibrium. I have never seen any explanation of 
how mathematical methods from biotechnics -- where their applicability is war- 
ranted by models from physics, chemistry, and biology -- can be transferred to 
education, which lacks any fundamental insights for building intermediate mod- 
els. 
I cannot but recognise the fact that some things have changed in the mean time. 
Taxonomy, for instance, has fallen into disgrace (though not because of its inher- 
ent weaknesses but because it is too strongly a contents-dependent tool) and is 
now successfully being shipped to developing countries. Test theory and technol- 
ogy, on the other hand, have boasted ever new successes in fighting sound edu- 
cation. Qualitative research is gaining ground, but we are still far from the point 
where mathematical methods can add a finishing touch to qualitative knowledge, 
and many researchers are even farther from the insight that mathematics is not 
able to do more than just this. But it is hard to fight the prevailing superstition that 
ready made mathematics can solve all problems. 
Reluctantly I reiterated my old complaints on educational research. My intention 
was actually to review them while asking the question “what is the use of it?”, 
other than cultivating professional and public relations. 
There is a hard struggle for life and grants going on in the community of educa- 
tional (and some social) research. One cannot do without advertising and the 
headlines in newspapers, or so people think. Is this a necessary evil, and if so, 
why can it not be used for good things? Or do people who are wary of this policy 
suffer from allergic reactions to it? 
Are good things not expensive enough to be supported? When the first IEA cycle 
started it was the most pretentious project ever undertaken in educational re- 
search, and the most costly -- some 50 million dollars if corrected for inflation, I 
would estimate - and when it was finished it turned out to be a mess: a heap of 
spurious data, processed by means of nonsense mathematics, and - what is worse 
-- useless to such a degree that after a few years even in the most extensive bib- 
liographies ignored it. What was the use of it? Was the road to New Math paved 
by the vast publicity that IEA achieved in the USA with their first report, which 
proved the inferiority of American mathematics education? I don’t believe this 
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was really a major factor, although years after New Math’s eventual failure, 
T.Husén, proud of the hundreds of headlines it had earned him in the American 
newspapers, still thought it was. 
In my country, IEA received even Dutch TV coverage because our Netherlands 
pupils had scored so badly in a subject area they had never been taught -- a fact 
unknown to the inexpert researchers -- and because they had performed so excel- 
lently in other areas, thanks to international test instruments, debased by transla- 
tors, who had not been informed about the aim of the translation. 
As far as I know, no international report on the second - much less pretentious - 
EA Mathematics Study has been published. In our country it made the headlines 
because we finished second or third in the international field, albeit thanks to the 
fact that among the various types of schools the possibly lowest scoring one had 
been left out of the tested population: this was “special” education, which, ac- 
cording to our (by international standards unusual) definition includes about 10% 
of the school population under consideration43a. 
A similar mistake has marred an otherwise excellent national study of ours on the 
quality of primary mathematics instruction. For our daily papers girls score much 
lower than boys was the most important news it revealed. As a fact, this contra- 
dicted worldwide experience at the primary level, but rather than being a fact it 
was an artifact, due to the same omission as mentioned above, and easily ex- 
plained: only behind the desk do researchers forget that, in our “special” educa- 
tion, boys form the overwhelming majority. The blunder could easily have been 
avoided, but the report was not even made available under embargo to experts, 
who had to wait one more day than the press to get information and to discover 
the blunder. This in fact happened at an educational meeting the day after the 
press conference. Too late, of course, since girls equal to boys or even better is 
not worth the trouble of a correction. 
Who does not remember the Coleman report -- the most extensive, pretentious, 
expensive and impressive report, ever carried out in the USA? Or rather, who 
would at present still remember it for any use whatsoever, even if it had not been 
wrecked by sophisticated analysis [68] 44. 

3. Comparative research 
A large part of educational research is comparative. Cognitive or affective results 
of education are compared with one another according to such variables as na- 
tionality, instructional system, educational philosophy, schools and school sys- 
tem, gender, ethnicity, race, socio-economic background (of pupils or teachers), 
the teaching and evaluation methods applied, the aids, instruments, textbook se- 
ries used -- a list that is all but complete. I do not object to comparisons. Whoever 
judges a given kind of education, will relate it somehow to the experiential or ide- 
al models he has in mind; the more consciously and systematically this is done, 
the more valuable the result may be, in particular, for enriching experience and 
improving models. But “systematically” should not mean: according to a precon- 
ceived system, in the mechanically thoughtless way, as taught by methodologists. 
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In education, comparing is a most precarious business. What are comparable sit- 
uations and how to get them? We just gave examples of rather simple and trans- 
parent situations where researchers overlooked obvious differences. How to 
avoid this? One way is to hold strictly controlled instructional experiments; this 
is, in fact, both the most efficient and the most useless way, since rigid instruction 
is the worst instruction one can imagine. One can try to eliminate disturbing fac- 
tors, and if this is done by common sense, I would not object either. But common 
sense is suspect to methodologists bent on employing refined mathematical 
methods such as factor, variance, and regression analysis. To the best of my 
knowledge they have never been rationally justified, either in general or in some 
particular case, and, depending on the way they are applied, can often be used to 
prove anything and its opposite. Moreover, little if anything at all is known about 
influential factors, for want of a fundamental theory on the subjects under con- 
sideration. Some people try to make up for this by the sheer number of factors, 
chosen ad lib, a policy that increases the impressiveness and decreases the cred- 
ibility of the applied mathematical technique. However it is done, this is merely 
an attempt to apply mathematics to bunches of numerical data, irrespective of the 
way they were gathered, with no intervention of any model based on theory. Peo- 
ple who know that this is wrong excuse themselves by bestowing the dignity of 
model on any linear regression equation they write down; they do not bother to 
justify the hypothesis of linearity, even where common sense suggests that it can- 
not be trusted, as in case of equilibrium. 

4. Tests 
Rationality requires statements to be tested for their truth instructional methods, 
for the benefit of education, and individuals, for their own benefit and that of so- 
ciety. Tests should be trustworthy, and what is more trustworthy than numbers, 
obtained by measurement, and moreover amenable to mathematical processing? 
I already emphasised that, in the study of Nature, measurement is rather a finish- 
ing touch, applied to models of physical reality. These models are there to explain 
what has to be measured by what yard-sticks -- the more rigid the better -- and 
for what aim. Man and Society are much less accessible to such models, and often 
enough, in particular in education, they are not accessible at all; yet in no way has 
this hindered the tremendous growth of psychometry in education from its first 
roots onwards, from early in our century to its present state. Let me quote 
B.S.Bloom & A.W.Foshay45 as witnesses for the high esteem in which tests were 
(and by many still are) held. 

There is one field in which a considerable sophistication has developed since 1920: 
the field of achievement testing. It is possible now to study the degree and nature of a 
student’s understanding of school subjects with a subtlety not previously available. 
Modern objective achievement tests, when properly developed and interpreted, offer 
one of the most powerful tools available for educational research. Findings have been 
made through their use that rise far above common sense. 

In all fairness I must say that less high-spirited appreciations are voiced by others 
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who co-operated in the same IEA-study from which this quotation stems; yet, as 
far as tests are concerned neither Bloom’s celebrated Taxonomy46, nor work ac- 
complished under his guidance [cp.99] can be looked upon as paragons of sophis- 
tication. And what about the last statement of the quoted passage? Where should 
one look for such “findings”? 
It cannot be denied that, bit by bit, a highly sophisticated testing technique has 
been developed, and measuring sticks have been constructed, which, from the 
viewpoint of rigidity, can compete fairly well with those of the natural sciences, 
although this might probe to be a disadvantage rather than an advantage. In the 
narrow sense of this technique, the word “test” now belongs to the common vo- 
cabulary of most languages. The attribute “objective”, which is only added when 
strictly necessary, nowadays means that the formerly expensive job of testing can 
be left to the much cheaper computer. (In my own country, objective examiner is 
a governmental-hypocritical euphemism for cheapest examiner.) 
Objectivity, if opposed to subjectivity, is indeed praiseworthy, if people are to be 
judged. Yet, rather than at people to be judged, testing technique aims at objects 
defined through tests or test batteries and allegedly independent of human ca- 
price, although they are given names, which suggest connections to human life 
and learning. It is a process of rectification by which new objects are created, 
with the sole aim of being studied numerically, and where no regard is paid to 
their effectual state nor their usefulness for understanding and explaining phe- 
nomena. This process is started, sustained and steered by a quite natural tendency 
to detach form from content, which, although it has proved enormously fruitful 
in mathematics, thanks to its, as it were, self-controlling character, is condemned 
to sterility wherever it escapes control. 
Although the present exposition started with a quotation involving achievement 
tests, it applies to any kind of tests in the technical sense, including opinion polls, 
such as preposterously used for research in the affective domain. 
The above criticism of formal testing technique with regard to research in math- 
ematics education may appear to be outdated: There is an unmistakable trend 
away from it among educationalists with a strong mathematical background, who 
have good reasons to do so and are courageous enough to no longer be afraid of 
being reprimanded by methodologists for neglect of “objective” methods. Open 
testing, interview, and observation of learning processes are gaining ground, and 
well-designed intersubjectivity has is given a chance to supersede ill-conceived 
objectivity. Little attention, however, has been paid to the methodology behind 
the new approach -- J. de Lange’s work47 is here quite exceptional. Anyway, there 
are promising perspectives on fresh approaches. Will they be successful in the 
long run? 
Technique and techniques are indispensable and beyond praise in our society, at 
least as long as they deserve praise. If they are blamed, it is for what nowadays is 
called pollution. How far has the pollution by testing techniques spread in educa- 
tion? The negative influence examinations can exert on education by their mere 
existence is a well-worn truth, and nobody can tell how much testing technique 
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has added to it. How much has diagnosis and how much have diagnostic abilities 
suffered under the influence of badly understood diagnostic tests? And how 
much profound qualitative research has never been undertaken because it could 
not compete with shallow quantitative pseudo-research? 

3.2.3 Developmental research 

1. Change 
Formally, the present subsection looks like it is one more part of the preceding 
one. I could have formally separated them by simply adding the adjective “tradi- 
tional” to the title of the former subsection, but I preferred to avoid this because 
of its negative connotations. Moreover, what we are now accustomed to define 
as developmental research is by no means a new thing. On the contrary, it is per- 
haps the oldest kind of educational research, though it has not been recognised as 
such. 
The question on educational research I started with was, “what is the use of it?” 
I didn’t ask the question “what is the use of education?”, which is almost rhetor- 
ical as long as it aims at education as such rather than at a special kind, say, actual 
or topical education. No doubt, education is meant to prepare one for future life, 
yet neither the future of individuals nor of society are predictable well enough to 
provide a solid basis for any choice of education, which, conversely, is influential 
as a condition of this future. Once, when asked by an interviewer whether I 
thought that attempts at innovation have improved education, I hesitated for a 
short while, only to eventually stamp this as a wrong question. Pictures of educa- 
tion, taken at different moments in history, cannot be compared. Each society at 
a given period got the education it wanted, it needed, it could afford, it deserved 
and it was able to provide. Innovation can effect no more than to adapt education 
to a changing society, or at best it can try to anticipate the change. This alone is 
difficult enough. If any proof was needed, it can be seen in the efforts, vaccillat- 
ing between childish and spasmodic, to prepare for what is commonly called the 
computer age, though in fact the computer is only one of the features of this age. 
Or, to take an example from the past, a past that started after World War II: Even 
now innovation has not yet succeeded in coping with the fast growing demand 
for education, which is too readily answered by “more of the same”, rather than 
by diversification of the supply. So the gist of this paragraph is to give a the first 
answer to the question “what is the use of it?”: Change. 

2. Errors 
If I am not mistaken the first subject formally studied in mathematics education 
- which means, as early as the turn of the century - was errors, that is to say, learn- 
ers’ mathematical rather than teachers’, developers’ and researchers’ didactical 
errors, and according to research published up to a few years ago this is still the 
most cherished subject - the first kind of errors, of course, while the second has 
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hardly been noticed. Even now failure rather than success is the main discrimi- 
nator in many research papers. Even though, the variety of investigated errors has 
increased in the course of the century. It is remarkable how much attention has 
been dedicated to the same kinds of errors over and over, albeit more and more 
related to an increasing number of other parameters, such as age, gender, peer 
groups, ethnicity, race and social-economic status of parents and teachers, per- 
formance in other subjects, intelligence, affective features such as mathematics 
love or anxiety, and so on. 
The attention to errors is as indispensable as to physical or mental diseases, pro- 
vided it is guided by the wish to cure or to prevent and is undertaken in a context 
in which this wish has a chance to be satisfied. I recently attended a meeting 
where a researcher presented a new diagnostic instrument for mental arithmetic 
in the domain 20 to 100. He modestly added that instruments of remediation were 
not the researcher’s but the expert teacher’s concern, and he didn’t change his 
view even after a teacher in the audience urgently asked him about the use of di- 
agnosis. 
Mere diagnosis of diseases is a most valuable statistical tool of epidemiology on 
behalf of medical policy but in education the epidemiological approach to failure 
testifies to a trust in educational policy that is hardly justified. Diagnosis may be 
important for employers and insurers, and it cannot be ignored where the product 
of education is what matters, but even then processual diagnosis should be given 
a fair chance. The trend in medicine to focus on health rather than on illness is 
almost too obvious to warrant being mentioned. There are no vaccines against 
mathematical errors. On the contrary, and in particular if mathematics is to be re- 
invented under guidance, errors are unavoidable or even welcome provided they 
are used to stimulate resistance against their own consolidation and recurrence. 
Ideas on the need and possibility of aetiology - to stick to the medical terminology 
- are as rare in research on errors as is the attempt to recover the past of the learn- 
ing process and insight into the relevance of long-term learning processes. Errors 
as 62 - 45 = 23 have been signalled hundreds of times, but the strong suggestion 
that they are due to a premature separation of form and content - positional sys- 
tem and subtraction context, in the present case - has not even been a subject of 
research as interpreted by the majority of researchers. In education, it does not 
yet go without saying that aetiology is a condition for effective remediation and 
prevention. 
The inclination to study error is quite understandable. Normal things need no ex- 
planation, but what really strikes the beholder are deviations from the norm, that 
is, from what is felt or agreed on to be normal. Education, as looked upon in its 
present state, is taken for granted, and against this background of certainty its ac- 
tual or potential diversity can be a matter of study that handles liability to success 
or failure as its criterion - comparative research, which is questionable as such - 
rather than ætiological. 
Are educational researchers indeed as conservative as that? Or wasn’t New Math 
a historical counter-example? If at all, this example was research on how to put 
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new wine into old bottles -- is it Enseignement des mathématiques modernes ou 
enseignement moderne des mathématiques? I asked in 1961 [14]. 

3. The cradle of developmental research 
Most research is on factual education. Developmental research is different, and, 
as I already claimed with some reservation, historically it even preceded formal 
educational research in mathematics (and other fields). In the past, mathematics 
instruction progressed by the activity of educational developers, in general doc- 
umented by textbooks, which are still to date the main agents of change. When I 
claimed that educational research started developmentally, I admitted as well that 
it was not recognised as such, and I meant -- not even by those who carried it out. 
I didn’t actually say it was the oldest kind; I said “perhaps”,which means that the 
statement depends somehow on what is understood by “research”. 
In (2.3.1) I recalled that, as early as 1961, I propagated thought- experiments as 
instruments of educational development. I should rather have spoken about draw- 
ing attention to their function in this activity. Indeed, it is clear from the context 
that I took it for granted that thought-experiments had always functioned this way 
and that the only thing lacking was consciousness of it. Observing their thought- 
experiments and reporting on them would have transformed educational devel- 
opers into educational researchers, who present their findings together with the 
arguments, rather than dogmatically. 
Although factual experiments would be more convincing, thoughtexperiments 
will remain indispensable (at least in order to prepare factual ones) as long as ed- 
ucational development is being undertaken, and this will happen as long as the 
need for change is felt. Tradition and change, and their mutual relation. are fas- 
cinating subjects. In [40] I dealt with their role in mathematics and in education. 
A good teacher, who does not blindly follow traditions dictated by his own past 
or by prescribed and prescribing textbooks, acts as an educational developer, who 
most often is unaware of this role. In fact, awareness of the motives of one’s own 
activities can be either useful or harmful, depending on the situation, the action 
and the actor. A teacher can be struck after school by the idea that “today it was 
different”. Was it really different, and if so, what is the “it” that was different and 
why was it so? Soul-searching isn’t everybody’s business, but change through ac- 
cident can be a source of search, just as search can lead to change. 
Is this simply a bunch of trivialities? I wished to argue that even nowadays re- 
search can start at the grass-root level, that is, under no other conditions than that 
of becoming aware of one’s new experiences, as well as the wish to understand 
them in the perspective of a change for better, and that at any time it can restart 
under the same conditions. This is not to belittle high -level research but to pre- 
vent it from clogging its most abundant sources. 

4. R&D 
The title of the present chapter promised to deal with Research in, rather than on 
Mathematics Education, not in order to exclude the latter but to emphasise the 
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former. This, then, characterises developmental research: it takes place within the 
educational environment, which is expected to undergo and to activate change. 
“Development” made its entrance as a technical term in the nineteen-sixties, 
when educationalists were trying to take advantage of the then noisy call for 
change. It appeared in the combination R&D -research and development - which 
was soon amplified by another D, that of dissemination. The terminology itself 
was borrowed from the natural sciences and their technology, though, as I have 
often emphasised [e.g.80], this happened with little regard for its meaning in that 
field, and without asking whether it adequately applies in education. In the natu- 
ral sciences it alludes to the road leading from theoretical work to technical ap- 
plications: the test tube replaced by retorts of more and more industrial dimen- 
sions, the laboratory by ever bigger workshops, the researcher’s desk by the 
drawing board and the computer. This is not the way it takes place in the social 
sciences -- except perhaps in economics. Theory may be a source of inspiration 
but seldom, if ever, the place to look for germs of development towards applica- 
tions. There is research for creating means of organisation and processing infor- 
mation, such as terminology, methodology, test theory, statistics, but all this is 
applied in a descriptive and inventorising, rather than in a developmental way. 
For a discovery in chemistry or biology to be developed industrially, buildings 
get designed in one way or the other, though what really matters is not the struc- 
ture but what it contains and what is intended to happen there. In education, how- 
ever, the R of R&D is concerned with the formal element of the building rather 
than with its contents. 
The problem with the educational R&D terminology in everyday practice are the 
strange consequences, as nicely illustrated in the following example: creating 
new courses of instruction is filed under “development”, even though it requires 
-- at least implicit -- fundamental research, whereas the mere routine of testing or 
adapting a given course on behalf of, say, level differentiation, mastery learning, 
and so on, falls under research, which is likely to be held in higher esteem and 
correspondingly be subsidised more easily and more generously than develop- 
ment. 
The R&D mania stimulated productions like curriculum theories, general goal 
description theories, taxonomies, hierarchies, model designs. In [87] I still judged 
these worth punished, while nowadays it is hard to find anybody who even cares 
about them; so I can only hope that the same will happen to system theory, “cog- 
nitive psychology”, and other things, which are imposed on or proposed for 
mathematics education by general educationalists. Indeed, even though the R&D 
terminology has been dropped, the R&D mentality still subsists, by which I mean 
the mentality of separating research and development. 

5. Cyclicity 
It still subsists, that is to say, in stale theory. Practice, at least in education, re- 
quires a cyclic alternation of research and development, which can be more effi- 
cient the shorter the cycle. What was developed behind the desk is put to the test 



160 CHAPTER 3 

in the classroom in order to be analysed, and development is resumed with the 
results of this analysis. 
This seems to be a trivial statement, and indeed the alternation between thinking 
and doing, planning and testing is nothing more than the everyday way of life. 
Developmental research means that this alternation is understood as a macro fea- 
ture, rather than a micro feature of the domain where it takes place and of the flow 
of events. By this broad field and long-term feature it distinguishes itself funda- 
mentally from what is sometimes called constructive research. 
How essential is the fall-out of development to deserve the name of theory, how 
essentially fertile is the development stimulated by such theory? The feature that 
gives developmental research the right to the name of research is its bringing to 
consciousness that what is fundamentally new and essentially fertile in research 
that is arisen fro educational development. 
But I should not leave it at this. Educational research as fall-out of educational 
development - this again erects a dividing wall, which even if only a curtain, is 
not flexible enough to do justice to what developmental research means. “Devel- 
opment ensuing from research” and “research as fall-out of development” is too 
weak a synthesis. How can we achieve a stronger and more efficient synthesis in 
order to answer the question “what is the use of it?” 

6. Proof by process 
Rather than R&D, I borrowed another feature of research in the natural sciences 
on behalf of education: the thought-experiment. Design, even if undertaken be- 
hind the desk, is a better start than stale theory, but it also better than a long series 
of thoughtless experiments. Physics, as we know it at present, originated neither 
theoretically nor experimentally, but in a rational way nevertheless: from ideas, 
suggested by the analysis of nature and tested later -- often even much later. The 
double helix was a splendid idea for the mental reconstruction of DNA, and it be- 
came the model for numerous successful reconstructions before it was actually 
proved, that is, a quarter of a century after it had been proposed the first time. 
The high tide of attempts at educational change after the Sputnik shock flooded 
mathematics education with new programmes, new teaching matter, new cours- 
es, all of them contrived behind the desk, discussed at symposia and, as a matter 
of urgency, pushed into classrooms. Little was ever put to the test, and still less 
survived even the most benevolent trial. In fact, innovation is an arduous process, 
and gives the lie to the most cautious predictions. My criticism at that time did 
not aim at the “behind the desk” origin of the innovation projects -- how else 
should one proceed? -- but at the lack of any report on the underlying thought- 
experiments, if any. Researchers publish products of their activity, rather than the 
processes by which they were created; the knowledge of these processes is con- 
sidered to be their private domain; and so did it happen in this case too. 
This policy may work in mathematics, where a proof, if sound, justifies the the- 
orem and itself, although didactically viewed it is less efficient even there, It may 
still work in experimental sciences, where experiments, if satisfactorily de- 
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scribed, can be reproduced by others more or less easily. In the social sciences, 
however, such a situation is quite exceptional. How, in any case, can one repro- 
duce thought-experiments that have been kept secret? 
Knowledge can successfully be presented as a product if the process of its acqui- 
sition is reproducible - a characteristic of “hard” science. Wherever this condition 
is not fulfilled, knowledge presented without any indication of the process that 
brought it about, lacks all characteristics of rationality that distinguish genuine 
knowledge from dogma. It is unproven, unargued, unfounded, or so it seems. 
How to transfer such a knowledge, how to have others reinvent it if one keeps 
silent about that which is the most essential? 
This question is particularly pressing in the case of educational development. 
Taking notice of the product, which allows for many interpretations, is not 
enough. In order to apply the product, one must know how it came into being. 
Not in detail, of course; the point is not to get stuck in blind alleys but to be 
warned against them. Reproducing does not mean parroting. 

7. Dissemination as an agent of synthesis 
Above I claimed that “development ensuing from research” and “research as fall- 
out of development” is too weak a synthesis. For reasons I just expounded, the 
idea of dissemination, which in the RDD conception is a separate component, 
should be kept in mind the entire time that the developmental process lasts. In 
short, 
developmental research means: 
experiencing the cyclic process of development and research so consciously, and 
reporting on it so candidly that it justifies itself, and that this experience can be 
transmitted to others to become like their own experience. 
In contrast, constructive research is a more modest conception than developmen- 
tal research of which transmission is an essential feature. To be useful, construc- 
tive research trusts its results to implementation. In education, or at least in math- 
ematics education, little that can be transmitted with impunity as mere imple- 
ment. Developmental research asks for more by including the view on 
dissemination. 
Anyway, dissemination should not be separated from development. This requires 
a continuous awareness of what is happening in the ongoing process, a state of 
permanent reflection, recorded as much as possible48. Dissemination is one of the 
aspects under which hard and soft knowledge differ from each other. Hard, that 
is wrought iron - it does not matter how it was wrought. Products of educational 
development can also feel hard - too hard to be applied. Hard science shall meet 
hard criteria. Where should one look for criteria for soft products? The answer is: 
among the hard facts of the developmental process. They are needed to bear wit- 
ness for the product in order to make it plausible and transferable, which demands 
an attitude of self-examination on the part of the developmental researcher: a 
state of permanent reflection. 
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8. The Landscape 
Dissemination is a misleading term if it suggests sowing after harvesting. In fact, 
from the outset it should be closely connected to the educational development it- 
self, while the seeded territory is expanding in step with it. Both teachers and pu- 
pils are partners on equal standing with the professional developers in the rapid 
alternation of activities behind the desk and in the classroom; they are simultane- 
ously sowers and harvesters and educational developers, like the professionals. 
(Let me add that I never did like experimenting with human subjects other than 
while giving them a chance to profit from the experiments themselves.) 
Developmental research includes 

development on behalf of 
first line instruction 
teacher training, guidance and retraining 
guidance and retraining of teacher trainers 
guidance and retraining of counsellors 

media 

educational development by other agents (schools, working groups, text 
book authors) in a broad sense, with the emphasis on co-operation 

within the development 
as fall-out. 

Developmental research covers 

testing 

advising and supporting 

creating cadre for the increasing territory of dissemination research 

longitudinal developments with a view on 
long-term learning processes 

and is itself a 
long-term learning process. 

9. A bit of history 
In order to do justice to a repeatedly professed philosophy by me, I ought to tell 
in a few words how developmental research, born by necessity and owned by re- 
flection, was baptised. 
In 1961 the Dutch government installed a Commission on Modemising Mathe- 
matics Education (CMLW), which as late as the nineteen seventies was followed 
by similar commissions for other subject areas. The way CMLW interpreted its 
task foreshadowed later developments [24]. Soon the need was felt for a centre 
that would combine and co-ordinate their numerous activities. Early in 1971 the 
CMLW was finally given an Institute on Developing Mathematics Education 
(IOWO), which was loosely connected to Utrecht University. The mere name of 
the institute implied a programme: its focus would be on educational rather than 
on curriculum development. From the start onwards, the task of IOWO was in- 
terpreted as one of integrated engineering within the total “Landscape”, as de- 
scribed above, with the vague perspective on possible theoretic “fall-out” as a 
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look into the future [37,44,46]. 
General educationalists found fault with this heterodox unprofessional approach. 
Indeed, IOWO people could not answer questions about the curriculum or learn- 
ing theories they adhered to, nor could they produce catalogues of learning ob- 
jectives, simply because they did not have any. The only things they had to show 
were a philosophy on mathematics and mathematics education -- this had never 
been heard of -- and a grand experimental design, which, to make matters worse, 
failed somehow to mention control experiments. To be honest, I admit that 
IOWO was taken seriously in the long run -- or even dreaded -- by general edu- 
cationalists, even by those who had other ideas on educational development and 
research. 
Before IOWO’s arrival the educational “Landscape” had neatly been divided into 
sectors of Training, Counselling, Retraining, Development, Innovation, Test Pro- 
duction, and Research, each represented by a single institute or a group of insti- 
tutions, or this was the theory. At IOWO all this was integrated. So IOWO was a 
notorious case of unfair competition. As such it was particularly feared in the po- 
litically most powerful among these sectors, which up to the present day has un- 
successfully struggled for a genuine educational identity of its own. 
Anyway, one day the government decided to put an end to this chaos and, as be- 
hooves bureaucracy, to neatly divide the landscape (as far as subsidised) into sec- 
tors that were to respect each other’s borders -- a ruling that afterwards was even 
written into law. Although this law strictly forbids any integration, it allows co- 
operation between workers or working units of two or more institutions of differ- 
ent sectors, which in any particular case requires a tedious procedure of approval 
by managing directors, boards and councils of the respective institutions. Yet bu- 
reaucracy is not almighty. Meaningful work is still being done and subsidy ob- 
tained on behalf of this work by people who know the loop-holes, though it is not 
an easy way of getting work done. 
For the IOWO the clearing of the “Landscape” meant its death sentence. Only a 
short “research” leg should be spared, which was implanted (together with the ed- 
ucational computer centre) as a department into the Faculty of Mathematics of 
Utrecht University; since that time this leg has grown quite a bit stronger. For- 
mally stripped of educational development, it is now known as Institute for Re- 
search on Mathematics Education and Computer Centre (OW&OC). 
IOWO, of course, had fought back against its own death sentence, and this strug- 
gle gave birth to the term “Developmental Research”, which is the reason why I 
told the story. Under pressure of public opinion and parliament the death sen- 
tence was commuted from decapitation into mutilation; as mentioned before, a 
research leg should be spared so a broad definition of research was in the best in- 
terest of IOWO. Our integrated approach had been successful, and none of our 
people could imagine or trust nor feel able to try another approach as promising 
as the proven one. What’s in a name if only it covers a good thing? If it was a lie, 
it had short wings. Though it was not, it did not help. Even though the name 
looked new, Developmental Research was not an ad hoc invention, or so I hope 
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to have convinced the reader. It simply was the approach that had proven success- 
ful in the past and promised success in the future. Through its struggle for life 
IOWO, understandably became conscious of its true identity, as well as of the 
need for a name to distinguish it from others. 

10. Developmental research - a conclusion 
Did I emphasise developmental research unbecomingly and to the detriment of 
other views in this section on Research in Mathematics Education? My proper 
criterion for judging educational research was formulated as early as (3.2.2, 1): 
What is the use of it?, interpreted in a broad sense. My answer, in general, was: 
Change. How much can research contribute to this? Or rather, how far should re- 
search participate in change? My answer was: As Developmental Research. (No- 
tice the switch from “can” to “should”, and from “contribute” to “participate”!) 
“Developmental research” is meant as an ideal yardstick and a critical touch- 
stone, and it will be used as such in the next section, where developmental re- 
search implicit to practice will be made explicit. 

3.3 PRACTICE OF MATHEMATICS EDUCATION 

3.3.1 Practice 

In (3.2.3,8) I described in detail the Educational Landscape, which along with 
first line education includes what in my country is called Service for Education. 
In the Netherlands this is quite an extensive, and for the most part government- 
subsidised, bureaucratic structure, strictly compartmentalised by law (WOV), 
comparable to the guild system of crafts of former centuries (3.2.3, 9). 
In the preceding section I dealt with the Research compartment of the Landscape 
(that is, with the emphasis on Mathematics Education). As a name for the remain- 
der I could find nothing better than that of Practice, which on the one hand is or 
should be the customer of Research, and on the other hand looks like the coun- 
terpart of Theory, which was dealt with in the first section of the present chapter. 
“Practice” has both a descriptive and a normative meaning. If it is understood in 
the descriptive sense, its qualitative evaluation covers such a broad range that it 
defies any attempt at description, even when restricted to one single country and 
one single type of institution or part of it. So the normative element cannot be dis- 
pensed with in organising a description, Moreover, individual practitioners or 
groups of them act according to explicit or implicit norms, which compete with 
or are derived from more general ones. These norms are subjected to change ei- 
ther pursued by the practitioners, or demanded by the public, the authorities and 
the theoreticians; and, after all, if there is any use for descriptions, it is in general 
to serve in general as -- positive or negative -- norms. I shall not try to disentangle 
these aspects from one another, and as it happens, norm will dominate descrip- 
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tion. 

3.3.2 A background of competence 

How competent may I feel to deal with practice in its descriptive or normative 
aspects or in a synthesis of both? Not until 1970 did I shift my interest fully to 
education, and even though I participated for a decade in the everyday activities 
of a number of schools and training institutions of various kinds, I should confess 
that I have never taught school nor even teacher training classes. Although I tried 
to look inside as deeply as I could and as is needed for being a participant, I re- 
mained an outsider, one who casts glances into the educational system and acts 
within it, without factually being a part of it. 
To make things worse, I know almost nothing about other educational systems 
when compared with my knowledge of the Dutch one. Of course, I have read 
quite a bit about some of them, but what does this mean? If I were to judge our 
Dutch educational system on the strength of written and printed documents, I 
would get a severely distorted picture. Not because people who write about edu- 
cation are liars, but for the simple reason that the bulk of what is written is wishful 
thinking rather than description. As far as it is descriptive, it is most often written 
from a distance where details, among which perhaps the most important, are 
blurred, clouded and obscured. So I must warn you with regard to all that I am 
going to say -- about what in practice is right or wrong, what can be improved 
and how it should be done, what should be changed and what is better kept as it 
is -- that I am my own spokesman and the interpreter of my own experiences, 
which were acquired in my own country at the places I just happened to visit. 
This, then, may involve ideas that apply nowhere else or, the other way round, it 
may mean labouring the obvious. 
To be honest, I am not as pessimistic as all that. If I were, I would not dare to tack- 
le practice. Even if various educational systems appear more different than in fact 
they are, I firmly believe that these are deceptive appearances. In particular, if our 
gaze is focused on nations that share similar social conditions, it is quite improb- 
able that their educational systems diverge as much from each other as they make 
it appear. Even in one and the same country, with a narrow or broad scale of di- 
versity, attempts at producing change are defined to a higher degree by social de- 
terminants than by individual or group efforts, which of course, cannot at all be 
dispensed with. To repeat a joke I am proud of: I believe that in my life-time noth- 
ing has had as much impact on education as the ball-point, the overhead projec- 
tor, and xerox -- inventions that have not primarily been made on behalf of edu- 
cation. Or am I exaggerating? In a sense I am. Besides the ball-point, overhead 
projector and xerox, one needs people who use them, and preferably, people who 
use them in a creative way. 
This restores my confidence: we are living in one world, most of us under similar 
social conditions, and even though learning one’s own language and learning to 
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teach it may mean different things in countries where people speak other lan- 
guages, mathematics is the same all over the world, and so learning mathematics 
and learning to teach mathematics and to develop mathematics education are the 
same as well. 

3.3.3 Taught and learned -- the subject matter 

Let me reconsider my last sentence! Is that what I just claimed to be the same, 
really the same all over the world? Or is, if anything, the teaching subject the 
same? If one compares mathematics as taught in various countries, certainly at 
the secondary level, one would be inclined to say it is not. The Bourbaki carica- 
ture taught in France strongly differs from the Kolmogorov version in the Soviet 
Union (or are they really taught as such?), and both of them differ from what is 
taught at British O and A levels, and still more from what pupils are expected to 
learn in highschool in the USA. 
Well, there are broad chasms between what is being taught in various countries. 
But does it matter? I don’t think so. As I see it, if things are to be compared, the 
proper question to be asked is not what is taught here and there but what is 
learned, what is really learned, what lastingly affects the minds of the learners. I 
cannot believe that it differs that much in different countries. I don’t believe it be- 
cause I think it cannot possibly be so. How can people in various countries differ 
intellectually so much that whatever they are taught they can learn such different 
things as those different kinds of mathematics? I would prefer to say that people 
on the whole, and in particular young people at a certain age, are all the same un- 
der similar social conditions -- even beyond comparing averages. We need not be 
haunted by feelings of inferiority when confronted with the awfully abstract 
mathematics that, say, sixteen years olds are supposed to understand and to mas- 
ter according to, say, French, German, or Soviet textbooks. Tests have made it 
clear beyond any doubt that the vast majority of pupils have not the slightest idea 
of what is meant by this highly sophisticated mathematics that they are supposed 
to have learned. Every year at the national examinations of 16 years olds in my 
own country I am struck by the wide gap (extending over many other subjects ar- 
eas, indeed) between the boastful pretensions of the tests and the poor perform- 
ances -- a gap possible thanks to an evaluation of the results that belies the expec- 
tations of the test producers. 
I like to call it the big lie of our educational system, and I am afraid that this char- 
acterisation applies to quite a few others: there is a wide gap between the inflated 
demands and the allowable passing levels. Exams serve selection: they single out 
those who can satisfy the most exacting demands. Formal tests are constructed in 
order to discriminate, as test producers call it, which means a 50% failure rate. 
But why should we ask the great majority to aim infinitely higher than they are 
able to reach? Not only infinitely higher, I should say, but also in the wrong di- 
rections. Learning to forget was the title for (2.4.1). What is the use of it? Learn- 
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ing simple mathematics at a reasonable level is a more dignified pursuit than 
learning complex mathematics at no level of understanding at all. 
It sounds almost trivial; this focusing on what learners did learn, rather than on 
what they did not. It is the most natural thing during the learning process, so why 
should it not be natural at its end? Why not adapt the demands qualitatively and 
quantitatively, and with regard to substance and depth, to the learners’ ability, as 
proven by their accomplishments? 
I used the plural “learners” intentionally, and if this is taken into account, my 
statement is less trivial than it sounds. We teach classes, so why shouldn’t we ex- 
pect classes to learn? Life is cooperation. Why do examinations focus on individ- 
ual performances and entirely disregard collective ones? But let us delay answer- 
ing this question! 
The wide gap between what is claimed to be taught and accepted as being learned 
-- the big lie -- is inherent to any system that strictly relies on exterior control. 
The gap is reduced or absent at institutions that are trusted to set standards of their 
own. This is true in any case for my own country, where uniformity of teaching, 
learning, and examining stops at the doors of Institutions of higher learning and 
the prospect of the examination is the only measure that puts restrictions on the 
freedom of teaching. I don’t know enough about other countries, but I still re- 
member tests at FRG universities a few decades ago, where the majority of fresh- 
men who had learned a vast amount of Calculus at school, didn’t master the most 
elementary algebra. Have things changed in the mean time? I am still puzzled by 
the contrast when I look at the kind and level of mathematics that future primary 
school teachers are supposed to master in my own country and in the FRG. Are 
their students so much more mathematically minded than ours and is teaching 6- 
10 year-olds elementary arithmetic so much more demanding in Germany than it 
is in Holland to justify requirements in mathematics as high as theirs? Nowadays, 
students who are able to fulfil such requirements are not very likely to aspire to 
primary school jobs -- this is the case in my country, and I doubt whether they are 
more likely to elsewhere. 

3.3.4 Taught and learned -- the agents 

Learning and teaching -- aren’t these not outmoded terms? In Education the fash- 
ion is now to call it change and transformation from novice into expert, although 
this is more than a merely linguistic fashion. Two well-defined states are as- 
sumed with respect to a certain knowledge or ability: the clean slate, and mastery. 
The agent, responsible for this transformation, is supposed to be an expert him- 
self, which means a product expert. The intended process that transforms novices 
into experts is likened to that which takes place on an assembly line. It has been 
well-designed on the strength of cognitive or instrumental analysis -- a kind of 
thought-experiment, where the subject to be transformed from novice into expert 
is supposed to be acted on, rather than to be an agent. 
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To be sure, one can imagine more refined versions of the expert-novice model, 
which may grant the learner more freedom: choosing among several assembly 
lines, for instance, or even within a predesigned network -- the more complex the 
more costly, and nobody can say where the break-even point is. Can the computer 
be of great help? I doubt whether enthusiasm alone justifies optimistic expecta- 
tions49. 
The expert-novice model is a way to organise learning processes. Learning is 
time-consuming. To be efficient it must be organised, but organising is also 
something that has to be learned. Machines in which a lot of learning is firmly 
and flawlessly invested are different: they need not learn themselves, or if they 
are of the kind that do need to learn, then the required learning process is invested 
just as firmly and flawlessly. The technological progress is accompanied by an 
ever increasing estrangement. Everybody can make some tool like a hammer as 
soon as he needs it. A lot of people can repair electrical switches, radio sets and 
cars, but few people know how computers work, and still fewer dare repair them. 
Yet, even in this context, one can try to account for learning as a human activity. 
Von Neumann once claimed that, in principle, any human activity can be taken 
over by computers, provided it has been analysed in detail. No doubt this applies 
to physical activities, taken over by robots. But brain and mind are different. Al- 
though the first computers were copies of human reckoners, albeit adapted to the 
understanding of the computer, our contemporaries in this field apply strategies 
of their own in order to more efficiently use those facilities by which computers 
distinguish themselves from humans. Yet chess computers, when first designed, 
owed nothing to any analysis of human chess: as a matter of fact, such an analysis 
had not even been attempted, and even now there is a difference between the 
computers' strategies and the more complex ones of humans, which are less ac- 
cessible to analysis. 
Computers are human-made and some humans know how they work. There is no 
fundamental knowledge about the working of the brain, and hardly any phenom- 
enological knowledge about that of the mind. Nevertheless, we are able to predict 
and influence our own and other people's mental activities, without being able to 
say how we acquired this ability. The computer metaphor of brain and mind is 
therefore mistaken in both directions. All in all, computers are much too stream- 
lined, much too prestructured and too reliable to be useful as paradigms for learn- 
ing to mathematise little worlds. 

3.3.5 Taught and learned-- interlaced 

Let us recapitulate: At the assembly line of the expert-novice model, the learner 
is supposed to be acted on, rather than to be an agent. On the other hand, the com- 
puter model lacks descriptive validity as required for its being normative; and as 
a tool in the expert-novice relation, it still fails to even approach the measure of 
interactivity achieved in traditional learning. Anyway, strengthening the feed- 
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back between teaching and learning is still a most promising way to improve in- 
struction. 
Indeed, through personal experience we know about individual learning process- 
es, through generalisation about general ones, and through history about those of 
mankind. It depends on one’s viewpoint whether one qualifies this statement by 
adding “a little” or “a lot”. Anyway, the greater part of this knowledge cannot be 
verbalised, let alone formalised, and this is the very reason why programmed in- 
struction -- whether by computer or not -- has made little, if any, progress. For- 
tunately, just as modem travellers need not follow to the trails of old time voyag- 
ers, so learners need not repeat all the learning processes that were once required. 
Most of these processes can be shortened or even reduced to merely accepting the 
bare product, and teaching is a way of organising this reorganisation The big 
problem is to distinguish the products which admit the strategy of transfer from 
those for which the strategy of what I called guided reinvention is indispensable. 
To what degree may estrangement be either useful or harmful? 
All one needs to know in order to use a computer is its exterior reactions to one’s 
acts. This is astonishingly simple, although the style -- either formal or childish - 
- of the manuals conjures up an image of complexity, which only betrays bad di- 
dactics. Even oral explanations may be counterproductive if supplied by experts 
who lack the ability to place themselves in the shoes of the novice. Until further 
notice the fastest manner to learn to use computers is to use them and to ask for 
help only if some problem seems to demand too much of one’s solving ability. 
Although this is an unsatisfactory and certainly not paradigmatic example of 
guided reinvention, it should not be surprising that teaching how to use comput- 
ers has not kept pace with their rapid evolution. 
Other teaching subjects can boast a longer history. But history is not yet done; it 
continues as times goes on. The learning paths leading from here to there form an 
intricate and never completed labyrinth and each fresh learning process, be it in- 
dividual or collective, asks for new teaching processes. Even assembly lines, as 
useful as they may be, require modernisation, which can be a costly venture. 
Teaching/learning processes, observed and reinforced, entangled and isolated, 
necessarily require and fortunately allow more flexibility. To be sure, as a whole 
they must be organised carefully, but the care needed does include caring for 
flexibility. Interactivity means that both teachers and learners are agents as well 
as being acted on. Taught and learned should coincide, or, even better, compete 
with each other on equal terms. These are high demands, and even higher if learn- 
ing is to mean long-term learning. 

3.3.6 Change 

“Taught and learned” is just one facet of the familiar antonym “Theory versus 
Practice” as I recalled in (3.1.1, 2). Let me now turn to Research as a source of 
Practice! My answer in (3.2.3, 1) to the question “what is the use of it?” was: 
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Change. 
Change, in particular under the name of “innovation”, is tacitly understood to in- 
volve improvement. Rapid changes are known as revolutions, yet revolution need 
not imply innovation. Anyway the innovatory speed depends on the circumstanc- 
es. This is even true in industry. There it takes time to sell innovation to their di- 
rectors, to develop new tools, to buy new machinery, to instruct workers how to 
use them, and to advertise the new products. Even if the time needed is consider- 
able it is nothing when compared to that needed in education. (An estimate I just 
heard was 1 to 10.) The reason why, is the greater amount and complexity of feed- 
back required in education, and the lack of past experience. 
Innovation, when thoroughly planned, affects each level in the Educational Land- 
scape, a big hierarchy extending from first line instruction to research, where the 
taught-learned relation is the glue that connects subsequent levels to one another 
-- a large number of feedback spots here, each of which is of a high complexity. 
Curriculum theory as developed in the sixties tried to account for this structure, 
but in formal educational innovation projects the amount and complexity of re- 
quired feedback are easily underestimated, which has happened in the past and 
which still happens. This, then, is the reason why most of them failed in the past. 
The few that somehow succeeded, did so because all levels of what I called the 
Landscape were involved in the process of change; they underestimated, howev- 
er, the time required for teaching/learning at each particular stage of dissemina- 
tion. In fact, innovation itself is a learning process for the Landscape as a whole 
and for its particular agents, some of whom may be subject matter experts who 
nevertheless lack the expertise to recall their own learning processes and to ana- 
lyse them in order to know what has to be transmitted to learners and how it 
should be done. If innovation is a learning process, it is quite a singular one, rath- 
er than one of guided reinvention. As far as it may be guided, it is so internally, 
which requires a high measure of flexibility. 

3.3.7 The agents of change 

3.3.7.1 The educational developer as an organiser 

Learning is time-consuming, indeed. It depends on the learner and the learning 
matter how much time is required, that is, how much estrangement can be al- 
lowed if learning processes are to be shortened. Strangely enough, as history has 
shown us, this is a bigger problem in the service regions of the educational land- 
scape than in the first line. Disregard for this fact is, in my opinion, the actual rea- 
son why time estimates at the various stages of the process of change have been 
so far off the mark. 
Though under another aspect, it was already discussed in (3.2.3,6) how the “ex- 
pert” can use the knowledge of his own learning processes as a means to guide 
those of the “novice”: reporting on thought-experiments in order -- as behooves 
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the researcher -- to “prove” the validity of proposed instruction to the satisfaction 
of those who are expected to get acquainted with the proposal. In projects of de- 
velopmental research the researcher need not rely on mere thought-experiments. 
As such a project proceeds, thoughtexperiments are gradually superseded by se- 
ries of ever broader factual ones, only to cede their indispensable role to farther 
reaching and more profound new ones. At any stage, the results of the preceding 
stage, rather than being imposed as products on the participants, need to be trans- 
mitted as inventions, in order to enable participants to reinvent them. 
After (3.2.3), where gradual dissemination was to serve the progress of develop- 
mental research, the tables were turned: research now serves dissemination. Even 
so, dissemination is not understood here as something that happens once, after re- 
search and development have been completed. It is a gradual and, in a way, open- 
ended process. From the start onwards, dissemination is part of any developmen- 
tal research: at fist, this takes place within the restricted company of the initial 
actualisers who perform thought-experiments behind the desk. In the develop- 
mental process they compete with the professional developers in the activity of 
adapting and modifying preconceived ideas. As dissemination begins to affect 
ever extending circles of participants, developmental research includes keeping 
a grip on what is occurring at an ever more distant periphery. Yet it not a one-way 
influence. Signals from the broadening circle are fed back into the developmental 
process -- this aspect of dissemination has already been brought to the fore in the 
preceding subsection. 
With regard to practice I made a distinction between descriptive and normative 
aspects. Since educational development as such is not a widespread conception, 
it is no wonder that norm by far outstripped description in the preceding exposi- 
tion. At closer glance and regarding details quite a few realistic aspects may be 
recovered as a description of what at present is subconsciously and unintention- 
ally being carried out as educational development. Yet let us now turn to other 
agents in the process of change! 

3.3.7.2 The teacher 

In the Educational Landscape the teacher is the least specialised actor (not count- 
ing, of course, the fist line learner), and the less specialised the teacher the lower 
the age bracket of the instruction in question. Less specialised is likely to imply 
less self-conscious of one’s role, and for that matter, maybe less conceited. Was 
the apparent lack of specialisation the reason why curriculum developers, in par- 
ticular those of New Math, trusted the teacher to be able to implement brand new 
subject matter in the classroom? On a tabula rasa one can write all one wants, 
and this is what they did in the retraining courses with the subject matter to be 
taught in the classroom -- somewhat broadened or seen from a higher viewpoint. 
When this strategy failed, some developers conceived the idea of “teacher-proof 
curriculum”. My dictionaries are not up-to-date enough to include items like 
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“teacher-proof‘ but, looking for related items, I feel inclined to believe that it 
means stuff that even a teacher cannot spoil. Other developers realised that a 
teacher was no more a tabula rasa than anybody else and that the deeper the im- 
prints, the more likely they were to withstand attempts to change or erase them. 
In the cognitive domain, background philosophy (as I called it in (3.1.3)) is the 
totality of the deepest imprints. As far as mathematics is concerned, there can be 
little doubt that such aspects as mathematising are lacking in pictures of mathe- 
matics which traditional instruction created in most people’s and even in most 
teachers’ minds. The mechanistic style (3.1.5-3.1.6) of the mathematics they 
were taught pervades the mathematics they learned. If they chose to become 
teachers, they will continue teaching the mathematics they were taught, in spite 
of new subjects unless emphasis in retraining is shifted from subjects to attitudes. 
Most attitudes are acquired unconsciously. The easiest and most efficient way to 
change them is actively participating in change this need not remain a privilege 
of that group participating in projects of educational development which I char- 
acterised as the initial actualisers of thought-experiments. Participation can be 
transmitted. At every stage of dissemination teachers are guided to reinvent pri- 
mordial changes, albeit modified by the experiences at intermediate stages. Al- 
though unconsciously acquired attitudes are reinforced by reflection and knowl- 
edge of them may be helpful for transmission, the true thing to be transmitted in 
the course of dissemination -- if it is to be efficient -- is the behaviour itself rather 
than knowledge of it. 
Guided dissemination aims as far as the ultimate frontiers. At every stage it is en- 
dangered by its own success. If stopped too early, the campaign can be lost and 
the instructional system be worse off than before. What does ‘‘too early” mean? 
In medical terms: if the mechanistic view on mathematics is a disease, then it 
matters to judge how many and how large areas of reinfection may be left with 
impunity. But what about prevention? 

3.3.7.3 The teacher student 

Mathematics teacher training is a newcomer in the Landscape of Mathematics 
Education. At any rate, this is true in my country. If there are other countries 
which can boast a longer tradition of mathematics teacher training, I am not sure 
what its impact has been on first line mathematics education. In most countries, 
teachers were educated either as educational generalists in order to function in 
primary education, or as subject matter specialists with a professional future in 
secondary education. The first were educated at teacher training institutions, the 
second at universities, although in my country extra-universitary examinations 
kept a continuous stream flowing from the first to the second pool of teachers. As 
a consequence, in secondary level mathematics, the majority, rather than being 
university-educated, used to have a professional past as primary school teachers. 
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However, the number of those who, prior to the extra-universitary examinations, 
had not had any training as a teacher was steadily increasing. Not until a few 
years after World War II was some teacher training made compulsory for future 
secondary school teachers, but, even so, for years this was thwarted and kept 
down by universitary people in charge of the various disciplines, who jealously 
guarded the scientific status of their students -- indeed, in this respect didacticians 
had still to qualify themselves. At the present state of teacher training for primary 
education, mathematics is integrated with its didactics; teacher training for lower 
secondary education has mathematics and its didactics taught simultaneously and 
by the same persons, while, for the upper secondary level, students are trained by 
didacticians after the accomplishment of their study of mathematics, which is 
still an unsatisfactory state of affairs. 
I have re-counted the above in order was to draw attention to two basic issues re- 
garding the relation between the two components of teacher training -- the scien- 
tific content and the didactical form. These issues are 

equality of status, 
the measure of integration that respects the level of both components. 

Only where the mutual respect of scientific and didactic trainers and their coop- 
eration can be taken for granted, can students be expected to take both compo- 
nents equally seriously and to integrate them by themselves. 
In [ 115], when dealing with “Major Problems of Mathematics Education”, I 
made the parallelism between mathematising and didactising explicit by drawing 
a parallel between each of the problems in first line mathematics instruction and 
its counterpart in teacher training, between each learning problem and a teaching 
problem, which in turn shows up as a learning problem for the teacher student. 
So I started with drawing a parallel between 

Why can Jennifer not do arithmetic? and 
Why can Jennifer not teach arithmetic?, only to continue via the pair 
reflecting on one’s own learning with its counterpart 
reflecting on one’s own teaching and, among many others, 
developing a mathematical attitude with 
developing a didactical attitude to 
How can calculators and computers be used to arouse and increase mathemat- 
ical understanding? paired with 
How can calculators and computers be used to arouse and increase didactical 
understanding? 

To explain why I changed the paradigmatical “Johnny” into Jennifer, let me 
quote myself from [115]: 

Why can Johnny not do arithmetic? 
Does this sound sexist? I will not change it into 
Why can Mary not do arithmetic?, 
lest it may sound even more sexist, suggesting that girls are less able than boys. As a 
matter of fact both are wrong. My problem is not John Roe and Mary Doe. The prob- 
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lem is, indeed, why many children do not learn arithmetic as they should, and it is a 
major one because, more than anything else, failure in arithmetic may mean failure at 
school and in life. My concern, however, is not, or not primarily, what is wrong in 
classrooms and textbooks today that creates a host of underachievers. 

Let me change the question! I now ask: 
Why can Jennifer not do arithmetic? 

Rather than an abstraction like John and Mary, Jennifer is a living child (though I have 
changed her name) whom I can describe in every detail. The two details that matter 
here are that she was eight years old and could not do arithmetic. Meanwhile the ques- 
tion 

Why can Jennifer not do arithmetic? 

is not a question any more, because today Jennifer is eleven and excels in arithmetic. 
Yet when she was eight, somebody who was observing her stumble with numbers suc- 
ceeded in answering the question and after ten minutes of remedial teaching, Jennif- 
er’s problem had ceased to exist. Was it a miracle? Not at all. It was just an easy case. 
But there are so many such cases. Noticed and unnoticed, cared for and uncared for. 
But what about the less easy cases? They have grown out of those easy ones that re- 
mained unnoticed and uncared for. 

Indeed, the parallelism between learning mathematics and learning to teach 
mathematics is the leading principle of what I have to say about mathematics 
teacher training, which in practice is acted out by the parallel between mathema- 
tising and didactising. Still, in accordance with the tabula rasa metaphor, the sec- 
ond kind of learning is more difficult than the first. Teacher students, in general, 
belong to the large group of adults where the sources of what they once learned 
by insight -- be it much or little -- are likely to have been clogged by the knowl- 
edge and skills they acquired in the meantime. To say it more concretely: they 
neither care why multiplication by 100 is carried out by “adding two zeroes” nor 
about the fact that you can argue about such a piece of knowledge, or why you 
should do so. So they have to undergo remediation: thy must relearn such facts 
while teaching children and observing their learning processes. The higher the 
level of learning, the more paradoxical this conclusion may sound. I have often 
argued that knowing apiece of mathematics too well may seriously impede one’s 
ability to teach it decently; as a teacher one should be so conscious of the learning 
process that produced one’s own excellence that one can reinvent it. So the teach- 
er student needs to relearn by observing the learning processes of less skilled peo- 
ple -- in fact, of children. But if this is so important, we are faced with one of the 
big problems in teacher training. Although one can easily arrange for observing 
short-term learning processes in the school environment, it is impractable and 
hence impossible to do the like for long-term learning processes. Thought-exper- 
iments, as undertaken by textbook authors, cannot fill the gap if undertaken by 
unskilled people. Lack of experience in long-term learning processes is the actual 
cause for the depending of young and even older teachers on textbooks as their 
only sources of knowledge on long-term learning processes. Inservice guidance 
and cooperation would seem indispensable means for refreshing these teachers 
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and getting them to re-create. 
Anyway, there is good reason to shift the centre of gravity of teacher training 
from theory to practice, from the training institution to the classroom. From per- 
sonal experience I know about such efforts in my own country. All I know about 
them elsewhere stems from written sources. As far as such sources are theory, I 
am not satisfied. I am afraid that the so-called classroom-based teacher training 
is too theory-laden to be helpful. Yet, is it still a topic? 
I believe that teaching should be learned in the classroom. This is more than a be- 
lief; I think it is a fact that almost all of what practising teachers have learned in 
their lives about teaching and about how to teach was learned in everyday class- 
room practice. Teaching is learned by teaching -- one could claim -- like walking 
is learned by walking. But this simple truth is an outright falsehood. It cannot be 
denied that walking is learned by walking, but as soon as “walking” is replaced 
by “swimming”, it is clear that things are not that simple. To learn to swim one 
needs aids, material and personal. Learning to speak presupposes listening, and 
learning to speak better requires personal and material interventions to improve 
speech; for that matter, even “walking learned by walking” does not apply to 
handicapped persons, who, without help, would never learn to walk as we would 
like them to do. But when I claimed teaching to be learned by teaching I meant - 
- and people who agree with me likewise mean -- that actual teaching is an indis- 
pensable component in the process of learning to teach. 
Not so long ago teaching, certainly at the secondary level, was learned by imita- 
tion, and by trial and error. Imitation was here a crude form of observation, that 
is, one repeats one’s own learning processes, which were recorded from one’s 
own school-life, and supported by the textbooks used in the classroom. The trial 
and error provided as much feedback as the guinea pigs in the classroom could 
offer and the teacher was able to process. 
No doubt passive observation and active trial and error are still the essential fea- 
tures of learning to teach, just as they are of any kind of learning not sufficiently 
supported by general theory. The one thing that has changed and should change 
even more in order to further improvement is the organisation of both observation 
and trial and error. 
A forceful means of doing this is to observe learning processes, which I dealt with 
in a larger context (including teacher training) in such detail in (2.3.1) that I need 
not repeat it here. 
I think that all would agree that a trainee should get in touch with the practice that 
is to become his future practice, at the earliest opportunity. Training institutions 
diverge in answering the question: how early is “early”. After three years, four 
years? Well, this may be correct if it is required by the quantity of the new subject 
matter the student has to learn in order to teach. Primary teacher training is cer- 
tainly not such a case. 
On the other hand, being confronted with the practice (someone else’s or one’s 
own) without any preparation may be counterproductive. Even trial and error pre- 
suppose some knowledge about what is to be tried. But if the aim is to observe 
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learning processes, and mathematical ones, in particular, one has the opportunity 
to start within the walls of the training institution, or even at home -- I mean by 
observing one’s own learning processes: Take a little mathematical problem, 
solve it, tell me how you did it, and think about what you have learned while do- 
ing it! Isn’t this a marvellous idea? 
As early as (2.3.1) I answered this question. When applied to teacher training, we 
may conclude that, even before being introduced to practice, the trainee has and 
should have opportunities in the classroom of the training institution to observe 
and to analyse learning situations. By this, however, I do not mean what in my 
country is called institution practice: one of the students playing the teacher and 
the others simulating being the pupils who are being taught a certain subject in a 
similar way to what would happen in the genuine classroom. This is too artificial 
an approach to be successful, and anyway it is not what I mean. 
To make clear what I do mean, let me tell a little anecdote, a story from a lesson 
in a teacher training institution I was observing. While solving a mathematical 
problem at the blackboard, a student had committed a grave error but neither the 
trainer nor the other students had intervened to correct it. The student went on and 
on, and the trainer let her proceed as she did up to the unhappy end when she ran 
into a flat contradiction, which proved that all she had done was wrong and that 
the entire work would have to be done over again. Finally, when all this was fin- 
ished, I intervened to pose the question of whether somebody had noticed any re- 
markable feature. Nobody had. My guess is that even the trainer hadn’t noticed. 
Anyway, he hadn’t asked this question -- I had. Even after I had specified my 
question a bit and added hints, nobody could answer it. Finally, I myself had to 
disclose the answer, that is, to draw their attention, and maybe even the trainer’s, 
to the fact that the trainer had not intervened to correct the student’s mistake. 
Hadn’t they noticed that mistake as soon as it was made? Did they believe that 
the trainer hadn’t noticed it? For what reason could he have passed over that mis- 
take? Was it a good reason? How should one act in such a situation? Nobody had 
asked themselves such questions. So I simply had to explain the trainer’s didac- 
tical trick and to reveal his intention of letting the student proceed as she did until 
she ran into trouble. 
What does this story mean? Observing learning processes is indispensable to 
learning to teach, and it should start at the earliest opportunity: observing one’s 
own learning processes and those of one’s learning group. But in order to be ef- 
ficient, observing as horizontal didactising has to be complemented vertically. 

3.3.7.4 The textbook author 

When I discussed change and its agents, I did so from the high viewpoint of De- 
velopmental Research as presented in (3.2.3). How far can it be approached by 
Practice? Formal projects is the closest approach; the question of how close, is 
decided by striking a subtle balance between the desirable and the practically 
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possible. Projects that are designed too narrowly, in particular with respect to the 
size of the instructional landscape involved (as most of them were in the past) 
may be useless if not harmful. 
So far, in practice, the most efficient agents of change were textbooks, and by the 
look of it, they will maintain this status for the time being. So I may narrow my 
former question by asking: “How far can textbooks approach the view on change 
taken by developmental research?” 
Mathematical textbooks -- including similar teaching aids -- have changed in the 
last few decades. To conclude from reviews and the ways of reviewing, however, 
they have changed less fundamentally than one would have liked in the wake of 
their remarkable predecessors dating from at least half a century ago. I admit that 
my first-hand knowledge of the present textbook literature is quite restricted, but 
among the few textbooks I do know, I could signal some that have done the ut- 
most to take the desirable view on change, or so I would guess. This is indeed 
guess work. I never reviewed textbooks and with all respect to the host of review- 
ers, I wonder how much teaching experience is required to undertake the task of 
reviewing textbooks before or without having used them. My reluctance stems 
from confrontations at a semi-teaching level with a few of them: when asked for 
help by children who had to work with these books, I suddenly saw, as it were, 
through the learners’ eyes, how bad these, at first sight good-looking textbooks 
were: they were shaky from questions onwards I myself was not able to under- 
stand, to didactical tricks that backfired, up to an ill-conceived build-up of the 
teaching matter as a whole. 
I agree that what I called my “semi-teaching” experience is hardly representative. 
Whether one likes it or not, textbooks are merchandise, and in the marketplace 
good quality is what appeals to the needs and tastes of prospective customers. In 
the present case, said customers are teachers who need these books as teaching 
aids and who prefer to use what they like. This would seem to be a gloomy per- 
spective for change and for the textbook author as an agent of change, were it not 
that needs can be stimulated and tastes can be educated. 
The traditional way to try this is teacher manuals. As far as they supply additional 
information and disclose richer sources, I do not object to them, but as didactical 
aids I do not trust them much, because of the serious doubts I have about their 
factual use. In [87, p.119-121] I cited an investigation into the use of teacher man- 
uals, which included four mathematical textbooks. Only one quarter of the teach- 
ers questioned claimed to have used them. This does not look like much, but even 
it is an over-estimate, since none of the four textbooks could boast a teacher’s 
manual. Not that this prevented the 25% self-styled users from answering the 
most detailed questions about their ways of using them. 
I prefer a textbook style where both learning and teaching at all levels of the 
teaching/learning process, as well as local and global reflection on it, are implicit 
in the text itself. For instance, the task of posing meta-questions should be shoul- 
dered by the textbook author, rather than leaving it to the teacher. This is at the 
same time the most effective way to implicitly influence the teacher’s attitude, 
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which includes asking more of these questions wherever they are needed. By 
meta-questions I mean, in the present didactical context, questions that start like 

and continue like 
why do you think 

did I claim that. . . 
did I call this . . . 
did I supply you with this. . . 
did I ask you.. . 
did I include the condition. . . 
did I not add this conclusion . . . 
did I define this by. . . rather than by. . . 
did I deal with this in this order rather than. . ., 
did I prescribe this task for a group of four 

what do you think 

did you learn in . . . 
did you unlearn in . . . 
is the use of this.. . 
should be added 
could be missed in this context? 

or start like 

and continue like 

For short, I mean didactising questions as the textbook author has asked himself 
as an educational developer and implicitly answered by writing the textbook in 
the way he eventually did. Framing these questions to fit the layout of the text- 
book is the way to have users reinvent the educational development that produced 
the textbook as though they had participated themselves in its production proc- 
ess; and by users I mean both teachers and learners, each on the level that is suit- 
able to that group. 
I started discussing the textbook author as an agent of change with a reference to 
(3.2.3). From the above it has become clear that I would like him to bear witness 
to his activity as developmental researcher (whether he did so explicitly or not) 
in the implicit way of imprinting the process into its product, thereby leaving the 
users as much freedom as they deserve, among other things by means of meta- 
questions that suggest alternatives. 
Would this strategy be understood and its tactics put to good use in the class- 
room? It all depends on the existing infra-structure of teacher training and retrain- 
ing, which should be accounted for as boundary conditions in any educational de- 
velopment whatever, and certainly in textbook production -- this is all part of the 
Landscape I have been hying to deal with. 

3.3.8 Mathematics for all 

The title of this subsection is a challenge even though it sounds like a slogan. It 
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has been the theme (or one of the themes) of innumerable meetings and confer- 
ences -- national and international -- and it has not ceased to be the subject of re- 
search and development. In discussions on general education, numeracy has be- 
come the companion of literacy. Indeed, as badly as literacy is needed in a world 
full of written and printed matter, so indispensable does numeracy seem to be in 
a world where number emerges at every turn to be used and -- maybe even more 
often -- to be misused; a world which looks like it is ruled by number. But let me 
add that, just as literacy is no more than one aspect of language, so is numeracy 
one aspect of Mathematics for All -- which certainly does not cover all of it. Yet 
as much as I have refrained from discussing subject matter in the present books 
so little will I deal with the contents of Mathematics for All. Anyway, it will not 
be the same thing for each particular learner; there is a great deal of diversity not 
only of contents, but also or even more so, of breadth and depth of understanding. 
As a matter of fact, this may already have been asserted with respect to numeracy, 
and if you wish to add it, for literacy, as well. 
Literacy and numeracy are spoken of as companions, but is this really a company 
of equals? There is a habit of distinguishing what is called technical reading from 
reading comprehension. If we do so with technical numeracy and number com- 
prehension, and consider how closely reading comprehension is knitted to life 
and reality, shouldn’t we ask for numeracy to have an equally strong grip on 
number in the real world? Or are literacy and numeracy different in principle? 
Literacy is a relation between two expressions of language -- spoken and written 
(or printed) -- or so it would seem, whereas numeracy is having the competence 
to relate a manifold of manifestations of number to each other, which is harder to 
learn; and this might be an argument to be satisfied with less numeracy than what 
is required as literacy. 
In fact, neither literacy nor numeracy are uniquely defined. Being illiterate can 
mean many things, depending on the environment and circumstances; so what is 
meant to be understood by literacy heavily depends on individuals and groups, 
communicating with each other in all kind of situations. Numeracy is hardly any 
different. 
But what about mathematics for all? The answer to this question, even if it de- 
pends on the group in question, is not given by the mere intersection of all the 
particular mathematics that concern the individual members of the group, wheth- 
er as subject matter or as competence; and this again is a property it shares with 
literacy. 
A most striking feature of language is the abyss between passive and active mas- 
tery. Each of us, whether illiterate or literately gifted, understands tremendously 
more language than he is speaking or writing, and than he would ever speak or 
write, or be able to speak or write, and this difference extends from mere vocab- 
ulary to grammar and style, and certainly to the mastery of foreign languages. 
Nowhere in our mental and instrumental structure does passive mastery exceed 
its active counterpart to such a degree as in language, and mathematics is no ex- 
ception to this rule. No wonder -- one would say -- for language is the vehicle of 
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communication, and communicating vessels, whether wide or narrow, are in 
some respect each other’s equals. 
Under the aspect of communication I shall look at Mathematics for All. Mathe- 
matics can boast a language, so specific that it looks like mathematics itself is a 
language (which is often, though wrongly, identified with mathematics as such). 
Language is mainly learned in the course of strongly interactive communication; 
even reading, thanks to contents, is more interactive than it looks at first sight. 
This is the reason (or one of the reasons) why I have pleaded for learning in small 
groups of say, four learners and, for that matter, in groups of mixed ability [87, 
p.60-63]. Relieve me of the task of repeating my arguments! In fact, these argu- 
ments are the direct consequences of my view on learning processes: they are 
steered by reflection on one’s own mental activities, which is stimulated by ob- 
serving oneself by means of observing others, and reinforced by the distant levels 
of the participants in the learning process. 
Cooperative learning foreshadows cooperation in adult life and professions. In 
this perspective Mathematics for All means: as much and as good active mathe- 
matics as is needed to participate in even more and even better passive mathemat- 
ics. I asked: 

We teach classes, so why shouldn’t we expect classes to learn? Life is cooperation. 
Why do examinations focus on individual performances and entirely disregard collec- 
tive ones? But let us delay answering this question! 

The answer is, as you may expect: They should not. This is a verbal answer, in- 
deed. It will take much time and trouble before these words become deeds. A first 
step on this long path is to formulate, besides individual objectives, cooperative 
ones of Mathematics for All, and to describe specific tasks to be performed in co- 
operation with others. 



EPILOGUE 

Did I do justice to what I promised and explained in “Apology and Explication”? 
I myself was astonished how little revisitation could add to the yield of former 
visits except reorganisation of the contents. 
Publishing “Lectures”, which are no lectures at all is an old and venerable habit, 
but I did not realise early enough that nowadays “Lectures” are even less suited 
to reflect lectures. Indeed, lectures on subjects like those dealt with in this book, 
are centred around a rich variety of overhead sheets, and elaborated on by infor- 
mal talk that provides for the indispensable concreteness. Sometimes I have tried 
surrogates but I could not continue this way indefinitely. In particular, I had to 
refrain from dealing extensively with teaching matter. 
The reader might be disappointed that I did not tackle computer education, in- 
cluding informatics as it is called on the continent. In the perspective of the 
present book this does not distinguish itself from other mathematical subject mat- 
ter. And the computer as a teacher is still a far cry away, or so it seems to me. 

181 



This page intentionally left blank.



APPENDIX 

Solution of the problem 1.3.3 , 15 (fig. 3) 

1. The first step to deal with such problems is distinguishing states, and opera- 
tions moving states into each other. 

2. Under the conditions of the problem some states may be indistinguishable. 
This is the case for states that arise from each other by rotations of the barrel 
and by interchanging white and black. This remark also holds for the opera- 
tions. 

3. As a consequence one considers classes of states and classes of operations. 
Two states (operations) belong to the same class if they arise from each other 
by rotations or colour change. 

4. This leaves us with four classes of states and three classes of operations, each 
defined by a representative: 

States Members in the class 

O= 2 

S= 

P= 

D= 2 

8 

4 

Operations Members in the class - means inverting the disk, 
+ means leaving it as it is 

s =  

p =  

d =  - + 

5. Although it is not strictly needed, one can draw up a table recording the pos- 
sible results of operations applied to states: 
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6. The system shall be moved into state 0. If it is state D, the operation d does 
the job. So we first apply d. If it happens to be in state P, it then moves into 
state D or 0. So if is not yet in state 0, we can move it into state D or 0, and 
if need be, by another d into 0. Anyway if the system was in state D or P, it 
moves into 0 by means of dpd (or part of it). 

7. If, however, it is in state S, then s moves it into state P, D, or 0. So if we now 
apply s, and if need be, another dpd (or part of it), we are finished. 

8. The solution is 
dpdsdpd (or part of it). 
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