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EDITORS PREFACE

H

i e TEa thaca <zra

110S¢ uuPUl tanit O1 tnese was tne
pubhcatlon of a modlﬁ d and extended version of his brilliant essay
‘Proofs and Refutations’, which appeared in four parts in The British
Journal for the Philosophy of Science, 14, 1963—4. Lakatos had long had a
contract for this book, but had held back publication in the hope of
amending and further improving the essay, and of adding to it sub-
stantial extra material. This work was conSidmably delay‘ed by the
diversion of his interests to the philosophy of physical science, but in
the summer of 1973 he finally decided to go ahead with the publication.
During that summer we each discussed plans for the book with him,
and we have tried to produce a book which, in the sadly changed circum-
stances, is as similar as possible to the one then pro_]ccted by Lakatos.
We have thus included three new items in addition to the original
‘Proofs and Refutations’ essay (which appears here as Chapter 1).
First we have added a second part to the main text. This concerns
Poincaré’s vector-algebraic proof of the Descartes-Euler conjecture. It

is based on chapter 2 of Lakatos’ s 1961 Cambridge Ph.D. thesis. (The

ﬂ)
C
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thesis becomes here appendix 1, which contains a further case-study in
the method of proofs and refutations. It is concerned with Cauchy’s
proof of the theorem that the limit of any convergent series of con-
tinuous functions is itself continuous. Chapter 2 of the main text and
appendix I should allay the doubt, often expressed by mathematicians
who have read ‘Proofs and Refutations’, that, while the method of
proof-analysis described by Lakatos may be applicable to the study of
polyhedra, a subject which is ‘near empirical’ and where the counter-
examples are easily visualisable, it may be inapplicable to ‘real’

mathematics. The third additional item (appendix 2) is also based on a
A ré N rhAasbar 4 r\'rT nlrn.-nn o & atwo TO- 100 f\]’\n11f A nr\ﬂoa 11an~a0 r\r]—\:n
k’dllr UL blldtﬂvbl J VUl JoudDdAlLUD O LILILJO1D. AL 10 AUVUUUL L11IU LU 13\4 ULCIILOD UL 111D
position for the development, presentation and teaching of mathematics.

ix



PROOFS AND REFUTATIONS

One of the reasons Lakatos delayed publication was his recognition
that some of this extra material, whilst containing many new points
and developments of his position, was in need of further consideration
and further historical research. This is particularly true of the material
(in appendix 1) on Cauchy and Fourier. We also are aware of certain
difhiculties and ambiguities in this material and of omissions from it.
We felt, however, that we should not change the content of what
Lakatos had written. As for elaborating on, and adding to, the material,

neither of us was in a position to supply the necessary long and de-
P P B NSRS R L Do d ol el ol Ve L O L
udiicQ LubLUlchu LIOXCAICIL., I'dCCQU LICIL WILIL UIC 4ILCLIIdLIVES UL 110U PUU"

lishing the material at all, or publishing it in an unfinished state, we
decided on the latter option. We feel that there is much of interest in
it, and hope that it will stimulate other scholars to extend and correct
it if necessary.

In general, we did not think it right to modify the content of
Lakatos’s material, even those parts of it about which we were con-
fident Lakatos had changed his position. We have therefore restricted
ourselves to pointing out (in notes marked with asterisks) some of

those things we should have tried to persuade Lakatos to change and
(whlrh nfren amounts to the same fhmo\ some of those pomtc we

aravans NaAvvaa vALL OR222L RAk2235 S aaaV

believe Lakatos would have changed in pubhshmg this material now.
(His intellectual position had, of course, changed considerably during
the thirteen years between completing the Ph.D. thesis and his death.
The major changes in his general philosophy are explained in his[1970].
We should mention that Lakatos thought that his methodology of

scientific research programmes had important implications for his

hilacnals, At .
PIIJJUDUPII.)’ UL llldb.llCllldleb.}

Our approach to matters of presentation has been to leave the
material which Lakatos had himself published (i.e. chapter 1 of the
main text) almost entirely unchanged (the only exceptions are a few

P rints and unambicuous minor sli c\ We }mve hnwaver rather

amwd Ladls —.---v- ~= 4 aaL iRV ~Svaiva

substantlally modlﬁed the previously unpubhshcd material - though,
to repeat, only in form and not in content. Since this may seem a rather
unusual procedure, perhaps a few words of justification are in order.
Lakatos always took a great deal of care over the presentation of any
of his material which was to be published, and, prior to publication, he

always had such material widely circulated amongst colleagues and
friends. for

n P A :ean rements. We are sure e I
1CIIUD, 1VUL L1l u

icism and improvements. we are surc tnat LhC
material here published for the first time would have undergone this

treatment, and that the changes would have been more drastic than
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those we have dared to introduce. Our knowledge (through personal
experience) of the pains Lakatos took to present his position as clearly
as possible obliged us to try to improve the presentation of this material
as best we could. It is certain that these new items do not read as well
as they would have done, had Lakatos himself revised the material
on which they are based, but we felt that we were close enough to
Lakatos, and involved enough in some of his previous publications, to
make a reasonable attempt at bringing the material up to somewhere

near his own high standards
XY o meem <rmmr sdmmcmd o Lo L1 il e e e B Lt
VWwC d1C VC )’ PlCdDCU LO 1ldVC 11dU L1IC UPPUILUIII y (R0 PIUUULC LIl
edition of some of Lakatos’s important work in the philosophy of

mathematics, for it allows us to discharge part of the intellectual and
personal debt we both owe him.
John Worrall
Elie Zahar



The material on which this book is based has had a long and varied
history, as is in part already indicated in our preface According to the
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(reprinted here as chapter 1), that work began life in 1958-9 at King’s
College, Cambridge, and was first read at Karl Popper’s seminar at the
London School of Economics in March 1959. Another version was
incorporated in his 1961 Cambridge Ph.D. thesis, on which the rest of
this book is also based. The thesis was prepared under the supervision
of Professor R. B. Braithwaite. In connection with it, Lakatos acknow-
ledged the financial assistance of the Rockefeller Foundation and that
he “received much help, encouragement and valuable criticism from
Dr T.]J. Smiley’. The rest of Lakatos’s acknowledgments read:

When preparing this latest version at the London School of Economics the
author tried to take note especially of the criticisms and suggestions of Dr
J- Agassi, Dr I Hacking, Professors W. C.Kneale and R. Montague, A
Musgrave, Professor M. Polanyi and J. W. N. Watkins. The treatment of the
exception-barring method was improved under the stimulus of the critical
remarks of Professors G. Pélya and B. L. Van der Waerden. The distinction
between the methods of monster-barring and monster-adjustment was sug-
gested by B. MacLennan.

The paper should be seen against the background of Pélya’s revival of
mathematical heuristic, and of Popper’s critical philosophvy
AL AL VIVIRL LAW ML AUVAWY SsaaNes a a vr’r\f‘- WV WA AvAwisa r-nlvuvr--} -

In preparing this book, the editors were helped by John Bell, Mike

Hallett, Moshé Machover and Jerry Ravetz, who all kindly read drafts
of chapter 2 and the appmdxces and produced helpful criticisms.

We should also like to acknowledgc the work of Sandra D. Mitchell
and especially of Gregory Currie, who carefully criticised our rework-
ing of Lakatos’s material.

] W.
E.Z.

Xil



AUTHOR’S INTRODUCTION

It frequently happcns

1
new method emerges t
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while the rest tends to bc 1gnorcd or even forgotten, its study dcsplsed
This situation seems to have arisen in our century in the Philosophy
of Mathematics as a result of the dynamic development of meta-
mathematics.
The subjcct matter of metamathematics is an abstraction of mathe-
ed bv formal svste

acca Uy 1VU11lidi Bybtclllb,

n the history of thought that when a powerful
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heories are repl
proofs by certain sequences of well-formed formulae, definitions by
‘abbreviatory devices’ which are ‘theoretically dispensable’ but
‘typographically convenient’.! This abstraction was devised by Hilbert
to provide a powerful technique for approaching some of the problems
of the methodology of mathematics. At the same time there are
problems which fall outside the range of metamathematical abstrac-
tions. Among these are all problems relating to informal (inhaltliche)
mathematics and to its growth, and all problems relating to the
situational logic of mathematical problem-solving.

I shall refer to the school of mathematical philosophy which tends to

matics with its formal axiomatic abstraction (and the

entify mathemat ith its formal axiomatic (and the
1.:1 1. £ 1. seh - - ) NN sotann lie
piiiosopny O1 matnematics witn m 6;31113;116md|,i€3} as tne LOl.lu.dlibL

school. One of the clearest statements of the formalist position is to be
found in Carnap [1937]. Carnap demands that (@) ‘philosophy is to be
replaced by the logic of science. . .’, (b) ‘the logic of scicncc is nothing
other than the logical syntax of the language of science. . .’, (c) ‘meta-

mathematics is the syntax of mathematical language’ (pp. xiii and 9
Or: vhilosophv of mathematics is to be replaced bv metamat el
L. Plul P y UL llldlllcllldt L D LU VUL ijldbcu v 111041114 L11C™

matics.
Formalism disconnects the history of mathematics from the philo-
sophy of mathematics, since, according to the formalist concept of

! Church {1956], I, pp. 76—7 Also cf. Peano

...... ML, 20 ace

[1910—1“, y P- IZ. 1105 15 a0l uucg“ p«‘h tO
. I58.

in Pascal [1659] cf. Lakatos [1962], p

]



PROOFS AND REFUTATIONS

mathematics, there is no history of mathematics proper. Any formalist
would basically agree with Russell’s ‘romantically’ put but seriously
meant remark, according to which Boole’s Laws of Thought (1854) was
‘the first book ever written on mathematics’.! Formalism denies the
status of mathematics to most of what has been commonly understood
to be mathematics, and can say nothing about its growth. None of
the ‘creative’ periods and hardly any of the ‘critical’ periods of
mathematical theories would be admitted into the formalist heaven,

where mathema..wl theories dwell like the serapmm, purged of all the
emmgmizatal o ~L sqam e s DBasea licas PN PO | M DR
llllPuflLlcs OL c¢ar Llll)’ UIICClL lt-)’. I'OLI11&1IdLD, ]. gll, ubudlly lchC

open a small back door for fallen angels: if it turns out that for some
‘mixtures of mathematics and something else’ we can find formal
systems ‘ which include them in a certain sense’, then they too may be
admitted (Curry [1951], pp. 56-7). On those terms Newton had to wait
four centuries until Pcano Russell, and Quine helped him into heaven
D_y_ IormaIISIHg tnc \JalCUIUS UlraC ls more Ior[unatc Dcnwartz SaVCG
his soul during his lifetime. Perhaps we should mention here the
paradoxical plight of the metamathematician: by formalist, or even by

deductivist, standards, he is not an honest mathematician. Dieudonné
ta"(c n]“mnf the ahcn]ntp nec tv lmanPA Oon anv mafhematnman u;lm

SANS = Vaaw HwSVavevew aalw it gl haliand 4 adidvaiwasaR vaaisaa b

cares for intellectual mtegrzty my italics) to present his reasonings in
axiomatic form ([1939], p. 225).

Under the present dominance of formalism, one is tempted to
paraphrase Kant: the history of mathematics, lacking the guidance of
philosophy, has become blind, while the philosophy of mathematics,
turning its back on the most intriguing phenomena in the history of
uxathcuut Cs, nas OCCOoINC em

‘Formalism’ is a bulwark of ioglcal positivist philosophy. Accoralng
to logical positivism, a statement is meaningful only if it is either
‘tautological’ or empirical. Since informal mathematics is neither
‘tautological’ nor empirical, it must be meaningless, sheer nonsense.?

1 Russell [1901]. The essay was republished as chapter s of Russell’s [1918], under the
title ‘ Mathematics and the Metaphysicians’. In the 1953 Penguin edition the quotation
can be found on p. 74. In the preface of his [1918] Russell says of the essay: ‘Its tone is

'\nv’"“v avw ad ey tha fart that tha aditnr haooad ma ¢4 mala tha artisla Cag wasrmansina
P“ y UAP‘N“\:“ Uy (2 ¥iw™) La\-t Lllﬂl ‘-‘l\r \.ulI.UL U\.ss\'u 1A% LU llidDny LiiLV al tl\:‘\' 4> LuilidiiLliv

as possible”.’

2 According to Turquette, Godelian sentences are meaningless ([1950], p. 129). Turquette
argues against Copi who claims that since they are a priori truths but not analytic, they
refute the analytic theory of a priori ([1949] and [1950]). Neither of them notices that the
peculiar status of Gddelian sentences from this point of view is that these theorems are
theorems of informal mathematics, and that in fact they are discussing the status of
informal mathematics in a particular case.

2



INTRODUCTION

The dogmas of logical positivism have been detrimental to the history
and philosophy of mathematics.

The purpose of these essays is to approach some problems of the
methodology of mathematics. I use the word ‘methodology’ in a sense
akin to Pélya’s and Bernays™ ‘heuristic’* and Popper’s ‘logic of dis-
covery’ or ‘situational Jogic’.2 The recent expropriation of the term
‘methodology of mathematics’ to serve as a synonym for ‘meta-
mathematics’ has undoubtedly a formalist touch. It indicates that in

formalist philosophy of mathematics there is no proper place for
methodology qua logic of discovery."‘ According to formalists, mathe-

1 Pélya [1945], especially p. 102, and also [1954], [19624]; Bernays [1947], esp. p. 187
2 Popper [1934], then [1945], especially p. 9o (or the fourth edition [1962], p. 97); and also

[1957], pp. 147 ff.
3 One can illustrate this, e.g. by Tarski [1930a] and Tarski [1930b]. In the first paper Tarski
uses the term ‘deductive sciences’ explicitly as a shorthand for ‘formalised deductive
sciences’. He says: ‘Formalised deductive c'liscipiines form the field of research of meta-
mathematics r Odglu'y' in the same sense in which apaucu entities form the field of research
in geometry.” This sensible formulation is given an intriguing imperialist twist in the
second paper: ‘The deductive disciplines constitute the subject-matter of the methodo-
logy of the deductive sciences in much the same sense in which spatial entities constitute
the subject-matter of geometry and animals that of zoology. Naturally not all deductive
disciplines are presented in a form suitable for objects of scientific investigation. Those,
for example, are not suitable which do not rest on a definite logical basis, have no precise
rules of inference, and the theorems of which are formulated in the usually ambiguous
and inexact terms of colloquial language — in a word those which are not formalised.

n conseguence ta tha Aicr‘nccinﬂ nr

Mat nmquﬂpmohrq] 1nvnchnmf|nnc ara canfinad 1
A& A Adr \r\llla\r\iu\rll LA L2 2

AVALVIGiiAGviiViiAG LIV G LAVLSUigaliUils gl L

formalised deductive disciplines.” The innovation is that while the first formulation
stated that the subject matter of metamathematics is the formalised deductive disciplines,
the second formulation states that the subject-matter of metamathematics is confined
to formalised deductive disciplines only because non-formalised deductive sciences are
not suitable objects for scientific investigation at all. This implies that the pre-history of
a formalised discipline cannot be the subject-matter of a scientific investigation — unlike
the pre-history of a zoological species, which can be the subject-matter of a very
scientific theory of evolution. Nobody will doubt that some problems about a mathe-
matical theory can only be approached after it has been formalised, just as some problems
about human beings (say concerning their anatomy) can only be approached after their
death. But few will infer from this that human beings are *suitable for scientific investi-
gation’ only when they are ‘presented in “‘dead” form’, and that biological investiga-
tions are confined in consequence to the discussion of dead human beings — although, I
should not be surprised if some enthusiastic pupil of Vesalius in those giorious days of
e&i'l'y' andLUllly, thll lhc PUWC[ fu} ficw lllCLllUd O1 d BCLL!UII Clucxscu, hdd ldcuuﬁcd
biology with the analysis of dead bodies.

In the preface of his [1941] Tarski enlarges on his negative attitude towards the
possibility of any sort of methodology other than formal systems: ‘A course in the
methodology of empirical sciences...must be largely confined to evaluations and
criticisms of tentative gropings and unsuccessful efforts.” The reason is that empirical
sciences are unscientific: for Tarski defines a scientific theory ‘as a system of asserted
statements arranged according to certain rules’ (ibid.).

2
J



PROOFS AND REFUTATIONS

discover in a formalised theory? Two sorts of things. First, one can
discover the solution to problems which a suitably programmed Turing
machine could solve in a finite time (such as: is a certain alleged proof
a proof or not?). No mathematician is interested in following out the
dreary mechanical “method’ prescribed by such decision procedures.
Secondly, one can discover the solutions to problems (such as: is a
certain formula in a non-decidable theory a theorem or not?), where
one can be guided only by the ‘method’ of ‘unregimented insight and

UL fun

6 .
N ~xxr ..L L] l ,J........,...'- e hatizran +l i nlicin AL o smn~lai o
INOW tnis Di€aK aiterinative bpetween tnée rationaiisinn Or a iniacnine
and the irrationalism of blind guessing does not hold for live mathe-

matics:! an investigation of informal mathematics will yield a rich
situational logic for working mathematicians, a situational logic which
is neither mechanical nor irrational, but which cannot be recognised
and still less, stimulated, by the formalist philosophy.

T]‘\n ]110 nv-x nf mnfl«amn‘-'no NN r] Ql-\n ]r\ncn nrm ann‘-;nn! r];nnr\tvnvﬂn
4 11V 1110VVUL y V1Ll 11iAalliviliailil) daliu vy Lusu. O1 IMauiciiadviCail u.I.DL«UVbLy,
1 .1 1 1 2

i.e. the phylogenesis and the ontogenesis of mathematical thought,
cannot be developed without the criticism and ultimate rejection of
formalism.

But formalist philosophy of mathematics has very deep roots. It is
the latest link in the long chain of dogmatist philosophies of mathe-
matics. For more than two thousand years there has been an argument
between dogmatists and sceptics. The dogmatists hold that - by the
power of our human intellect and/or senses — we can attain truth and
know that we have attained it. The sceptics on the other hand either
hold that we cannot attain the truth at all (unless with the help of

mvstical PYnPrmnrp\ or that we cannot k now if we can attain it or that

22 UVAYSS LA PN LAVAINN ) wasiisw ¥ AMLANS v wiraa B aa

1 One of the most dangerous vagaries of formalist philosophy is the habit of (1) stating
somethmg - rightly — about formal systems; (2) then saying that this applies to ‘ mathe-
matics * - this is again right if we accept the identification of mathematlcs and formal

ratarrcs f2a) aishannitantly writh o qtirrantitiniie chiff 3o masning 11cing tha tare Somatha
L \J) auu)\.\iu&lltly, wll-ll -3 DuLLCPuuUuD Siif L 111 lllbulllls’ u)llls L1iIV LUl1iix llld\,llb"

’
in the rdmarv senge. So Omne savs (f <1l. n R"}\ that ‘this reflects the charac-

s5= wes = v 7 -1 r- Detuiaadd TESSE S esSTEEYE wesw adaiad

terxstxc mathematical situation; thc mathematlcxan hits upon his proof by unregimented
insight and good fortune, but afterwards other mathematicians can check his proof’.
But often the checking of an ordinary (informal) proof is a very delicate enterprise, and
to hit on a ‘mistake’ requires as much insight and luck as to hit on a proof: the discovery
of ‘mistakes’ in informal proofs may sometimes take decades - if not centuries.

2 Both H. Poincaré and G. Pélya propose to apply E. Haeckel’s ‘ fundamental biogenetic
law’ about ontogeny recapitulating phylogeny to mental development, in particular to
mathematical mental development. (Poincaré [1908], p. 135, and Pélya [1962b].) To
quote Poincaré: ‘Zoologists maintain that the embryonic development of an animal
recapitulates in brief the whole history of its ancestors throughout geologic time. It
seems it is the same in the development of minds. . .For this reason, the history of
science should be our first guide’ (C. B. Halsted’s authorised translation, p. 437).

4
4



INTRODUCTION

we have attained it. In this great debate, in which arguments are time
and again brought up to date, mathematics has been the proud fortress
of dogmatism. Whenever the mathematical dogmatism of the day got
into a ‘crisis’, a new version once again provided genuine rigour and
ultimate foundations, thereby restoring the image of authoritative,
infallible, irrefutable mathematics, ‘the only Science that it has pleased
God hitherto to bestow on mankind’ (Hobbes [1651], p. 15). Most
sceptics resigned themselves to the impregnability of this stronghold of

dogmatist epistemology.! A challenge is now overdue
T ~fhare AL thic racacctizdsr il Alhallac on o n PR I, ,..A..'A,J Y PPN LY
111C COILC O1 UID Ldbc"bluuy Wil blldllCIlgC matnemniaticas 101 maiisin,

but will not challenge directly the ultimate positions of mathematical
dogmatism. Its modest aim is to elaborate the point that informal,
quasi-empirical, mathematics does not grow through a monotonous
increase of the number of indubitably established theorems but through
the incessant improvcmcnt of guesses by speculation and criticism, by
trlé 10gic OI PfOOIb ai‘lu rcrutaﬁOi‘lS 0111(..(:, nowe'v'c‘:r metamatnemati

is a paradigm of informal, quasi-empirical mathematics just now in
rapid growth, the essay, by implication, will also challenge modern
mathematical dogmatism. The student of recent history of meta-
mathematics will recognise the patterns described here in his own field.

The dialogue form should rcﬂcct the dialectic of the story; it is
meant to contain a sort of rationally reconstructed or ‘distilled’ history.
The real history will chime in in the footnotes, most of which are to be taken,

therefore, as an organic part of the essay.

1 For a discussion of the role of mathematics in the dogmatist-sceptic controversy, cf.
my [1962].



The dialogue takes place in an imaginary classroom. The class gets
interested in a PROBLEM: is there a relation between the number of
it Y7 01 v 1 . 1.1 1 ... .1

VEIUCEs v, 1€ Nuimopcr o1 Cagcs L ana ul€ nuIinocer Ol 1acCCs 17 Ol POly-
hedra — particularly of regular polyhedra — analogous to the trivial
relation between the number of vertices and edges of polygons, namely,
that there are as many edges as vertices: V' = E? This latter relation

cn_a]w]cc us to {‘IQQQI‘FV nnlvannc 9(‘(‘01‘(‘“’10‘ to h m}wr {\F P(']O'PQ ((\l"
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vertices): triangles, quadrangles, pentagons, etc. An analogous relatlon
would help to classify polyhedra.

After much trial and error they notice that for all regular polyhedra
V—E+F = 2.1 Somebody guesses that this may apply for any poly—
hedron Whatsoever Others try to falsify this conjecture try to test it in

anv different wavs —- it holds oood. The results corroborate the con-
many difterent ways -1t holds good. 1he resuits corroborate th
inntiien and ciigogect that 1+ ~nild ha sanns, s d Te o ~s A-L;.. PR Sy alene elaa
jecture, ana suggest tnat it could oe provea. 1t is at tnis point — aiter tne
1

First noticed by Euler [17584]. His original problem was the classification of polyhedra,
the difficulty of which was pointed out in the editorial summary: ‘While in plane
geometry polygons ( figurae rectilineae) could be classified very easily according to the
number of their sides, which of course is ailways equal to the number of their angles,
in stereometry the classification of polyhedra (corpora hedris planis inclusa) represents a
much more difficult problem, since the number of faces alone is insufficient for this
purpose.’

The key to Euler’s result was just the invention of the concepts of vertex and edge: it was
he who first pointed out that besides the number of faces the number of points and lines
on the surface of the polyhedron determines its (topological) character. It is interesting
that on the one hand he was eager to stress the novelty of his conceptual framework, and
that he had to invent the term ‘acies’ (edge) instead of the old ‘latus’ (side), since latus

e nl e LY L. IS NSO E S | ‘L, atll
was a POlngH OICCpL WilIC 1IC wanu::u a POIyllCUIdl one, on tne (hCI' nana ne sti
M

I'A"A'hll(l Q‘]‘\A oy ‘nnnu us cn’u’uc /nn] r‘ nr\rr]A\ fnr ]euc nn-nf=‘ Ir 7,
AWwVGRiiiveE: Viiw \-\rlll u' BEPD IVIWKHD \avx.lu a.llsl\'/ ANJL LiiO tl\lll‘.\p Lll\\p LAY

recently generally acccpted that the priority of the result goes to Descartes The ground
for this claim is a manuscript of Descartes [c. 1639] copied by Leibniz in Paris from the
original in 16756, and rediscovered and published by Foucher de Careil in 1860. The
priority should not be granted to Descartes without a minor qualification. It is true that
Descartes states that the number of plane angles equals 2¢ + 2a — 4 where by ¢ he means
the number of faces and by a the number of solid angles. It is also true that he states that
there are twice as many plane angles as edges (latera). The conjunction of these two
statements of course yields the Euler formula. But Descartes did not see the point of
doing so, since he still thought in terms of angles (plane and solid) and faces, and did not
make a conscious revolunonary change to the concepts of o-dlmcnsmnal vertices,
1-dimensional edges and 2-dimensional faces as a necessary and sufficient basis for the full

topological characterisation of polyhedra.

6



A PROBLEM AND A CONJECTURE

stages problem and conjecture — that we enter the classroom.! The teacher
is just going to offer a proof.

2. A Proof

TeAcHER: In our last lesson we arrived at a conjecture concerning
polyhedra, namely, that for all polyhedra V—E+F = 2, where V is
the number of vertices, E the number of edges and F the number of

faces. We tested it bv various methods. But we haven’t vet nroved it

Ao Ce YV M VRORLAS A V) O Adrav wvaiSveSe vV was va r&vvv\» Awve

found a proof?

PupiL SigMa: ‘I for one have to admit that I have not yet been able
to devise a strict proof of this theorem. ..As however the truth of it
has been established in so many cases, there can be no doubt that it holds
good for any solid. Thus the proposition seems to be satisfactorily
demonstrated.’® But if you have a proof, please do present it.

TeacHER: In fact I have one. It consists of the fullowmg thought-
experiment. Step 1: Let us imagine the polyhedron to be hollow, with
a surface made of thin rubber. If we cut out one of the faces, we can
stretch the remaining surface flat on the blackboard, without tearing it.
The faces and edges will be deformed, the edges may become curved,
but ¥ and E will not alter, so that if and only HV—-E+F = 2 for the
original polyhedron, V—E+F = 1 for this flat network — remember
that we have removed one face. (Fig. 1 shows the flat network for the
case of a cube.) Step 2: Now we triangulate our map - it does indeed
look like a geographical map. We draw (possibly curvilinear) diagonals

in those (possibly curvilinear) polygons which are not already (possibly

c"r‘vul inear) triangles By drawing each diagcnal we increase both E
1 o1 . | . n 1 1.
and F by one, so that the total V—E+ F will not be altered (fig. 2).

Step 3: From the triangulated network we now remove the triangles
one by one. To remove a triangle we either remove an edge - upon
which one face and one edge disappear (fig. 3(a)), or we remove two
edges and a vertex — upon which one face, two edges and one vertex
disappear (fig. 3(b)). Thusif V—E+F = 1 before a triangle is removed,

! Euler tested the conjecture quite thoroughly for consequences. He checked it for prisms,
pyramids and so on. He could have added that the proposition that there are only five
regular bodies is also a consequence of the conjecture. Another suspected consequence
is the hitherto corroborated proposition that four colours are sufficient to colour a map.

The phase of conjecturing and testing in the case of V- E+ F = 2 is discussed in P6lya

(frnc 41 vol. 1. the first five sections of the third chanter tn. 2¢—41). Pdlva stonned here

LEFOAgs ¥ ae 2y widL L2200 Al VH SULRAURLS Ui VAL Lillle Vilapiviiy pPre JO TR e A Ve SV P Ye 22Vat,

and does not deal with the phase of proving — though of course he points out the nced for
aheuristic of * problems to prove’ ([1945], p. 144). Our discussion starts where P6lya stops.
2 Euler ([17584], p. 119 and p. 124). But later ([1758b]) he proposed a proof.

ly J
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PROOFS AND REFUTATIONS
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(a) Fig. 3. (b)

it remainis so after the triangle is removed. At the end of this procedure
we get a single triangle. For this V—E+F = 1 holds true. Thus we

have bmved our conjecture.!
Prorr Der e Van ckonld

& VKAl UJ-J L‘ A VW J11

conjectural about it any more.

PupiL ArpHA: I wonder. I see that this experiment can be performed
for a cube or for a tetrahedron, but how am I to know that it can be
performed for any polyhedron? For instance, are you sure, Sir, that
anry polyhedron, after having a face removed, can be stretched flat on the
blackboard? I am dubious about your first step.

I'UPIL DblA nre Y()u sure [ﬂat ln Inangulatmg [ne map one WIU alwa}’s
get a new face for any new edge? I am dubious about your second step.

PupiL GAMMA: Are you sure that there are only two alternatives — the

disappearance of one edge or else of two edges and a vertex — when one drops
the trmnalpc one by one? Are vou even sure that one is left with a cmolp

(st Sand View « L2 S VYOai2 3520 2l L d ARG Al - SitR

triangle at the end of this process? I am dubious about your third step.?
TeAcHER: Of course I am not sure.

! This proof-idea stems from Cauchy [18134].

* Delta’s view that this proof has established the ‘theorem’ beyond doubt was shared by
many mathematicians in the nineteenth century, e.g. Crelle [1826-7], 2, pp. 66871,
Matthiessen [1863], p. 449, Jonquieres [1890a] and [1890b]. To quote a characteristic

passage: ‘After Cauchy s proof, it became absolutely indubitable that the elegant

walaalce YT n maaman1tas 2 AT il 0 VLTl Sl e Realae sbasn J Sae weman
ICLIdUOIL ¥V + 1 = D‘r" dPPllc& U 411 SOOI 0L PUl llwld, Ju)t as LWer Statca in I AY D 1
1811 all indecision should have d!cahnparprl * Tonauidres ernnn] DD, ITI-12

all n should ha sappear jongueeres | 18904;, pp. ITI-I2,
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:_ »

3 The class is a rather advanced one. To Cauchy, Poinsot, and to man er excellent

mathematicians of the nineteenth century these questions did not occ
L
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A PROOF

ArrHA: But then we are worse off than before! Instead of one
conjecture we now have at least three! And this you call a ‘proof’!

TrACHER: I admit that the traditional name ‘proof” for this thought-
experiment may rightly be considered a bit misleading. I do not think
that it establishes the truth of the conjecture.

DELTA: What does it do then? What do you think a mathematical

proof proves?

TeacHER: This is a subtle question which we shall try to answer
later. Till then I propose to retain the time-honoured technical term
¢ £ Lmn o sl e clis maiaslasesass e PP 9 ’ o

P‘I‘OOL IOr a tnougni —-experiment — or quau-w&pci“ ient — ivnu,n :uggc.\u
a decomposition of the original conjecture into subconjectures or lemmas, thus
embedding it in a possibly quite distant body of knowledge. Our
‘proof’, for instance, has embedded the original conjecture - about
crystals, or, say, solids - in the theory of rubber sheets. Descartes or
Euler, the fathers of the original conjecture, certainly did not even

dream of this.2
1 Thought-experiment (deiknymi) was the most ancient pattern of mathematical proof.
It prevailed in pre-Euclidean Greek mathematics (cf. A. Szab6 [1958]).

That conjectures (or theorems) precede proofs in the heuristic order was a commone-
place for ancient mathematicians. This followed from the heuristic precedence of
‘analysis’ over ‘synihesis’. (For an excellent discussion see Robinson {1936].) According
to Proclos, ‘.. .it is. . .necessary to know beforehand what is sought’ (Heath [1925], 1,
p. 129). ‘They said that a theorem is that which is proposed with a view to the demon-
stration of the very thing proposed’ ~ says Pappus (ibid. 1, p. 10). The Greeks did not
think much of propositions which they happened to hit upon in the deductive direction
without havmg previously guessed them. They called them porisms, corollaries, incidental
results springing from the proof of a theorem or the solution of a problem, results not
directly sought but appearing, as it were, by chance, without any additional labour, and
constituting, as Proclus says, a sort of windfall (ermaion) or bonus (kerdos) (ibid. 1, p. 278).

Yo vand im tha adistaeial summaryv o Tiilaw femel ml ¢hat neithemntianl thaneaemas Sezcmcnn

YW 1vau lll. Ul CGitoria: suimimn dl.y 1o Lcuct L1 /70U /] tlidal dLilUliliClildl WuIcouLeiln wWel1C

discovered long before their truth has been confirmed by rigid demonstrations’. Both
¢

the Editor and Euler use for this process of discovery the modern term ‘induction’

instead of the ancient ‘analysis’ (ibid.). The heuristic precedence of the result over the
argument, of the theorem over the proof, has deep roots in mathematical folklore,
Let us quote some variations on a familiar theme: Chrysippus is said to have written to
Cleanthes: ‘Just send me the theorems, then I shall find the proofs’ (cf. Diogenes Laertius
[¢. 200], VIL 179). Gauss is said to have complained: ‘I have had my results for a long

time; but I do not yet know how I am to arrive at them’ (cf. Arber [1945], p. 47), and
Riemann: ‘If only I had the theorems! Then I should find the proofs easily enough.’
(Cf. Holder [1024], p. 487.) Pdlya stresses: ‘ You have to guess a mathematical theorem
before you prove it’ ([1954], vol. 1, p. vi).

The term ‘ quasi-experiment’ is from the above-mentioned editorial summary to Euler
[1753]. According to the Editor: ‘As we must refer the numbers to the pure intellect
alone, we can hardly understand how observations and quasi-experiments can be of usein
investigating the nature of the numbers. Yet, in fact, as I shall show here with very good

ransane tha mecnartias AF tha mismbace bacwrn tadasr hava hoae smactly disravarad ke
£€asons, il tn.uyu.u\.a O1 ¢ nUmoclis Kinowin Luucy nave ofen mosuy GisCoOVIICa oy

observation. ..’ (PSlya’s translation; in his [1954], 1, p. 3 he mistakenly attributes the
quotation to Eulcr).

Q
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PROOFS AND REFUTATIONS
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TeacHEr: This decomposition of the conjecturc suggested by the
proof opens new vistas for testmg The decomposn ion d ploys the

cism has more argets. We

- A

COH_]CCturc ona WIUC[ IrUIlt, SO tuat our cCri1 t
now have at least three opportunities for counterexamples instead of
one!

GAMMA I have alread expressed my dislike of your third lemma

blhtlcs athcr we remove an edge or we remove two edges
vertex). I suspect that other patterns may emerge when removin
triangle.

TEACHER: Suspicion is not criticism.

Gamma: Then is a counterexample criticism ?

Tracuer: Certainly. Conjectures ignore
they cannot ignore counterexampxes.

THETA (aside): Conjectures are obviously very different from those
who represent them.

GaMMA: I propose a trivial counterexample. Take the triangular
network which results from performing the first two operations on a
cube (fig. 2). Now if I remove a triangle from the inside of this net-
work, as one might take a piece out of a jigsaw puzzle, I remove one
triangle without removing a single edge or vertex. So the third lemma
is false — and not only in the case of the cube, but for all polyhedra
except the tetrahedron, in the flat network of which all the triangles

omQ .

are boundary triangles. Your proof thus proves the Euler theorem for
o epeeabado . .. . I..A- e Liiniss thhne I TR0 — A £aw +ha
tne tetranearomn. out we air €aqy Rinew tnat v —Cc+r = 2 10f ti

tetrahedron, so why prove it?

TEeACHER: You are right. But notice that the cube which is a counter-
example to the third lemma is not also a counterexample to the main
conjecture, since for the cube V—E+F = 2. You have shown the
poverty of the argument —the proof-but not the falsity of our
conjecture.

ArpHA: Will you scrap your proof then?

TeacHer: No. Criticism is not necessarily destruction. I shall
improve my proof so that it will stand up to the criticism.



PROOF AND LOCAL COUNTEREXAMPLE
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Fig. 4.

refutes a lemma (without necessarily refuting the main conjecture),
and I shall call a ‘global counterexample’ an example which refutes the
main conjecture itself. Thus your counterexample is local but not

global. A local, but not global, counterexample is a criticism of the
hrngf ]‘s t not nF thP rnmPrr'_rei

Al At

GAMMA: So, the conjecture may be true, but your proof does not
prove it.

TEACHER: But | can easily elaborate, and improve the proof, by replac-
ing the false lemma by a slightly modified one, which your counter-
example will not refute. I no longer contend that the removal of any

riangole ﬂa”nmg one nf flqp fwo P tterns mgn!;oner] but rnprp]v f]'\ at af enrh
l-

ln mn;-a’ Af 1anan l\A Yy /1 ar 4. An,n [n”nann
14 i [31%4

ne remova, oy any ooutia
one of these patterns. Coming back to my thought—expenment all that
I have to do is to insert a single word in my third step, to wit, that
‘“from the triangulated network we now remove the boundary triangles
one by one’. You will agree that it only needed a trifling observation
to put the proof right.!

GaMmma: I do not think your observation was so trifling; in fact it
was quite ingenious. To make this clear I shall show that it is false. Take
the flat network of the cube again and remove eight of the ten triangles
in the order given in fig. 4. At the removal of the eighth triangle,

which is certainly by then a boundary triangle, we removed two edges

1 1 J o

.
r-] nn vartay — fl‘\
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two disconnected triangles 9 and 10.

TeacHer: Well, I might save face by saying that I meant by a
boundary triangle a triangle whose removal does not disconnect the
network. But intellectual honesty prevents me from making sur-
reptitious changes in my position by sentences starting with ‘I meant

> so I admit that now I must replace the second version of the
1 Lhuilier, when correcting in a similar way a proof of Euler, says that he made only a

‘trifling observation’ ([1812-13a], p. 179). Euler himself, however, gave the proof
up, since he noticed the trouble but could not make that ‘trifling observation’.

11



PROOFS AND REFUTATIONS

triangle-removing o p eration with a third version: that we remove the
triangles one by one in such a way that —E+F does not alter.
Kaeea: 1 generously agree that the lemma corresponding to this
operation is true: namely, that if we remove the triangles one by one
in such a way that V—=E+F does not alter, then V'—E+F does not
alter.
TeacHER: No. The lemma is that the triangles in our network can

be so numbered that in removmg them in the right order V — E+F will not

at all ?1 Your orlgmal thought-experiment gave the instruction:
remove the triangles in any order. Your modified thought-experiment
gave the instruction: remove boundary triangles in any order. Now
you say we should follow a definite order, but you do not say which
and whether that order exists at all. Thus the thought-experiment
breaks down. You improved the proof-analysis, i.e. the list of lemmas;
but the thought-experiment which you called ‘the proof’ has dis-
appeared.
RHO: Only the third step has disappeared.

KApPPA: Mnrpnvpr did you improve rhplemmn ?Your first two simplc

andas i da aAvalsivI Y Seale NS s S SaA0 a2 .

versions at least looked tr1v1a11y true before they were refuted; your
lengthy, patched up version does not even look plausible. Can you
really believe that it will escape refutation?

TeAcHER: ‘Plausible’ or even ‘trivially true’ propositions are usually
soon refuted: sophisticated, implausible conjectures, matured in
criticism, might hit on the truth.

OmeGa: And what happens if even your ‘sophisticated conjectures’
are falsified and if this time you cannot replace them by unfalsified

ones? Or, if you do not succeed in improving the argument further by
local patching? You have succeeded in getting over a local counter-
example which was not global by replacing the refuted lemma. What
if you do not succeed next time?
TeacHER: Good question — it will be put on the agenda for to-
mMOorrow.
1 Cauchy thought that the instruction to find at each stage a triangle which can be
removed either by removing two edges and a vertex or one edge can be trivially carried

out for any polyhedron ([18134], p. 79). This is connected with his inability to imagine a
polyhedron that is not homeomorphic with the sphere.

ot
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PROOF AND GLOBAL COUNTEREXAMPLE
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ArpHA: I have a counterexample which will falsify your first lemma -
but this will also be a counterexample to the main conjecture, i.e. this
will e 2 olabal catnterexammnle ac well
111 VC d slUUdl CUULILCLICAd IIPIC dd vwwilll

TeacHeR: Indeed ! Interesting. Let us see.

ArpHA: Imagine a solid bounded by a pair of nested cubes - a pair
of cubes, one of which is inside, but does not touch the other (fig. ).
This hollow cube falsifies your first lemma, because on removing a

face from the inner cube, the polyhedron will not be stretchable on to

n ﬂlnna N A 1171]] 1%+ l‘\plh N ramnua a Nro r\m fl'\a n1ifar t‘l‘l“\n 1nol-nnr]
a tlldllb 4 NYUL Vviil iy ll\rltl WU LLVIIIVU YL a La\,\, LAVULL 1V UULLL VU UL 1114l
1 . C i TS R ¢4 . -~ em Ll Lo L 11 1

$1a€s, 10r €acn cuo€ v —Cc+r = Z, 50 udt 10r ui€ noiuow cube

TeacHER: Good show. Let us call it Counterexample 1.! Now what?

(a) Rejection of the conjecture. The method of surrender

GamMma: Sir, your composure baffles me. A single counterexample
refutes a conjecture as effectively as ten. The conjecture and its proof
have completely misfired. Hands up! You have to surrender. Scrap the
false conjecture, forget about it and try a radically new approach.

TEACHER: I agree with you that the conjecture has received a severe
Plc But it is untrue that the nmnf

N o atnor n nv-aa
i1, LUL JJ.U \,1115, y vu 45 tU
¢

my earlier proposal use the word proof for a ‘thought-experi-
ment which leads to decomposition of the original conjecture intoe

1 This ("mmtprprnmnlp 1 was first noticed hv Lhuilier (f’rRr?—r 'uﬂ p. TnA\ But Gergonne

23 120LILCLE VY LAl t3 St

the Editor, added (p 186) that he lnmself noticed thls long before Lhulher s paper. Not
so Cauchy, who published his proof just a year before. And this counterexample was to
be rediscovered twenty years later by Hessel ([1832], p. 16). Both Lhuilier and Hessel
were led to their discovery by mineralogical collections in which they noticed some
double crystals, where the inner crystal is not transiucent, but the outer is. Lhuilier
acknowledges the stimulus of the crystal collection of his friend Professor Pictet ({1812-
13a], p. 188). Hessel refers to lead sulphide cubes enclosed in translucent calcium
fluoride crystals ([1832], p. 16).

-
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PROOFS AND REFUTATIONS

subconjectures’, instead of using it in the sense of a ‘ guarantee of certain
truth’, you need not draw this conclusion. My proof certainly proved
Euler’s conjecture in the first sense, but not necessarily in the second.
You are interested only in proofs which ‘prove’ what they have set
out to prove. [ am interested in proofs even if they do not accomplish
their intended task. Columbus did not reach India but he discovered
something quite interesting

example (1f it is not global at the same t;m‘,) is a criticism of the proof,
. ~ A ~rnttantisen A ovlalhal anccsmbnmasramatala to o msmtdr mreaan ~L el o
but not fth\, conjecture — a g1o0ai1 countcrexa npi€isaCr iticisimi o1 tie

conjecture, but not necessarily of the proof. You agree to surrender as
regards the conjecture, but you defend the proof. But if the conjecture
is false, what on earth does the proof prove?

GamMA: Your analogy with Columbus breaks down. Accepting a
global counterexample must mean total surrender.
(b) Rejection of the counterexample. The method of monster-barring
DertAa: But why accept the counterexample? We proved our con-
jecture — now it is a theorem. I admit that it clashes with this so-called
‘counterexample’. One of them has to give way. But why should the
theorem give way, when it has been proved? It is the ‘criticism’ that
should retreat. It is fake criticism. This pair of nested cubes is not a
polyhedron at all. It is a monster, a pathological case, not a counter-
example.

Gamma: Why not? A polyhedron is a solid whose surface consists of
polygonal faces. And my counterexample is a solid bounded by poly-

oonal faces.
o

Troarurn: T af 11
A JSAANLARLILIN ¢ AJGC NV

Derta: Your definition is incorrect. A polyhedron must be a
surface: it has faces, edges, vertices, it can be deformed, stretched out
on a blackboard, and has nothing to do with the concept of ‘solid’.
A polyhedron is a surface consisting of a system of polygons.

TeACHER: Call this Def. 2.2

:
DEeLTA: So really you showed us tw

2]
)

a
“wa

1 Definition 1 occurs first in the eighteenth century; e.g.: ‘One gives the name polyhedral
solid, or simply polyhedron, to any solid bounded by planes or plane faces’ (Legendre
[1809], p. 160). A similar definition is given by Euler ([17584]). Euclid, while defining
cube, octahedron, pyramid, prism, does not define the general term polyhedron, but

occasionally uses it (e.g. Book XII, Second Problem, Prop. 17)
\

4 i ,
2 We find Definition 2 implicitly in one o _]onquiercs papers read to the French Academy
against those who meant to refute Euler’s theorem. These e papers are a thesaurus of
monster-barring techniques. He thunders against Lhuilier’s monstrous pair of nested

I4
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PROOF AND GLOBAL COUNTEREXAMPLE

Fig. 6
completely inside the other. A woman with a child in her womb is
not a counterexample to the thesis that human beings have one head.

ArpHA: So! My counterexample has bred a new concept of poly-

hedron. Or do you dare to assert that by polyhedron you always
meant a surface?

TeAcHER: For the moment let us accept Delta’s Def. 2. Can you
refute our conjecture NOw if by polyhcdron we mean a surface?
ArpHA: Certainly. Take two tetrahedra which have an edge in

common (fig. 6(a)). Or, take two tetrahedra which have a vertex in
common (Fo- 6”)“ anh fhme fwmq are rnnnerreﬂ ]’\nfh rnanlrnfe

one smgle surface. And, you may check that for both V—E+F = 3.

TeacHER: Counterexamples 2a and 2b.!

DELTA: I admire your perverted imagination, but of course I did
not mean that any system of polygons is a polyhedron. By polyhedron
I meant a system of polygons arranged in such a way that (1) exactly two
polygons meet at every edge and (2) z't is possible to get from the inside of any

M’\’ nnnnnn l-’,cn J Asaar ~é lc Lan 1 wna1én ‘nlncrln 7] N oo Aaaas

Put]guu to tne insiae 0j uh)" oiner Pu;]guu Uy G rouie wnidn never crosses un[

eage at a vertex. Your first twins will be CXCIUCICCI Dy tl'lC Ill'St criterion

in my definition, your second twins by the second criterion.
TEACHER: Def. 3.2

R T Arn o ~em Lo ~£ 2o P | ad..
cupes. OuLll a bysicux lb no y a puxyuc Oon out a Pdll Or ulbul ict puxyucul’a cdin

independent of the other. . A polyhedron, at least from the classical point of view,
deserves the name only if, before all else, a point can move continuously over its entire
surface; here this is not the case. .. This first exception of Lhuilier can therefore be dis-
carded’ ([1890b], p. 170). This definition — as opposed to Definition 1 — goes down very
well with analytical topologists who are not interested at all in the theory of polyhedra
as such but only as a2 handmaiden for the theory of surfaces.

1 Counterexamples 2a and 2b were missed by Lhuilier and first discovered only by Hessel
([x832], p. 13).

2 naﬁnu'h'ou 3 Flrs turns un to kean out f\lr;nfnfrohnr‘rq n Mn‘unc (Mt86¢1 n 22 We find
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{d
his cumbersome definition reproduced in some modern textbooks in the usual authori-

tarian ‘take it or leaveit’ way; thestory of its monster-barring background - that would
at least explain it - is not told (e.g. Hilbert and Cohn-Vossen [1956], p. 290).
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PROOFS AND REFUTATIONS

ArpHA: I admire your perverted ingenuity in inventing one defini-
tion after another as barricades against the falsification of your
pet ideas. Why don’t you just define a polyhedron as a system of
polygons for which the equation V~E+F = 2 holds? This Perfect
Definition. .

Karpa: Dey‘ pl

ArLPHA:. ..would settle the dispute for ever. There would be no need
to investigate the subject any further.

H]
Derta: But there isn’t 2 theorem in the world which couldn’t be
Vol PS¥ ol B I
14dDI11ICQU D J1LOILMLCLD

TeAcHER: I am sorry to interrupt you. As we have seen, refutation
by counterexamples depends on the meaning of the terms in question.
If a counterexample is to be an objective criticism, we have to agree
on the meaning of our terms. We may achieve such an agreement by
deﬁning the term where communication broke down. I, for one,
alan t aCImC pOl‘y‘I‘learOi‘l I aSSIiI‘ﬂt‘:a ]amularuy' with the c,oncept, i.€.
the ablllty to dlStlngUISh a thing which is a polynedron from a thmg
which is not a polyhedron — what some logicians call knowing the
extension of the concept of polyhedron. It turned out that the extension
of the concept wasn ’t at a]_l nbvmm dm’imtmm are ﬁ'eauentlv nronmpd

and argued about when counterexamples emerge. 1 suggest that we now
consider the rival definitions together, and leave until later the dis-
cussion of the differences in the results which will follow from choosing
different definitions. Can anybody offer something which even the

most restrictive definition would allow as a real counterexample?
Karra: Including Def. P?

Teacruer: Excluding Def. p.

GAMMA: I can. Look at this Counterexample 3: a star-polyhedron - I

shall call it an urchin (fig. 7). This consists of 12 star-pentagons (fig. 8).
It has 12 vertices, 30 edges, and 12 pentagonal faces — you may check
it if you like by counting. Thus the Descartes-Euler thesis is not true
at all, since for this polyhedron V—E+F = —6.2

1 Definition P, according to which Eulerianness would be a definitional characteristic of
polyhedra, was in fact suggested by R. Baltzer: ‘Ordinary polyhedra are occasionally
(following Hessel) called Eulerian polyhedra. It would be more appropriate to find a
special name for non-genuine (uneigentliche) polyhedra’ ([1862], vol. 2, p. 207). The
reference to Hessel is unfair: Hessel used the term ‘Eulerian’ simply as an abbreviation
for polyhedra for which Euler’s relation holds in contradistinction to the non-Eulerian
ones ([1832], p. 19). For Def. P see also the Schlifli quotation in footnote 2 below.

2 The ‘urchin’ was first discussed by Kepler in his cosmological theory ([1619], Lib. II,
XIX and XXVI, on p. 72 and pp. 82-3 and Lib. V, Cap. 1, p. 293, Cap. IlI, p. 299 and
Cap. IX, XLVII). The name ‘urchin’ is Kepler’s (‘ cui nomen Echino feci’). Fig. 7 is copied

16
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PROOF AND GLOBAL COUNTEREXAMPLE

E
A
C 8
~/ \
A D
Fig. 7. Kepler’s star-polyhedron, each Fig. 8,

face shaded in a different way to show

T RPN Y L.l el
wWiiicii Luausxca ociong to tne same

pentagonal face.

DEeLTA: Why do you think that your “urchin’ is a polyhedron?

GaMMA: Do you not see? This is a polyhedron, whose faces are the
twelve star-pentagons. It satisfies your last definition: it is ‘a system of
polygons arranged in such a way that (1) exactly two polygons meet
verv edee. and (2) it i

t every edge, and (2) it is possible to get from every polygon to every
Athe P ygon WltﬂOUt €ver CfOSSlng a vertex Of tI ne POIYHCGI'OH,.
DEeLTA: But then you do not even know what a polygon is! A
star-pentagon is certainly not a polygon! A polygon is a system of edges
arranged in such a way that (1) exactly two edges meet at every vertex, and
(9\ fhp p/]moc have no anfc in common p'rrpnt fhp vertices.

TEACHBR. Let us call this Def. 4.

GamMa: I don’t see why you include the second clause. The correct
definition of the polygon should contain the first clause only.

TEACHER: Def. 4.
GamMA: The second clause has nothing to do with the essence of a

e n i d

%3

polygon. Look: if I lift an edge a little, th star-pentagon is already
2 solveon even in VOUr sehse Vo imacine a solveon to be drawn in
d PUI)’&U 1 CVUIL 111 yuuL SCIDC., 1UVUU 11l dslllc d P 1)’5011 LU UC Ul 1 11l

chalk on the blackboard, but you should imagine it as a wooden
structure: then it is clear that what you think to be a point in common
is not really one point, but two different points lying one above the

from his book (p. 79) which contains also another picture on p. 293. Poinsot indepen-
dently rediscovered it, and it was he who pointed out that the Euler formula
did not apply to it ([1810], p. 48). The now standard term ‘small stellated dodeca-
hedron’ is Cayley’s ([1859], p. 125). Schlifli admitted star-polyhedra in general, but
nevertheless rejected our small stellated dodecahedron as a monster. According to him
‘this is not a genuine polyhedron, for it does not satisfy the condition V~-E+F = 2°

([1852], § 34)-
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PROOFS AND REFUTATIONS

other. You are misled by your embedding the polygon in a plane -
you should let its limbs stretch out in space!*

DErLtA: Would you mind telling me what is the area of a star-
pentagon? Or would you say that some polygons have no area?

GaMMAa: Was it not you yourself who said that a polyhedron has
nothing to do with the idea of solidity? Why now suggest that the
idea of polygon should be linked with the idea of area? We agreed that
a polyhedron is a closed surface with edges and vertices - then why not

aoree that a hn]vann 1€ clmhlv 2 r‘]ncpr] clirvyve xnf]'\ vertices Rnf ncvnn
aal\r\r VAACA Y & rvll 6\.’1‘- AV Ulllbr‘-l G WAV JIUWNE WLEL ¥V W VYV AVAL V WA VAW o AV AL ]\J“
ctinlr ¢~ wratie 1doa T At xrilling #a Aafinn ¢ha avnn AL A ctnmnnlirana 2
SUCA O yOutl 1Gla 1 diil 1LY QCLUIC UWIC dICd UL 4 5idi=pOlygoill.

TeAcHER: Let us leave this dispute for a moment, and proceed as
before. Consider the last two definitions together — Def. 4 and Def. 4.

1 The r]nnnrp whether n]vgon should be defined so as to include cmr_Pnlvgnpc or not

~viavd i pIOLOLES L RO R0 lulbi i

(Def. 4 or Def. 4°) is a very old one. The argument put forward in our dialogue - that
star-polygons become ordinary polygons when embedded in a space of higher dimen-
sions — is 2 modern topological argument, but one can put forward many others. Thus
Poinsot defending his star-polyhedra argued for the admission of star-polygons with
arguments taken from analytical geometry: °...all these distinctions (between *ordi-
nary” and “star ’-polygons) are more apparent than real, and they completely disappear
in the analytical treatment, in which the various species of polygons are quite inseparable.

To the edge of a regular polygon there corresponds an equation with real roots, which
51mu1taneously yxelds the edges of all the regular polygons of the same order. Thus it is
not possible to obtain the edges of a regular inscribed heptagon, without at the same
time finding edges of heptagons of the second and third species. Conversely, given the
edge of a regular heptagon, one may determine the radius of a circle in which it can be
inscribed, but in so doing, one will find three different circles corresponding to the three
species of heptagon which may be constructed on ‘the given edge; similarly for other
polygons. Thus we are justified in giving the name “polygon” to these new starred
figures’ ([1810], p. 26). Schrider uses the Hankelian argument: ‘The extension to
rational fractions of the power concept originally associated only with the integers has
been very fruitful in Algebra; this suggests that we try to do the same thing in geometry
whenever the opportunity presents itself. . .” ([1862], p. 56). Then he shows that we may
find a geometrical interpretation for the concept of p/g-sided polygons in the star-
polygons.

2 Gamma’s claim that he can define the area for r—polygons is n t a bluff. Some of those

: - e A s

sta.
Aloane anloa @
Ulyguill dulviu l lUULCllL Uy PULLI 15 1Or'war

the case of regular star—polygons We may take he area of polygon as the sum of the
areas of the isosceles triangles which join the centre of the inscribed or circumscribed
circle to the sides. In this case, of course, some *portions’ of the star-polygon will count
more than once. In the case of irregular polygons where we have not got any one
distinguished point, we may still take any point as origin and treat negatively oriented
triangles as having negative areas (Meister [1771], p. 179). It turns out — and this can
certainly be expected from an ‘area’ — that the area thus defined will not depend on the
choice of the origin (Mébius [1827], p. 218). Of course there is liable to be a dispute with
those who think that one is not justified in calling the number yielded by this calculation
an ‘area’; though the defenders of the Meister~Maobius definition called it “the right
definition’ which ‘alone is scientifically justified’ (R. Haussner’s notes [1906], pp. 114~
15). Essentialism has been a permanent feature of definitional quarrels.

18



PROOF AND GLOBAL COUNTEREXAMPLE

Can anyone give a counterexample to our conjecture that will comply
with both definitions of polygons?
ArpHA: Here is one. Consider a picture-frame like this (fig. 9). This

is a polyhedron accoifd;ngJ to any of the deﬁmtlons hlthj:rto pr(jpfsed

an o] <

lVUIlC[IIC 6 >S —y_
that V~E+F =

TEACHER: Counterexample 4.1

BETA: So that’s the end of our conjecture. It really is a pity, since
it held good for so many cases. But it seems that we have just wasted
our time.

ArpHA: Delta, I am flabbergasted. You say nothing? Can’t you
define this new counterexample out of existence? I thought there was
no hypothesis in the world which you could not save from falsification
with a suitable linguistic trick. Are you giving up now? Do you agree
at last that there exist non-Eulerian polyhedra? Incredible!
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c .
But I am gradually losmg interest in your monsters. I turn in disgust
from your lamentable ‘polyhedra’, for which Euler’s beautiful
theorem doesn’t hold.2 I look for order and harmony in mathematics,
but you only propagate anarchy and chaos.® Our attitudes are ir-
reconcilable.

1 We find Counterexample 4 too in Lhuilier’s classical [1812-134], on p. 185 — Gergonne
again added that he knew it. But Grunert did not know it fourteen years later ([1827])
nor did Poinsot forty-five years later ([1858], p. 67).

% This is paraphrased from a letter of Hermite’s written to Stieltjes: ‘I turn aside with a
shudder of horror from this lamentable plague of functions which have no derivatives’
([1893]).

3 “Researches dealing with. . .functions violating laws which one hoped were universal,
were regarded almost as the propagation of anarchy and chaos where past generations

had sought order and harmony’ (Saks [1933], Preface). Saks refers here to the fierce
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PROOFS AND REFUTATIONS
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(a) Fig. 11. (b)

ArpHA: You are a real old-fashioned Tory! You blame the wicked-
ness of anarchists for the spoiling of your ‘order’ and ‘harmony’, and
you ‘solve’ the difficulties by verbal recommendations.

TeacHER: Let us hear the latest rescue-definition.

ArpHA: You mean the latest linguistic trick, the lates n
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battles between monster-barrers (like Hermite!) and refutationists that characterised in
the last decades of the nineteenth century (and indeed in the beginning of the twentieth)
the development of modern real function theory, ‘ the branch of mathematics which deals
with counterexamples’ (Munroe [1953], Preface). The similarly fierce battle that raged
iater between the opponents and protagonists of modern mathematical logic and set-
theory was a direct continuation of this. See also footnotes 2, p. 22, and 1, p. 23.
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PROOF AND GLOBAL COUNTEREXAMPLE

DEeLtA: I do not contract concepts. It is you who expand them. For
instance, this picture-frame is not a genuine polyhedron at all.

ArpHA: Why?

DELTA: Take an arbitrary point in the ‘tunnel’ - the space bounded by
the frame. Lay a plane through this point. You will find that any such
plane has always two different cross-sections with the picture-frame,
making two distinct, completely disconnected polygons! (fig. 10).

ALPHA: So what?

DEeLTA: In the case of a
1

e sl . 1L, .1, - 1 maa bt are sl ‘L,.M.. s 4,.,1‘.,“.

in Space tnere wiii ve at ieast one plar € wnose cross-seciion wiin ine poiyneéaron
will consist of one single polygon. In the case of convex polyhedra all
planes will comply with this requirement, wherever we take the point.
In the case of ordinary concave polyhedra some planes will have more
intersections, but there will always be some that have only one
(ﬁg 11, (a ) and (b)). In the case of this picture-frame, if we take the
POln[ in the tunnel, all the Pl& 1ies will have two cross-sections. How
then can you call this a polyhedron?

TeacHer: This looks like another definition, this time an implicit
one. Call it Def. 5.t

ALPHA: A series of counterexamples, a matching series of definitions,
definitions that are alleged to contain nothing new, but to be merely
new revelations of the richness of that one old concept, which seems
to have as many ‘hidden’ clauses as there are counterexamples. For all
polyhedra V—E+F = 2 seems unshakable, an old and ‘eternal’ truth.
It is strange to think that once upon a time it was a wonderful guess,

full of challenge and excitement. Now, because of your: weird shifts of

0- ]n + r] o 2V Ye Y
uleaning, it [1aS Turneg intc a tlUU

-1
111

/1T

aogma \ e eaves [I’le Classroom)

DEeLTA: I cannot understand how an able man like Alpha can waste
his talent on mere heckling. He seems engrossed in the productlon of
monstrosities. But monstrosities never foster growth, either in the
world of nature or in the world of thought. Evolution always follows
an harmonious and orderly pattern.

1 Definition 5 was put forward by the indefatigable monster-barrer E. de Jonquiéres to get
Lhuilier’s polyhedron with a tunnel (picture-frame) out of the way: ‘Neither is this
polyhedral complex a true polyhedron in the ordinary sense of the word, for if one
takes any plane through an arbitrary point inside one of the tunnels which pass right
through the solid, the resulting cross-section will be composed of two distinct polygons

rnmn]prp]v unconnected with each other: this can occur in an ordinarv nn]vhp{]rnn for

CULLPALINA Yy WMAICUIIAIVEINS VWAl Datil Utdivdy valld Ll USOel 1AL sid Vaksidialy Ui yadmaaL aUs

certain positions of the intersecting plane, namely in the case of some concave polyhedra,
but not for all of thcm’ ([1890b] pp. 170-1). One wonders whether de Jonqm res has
noticed that his Def. 5 excludes also some concave spheroid polyhedra.
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PROOFS AND REFUTATIONS

GAMMA: Geneticists can easily refute that. Have you not heard that
mutations producing monstrosities play a considerable role in macro-
evolution? They call such monstrous mutants ‘hopeful monsters’. It
seems to me that Alpha’s counterexamples, though monsters, are
‘hopeful monsters’.1

DertA: Anyway, Alpha has given up the struggle. No more
monsters nOw.

Gamma: I have a new one. It complies w'th all the restrictions in

a
ds, but V—E+F = 1. Thi
t has 3 faces (the top, the ‘uottom and the jac
cles) and no vertices. It is a polyhedron accordmg to your
deﬁnition (1) exactly two polygons at every edge and (2) it is possible
to get from the inside of any polygon to the inside of any other polygon
by a route which never crosses any edge at a vertex. And you have to
accept the faces as genuine polygons, as they comply with your
requirements: (1) exactly two edges meet at every vertex and (2) the
edges have no points in common except the vertices.

DEertA: Alpha stretched concepts, but you tear them! Your ‘edges’

are not edges' An edge has two vertices!
TI-‘A(‘T—I‘R‘D T)pf 6?

Al BNt s BN

Wh

GAMMA : But why deny the status of ‘edge’ to edges with one or
possibly zero vertices? You used to contract concepts, but now you
mutilate them so that scarcely anything remains!

DEeLTA: But don’t you see the futility of these so-called refutations?
‘Hitherto, when a new polyhedron was invented, it was for some

practical end; today they are invented expressly to put at fault the
et £

.......... ~L A £oale o atnd Ama mazra ---I rom L,..M Ayt ..,..
lCdbUlllllgb Or1 our ld.LllClb, ana onnc ncveér wiii 5 t IrOoili tincin dll)’ Lu. 5

more than that. Our subject is turned into a teratological museum
where decent ordinary polyhedra may be happy if they can retain a
very small corner.”

AN ¢4 JRPU, | PP o A e e

* “We must not IOIgC[ tnat wnat appcars (0-03)’ as a monster w1u DC {O~-II1OITOW UIC Orlblﬂ
of a line of special adaptations...I further emphasized the importance of rare but
extremely consequential mutations affecting rates of decisive embryonic processes which
might give rise to what one might term hopeful monsters, monsters which would start
a new evolutionary line if fitting into some empty environmental niche.’ (Goldschmidt
[1933], pp. 544 and s547). My attention was drawn to this paper by Karl Popper.

2 Paraphrased from Poincaré ([1908], pp. 131-2). The original full text is this: ‘Logic
sometimes makes monsters. Since half a century we have seen arise a crowd of bizarre
functions which seem to try to resemble as little as possible the honest functions which

ny !\nv"\n'\a cantinnity hie no darivarivac
Alu.ut.y, Ul pliiiaps LU VUL iU Ullivalivig,

ese strange functions which are the
most general, those one meets without seeking no longer appear except as particular

case. There remains for them only a very small corner.

etc. Nav more, Frnm the lo glcnl poin
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PROOF AND GLOBAL COUNTEREXAMPLE

GamMmA: I think that if we want to learn about anything really
deep, we have to study it not in its ‘normal’, regular, usual form, but
in its critical state, in fever, in passion. If you want to know the normal
healthy body, study it when it is abnormal, when it is ill. If you want
to know functions, study their singularities. If you want to know
ordinary polyhedra, study their lunatic fringe. This is how one can
carry mathematical analysis into the very heart of the subject.! But

even if you were basmally right, don’t you see the futility of your
ad l!nr mpf]'\nr] IF \]r 11 want to dra‘xr a I\nrrlprhhe b

examples and monsters, you cannot do it in

TeacHER: I think we should refuse to accept Delta’s strategy for
dealing with global counterexamples, although we should congratulate
him on his skilful execution of it. We could aptly label his method
the method of monster-barring. Using this method one can eliminate any
counterexample to the original conjecture by a sometimes deft but
arw"a‘y's aa noC feucnnlti()‘rl UI Ulc pol‘y'ncur()i‘l, of its ucn‘ning terims, or
of the defining terms of its defining terms. We should somehow treat
counterexamples with more respect, and not stubbornly exorcise them

by dubbing them monsters. Delta’s main mistake is perhaps his
dnom;mst hms in the interpretation of mathematical nrnnf he thmkq

TTOTTTT T T T T I TTTTTTETETTTTTTTT LT T T T oTTT T

that a proof necessarily proves what it has set out to prove. My interpre-
tation of proof will allow for a false conjecture to be ‘proved’, i.e. to
be decomposed into subconjectures. If the conjecture is false, I certainly
expect at least one of the subconjectures to be false. But the decom-
position might still be interesting! I am not perturbed at finding a
counterexample to a ‘proved’ conjecture; I am even willing to set out

roaxra rn]ca n(\h;o/\f11ro'
w BLUVD d iLdion \.«UIJJ&\/LLH-\«

.I.HETA 1 Clon t IOUOW you
Karpa: He just follows the New Testament: ‘Prove all things; hold

fast that which is good’ (1 Thessalonians §: 21).

T anatAfmva virham A o, "- 3 e W ad & exrao w amenna sasen ~btanl am e ba_daes
L4 AVLIVIVIULLV WIILLL 4 1IV VWY 1U l.l.b IULL ven t A2 S Y it Was L dUILLIV ldbub g, \.\J‘Ud’
they are invented expressly to put at fault the reasonings of our fa thers, and one never

will get from them anything more than that.

‘If logic were the sole guide of the teacher, it would be necessary to begin with the
most general functions, that is to say with the most bizarre. It is the beginner that would
have to be set grappling with this teratologic museum. ..’ (G. B. Halsted’s authorised
translation, pp. 435~6). Poincaré discusses the problem With respect to the situation in
the theory of real functions — but that does not make any difference.

1 Paraphrased from Denjoy ([1919], p. 21).



PROOFS AND REFUTATIONS

(c) Improving the conjecture by exception-barring methods. Piecemeal
exclusions. Strategic withdrawal or playing for safety
BETA: I suppose, sir, you are going to explain your puzzling remarks.
But, with all apologies for my impatience, I must get this off my
chest.

TEACHER: Go on.

(ALPHA re-enters.)

’
Bera: | |nd sOome ashects n( | )P]fo < aronmentec u"v ‘\1 t 1 ]‘mvp
et Sl A bB» - A& oL A Urvku A e W AVEE J “A&MAA‘-VIAVU UAL&] , -~ e - ALSS V W
s b bhalisera thae ¢hinea 30 4 wnnamnnalla ],,\mn] t~n thnses Té srnvsr
COI1IIC WO DLCIICVT Uldl UICIC 1D d 1CddOIIdDIC ACLIICE 1O uICill. It 110w

seems to me that no conjecture is generally valid, but only valid in a
certain restricted domain that excludes the exceptions. I am against
dubbing these exceptions ‘monsters’ or ‘pathological cases’. That
would amount to the methodological decision not to consider these as
interesting examples in their own right worthy of a separate investiga—
tion. But I aimn dlbU dg“ nst }‘ terin wuméi‘éxaﬁipw ’ it uguuy dduuta
them as examples on a par with the supporting examples, but somehow
paints them in war-colours, so that, like Gamma, one panics when
facing them, and is tempted to abandon beautiful and ingenious proofs
altogether. No: they are just exceptions.

SicMA: I could not agree more. The term ‘counterexample’ has
an aggressive touch and offends those who have invented the proofs.
‘Exception’ is the right expression. ‘There are three sorts of mathe-
matical propositions:

‘1. Those which are always true and to which there are neither
restrictions nor exceptions, e.g. the angle sum of all plane triangles is

always equal to two right angles
¢ ) IR J.g I ERSURRUUURIY i PRSPV SN, | 1 not --
4Z. L11105C WIlICI1 ICSU OIl SOIINC 14iSC Prln IPIC anda so cannot be¢

admitted in any way.

‘3. Those which, although they hinge on true principles, neverthe-
less admit restrictions or exceptions in certain cases. ..’

Epsiton: What?

SiMA: ‘.. .One should not confuse false theorems with theorems
subject to some restriction.” As the proverb says: The exception proves
tne rule.

EpsitoN (to Kappa): Who is this muddlehead? He should learn
something about logic

Karpa (to EpsiLoN): And about non-Euclidean plane triangles.
Norma T anrl i+ nm‘\nvvnno:nn o~ Lntrn *~ v\-p\rl:nt Q-LAG - O-L:n r]; nnnnn
1LELTAL 1 TinaG iU emoarrassing to nave to preaict tnat in tnis aiscus-



PROOF AND GLOBAL COUNTEREXAMPLE

sion Alpha and I shall probablv be on the same side. We both argued

on the b 13 nFa nrnnncmnn S hmna mther true or Fa]cp anr] Amnormar]

va S hat o Salddnd

only on whether the Euler theorem, in particular, is true or false. But
Sigma wants us to admit a third category of propositions that are ‘in
principle’ true but ‘admit exceptions in certain cases’. To agree to a
peaceful coexistence of theorems and exceptions means to yield to
confusion and chaos in mathematics.

ArpHA: D’accord.

E'T!A . T r]:tl At YXTArE & 1 ArdAara PN
41 UIU 11Ul Vvdlll LU 11IL0LLCL0 VWIILLL Ll
1

of Delta, but now I think it may be profitable if I briefly explain the
story of my intellectual development. In my schooldays I became - as
you would put it — a monster-barrer, not as a defence against Alpha-
types but as a defence against Sigma-types. I remember reading in a
periodical about the Euler theorem: ‘Brilliant mathematicians have
put forward proofs of the general validity of the theorem. Neverthe-
less it suffers exceptions. . .it is necessary to draw attention to these
exceptions since even recent authors do not always recognise them
explicitly.”* This paper was not an isolated exercise in diplomacy.
Although in geometry textbooks and lectures it is always pointed

t is always pointe
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tion” in some cases, or ‘‘does not seem to be valid”, one does not
learn the real reason for these exceptions.’”? Now I looked at the
‘exceptions’ very carefully and I came to the conclusion that they do
not comply with the true definition of the entities in question. So the
proof and the theorem can be reinstated and the chaotic coexistence of
theorems and exceptions vanishes.

ALPHA: olgma s chaotic position may serve as an explanation for
your monster-barring, but not as an excuse, let alone a justification.
Why not eliminate the chaos by accepting the credentials of the
counterexample and rejecting the ‘theorem’ and the ‘proof”?

? Hessel {1832], p. 13. Hessel rediscovered Lhuilier’s ‘exceptions’ in 1832. Just after sub-
mitting his manuscript he came across Lhuilier’s [1812-134]. He nevertheless decided not
to withdraw the paper, most of whose results thus turned out to have already been
published, because he thought that the point should be driven home to the ‘recent
authors’ ignoring these exceptions. One of these authors, by the way, happened to be
the Editor of the Journal to which Hessel submitted the paper: A. L. Crelle. In his
[1826-7] textbook he ‘proved’ that Euler’s theorem was true for all polyhedra (vol. 2,
pp. 668-71).

2 Matthiessen ([1863], p. 449). Matthiessen refers here to Heis and Eschwexler s Lehrbuch
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PROOFS AND REFUTATIONS

Eta: Why should I reject the proof? I cannot see anything wrong
with it. Can you? My monster-barring seems more rational to me
than your proof-barring.

TeAcHER: This debate showed that monster-barring may get a more
sympathetic audience when it stems from Eta’s dilemma. But let us
come back to Beta and Sigma. It was Beta who rechristened the
counterexamples exceptions. Sigma agreed with Beta. . .

BetA: I am glad that Sigma agreed with me, but I am afraid that
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false ones.
Thls last pe can be 1mproved into true propositions by adding
restrictive clause which states the exceptions. I never attrlbute to
formulae an undetermined domain of validity. In reality most of the
formulae are true only if certain conditions are fulfilled. By determin-
ing these conditions and, of course, pinning down precisely the mean-
'1g of the terms I use, I make all uncertainty uisappear 1 So, as you see,
I do not advocate any sort of peaceful coexistence between unimproved
formulae and exceptions. I improve my formulae and turn them into
perfect ones, like those in Sigma’s first class. This means that I accept the
method of monster-barring in so far as it serves for finding the domain
of validity of the original conjecture; I reject it in so far as it functions as a
linguistic trick for rescuing ‘nice’ theorems by restrictive concepts.
These two functions of Delta’s method should be kept separate. I
should like to baptise my method, which is characterised by the first
of these functions only, ‘the exception-barring method’. 1 shall use
it to determine precisely the domain in which the Euler conjecture
holds.

. I3 . . « Y
TrAcHER: What is the ‘precisely determined domain’ of Euler

polyhedra you promised? What is your ‘perfect formula’
BetA: For all polyhedra that have no cavities (like the pair of nested
cubes) and tunnels (like the picture-frame), V—E+F = 2.
TEACHER: Are you sure?
BETA: Yes, I am sure.
TrACHER: What about the
BerA: I am so !
’

‘multiple structure V—E +F = 2.2

! This is from Cauchy’s introduction to his celebrated [1821].

2 Lhuilier and Gergonne seem to have been sure that Lhuilier’s list had enumerated all the
exceptions. We read in the introduction to this part of the paper: ‘One will easily be
convinced that Euler’s Theorem is true in general, for all polyhedra, whether they are
convex or not, except for those instances that will be specified. ..’ (Lhuilier [1812-134],
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PROOF AND GLOBAL COUNTEREXAMPLE

TEACHER: I see. [ agree with your policy of improving the conjecture
instead of just taking or leaving it. I prefer it both to the method of
monster-barring and to that of surrender. However, I have two
objections. First I contend that your claim that your method not only
improves, but ‘perfects’ the conjecture, that it ‘renders it strictly
correct’, that ‘it makes all uncertainties disappear’ is untenable.

BEerA: Indeed?
TeAcHER: You must admit that each new version of your conjecture
nt

is or 1y an ad hoc elimination of a counterexample which has just
A 1144 ILA“ ‘7’\“‘ l‘""ml\]l\ f\“ hﬂﬂ*ﬂl‘ ﬁ‘l‘l‘ﬂf\ 372N k] A\rﬁll!r]n
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polyhedra with cavities. When you happe to notice a picture-frame,
you exclude polyhedra with tunnels. I appreciate your open and
observant mind; to take notice of these exceptions is all very well, but
I think it would be worth while to inject some method into your blind
groping for ° exceptlons It is good to admit that ‘All polyhedra are

n|1]ar11\ﬂ ’ 1 (\n xr n nsnﬁl-vnfn Rt 111111r n-1 na ¢ Al] h(\l‘r]-\al]"ﬁ 117 0- ~i1d
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cavities, CUIIIICIS anda whnat not are cul crlan’ the status OI a tneorem l:nat
is not conjectural any more? How can you be sure that you have
enumerated all exceptions?

Bera: Can you give one that I did not take into account?

ArpHA: What about my urchin?

GamMmA: And my cylinder?

TeacHER: I do not even need a concrete new ‘exception’ for my
argument. My argument was for the possibility of further exceptions.

BetA: You may well be right. One should not just shift one’s
posmon Whenever a new counterexample turns up. One should not

should occur, it may then begin to be pronounced with such exceptions
as occur.”? Let me think. We first guessed that for all polyhedra
V—E+F = 2, because we found it to be true for cubes, octahedra,
pyramids, and prisms. We certainly cannot accept ‘this miserable way

p- 177). Then we read again in Gergonne’s comment: ‘. . .the speciﬁed exceptions which

A ha tha Anler that ~Ane Amasse LA £ Fe-P% ey 1-09\ R.. Lart T hasiline sssicend ¢hin
séém to De thne oniy oncs tnat can occur. .. \10iG. p. 1069). Dut lllJubb LRier missea ine

twintetrahedra, which were nnlv noticed twenty years later Iw Hessel (f'rR:ﬂ\ That some lead-

S%5}3) =2:av

ing mathematlcmns even mathematlcxans w1t:h a hvely interest in methodology like
Gergonne, could believe that one could rely upon the exception-barring method, is
noteworthy. The belief is analogous to the ‘method of division’ in inductive logic,
according to which there can be a complete enumeration of possible explanations of a
phenomenon, and therefore if we can eliminate all but one by the method of experi-
menium crucis, then this last one is proved.

1 1. Newton [1717], p. 380.
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PROOFS AND REFUTATIONS

of inferring from the special to the general’.! No wonder exceptions
cropped up; it is rather surprising that many more were not found
much earlier. To my mind this was because we were mostly occupied
with convex polyhedra. As soon as other polyhedra entered, our
generalisations did not work any more.? So instead of barring excep-
tions piecemeal, I shall draw the borderline modestly, but safely:
All convex polyhedra are Eulerian.® And I hope you will grant that this

has nothing conjectural about it: that it is a theorem.
GamMma: What about mv rv]lnr]pr? It is convex!

sniVaivasas AARY KUY 2245 AARANSN A V win e
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TeACHER: Let us forget about the cylinder for the moment. We
can offer some criticism even without the cylinder. In this new,
modified version of the exception-barring method, which Beta
devised so briskly in answer to my criticism, piecemeal withdrawal

has been replaced by a strategic retreat into a domam hoped to be a

trOnghold of the conjecture. You are playing for safety. But are you
1 ? -

as safe as you claim to be? You still have no guarantee that there will
not be any exceptions inside your stronghold. Besides, there is the
opposite danger. Could you have withdrawn too radically, leaving lots
of Eulerian Dolvhedra outside the walls? Our original conjecture might

1 Abel [18264]. His criticism seems to be directed against Eulerian inductivism.

3 This too is paraphrased from the quoted letter, in which Abel was concerned to eliminate
the exceptions to general ‘theorems’ about functions and thereby establish absolute
rigour. The original text (including the previous quotation) is this: ‘In Higher Analysis
very few propositions are proved with definitive rigour. One finds everywhere the miserable
way of inferring from the special to the general, and it is 2 marvel that such procedure leads
only rarely to what are called paradoxes. It is really very interesting to look for the
reason. In my opinion the reason is to be found in the fact that analysts have been mostly
occupied with functions that can be expressed as power series. As soon as other functions enter ~
which certainly is rarely the case — one does not get on any more and as soon as one starts
drawing false conclusions, an infinite multitude of mistakes will follow, all supporting
each other...’ (my italics). Poinsot discovered that inductive generalisations ‘often’
break down in the theory of polyhedra, just as in number theory: ‘ Most properties are
individual and do not obey any general laws’ ([1810], § 45). The intriguing characteristic
of this caution towards induction is that it puts down its occasional breakdown to the
fact that the universe (of facts, numbers, polyhedra) of course contains miraculous
exceptions.

This again is very much in keeping with Abel’s method. In the same way Abel restricted

alhAse & - Tor sha A~ ¢ha
the dcmmu uf aUSpCCs ;h\.uu.un about functions to PO'WCI.-acuca i tne atuxy o1 tne

Euler conjecture this restriction to convex polyhedra was fairly common. Legendre, for
instance, after giving his rather general definition’of polyhedron (cf. footnote 1, p. 14),
presents a proof which on the one hand certainly does not apply to all his general
polyhedra, but on the other hand applies to more than convex ones. Nevertheless, in an
additional note, in fine print (an afterthought after having stumbled on exceptions never
stated ?), he withdraws, modestly but safely, to convex polyhedra ([1809], pp. 161, 164,
228).
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PROOF AND GLOBAL COUNTEREXAMPLE

have been an overstatement, but your ‘perfected’ thesis looks to me
very much like an understatement; yet you still cannot be sure that it
is not an overstatement as well.

But I should also like to put forward my second objection: your
argument forgets about the proof; in guessing the domain of validity
of the conjecture, you do not seem to need the proof at all. Surely
you do not believe that proofs are redundant?

BeTA: I have never said that.

Teacuer: No, you did not. But you discovered that our proof did
not prove our original conjecture. Does it prove your improved con-
jecture? Tell me.

Bera: Well..

Eta: Thank you, sir, for this argument. Beta’s embarrassment
clearly displays the superiority of the defamed monster-barring method.
For we say that the proof proves what it has set out to prove and our

answer is unequivocal. We do not allow wayward counter rexamples
to dest oy respectable proofs at liberty, even if they are disguised as
¢

meek ‘exceptions’.

Beta: I do not f d it embarrassing at all that I have to elaborate,
nnnnnnnnnn — 1|nA POy nco- — Mnarnrl- v ey mnﬁLnAn]nnv, ~ o O-L,. nc»:m.-‘...-
IIILPLUVC, dlill C CUDdC lllc, 11 FC{ICDL 111)’ 111C L1 UUUIUS)’ Ull L1IC DLILIIIUL
of criticism. My answer is this. I reject the original conjecture as false

because there are exceptlons to it. I also reject the proof because the
same exceptions are exceptions to at least one of the lemmas. (In your
terminology this would be: a global counterexample is necessarily also
a local counterexample.) Alpha would stop at this point since refuta-
tions seem to satisfy his intellectual needs completely.. But I go on. By
suitably restricting both conjecture and proof to the proper domain, I
1 Many working mathematicians are puzzled about what proofs are for if they do not

prove. On the one hand they know from experience that proofs are fallible but on the

other hand they know from their dogmatist indoctrination that genuine proofs must be
infallible. Applied mathematicians usually solve thxs dilemma by a shamefaced but firm

Cali o sl o e o Ll 41 aticiaiis are ¢ co ~? A PR PO 'nA__‘_
DCIIC' tnat tne proois o1 tie P”IC mamemaiulur (2) dLC OIll PlCtC y A11Q bU rea }’ PIUV rurc
athematiciane hawever Irnr“xy hattar — thav have ciich racnact anlv far the ‘camnlata
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proofs’ of logicians. If asked what is then the use, the function, of their ‘incomplete
proofs’, most of them are at a loss. For instance, G. H. Hardy had a great respect for the
logicians’ demand for formal proofs, but when he wanted to characterise mathematical
proof ‘as we working mathematicians are familiar with it’, he did it in the following
way: ‘ There is strictly speaking no such thing as mathematical proof; we can, in the last
analysis, do nothing but point;. . .proofs are what Littlewood and I call gas, rhetorical
flourishes designed to affect psychology, pictures on the board in the lecture, devices to
stimulate the imagination of pupils’ ([1928], p. 18). R. L. Wilder thinks that a proof is
‘only a testing process that we apply to suggestions of our intuition’ ([1944], p. 318).
G. PSlya points out that proofs, even if incomplete, establish connections between
mathematical facts and this helps us to keep them in our memory: proofs yield a
mnemotechnic system ([1945], pp. 190-1).
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PROOFS AND REFUTATIONS

perfect the conjecture which will now be true, and perfect the basically
sound proof which will now be rigorous and will obviously contain no
more false lemmas. For instance we saw that not all polyhedra can be
stretched flat onto a plane after having a face removed. But all convex
polyhedra can. I can rightly call my perfected and rigorously proved
conjecture a tneorem. 1 state 1t again: All convex polyhedra are Eulerian.
For convex polyhedra all the lemmas will be manifestly true and the
proof, Which was not rigorous in its false generality, will be rigorous

for the restricted domain of convex nnlvherlra So, er I have answered

your questi

TEACHER. So the lemmas, which once looked manifestly true before
the exception was discovered, will again look manifestly true...
until the discovery of the next exception. You admit that ‘All poly-
hedra are Eulerian’ was guesswork; you admitted just now that ‘All
polyhedra without cavities and tunnels are Eulerian’ was also guess-
work; why not admit that ‘All convex po
guesswork once again!

BeTA: Not ‘guesswork’ this time, but insight'

TeAcHER: I abhor your pretentious ‘insight’. I respect conscious
guessing, because it comes from the best human qualities: courage and

modesty.
BeTta: I proposed a theorem: ‘All convex polyhedra are Eulerian.’

You offered only a sermon against it. Could you offer a counter-
example?

TeacHER: You cannot know that I shall not. You improved the
original conjecture, but you cannot claim to have perfected the con-

jecture, to have achieved perfect rigour in your proof.
Bera: Can you?

Al

TeACHER: I cannot either. But I think that my method of improving
conjectures will be an improvement on yours for I shall establish a
unity, a real interaction, between proofs and counterexamples.

BeTA: I am ready to learn.

(d) The method of monster-adjustment
HO: S
TeACHER: By all means.
RHO: I agree that we should reject Delta’s monster-barring as a
general methodological approach, for it doesn’t really take ‘monsters’
seriously. Beta doesn’t take his ‘exceptions’ seriously either, for he

merely lists them and then retreats into a safe domain. Thus both

[
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PROOF AND GLOBAL COUNTEREXAMPLE

these methods are interested only in a limited, privileged field. My
method does not practise discrimination. I can show that ‘on closer
examination the exceptions turn out to be only apparent and the Euler
theorem retains its validity even for the alleged exceptions’.!
TEACHER: Really?
ArrHA: How can my counterexample 3, the ‘urchin’ (fig. s), be
an ordinary Eulerian polyhedron? It has 12 star-pentagonal faces. ..
RHo: I don’t see any ‘star-pentagons’. Don’t you see that in actual

fact this polyhedron has ordinary triangular faces? There are 6o of them,

Te n]o’\ Lnn nn nzlnn,n nnrl A wrarticae lto “DI‘]AI" r~ no-nn‘-n-;ﬂf;n 2 TLA
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12 ‘star-pentagons’, their 30 ‘edges’ and 12 ‘vertices’, yielding the
‘characteristic’ - 6, are only your fancy. Monsters don’t exist, only
monstrous interpretations. One has to purge one’s mind from perverted
illusions, one has to learn how to see and how to define correctly what

one sees. My method is therapeutic: where you - erroneously ‘see’
T fnﬁrl-\ vo

o L W tn rar
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example. I adjust your monstrous vision. .
ArPHA: Slr, please explain your method, before Rho brainwashes us.4

h |

Matthiessen {1863].

[T
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with 60 triangular faces, 90 edges and 32 vertices — ‘un hexacontaédre sans épithéte’ — was
put forward by the staunch champion of the infallibility of the Euler theorem, E. de
Jonquitres ([18904], p. 115). The idea of interpreting non-Eulerian star-polyhedra as
triangular Eulerian polyhedra does not however stem from Jonquiéres but has a dramatic
history (cf. footnote 4 below).

3 Nothing is more characteristic of a dogmatist epistemology than its theory of error.
For if some truths are manifest, one must explain how anyone can be mistaken about

them, in other words, why the truths are not manifest to everybody. According to its
particular theory of error, each dogmatist epistemology offers its particular therapeutics
to purge minds from error. Cf. Popper [1963a], Introduction.

¢ Poinsot certainly was brainwashed some time between 1809 and 1858. It was Poinsot
who rediscovered star-polyhedra, first analysed them from the point of view of
Eulerianness and stated that some of them, like our small stellated dodecahedron, do not
comply with Euler’s formula ([1810]) Now this same Poinsot states categorically in his
[1858] that Euler’ sformula ‘is not om‘y‘ true for convex pory‘ncura, but for any pmyncaron
whatsoever, including star-polyhedra’ (p. 67 — Poinsot uses the term polyédres d’espéce
supérieure for star-polyhedra). The contradiction is obvious. What is the explanation?
What happened to the star-polyhedral counterexamples? The clue is in the first casual-
looking sentence of the paper: ‘One can reduce the whole theory of polyhedra to the
theory of polyhedra with triangular faces.” That is, Poinsot-Alpha was brainwashed and
turned into Poinsot-Rho: now he sees only triangles where he previously saw star-
polygons: now he sees only examples where he previously saw counterexamples. The

self-criticism had to be surreptitious, cryptic, because in scientific tradition there are no

mattoarne ntrn-lnl\]n :nr arti~nlatine e"hl\ \n\‘fA_rnrAc ﬂnp alen won I‘AFQ did l‘\A ever come
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vision?
The change of vision need not always operate in the same direction. For example,
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PROOFS AND REFUTATIONS

TeAcHER: Let him go on.

RHO: I have made my point.

GaMMA: Could you enlarge on your criticism of Delta’s method?
Both of you exorcised ‘monsters’. ..

RuO: Delta was taken in by your hallucinations. He agreed that
your urchin has 12 taces, 30 edges and 12 vertices, and 1s non-Eulerian.
His thesis was that it is not a polyhedron either. But he erred on both
counts. Your ‘urchin’ is a polyhedron and is Eulerian. But its star-

H
polyhedral interpretation was a misinterpretation. If you don’t mind,
Y J ;c "t tha :mhriﬂl- A‘. fLA |11~t~1\| 72 = s | A,ﬁ]"l\ir (e 2 eaa uzJ Lrl‘n :l-n
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distorted imprint on a sick mind, twisting in pain.

Kappa: But how can you distinguish healthy minds from sick ones,
rational from monstrous interpretations ?2

RHO: What puzzles me is how you can mix them up!

SIGMA Do you really think, Rho, that Alpha never noticed that his

11 Il\‘. ht\l‘r]‘\nll"f\ﬂ) nr ﬁ

0-1~1 Aoy r\|1vﬂn
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fives in the same plane and surround a regular pentagon hiding -
like their heart — behind a solid angle. Now the five regular triangles
together with the inner heart — the regular pentagon - form a so-called
“pentagramma’” that according to Theophrastus Paracelsus was the

sign of health...”

J. C. Becker in his [18694] - fascinated by the new conceptual framework of simply-
and muitiply-connected domains (Riemann {1851]) — allowed for ring-shaped polygons
but remained blind to star-polygons (p. 66). Five years after this paper — in which he
claimed to have brought the problem to a ‘definitive’ solution — he broadened his
vision and rernomced emr-nn]vo'nna] and crar-nn]vhedra] patterns where he nrmnn __]y

saw only tnangles and trlangular polyhedra ([1 874])
1 This is part of a Stoic theory of error, attributed to Chrysippos (cf. Aetius [c. 150],
IV.12.4; also Sextus Empiricus [c. 190], I. 249).

According to the Stoics the ‘urchin’ would be part of external reality, which pro-
duces an imprint upon the soul: the phantasia or visum. A wise man will not give
uncritical assent \synkaiainesu or adsensus ) toa pnama.sm unless it matures into a clear and
distinct idea (phantasia kataleptike or comprehensio), which it cannot do if it is false. The
system of clear and distinct ideas forms science (episteme). In our case the imprint of the
‘urchin’ on Alpha’s mind would be the small stellated dodecahedron, while on Rho’s
mind it would be the triangular hexacontaeder. Rho would claim that Alpha’s star-
polyhedral vision cannot possibly mature into a clear and distinct idea, obviously since
it would upset the ‘proved’ Euler formula. Thus the star-polyhedral interpretation
would fail and the ‘only’ alternative to it, namely the triangular interpretation, would

become clear and distinct.
2 Thie i¢ 2 etandard Scentic criti icism nf fhc

S c
This is a standard Sceptic criticism of the Stoic c
from phantasia kataleptike (e.g. Sextus Empiricus [c. 190], I. 405).

3 Kepler [1619), Lib. II. Propositio XXVI.

w
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PROOF AND GLOBAL COUNTEREXAMPLE

RHO: Superstition !

SicMA: And so for the healthy mind the secret of the urchin will be
revealed: that it is a new, hitherto undreamt-of regular body, with
regular faces and equal solid angles, the beautiful symmetry of which
might reveal to us the secrets of universal harmony. ..}

ArpHA: Thank you, Sigma, for your defence which again convinces
me that opponents are less embarrassing than allies. Of course my
polyhedral figure can be interpreted either as a triangular polyhedron
orasa cfnr—nn]vhedrnn Tam w1"mo' to arh_ 11_‘ bgth 1nterprctauo ¢

s a star hedron. Iam willing to ad
ar. ..
Karpa: Are you?
DEeLTA: But surely one of them is the true interpretation !
ArpHA: I am willing to admit both interpretations on a par, but one
of them will certainly be a global counterexample to Euler’s conjecture.
Why admlt only the interpretation that is well-ad_]usted to Rho’s

"‘C3

(e) Improving the conjecture by the method of lemma-incorporation. Proof-
generated theorem versus naive conjecture

TEACHER: Let us return to the picture-frame. I for one recognise it as a
genuine global counterexample to the Euler conjecture, as well as a
genuine local counterexample to the first lemma of my proof.

GamMA : Excuse me, Sir — but how does the picture-frame refute the
first lemma?

TeacHER: First remove a face and then try to stretch it flat on the
blackboard. You will not succeed.

ArpHA: To help your imagination, I will tell you that those and

u] v those nn]v]'u:r]rn "11‘ l’\ vO

those polyncdra wi you

property that, after a face is removed, you can stretch the remaining
part onto a plane.

It is obvious that such a “spherical’ polyhedron is stretchable onto
a plane after a face has been cut out; and vice versa it is equally obvious
that, if a polyhedron minus a face is stretchable onto a plane, then you

ca 1 Hn te 1Into a snhere I-mvp fl'\
A ALLLAAGS VW ALAWNS o uraav&v ALGS V W wa.

u.

can benﬂ it Intoaro nr] vase wl'm‘h Vnn cant _hgn cover Wlth thg rmcc-
ing face, thus getting a spherical polyhed"‘". But our picture-frame

t
can never be inflated into a sphere; but only into a torus.
TeacHER: Good. Now, unlike Delta, I accept this picture-frame as
a criticism of the conjecture. I therefore discard the conjecture in its
original form as false, but I immediately put forward a modified,

1 This is a fair exposition of Kepler’s view.

2?
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rood for ‘simple’ polyhedra, i.e. for those which, after having had a
face removed, can be stretched onto a plane. Thus we have rescued
some of the original hypothesis. We have: The Euler characteristic of
a simple polyhedron is 2. This thesis will not be falsified by the nested
cube, by the twintetrahedra, or by star-polyhedra - for none of these
is ‘simple’.

So while the exception-barring method restricted both the domain
of the main conjecture and of the guilty lemma to a common domain
of safety, thereby accepting the counterexample as criticism both of the

main conjecture and of the proof, my method of lemma-incorporation
l‘ln]’lﬁ]{]Q fhf‘ nrnnr hl]f rf‘d“(’f‘( f]’\f‘ Anmmn nf. f]’IP mﬂ"’]_ cCO lf‘(’fler tn

§ et i 2L VLSS LSRR RNLNe SAAS Bl iiglid Sail 422822 bl A d et b

the very domain of the guilty lemma. Or, while a counterexample
which is both global and local made the exception-barrer revise both
the lemmas and the original conjecture, it makes me revise the original
conjecture, but not the lemmas. Do you understand ?

ArpHA: Yes, I think I do. To show that I understand, I shall refute

]

4

TeacHer: Then you may still not understand my method. But let
us have your counterexample.

ArrHA: Consider a cube with a smaller cube sitting on top of it (fig.
12). This complies with all our definitions - Def. 1, 2, 3, 4, 4, 5-
so it is a genuine polyhedron. And it is ‘simple’, in that it can be
StfetCIlCU on to tne Pldn.C 1nu5, accora Iig to your IIIOUIIICU con-
_]CCtllI’C, its Euler characteristic should be 2. Nonetheless it has 16
vertices, 24 edges and 11 faces, and its Euler characteristic is 16 —24
+11 = 3. Itis a gobal counterexample to your improved conjecture
and, by the way, also to Beta’s first exceotlon-barrmg theorem.

5
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structure’, is not Eulerian.



PROOF AND GLOBAL COUNTEREXAMPLE
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O O
(c)

(a)
Fig. 13.

DELTA: Let us call this crested cube Counterexample 6.1

Mg ~vrom - Liowran Lalaifond cnor Samnon g IR SRS L.ie <raze
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have not destroyed my method of improvement. I shall re-examine the
proof, and see why it broke down over your polyhedron. There must
be another false lemma in the proof.

BEera: Of course there is. I have always suspected the second lemma.
It presupposes that in the triangulating process, by drawing a new
diagonal edge, you always increase by one the number of edges and of
faces. This is false. If we look at the plane network of our crested
polyhedron, we shall find a ring-shaped face (fig. 13(a)). In this case
no single diagonal edge will increase the number of faces (fig. 13(b)) : we

need an increase of two edges to increase the number of faces by one
(fig. 13(c))

N\ TINTY)T

TEeACHER: My congratulations. I certainly must restrict our conjec-
ture further. ..

Bera: I know what you are going to do. You are going to say
that ‘Simple polyhedra with triangular faces are Eulerian’. You will take
triangulation for granted; and you will turn this lemma again into a
condition.

1 Counterexample 6 was noticed by Lhuilier ([1812-134], p. 186); Gergonne for once
admits the novelty of his discovery! But almost fifty years later Poinsot had not
heard of it ([1858]) while Matthiessen ([1863]) and, eighty years later, Jonquieres ([1890b])
treated it as a monster. (Cf. footnotes 4, p. 31, 2, p. 38.) Primitive exception-barrcrs of
the nineteenth century listed it as a curiosity together with other exceptions: ‘As an
example one is usually shown the case of a thrce S1ded pyramid attached to a face of a
tetrahedron so that no edges of the former coincide with an edge of the latter. ““ Oddly
enough, in this case V'~ E+ F = 3” is what is written in my college notebook. And that
ended the matter’ (Matthiessen [1863], p. 449). Modern mathematicians tend to forget
about ring-shaped faces, which may be irrelevant for the classification of manifolds but
can become relevant in other contexts. H. Steinhaus says in his [1960]: ‘ Let us divide the
globe into F countries (we shall consider seas and oceans as land). Then we shall have
V+F = E+2, whatever the political situation may be’ (p. 273). But one wonders
whether Steinhaus would destroy West Berlin or San Marino simply because their
existence refutes Euler’s theorem. (Though of course he may prevent seas like the Baikal
from falling completely in one country by defining them as lakes, since he has said that
only seas and oceans are to be considered as land.)
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PROOFS AND REFUTATIONS

TeAcHER: No, you are mistaken. Before I point out your mistake
concretely, let me enlarge upon my comment on your method of
exception-barring. When you restrict your conjecture to a ‘safe’
domain, you do not examine the proof properly, and, in fact, you do
not need to for your purpose. The casual statement that in your
restricted domain all the lemmas will be true whatever they are, is
enough for your purpose. But this is not enough for mine. I build the

very same lemma which was refuted by the counterexample into the
cture. SO rhar I ]'mve to cn ot it and nrmnlate lt S Prcqscly as

o)
Q
6?

on the ba .
lemmas “thus will be 1ncorporated in my improved conjecture. Your
method does not force you to give a painstaking elaboration of the proof,
since the proof does not appear in your improved conjecture, as it
does in mine. Now I return to your present suggestion. The lemma
which was falsified by the rlng—shaped face was not —as you seem to
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condition. Calling the faccs which satisfy it ‘simply-connected’, I can
offer a second improvement on my original conjecture: ‘For a simple
polyhedron, with all its faces simply-connected, V—E+F = 2.” The reason
for your rash mis-statement was that your method did not teach you
careful proof-analysis. Proof-analysis is sometimes trivial, but some-
times very difficult indeed.

Beta: I see your point. I should also add a self-critical note to
your comment, for it seems to me to reveal a whole continuum of
exception-barring attitudes. The worst merely bars some exceptions
without looking at the proof at all. Hence the mystification when we
have the pmof on the one hand and the exceptions on the other. In
the mind of such primitive exception-barrers, the proof and the
exceptions exist in two completely separate compartments. Some
others may now point out that the proof will work only in the re-
stricted domain, and thereby claim to dispel the mystery. But their
‘conditions’ will still be extraneous to the proof-idea.! Better exception-

1 ¢, ..Lhuilier’s memoir consists of two very distinct parts. In the first the author offers an
original proof of Euler’s theorem. In the second his aim is to point out the exceptions to
which this theorem is subjected.” (Gergonne’s editorial comment on Lhuilier’s paper in
Lhuilier’s [1812-134], p. 172, my italics.)

M. Zacharias in his [1914-31] gives an uncritical but faithful description of this
compartmentalisation: ‘In the 19th century, geometers, besides finding new proofs of
the Euler theorem, were engaged in establishing the exceptions which it suffers under
certain conditions. Such exceptions were stated, e.g. by Poinsot. S. Lhuilier and F. Ch.
Hessel tried to classify the exceptions. ..’ (p. 1052).
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PROOF AND GLOBAL COUNTEREXAMPLE

barrers will glance quickly at the proof and gain, as I did just now, some
inspiration for stating the conditions which determine a safe domain.
The best exceptlon-barrers do a careful analysis of the proof and, on
this basis, give a very fine delineation of the prohibited area. In fact
your method is, in this respect, a limiting case of the exception-barring
method. . .

IotA: ...and it displays the fundamental dialectical unity of proof

and refutations.
TEACHER: | hnpe that now

exception-barrers improved it too, but improving was independent of proving.
Our method improves by proving. This intrinsic unity between the ‘logic of
discovery’ and the ‘logic of justification’ is the most important aspect of the
method of lemma-incorporation.

Beta: And of course I now understand your previous puzzllng

remarks about your not being perturbed by a conjecture being both
¢ 1? d o Loa T 1 _Loiie cmiiae wxri H ) LR PO PN Y i A
PIOVCG ana rerutca ana aoout )’Uul Wllllllgllcbb tO P‘. vC CVvCll 4

false conjecture.

KArpA [aside]: But why call a “proof” what in fact is an ‘improof’?

TeacHER: Mind you, few people will share this willingness. Most
mathematicians, because of ingrained heuristic dogmas, are incapable
of setting out simultaneously to prove and refute a conjecture. They
would either prove it or refute it. Moreover, they are particularly
incapable of improving conjectures by refuting them if the conjectures
happen to be their own. They want to improve their conjectures without
reﬁttationr never by reducing falsehood but by the monotonous increase of

pvnwmfpc This is pe ]1 DS r]'m lmr](o-rnnnﬂ to f]'m apvroach nF the best
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sort of exception-barrers: they start by ‘playing for safety’ by devising
a proof for the ‘safe’ domain and continue by submitting it to a thorough
critical investigation, testing whether they have made use of each of
the imposed conditions. If not, they ‘sharpen’ or ‘generalise’ the first

modest version of their theorem, i.e. specify the lemmas on which the

proof I1mges, and incorporate them. For instance,

ac banv m r f\"ml‘] [ 7-N b]ﬂ
LY LUlie uldaie L
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theorem All convex polyhedr are Eulerian’, postponing non-convex
instances for a cura posterior; next they devise Cauchy’s proof and then,
discovering that convexity was not really ‘used’ in the proof, they

T
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PROOFS AND REFUTATIONS

|
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(a) () (©)

Fig. 14. Three versions of the ring-shaped face: (a) Jonquiéres,
(b) Matthiessen, (c) the ‘untrained eye’.

build up the lemma-incorporating theorem! There is nothing
heuristically unsound about this procedure which combines provisional
exception-barring with successive proof-analysis and lemma-incorpora-
Bera: Of course this procedure does not abolish
pushes it into the background: instead of directly criticising an over-
statement, they criticise an under-statement.
Teacuer: I am delighted, Beta, that I convinced you. Rho and
Delta, how do you feel about it?
RHO' I for one certainly think that the pr
o

) NSO S ST U [
11 CLILICISINL, IU Ullly

faces’ is a Pbcuuopi‘t‘)mc 1. It stems from a monstrous in c‘:i‘pi‘c‘: tation of
what constitute the faces and edges of this soldering of two cubes into

one — which you called a “crested cube’.

TEACHER: Exp]ain

Ruo: The ‘crested cube’ is a polyhedron consisting of two cubes

TEACHER I don’t mind.

Ruo: Now you misinterpreted ‘soldering’. ‘Soldering’ consists of
edges connecting the vertices of the bottom square of the small cube
to the corresponding vertices of the top square of the large cube. So

there is no ‘ring-shaped face’ at all.
BeTA: The ring-shavned face is there! The

M alans it « haeal

tau\ii‘s apotut arc not tnerc:
RHO: They are just hidden from your untrained eyes.?

1 This standard pattern is essentially the one described in the classic of Pélya and Szegé
[1927], p. vii: ‘One should scrutinise each proof to see if one has in fact made use of all
the assumptions; one should try to get the same consequence from fewer assumptions

. .and one should not be satisfied until counterexamples show that one has arrived at
the boundary of the possibilities.’

2 This ‘soldering’ of the two polyhed1a by hxdden edges is argued by Jonquiéres ([1890b],

ey TrT_2) Wy avitiae and fi1innale l-\u manctar_ndivies_
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r—polyhcdra, The first proponent of using monster-

theorem was Matthiessen [1863]. He uses monster-



PROOF AND GLOBAL COUNTEREXAMPLE

BETA: Do you expect us to take your argument seriously ? What I
see is superstition, but your ‘hidden’ edges are reality?

RHO: Look at this salt crystal. Would you say this is a cube?

BETA: Certainly

RHO: A cube has 12 edges, hasn’t it?

BETA: Yes, it has.

Ruo: But on this cube there are no edges at all. They are hidden.

They appear only in your rational reconstruction.

BFTA I shall think about this. One thing is clear. The Teacher
ey r] ™Y nnrni rl 17 -\ ¢.44 fl"i mr at nr] ]Anf]o [ 72y t‘nffnlhh' r]
Criticisea iiiy ViiLLiIiwW G LV ulau iiiy meuinoca 18aas 1o J.l.auu-)’, aiiu

also for forgettmg about the proof. These criticisms apply just as much

to your ‘monster-adjustment’ as to my ‘exception-barring’.
TeAcHER: Delta, what about you? How would you exorcise the

ring-shaped face?

DEectA: I would not. You have converte
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hird lemma? 1 propose a four tn, an
polyhedra are Eulerian, which are (a) simple, (b) have each face 51mply-
connected, and (c) are such that the triangles in the plane triangular
network, resulting from stretching and triangulating, can be so
numbered that, in removing them in the right order, V- E+ F will not
alter until we reach the last triangle.” I wonder why you did not pro-
pose this at once? If you really took your method seriously, you would

=

adjustment consistently: he succeeds in displaying hidden edges and faces to explain
away ecverything that is non-Eulerian, including polyhedra with tunnels and cavities.
While Jonquieres’ soldering is a complete triangulation of the ring-shaped face,
Matthiessen solders with economy, by drawing only the minimal number of edges that

-o\] * b‘»\n ‘.qnn 1ntA o1 mﬂ]‘v nnnnnrl-nrl Q1 1"\= nrac {‘:n T4\
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Matthiessen is remarkably confident about his method of turning revolutionary
counterexamples into well-adjusted bourgeois Eulerian examples. He claims that ‘any
polyhedron can be analysed in such a way that it corroborates Euler’s theorem. ..’. He
enumerates the alleged exceptions noted by the superficial observer and then states:
‘In each such case we can show that the polyhedron has hidden faces and edges, which,
if counted, leave the theorem V- E+F = 2 untarnished even for these seemingly
recalcitrant cases.’

The idea that, by drawing additional edges or faces, some non-Eulerian polyhedra
can be transformed into Eulerian ones, stems however not from Matthiessen, but
from Hessel. Hessel illustrates this point with three examples using nice figures
([1832], pp. 14-15). But he did not use this method to ‘adjust’ but, on the contrary, to
‘elucidate the exceptions’ by showing ‘rather similar polyhedra for which Euler’s law
is valid’.

1 This last lemma is unnecessarily strong. It would be enough for the purpose of the proof
. 1 2 £,
lar
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PROOFS AND REFUTATIONS

have turned all the lemmas immediately into conditions. Why this
‘piecemeal engineering’ 1

ArpHA: Tory turned into revolutionary! Your suggestion strikes
me as rather Utopian. For there aren’t just three lemmas. Why not add,
with many others, conditions like ‘(4) if 1+1 = 2°, and ‘(s) if all
triangles have three vertices and three edges’, since we certainly use
these lemmas? I propose that we turn only those lemmas into conditions
for which a counterexample has been found.

GAMMA: This seems ta
expect counterexamples, i.e. which are not obviously, indubitably true.

Derta: Well, does our third lemma strike anyone as obvious?
Let us turn it into a third condition.

GaMMA: What if the operations expressed by the lemmas of our
proof are not all independent? If some of the operations can be per-

rr\rm r‘ +fm ) 4 I’\P that the ract ninct narpccnn"u ]'\p f\]-\]p N 1‘\:: nor r\rvnpr]
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order of deletzon of tnangles in the resulting flat network such that V—E+F
will not alter. If there is, then incorporating the first lemma into the
conjecture would exempt us from incorporating the third.

DELTA: You claim that the first condition implies the third. Can
you prove this?

EpsiLoN: I can.?

ArpHA: The actual proof, however interesting, will not help us in
solving our problem: how far should we go in improving our con-
jecture? I may admit that you have the proof you claim to have - but

that will only decompose this third lemma into some new sub-
lemmas q}'\nn]r:l we now turn these into conditions? Where should

ANV ARLALAARIS WAL NS LsANS 4ANS VY VA AA waALwONW LAvNTs v 4 Nsa VV AAvaNw Ja

we stop ?

Karpa: There is an infinite regress in proofs; therefore proofs do
not prove. You should realise that proving is a game, to be played
while you enjoy it and stopped when you get tired of it.

EpsiLon: No, this is no game but a serious matter. The infinite
ot be

ress can be halted bv triv "v true lemmas. which need n
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1 The students are obviously quite knowledgeable about recent social philosophy. The
term was coined by K. R. Popper ([1957], p. 64).
3 Actua.lly, such a proof was first proposed by H. Reichardt ([1941], p. 23). Also cf.

B. L. van der Waerden [1941]. Hilbert and Cohn-Vossen were satis ned that the truth
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PROOF AND GLOBAL COUNTEREXAMPLE

GamMa: This is just what I meant. We do not turn into conditions
those lemmas which can be proved from trivially true principles.
Nor do we incorporate those lemmas which can be proved - possibly
with the help of such trivially true principles - from previously
specified lemmas.

ArpHA: Agreed. We can then stop improving our conjecture after
we have turned the two non-trivial lemmas into conditions. In fact I
do think that thls method of improvement, by lemma-incorporation,

is flawless. It seems to me that it not only improves but perfects th

.......... A an o et atha ~ . ~ b
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" is to show
conclusively that a certain clearly stated assertion is true, or else to show
that it is false’.! The real aim of a ‘problem to prove’ should be to
improve — in fact, perfect — the original, ‘naive’ conjecture into a genuine

¢ h ’
theorem .
Nt : ‘ATl lvhad Filarian?
uur nat "6 conjecture was i POJ."ueui'a arc Luicrian .
1 C

The monster-barring method defends this naive conjecture by
reinterpreting its terms in such a way that at the end we have a monster-
barring theorem: ‘All polyhedra are Eulerian.” But the identity of the
linguistic expressions of the naive conjecture and the monster-barring
theorem hides, behind surreptitious changes in the meaning of the
terms, an essential improvement.

The exception-barring method introduced an element which is really
extraneous to the argument: convexity. The exception-barring theorem

‘All convex polyhedra are Eulerian.’
The lemma-incorporating method relied on the argument - i.e. on

the proof — and on nothing else. It virtually summed up the proof in the
lemma-incorporating theorem: ‘All simple pol"uedra with simply-con-
’

nected faces are Eulerian.
This shows that (now I use the term ‘proving’ in the traditional
sense) one does not prove what one has set out to prove. Therefore no
proof should conclude with the words: ‘Quod erat demonstrandum.’®
BETA: Some people say that theorems precede proofs in the order
PI'()VC it. UtIlCtb Gcny [Hlb, aIlCJl Clalm tnat diSLUVny PIULCCdb by
drawing conclusions from a specified set of premisses and noting the
interesting ones — if you are lucky enough to find any. Or, to use a
delightful metaphor of a friend of mine, some say that the heuristic

! Pélya ({1945], p- 142).
3 This last sentence is from Alice Ambrose’s interesting paper ([1959], p. 438).

4
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PROOFS AND REFUTATIONS

‘zip fastener’ in a deductive structure goes upwards from the bottom -
the conclusion — to the top - the premisses,! others say that it goes
downwards from the top to the bottom. What is your position?
ArpHA: That your metaphor is inapplicable to heuristic. Discovery
does not go up or down, but follows a zig-zag path: prodded by
counterexamples, 1t moves trom the naive conjecture to the pre-
misses and then turns back again to delete the naive conjecture and
replace it by the theorem. Naive conjecture and counterexamples

r]n not ahhpar

U dAVve urrvu

1
Aicravery oa ar o diccarnad 3
GiSCOVEry Caniotl o a

TeACHER: Very good. But let us add a note of caution. The theorem
does not always differ from the naive conjecture. We do not necessarily
improve by proving. Proofs improve when the proof-idea discovers
unexpected aspects of the naive conjecture which then appear in the
theorem. But in mature theories this might not be the case. It is certainly
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the latter.

K aPpA [aside] : Mature theories can be rejuvenated. Discovery always
supersedes justification.

SieMaA: This classification corresponds to mine! My first type of
propositions was the mature type, the third the growing type. ..

GAMMA [interrupts him]: The theorem is false! I found a counter-
example to it.
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(a) Monster-barring in defence of the theorem

GaMMA: I have just discovered that my Counterexample s, the cylinder,
refutes not only the naive conjecture but also the theorem. Although
it satisfies both lemmas, it is not Eulerian.
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JOKC, not a COUHICICXEIIHPIC NO SCrious matncinaticCian will takc tne

cylinder for a polyhedron.
Gamma: Why didn’t you protest against my Counterexample 3, the
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PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

urchin? Was that less ‘crankish’ than my cylinder 2! Then of course you
were criticising the naive conjecture and welcomed refutations. Now
you are defendmg the theorem and abhor refutations! Then, when a
counterexample emerged, your question was: what is wrong with the
conjecture? Now your question is: what is wrong with the counterexample?

DeLTA: Alpha, you have turned into a monster-barrer! Aren’t you
embarrassed 22

(b) Hidden lemmas

Arntfn L] T ~ Yy T W\l\‘r ]‘\l\“’ l‘\anr\ " R ol }
Liiron. i aiii. 1 iiidy ave ol a rasin. vet me

possible types of counterexamples We ave already discussed the first,
which is local but not global -it certainly would not refute the
theorem.? The second, whlch is both global and local, does not require
any action: far from refuting the theorem, it confirms it. Now there
may be a third type, which is global but not local. This would refute
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have to admit that it is a global counterexample: V—E+F = 1. But
is it not of the second harmless type? I bet it does not satisfy at least one
of the lemmas.

Gamma: Let us check. It certainly satisfies the first lemma: if I
remove the bottom face, I can easily stretch the rest on to the black-

board.

ArpHA: But if you happen to remove the jacket, the thing falls into
two pieces!

GAMMA' So what? The first lemma required that the polyhedron
e. ‘after having had a face removed, it can be stretched

H
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start by removing the jacket. What you are claiming is that the
cylinder should satisfy an additional lemma, namely that the resulting
plane network also be connected. But who has ever stated this lemma?

1 The urchin and the cylinder were discussed above, pp. 16 and 31.

3 Monster-barring in defence of the theorem is an important pattern in informal mathe-
matics: ‘What is wrong with the examples in which Euler’s formula fails? Which
geometrical conditions, rendering more precise the meaning of F, V, and E, would
ensure the validity of Euler’s formula?’ (Pdlya [1954], 1, exercise 29). The cylinder is
given in exercise 24. The answer is: ‘...an edge...should terminate in corners...’
(p. 225). PSlya formulates this generally: ‘ The situation, not infrequent in mathematical
research is this: A theorem has been already formulated but we have to give a more
precise meaning to the terms in which it is formulated in order to render it strictly

~nvvrant? fo ec)

LULLVLL \P- ))}-
3 Local but not global counterexamples were discussed on pp. 10-12.
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PROOFS AND REFUTATIONS

ALPHA‘ Everybody has interpreted ‘stretched’ as ‘stretched in one
piece’, ‘stretched without tear’...We decided not to incorporate the
third lemma because of Epsilon’s proof that it followed from the first
one.! But just have a look at that proof: it hinges on the assumption
that the result of the stretching is a connected network ! Otherwise for
the triangulated network V' —E+ F would not be 1.

GAMMA: Why then didn’t you insist on stating it explicitly?

ArPHA: Because we took it to be stated implicitly.

u, for one, certainly did not. For yor

aaaaaaaaaaa ettt 4 Sease 2aVUW

¢

snnylc stan e
into a ball - so accordlng o your interpretatio
first lemma.

ArrHA: Well.. .But you have to agree that it does not satisty the
second lemma, namely, that ‘any face dissected by a diagonal falls into two

pieces’. How will you triangulate the circle or the jacket? Are these

faces simply-connected ?

GAMMA Of course tﬂcy are.

ArpHA: But on the cylinder one cannot draw diagonals at all! A
diagonal is an edge that connects two non-adjacent vertices. But your
cylinder has no vertices!

GaMMA: Don’t get upset. If you want to show that the circle is not
simply-connected, draw a diagonal which does not create a new face.

ArrHA: Don’t be funny; you know very well that I cannot.

GAMMA: Then would you admit that ‘there is a diagonal of the
circle that does not create a new face’ is a false statement?

ArrHA: Yes, I would. What are you up to now?

GAMMA: Then you are bound to admit that its negation is true,
namely, that ‘all A?Gfmm.ls of the circle create a new Lace’, or, that

&“ll&\rl] 9 b-ll.ula CAAL \,&Lﬂsv A

‘the circle is simply-connected’.

ArrHA: You cannot give an instance of your lemma that “all diagonals
of the circle create a new face’ — therefore it is not true, but meaningless.
Your conception of truth is false.

Karpa [aszde] First they quarrelled about what is a polyhedron,
1e negation of the lemma

was false! Or cana proposition A meamngless while Not-A is meaning-
ful and false? Your conception of meaning does not make sense!

1 2
See p. 40. See p. 33.

3 Gamma’s vacuously true statements were a major innovation of the nineteenth century.
Its problem-background has not yet been unfolded.

44
Tr



PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

Mind you, I see your difficulty; but we can overcome it by a slight
reformulation. Let us call a face simply-connected if for all x, if x is
a diagonal then x cuts the face into two’. Neither the circle nor the jacket
can have diagonals, so that in their case, whatever x is, the antecedent
will always be false. Therefore the conditional will be instantiated by
any object, and will be both meaningful and true. Or, both the circle
and the jacket are simply-connected - the cylinder satisfies the second
lemma.

D
+
.}

rrive at a fla o
will never be able to conclude the proof. How can you then
that the cylinder satisfies the second lemma? Don’t you see that there
must be an existential clause in the lemma? The correct interpretation of
the simply-connectedness of a face must be: ‘for all x, if x is a diagonal,
then x cuts the face into two; and there is at least one x that s a diagonal’.
was tnere as
idden assumption’. Al the cylinder
fail to meet it; therefore the cylinder is a counterexample which is both
global and local, and it does not refute the theorem.

GamMa: First you modified the stretching lemma by introducing
‘connectedness’, now the triangulating lemma by introducing your
existential clause! And all this obscure talk about ‘hidden assump-
tions’ only hides the fact that my cylinder made you invent these
modifications.

ArpHA: What obscure talk? We already agreed to omit, that is,
‘hide’, trivially true lemmas.2 Why then should we state and incorpo-

rate tr1v1allvfalse lemmas - they are just as trivial and just as boring!
Keeb them in vour mind (en flrump\ knf do not state fhnnﬂ _A ]-} rlrln

L&\/\.«r VAANALLA ALLX ]vu& ‘.JL.IL\-‘- \vlr vl!'l ll’b} LV W Ad au“»\/ ViAAN, Ae a4 1 Auu\.d.].

lemma is not an error: it is shrewd shorthand pointing to our back-
ground knowledge.

KAppaA [aside]: Background knowledge is where we assume that we
know everything but in fact know nothing.?

?

1 ‘Euclid. . .employs an axiom of Wthh he is wholly unconscious (Russcll [1903], p. 407).

ACO AT AN ™M TaAtisTnse A A
2% ll.Ull.s lllﬂ'bll\rlllakl\'lﬂla aliul

ts. . p. $6) or Eves and
Newsom on Euclid ([1958] p

2 See pp. 40-1.

3 Good textbooks in informal mathematics usually specify their ‘shorthand’, i.e. those
lemmas, either true or false, which they regard as so trivial as not to be worth mention-
ing The standard expression for this is ‘we assume ﬂ:mil'iarity with lemmas of typc x’.

moeiseramd Loanaill. teo. A ccne me e hlaloens damaao Lo L -

l.llc ?uuuuul. Uf dAdULLICU uuulualu.y UCCLITACY d4dd CLIUCIDIIL LULILS Udu&gruunu nnOWIC(Jgt:
into knowledge. Cauchy, e.g.,did not even notice that his celebrated [1821] presupposed
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GamMa: If you did make conscious assumptions, they were that
(a) removing a face always leaves a connected network and (b) any
non-triangular face can be dissected into triangles by diagonals.
While they were in your subconscious, they were listed as trivially true -
the cylinder however made them somersault into your conscious list
as trivially false. Before being confronted by the cylinder you could
not even conceive that the two lemmas could be false. If you now

say that you did, then you are rewriting history to purge it from error.!
THeTA: Not lono aco. Albvha. vou ridic uled the ‘hidden’ clauses

5 =5V Adpiia, N u viin aialeNeNaa ~aia
1171\1 1\ no- ﬁr\nr] 110\ 1 nnlﬂ-n ,t- n] nf\'finr\n ntéar nnﬁ‘-\ nﬁ1¢-nf- Ve Nl ~vxr
VV11iCll tltlbu tl 111 L/7Cild CLLIZILIVILD d4dllll Cd\lll Llubdb Vil. 1LNUW

it is you who make up ‘hidden’ clauses in the lemmas after each
refutation, it is you who shift your ground and try to hide it to save
face. Aren’t you embarrassed?

Kappa: Nothing amuses me more than the dogmatist at bay.
After donning the militant sceptic’s robe to demolish a lesser brand of

‘familiarity” with the theory of real numbers. He would have rejected as a monster any
counterexample which made lemmas about the nature ot irrational numbers explicit.
Not so Weierstrass and his school: textbooks of informal mathematics now contain a
new chapter on the theory of real numbers where these lemmas are collected. But in
their introductions ‘familiarity with the theory of rational numbers’ is usually assumed.
(See e.g. Hardy’s Pure Mathematics from the second edition (1914) onwards — the first
edition still relegated the theory of real numbers to background knowledge; or Rudin
[1953].) More rigorous textbooks narrow down background knowledge even further:
Landau, in the introduction to his famous [1930], assumes familiarity only with ‘logical
reasoning and German language’. It is ironical that at the very same time Tarski showed

< PURSRUUR N B

tha( tne aosoiutely U.'IVIZI le‘ﬁ“ﬁab tnus omxucu may not on ly oe IK.ISC 'DUC lHCOflSlS[Cﬂt -
~” ﬂ

Tacad 1 anguage. Nnea wnandere \xrl-u:n ‘O-I-ua anthar ~ranfac
AUOVAL LGliE UaR Ve W 1AV VY UVLAULLS VY AILIL LV allilvl bUlAL\rDD\-D

ignorance about thc field x° will replace the authoritarian euphemism ‘the author
assumes familiarity with the field x’: surely only when it is recognised that knowledge
has no foundations.

1 When it is first discovered, the hidden lemma is considered an error. When J. C.
Becker first pointed out a ‘hidden’ (stillschweigend) assumption in Cauchy’s proof (he
quoted the proof second-hand from Baltzer’s [1862]), he called it an ‘error’ ([18694],
pP- 67-8). He drew attention to the fact that Cauchy thought that all polyhedra were

1ie lamma wae nat anlv hidden hut nlen falca Hictariane hawa ever <anno
l\/ o ALAD AdWwdlliirich YY QI 44UV Vidia , lu“u\’ll LA ALY A ALIVVULIQAAD AV V A\A2Y bﬂulu
e o

l ATy
1agine that great mathematicians should make such errors. A veritable programm

~
A\
s

1

how to fa151fy history can be found in Poincaré ’s [1908]: ‘A demonstration which is not
rigorous is nothingness. I think no one will contest this truth. But if it were taken too
literally, we should be led to conclude that before 1820, for example, there was no
mathematics: this would be manifestly excessive; the geometers of that time understood
voluntarily what we explain by prolix discourse. This does not mean that they did not
see it at all; but they passed over it too rapidly, and to see it well would have necessitated
taking the pains to say it’ (p. 374). Becker’s report about Cauchy’s ‘error’ had to be
rewritten 1984~wise: ‘doubleplusungood refs unerrors rewrite fullwise’. The rewriting
was done by E. Steinitz who insisted that ‘the fact that the theorem was not generally
valid could not possibly remain unnoticed’ ([1914-31], p. 20). Poincaré himself applied
his programme to the Euler-theorem: ‘It is known that Euler proved that V-E+F = 2
for convex polyhedra’ ([1893]) — Euler of course stated his theorem for all polyhedra.

"
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PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

dogmatism, Alpha becomes frantic when he in turn is cornered by the
same sort of sceptical arguments. He now plays fast and loose: trying
to fight off Gamma’s counterexample first with the defence-mechanism
he himself had exposed and forbidden (monster-barring), then by
smuggling a reserve of ‘hidden lemmas’ into the proof and correspond-
ing ‘hidden conditions’ into the theorem. What is the difference?
Teacuer: The trouble with Alpha was certainly the dogmatist

turn in his interpretation of lemma-incorporation. He thought that
a caren l 1__5Perf1nn nF rhe nrnnf would va nencerf nrnnf—nnn]vq

a Laillyd QL LilC POV woulit 1C1A 4 PCLICCLY r OI=alldly

emm n /1 0¥ ne nnbn 0']-\ L Ln t‘l\'l'l]f] anltrmar,
Vil \J uDL ad Jlia uiv sl 11U CUUIA CliUiililL

ate all the exceptions). He thought that by incorporating them he
could attain not only an improved theorem, but a perfected theorem,!
without bothering about counterexamples. The cylinder showed him to
be wrong but, instead of admitting it, he now wants to call a proof-
analysis complete if it contains all the relevant false lemmas.

(c) The method of proof and refutations

GamMaA: I propose to accept the cylinder as a genuine counterexample
to the theorem. I invent a new lemma (or lemmas) that will be refuted
by it and add the lemma(s) to the original list. This of course is exactly
what Alpha did. But instead of ‘hiding’ them so that they become
hidden, I announce them publicly.

Now the cylinder which was a puzzling, dangerous global but not
local counterexample (the third type) in respect of the old proof-analysis
and of the corresponding old theorem, will be a harmless, global and
local counterexample (the second type) in respect of the new proof-

analysis and the corresponding new theorem
A]h]‘\') f]'\nn(r]‘\f fl‘mf h ] c1-r1 nf CO““""IC‘{P.I“

.L.Ll ALCR UAL\I“ Ai% vaLGE VW A DI ALAN ub UI.L I

absolute but in fact it was relative to his proof-analysis. As proof-
analysis grows, counterexamples of the third type turn into counter-
examples of the second type

LampA: That is right. A proof-analysis is ‘rigorous’ or ‘valid’ and
the corresponding mathematical theorem true if, and only if, there is

no ‘f]'\irr]_fy]f:)n’ counterexa mnlp to it. I call this criterion the Drmrtn’p

Gf Retransmission f Falsi t] because it demands that giobai CO'L‘LI‘itC‘i'—
examples be also local: falsehood should be retransmitted from the
naive conjecture to the lemmas, from the consequent of the theorem
to its antecedent. If a global but not local counterexample violates this

principle, we restore it by adding a suitable lemma to the proof-

r
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1 See p. 30.
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PROOFS AND REFUTATIONS

analysis. The Principle of Retransmission of Falsity is therefore a reguls-
tive principle for proof-analysis in statu nascendi, and a global but not

local coun tPrexomnIP is a fermcntmg agent in the gmwth of proof-
analysis.

GaMMA: Remember, even before finding a single refutation we
managed to pick out three suspicious lemmas and go ahead with the
proof-analysis!

Lamspa: That is true. Proof-analysis may start not only under the
pressure of global counterexamples but also when people have already
learned to be on g

In the first case all global counterexamples appear as counterexamples
of the third type, and all the lemmas start their careers as ‘hidden
lemmas’. They lead us to a gradual build-up of the proof-analysis and
so turn one by one into counterexamples of the second type.

In the second case — when we are already in a suspicious mood and
look out for refutations — we may arrive at an advanced proof-analysis
without any counterexamples. Then there are two possibilities. The
first possibility is that we succeed in refuting — by local counterexamples -
the lemmas listed in our proof-analysis. We may very well find that
these are also global counterexamples.

1uCius Pr O0I1S.
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ArpHA: This is how I discovered the picture-frame: looking for a
hn]‘rl’\nr]fl\h thnt Atrtaer AXTIN Y A Ao vnmr\tvnA ﬁr\vl]rl e Val d l‘\n cttratsr ar]
t’UL AAL\BL VLN Lu.ab, all\l 114V1u.5 d 1dLUlU 1 LILUVbu, CULULLIWU 11UV UL oLl LviuilLIvu
flat onto a plane.

SIGMA: Then not only do refutations act as fermenting agents for
proof-analysis, but proof-analysis may act as a fermentmg agent for
refutations! What an unholy alliance between seeming enemies!

LamBpa: That is right. If a conjecture seems very plauslble or even

SClL!‘CVIant NnnNna ¢ r\n]r] NrAYve 1F° ANA Mavy 1ﬂrl l-]waf 1+ 1Noac AN vary

9y VIV Jliivuiu tlLUVb iLe. ViiG Lu.ay A111I\3 Lilal 1L 111115\'0 \Jii v\,l.]
amemblitiata e 1 1 1 L 1. D Loelea Jl V1 1 .
bUPulb[lLdlCU 411 QuD10OUS ICIINIT1AaS. I\C1 UIlg LI1C 1CINIT1AS 1ay 1€aU L0
some unexpected refutation of the original conjecture.

Sicma: To proof generated refutations!
Gamma: Then ‘the virtue of a logical proof is not that it compels
belief, but that it suggests doubts’.2

1 Our class was a rather advanced one - Alpha, Beta, and Gamma suspected three lemmas

when no global counterexamples turned up n actual mstoty proof-analysis came many
: les were either hushed up or exorcised

hP n]nha] rnnnrprpva mh]P

div HalUlasr LUV VaAGial

to proof- analysxs- the apphcatlon of t:he Prmmple of Rctransmxssmn of Falsity — was
virtually unknown in the informal mathematics of the early nineteenth century.

H. G. Forder [1927], p. viii. Or: ‘It is one of the chief merits of proofs that they instil a
certain scepticism as to the result proved.” (Russell [1903], p. 360. Healso givesan excellent
example.)
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PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

LamMBpA: But let me come back to the second possibility: when we
do not find any local counterexamples to the suspected lemmas.

StoMa: That is, when refutations do not assist proof—analy51s! What
would happen then?

Lamspa: We would be branded cranks. The proof would acquire
absolute respectability and the lemmas would shake off suspicion.
Our proof—analysis would soon be forgotten.! Without refutations one
cannot sustain suspicion: the searchhght of suspicion soon switches

off if a countercxample does not reinforce it, directing the limelight
of refutation onto a neglected aspect of the proof that had scarcely been

noticed in the twilight of ‘trivial truth’.
All this shows that one cannot put proof and refutations into
separate compartments. This is why I would propose to rechristen our

1 It is well known that criticism may cast doubt on, and eventually refute, ‘a priori truths’
and so turn proofs into mere explanations. That lack of criticism or of refutation may turn
implausible conjectures into ‘a priori truths’ and so tentative explanations into proofs
is not so well known but just as important. Two major examples of this pattern are the
emergence and fall of Euclid and Newton. The story of their fall is well known, but the
story of their emergence is usually misrepresented.

Euclid’s geometry seems to have been proposed asac osmologxcal theory (cf Poppcr

propostc 43 VOG, pPL

v allenging rides an
doctrines entailed not o ly the falsity, but even th logical f lsxty, thc inconceivability,
of these ‘postulates’. Only later were the ‘postulates’ taken to be indubitably true and
the bold anti-Parmenidean ‘axioms’ (such as ‘the whole is greater than the part’) taken
to be so trivial that they were omitted in later proof-analysis and turned into ‘hidden
lemmas’. This process started with Aristotle: he branded Zeno a quarrelsome crank, and
his arguments ‘sophistry’. This story was recently unfolded in exciting detail by Arpid
Szabé ([1960], pp. 65-84). Szabb showed that in Euclid’s time the word ‘axiom’ - like
‘postulate’ — meant a proposition in the critical dialogue (dialectic) put forward to be
tested for consequences without being admitted as true by the discussion-partner. It is the
irony of history that its meaning was turned upside down. The peak of Euclid’s authority
was reached in the Age of Enlightenment. Clairaut urges his colleagues not to ‘ obscure
proofs and disgust readers’ by stating evident truths: Euclid did so only in order to
convince ‘obstinate sophists’ ([1741], pp. x and xi).

Again, Newton’s mechanics and theory of gravitation was put forward as a daring guess,
which was ridiculed and called ‘occult’ by Leibniz and suspected even by Newton
himself. But a few decades later - in the absence of refutations — his axioms came to be
taken as indubitably true. Suspicions were forgotten, critics branded ‘eccentric’ if not
‘obscurantist’; some of his most doubtful assumptions came to be regarded as so trivial
that textbooks never even stated them. The debate — from Kant to Poincaré - was no
longer about the truth of Newtonian theory but about the nature of its certainty. (This
volte face in the appraisal of Newtonian theory was first pointed out by Karl Popper ~
see his [19634], passim.)

The analogy between political ideologies and scientific theories is then more far-
reaching than is commonly realised: nolitical ideologies which first may be debated

SSELIILD TSt a9 SRRAAAAIVIT AR Maatalsa SRS RAUHATS VYaiataa adlSS aise LwUa e

(and perhaps accepted only under pressure) may turn into unquesnoned background
knowledge even in a single generation: the critics are forgotten (and perhaps executed)
until a revolution vindicates their objections.

AO
s >4



PROOFS AND REFUTATIONS

“method of lemma-incorporation’ the ‘method of proof and refutations’. Let
me state its main aspects in three heuristic rules:

Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect
the proof carefully to prepare a list of non-trivial lemmas (proof-analysis);
find counterexamples both to the conjecture (global counterexamples) and to
the suspect lemmas (local counterexamples).

Rule 2. If you have a global counterexample discard your conjecture, add to
your proof-analysis a suitable lemma that will berefuted by the counterexample,

cture by an 1 improved one that incorporates that
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lemma as a congition.” Do no oW arejiia
Try to make all * hidden lemmas’ expltat
Rule 3. If you have a local counterexample, check to see whether it is not

also a global counterexample. If it is, you can easily apply Rule 2.

(d) Proof versus proof-analysis. The relativisation of the concepts of theorem
and rigour in proof-analysis.
ArpHA: What did you mean by ° sultable in your Rule 2?
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the counterexample in question can be adde
restore the validity of the proof-analysis.

LamBpA: What! So a lemma like ‘All polyhedra have at least
17 edges’ would take care of the cylinder ! And any other random ad hoc

as it happened to be refuted

s 1.
1C1
1
a-

by the counterexample.

GamMMA: Why not?

LaMBDA: We already criticised monster-barrers and exception-
barrers for forgetting about proofs.* Now you are doing the same,
inventing a real monster: proof-analysis without proof! The only

difference between you and the monster-barrer is that you would have
Delta make his arbitrary definitions explicit and incorporate them into
the thcorcm as lemmas. And there is no difference between exception-

barring and your proof-analysing. The only safeguard against such
ad hoc methods is to use suitable lemmas, i.e. lemmas in accordance with

1 This rule seems to have been stated for the first time by P. L. Seidel ([1847], p. 383). See
below, p. 136.

2 ‘I have the right to put forward any example that satisfies the conditions of your argu-
ment and I strongly suspect that what you call bizarre, preposterous examples are in fact
embarrassing examples, prejudicial to your theorem’ (G. Darboux [1874b]).

3 ‘I am terrified by the hoard of implicit lemmas. It will take a lot of work to get rid of
them’ (G. Darboux [1883]). 4 See pp. 29 and 36.
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the spirit of the thought-experiment! Or would you drop the beauty
nfthe nrnnfq Frnm mathemnt 1CS 2 _n_d ren]are 1t bv a Ql”V F riy __1 gamc?

D I 21y 101

GAMMA: Better than your ‘spirit of the thought-expenment’! Iam
defending the objectivity of mathematics against your psychologism.
ArpHA: Thank you, Lambda, you restated my case: one does not
invent a new lemma out of the blue to cope with a global but not local
counterexample: rather, one inspects the proof with increased care
and discovers the lemma there. So I did not, dear Theta, ‘make up’

h ddcn lnmm e an A T r] A not r]qu Kanna ‘cmnn-n-]p fi'\pm into f]'\r-\
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understands the entire proof from a brief outline. We should not
confuse infallible proof with inexact proof-analysis. There is still the
irrefutable master-theorem: ‘All polyhedra on which one can perform the
thought-experiment, or briefly, all Cauchy-polyhedra, are Eulerian.’ My
approximate proof—analyms drew the borderline of the class of Cau chy-
polyucura with a pencil that - I admit — was not particularly sharp.
Now eccentric counterexamples teach us to sharpen our pencil. But
first: no pencil is absolutely sharp (and if we overdo sharpening it will
break); secondly, pencil-sharpening is not creative mathematics.

GAMMA : I am lost. What is your position ? First you were a champion
of refutations.

ArpHA: Oh, my growing pains! Mature intuition brushes contro-
versy aside.

GamMMA: Your first mature intuition led you to your ‘perfect
proof-analysis’. You thought that your ‘pencil’ was absolutely sharp.

ArpHA: I forgot about the difficulties of linguistic communication

ecially with pedants and sceptics. But the heart of mathematics
P

linoa icul
proof-analysis — is necessary for communication but irrelevant. I am
interested in polyhedra, you in language. Don’t you see the poverty
of your counterexamples? They are linguistic, not polyhedral.
GamMA: Then refuting a theorem only betrays our failure to grasp
the hidden lemmas in it? So a ‘theorem’ is meaningless unless we

ALPHA: Since the vagueness of language makes the rigour of proof-
analysis unattainable, and turns theorem-formation into an unending
process, why bother about the theorem? Working mathematicians
certainly do not. If yet another petty ‘counterexample’ is produced
they do not admit that their theorem is refu ted, but at most that it

* domain of validity’ should be suitably narrowed down.
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PROOFS AND REFUTATIONS

LaMBDA: So you are not interested either in counterexamples, or
in proof-analysis, or in lemma-incorporation?

ArpHA: That is right. I reject all your rules. I propose one single
rule instead: Construct rigorous (crystal-clear) proofs.

LamBpA: You argue that the rigour of proof-analysis is unattainable.
Is the rigour of proof attainable? Cannot °‘crystal-clear’ thought-
experiments lead to paradoxical or even contradictory results?

ArpHA: Language is vague, but thought can achieve absolute rigour.

LamBDA: But surely ‘at each stage of evolution our fathers also
thought they had reached it? If they deccived themselves, do we not
,
likewise cheat ourselves?’1

ArpHA: ‘Today absolute rigour is attained.’
[Giggling in the classroom.3]
GaMMA: This theory of ‘crystal-clear’ proof is sheer psychologism !4

ArpHA: Better than the logico-linguistic pedantry of your proof-
15

LAMBDA: Swearwords apart, I too am sceptical about your con-
ception of mathematics as ‘an essentially languageless activity of the

1 Poincaré [1905], p. 214.

2 Jbid. p. 216. Changes in the criterion of ‘rigour of the proof’ engender major revolutions
in mathematics. Pythagoreans held that rigorous proofs have to be arithmetical.
However, they discovered a rigorous proof that /2 was ‘irrational’. When this scandal
eventually leaked out, the criterion was changed: arithmetical ‘intuition’ was dis-
credited and geometrical intuition took its place. This meant a major and complicated
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the nineteenth century saw arithmetical intuition re-enthroned with the help of the
cumbersome theory of real numbers. Today the main dispute is about what is rigorous
and what not in set-theoretical and metamathematical proofs, as shown by the well-
known discussions about the admissibility of Zermelo’s and Gentzen’s thought-
experiments.
3 As was already pointed out, the class is very advanced.
4 The term ‘psychologism’ was coined by Husserl ({1900]). For an earlier ‘criticism’ of

psychologism see Frege [1893], pp. xv—xvi. Modern intuitionists (unlike Alpha) openly
embrace psychologism: ‘A mathematical theorem expresses a purely empirical fact,

namely the success of a certain construction. . . mathematics. . .is a study of certain func-
tions of the human mind’ (Heyting [1956], pp. 8 and 10). How they reconcile psycho-
logism with certainty is their well-kept secret.

5 That even if we had perfect knowledge we could not perfectly articulate it, was a
commonplace for ancient sceptics (see Sextus Empiricus fc. 190], I. 83-8), but was for-
gotten in the Enlightenment. It was rediscovered by the intuitionists: they accepted
Kant’s philosophy of mathematics but pointed out that ‘between the perfection of
mathematics proper and the perfection of mathematical language no clear connection
can be seen’ (Brouwer [1952], p. 140). ‘ Expression by spoken or written word - though
necessary for communication — is never adequate. . . The task of science is not to study
languages, but to create ideas’ (Heyting [1939], pp. 74-5).
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PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

mind’.! How can an activity be true or false ? Only articulated thought
can try for truth. Proof cannot be enough: we also have to state what
the proof proved. The proof is only a stage of the mathematician’s
work which has to be followed by proof-analysis and refutations and
concluded by the rigorous theorem. We have to combine the ‘rigour
of proof’ with the ‘rigour of proof-analysis’.

ArpHA: Are you still hoping that at the end you will arrive at a

perfectly rigorous proof-analysis? If so, tell me why you did not start

by formula fm.g your new theorem stlmulateﬂ by the cylinder? You
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in despalr And this o ly after the ﬁrst of your new counterexamples!
You replaced our original theorem by a succession of ever more
precise theorems — but only in theory. What about the practice of this
relativisation ? Ever more eccentric counterexamples will be countered
by ever more trivial lemmas - yielding a ‘vicious infinity’2 of ever
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destroys any truth whatsoever and drives us endlessly without purpose.
I stop this vicious infinity in thought — you will never stop it in
language.

GaMmMA: But I never said that there have to be infinitely many counter-
examples. At a certain point we may reach truth and then the flow of
refutations will stop. But of course we shall not know when. Only
refutations are conclusive — proofs are a matter of psychology.*

LamBDA: I still trust that the light of absolute certainty will flash up
when refutations peter out!

1 Brouwer

2 English has the t iso a i
(schlechte Unendltchkett) and would not apply here. Alpha obviously coined this phrase
with ‘wvicious circle’ in mind.

3 Usually mathematicians avoid long theorems by the alternative device of long defini-
tions, so that in the theorems only the defined terms (e.g. ‘ ordinary polyhedron’) appear
— this is more economical since one definition abbreviates many theorems. Even so, the
definitions take up enormous space in ‘rigorous’ expositions, though the monsters
which lead to them are seldom mentioned. The definition of an ‘Euler polyhedron’ (with
the definitions of some of the defining terms) takes about 26 lines in Forder [1927]
(pp. 67 and 29); the definition of ‘ordinary polyhedron’ in the 1962 edition of the Encyclo-
paedia Britannica fills 45 lines.

4 *Logic makes us reject certain arguments, but it cannot make us believe any argument’
(Lebesgue [1928], p. 328). * Editors’ note: It should be pointed out that Lebesgue’s state-
ment, taken literally, is false. Modern logic has provided us with a precise characterisa-
tion of validity, which, it can be shown, some argumen‘ts do satisfy. Thus logic certainiy
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conclusion of a valid argument - for we may not believe one or more of the premises.
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PROOFS AND REFUTATIONS

Karpa: But will they? What if God created polyhedra so that all
true universal statements about them — formulated in human language
—are infinitely long? Is it not blasphemous anthropomorphism to
assume that (divine) true theorems are of finite length?

Be frank: for some reason or other you are all bored with refutations
and piecemeal theorem-formation. Why not call it a day and stop the
game? You already gave up ‘Quod erat demonstrandum’. Why not give

up ‘Quod erat demonstratum’ too? Truth is only for God.
THETA [aside]: A religi

de]: A relig

SiGMA: Let’s not over a 1

of vagueness is at stake. It is sim ly that as I said before, not all pro-

positions are true or false. There is a third class which I would now call
“more or less rigorous’.

THETA [aside]: Three-valued logic - the end of critical rationality!

SIGMA:. ..and we state their domain of validity with a rigour that

‘.ﬂ YAV AW ] VYol N, =
1D 111IVULC VUL 1LY dubkiudbbo
A

ArpHA: Adequate for what?

Sicma: Adequate for the solution of the problem which we want
to solve.

THETA [aside]: Pragmatism ! Has everybody lost interest in truth?

Kappa: Or adequate for the Zeitgeist! ‘Sufficient unto the day is
the rigour thereof.™

THETA: Historicism! [Faints.]

ArpHA: Lambda’s rules for ‘rigorous proof-analysis’ deprive mathe-
matics of its beauty, present us with the hairsplitting pedantry of long,
clumsy theorems filling dull thick books, and will eventually land us

in vicious infinity. Kappa’s escape-route is convention, Sigma’s
mathemaucal pragmatism. What a choice for a rationalist !

¢

GAMMA: So a rationalist ought to relish Alpha’s ‘rigorous proofs’,
inarticulate intuition, ‘hidden lemmas’, derision of the Principle of
Retransmission of Falsity, and ehmmatlon of refutations? Should
mathematics have no relation to criticism and logic?

BeTA: Whatever the case, I am fed up with all this inconclusive
t

verbal quibble. I want to do mathematics and I am not interested in the
Wil ool 1 1@ et AL il s tte Lhiiimndatrinne Bxran Y QR
PllllUbU 11 Cdl Uil 1UICY UL J UudLIL y 111 it§ 10uNnaations. £LVEil iI r¢asoil

cu
fails to provide such justification my natural instinct reassures me.2

1 E. H. Moore [1902], p. 41I.

2 ‘Nature confutes the sceptics, reason confutes the dogmatists’ (Pascal [1659], pp. 1206-7).
Few mathematicians would confess ~ like Beta — that reason is too weak to justify itself.
Most of them adopt some brand of dogmatism, historicism or confused pragmatism
and remain curiously blind to its untenability; for example: ‘ Mathematical truths are

€A
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PROOF-ANALYSIS AND GLOBAL COUNTEREXAMPLE

I understand Omega has an interesting collection of alternative
proofs — I would rather listen to him.

OmeGA: But I shall put them into a ‘philosophical’ framework!

Bera: I don’t mind packing if there is something else in the packet.

Note. In this section I have tried to show how the emergence of mathematical

criticism has been the driving force in the search for the “foundations’ of
mathematics.
The dlstmctlon that we made between proof and proqf analysis and the corre-
i ween the rigour of proof and e rigour of proof-analy
seems to be crucial. About 1800 the rigour of proof (Lr)’ clear thought experi-
ment or construction) was contrasted with muddled argument and inductive
generalisation. This was what Euler meant by ‘rigida demonstratio’, and Kant’s
idea of infallible mathematics too was based on this concept (see his paradigm
case of a mathematical proof'in his [1781], pp. 716~17). It was also thought that
one proves what one has set out to prove. It did not occur to anybody that the
verbal articulation of a thought-experiment involves any real difficulty.
Aristotelian formal logic and mathematics were two completely separate
disciplines — mathematicians considered the former as utterly useless. The proof
or thought-experiment carried full conviction without any deductive pattern
or ‘logical’ structure.

In rhe earlv nineteenth centurv the flood of counterexam

= TEEE] TEESST T mAsAs TAmavmes ] b cemess "'g s
fusion. Since proofs were crystal-clear, refutations had to be miraculous freaks,
to be completely segregated from the indubitable proofs. Cauchy’s revolution of
rigour rested on the heuristic innovation that the mathematician should not stop
at the proof: he should go on and find out what he has proved by enumerating
the exceptions, or rather by stating a safe domain where the proof is valid. But
neither Cauchy — nor Abel — saw any connection between the two problems. It never
occurred to them that if they discover an exception, they should have another look at the
proof. (Others practised monster-barring, monster-adjustment or even ‘turning
a blind eye’ - but all agreed that the proof was taboo and had nothing to do
with the ‘exceptions’.)

The nineteenth-century union of logic and mathematics had two main
sources: Non-Euclidean geometry and the Weierstrassian revolution of rigour.
They brought about the integration of proof (thought-experiment) and refuta-
tions and started to develop proof-analysis, gradually introducing deductive

patterns 111 the proo -f]'\nnahr_.avnpr ment. What we t‘a"PA rhp mpfhnr] of
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in fact the prototype of the completely incontestable. . . But the rigor of maths is not absolute;
it is in a process of continual development; the principles of maths have not congealed once
and for all but have a life of their own and may even be the subJect of scientific quarrels.’
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PROOFS AND REFUTATIONS

matics for the first time. Weierstrassian rigour triumphed over its reactionary
monster-barring and lemma-hiding opponents who used slogans like ‘the
dullness of rigour’, “artificiality versus beauty’, etc. The rigour of proof-analysis
superseded the rigour of proof: but most mathematicians put up with its pedantry
only so long as it promised them complete certainty.

TR YT /

C antors set-theory — with y

op of ur f
‘rigorous’ theorems — turned many of the Wc1erstrasman Old Guard into
dogmatists, ever ready to combat the ‘anarchists’ by barring the new monsters
or referring to ‘hidden lemmas’ in their theorems which represented ‘the last
word in rigour’ while still chastising the older type ‘reactionaries’ for like sins.
Then some mathematicians realised that the drive for rigour of proof-analysis
in the method of proofs and refutations leads to vicious infinity. An ‘intuition-
ist’ counter-revolution began: the frustrating logico-linguistic pedantry of
proof-analysis was condemned, and new extremist standards of rigour were
invented for proofs; mathematics and logic were divorced once more.
Logicists tried to save the marriage and foundered on the paradoxes. Hilber-
tian rigour turned mathematics into a cobweb of proof-analyses and claimed to
stop their infinite regresses by crystal-clear consistency proofs of his intuitionistic
metatheory. The ‘foundational layer’, the region of uncriticisable familiarity,
was shifted into the thought-experiments of metamathematics. (Cf. Lakatos

l1962], pp. 179-84.)
| S =]’ 4 )

B ea \.}* ‘revolution of rigour’ proof-analysis penetrated deeper into the
proofs down to the foundational layer of ‘familiar background knowledge’ (also

cf. footnote 3, p. 45), where crystal-clear intuition, the rigour of the proof,
reigned supreme and criticism was banned. Thus, different levels of rigour differ
only about where they draw the line between the rigour of proof-analysis and the rigour
of proof, i.e. about where criticism should stop and justification should start. *Cer-
tainty is never achieved’; ‘foundations’ are never found - but the ‘cunning of
reason’ turns each increase in rigour into an increase in content, in the scope of
mathematics. But this story is beyond our present investigation.*

* Editors’ note. This historical note, we believe, underplays a little the achievements of the
mathematical ‘rigorists’. The drive towards ‘rigour’ in mathematics was, it eventually
transpired, a drive towards two separate goals, only one of which is attainable. These
two goals are, first, rigorously correct arguments or proofs (in which truth is infallibly
transmitted from premisses to conclusions) and, secondly, rigorously true axioms, or
first principles (which are to provide the original injection of truth into the system —
truth would then be transmitted to the whole of mathematics via rigorous proofs). The
first of these goals turned out to be attainable (given, of course, certain assumptions),

A - ad s ~Kla
-"'h‘lst ‘Chy SEConaG provea unattainable.

Frege and Russell provided systems into which mathematics could be (fallibly)
translated (see below, p. 122), and in which the rules of proof are finite in number and
specified in advance. It also turns out that one can show (it is here that the assumptions
just referred to come in) that any sentence which can be proved using these rules is a
valid consequence of the axioms of the system (i.e. that if these axioms are true, the
sentence proved must aiso be true). In these systems there need be no ‘gaps’ in proofs,
and whether a string of sentences is a proof or not can be checked in a finite number of
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PROOF-ANALYSIS AND LOCAL COUNTEREXAMPLE

6. Return to Criticism of the Proof by Counterexamples which are Local
but not Global. The Problem of Content

content by deeper proojs

arve

(a) Increasing c

OmeGA: I like Lambda’s method of proof and refutations and I share
his faith that somehow we shall finally arrive at a rigorous proof-
analysis and thereby at a certainly true theorem. But even so, our very
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decreases content. Each new lemma in the proor-aia
ponding new condition in the theorem, reduces its domain. Increasing
rigour is applied to a decreasing number of polyhedra Does lemma-
incorporation not repeat the mistake Beta made in playing for safety?
Could we too ‘have withdrawn too radically, leaving lots of Eulerian
polyhedra outside the walls’?! In both cases we may throw the baby
out with the bathwater. We should have a counterweight against the
content-decreasing pressure of rigour.

We have already made a few steps in this direction. Let me remind
you of two cases and re-examine them.

One was when we first came across local but not global counter-
examples.? Gamma refuted the third lemma in our first proof-analysis
(that ‘in removing triangles from the flat triangulated network we have
only two possibilities: either we remove an edge or we remove two
edges and a vertex ). He removed a triangle trom the middle ot the
network without removing a single edge or vertex.

We then had two possibilities.? The first was to incorporate the false
nto the h eorem This would have been a nerﬁnr‘r]v proner

oacing revtainty
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domain of the theorem so drastically that it would have applied only

steps. (Of course, if this checking process shows the sequence of formulae not to be a
proof in the system considered, this does not establish that no genuine proof of the end
formula exists within the system. Thus, in proof checking, there is an asymmetry which
operates in favour of verification and against falsification.) There is no serious sense in
which such proofs are fallible. (It is true that it may be that everyone who ever checked
some such proof made SOme inexplicable error, but this is not a serious doubt. It is true

b valid n £o + uth mav be false - but

thatthainfnase +ha eha
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there is no serious reason to think it is.) But the axioms of such systems are fallible in a
non-trivial sense. The attempt to derive all of mathematics from ‘self-evident’, ‘logical’
truths, as is well known, broke down.

1 Above, p. 28. 2 For the discussion of this first case see above, pp. 10-12.

3 Omega seems to ignore a third possibility: Gamma may very well claim that since local
but not global counterexamples do not show up any violation of the principle of
retransmission of falsity, there is no action to be taken.
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PROOFS AND REFUTATIONS

for the tetrahedron. Together with the counterexamples we would
have thrown out all the examples but one.

This was the rationale behind our adoption of the alternative:
instead of narrowing the domain of the theorem by lemma-incorpor-
ation, we widened it by replacing the falsified lemma by an unfalsified
one. But this vital pattern for theorem-formation was soon forgotten
and Lambda did not bother to formulate it as a heuristic rule. It

should be:

Rule 4. If you have a counterexample which is local but not global, try to
‘ NV NALVD 4,1‘“‘ M'Af\“_ll“ﬂ )\’l‘"t‘ ll‘. YNNI Area 1Y ‘ Pl rn‘:l‘nr’ ’nmmn l\ﬂ' Vel %] 4 141
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falsified one.

Counterexamples of the first type (local but not global) may provide
an opportunity of increasing the content of our theorem which is
constantly being reduced under the pressure of counterexamples of the
third type (global but not local)

(IARANEA o Du!

GAaMMA: Ru f Alpha’s now dis-
carded ‘perfect proof-analysing intuition’.! He would have listed the
suspicious lemmas, incorporated them immediately and — without
caring for counterexamples — formed near-empty theorems.
TeACHER: Omega, let us hear the second example you promised.
OMEGA: In Beta’s proof-analysis the second lemma was that ‘all
faces are triangular’.2 This can be falsified by a number of local but
not global counterexamples, e.g. by the cube or the dodecahedron.
Therefore you, Sir, replaced it by a lemma which is not falsified by
them, namely that ‘any face dissected by a diagonal edge falls into two
pieces’. But instead of invoking Rule 4 you rebuked Beta for careless

proof-analysis’. You will admit that Rule 4 is better advice than just
‘hp more rm’efnl

a2aVULS il ans

BETA: You are right, Gamma, and you also make me understand
better ‘the method of the best sort of exception-barrers’.? They start
with a cautious, ‘safe’ proof-analysis and systematically applying Rule
4 they gradually build up the theorem without uttering a falsehood.

After all, it is a matter of temperament whether one approaches truth
f]‘n'nnah ever Fﬁ]QP over-statements or fhrﬂl]o’h ever true l]n(‘]Pr—
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OMEGA: That may be right. But one can interpret Rule 4 in two
ways. Hitherto we considered only the first, weaker interpretation:

1 Cf a]‘\nvp D

AT7
above, p. 47.
2 For the discussion of this second case cf. above, pp. 35-6.
3 See above, pp. 37-8.
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PROOF~ANALYSIS AND LOCAL COUNTEREXAMPLE

“one easily elaborates, improves the proof by replacing the false lemma
by a slightly modified one Whlch the countercxamnle will not refute’;1
all that one needs for this is a more careful’ inspection of the proof and
a ‘trifling observation’.2 On this interpretation Rule 4 is just local
patching within the framework of the original proof.

I allow also for the alternative, radical interpretation: to replace the
lemma - or possibly all the lemmas - not only by trying to squeeze out

the last drop of content from the given proof, but possibly by inventing
a completely different, more embracing, dggne,r ?rggf.

completely different, more embracing
example ?
: For example?

OMEGA: I discussed the Descartes—Euler conjecture earlier with a
friend who immediately offered a proof, as follows: let us imagine the
polyhedron to be hollow, with a surface made of any rigid material,
say cardboard. The edges must be clearly painted on its inside. Let the

1n51de be well 1llum1nated and let one of the faces be the lens of an

C

SIGMA [aside]: A camera in a mathematical proof?

OMEGA: So I get a picture of a plane network, which can be dealt
with just like the plane network in your proof. Also in the same way, I
can show that, if the faces are simply-connected, V—E+F = 1, and
adding the lens-face which is invisible on the photo, I get Euler’s
formula. The main lemma is that there is a face of the polyhedron
which, if transformed into the lens of a camera, photographs the inside
of the polyhedron so that all the edges and all the vertices are on the
film. Now I introduce the following abbreviation: instead of ‘a poly-
hedron which has at least one face from which we can photograph all

?
the inside’, I shall say ‘a quasi-convex polvhedron .

BETA: So your theorem will be: All quasi-convex polyhedra with
simply-connected faces are Eulerian.

OMeGA: For brevity and to give credit to the inventor of this
particular proof-idea I would rather say: ‘All Gergonne-polyhedra are
Eulerian’ 3

1 Above, p. 11. % Ibid.

3 Gergonne’s proof is to be found in Lhuilier [1812-134], pp. 177-9. In the original it
could not of course contain photographic devices. It says: ‘Take a polyhedron, one of
its faces being transparent; and imagine that the eye approaches this face from the
outside, so closely, that it can perceive the inside of all the other faces. ..’ Gergonne
points out modestly that Cauchy’s proof is deeper, it ‘has the valuable advantage that
it does not assume convexity at all’. (It does not occur to him, however, to ask what it
does assume.) Jacob Steiner later rediscovered essentially the same proof ([1826]). His
attention was then called to Gergonne’s priority, so he read Lhuilier’s paper with the
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PROOFS AND REFUTATIONS

GaMMA: But there are many simple polyhedra which, although
perfectly Eulerian, are so badly indented that they have no face from
which the whole of the inside can be photographed! Gergonne’s
proof is not deeper than Cauchy’s - it is Cauchy’s that is deeper than
Gergonne’s!

OMeGA: Of course! I suppose Teacher knew about Gergonne’s
proof, found out that it was unsatisfactory by some local but not
global counterexample and replaced the optical - photographing -
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followedb a slight alteration, butbyaradical, imaginative innovation.

TEACHER. I accept your example-but I did not know about
Gergonne’s proof. But if you did, why did you not tell us about it?

OMEGA: Because I immediately refuted it by non-Gergonnian
polyhedra that are Eulerian.

GaMMA: As | hz‘w“j
a reason for scrapping

OMEGA: I think so.

TeacHER: Have you heard of Legendre’s proof? Would you scrap
that too?

OMeGA: I certainly would. It is still less satisfactory: its content is
even poorer than Gergonne’s proof. His thought-experiment started
by mapping the polyhedron with a central projection on to a sphere
containing the polyhedron. The radius of the sphere he chose as 1. He
chose the centre of the projection so that the sphere will be covered
completely, once but only once, by a nctwork of spherical polygons.

CA 1\10 ‘- ] M Aa XXrac &Ln‘- I
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that for the poly‘nedra: network on the sphere V—E+F = 2 - but this
he succeeded in decomposing into trivially true lemmas of spherical
trigonometry. But a point from which such a central projection is
possible exists only in convex and a few decent ‘almost-convex’
polyhedra — a class narrower even than that of ‘quasi-convex’ poly-

hedra. But this theorem: ‘All Legendre-polyhedra are Eulerian’® differs
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list of exceptions but this did not prevent him from concluding his proof with the
‘theorem’: ‘All polyhedra are Eulerian’. (It was Steiner’s paper that provoked Hessel -
the Lhuilier of the Germans — to write his [1833].)

1 Legendre’s proof can be found in his [1803], but not the proof-generated theorem, since
proof-analysis and theorem-formation were virtually unknown in the eighteenth
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faces (p. 161) Then he proves V- E +F = 2 in general (p. 228). But there is an exceptxon—
barring amendment in a note in fine print on , . 164, saying that only convex polyhedra
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completely from that of Cauchy, bu

t
unate l]r incomplete’l It is a ‘vain
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scrapped and one has to look for more general principles’.

BEeTA: Omegaisright. ‘Convexity is to a certain extent accidental for
Eulerianness. A convex polyhedron might be transformed, for example
by a dent or by pushing in one or more of the vertices, into a non-
convex polyhedron with the same configurational numbers. Euler’s
relation corresponds to something more fundamental than convexity.”
And you will never capture that by your ‘almost’ and ‘quasi- frills.

OMeGA: I thought Teacher had captured it in the topological
principles of the Cauchy proof in which all the lemmas of Legendre’s
proof are replaced by completely new ones. But then I stumbled upon

a nn]v]-\pr]rnh that rpﬁ1ted even flfnc hIOOF‘.Jthh 1S certa ‘1 r the Ape est

<@ rvl]ll\,«uLle VALV AVils ¥ Al VARAD r A Viiv v

hitherto.

will be considered. He ignored the almost convex fringe. Poinsot was first, in his [18009],
to notice when commenting on Legendre’s proof, that the Euler formula ‘is valid not
only for ordinary convex solids, namely, for those whose surface is cut by a straight line
innomorethantwo points: it also holdsfor polyhedra with re-entrant angles, provided
one can find a point in the interior of the solid which serves as the centre of a sphere on to
which one can project the faces of the polyhedron by lines leading from the centre, so
that the projected faces do not overlap. This applies to an infinity of polyhedra with
re-entrant angles. In fact, Legendre’s proof applies, as it stands, to all these additional
polyhedra’ (p. 46).

1 E. de Jonquiéres goes on, again lifting an argument from Poinsot’s [1858]: ‘In invoking
Legendre, and like high authorities, one only fosters a widely spread prejudice that has
captured even some of the best intellects: that the domain of validity of the Euler
theorem consists only of convex polyhedra’ ([1890a], p. 111).

2 This is from Poinsot ([1858], p. 70). 3 D. M. Y. Sommerville ([1929], pp. 143-4).
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PROOFS AND REFUTATIONS

TeACHER: Let us hear about it.

OMEeGA: You all remember Gamma’s “urchin’ (fig. 7). That was of
course non-Eulerian. But not all star-polyhedra are non-Eulerian ! Take
for instance the ‘great stellated dodecahedron’ (fig. 15). It consists, like
the ‘small stellated dodecahedron’ of pentagrams, but differently
arranged. It has 12 faces, 30 edges and 20 vertices, so that V—E+ F=2.1

TeACHER: Do you then reject our proof?

OMEGA: I do. The satisfactory proof has to explain the Eulerianness

¢
also of the ‘great stellated dodecahedron’
n Y7lixy annd ndinns At wriaee w € nnint atallaendl JAdona i ?
NHO: wny not aamit tnat your great steuatea aodaecancaromn is

triangular? Your difficulties are imaginary.

DeLTA: I agree. But they are imaginary for a different reason. I have
taken to star-polyhedra now: they are fascinating. But they are, I am
afraid, essentially different from ordinary polyhedra: therefore one
cannot possibly conceive a proof that would explain the Eulerian
character Uf, bdy, the “li'[‘)e, and of the ‘g eat stellated dodecahedron
by one single idea.

OMEeGA: Why not? You have no imagination. Would you have

insisted after Gergonne’s and before Cauchy’s proof that concave and
convex tm]vhedra are eﬂqentml]v dlﬁ’erent therefore one cannot

possibly conceive of a proof that would explain the Eulerian character
of convex and concave polyhedra by one single idea? Let me quote
from Galileo’s Dialogues:

A mT CA ag wrats can

SAUMUU 00 as yUu dCC, a
are moving in ellipses.

SALVIATI: [ am afraid there are planets moving in parabolas. Look at this stone.
I throw it away: it moves along a parabola.

SiMpricto: But this stone is not a planet! These are two quite separate pheno-
mena !

SaLviaTI: Of course this stone is a planet, only thrown with a less mighty hand
than that one which launched the Moon.

Simpricio: Nonsense ! How can you dare to pool under one head heavenly and
earthly phenomena? One has nothing to do with the other! Of course both
may be explained by proofs, but I surely expect the two explanations to be
totally different! I cannot imagine a proof which should explain the course
of a planet in heaven and a projectile on the earth by one single idea!

SALVIATI: You cannot imagine it but I can devise it. . .2

1 This ‘great stellated dodecahedron’ had already been devised by Kepler ([1619], p. 53),
then independently, by Poinsot ([1810]), who first tested if for Eulerianness. Fig. 15 is
copied from Kepler’s book.

2 I was unable to trace this quotation.
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PROOF-ANALYSIS AND LOCAL COUNTEREXAMPLE

TeacuER: Never mind projectiles and planets, Omega, have you
succeeded in finding a proof to embrace both ordinary Eulerian
polyhedra and Eulerian star-polyhedra?

OMEGA: I have not. But I shall.2

LaMBDA: Say you do — what is the matter with Cauchy’s proof?
You must explain why you reject one proof after the other.

(b) Drive towards final proofs and corresponding sufficient and necessary
conditions

Nasrrnase Varr reitimicond smemn~nnd amalicnc f... +1 . anl 1 cirn AL o
UMEGA: IO0u C(ritiCised prooi-anairyses I1or tic uu:anuu 1 OI Uulc

retransmission of falsity by counterexamples of the third type.2 Now I
criticise them for the breakdown of the transmission of falsity (or what
amounts to the same, the retransmission of truth) by counterexamples of
the second type.® A proof must explain the phenomenon of Eulerian-
ness in its entire range

1v1'y‘ queSL is not Uluy for Céﬁ‘mm}' but also for ﬁﬁm’if}". The theorem
has to be certain — there must not be any counterexamples within its
domain; but it has also to be final: there must not be any examples
outside its domain. I want to draw a dividing line between examples
and counterexamples, and not just between a safe domain of a few
examples on the one hand and 2 mixed bag of examples and counter-
examples on the other.

LamspA: Or, you want the conditions of the theorem to be not
only sufficient, but also necessary!

KarrA: Let us imagine then, for the sake of the argument, that you
found such a master—theorem ‘All master-polyhedra are Eulerian’. Do
1l onlv be ‘final’ if the

em will only be ‘final’ if the ¢
theorem: ‘All Eulerian polyhedra are master-polyhedra’ is certain

OMEGa: Of course.

Kappa: That is, if certainty gets lost in vicious infinity, so will
finality? You will find at least one Eulerian polyhedron outside the
domain of each of your ever deeper proofs.

OMEGA: Of course I know that I cannot solve the problem of finality
without solving the problem of certainty. I am sure we shall solve both.
We shall stop the infinite spate of counterexamples both of the first
and the third types.

TeAcHER: Your search for mcreasmg content is very important.

o
[7%3
o
- )

NAYrArcA
U1l VULldL
-
(4

But why not accept your second criterion of satisfactoriness — finality —
1 Cf. footnote 1, p. 65. 2 Global, but not local counterexamples.

3 Counterexamples which are both global and local.
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PROOFS AND REFUTATIONS

as a pleasant bonus but not obligatory? Why reject interesting proofs
that do not contain both sufficient and necessary conditions? Why
regard them as refuted?

OmEeGAa: Well.

LaMBDA: Whatever the case, Omega certainly convinced me that a
single proof may not be enough for the critical improvement of a
naive conjecture. Our method should include the radical version of his
Rule 4, and then it should be called the method of * proofs and refutations’

’
lncqur] nr nrnnfnn/l rofutatione
AdJT VA A II VJ Wi I\JV'P"PPVIUJ .
AAvre Burmtron vy lhsadss ing L ........ 4+ tentmolatad tha wnciilee AL wrnes
IviU . £XCusc my outiinl 5 dVCJub traisiactca uic resuits ox yuul

discussion into qua51-topolog1cal terms: The lemma-incorporating
method yielded a contracting sequence of the nested domains of succes-
sive improved theorems; these domains shrank under the continued
attack of global counterexamples in the course of the emergence of
hidden lemmas and converged to a limit: let us call this limit the *domain
J the pi‘m‘y-aﬁmyau . 1II We 4pp1'y' the weaker version of Rule 4, this
domain can be widened under the continued pressure of local counter-
examples. This expanding sequence again will have a limit: I shall
call it the ‘domain of the proof’. The discussion then has shown that
even this limit domain may be too narrow (perhaps even empty). We
may have to devise deeper proofs whose domains will form an expanding
sequence, including more and more recalcitrant Eulerian polyhedra
which were local counterexamples to previous proofs. These domains,
themselves limit-domains, will converge to the double limit of the
‘domain of the naive conjecture’ — which is after all the aim of the inquiry.

The topology of this heuristic space will be a problem for mathe-

mohr')] h“n]r\cnf\hxr' ‘xn" the ceanencec ]'\p in n‘nfp ‘xn" f]'\p‘r CONYaroe
AdACAVAGCRLA IIALLAVOUIIALJ . VY AdAd VAL U\.«\iu\.rll\/\vd | &4 =) IJLLAI.LAU\.-, VY AAd ViAAN \-\ILLV\.«LS\,
~ b _‘1] -‘.4._.:.. A.LA I:...:A. PO A.L- ]:...:4. L- L e dnder omd D
dl dil, dlldlil U1C 111111, 111 ULC 11111IL DC LlC Cll PL SCL S

’

s which explains
‘great stellated dodecahedron’!

EpsiLoN: I have found a deeper oof than Cauchy
also the Eulerianness of Omega’s
[Passes a note to the Teacher.]

1 The answer is in the celebrated Pappian heuristic of antiquity which applied only to the
discovery of ‘final’, ‘ultimate’ truths, i.e. to theorems which contained both necessary
and sufficient conditions. For ‘problems to prove’ the main rule of this heuristic was:
‘If you have a conjecture, derive consequences from it. If you arrive at a consequence
known to be false, the conjecture was false. If you arrive at a consequence known to be
true, reverse the order and, if the conjecture can be thus derived from this true conse-
quence, then it was true.” (Cf. Heath [1925], 1, pp. 138-9.) The principle ‘causa aequat
effectu’ and the quest for theorems with necessary and sufficient conditions were
both in this tradition. It was only in the seventeenth century — when all the efforts to

annly Dannian hatrictic 4 madarsm ecianca had failad _ that tha At1act fAr fravrtainty ~fama
appiy rappiant nlurisuc o modalrn sCitince naa l.uu.\.u uiat tuiC qudst 1or clriainly came

to prevail over the quest for finality.
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PROOF-ANALYSIS AND LOCAL COUNTEREXAMPLE

OmeGA: The final proof! The true essence of Eulerianness will now
be revealed!

TEACHER: | am sorry, time is running short: we shall have to discuss
Epsilon’s very sophisticated proof some other time.! All I do see is
that it will not be final in Omega’s sense. Yes, Beta?

(c) Different proofs yield different theorems

BetA: The most interesting point I have learned from this discussion

1S tbat dluer"“f hrnnrc of the same naive coniecture lead to auite
PN A wididw II NI/ AT S A VALN JEAAAAN IA“L vV W \/VAAJ b A B4 o d LA g ‘1“.‘4\4
A e al o T s Docraricc Eiiler coniectiire is i 2d Las
QIILCICIIt tnNeOrcCins. 1€ oifie UC.\LU”CD—DML I conjeoeinr s in €a U

each proof into a different theorem. Our original proof ylelded All
Cauchy-polyhedra are Eulerian.” Now we have learned about two com-
pletely different theorems: ‘All Gergonne-polyhedra are Eulerian’ and
‘All Legendre-polyhedra are Eulerian’. Three proofs three theorems with

one common ancestor.?2 The usual expressmn ‘di ﬂ'erent proofs of the

) DUy RSRE PR o S oSN PRI L ariend 2Rl L
Dmer inéeorem .lb (JlCIl COIlL blllg 1I0r it conceais tne vitai roie O1 prooLs
23

n tneorem-tormatlon e

1% Editors’ note: The contents of Epsilon’s note are revealed below, chapter 2.

2 There are many other proofs of the Euler conjecture. For a detailed heuristic discussion
of Euler’s, Jordan’s and Poincaré’s proofs see Lakatos [1961].

3 Poinsot, Lhuilier, Cauchy, Steiner, Crelle all thought that the different proofs prove the
same theorem: the ‘Euler-theorem’. To quote a characteristic sentence from a standard
textbook: ‘The theorem stems from Euler, the first proof from Legendre, the second
from Cauchy’ (Crelle [1827], 2, p. 671).

Dnlncnt came vpry near rn nnhrlng fhp di #erpnrn when he ohserved that TPGPYIAI’P,Q

A AL VY LIVAR LIV UUOLA V VR iy avvgpviia v

proof applied to more than just ordinary convex polyhedra. (See footnote 1 on p. 60.)
But when he then compared Legendre’s proof with Euler’s proof (that one which was
based on cutting off pyramidal corners of the polyhedron and arriving at a final tetra-
hedron without changing the Euler-characteristic) he gave preference to Legendre’s
on the ground of ‘simplicity’ [1858]. ‘Simplicity’ stands here for the eighteenth-
century idea of rigour: clarity in the thought-experiment. It did not occur to him to
compare the two proofs for content: then Euler’s proof would have turned out to be
superior. (As a matter of fact, there is nothing wrong with Euler’s proof. Legendre
applied the subjective standard of contemporary rigour and neglected the objective one
of content.)

Lhuilier — in a surreptitious criticism of this passage (he does not mention Poinsot) -
points out that Legendre’s simplicity is only ‘apparent’, for it presumes considerable
background knowledge in spherical trigonometry ([1812-134], p. 171). But Lhuilier too
believes that Legendte ¢ provea' the same theorem’ as Euler (ibid. p. 170).

Juuu’i Steirier j Juun him in the appraisal of chcud;c N pu)uf and in assumm5 that all
proofs prove the same theorem ([1826]). The only difference is that while according to
Steiner all the different proofs prove that ‘all polyhedra are Eulerian’, according to
Lhuilier all the different proofs prove that “all polyhedra that have no tunnels, cavities and
ringshaped faces are Eulerian’.

Cauchy wrote his [18134] on polyhedra when he was in his early twenties, years before
his revolution of rigour, and one cannot takeit amiss that he repeats Poinsot’s compari-
son of Euler’s and Legendre’s proofs in the introduction to the second part of his treatise.
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PROOFS AND REFUTATIONS

P1: The difference between the different proofs goes much deeper.
Only the naive conjecture is about polyhedra. The theorems are
about Cauchy-objects, Gergonnian objects, Legendrian objects re-
spectively, but not any more about polyhedra.

BETA: Are you trying to be funny?

P1: No, I shall explain my point. But I would do this in a wider
context — I want to discuss concept-formation in general.

Zera: We should rather ﬁrst dlscuss content. 1 found Omega’s
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ear $ approacn to tne
problem of content and then 1nd up our debate with a discussion of
concept-formation.

[
w
C
)—
=
)—
U)

The Problem of Content Revisited
()
\"/

he naive conjecture

he naiveté of ive conj
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ZETA: I agree with Omega in deploring the fact that monster-barrers,

exceptlon—barre rs and lemma-lncorporators all strove for certain truth
at the expense of content. But his Rule 4,2 demanding deeper proofs
of the same naive conJecture, is not enough. Why should our search
for content be delimited by the first naive conjecture we stumble
upon? Why should the aim of our enquiry be the ‘domain of the
naive conjecture’?

OMEeGA: I don’t follow you. Surely our problem was to discover
the domain of truth of V—E+F = 2?
V, E and F for any pmynedron whatsoever. It was a sheer accident that
we first got familiar with polyhedra for which V—E+F = 2. But a
critical inquiry into these ‘Eulerian’ polyhedra showed us that there
are many more non-Eulerian than Eulerian polyhedra. Why not look
for the domain of V—E+F = —6, V—-E+F =28 or V—-E+F = 0?
Aren’t they equally interesting ?

-l

He - like most of his contemporaries — did not grasp the difference in depth of different
proofs and so could not appreciate the real power of his own proof. He thought he had
just given yet another proof of the very same theorem — but he was rather eager to stress
that he had arrived at a rather trivial generalisation of the Euler-formula to certain
aggregates of polyhedra.

Ceroonne was the first to a

Gergonne was the firs
[1812-134], p. 170).
1 See p. s8. 2 See above, p. $8.



PROBLEM OF CONTENT REVISITED
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Fig. 16
SIGMA: You are right. We paid so much attentionto V—E+F = 2
only because we originally tlﬂougut it was true. Now we know it is
not — we have to find a new, deepe ve confecture. .

ZETA:. . .that will be less naive. ..
SIGMA:...that will be a relation between V, E, and F for any

polyhedron.

OmEeGA: Why rush? Let us first solve the more modest problem
f]'\')f wre cot Out tO Sol'tvre- to exh] " wrhvyr " ]17]’\0{1"'\ nra p|1]nf1.nh
Viicd LA A VAN [ 91 9 . 1/1 AY1ICANILA Al daluliviiall,.

al ) BN

Until now we have arrived only at partia
none of the proofs found has explained Why a plcture-frame with
ringshaped faces both in the front and in the back is Eulerian (fig. 16).
It has 16 vertices, 24 edges and 10 faces. . .

THETA: It is certainly not a Cauchy-polyhedron: it has a tunnel, it
has ringshaped faces. . .

BETA: And yet Eulerian! How irrational! Is a polyhedron guilty of
a single fault - a tunnel without ringshaped faces (fig. 9) — to be cast
out among the goats, yet one which offends in twice as many ways ~
having also ringshaped faces (fig. 16) — admitted to the sheep?*

OMEGA: You see. Zeta. we have enouch puzzles about Euleria
MEGA: You see, Zeta, we have enough puzzles about Lulerian
nalvhoadera T at 110 cnlve thame hafnre xxre on AR 40 4 mare genaral
poiyneara. Let us sOive tiem peiore we go on tO a more generai
problem

ZetA: No, Omega. ‘More questions may be easier to answer than
just one question. A new more ambitious problem may be easier to
handle than the original problem.’ Indeed, I shall show you that your
narrow, accidental problem can only be solved by solving the wider,
essential problem.

OMmEGA: But I want to discover the secret of Eulerianness !

ZetA: I understand your resistance. You have fallen in love with
1 The problem was noticed by Lhuilier ([1812~134], p. 189) and, independently, by

Hessel [1832]. In Hessel’s paper the ﬁomcs of the two picture-frames appear next to

each other. Also cf. footnote 1, p. 79.
3 Pélya calls this the ‘inventor’s paradox’ ([1945], p. 110).
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PROOFS AND REFUTATIONS

the problem of finding out where God drew the boundary dividing
Eulerian from non-Eulerian polyhedra. But there is no reason to
believe that the term ‘Eulerian’ occurred in God’s blueprint of the
universe at all. What if Eulerianness is merely an accidental property
of some polyhedra? In this case it would be uninteresting or even
impossible to find out the random zig-zags of the demarcation line
between Eulerian and non-Eulerian polyhedra. Such an admission
however would leave rationalism unsullied, for Eulerianness is then not

P the rational design 1e universe. So let us forget about it

N nf GLA PO S TPy oy ALA .l no:d-ﬁnal on&. l-nm a0 O-LAO- FaS o Y-SR IN n]vvvavvn
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prepared to abandon one’s original pr oble in the course of the

solution and replace it by another one.

(b) Induction as the basis of the method of proofs and refutations

SIGMA: Zeta is right. What a disaster!
ZEeTA: Disaster?

SicMA: Yes. You now want a new ‘naive conjecture’ about the
relation between V, E and F, for any polyhedron, don’t you? Impos-
sible! Look at the vast crowd of counterexamples. Polyhedra with
cavities, polyhedra with ringshaped faces, with tunnels, joined to-
gether at edges, vertices. . .V —E+F can take any value whatsoever!
You cannot possibly recognise any order in this chaos! We have left
the firm ground of Eulerian polyhedra for a swamp ! We have irretriev-
ably lost a naive conjecture and have no hope of getting another one!

ZETA: But..

3

BETA: Why ot? Remember the seemingly hopeless chaos in our
table of the numbers of vertices, edges and faces even of the most
ordinary convex polyhedra.! We faile d s0 many times to fit them into
a formula.? But then suddenly the real regularity governing them

struck us: V—E+F = 2.
Kappa [aside]: ‘Real regularity’? Funny expression for an utter

falsehood.

Beta: All that we have to do now is to complete our table with th

(¢4

P s
1 1 1 ) PR I 1.
pauenc, aulgent opserv aClOl'l, ana some 1uck, we sna nit on e rignt

one; then we can improve it again by applying the method of proofs
and refutations!
ZETA: Patient, diligent observation? Trying one formula after the

-‘l-

i% Eaztors nofe: This table was discussed before we entered the classroom.
2 See footnote 3, p. 73. The table has been borrowed from Pdlya [1954], vol. 1, p. 36.
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PROBLEM OF CONTENT REVISITED

n
) o7
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D11 1.
rolylicaron

I cube 6 8 12

II triangular prism s 6 9
III pentagonal prism 7 10 IS
IV square pyramid S s 8
V triangular pyramid 4 4 6
VI pentagonal pyramid 6 6 10
VII octahedron 8 6 12
VIII ‘tower’ 9 9 16
IX ‘truncated cube’ 7 10 15

other? Perhaps you will devise a guessing machine that produces

random ormu an] toctc o + Xrov11 1\] ? Te thic vanr 1r]pq
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Bera: I don’t understand your scorn. Surely you agree that our
first knowledge, our naive conjectures, can only come from diligent
observation and sudden insight, however much our critical method of
‘proofs and refutations’ takes over once we have found a naive con-
jecture? Any deductive method has to start from an inductive basis!

SIGMA: xou‘r lnau(:tl’v“e metnoa Wlll never SUCCCCQ WC Oﬁly ar-
rived at V—E+F = 2 because there happened to be no plcture—trame
or urchin in our original tables. Now that this historical accident. . .

Karpa [aszde] ..or God’s benevolent guidance. ..

SIGMA:. . .is no more, you will never ‘induce’ order from chaos.
Y/~ nf-nv-l-nrl er;f lnnn— nl\onwvvnﬁ:nh Ahtl 1|1n]r'¢r 1hn1.nL0- — Ahfl A;]nr] NT{\'(!T
VV L dltdailLu vviuil xuus VUOLL VvaAaluivill aliu 1uen 11101511& AW LallLl. LNU VY

you propose to start again with longer observation and luckier insight.
Even if we did arrive at a new naive conjecture — which I doubt — we
shall only end up in the same mess.

BETA: Perhaps we should give up research altogether? We have to
start again ~ first with a new naive conjecture and then going again
throuch the method of proofs and

through the method of proofs and 1
ZetA: No, Beta. I agree with Sigma - therefore I shall not start
again with a new naive conjecture.

Beta: Then where do you want to start if not with an inductive
low-level generalisation as a naive conjecture? Or have you an
alternative method for starting?

’J ¢
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PROOFS AND REFUTATIONS

(c) Deductive guessing versus naive guessing

ZeTA: Start? Why should I start? My mind is not empty when I
discover (or invent) a problem.

TeacHER: Do not tease Beta. Here is the problem: ‘Is there a relation
between the number of vertices, edges and faces of polyhedra analogous to the
trivial relation between the number of vertices and edges of polygons, namely
that V. = E2?’! How would you set about it?

Pt
joo
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7 ETA* F‘;St a 0 oovernment o
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numbers of their vertices, edges and faces and compiling tables from
the data. But even if I had, I should have no patience - or interest - in
trying one formula after the other to test whether it fits.

BETA: What then? Will you lie down on your couch, shut your
eyes and forget about the data?

Zara e Bonmtler T oanmnd ne 21, ot wxritle ok o diws syl atonntrar
LETA: J..Mu,uy 1 need an taea to start witn, out no data wnatsocver
DETA And wnere d you get your 1aea f m?¢

ZETA: It is already there in our minds when we formulate the
problem: in fact, it is in the very formulation of the problem.

BeTA: What idea?

ZETA: That for a polygon V' = E.

Bera: So what?

ZETA: A problem never comes out of the blue. It is always related
to our background knowledge. We know that for polygons V = E.
Now a polygon is a system of polygons consisting of one single
polygon. A polyhedron is a system of polygons consisting of more than

a ctnn]n hnlxrnnh 114 rnr hn]v nr]r’l\ / -l- 1:' A xr]'\qf hnihf AIA f]'\P
(-3 allxsl\, tlUl}sUlL. ALV LUL tlUl diIvuiia Fa N AR -4 tJULALu NEANE VAAN
walnisimes 7 T Lo 1oz L o l.l on f_.-_.- e e mammleremena ]

1ati01l VvV = L Drcak aoOwil i1l tn¢ transition rroir I10. IUPUlygUudl
systems to polypolygonal systems? Instead of collecting data I trace

how the problem grew out of our background knowledge; or, which
was the expectation whose refutation presented the problem?

SicMA: Right. Let us follow your recommendation. For any
polygon E-V = 0 (ﬁg 17(a)). What happens if I fit another polygon
to it \llUL necessari 'y in the same Pldu.C) ? The additional PU‘Y5U“ has
n, edges and n, vertices; now by fitting it to the original one along a
chain of n] edges and n] + 1 vertices we shall increase the number of
edges by n, —n] and the number of vertices by n, —(n; +1); that is, in
the new 2-polygonal system there will be an excess in the number of
edoes over the nu l\pr of vertices: E-V =1 ('ﬁ(r 17(b): for an

\,ubvu "V wa VAAN s&u;asuw& J .-.aa 2I\Y]r S =as

1 See above, p. 6.
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PROBLEM OF CONTENT REVISITED
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F-polygonal system constructed in this way E—V = F—1.

ZETA: Or, V-E+F = 1.

LaMBDA : But this is false for most polygonal systems. Take a cube. ..

SiGMA: But my construction can lead only to ‘open’ polygonal
systems—-bounded by a circuit of edges! I can easily extend my
thought—exp riment to ‘closed’ polngu s systems, with no such
boundary. Such closure can be accomplished 'by covering an open
vase-like polygonal system with a polygon-cover: fitting such a
covering polygon will increase F by one without changing Vor E..

ZEetA: Or, for a closed polygonal system — or closed nolvhcdron-—

D 'y
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have got without ‘observing’ the number of vertices, edges and faces
of a single polyhedron!

LamBpA: And now you can apply the method of proofs and refuta-
tions without an ‘inductive starting point’.

r~rOmn 1pr~h1rn Wi r11 NnOW vnn
we L ? 8§ ) YV AAAw AL 1AV

tions, proof-analysis, theorem-formation.

Lamspa: Then in your method —instead of observations ~ proof
precedes the naive conjecture 1

ZETA: Well I shouldn’t call a conjecture that has grown out of a
proof ‘naive’. In my method there is no place for inductive naiveties.

BerA: Objection! You only pushed back the ‘naive’ inductive
start: you start with ‘I = E for polygons’. Don’t you base this on
observations?

1 This is an important qualification to footnote 1, p. 9.
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PROOFS AND REFUTATIONS

L /]

(4) (5) ©)
Fig. 18. Fig. 19.

ZetA: Like most mathematicians, I cannot count. I just tried to
count the edges and vertices of a heptagon: I found first 7 edges and
8 vertices, and then again 8 edges and 7 vertices. .

Bera: Joking apart, how did you get V=E?
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1 also knew that fitting new edges will always result in an
increase by one, both in the number of vertices and edges (figs. 18(b)
and 18(c)). Why, in polygonal edge-systems, does V—E = 0? Then I
realised that this is because of the transition from an open system of
edges (which is bounded by two vertices) to a closed system of edges

39
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by fitting an edge without adding a new vertex. So I proved, not

observed, that V—E = o for polygons.
Bera: Your ingenuity will not help you. You only pushed back
the inductive starting point further: now to the statement that V—E=1

Fnr any PAO‘P Whafenpvm' T):A vnn prnve or r]lr] vnn nhcprvp f]'mf?

ANTA eaa

ZETA: | provcd it. T knew of course that for a smglc vertex V =1
(fig. 19). My problem was to construct an analogous relation. . .

BETA [ furious]: Didn’t you observe that for a point V' = 1?

ZetA: Did you? [Aside, to Pi]: Should I tell him that my ‘inductive

starting point’ was empty space? That I bcgan by ‘observing’ nothing?
LamBDA: Whatever th

two nointe have heen ade Firetr
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Sigma argued that it is due only a
at naive inductive conjectures: when one is faced thh real chaos of facts,
one will scarcely be able to fit them into a nice formula. Then Zeta
showed that for the logic of proofs and refutations we need no naive conjecture,
no inductivist starting point at all.

BeTA: Objection! What about those celebrated conjectures that
have not been preceded (or even followed) by proofs, such as the
four-colour conjecture that says that four colours are enough to colour
any map, or the Goldbach conjecture? It is only by historical accidents

triat one can arrive
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PROBLEM OF CONTENT REVISITED

that proofs can precede theorems, that Zeta’s ‘deductive guessing’ can
take place: otherwise naive inductive conjectures come first.

TrAcHER: We certainly have to learn both heuristic patterns: deductive
guessing is best, but naive guessing is better than no guessing at all. But
naive guessing is not induction: there are no such things as inductive conjectures !

Bera: But we found the naive conjecture by induction! ‘That is, it
was suggested by observation, indicated by particular instances. ..
And among the particular cases that we have examlned we could

]
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the conjecture, the latter supported it. Both kinds of cases provide
some sort of contact between the conjecture and “the facts”. . ."t This
double contact is the heart of induction: the first makes inductive
heuristic, the second makes inductive justification, or inductive logic.

TeAcHER: No! Facts do not suggest conjectures and do not support
them either!

BeTA: Then what suggested V—E+F = 2 to me, if not the facts,
listed in my table?

TeacHER: I shall tell you. You yourself said you failed many times
to fit them into a formu]a 2 Now what hannened was this: you had

three or four conjectures which in turn were quickly refuted. Your
table was built up in the process of testing and refuting these con-
jectures. These dead and now forgotten conjectures suggested the
facts, not the facts the conjectures. Naive conjectures are not inductive
conjectures: we arrive at them by trial and error, through conjectures and

rqfutattons3 But if you — wrongly - believe that you arrived at them
17‘311' f Xyt fnL]Ao -f 2 ¢ 7a% b ] 1\@]1 €T 0—1\4\0- I—Ln ]r\ " ra .. Ln GALIA

1VeLy, Irom )'U“ Lauu,a, il you ucuevu uidl ulil 1Onger uid taoid,
the more conjectures it will suggest, and later support, you may waste
your time compiling unnecessary data. Also, being indoctrinated that
the path of discovery is from facts to conjecture, and from conjecture
to proof (the myth of induction), you may completely forget about the
heuristic alternative: deductive guessing 2

1 Pélya [1954], vol. 1, pp. 5 and 7 (my italics). 2 See pp. 68-9.

3 These trials and errors are beautifully reconstructed by Pélya. The first conjecture is
that F increases with V. This being refuted, two more conjectures follow: E increases
with F; E increases with V. The fourth is the winning guess: F+V increases with E
([1954], vol. 1, pp. 35~7).

4 On the other hand those who, because of the usual deductive presentation of mathe-
matics, come to believe that the path of discovery is from axioms and/or definitions to
proofs and theorems, may completely forget about the possibility and importance of
naive guessing. In fact in mathematical heuristic it is deductivism which is the greater
danger, while in scientific heuristic it is inductivism.
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PROOFS AND REFUTATIONS

Mathematical heuristic is very like scientific heuristic — not because both
are inductive, but because both are characterised by conjectures, proofs, and
refutations. The — important — difference lies in the nature of the
respective conjectures, proofs (or, in science, explanations), and
counterexamples.

BeTA: I see. Then our naive conjecture was not the first conjecture
ever, ‘suggestcd’ by hard, non-conjectural facts: it was preceded by
many pre—nalve conjectures and refutations. The logic of conjectures

and refutations has no starting point — but the logic of proofs and refu-
LLLLLLL | T e arncte <xritth £l a ot tmntcra mrrameamticemn +a o £ czrad Ley A
tations has: it starts with the first naive conjecture to oe toililowed by a

thought-expenment.

ArpHA: Perhaps. But then I should not have called it ‘naive’!2

Kappa [aside]: Even in heuristic there is no such thing as perfect
naivet¢ !

Beta: The main thing is to get ou f the rlal—and—error perlod as
soon as poSSibl‘ to p quickly thought-experimen 7ithot
having too much ‘inductive’ respect for ‘facts’. Such respect may
hamper the growth of knowledge. Imagine that you arrive by trial-
and-error at the conjecture: V—E+F = 2, and that it is immediately
refuted by the observation that V—E+F = o for the picture-frame.
If you have too much respect for facts, especially when they refute
your conjectures, you will go on with pre-naive trial-and-error and
look for another conjecture. But if you have a better heuristic, you
at least try to ignore the adverse observational test, and try a test by

thought—experiment‘ like Cauchy’s proof.

5‘
-
. C
"U
H
- Q
(@)
(9]
aQ
'O
e
g,
C
al
!
-
:
(@]
-
YUQ
=
Tr
e )
MI
Y MO
(")
=
Y
o}
o
[
=
173
5:
el o
o
(=
<
o
-

Runra -« ‘Y’Ltr nn]] r‘n'1f~1ﬁ110 ln a ®roo fD Il- xr

DETA: W uy Caii aucin y a prooj ¢ it wWas a
} 94 C

started with a naive conjecture: V—E+F = 2 for all polyhedra.
Then you drew consequences from it: ‘if the naive conjecture is true,
after removing a face, for the remaining network V—-E+F = 1’;
‘if this consequence is true, V—E+F = 1 even after triangulation’;
‘if this last consequence is true, V—E+F = 1 will hold while triangles
are removed one by one’; ‘if this is true, V—E+F = 1 for one single
triangle’. ..
1 We owe the revival of mathematical heuristic in this century to PSlya. His stress on the
similarities between scientific and mathematical heuristic is one of the main features of
his admirable work. What may be considered his only weakness is connected with this

strength: he never questioned that science is inductive, and because of his correct vision
of deep anaiogy between scientific and mathematical heuristic he was led to think that

PSR, IV Y o malero case ol o L anelion o Do .o leonc
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[1902], Introduction) and also to Fréchet (see his [1938]). % See above, p. 41.
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PROBLEM OF CONTENT REVISITED

Now this last conclusion happens to be known to be true. But what
if we had concluded that for a single triangle V—E+ F = 0? We would
immediately have rejected the original conjecture as false. All that we
have done is to test our conjecture: to draw consequences from it.
The test seemed to corroborate the conjecture. But corroboration is
not proof.

SiGMA: But then our proof proved even less than we thought it
did! We then have to reverse the process and try to construct a thought-

BETA That is right. nly Zeta pomted out that instead of solving
our problem by first devising a naive conjecture through trial and
error, then testing it, then reversing the test into a proof, we can start
straight away with the real proof. Had we realised the possibility of
deductive guessing we might have avoided all this pseudo-inductive
fu mbhng!

KAppA [aside]: What a dramatic series of volte-faces! Critical Alpha
has turned into a dogmatist, dogmatist Delta into a refutationist, and
now inductivist Beta into a deductivist!

SiGMA: But wait. If the test thouoht-pxnpnmmt

BETA: I shall call it analysis. . .

S1GMA:. . .can be followed up at all by a proof thought-experiment. . .

BETA: I shall call it synthesis. . .1

SiGMA:. .. will the “analytic theorem’ be necessarily identical with
the ‘synthetic theorem’? In going in the opposite direction we might
use different lemmas !2

BerA: If thev are different n th

tha aQ +hha
AIILL 4N e XA Lll\.y aLo ulllblbllb, LiiV1L L1IV D Y1Ltliy

1 1

1

PN

sede the analytic one - after all analysis only fests while synthesis proves.

TeAcHER: Your discovery that our ‘proof” was in fact a test seems to
have shocked the class and diverted their attention from your main
argument: that if we have a conjecture that has already been refuted
by a counterexample, we should push the refutation aside and try to
test the conjecture by a thought-experiment: this way, we might hit
on a proof, leave the phase of trial and error, and switch to the method
of proofs and refutations. But it was exactly this which made me say
that ‘I am willing to set out to “prove” a false conjecture’!®* And

1 According to Pappian heuristic, mathematical discovery starts with a conjecture, which
}c followed hv nnn’uclc and then hrnvu“nr‘ nnn’vclc does not falsifv the coniecture. by

S AV VWRAS W o0 @iile LAICLL, palAValetie 20 RAULS LIUL laioiiy wWiL LULGLLWLL, Uy

synthesis. (Also cf. above footnote 1, p. 9, and foomote I, p. 64.) But while our version
of analysts—syntheszs improves the conJecture the Pappxanlverswn only proves or disproves it.
2 Cf. Robinson [1936], p. 471. 3 See above, p. 23.
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Lambda too demanded in his Rule 1: ‘If you have a conjecture set
out to prove it and refute it.’
ZetA: That is right. But let me supplement Lambda’s rules and
Omega’s Rule 4 by
Rule 5. If you have counterexamples of any type, try to find, by deductive
guessing, a deeper theorem to which they are counterexamples no longer.
OMzeGA: You now stretch my concept of ‘depth’ — and you may be

rlght But what about the actual application of your new rule? Until

now it has Gnly given us results that we "l"eady knew It is easy to be
€1 .1 A L1
Wlse aItcr tne event. Your aCGUCthC gueSSIHg lS Jusr the Syn"leSlS
’

corresponding to Teacher’s original analysis. But now you should be
honest — you must use your method to find a conjecture which you do
not already know about, with the promised increase in content.

ZetA: Right. I start with the theorem generated by my thought-
experiment: ‘All closed normal polyhedra are Eulerian.’

OmeGA: ‘Normal’?

ZetA: I don’t want to waste time going through the method of
proof and refutations. I just call ‘normal’ all polyhedra that can be

built up from a ‘perfect’ polygon by fitting to it (a) first F—2 faces
without chanoine V—-E+ F (rhme wﬂ] be oven nnrmn] nn]vhpr‘]ra\ and

vV Avaass “ "iiniin \TaavSn aaa adSacians AAVARSE Ry s22%2

(b) then a last closing face which increases V' —E+F by 1 (and turns the
open polyhedron into a closed one).

OMEGA: ‘Perfect polygon’?

ZeTA: By a ‘perfect’ polygon I mean one that can be built up
from one single vertex by fitting to it first n — 1 edges without changing
V —E, and then a last closing edge which decreases V-E by I.

Omzeca: Will your closed norma
Cauchy polyhedra?

ZetA: I do not want to go into that now.

YN

$

]
[

(d) Increasing content by deductive guessing

TeAcHER: Enough of preliminaries. Let us see your deduction.

ZETA: Yes, Sir. I take two closed normal polyhedra (fig. 20(a)) and
paste them together along a polygonal circuit so that the two faces that
meet disappear (fig. 20(b)). Since for the two polyhedra V-E+F = 4,
the disappearance of two faces in the united polyhedron will just restore
the Euler formula - no surprise after Cauchy’s proof since the new

hn]vhprlrnn can 0150 cqc;lv be p p’\npr] lnfn 1 1\0" 1 Qn r]'\p ‘rnrmnlo

tlUA]AL\'ULU AL <& uuAA] ALtI\' AlAVvT & VAAL ANJAALAARLEL

1* Editors’ note: This inference is fallacious, although the conclusion is correct. The pasting
in fact involves the loss of 8 vertices, 12 edges and 6 faces. The Euler characteristic is

6
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Fig. 21.

stands up well to this pasting test. But let us now try a double-pasting
test: let us ‘paste’ the two polyhedra together along two polygonal

circuits (fig. 20(c)). Now 4 faces will disappear and for the new poly-
hedron V-E+F = o.

aacnza s Mhii o Al.L -’ Counter rex A.,... 4, L s mbreea r
UA MA llll) 1D [11]:) 1d > \L0urt AUT P L1 J:) CituLC~1LL
ZETA: Now lt I ‘d ble—paste to IS plcture-trame \f g OQC ) ) yet

th
another normal polyhedron (fig. 21(a)), V—E+F will be —2 (fig.
21(b)). ..

Sicma: For a monospheroid polyhedron V—E+F = 2, for a
dispheroid polyhedron V—-E+F = o, for a trispheroid V-E+F =
—2, for an n-spheroid polyhedron V—E+F = 2-2(n—1)...

ZETA:. . .which is your new conjecture of unprecedented content,
complete with proof, without having compiled a single table.!

SicMA: This is really nice. Not only did you explain the obstinate

picture-frame, but you produced an infinite variety of novel counter-

Yarmn ]Pc
AGLILPIVI . o o

('DH

ZetA: Complete with explanation.

therefore, reduced by two. (The assumed exact coincidence of the two shaded faces
in fig. 20 (b) involves reversing the bevelling on one of the half frames so that the
broader and the narrower edge are interchanged. Since this operation alters neither V'
nor E nor F, the argument still, in fact, goes through.)

1 This was done by Raschig [1891].
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PROOFS AND REFUTATIONS

RHO: I just arrived at the same result in a different way. Zeta started
with two Eulerian examples and turned them into a counterexample
in a controlled experiment. I start with a counterexample and turn it
into an example. I made the following thought-experiment with a
picture-frame: ‘Let the polyhedron be of some stuff that is easy to cut
like soft clay, let a thread be pulled through the tunnel and then
through the clay. It will not fall apart. . .’ But it has become a familiar,
simple, spheroid polyhedron! It is true, we increase the number of

,,,,, by 2, and the num th ; "
XY L«Avvv l-lqnl- I-Ln E--Inu nLnnnn&nv:nb:n l\f/\ f\'mh]n hl\l‘rl‘lnf]‘ﬂr\“ a0
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original must have had the characteristic 0. Now if one needs more

say #, such cuts to reduce the polyhedron to a simple one, its charac-
teristic will be 2 —2n.

SicMma: This is interesting. Zeta has already shown us that we may
not need a conjecture in order to start proving, that we may immedi-
ately devise a syfitheszs, i.e.a pro oof thousm-experimcm from a related
proposition that is known to be true. Now Rho shows that we may
not need a conjecture even in order to start festing, but we may set out
— pretending that the result is already there — to devise an analysis, i.e.
a test thought-experiment.? ’

OMEGA: But whichever way you choose, you still leave hordes of
polyhedra unexplained! According to your new theorem for all poly-
hedra V—E+ F is an even number, less than 2. But we saw quite a few
polyhedra with odd Euler characteristics. Take the crested cube (fig. 12)
with V-E+F = 1.

Zgta: I never sald that my theore

=

apphes to all polyhedra It
buil

t+t 1

OMEGA: So?

SiGMA: I know! One can also extend it to polyhedra with ring-
shaped faces: one may construct a ringshaped polygon by deleting in
a suitable proof generated system of polygons an edge without reduc—
iﬁg the num[)cr OI faces \Ilgs z.&\a ) and .&1.\0) ) I wonder, PCl'Ilde there
are also ‘normal’ systems of polygons, constructed in accordance with
1 Hoppe [1879], p. 102.

2 This is again part of Pappian heuristic. He calls an analysis starting with a conjecture
‘theoretical’, and an analysis starting with no conjecture ‘problematical’ (Heath [1925],
vol. 1, p. 138). The first refers to problems to prove, the second to problems to solve (or
problems to find). Also cf. Pdlya [1945], pp. 129-36 (‘Pappus’) and 197-204 ( Working
backwards’).
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PROBLEM OF CONTENT REVISITED

(a) (b) (a) (%)

Fig. 22.

11

our proof, in which we can delete even more than one edge without
reducing the number of faces. ..

GA}V{}V{A. Thab e Friio T r\f\lr ad &Lca ‘“A"MA" -------------
. L 1D tlul, LUURN dl UL 110L11dL PUlyguu‘u b)’bl.t:ul
1C . 1 \\ 1 . . .
(hig. 23(a)). You can delete two edges without reducing the number

of faces (fig. 23(b)).
SicMA: Good! Then in general

F
V-E+F =2-2(n-1)+ De,

'\
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deietea without reduction in the number of faces.
BetA: This formula explains Alpha’s crested cube (fig. 12), 2 mono-

spheroid polyhedron (n = 1) with one ringshaped face: e, are zero,
F
except for eg which is 1, or Y e, = 1, consequently V—E+F = 3.
k=1
SigMA: It also explains your ‘irrational’ Eulerian freak: the cube

with two ringshaped faces and one tunnel (fig. 16). It is a dispheroid

F
1.1 ) SO /. ~\ _,1 A i _ ~ R | ., 1 N > e
polyhedron (n = 2) with 3 e, = 2. Consequently its characteristic
k=1
is V—E+F = 2—2+2 = 2. Moral order is restored to the world of
poxyhedra ot

OMEGA: What about polyhedra with cavities?

1 The ‘order’ was restored by Lhuilier with approximately the same formula ([1812~-134],
p. 189); and by Hessel with clumsy ad hoc formulae about different ways of fitting
Eulerian polyhedra together ([1832], pp. 19-20). Cf. footnote 1, p. 67.

Historically Lhuilier - in his [1812-134] — managed to generalise Euler’s formula by
nmaive guessing and arrived at the following formula: V-E+F = 2[(C- T+1)+
(p1+ps+--.)], where C is the number of cavities, T the number of tunnels and p; the
number of inner poiygons on the ith face. He also provea' it as far as ‘inner polygons’
were Lonu:rucu, but tunnels seem to have defeated him. He constructed the f(‘)fi‘r‘l‘lﬂa in
an attempt to account for his three kinds of ‘exceptions’; but his list of exceptions was
incomplete. (Cf. above, footnote 2, p. 26.) Moreover, this incompleteness was not the
only reason for the falsity of his naive conjecture: for he did not notice the possibility
that cavities might be multiply-connected; that one may not be able to determine
unambiguously the number of tunnels in polyhedra with a system of branching tunnels;

and that it is not ‘the number of inner polygons’, but the number of ringshaped faces,

~]
o



PROOFS AND REFUTATIONS

SiGMA: I know! For them one has to add up the Euler characteristics

of each disconnected surface:
K

F
V-E+F= Y {z—z(nj—1)+ > ek,-}.
=1 K=

BETA: And the twintetrahedra?

SigMA: I know!..

GamMA: What is the use of all this precision? Stop this flood of
pretentious trivialities !!

v
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genuine pmyncara ¢

your cylinder! But you llked lmgutsttc precision.
our new precision? We have to make the theorem cover all poly-
hedra — by making it precise we are increasing its content, not de-
creasing it. This time precision is a virtue!

KappA: Boring virtues are just as bad as boring vices! Besides, you
will never achieve complete precision. We should stop when it ceases
to be interesting to go on.

ArpHA: I have a different point. We started from

(1) one vertex is one vertex.
We deduced from this
(2) V = E for all perfect polygons.
We deduced from this
(3) V—E+F = 1 for all normal open polygonal systems.
From this
(4) V-E+F = 2 for all normal closed polygonal systems, i.e.
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polyhedra.
From this s again in turn
\)l [ 4 L‘ ‘- ~ a\'. J./ ANJLR 1Ak lliald iy Othl.l\.d.\.llu yvl AAVNIL A

that is relevant (his formula breaks down for two adjacent inner polygons, with an
edge in common). For a criticism of Lhuilier’s ‘inductive generalisation’ see Listing
[1861], pp. 98—9. Also cf. p. 91, footnote 3.

! Quite a few mathematicians of the nineteenth century were confused by such trivial
increases in content, and did not really know how to deal with them. Some - like
Mobius - used monster-barring definitions (see above, p. 15); others - like Hoppe -
monster-adjustment. Hoppe’s [1879] is particularly revealing. On the one hand he was
keen - like many of his contemporaries — to have a perfectly complete generalised Euler
formula’ that covers everything. On the other hand he shrank from trivial complexities.
So while he claimed that his formula was ‘complete, all-embracing’, he added con-
fusedly that ‘special cases can make the enumeration (of constituents) dubitable’ (p. 103).
That is, if an awkward polyhedron still defeats his formula, then its constltuents were

wranoly ~aimtad and tha mancer chnannld ha adinerad he reo.
WiVlig:y L(uUuilill, ail Liv

83
mmon vertices and edges of twintetrahedra should be see

int 10uld be
ach twin recognised as a separate polyhedron (ibid.). For further examples cf. p. 97,
footnote 2. 2 See above, pp. 50-3.
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F
(6) V-E+F = 2—-2(n—1)+ > e, for normal 'n-spheroid poly-
k=1

hedra with multiply—conncctcd faces.
F,
(77 V-E+F = z, ‘2. 2(n—1)+ ek} for normal n-spheroid
j=1\ k 1 J
polyhedra with multiply-connected faces and with cavities.
Isn’t this a miraculous unfolding of the hidden riches of the trivial
starting-point? And since (1) is indubitably true, so is the rest.
RHO [aside]: Hidden ‘riches’? The last two only show how cheap
generalisations may become !
LAMBDA: Do you really think that I) is the single axiom from
A : o]

(
v-.-
[

ALPHA: UI coursc . 15n t tﬂls [ 1€ miracCi€ OI tne d
experiment? If once you have got hold of a little truth, deduction
expands it infallibly into a tree of knowledge.? If a deduction does
not increase the content I would not call it deduction, but ‘ verification’:
‘verification differs from true demonstration precisely because it is
purely analytic and bccause it is sterile’.3

Lamspa: But Sufmy deduction cannot increase content! If criticism
reveals that the conclusion is richer than the premiss, we have to
reinforce the premiss by making hidden lemmas explicit.

Kappa: And it is these hidden lemmas that contain sophistication
e myth of infallible deduction.4

clit 2yl

. ?
TEACHER: Any other question about Zeta’s method?
1 Cf. pp. 97-8.

% Ancient philosophers did not hesitate to deduce a conjecture from a very trivial conse-
quence of it (see, for example, our synthetic proof leading from the triangle to the
polyhedron). Plato thought that ‘a single axiom might suffice to generate a whole
system’. ‘ Ordinarily he thought of a single hypothesis as fertile by itself, ignoring in his
methodology the other premisses to which he is allying it’ (Robinson [1953], p. 168).
This is characteristic of ancient informal logic, that is, of the logic of proof or of thought-experiment
or of construction; we regard it as enthymematic only through hindsight: it was only later that
an increase in content became a sign, not of the power, but of the weakness, of an inference. This
ancient informal logic was strongly advocated by Descartes, Kant and Poincaré; they
all despised Aristotelian formal logic and dismissed it as sterile and irrelevant — at the
same time extolling the infallibility of fertile informal logic.

Poincaré [1902], p. 33.

¢ The hunt for hidden lemmas, which started only in mid-nineteenth-century mathe-
matical criticism, was closely related to the process that later replaced proofs by proof-
analyses and laws of thought by laws of language. The most important developments in
logical theory were usually preceded by the development of mathematical criticism.
Unfortunately, even the best historians of logic tend to pay exclusive attention to the
changes in logical theory without noticing their roots in changes in logical practice. Cf. also
footnote 2, p. 103.
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PROOFS AND REFUTATIONS

(¢) Logical versus heuristic counterexamples.

ArpHA: Ilike Zeta’s Rule 5* — as I did Omega’s Rule 4.2 liked Omega’s
method because it looked out for local but not global counterexamples:
the ones which Lambda’s original three rules® ignored as logically
harmless, therefore heuristically uninteresting. Omega was stimulated
by them to devise new thought-experiments: real advances in our

knowledge.
Now Zeta is inspired bv counterexamonles that are both ¢lobal and
INow Zeta 1s inspired by counterexamples that are both giobal and
lnnn] n.-rnna- nn«-ﬁnl\r\uu\b:nnn rv-r\m O-Ln ]An-:nn‘ Lvid- P VaY J :o-r\m QLA
1uu‘u—ycucu. corrooorations irom tne iogicai o 10t Irom tic

heuristic point of view: although corroborations, they still call for
action. Zeta proposes to extend, sophisticate our original thought-
experiment, to turn logical corroborations into heuristic ones, logically
satisfactory instances into instances that are satisfactory from both the
logical and the heuristic point of view.

Both Omega and Zeta are for new ideas, while La
ally Gamma are preoccupied with linguistic tricks to deal with their
irrelevant global but not local counterexamples - the only relevant
ones from their crankish point of view.

THETA: So the logical point of view is ‘crankish’, is it?

ArrHA: Your log1cal point of view, yes. But I want to make another
remark. Whether deduction increases content or not — mind you, of
course it does - it certainly seems to guarantee the continuous growth
of knowledge. We start with a vertex and let knowledge grow forcefully
and harmoniously to explain the relation between the number of

vertices, edges and faces of any polyhedron whatsoever: an undramatic
!
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THETA ll'o I\appaj Has nlpna lOS[ a iSJuagmcnt' ne starts with
a problem, not with a vertex!4

ArpHA: This piecemeal but irresistibly victorious campaign will
lead us to theorems that are ‘not by themselves evident, but only
deduced from true and known pr1nc1plcs by the continuous and un-
interrupted action of a mind that has a clear vision of each step in the
process’.® They could never have been reached by ‘unbiased’ observa-
tion and a sudden flash of insight.

THETA: I am doubtful about this final victory. Such growth will
never bring us to the cylinder - for (1) starts with a vertex and the

n <9
P J°. o
lipped into the fallacy of deductiv
& Descartes [1628] ule 1L
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PROBLEM OF CONTENT REVISITED

cylinder has none. Also we may never reach one-sided polyhedra, or
many-dimensional polyhedra. This piecemeal continuous expansion
may well stop at some point and you will have to look for a new,
revolutionary start. And even this ‘ peaceful continuity’ is full of refuta-
tions, criticism ! Why do we go on from (4) to (s), from (s) to (6), from
(6) to (7) if not under the continuous pressure of counterexamples
which are both global and local ? Lambda accepted as genuine counter-

examples only those which are global but not local: thcy revealcd the
falseho d r\'r fhp f]-\pnrpm nmpn-

falsehoo th orem. Ome ri
Alpha ~ was to regard also counterexamples which :
global as genuine counterexamples: they revealed the poverty of the
truth of the theorem. Now Zeta tells us to recognise even those counter-
examples as genuine which are both global and local: they too point
to the poverty of the truth of the theorem. For example, picture~-frames
are both global and local countcrexamples to Cauchy’s theorem: they
are of course corroborations as far as truth alone is concerned - but they‘
are refutations as far as content is concerned. We m ay call the first
(global but not local) counterexamples logical, the others heuristic
counterexamples. But the more we recognise refutations - logical or
heuristic - the quicker knowledge grows. Alpha regards logical
countcrexamples as irrelevant and refuses to call heuristic counter-
examples counterexamples at all, because of his obsession with the
idea that growth of mathematical knowledge is continuous, and
criticism plays no role.

ArrHA: You expand the concept of refutation and the concept of
criticism art1ﬁc1ally only to justify your cr1t1cal theory of the growth of
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GAMMA: We are all ears.

8. Concept-Formation

(1) mql ation hv concent—ctrotchin roannraical of monctor_harring — and
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of the concepts of error and refutation
re-Zeta, or even pre-Omega

P1: I would first like to go back to the
iod

¢ pr
d, to the three main methods of th
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PROOFS AND REFUTATIONS

theorems and different theoretical terms. Alpha has already outlined some
aspects of these differences, but his account is unsatisfactory — especially
in the case of monster-barring and of the method of proofs and
refutations. Alpha thought that the monster-barring theorem ‘hides
behind the identity of the linguistic expression an essential improve-
ment’ on the naive conjecture: he thought that Delta gradually
contracted the class of ‘naive’ polyhedra into a class purged of non-

Eulerian monsters.
(IAM AA: What i 1

\JLIJ"J l VY AiQGaV
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P1: That it was not the monster-ba
was the refutationists who expanded them.

DeLtA: Hear, hear!

Pr: Let us go back to the time of the first explorers of our subject.
They were fascinated by the beautiful symmetry of regular polyhedra
thcy thought that the five rcgular bodies held the secret of the Cosmos.
Dy (HC u‘I‘I‘lé fnt‘: UCSCEII'[CS—.DUICI' ConJCCflirC ‘was Put Iorwaru, thé
concept of polyhedron included all sorts of convex polyhedra and even
some concave polyhedra. But it certainly did not include polyhedra
which were not simple, or polyhedra with ringshapcd faces. For the
nn]vhe(]m that thev ]‘md in namr] the rnmerr e was true as 1t ctnnr]

actia tial icy 11aC 111 AMIG, e cOILect 43 11 JLO0

and the proof was Hawless.2

Then came the refutationists. In their critical zeal they stretched the
concept of polyhedron, to cover objects that were alien to the intended
interpretation. The conjecture was true in its intended interpretation, it
was only false in an unintended interpretation smuggled in by the refuta-

1 See p. 41

[N PSS ' TR PR SR S S SRR Y - SIS TR TR DU SO S |

T rig. U 11 LUICT S |17/7504] 15 UIC 115U COncdv poxyncaron CVCI 1O 4ppcCdl 111 4 gCeoIncrical
tove T“"e“""\, tallke ahaut convex and concave nalvhedra in hic (180301 Rut hefare
Twihbe Avw ALAVS L ALY GV NJAA ¥ Wwdh QAL VUAMLVGY yul,ll\'ulﬂ 44X Ai10 ll.\l\.ly] AWV WVwiViN
Lhuilier nobody mentioned concave polyhedra that were not simple.

However, one interesting qualification might be addcd The first class of polyhedra
ever investigated consisted partly of the five ordinary regular polyhedra and quasi-
regular polyhedra like prisms and pyramids (cf. Euclid). This class was extended after
the Renaissance in two directions. One is indicated in the text: to include all convex and
some mildly indented simple polyhedra. The other was Kepler’s: he widened the class
of regular polyhedra by his invention of regular star-polyhedra. But Kepler’s innovation

wrae faronttan nn“r fn ha mada acain hy Dainent (of ahave on 146 Fr\ pn]pr ciiraly
Yvas LUz guULLLil, a1y °oC magGe agaiil Uy £ ULIUL \Li. aUUYL, pr. 3 16-1 Ti Suilay

did not dream of star-nnlvhedra Cauchy knew of them, but his mmd was strangely
compartmentalised: when he had an interesting idea about star-polyhedra he pubhshed
it; but he ignored star-polyhedra when presenting counterexamples to his general
theorems about polyhedra. Not so the young Poinsot ([1810]) — but later he changed his
mind (cf. above, p. 31).

Thus Pi’s statement, aithough heuristicaiiy correct (i.e. true in a rational history of
mathematics), is historically false. {(This should not worry us: actual history is frequently

a caricature of its rational reconstructions.)
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CONCEPT-FORMATION

tionists. Their ‘refutation’ revealed no error in the original conjecture,
no mistake in the original proof: it revealed the falsehood of a new
conjecture which nobody had stated or thought of before.

Poor Delta! He valiantly defended the original interpretation of
polyhedron. He countered each counterexample with a new clause
to safeguard the original concept. . .

GaMMA: But wasn’t it Delta who shifted his position each time?
Whenever we produced a new counterexample, he changed his defini-

tlon ..01' a 101’1()‘ ™ ONe e Wr 1(‘]1 AIQ“]Q\IPA annf]"lpr {\F]'\IQ I"I AAP‘I‘I r] 1ce ‘
nger onc wnich displayead anotiier of nis niadc clauses

Dre Y nt £ 22n ~teotbmmite atminrmanicn] AL a1 i oban | I S | LT... ~)r coperrod

ri: winat a momnstrous appraisai Or u1uuatc1-u4uu15 Ic oniy seemcea

to shift his position. You wrongly accused him of using surreptitious
terminological epicycles in the stubborn defence of an idea. His mis-
fortune was that portentous Definition 1: ‘A polyhedron is a solid
whose surface consists of polygonal faces’, which the refutationists
seized upon immediately. But Legendre meant it to cover only his
naive PUlyucdld, that it covered far more was entirely unreal 1
unintended by its proposer. The mathematical public was w 1 to
stomach the monstrous content which slowly emerged from this
plausible, innocent-looking definition. This is why Delta had to stutter
time and time again, ‘I meant. .., and had to keep making his endless
‘tacit’ clauses explicit: all because the naive concept had never been
pinned down, and a simple, but monstrous, unintended definition had
superseded it. But imagine a different situation, where the definition
fixed the intended interpretation of ‘polyhedron’ properly. Then it
would have been up to the refutationists to devise ever longer monster-
including definitions for, say, ‘complex polyhedra’: ‘A complex poly-
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be complex polygons that are aggregates of (real) olygons such that
each two of them are soldered by congruent edges.” This complex
polyhedron would then correspond to Alpha’s and Gamma’s refutation-
generated concept of polyhedron — the first definition allowing also for
polyhedra that are not simple, the second also for faces that are not

CA Aav11nt N Nnaxx I] f nan~ nncno—1]11 11
Qlllltlly_bululbbbbu UU u\,vxauls lleV ubLllllLlUlL) 13 lLUL 1L lLododl Lly I,IJ.\.«

taSK OI monswr—oarrers or CODCCPI—PI'CSCI'VCI'S — 1t can 3150 bC tnat Of
monster-includers or concept-stretchers.!

SieMA: Concepts and definitions — that is, intended concepts and

1 An intaracting avammanla of maanctar faalisdins dafnitian 16 Daineat?s radabinitinm ~F
a5 HRCIEsinng CXampiC Oi Monsli-indiuaiinng Gliiniudn 15 OISOl s ICalliniiuidil o1
convexity, which brings star-polvhedra into the resmectable class of convex recular
onvex Wil orings siar-polyncara nto e respecCladiC Cclass Of convex reguiar
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PROOFS AND REFUTATIONS

unintended definitions — can then play funny tricks on each other! I
never dreamt that concept-formation might lag behind an unintendedly
wide definition!

Pr: It might. Monster-barrers only keep to the original concept,
while concept-stretchers widen it; the curious thing is that concept-
stretching goes on surreptitiously: nobody is aware of it, and since
everybody’s ‘coordinate-system’ expands with the widening concept,
they fall prey to the heuristic delusion that monster-barring narrows

epts, while in fact 1t keebs tl’\em 1 vanapt

ncepts, while in keeps them invariant.
an.xn. Now wh
reptitious changes in his position?

GamMa: I admit we were wrong in indicting Delta for surrep-
titious contractions of his concept of polyhedron: all his six definitions
denoted the same good old concept of polyhedron he inherited from
his forefathers. He deﬁned the very same poor concept in increasingly rich
f; eofeuca: Ji‘aﬁiés qj rqéi‘éﬁw, or zaﬁguagﬁ’ ﬁiOiiSLef—(}aﬁ‘lrig aoes ot Jofﬁi
concepts but only translates definitions. The monster-barring theorem is
no improvement on the naive conjecture.

DELTA: Do you mean that all my definitions were logically equiva-
lent?

Gamma: That depends on your logical theory — according to mine
they certainly are not.

DEeLTA: This was not a very helpful answer, you will admit. But
tell me, did you refute the naive conjecture? You refuted it only by
surreptitiously perverting its original interpretation !

GamMa: Well, we refutcd it in a more imaginative e and interesting
e di

es the dif-
fEft‘:i‘lC(: bt‘: /CCI1 :[ it u()nb WhiCh on l)’ Teveal a 51 l)’ rnl)l € an (.Jl fc:futati()n&
which are major events in the growth of knowledge. If you had found that

‘for all polyhedra V—E+F = 1’ because of inept counting, and I had
corrected you, I wouldn’t call that a ‘refutation’.

BeTA: Gamma is right. After Pi’s revelation we might hesitate to
call our ‘counterexamples’ logical counterexamples, since they are after
all not IHCOHSISICHI Wl[ﬂ IHC COHJCC(UIC 1I1 IIS ll‘ltc‘:‘nuca lntchrC[auon,
but they are certainly heuristic counterexamples since they spur the growth
of knowledge. If we were to accept Delta’s narrow logic, knowledge
would not grow. Just suppose that somebody with the narrow con-
oof of the Euler conjecture.
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He finds that all the steps of this tuougut-expe riment can easily be
performed on any polyhcdron takes the ‘fact’ that all polyhedra



CONCEPT-FORMATION

are simple and that all faces are simply-connected as obvious, as
indubitable. It never occurs to him to turn his ‘obvious’ lemmas into
conditions in an improved conjecture and so to build up a theorem -
because the stimulus of counterexamples, in showing up some ‘trivially
N P S T4
true’ lemmas as false, is missing. Thus he thinks that the ‘proof

indubitably establishes the truth of the naive conjecture, that its
certainty is beyond doubt. But his ‘certainty’ is far from being a sign
of success, it is only a symptom of lack of imagination, of conceptual

d nrevente fI‘IP trrn\xrf]-\ nr
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This is in fact Cauchy’s case. It is likely that had Cauchy already discovered his
revolutionary exception-barring method (cf. above, pp. 55-6), he would have
searched for and found some exceptions. But he probably came across the problem of
exceptions only later, when he decided to cliear up the chaos in analysis. (It was Lhuilier
who seems to have first noticed, and faced, the fact that such ‘ chaos’ was not confined to
analysis.)

Historians, e.g. Steinitz in his [1914-21], usu

ally say that Cauchy, noticing that his
theorem was not universally valid, stated it for convex polyhedra only. It is true that in
his proof he uses the expression ‘the convex surface of a polyhedron’ ([18134], p. 81),
and in his [1813b] he restates Euler’s theorem under the general head: ‘Theorems on
solid angles and convex polyhedra’. But probably to counteract this title, he gives particular
stress to the universal vaiidity of Euier’s theorem for any polyhedron (Theorem XI, p. 94),

o cbmbten o alo PR, PR AU 4 I, | PROLI Wy LIS B o

w1u.lc Stdiillg tnree uuu:x UlcUlClll) \IIICUICIII Alll ana 1is two LUfUudlle) C)‘Pll(,l(l.y I0or
convex polyhedra (pp. 96 and 98).

Why Cauchy’s sloppy terminology? Cauchy’s concept of polyhedron almost coincided
with the concept of convex polyhedron. But it did not coincide exactly: Cauchy knew
about concave polyhedra, which can be obtained by slightly pushing in the side of
convex polyhedra, but he did not discuss what seemed to be irrelevant further corrobora-
tions — not refutations — of his theorem. (Corroborations never compare with counterexamples,
or even ‘exceptions’, as catalysts for the growth of concepts.) This is the reason for Cauchy’s
casual use of ‘convex’: it was a failure to realise that concave polyhedra might give

o
countaravamnlac nat 2 caonceinuce aeffort to eliminate thace counteravamnlac Tn the varvy
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same paragraph, he argues that Euler’s theorem is an ‘immediate consequence’ of the
lemma that V~E+F = 1 for flat polygonal networks, and states that ‘for the validity
of the theorem V- E+F = 1 it has no significance whatever whether the polygons lie
in the same plane or in different planes, since the theorem is concerned only with the
number of polygons and the number of their constituents’ (p. 81). This argument is
perfectly correct within Cauchy’s narrow conceptual framework, but incorrect in a
wider one, in which ‘ polyhedron’ refers also to, say, picture-frames. The argument was
frequently repeated in the first half of the nineteenth century (e.g. Olivier [1826], p. 230,
or Grunert [1827], p. 367, or R. Baltzer [1860-62], vol. 2, p. 207). It was criticised by
J. C. Becker ([1869a], p. 68).

Often, as soon as concept-stretching refutes a proposition, the refuted proposition seems such
an elementary mistake that one cannot imagine that great mathematicians could have made it.
This important characteristic of concept-stretching refutation explains why respectful
historians, because they do not understand that concepts grow, create for themselves a

mama ALl smenlilaicas A fine -A...—.n. Nassnlece Liae laceaion o thaoe La ¢ .1 oot smmccilales aaaloa?
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nnlukpr‘ra which are not simnle and that therefore he ‘categorically’ ”\ restricted th
poiyhedra wihich are not simpie and that thereiore ne calegorically restricted th

theorem to the domain of convex polyhedra, the respectful historian now has to explain
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PROOFS AND REFUTATIONS

(b) Proof-generated versus naive concepts. Theoretical versus naive classifica-
tion

P1: Let me return to the proof-generated theorem: ‘All simple poly-

hedra with simply-connected faces are Eulerian’. This formulation is

misleading. It should read: ‘All simple objects with simply-connected

faces are Eulerian.’

GAMMA' Why?

P1: The first formulation suggests that the class of simple polyhedra
T o A Y T SO L e N T
Lildl OCUULD 111 U110 U1ICUVICILIL 1D d DUUUILIAddd ULl L11IC UlddYd VUL PUI)’ILCuLd UL

the naive conjecture.

SiGMA: Of course the class of simple polyhedra is a subclass of
polyhedra! The concept of ‘simple polyhedron’ contracts the original
wide class of polyhedra by restricting them to those on which the first
lemma of our proof is pcrformable The concept of ‘i mplc polyhedron
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orlgmal class.

Pr: No! The original class of polyhedra contained only polyhedra
that were simple and whose faces were simply-connected. Omega
was wrong when he said that lemma-incorporation reduces content.!

OMecA: But doesn’t each incorporation of lemmas rule out a
counterexample ?

P1: Of course it does: but a counterexample that was produced by
concept-stretching.

OMEGA: So lemma-incorporation conserves content, just like

monster-barring ?
PI . Nl\ T AMTMmMm
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OmzcA: What? Do you really want to convince me not only that
lemma-incorporation does not reduce content, but also that it increases
it? That instead of contracting concepts it stretches them?

why Cauchy’s borderline was ‘unnecessarily’ narrow. Why did he ignore non-convex
Eulerian polyhedra? Steinitz’s explanation is this: the correct formulation of the Euler-
formula is in terms of connectivity of surfaces. Since in Cauchy’s period this concept
was not yet ‘clearly grasped’, ‘the simplest way out’ was to assume convexity (p. 20).
So Steinitz explains away a mistake that Cauchy never made.

Other historians proceed in a different way. They say that before the point where the
correct conceptual framework (i.e. the one they know) was reached there was only a
‘dark agc’ with ‘seldom, if ever, sound’ results. This point in the theory of polyhedra is

[ P&
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1 See above, p. 57.
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P1: Exactly. Just listen. Was a globe, with a political map drawn
on it, an element of the original class of polyhedra?

OmeGA: Certainly not.

P1: But it became one after Cauchy’s proof. For you can perform
Cauchy’s proof on it without the slightest difficulty - if only there are
no ringshaped countries or seas on it.!

GamMma: That is right! Pumping the polyhedron up into a ball
and dlstortmg edges and faces will not perturb us in the least in per-

forming the proof - so long as the distortion does not alter the number
€ vertices edoes and faces
OL VCILILUILOD, Cung dllu 1400,

SiGMA: I see your point. Then the proof-generated ‘simple poly-
hedron’ is not just a contraction, a specification, but also a generalisation,
an expansion of the naive ‘polyhedron’? The idea of generalising the
concept of polyhedron so that it should include crumpled, curvilinear
‘polyhedra’ with curved faces could hardly have occurred to anybody

--L--.. o gm b ol it had. it wou avre Lhane diciice

bcfuu: \Jd‘uc,uy proor; cven it it naaq, it would have been (.llbIIl.leCG
as CranKlsn. But now lt lS a natural gcnerallsatlon, SlnCC me operatlons
of our proof can be interpreted for them just as well as for ordinary
naive polyhedra with straight edges and flat faces.?

Pr: Good. But you have to make one more step. Proof-generated

concepts are neither “specifications’, nor gcnerahsatlons of naive
concepts. The impact of proofs and refutations on naive concepts is

1 Cf. p. 35, footnote 1.

3 Darboux, in his [18744], came close to this idea. Later it was clearly formulated by
Poincaré: ‘...mathematics is the art of giving the same name to different things. ..
When the language is well chosen, we are astonished to learn that all the proofs made
for a certain object apply immediately to many new objects; there is nothing to change

x " ma tha cama? /T 81 TelLl o

not even the words, since the names have become the same’ ({1908}, p. 375). Fréchet
wre *

v

1

calls this ‘an extremely useful principle of generalisation’, and for---.l. ates it as follow
‘When the set of properties of a mathematxcal entity used in the proof of a proposition
about this entity does not determine this entity, the proposition can be extended to apply
to 2 more general entity’ ([1928], p. 18). He points out that such generalisations are not
trivial and ‘may require very great efforts’ (ibid.).

Cauchy did not notice this. His proof differed from the one given by the Teacher in one
important respect: Cauchy in his [1813a4] and [1813b] did not imagine the polyhedron to
be made of rubber. The novelty of his proof-idea was to imagine the polyhedron as a
surface, and not as a solid, as Euclid, Euler and Legendre did. But he imagined it as a solid
surface. When he removed one face and mapped the remaining spatial polygonal
network into a flat polygonal network, he did not conceive his mapping as a stretching
that might bend faces or edges. The first mathematician to notice that Cauchy’s proof
could be performed on polyhedra with bent faces was Crelle ([1826~7], pp. 671-2), but
he still carefully stuck to straight edges. For Caylcy however it secmed recognisablc at
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by Listing ([1861], p. 99) and in France by Jordan ([18664], p. 39).
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PROOFS AND REFUTATIONS

much more revolutionary than that: they erase the crucial naive
concepts completely and replace them by proof-generated concepts.!
The naive term ‘polyhedron’, even after being stretched by refuta-
tionists, denoted something that was crystal-like, a solid with ‘plane’
faces, straight edges. The proof-ideas swallowed this naive concept
and fully digested it. In the different proof-generated theorems we
have nothing of the naive concept. That disappeared without trace.
Instead each proof yields its characteristic proof-generated concepts,

which refer to stretchability, pumpability, photographability, pro-
sortahility and the like The old orablerm dicanheare A PR
JCLLd. U1l 4110 u1C 1IAC., 111C 0OI1Q Pl OUICILIL UldePCdl cu, IICW OI1ES

e
emerged. After Columbus one should not be surprised if one does not
solve the problem one has set out to solve.

SiMA: So the ‘theory of solids’, the original ‘naive’ realm of the
Euler conjecture, dissolves, and the remodellcd conjecture reappears in
prq]cctlvc gcomctry if provcd by Gergonne, in analyt1cal topology if
provea Dy \,duuly, in dlgCDf&iC EUPO ogy I Pf(‘)‘v'c‘:a Dy Poincaré. .

P1: Quite right. And now you will understand why I formulated
the theorems not, like Alpha or Beta, as: ‘All Gergonne-polyhedra are
Eulcrian’ ‘All Cauchy-polyhedra are Eulerian’, and so on, but rather

‘All Gergonnian oblcctq are Eulerian’, ‘All Cauchy objects are
Eulcrxan , and so on.2 So I find it uninteresting to quarrel not only “about the
exactness of naive concepts but also about the truth or falsehood of naive
conjectures.

Bera: But surely we can retain the term ‘polyhedron’ for our
favourite proof-generated term, say, ‘ Cauchy-objects’?

Pr1: If you like, but remember that your term no longer denotes what

it set out to denote: that its naive meaning has disappeared and that now
it is used. ..
BETA:. . .for a more general, improved concept !
THETA: No! For a totally different, novel concept.
rv of concent-formation weds concevi-formation to vroofs and refutations. Pélva wed

7] N
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it to observations: ‘ When the physicists started to talk about “electricity”, or the physi-
cians about “‘contagion”, thcse terms were vague, obscure, muddled. The terms that
the scientists use today, such as “electric charge”, ““ electric current”, “ fungus infection”,
“virus infection”, are incomparably clearer and more definite. Yet what a tremendous
amount of observation, how many ingenious experiments lie between the two termino-
logies, and some great discoveries too. Induction changed the terminology, clarified the
concepts. We can illustrate also this aspect of the process, the inductive clarification of
concepts, by suitable mathematical examples.’ ([1954], vol. 1, p. s5.) But even this
mistaken inductivist theory of concept-formation is preferable to the attempt to make
concept-formation autonomous, to make ¢ clarification’ or ‘explication’ of concepts a pre-
liminary to any scientific discussion.
2 See above, p. 66.
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CONCEPT-FORMATION

SieMa: I think your views are paradoxical !

If you mean by paradoxical ‘an opinion not yet generally
received’,! and possibly inconsistent with some of your ingrained naive
ideas, never mind: you only have to replace your naive ideas with the
paradoxical ones. This may be a way to ‘solve’ paradoxes. But what
particular view of mine do you have in mind?

SiGMA: You remember, we found that some star-polyhedra are
Eulerian while some others are not. We were looking for a proof that
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SigMA: I know. But just for the sake of argument let us imagine
that there is no such proof, but that somebody offers, in addition to
Cauchy’s proof for Eulerian ‘ordinary’ polyhedra, a corresponding
but altogether different proof for Eulerian star—polyhedra Would you
Lheﬁ, r1, because of these two aifferen proor p pose to akuit into two
what we formerly classified as one? And would you have two com-
pletely different things united under one name just because somebody
finds a common explanation for some of their properties?

P1: Of course I would. I certainly wouldn’t call a whale a fish, a
radio a noisy box (as aborigines may do), and I am not upset when a
physicist refers to glass as a liquid. Progress indeed replaces naive
classification by theoretical classification, that is, by theory-generated
(proof-generated, or if you like, explanation-generated) classification.
Conjectures and concepts both have to pass through the purgatory of
proofs and refutations. Naive conjectures and naive concepts are superseded

hy 1mnrnned CO"';”.C!“'”S {fltanramc\ and roncente(
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theoretical ideas and concepts supersede naive ideas and concepts,
theoretical language supersedes naive language.?

1 Hohhee 1641 An;mndnnr 1

Hobbes {1656], Anima

2 See above, p. 65, footnote 1.

3 It is interesting to follow the gradual changes from the rather naive classification of
polyhedra to the highly theoretical one. The first naive classification which covers not
only simple polyhedra comes from Lhuilier: a classification according to the number of
cavities, tunnels and ‘inner polygons’ (see p. 79, footnote I).

(@) Cavities. Euler’s first proof and, incidentally, Lhuilier’s own ([1812~134], pp.
174-7), rested on the decomposition of the solid, either by cutting off its corners one by
one, or by decomposing it into pyramids from one or more points in the inside. Cauchy’s
proof-idea however - Lhuilier did not know about it — rested on the decomposition of
the polyhedral surface. When the theory of polyhedral surfaces finally supetseded the
theory of polyhedral solids, cavities became uninteresting: one ‘polyhedron with

oI
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PROOFS AND REFUTATIONS

OMEGA: In the end we shall arrive from naive, accidental, merely
nominal classification to the final true, real, classification, to perfect
language 11

(c) L

P1: Let me take up again some of the issues which have arisen in
connection with deductive guessing. First let us take the problem of
heuristic versus logical counterexamples as raised in the discussion

1.001C
S

1.:.. 1 L...
11

glnally lntcndcd interpreta-

counterexamples were heuristic. In the ori
(a) all polyhedra are Eulerian,

tion there is no inconsistency between:

and (b) the picture-frame is not Eulerian.
If we keep to the tacit semantical rules of our original language our

counterexamples are not counterexamples. They are turned into

cavities” turns into a whole class of polyhedra. Thus our old monster-barring Definition 2
(p- 14) became a proof-generated, theoretical definition, and the taxonomical concept
of ‘cavity’ disappeared from the mainstream of growth.

(b) Tunnels. Already Listing pointed to the unsatisfactoriness of this concept (see

¢ ’
p. 79, footnote 1). The replacement came not from any ‘explication’ of the * “ague

concept of tunnel, asa Carnaplan might be tempted to expect, but from trying to pro
and refute Lhuilier’s naive conjecture about the Euler-characteristic of polyhedra thh
tunnels. In the course of this process the concept of polyhedron with n tunnels dis-
appeared and proof-generated ‘multiply-connectedness’ (what we called ‘n-spheroid-
ness’) took its place. In some papers we find the naive term retained for the new proof-
generated concept: Hoppe defines the number of ‘tunnels’ by the number of cuts that
leave the polyhedron connected ({I 879], p. 102 } For Ernst Steinitz the concept of tunnel
is already so theory-impregnated that he is unable to find any ‘essential’ difference
between Lhuilier’s naive classification according to the number of tunnels and the proof-
generated classification according to multiply-connectedness; therefore he regards
Listing’s criticism of Lhuilier’s classification as ‘largely unjustified’ ([1914-31], p. 22).
(¢) “ Inner polygons.” This naive concept too was soon replaced first by ringshaped, then
by multiply-connected faces (also cf. p. 79, footnote 2), (replaced, not ‘explicated’, for
‘ringshaped face’ is surely not an explication of ‘immer polygon’). When, however, the

Ay AL’_.‘I-.LA,J....I Qitefa mng w2rae citsmarendad oo

theory of polyhedral surfaces was superseded on the one hand by the topological theory
of surfaces, nnr‘ on the other hand bv nrank-t}\e fkp roblem of how multinly-
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polyhedron los all its interest.
Thus, out of the three key concepts of the ﬁrst naive classification, only one was
‘left’, and even that in a hardly recognisable form — the generalised Euler formula was,
for the moment, reduced to V-E+F = 2 —2n. (For further developments cf. p. 89,
footnote 3.)

1 As far as naive classification is concerned, nominalists are close to the truth when claim-
ing that the only thing that polyhedra have in common is their name. But after a few
centuries of proofs and refutations, as the theory of polyhedra develops, and theoretical
classification replaces naive classification, the balance changes in favour of the realist.
The problem of universals ought to be reconsidered in'view of the fact that, as knowledge
grows, languages change.
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CONCEPT-FORMATION

logical counterexamples only by changing the rules of the language by
concept-stretching.

GamMA: Do you mean that all interesting refutations are heuristic?

Pr1: Exactly. You cannot separate refutations and proofs on the one
hand and changes in the conceptual, taxonomical, linguistic framework
on the other. Usually, when a ‘ counterexample’ is presented, you have
a choice: either you refuse to bother with it, since it is not a counter-
example at all in your given language L,, or you agree to change your

]qnn-norrn l\v rnnrphf.cfrpfrhlno' an r] accent f]‘\p counterexamo nla TNIr
LalLbuua\— u] Uvnnvvrv u\u.vwva;nl&a SAAANS “wvwr\- VAANW WAL .l\'\.« \'l\a.l.l.l. a 1 l. ]Uul.
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ZETA:. . .and explain it in Ly!

P1: According to traditional static rationality you would have to
make the first choice. Science teaches you to make the second.

Gamma: That is, we may have two statements that are consistent
in L;, but we switch to L, in which they are inconsistent. Or, we may
have two statements that are inconsistent in 1.,1, but we switch to Lz in
which they are consistent. As knowledge grows, languages change.
‘Every period of creation is at the same time a period in which the
language changes.”t The growth of knowledge cannot be modelled
in any given langu ge.

Pr: That is right. Heuristic is concerned with language-dynamics,
while logic is concerned with language-statics.

(AN Tl sl 1 cosvcise s1mitsn rrsirpnd oboodrleloss 0V a idleeos oo . orsils tar 1
\4) 1neureucut VETSUS naive (oncepi-sireicning. \JOnLinuouis versiis criiical
growtn

GamMmA: You promlsed to come back to the question of whether or

nnet rlnl]!! 1‘1;: or ncci or Nntto
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o

knowledge.

P1: Let me first sketch some of the many historical forms which this
heuristic pattern can take.

The first main pattern is when naive concept-stretching outstrips
theory by far and produces a vast chaos of counterexamples: our naive

I Félix [1957], p. 10. According to logical positivists, the exclusive task of philosophy is to
construct “formalised” languages 1n which artificially congealed states ot science are
expressed (see our quotation from Carnap above, p. 1). But such investigations scarcely
get under way before the rapid growth of science discards the old ‘language system’.
Science teaches us not to respect any given conceptual-linguistic framework lest it should
turn into a conceptual prison — language analysts have a vested interest in at least slowing
down this process, in order to justify their linguistic therapeutics, that is, to show that
they have an all-important feedback to, and value for, science, that they are not de-
generating into ‘fairly dried-up petty-foggery’ (Einstein [1953]). Similar criticisms of
logical positivism have been made by Popper: see e.g. his [1959], p. 128, footnote *3.
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PROOFS AND REFUTATIONS

concepts are loosened but no theoretical concepts replace them. In
this case deductive guessing may catch up - piecemeal — with the
backlog of countercxamplcs. This s, if you like, a continuous ‘ generalis-
ing’ pattern — but do not forget that it starts with refutations, that its
continuity is the piecemeal explanation by a growing theory of the
heuristic retutations ot its tirst version.

GaMMA: Or, ‘continuous’ growth only indicates that refutations are

milcs ahead!

: That is right. But it mav happen that each single refutation or

o /7 rr o=y =¥ it A
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the theory (and theoretical concepts) which explains the counter-
example; ‘continuity’ then gives place to an exciting alternation of
concept-stretching refutations and ever more powerful theories, of
naive concept-stretching and explanatory theoretical concept-stretching.
SigMA: Two accidental historical variations on the same heuristic

P1: Well, there is not really much difference between them. In
both of them the power of the theory lies in its capacity to explain its
refutations in the course of its growth. But there is a second main pattern of
deductive guessing. ..

S1GMA: Yet another accidental variation?

P1: Yes, if you like. In this variation however the growing theory
not only explains but produces its refutations.

Sicma: What?

P1: In this case theoretical growth overtakes — and, indeed, eliminates
— naive concept-stretching. For example, one starts with, say, Cauchy’s

thenrem xrlflﬂr\nf 2 clh(r]p t‘nnhfnrpvamh]p on f]'\p ]-\r\ﬂvnn Tl‘\nn Nnna
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cutting it into two, cutting off pyramidal corners, bending it, distorting
it, pumping it up...Some of these test-ideas will lead to proof-ideast
(by arriving at something known to be true and then turning back,
that is, by following the Pappian analysis-synthesis pattern), but some
- likc Zeta’s ‘double-pasting test’ — will lead us, not back to something
alrcauy nnown, but to real ﬁO‘v‘clt‘y to some heuristic refutation of the
tested proposition — not by extending a naive concept, but by extending the
theoretical framework. This sort of refutation is self-explanatory. ..
Iota: How dialectical! Tests turning into proofs, counterexamples
that become examples by the very method of their construction.

1 Pélya discriminates between ‘simple’ and ‘severe’ tests. ‘Severe’ tests may give ‘the
first hint of a proof” ([1954], vol. 1, pp. 34~40).
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CONCEPT-FORMATION

P1: Why dialectical ? The test of one proposition turns into the proof
of another, deeper proposition, counterexamples of the first into
examples of the second. Why call confusion dialectic? But let me come
back to my point: I do not think that my second main pattern of
deductive guessing could be regarded —as Alpha would have it —as
continuous growth of knowledge.

ArpHA: Of course it can. Compare our method with Omega’s idea

of replacing one proof-idea w1th a radlcally dlfferent deeper one.
Rofl‘l mpfhndu
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by operations whlch are apphcable n a wider domain, or, more radl-
cally, replaces the whole proof by one that is applicable in a wider
domain — deductive guessing extends the given proof by adding opera-
tions which widen its applicability. Is this not continuity?

SieMA: That is right! We deduce from the theorem a chain of
ever wider theorems! From the special case ever more general cases!
Generalisation by deduction 11

P1: But full of counterexamples, once you recognise that any
increase of content, any deeper proof follows or generates heuristic
refutations of the previous poorer theorems. .

ArpHA: Theta expanded ‘counterexample to cover heuristic
counterexamples. You now expand it to cover heuristic counter-
examples that never actually exist. Your claim that your ‘second
pattern’ is full of counterexamples is based on the expansion of the
concept of counterexample to counterexamples with zero life-time,

whose dlscovery comc1des with their explanatlon' But Why should

is obscuring the issue!
TeacHER: The issue between you and Pi is certainly obscure - for
¢ . ’ .9 ¢ .« ’
your ‘continuous growth’ and Pi’s ‘critical growth’ are perfectly
consistent. I am more interested in the limitations, if any, of deductive
guessing, or ‘continuous criticism’.
1 In informal logic there is nothing wrong with the ‘fact, so usual in mathematics and
still so surprising to the beginner, or to the philosopher who takes himself for advanced,

that the general case can be logically equivalent to a special case’ (Pélya [1954], vol. 1,
p. 17). Also cf. Poincaré [1902], pp. 31-3.
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PROOFS AND REFUTATIONS

(e) The limits of the increase in content. Theoretical versus naive refutations

Pr: I think that sooner or later ‘continuous’ growth is bound to reach
a dead-end, a saturation point of the theory

Gamma: But surely I can always stretch some of the concepts!

P1: Of course. Naive concept-stretching may go on — but theoretical
concept-stretching has limits! Refutations by naive concept-stretching

are only gadﬂles that prod us to catch up by theoretlcal concept-

stretching. So there are two sorts of refutations. We stumble on the first
o va nﬁ:c—\ n:flov\no ey . t\-l\r\,] cf\ﬁ&ulﬂn VaS of Lv? 2% o) A-L:O-'-noovr A"“A“ﬂ‘l\“ Af
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some concept. They are like miracles, their ‘anomalous’ behaviour is
unexplained; we accept them as bona fide counterexamples only because
we are used to accepting concept-stretching criticism. I shall call these
naive counterexamples or freaks. Then there are the theoretical counter-
examples: these are either originally produced by proof-stretching or,
alternativ l'y', Lhey are freaks which are reached by stretched PLC)G{S,
explained by them, and thereby raised to the status of theoretical
counterexamples. Freaks have to be looked upon with great suspicion:
they may not be genuine counterexamples, but instances of a quite
different theory - if not outright mistakes.

SicMA: But what shall we do when we get stuck? When we cannot
turn our naive counterexamples into theoretical ones by expanding our
original proof?

P1: We may probe again and again whether or not our theory still
has some hidden capacity for growth. Sometimes, however, we have
good reason to give up. For instance, as Theta rightly pointed out, if
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LPHA: So after all, the cylinder was not a monster, but a freak!

TuerA: But freaks should not be played down! They are the
real refutations: they cannot be fitted into a pattern of continuous
‘generalisations’, and may actually force us to revolutionise our
theoretical framework. . .1

1 Cayley [1861] and Listing [1861] took the stretchmg of the basic concepts of the theory
of polyhedra serlously Cayley defined edge as ‘the path from a summit to itself, or to
any other summit’ but allowed edges to degenerate into vertexless closed curves, which
he called ‘contours’ (p. 426). Listing had one term for edges, whether with two, one,
or no vertices: ‘lines’ (p. 104). Both realised that a completely new theory was needed
to explain the ‘freaks’ which they naturalised with their liberal conceptual framework -
Cayley invented the ¢ Theory of Partitions of a Close’, Listing, one of the great pioneers
of modern topology, the ‘ Census of Spatial Complexes’.

96



CONCEPT-FORMATION

OMEGA: Good ! One may get to a relative saturation point of a particular
chain of deductive guessing — but then one finds a revolutionary, new,
deeper proof-idea that has more explanatory power. At the end one
still gets to a final proof — without limit, without saturation point,
without freaks to refute it!

P1: What? A single unified theory to explain all the phenomena of
the universe? Never! Sooner or later we shall approach something
like an absolute saturation point.

Gamma: I don’t really mind whether we do or not. If

GAMMA n’t really whether w 1 a counter-
ole can be explined by a chean. trivial extension of the broo
P C Cdll UC CAPldlll.CU Uy d Lllch, Lrividi CALCIDIVILIL UL L1IC PLUUL, 1
Would already regard it as a freak. I repeat: I really do not see any
’

point in generalising ‘polyhedron’ to include a polyhedron with
cavities: this is not one polyhedron, but a class of polyhedra. I would
also forget about ‘multiply-connected faces’ -~ why not draw the
missing diagonals? As to the generalisation that mcludes twintetra-
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plicated, pretentious formulas for nothing.

RuO: At last you rediscover my method of monster-adjustment I*
It relieves you of shallow generalisation. Omega should not have called
content ‘depth’; not every increase in content is also an increase in depth:

think of (6) ‘and (7) 12

ArpHA: So you would stop at (5) in my series?

1 See above, pp. 30-3 and 38-9.

2 Quite a few mathematicians cannot distinguish the trivial from the non-trivial. This is
especially awkward when a lack of feeling for relevance is coupled with the illusion
that one can construct a perfectly complete formula that covers all conceivable cases (cf.
p- 80, footnote 1). Such mathematicians may work for years on the  ultimate’ generalisa-

" s 1 + Th
tion of a formuls, and end up by extending it with a few trivial corrections. The

excellent mathematician, J. C. Becker, provides an amusing exam

=7
work he produced the formula V- E +F = 4-2n+q where n is the umber of cuts
that is needed to divide the polyhedral surface into simply-connected surfaces for which
V-E+F = 1, and q is the number of diagonals that one has to add to reduce all the
faces to simply-connected ones ([18694], p. 72). He was very proud of his achievement,
which - he claimed - shed ‘completely new light’, and even ‘brought to a conclusion’
‘a subject in which people like Descartes, Euler, Cauchy, Gergonne, Legendre, Grunert,

and von Staudt, took interest’ before him (p. 65). But three names were missing from
his reading list: Lhuilier, Jordan and Listing. When he was told about Lhuilier, he pub-

lished a sad note, admxttmg that Lhuilier knew all this more than fifty years before As
for Jordan, he was not interested in ringshaped faces, but happened to take an interest in
open polyhedra with boundaries, so that in his formula m, the number of boundaries,
figures in addition to n ([1866b], p. 86). So Becker — in a new paper [1869b) — combined
Lhuilier’s and Jordan’s formulas into V-E+F = 2-2n+q+m (p. 343). But in his
embarrassment he was too hasty, and had not digested Listing’s long paper. So he sadly

* /R« ¢h ha las
concluded his [1869b] with ‘Listing’s generalisation is still wider’. (By the way, he later

tried to extend his formula also to star-polyhedra ([1874]; cf. above, p. 31, footnote 4.)
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PROOFS AND REFUTATIONS

GaMMA: Yes. (6) and (7) are not growth, but degeneration! Instead
of going on to (6) and (7), I would rather find and explain some
exciting new countcrexample n

ArpHA: You may be right after all. But who decides where to stop?
Depth is only a matter of taste.

GaMMA: Why not have mathematical critics just as you have literary
critics, to develop mathematical taste by public criticism? We may
even stem the tide of pretentious trivialities in mathematical literature.?

SioMa: If you stop at (5) and turn the theory of polyhedra into 2
theory of triangulated spheres with # handles, how can you, if the need
arises, deal with trivial anomalies like those explained in (6) and (7)?

Mu: Child’s play!

THETA: Right. Then we stop at (s) for the moment. But can we
stop? Concept-stretching may refute (5) ! We may ignore the stretching
of a concept if it yields a counterexample that shows up. thc poverty
of the content of our theorem. But if the Stretd‘uug 'y' elds a counter-
example that shows up its plain falsehood, what then? We may refuse
to apply our content-increasing Rule 4 or Rule 5 to explain a freak, but
we have to apply our content-preserving Rule 2 to ward off refutation
by a freak.

GaMMA: That is it! We may dismiss cheap ‘generalisations’, but we
can hardly dismiss ‘cheap’ refutations.

SicMAa: Why not build up a monster-barring definition of ‘poly-
hedron’, adding a new clause for each freak?

THETA: In both cases our old nightmare, vicious infinity, is back
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1 Some people may entertain philistine ideas about a law of diminishing returns in refutations.
Gamma, for one, certainly does not. We shall not now discuss one-sided polyhedra
(Mbbius, [1865]) or n-dimensional polyhedra (Schliiﬂi [1852]). These would confirm
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Gamma’s expéCta ion that to auy unexpecieéa co cpt-sr.rcr.cmng rcxutauonb may always

give the whole theory a new — possibly revoluti tionary - push.

2 Pélya points out that shallow, cheap, generalisation is ‘ more fashionable nowadays than
it was formerly. It dilutes a little idea with a big terminology. The author usually prefers
to take even that little idea from somebody else, refrains from adding any original
observation, and avoids solving any problem except a few problems arising from the
difficulties of his own terminology. It would be very easy to quote examples, but I
don’t want to antagonize people’ ([1954], vol. 1, p. 30). Another of the greatest mathe-
maticians of our century, John von Neumann, also warned against this ‘danger of
degeneration’, but thought it would not be so bad ‘if the discipline is under the influence
of men with an exceptionally well-developed taste’ ([1947], p. 196). One wonders,

though, whether the * influence of men with an exceptionally wcll-devclopcd taste’ will
be enough to save mathematics in our publish or perish’ age.
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CONCEPT-FORMATION

mathematics; after it you clarify concepts, do linguistics. Why not
stop altogether when one stops increasing content? Why be trapped in
vicious infinities?

Mu: Not mathematics versus linguistics again! Knowledge never
profits from such disputes.

GaMMA: The term “never’ soon turns into ‘soon’. I am all for taking
up our old discussion again.

Mu: But we already ended up in a deadlock! Or does anybody

have anything new to say?
Wamna T Lt T L. osn
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9. How Criticism may turn Mathematical Truth into Logical Truth

(a) Unlimited concept—stretching destroys meaning and truth

W apDA - I S ..l . ceaid that air ‘ald smarthad? 12,4
RKNAPPA: ﬂlt)lld air y SaiG tnat Oour OI14G Metnoa icaa

infinity.! Gamma and Lambda answered with the hope that the
stream of refutations might peter out:2 but now that we understand
the mechanism of refutational success — concept-stretching — we know
that theirs was a vain hope. For any proposition there is always some
sufficiently narrow interpretation of its terms, such that it turns out
true, and some sufficiently wide interpretation such that it turns out
false. Which interpretation is intended and which unintended depends
of course on our intentions. The first interpretation may be called the
dogmatist, verificationist or justificationist interpretation, the second the
sceptzcal crttzcal or refutationist interpretation. Alpha called thc first a

pm3 -— ]'\nt now we see f]"lof rh
W VW W VALY VA

a4 %3 & vy Vv Py A

s to vicious

s

elta’s dogmatist inter 1
jecture! and then Alpha’s dogmatist interpretation of the theorem.’
But concept—stretchmg will refute any statement, and will leave no
true statement whatsoever.

GamMma: Wait. True, we stretched ‘polyhedron’ - then tore it up
and thrcw it away: as Pi pointed out, the naive concept ‘polyhedron’
does no g ure in the theorem an ny more.

Karpa: But then you will start stretching a term in the theorem -
a theoretical term, won’t you? You yourself chose to stretch ‘simply-

connected face’ to include the circle and the jacket of the cylinder.® You

1 Cazm sl o 2 a o

= See aoove, p. 33. 2 See above, ibid.

3 ‘Aun a in fact did nar 11ce thic Dannarian tarm ex wealinttlers can ahawa o ar
P3G 111 Zalv WAL IAUL WOV WD L Uppbliall Wil Pll\,luy y OLL avo V(, IJ <

4 See above, §4,(b). 8 See above, §s. 8 See above, pp. 42-6



PROOFS AND REFUTATIONS

implied that it was a matter of intellectual honesty to stick one’s neck
out, to achieve the respectable status of refutability, i.e. to make the
refutationist interpretation possible. But because of concept-stretching,
refutability means refutation. So you slide on to the infinite slope,
refuting each theorem and replacing it by a more ‘rigorous’ one - by
one whose falsehood has not been ‘exposed’ yet! But you never get out

of falsehood.

’
interpretations, and don’t budge either from the truth or from the
marticiilar inoictic form it which that triith wac exprecced ?
Pdlllb 1dl 1111 5u1 1C 1OULI11L 111 WI11ICI1L U1idU LLULIL wad CAP].CDDCUS

Karpa: Then you will have to ward off concept-stretching counter-
examples with monster-barring definitions. Thus you will slide on to
another infinite slope: you will be forced to admit of each particular
linguistic form’ of your true theorem that it was not prec1se enough
and you will be forced to incorporate in it more and more ‘rigorous’
definitions couched in terms whose vagueness has not
yet! But you never get out of vagueness.t

THETA [aside]: What is wrong with a heuristic where vagueness is
the price we pay for growth?

ArpHA: I told you: precise concepts and unshakable truths do not
dwell in language, but only in thoug oht!

GAaMMA: Let me challenge you, Kappa. Take the theorem as it
stood, after we took account of the cylinder: ‘For all simple objects
with simply-connected faces such that the edges of the faces terminate
in vertices, V~E+F = 2.” How would you refute this by the method
of concept-stretching ?

Karpa: First I go back to the defining terms and spell out the pro-
an 11 7L .1 1 .21 W i NS0 SRR PPN ‘._L ) o PR SR
11, 111CI1 1 JCCl1UC WillICIL LUIILCPL {O stretcn. ror llldeU.LC,

L3

stretchable onto a plane after having had a face

rcmoved . I shall stretch “stretching’. Take the already discussed twin-

tetrahedra — the pair with an edge in common (fig. 6(a)). It is simple, its

faces are simply-connected, but V—E+F = 3. So our theorem is false.
GAMMA: But this twintetrahedron is not simple'

A wmwsa o icsca 14 to siin ana o areat~l ".
Karpa: Of course it is sir 1p1€. Remo ng any face, I can stretch it

1% Editors’ note: Kappa’s claim that vagueness is inescapable is correct (some terms are bound
to be primitive). But he is wrong to think that this means that one can always produce
counterexamples by ‘ concept-stretching’. By definition, a valid proof is one in which,
no matter how one interprets the descriptive terms, one never produces a countcrcxample -

i.e.its vaucuty GOCS not CleCl’lCl on the mcamng OI the CI.CSCI'XPUVC terms, wmcn carn thus

be stretched however one likes. This is pointed out by Lakatos himself below, p. 103 and

(more clearly), chapter 2, p. 124.
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CRITICISM: MATHEMATICAL AND LOGICAL TRUTH

]
7\ 11\
\4) )
Fig. 24
on to a plane. I just have to be careful, when I get to the critical edge,
that I do not tear anything there when opening the second tetrahedron

along that edge.

GAMMA : But this is not stretching ! You tear — or split — the edge into
two edges! You certainly cannot map one point onto two: stretching is
a bicontinuous one-one mapping!

KAPPA: Def. 7? I am afraid this narrow, dogmatist interpretation of

‘stretchine’ do l¢ m
* +
stretching’ does not appeal to my common sense. For instance, I can

WCI}. imaglnc Stretcmng a Square \Ilg. 24.(a ) into two neStca Squarcs Dy
stretching the boundary lines (fig. 24(b)). Would you call this stretch
a tear or a split, just because it is not a ‘ bicontinuous one-one mapping’?
By the way, I wonder why you did not define stretching as a trans-
formation that leaves V, E and F unaltered, and have done with it?

GaMMA: Right, you win again. I either have to agree to your
refutationist interpretation of ‘stretching’ and expand my proof, or
find a deeper one, or incorporate a lemma — or I have to introduce a
new monster-barring definition. Yet in any of these cases I shall
always make my defining terms clearer and clearer. Why should I not
arrive at a pomt where the meanin
. :
242 = 4? here is nothing elastic about the meaning of these terms
and nothing refutable about the truth of this proposition, which shines
for ever in the natural light of reason.

Karra: Dim light!

GAMMA; Stretch, if you can.

. . ’
A a-: Rir +thi Lild 1 1T +
ANAPPA: Dut tnis i1s cnuia s pxa" in certain casecs two and two ma k“
1 'y 1 1 1 1

five. Suppose we ask for the aeuvery of two articles each weighing
two pounds; they are delivered in a box weighing one pound; then
in this package two pounds and two pounds will make five pounds!
GaMMA: But you get five pounds by adding three weights, 2 and 2
and 1!
Karpa: True, our operation ‘2 and 2 make 5’ is not an addition in
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PROOFS AND REFUTATIONS

the originally intended sense. But we can make the result hold true by
a simple stretching of the meaning of addition. Naive addition is a very
spec1a1 case of packmg where the weight of the covering material is
zero. We have to build this lemma into the conjecture as a condition:
our improved conjecture will be: ‘2+2 = 4 for “weightless” addi-
tion’.* The whole story of algebra is a series of such concept- and proof-

stretchings.
GaMmMaA: I think you take stretching’ a bit far. Next time you will
interpret ‘plus’ as ‘times’ and consider it a refutation! Or you will
€ H 4 P ¢
interpret ‘all’ as ‘no”’ in “All polyhedra are polyhedra’! You stretch the
|

concept of onccpt-stretchmg We have to demarcate refutation by
rational stretching from ‘refutation’ by irrational stretching. We cannot
allow you to stretch any term you like just as you like.

We must pin down the concept of counterexample in crystal-clear

terms !
Trremas e Dovaie Docenann Lo sccomenad Semsn PO NN Now L-
1LJELTA. LVEI \Uamliria n1as$ turnceda into a monster-varrer. now iic
r r

wants a monster-barring definition of concept-stretcnmg refutation.
Rationality, after all, depends on inelastic, exact, concepts !

KaPPA: But there are no such concepts! Why not accept that our ability
to specify what we mean is nil, therefore our ability to prove is nil? If you
want mathematics to be meaningful, you must resign of certainty. If
you want certainty, get rid of meaning. You cannot have both.
Gibberish is safe from refutations, meaningful propositions are refutable by
concept-stretching.

GamMa: Then your last statements can also be refuted — and you
know it. ‘Sceptics are not a sect of people who are persuaded of what

..-..A..A. PUR

(b) Mitigated concept-stretching may turn mathematical truth into logical truth

THeTA: I think Gamma is right about the need for demarcating rational
from irrational concept-stretching. For concept-stretching has come a
long way, and has changed from a mild, rational activity to a radical,
if a[lUIldl one.

Originally, criticism concentrates exclusively on the slight stretching
of one particular concept. It has to be slight, so that we do not notice it;
1 Cf Félix [1957], p. 9.

? Gamma’s demand for a crystal-clear definition of ‘counterexample’ amounts to a

demand for crystal-clear, inelastic concepts in the metalanguage as a condition of
rational discussion. 3 Arnauld and Nicole [1724], pp. xx—xxi.

bt
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CRITICISM: MATHEMATICAL AND LOGICAL TRUTH

if its real — stretching — nature were discovered, it might not be accepted
as legitimate criticism. It concentrates on one particular concept, as in
the case of our rather unsophisticated universal propositions: ‘All A’s
are B’s’. Criticism then means finding a slightly stretched A (in our
case polyhedron) that is not B (in our case Eulerian).

But Kappa sharpened this in two directions. First, to submit more
than one constituent of the proposition under attack to concept-stretch-
ing criticism. Second, to turn concept-stretching from a surreptitious

est Q.Ctl‘!lf into onen pr;wmafmn nf fhp concept, like rh

ty into o pen deformation of the conce pt, like th
into ‘no’. Here any meaningful translation of the
terms under attack that renders the theorem false is accepted as refuta-
tion. I would then say that if a proposition cannot be refuted with respect to
the constituents a, b,. . ., then it is logically true with respect to these consti-
tuents.! Such a proposxtlon is the end-result of a long critical-specu-
1at1ve proces n the course of Wthh thc meaning-load of some terms

cand ¢t~ tha £aees ~L2l
11> d411(1 LO L11IC 1UL111 Ul L1IC

Now all that Kappa says is that there are no propositions which are
logically true with respect to all their constituents. But there may be
logically true propositions with respect to some constituents, so that the
stream of refutations can only be opened up again if new stretchable
constituents are added. If we go the whole hog, we end up in irrational-
ism — but we need not. Now where should we draw the borderline?
We may very well allow concept-stretching only for a distinguished
subset of constituents which become the prime targets of criticism.
Logical truth will not depend on their meaning.

SicMA: So after all we took Kanpa’s point: w

AT ANTa Gavea Riaa (VA0S N A‘urru o4 rva;; vv

-
Or at ieast some OL tii€ terms:

morlp trint
B WA "

AL

('D

THETA: That is rlght But 1f we want to defeat Kappa’s scepticism,
and escape his vicious infinities, we certainly have to stop concept-
stretching at the point where it ceases to be a tool of growth and
becomes a tool of destruction: we may have to find out which are
those terms whose meaning can be stretched only at the cost of destroy-

;h]no r\r rn{-‘.l\ht\];ftv 2

.
“lng the uaSIC P 1 11\ xruba VL Lauux;aut].

1 This is a slightly paraphrased version of Bolzano’s definition of logical truth ([1837],
§ 147). Why Bolzano, in the 1830s, proposed his definition, is a puzzling question,
especially since his work anticipates the concept of model, one of the greatest innova-

tions in nineteenth-century mathematical philosophy.
2 Nineteenth-centurv mathematical criticism stretched more ﬂ more concepts, nnr‘

2AT ST ALNIITIRNAANNRL ) ARl lliatites SaaRARaSdis SRANSRANNS ARt ave

shifted the meaning-load of more and more terms onto the lomcal form of the proposi-
tions and onto the meaning of the few (as yet) unstretched terms. In the 1930s this
process seemed to slow down and the demarcation line between unstretchable (‘logical’)

I0?
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PROOFS AND REFUTATIONS

Kapra: Can we stretch the concepts in your theory of critical
rationality ? Or will that be manifestly true, formulated in unstretch-
able, exact terms which do not need to be defined? Will your theory
of criticism end in a ‘retreat to commitment’: is everything criticisable
except for your tncor‘y of cnuusrn, 'y‘our ‘metath (:O“y"?l

OMEGA |to Epsilon]: I do not like this shift from Truth to rationality.
Whose rationality ? I sense conventionalist infiltration.

BeTA: What are you talking about? I understand Theta’

S
pattern’ of concept-stretching. I also understand that concept-

srtretf‘l"‘“" may attack more than one term: we saw this when
stretched stretching” or when Gamma stretched ‘all’. .

SiGMA: Surely Gamma stretched ‘simply-connected’ |

Bera: But no. ‘Simply-connected’ is an abbreviation - he only
stretched the term ‘all’ that occurred among the defining terms.2

Trera: Come back to the point. You are unhappy about ‘open’,

BetA: Yes. Nobody would accept this last brand as genuine refu
tion! I quite see that the mild concept-stretching trend of heuristic
criticism that Pi uncovered is a most important vehicle of mathematical
growth. But mathematicians will never accept this last, wild form of
refutation !

TrACHER: You are wrong, Beta. They did accept it, and their accept-
ance was a turning point in the history of matherhatics. This revolution
in mathematical criticism changed the concept of mathematical truth, cnanged
the standards of mathematical proof, changed the patterns of mathematical

(¢]
L]
a

terms and stretchable (‘descriptive’) terms seemed to become stable. A list, containing
a small number of logical terms, came to be widely agreed upon, so that a general
definition of logical truth became possible; logical truth was no longcr with respect
to’ an ad hoc list of constituents. (Cf. Tarski [1935].) Tarski was, however, puzzled about
this demarcation and wondered whether, after all, he would have to return to a relativised
concept of counterexample, and consequently, of logical truth (p. 420) - like Bolzano’s,
of which, 'by the way, Tarski did not know. The most interesting result in this direction
was ropper S 1194/—01 from which it follows that one cannot gwe up further Loglu.l
constants without giving up some basic principles of rational discussion.

1 ‘Retreat to commitment’ is Bartley’s expression [1962]. He investigates the problem of
whether a rational defence of critical rationalism is possible mainly with respect to
religious knowledge — but the problem-patterns are very much the same with respect to
mathematical knowledge.

2 See above, pp. 42-6. Gamma did, in fact, want to remove some meaning-load from
‘all’, so that it no longer applied only to non-empty classes. The modest stretching of

‘all’ by removing ‘existential import’ from its meaning and thereby turning the empty

cat fram a maoncter intao an nrr]\n')rv ln\urnatuc set was an 1mhnrf')nr asvent — connectad
oLt 40l @ {{aUMGWCL 1Al0 aill Oiiiial Y COBILCOS SCL VWWas afl Inpoitaily Cviill COLNCLEL

not only with the Boolean set-theoretical re-interpretation of Aristotelian logic, but also
with the emergence of the concept of vacuous satisfaction in mathematical discussion.
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CRITICISM: MATHEMATICAL AND LOGICAL TRUTH

growth!t But now let us close our discussion for the time being: we
shall discuss this new stage some other time.

SiGMA: But then nothing is settled. We can’t stop now.

TeacHER: I sympathise. This latest stage will have important feed-
backs to our discussion.? But a scientific inquiry ‘begins and ends with
problems’.3 [Leaves the classroom.]

Beta: But I had no problems at the beginning! And now I have
nothing but problems!

1 The concepts of criticism, counterexample, consequence, truth, and proof are in-

in the others follow.
2 Cf. Lakatos [1962]. 3 Popper [1963b], p. 968.

—
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Editors’ Introduction

Poincaré’s proof of the Descartes—Euler conjecture is referred to above.! In his
doctoral thesis Lakatos introduced detailed consideration of this proof by a
discussion of the arguments for and against the ‘Euclidean’ approach to mathe-
matics. Parts of this discussion were incorporated by Lakatos into chapter 1
(see, e.g., pp. 50-6) and others were rewritten as parts of ‘Infinite Regress
and the Foundations of Mathematics’ (Lakatos [1962]). We therefore omit

this introductory discussion here
]-nn qr]trnrofn nr f‘\n pl‘lr‘]l‘AP')ﬂ nroaoramme I'u: aAttamnt tn cIlﬁh“Y mathe_
A didWv G Y VVGarw Vi Vil AdJdvividivewvaiaa r&vbhﬂll&lllv AL, “\vb\rlllrh v\ \)Ut’t’l] ALLG VLN,

matics with indubitably true axioms couched in perfectly clear terms - has been
Epsﬂon Epsdon s phllosophy is challcnged but the Teacher remarks that the

most ODVIOUS 81'1(1 GIICC[ way to cnaucngc EPSIIOH is to aSK mm to PI'OOUCC a
PI'OOI O[ tne uescartes—nmer COH_]CCIUI'C wmcn S&tlSIlCS r.ucuclean stanaarcls.

Epsilon takes up the challenge.

Translation of the Conjecture into the ‘Perfectly Known’ Terms of
Vector-Algebra. The Problem of Translation

EpsiLoN: I accept the challenge. I shall prove that all simply-connected
polyhedra with simply-connected faces are Eulerian.

TEACHER: Yes, I stated this theorem in a previous lesson.?

EpsioN: As I have pointed out, I first have to find the truth in order

prove it. Now I have nothing against using your method of proofs
nd refutations as a method of dlcr‘nvermcr the tru rh but w]wre you

to
and refutations as a metho discovering the here
stop, I start. Where you stop improving, I start provmg.3

ArpHA: But this long theorem is full of stretchable concepts. I do
not think we shall find it difficult to refute it.

EpsicoN: You will find it impossible to refute it. I shall pin down the
meaning of each single term.

TEACHER: Go on.

Eoncrrnnre Rirct " us n]vr
AL O1INJIN , 1 1L00 l- all

t’ | 94
sometime we shall b abl to extend our perfect knowledge to cover

1 See pp. 65 and go. % See above, p. 36.

3 Epsilon is probably the first-ever Euclidean to appreciate the heuristic value of the proof-
procedure. Until the seventeenth century, Euclideans approved the Platonic method
of analysis as the method of heuristic; Iater they replaced it by the stroke of luck andjor
genius.
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PROBLEM OF TRANSLATION

optical cameras, paper and scissors, rubber balls and pumps, but now we
should forget these things. Finality certainly cannot be reached by
using all these various tools. Our previous fallures, in my view, are
rooted in the fact that we used methods which are alien to the simple,
naked nature of polyhedra. The exuberant imagination which mobil-
ised all these tools is completely mis-directed. It adduced external,
alien, contingent elements which do not pertain to the essence of
polyhedra and so no wonder it fails for some polyhedra. In order to

oet a pverfect proof one has to restrict the ranoe of tools used.! This 1

6\.4\1 rvs;v r JaLsw ALCeT AAN A SeA. 6" 152 8 ARAJ

v
....... shiie aviiharats 1avacritadi AT alba p..-l"..t.. Jh Y= o PR

bCLduac triis exXuocraiit lllldsllldtlull IMaKes cderiain tO0 aiMicuit to
attain. The truth of lemmas which hinge on the properties of rubber,
lenses and so on, is difficult to guarantee. We should abandon scissors,
pumps, cameras and the like, because ‘for the understanding of a
question we must abstract it from all that is superfluous, rendering it
as s1mple as possible’.2 I purge my theorem® and my proof of all these,
! ict them to the mupxest and easiest thiﬁgb.4 u&i“uel'y' to vertices,
edges and faces. I shall not define these terms as there cannot possibly be

d1sagrecn1ent about their meaning. I shall define any term which is
in the least obscure in perfectly known ‘primitive’ terms.’

‘Now it is clear that none of the specific lemmas in any of the proofs
was evidently true; they were just conjectures such as ‘All polyhedra
are pumpable into a ball’ and so on. But now ‘I require that no
conjectures of any kind be allowed into the judgments we pass on the
truth of things’.% I shall decompose the conjecture into lemmas which
are not conjectures any longer but ‘intuitions’, that is, ‘nondubious
apprehensions of a pure and attentive mind which are born in the sole

licht of reac on 7 qumn]pc of thece ‘intuitione’ are: n” nnl lm/]rn lunm

llslll- WA AvQAouvi “JLLIJ‘\.«U A ViAAWVIN AAAN u va \.I Lu’ Ao WIS -t’ 1 IV TV O
_____ M Lo Lasss odrser All odsse Lawso soebirse T ohall e 2o cexnla

Jau:.s, ait Ja nave cugc’.\, ulti cugc.\ nave veriices. 1 Snail 1ot rais€ sucn

questions as Whether a polyhedron is a solid or a surface. These are

1 In proof-analysis there is no limitation on the ‘tools’. We can use any lemma, any
concept. This is true of any growing, informal theory, where problem-solving is a
catch-as-catch-can affair. In a formalised theory the tools are completely prescribed in
the syntax of the theory. In the ideal case (where there is a decision procedure) problem-
solving here is a ritual.

These are Descartes’s words in his [1628], Rule XIII.

[ I )

P e 2 ]

One should not fun.su. that while Pi"uux-ancuyam concludes with a ;hcuncxu, the Euulldcal
proof starts with it. In the Euclidean methodology there are no conjectures, only theorems.
4 Descartes [1628], Rule IX.

Pascal’s rules for definitions ([1659], pp. $96—7): ‘Not to define any given term which is
perfectly known. Not to allow without definition any term in the least obscure or
equivocal. To employ in the definition of terms only perfectly known or already
explained words.’

6 Descartes [1628], notes to Rule IIL 7 Ibid.
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PROOFS AND REFUTATIONS

vague notions and anyway superfluous for our purpose. For me a
polyhedron consists of three sets: the set of V' vertices (I shall call them
P, P), ..., Pp), the set of E edges (I shall call them P}, P}, . . ., PL),and
the set of F faces (I shall call them P}, P}, .. ., P%). In order to character-
ise a polyhedron we also need some sort of table that tells us which
vertices belong to which edges, and which edges belong to which
faces. I shall call these tables ‘incidence matrices’.

GAMMA: I am a bit puzzled by your definition o

(]

lace, as you bother to define the notion

first place, as y ther to define the n
e that you do not consider it to be perfect :
then where do you take your definition from? You defined the obscure
concept of polyhedron in terms of the ‘perfectly known’ concepts of
faces, edges and vertices. But your definition — namely that the poly-
hedron is a set of vertices, plus a set of edges, plus a set of faces, plus an
incidence matrix, obv1ously fails to capture the intuitive notion of a
P(‘Jl‘y’ucd‘f\’)n Iti impﬂes, fOi’ istan LC, tnat 4n'y' PO]‘)"gO isa ?Oly'lxcui‘(‘)i‘x

as is, say, a polygon with a free edge standing out of it. Now you must
choose between two courses. You may say that ‘the mathematician is
not concerned with the current meaning of his technical terms. . . The
mathematical definition creates the mathematical meaning’.! In this
case to define the notion of a polyhedron is to drop the old notion
altogether and to replace it by a new concept. But then any resemblance
between your ‘polyhedron’ and any genuine polyhedron is entirely
accidental, and you will not get any certain knowledge about genuine
polyhedra by studying your mock-polyhedra. The other course is to

stick to the idea that definition is clariﬁcation that it makes essential
'-

2}

Q') ] on ara m
uu\u.cu‘. a i

\JA(A \rl\.IAL e a4
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wECbALA VA & wJ

& ll. tll. wOowa Vv lALb
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€arcr ianguage. in tnis ¢asc your Qcrinition

are conjectures, they may be true, they may be false. How can you have
a certainly true translation of a vague term into precise ones?
EpsiLoN: I admit you have taken me by surprise by this criticism. I
thought you might doubt the absolute truth of my axioms, I thought
you might ask how such a pnort synthetic _]udgments are possible, and
: 1its, but I did not e3 (pect an att tack on
the line of definitions. But I suppose my answer is: I get my definitions,
just as I get my axioms, by intuition. They are really of equal standing:

you can take my definitions as additional axioms? or you can take my

o
X

Avy vaiGw

Fpah“‘_ eQ egpl \,"' fhaf

)

6lya 11945J, pp. 81-2.
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PROBLEM OF TRANSLATION

axioms as implicit definitions.! They give the essence of the terms in
questions.

TeacHER: Enough of philosophy! Let us see the proof. I do not like
your philosophy, but I still may like your proof.

Epsicon: All right. I shall first translate the theorem to be proved
into my perfectly simple and clear conceptual framework. My specific
undefined terms will be: vertices, edges, faces and polyhedra. I shall
sometimes refer to them as zero, one, two, and three dimensional

ALPHA But only ten minutes ago you defined polyhedra in terms of
vertices, edges and faces!

EpsioN: I was wrong. That ‘definition’ was a stupid anticipation.
I jumped to my judgment in a silly rush. True intuition, true interpre-
tation, ripens slowly, and purging one’s soul of conjectures takes
time.?

BeTA: You mentioned a moment ago some of your axioms, like:
faces have edges, or to each face belong edges - ‘belong to’: is this
another primitive term?

EpsiLoN: No. I register only terms specific to the theory in question,
in this case the theory of polyhedra but not the logical, set—theoretlcal
arithmetical ones of the underlying theory, with which I assume
perfect familiarity. But let me now go on to the term ‘simply-
connected ', which is certainly not absolutely clear. I shall define first
simply-connectedness of polyhedra and then simply—connectedness of

faces. I take simply-connectedness of polyhedra first. It is in fact the

ahhraviation of a2 lano evaraccinn: a nalvhadran ic caid ta ha cimnle

a00rcviaiion O1 a 1011y CXPICHSI0L pPOyCGIon is 5aiG 16 o au.u.t.u
o 1 111 . _1_ 1 _ 1 1
II ail C1OMCQ 1 OPICSS bystcms O1 agc aVC an lnSlaC ana

(@)

Q

=»

:b

o

O

P

. [¢']
C.
-

A S— <>

outside, and (2) if there is only one closed loopless system of faces -
that which separates the inside from the outside of the polyhedron.
Now this is full of rather vague terms, like ‘closed’, “inside’, ‘outside’
and so on. But I shall define all of them in perfectly known terms.
GamMA: You have exorcised mechanical terms - like pumping,

1 Gergonne [1818].

2 That these terms can be subsumed under one single general abstract term was discovered
by Schlifli ([1852]). He called them ‘polyschemes’. Listing [1861] calls them ‘Curian’.
But it was Schlifli who extended the generalisation to more than three dimensions.

3 *The conclusions of human reason as ordinarily applied in matters of nature, I call for
the sake of distinction, Anticipations of Nature (as a thing rash or premature). That which

reason elicited from the facts by a just and methodical process, 1 call Interpretation of
Nature’ (Bacon [1620], XXVI).



PROOFS AND REFUTATIONS

cutting — as unreliable; now you jettison geometrical terms - like
closedness. I think you are overdoing your purging zeal. ‘A closed
system of edges’ is a perfectly clear concept, it need not be defined.
EpsiLoN: No, you are wrong. Would you call a star-polygon a closed
system of edges? Maybe you would, because it has no loose end. But
it does not “enclose” any well defined area, and some may mean by a
‘closed system of edges’ a system of edges which does. So you have to
make up your mind in one way or the other, and say in which way you

AU~ API“APA
Al Vo WUvwiVIV G
VTV IVIN A cenam PR TP S R S | et 2o 30 ~lcriacanler
GAMMA: A star-poiygon imay not be pounaea, out it is ODVIOUSLY
closed.

EpsitoN: I think that it is closed and that it is bounded too. The
disagreement is already telling, but I shall produce some further
evidence. I wonder whether or not you would say that the heptahedron
is a closed system of faces and that it is bounded?

Gamima: I have never heard of your uePfahcdrun

EpsILON: It is a rather interesting sort of polyhedron, as it is one-
sided. There is no geometrical solid which it encloses, it does not
separate the space into two parts, into an inside and an outside. Alpha,
for instance, gulded by his ‘clear’ geometrical intuition, said earlier
that a closed system of faces bounds ‘if it is the boundary between the
inside of the polyhedron and the outside of the polyhedron’. I wonder
whether he would say that the surface of the heptahedron does not
bound? Or will getting acquainted with the heptahedron change his
concept of ‘bounding’ systems? In this case I most humbly ask you:

can perﬁectly known concepts be changed by experience ? They cannot.
'T‘]»\nrnrnrb Closer] ” ¢ Iﬂnrn-\r]nr‘ nrrnrf-lxr we " ]rh wn

A diVIVLIVUL p\.«].l;\/\rlrl] VYV Wdd DALV VYV Aie A .lj.e
f.‘ L o

I am going
THETA: Draw that heptahedron. I wonder what is it like?
Epsion: All right. I start first with an ordinary familiar octahedron

(see fig. 25). Now I add three squares in the planes spanned by the

diagonals, for instance A B C D (fig. 26
DeLTA: I should expect from a decent polyhedron that at the edges

Only two IaLCb ShOU.l(.l meet. ane WwW¢E llaVC tIerC
EpsiLoN: Wait. I remove now four triangles in order to comply with

this requirement: from the first half of the figure I remove the upper

left-hand triangle and the lower right-hand triangle. From the part at

the rear of the figure I remove the lower left-hand triangle and the
111 NNOr r;n-]ﬂf;'\thl h-;qhn-]p T]‘\ph r\]‘r f-]'\p me trian n-]p < f\r]nA mn ¢
uk’t]\fl I.lel\v Al LANS bl.l“llsl\r A Al ir 1] VALV AV G viiqazi 5‘.\/ JilAauivul 211 Ll

diagram remain (fig. 27). Thus we have obtained a figure consisting of

(]
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four triangles and three squares. This is the heptahedron.? Its edges and
vertices are the original edges and vertices of the octahedron. The
diagonals of the octahedron are not edges of our figure but are lines
in which it intersects itself. I do not attach much importance to
geometrical intuition, I am not very interested in the fact that my
polyhedron happens to be so uncomfortably embedded into three-
AlmPannnﬁ] Qnﬂ(‘P TI'HQ Fﬂl‘f 1S not A]Qn]QVP{'] ]’\V f]'lP lnmdpnrp—mafﬂrpc
of my heptahedron (By the way, the heptahedron can be embedded
nicely without self-intersection into five-dimensional space.)3
s Figure 27 is redrawn from Hilbert and Cohn-Vossen [1932].
? Discovered by C. Reinhardt (see his [1885], p. 114).

8 That one-sidedness or two-sidedness is dependent on the number of the dimensions of
the space was first noticed by W. Dyck. See his [1888], p. 474.

III
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Now does the surface of the heptahedron bound ? The answer is ‘no’
if you define a surface as ‘bounding’ if and only if it is the boundary
of the polyhedron in the sense that it separates the inside and the outside
of the polyhedron in question. On the other hand, the answer is ‘yes’
if you define a surface as “bounding’ if and only if it is the boundary
of the polyhedron in the sense that it contains all its faces. You see, you
have to define ‘bound’, you have to define ‘boundary’. These con-
cepts may seem. to have a touch of familiarity before one starts in-

is clear in which sense you are using them.

Kappa: And then you have to put a veto on further investigation in
order to avoid further splittings !

TEACHER: Epsﬂon do not listen to Kappa. Refutations, inconsis-
tencies, criticism in general are very i nportant, out Oi‘u'y' if U‘le'y' lead to
improvement. A mere refutation is no victory. If mere criticism, even
though correct, had authority, Berkeley would have stopped the
development of mathematics and Dirac could not have found an
editor for his papers.

EpsiLoN: Do not worry, I dismissed Kappa’s pointless heckling at
once. I am now going on to define my terms, to translate everything
into my few specific primitive terms - polytopes and incidence-
matrices. I shall start by defining ‘boundary’. The boundary of a
k-polytope is the sum of the (k-1) polytopes which belong to it
according to the incidence-matrices. I shall call a sum of k—polytopes a

k=Cu.a’n Fsr 1ncfnnr~e the ‘Snr‘_are Ofa nalvhedran (ar anv nar f ¢) ic

y § A dllovalivw LAl (S 7 8 A tl\u. PRLAN YR VIVE \UL all ya Vi , 10
essentiallv a 2-chain. I define the boundarv of a k-chain as the sum of
C3CIILIdlY <=Cl1dinl. 1 acliice uUic poundaaly Or 4 k-Cliail a5 uic suin Or
the (k—1) polytopes which belong to the k-chain, but instead of
ordinary sum I take the sum modulo 2. This means that the following
will hold

0+0=0,1+0=1,0+I =1,I14+I =0

X e l ..... o oo A.L_a. LL:A PP A.l-- 4. 2 J,.ﬁ. f PaP Py ‘.1-_ LA.-..J_._.- e P
I0U 11dVvC LU JCC Ulidl U1 1> UIC rue d Jlr non oL uic UUU[lUdIy Ol 4
k-chain.

BeTA: Stop for a moment. I cannot easily follow your k-dimensional
definitions. Let me think loudly about an example.! For instance the
boundary of a face is, according to your definition, the set of edges

which ]'\p] ng to it. Now when T in two faces. the common bouuda‘_\]r

ALANWAL W/ ANs AL v awe VY AAan aa J 4;.. L 4 Vg guvvu s A

1% Editor’s note: ‘ Thinking loudly’ was a technical term of Lakatosian English.
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will not contain the edges which they both contain. So when adding
the edges I shall omit those which occur in couples. For instance I take
two triangles (fig. 28). The boundary of the first is c+d+e, the
boundary of the second, a+b +e, the boundary of their join a+b+e+
c+d+e = a+b+c+d. I see now why you introduced the mod 2 sums
in your definition. Please carry on.

EpstioN: After having defined ‘boundary’ in perfectly known
specific terms I shall now define ‘closedness’. Hitherto either you had
to rely on a vague insight, or you had to define closedness in each case
separately: first the closedness of systems of edges, then the closedness
of systems of faces. Now I show you that there is a general concept of
closedness, applicable to any k-chain, independently of k. I shall call a
k-chain a closed k-chain, or briefly, a k-circuit, if and only if its
boundary is zero.

BetA: Stop for a moment. Let me see: an ordinary polygon is
intuitively closed, and it is in fact clesed according to your definition
~am mm adeo LA.-...,]_._-. 20 FEATIR AL AN P P mgsaer bmmre s sem dles Lcicen Jaae
SIICC 1LY bouulllidl > LC1U, 4> CTdlll VCIL OCCUIS tWICC 111 tiic UUulludly,
and that makes zero in your mod 2 algebra An ordmary simple poly-

Q..

hedron is closed, an
edge occurs twice.

KaPpA [aside]: Beta certainly has to struggle to verify Epsilon’s
‘obvious and immediate insights’!

EpsiLon: The next term to be elucidated is ‘bound’. I shall Say in
k-circuit bounds if it is the boundary of a (k + 1)-chain. For 1nstance,
the ‘equator’ of a spheroid polyhedron bounds, but the ‘equator’ of a
toroid polyhedron does not. In this latter case the alternative idea,

namely that it bounds the ‘whole’ of the polyhedron, is now ruled out

again its boundary is zero, as in its boundary each

‘---‘J’ L ‘-A
JULE A 114l d

N
w

cly
as the boundary of the whole of the polyhedmn is empty. Now it i

absolutely clear that for instance the heptahedron bound

113
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BeTA: You are a bit quick, but you seem to be right.

GAMMA: Can you prove that any bounding k-chain is a circuit? You
defined ‘bounding’ only for circuits — you could have done it in
general for chains. I suppose the reason for your restricted definition is
this latent theorem.

EpsiLon: That is right. I can prove that.

GAMMA: Another query. Some chains are circuits, some circuits
bound. This seems to me to be in order. But I think that the boundary

of a decent ..echaL‘ hv' Id be closed. For instance I could not possibly
AAAAA -. PR D a riilha wxrasl flen bnan aatociae atmd T oAneld L
accept as a porynear a cubc witn tne top missing; ana 1 couid not

possibly accept as a polygon a square with an edge missing. Can you
prove, that the boundary of any k-chain is closcd?

EpsitoN: Can I prove that the boundary of the boundary of any
k-chain is zero?

GamMaA: That is it.

EpsiLoN: No, I cannot. This is ind
There is no need to prove it.

TeACHER: Go on, go on! I assume now you can translate our
theorem into your perfectly known terms.

Eps1LoN: Yes. In brief, the translated theorem is: ‘All polyhedra, all
of whose circuits bound, are Eulerian’. The specific term ‘polyhedron’ is
undefined; I have already defined ‘circuit’ and ‘bound’ in perfectly
known terms.

GaMMA: You have forgotten about the simply-connectedness of the

faces. You have translated only the simply-connectedness of the poly-

hedron.

even the o-circuits. I have translated auuply-u nected
¢ . .
polyhedron’ into ‘all 1-circuits and 2-circuits bound’; and ‘simply-
connectedness of the faces’ into ‘all o-circuits bound’.
GamMma: I do not follow you. What is a o-circuit?
EpsiLoN: A o-chain is any sum of vertices. A o-circuit any sum of

Vertices Whose boundary is zer0.

-dlmensmnal polytopes!
Epsiton: Of course there are. Or, rather, there is one: the empty

GAaMMA: You are mad!
ArpHA: He may not be mad. He is introducing a convention. I do
not mind what conceptual tools he adopts. Let us see his results.
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EpsiLoN: I do not use conventions, and my concepts are not ‘tools’.
The empty set is the minus 1-dimensional polytope. Its existence for
me is certainly more obvious than the existence of, say, your dog.

Teacuer: No Platonic propaganda! Show how your ‘bounding
o-circuits’ translate ‘simply-connected faces’.

EpsiLon: If you once realise that the boundary of any vertex is the
empty set, the rest is nothing. According to my earlier defmition, the
boundary of one vertex is the empty set, but the boundary of two

vertices is zero, h ause F l_'hg mnr] 2 a]gebra T]’\P hn r‘ ry of thrce
TFawbeAnd 10 Armnar Ln Nevs sy ond no\ﬁl Qs N CA Avzan “chLA-A Af yAwdi ~ng
VCLLILOD DD 4541 1 W1l © lltll,y oL,y dlliul DU Vil., U CVUOIi1 11UlIIUCLD UL VOLLILOD

are circuits, odd numbers of vertices are not.

GaMMA: So the point of your requirement that o-circuits should
bound amounts to the requirement that any two vertices must bound
a I-chain, or in ordinary language to the requirement that any two
vertices must be connected by some system of edgcs This of course
rules out ring-s haped faces. This is indeed the requiremem “w'hu,u we
used to call the ‘simply-connectedness of faces taken separately’.

EpsiLoN: You can scarcely deny that my language, which is the
natural language reflecting the essence of polyhedra, shows for the first
time the deeply rooted essential identity of formerly disconnected,
isolated, ad hoc criteria!

GAMMA [aside]: What I can scarcely deny is that I am puzzled! That
the way to this ‘natural simplicity’ should be littered with such
complications really is rather strange.

ArpHA: Let me check that I understand. Do you say that all vertices

have the same boundary° the empty set?
Epsiton: That is ig ioht.

kA JAANT AN asilev ad .. e

ArrHA: And for you ‘al th
assume; just as ‘all faces have edges’ or ‘all cdges have vertices’.

Epsiton: That is right.

ArpHA: But these axioms cannot possibly have an equal standing!
The first is a convention, the last two are necessarily true!

TeacHER: The theorem has been translated. I want to see the proof.
reformulation of the theorem

il
bounding circuits coincide, are

1 v ~ter on T
i J:JL)’ 2C1L l) dll dAlU.l].l, ) §

\<4

nv-d- TWar-Y Nnxra
VOLLILOD 11d VO
b

ir. Allow me a slich
if, ALIOW IIiC a S1igil
1
whic

ich circuits an

[ l"

Eulerian’.
TEACHER: Prove it.
EpsiLoN: Anon, Sir. I restate it.1

1 *Could you restate the problem ? Could you restate it differently ?’ (Pdlya [1945], inside
cover).

]
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BetA: But why? You have already translated all your terms which
were a bit obscure into terms which are perfectly known!

EpsiLoN: That is true. But the translation I am about to produce is
a very different one. I shall translate the set of my primitive terms into
another set of primitive terms, which are still more basic.

BeTA: So some of your perfectly known terms are better known
than others!

TEACHER: Beta, do not constantly heckle Epsilon! Fix your attention
on what he is doing and not on how he interprets what he is doing. Go

1, LPDIIUII

Epsiton: If we look more closely at my last formulation of
the theorem we shall see that it is a theorem about the number of
dimensions of certain vector spaces determined by the incidence

Bera: What?

Foaran: Tank ar aiir comeat of a chain. sav a 1-chain. It is this

LEMILUN, LLOUUAN dl LVUUlL LUIILCPL Ul 4 CLliildiil, >d d 1=Clldlil. 10 1> L1l
%0, + %505+ . . . + %0,

where 0,, ..., 05 are the E edges, and x;, x,, . .., x are either o or 1.

It is easy to see that the 1-chains form an E—dnnensmnal vector-space
over the field of residue-classes modulo 2. In general the k-chains form
N,~dimensional vector-spaces over the field of residue-classes modulo 2
‘(where N, stands for the number of k-polytopes). The circuits form
subspaces of the chain spaces and the bounding circuits again subspaces
of the circuit spaces.

So my theorem in fact is that * If the circuit-spaces and bounding circuit

snaces coincide. the number nf dimensions nf the o-chain space minus the

FLrHETy wIFL TRRIIFUST SHrrlirvirw sV e ~irsere e aAasaians [ 2444

° Af‘lﬂ ll/I 1 sbace oit fl- 11 ‘mlnno A[IJ A[

of dimensions of the 1-chain space plus the number of dimensions of
the 2-chain space equals 2’. This is the essence of Euler’s theorem.

TeacHeR: I like this reformulation which really showed the nature
of your simple tools — just as you promised. You will now no doubt
prove Euler’s theorem by the simple methods of vector algebra. Let
us see your proof.

2. Another Proof of the Conjecture
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the circuit spaces and bounding circuit spaces have the same dlmension,
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then the number of dimensions of the 1-chain space plus the number of

dimensions of the 2-chain space emmk 2.

n 4111 _.1...--

TeACHER: The first part is a tr1v1ally true theorem of vector algebra.
Prove the second part.

EpsiLoN: Nothing is easier than that. I need only fall back on the
definitions of the concepts involved.! First let us write out our incidence
matrices. For instance let us take the incidence matrices of a tetrahedron
ABCD, with edges AD, BD, CD, BC, AC, AB and faces BCD, ACD,

51

ABD. ABC. The matrices are mk _— ¢

LILIL/y £AAINue LU 11iALLILULD ’,'L] - 1 0

does not, belong to P{. So our matrices are:

hl.g as 1°p_ 1 Q08s, Or
7° A B C D

theemptyset 1 1 1 1

m AD BD CD BC AC AB
I o o

(WEQN--IN
O = = O
O = O ™
O O H

0 I (o)
(o) 0 I
I I I

7 BCD ACD ABD ABC

A
2110

J
o

CD
BC
AC
AB

O O = KM ™ O
O ™ O mH O
H O O O M ™
= = ~ O O

7 ABCD
BCD I
ACD

I
ADTY =
ADLJ I
T
&

ARC
A

Ppy o

Now with the help of these matrices, the circuit spaces and the

bounded circuit spaces can be easily characterised. We have already
seen thaf the Iv-rha ns are rpa"v the vecto

v Viiw v waiisa AA viiw

N
z xiP,{c.
i=1

Now we defined the boundary of a P -polytope as

Nig—y & i
2 77sz?: 1'
=1

1 6. cilactloscen srmamealle, eha ,l..l' 1etnans toe salana AL tha tllian Aalinnd? Macanl (£~
4 U SUuduLuLe 1l idlly i QC1inivions in P dlLU Ul LIC LD UClLlIIVU \r dadldl llU)yJ’
Go back to definitions’ (Plya [1945], inside cover and p. 84).
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(This - like all the formulae which follow - is only a restatement of our
old definition in symbolic notation.)

The boundary of a k-chain T x;P¥ is
> S‘ xmk.Pk-1,

ALY
‘l«

Now a k-chain Z x;Pf is a k—c1rcu1t if and only if
(1) Z n¥x; = o for each i.

A k-chain X x;PF isa bounding k-circuit if and only if it is the boundary
of some (k + 1)-chain 2 y,,PXt1,i.e. if and only if there exist coefficients
Ym(m = 1, ..., Ni,,) such that

(2) x; = 2yt

177 °

Now it is obvious that the circuit space and the bounding circuit
space are identical if and only if the number of their dimensions are
identical, i.e. if and only if the rank of the number of independent
solutions of the N,_, homogeneous linear equations (1) equals the num-
ber of independent solutions of the system of inhomogeneous linear
equations (2). Now the first number is, according to the well known
theorems of linear algebra, N, —p, where p, is the rank of ||7%]||; the
second number is Py, ;.

So I have only to prove that if N, —p,, = pk h nl-— E+F 2.

T AmMBTIA « ﬂr ‘1€ NJ than N T a? T re

AsLXIVADAIILA e /L iL J.Vk - ’-IkT’lk_*_l bll\zll LVOE 2 — 4 . LVk a A

-a

Cli‘I‘Iléi’lSiO‘IlS OI C(,I'taln vector bPaCCb, Pk UIC ranks 0 cert lIl matrlccs
This is no longer a theorem about polyhedra but about a certain set of
multidimensional vector spaces.

EpsiLoN: I see you have just woken up. While you were asleep, 1
analysed our concepts of polyhedra and showed that they are really
vector algebraic concepts. I translated the circle of ideas of the Euler-
phenomenon into vector algebra, thus displaying their essence. Now I
am certainly proving a theorem in vector algebra, which is a clear and
distinct theory with perfectly known terms, neat and indubitable

axioms, and with neat, indubitable proofs. For instance, look at the
new trivial proof of our old much-discussed theorem: If N, = p, +p;.3,
then No—N;+N; = po TP1=P1=P2tPatPs = PotPs =1 +1 = 2.
Who would dare to doubt the certainty of this theorem now? Thus I
proved Euler’s controversial theorem with indubitable certainty.

ArpHA: But look here Epsilon, if we had accepted a rival convention

1 This proof is due to Poincaré (see his [1899]).
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e e

Fig. 29.
that the vertices have no boundary, the matrix #° for instance in the
case of the tetrahedron would have been

mo O
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the rank p, would have been 0 and consequently V—E+F = p, + p; =1.
Do you not think your ‘proof” relies too heavily on a convention?
Did you not choose your convention only to save the theorem?

EpsiLoN: My axiom concerning p, was not a ‘convention’. py = I
has in my language the very real meaning that each couple of vertices
bounds, that is the network of edges is connected (ringshaped faces
are thereby excluded). The expression ‘convention’ is utterly mislead-
ing. For polyhedra with simply connected faces, p, = 1 is true, p, = 0
is false.

Arrua: Hmm. You seem to say that both p, = 1 and p, = 0
Al s knnicn catre cbttictiiere 1 Uertatctarae Tha @ 2o elae
ClldLIdULCLIDT DOUILIIC dLIULLUL iIi VeCtor DPdDCD 41 11C CULIICLICLICC 1D tildl

Po = I has a real model in polyhedra with simply-connected faces,
while the other has not.

3. Some Doubts about the Finality of the Proof. Translation Procedure and
the Essentialist versus the Nominalist Approach to Definitions

TeACHER: Anyway, we have got the new proof. Is it final, though?
ArpHA: It is not. Take this polyhedron (fig. 29). It has two ringshaped

faces, in the front and in the back, it can be pumped into a torus. And
S, 24 edoes and 10 f'nr'pc Tl‘\ us V—E+F = 16-24+10

S e aBw S

it has 16 vertice

¢

an instance of the Descartes—Euler

[, )
o a4
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phenomenon. This is an instance of the Lhuilier phenomenon; that is:
for a polyhedron with k tunnels and m ringshaped faces V—E+F = 2—2k
+m. For any polyhedron like this one with twice as many ringshaped
faces as tunnels, V—E + F = 2, but that does not mean that it is Euler-
ian. And this Lhuilier-phenomenon explains at once why we could not
easily get a necessary and sufficient condition — or mastertheorem - for
the Descartes—Euler conjecture, because these Lhuilier instances
intruded among the Eulerian ones.?

TeacHER: But Epsilon never promised finality, only more depth
than we had achieved earlier. He has now fulfilled his promise to

produce a proof which explains both the Eulerian character of ordinary
polyhedra and the Eulerian character of star-polyhedra at one blow.
LamBpA: This is true. He translated the requirement that the faces
be simply-connected — that is that in the triangulating process each new
dlagonal should create a new face — in such a way that the idea of tri-

an gul tion dlsappeared from it completely. In this new translation a
Lo e otemninder mmmsmamead 10 L .. L JURS: B SR a4l
Iacc lb blmPly-COﬂnCC[ a 11 4all VCOILCX~ClICully D 14 11 1L — 411Q LI

ou

requirement holds for Eulerian star-polyhedra! And while we have
difficulties in applying Jordan’s intuitive (i.e. non-star-intuitive)
concept of simply-connectedness of the polyhedron to star-polyhedra,
in the Poincaré translation these difficulties disappear. Star-polyhedra,
just like ordinary polyhedra, are sets of vertices, edges and faces plus
an incidence-matrix; we are not concerned with the problem of a
polyhedron’s realization in a space which happens to be our material,
three-dimensional, roughly Euclidean one. The small stellated dodeca-
hedron for instance is not Eulerian: and it is not too difficult to trace
1-circuits on it which do not bound.

Beta: I find this 1nfprpcf1ng also from another

a—risadin ALLANS VAAAS AlAVwaA wUwaia

a
proof is at once more rigorous and more embracing. Is there a necessary
connection between these two?

EpsiLon: I do not know. But while our Teacher claims only more
depth for my proof, I am claiming absolute certainty.
Karpa: Your theorem is as hable to be refuted by some imaginative

spect.
r

.lg uappa, as
let me raise a second question about your

ALPHA: Befor e you d
the finality and certainty that you claim for it.

proof, or rather abou

he relation was rediscovered about a dozen times between

t

1 See Lhuilier [1812-124]. T
1812 and 1890.

2 See above, pp. 63 ff. 3 See pp. 124-6.



DOUBTS ABOUT FINALITY OF PROOF

Is the polyhedron in fact a model of your vector-algebraic structure?
Are you sure that your translation of ‘polyhedron’ into vector theory
was a true translation?

EpsiLon: I have already said that it is true. If something startles you
that is no reason for doubting it. ‘I am following the great school of
mathematicians who, in virtue of a series of startling definitions, have
saved mathematics from the sceptics, and provided a rigid demonstra-
tion of its propositions.™
TeacHER: I indeed think that

-

"
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i1 t iia
should call it translatton-procedure Bu
doubts?
GAMMA: Just one more. Say I accept that your deduction is infallible.
Are you sure that you cannot deduce from your premisses the negation
of your theorem with the same infallibility ?

: :
Ersion: All my premisses are true. How can they possibly be in-

A crarE D

COINSISLCILL €

TeAcHER: [ appreciate your doubts. But I always prefer one counter-
example to any number of doubts.

GaMMA: I wonder, does my cylinder not refute this new theorem?

Epsion: Of course it does not. In the cylinder the empty set does
not bound, and consequently p, # I.

GamMa: Isee. You are right. This argument, put into your perfectly
familiar, clear and distinct terms has convinced me at once.

Epsiton: I understand your sarcasm! Once before you queried my
definitions. I then said they are, in fact, indubitably true axioms stating

the essence of the concepts in question, with the help of infallibly clear
and distinct intuition. [ hovp thouoht about this since and I think I have

ALl uAJUA .L ALWOEAVANS AL AAER Vv wii A;v uv wiiad JAiliw N RAANs A VAAAAAAR A AiA Y

to give up my Aristotelian view of definitions. When I define a vague
term, [ in fact replace it by a new one, and the old term serves only as an
abbreviation of my new one.

ArpHA: Let me get this clear. What do you mean by “definition’: a

replacement which is an operation from the left to the right or an
abbreviation which is an operation from the rlohr to the left?

n operation from the let
1 This is quoted from Ramsey [1931], p. §6. Only one word is changed, he says ‘ mathe-
matical logicians’ instead of ‘mathematicians’, but this is only because he did not
understand that the procedure he described was not a novel characteristic of mathe-
matical logic, but a feature of ‘rigorous’ mathematics from Cauchy on, and that the
celebrated definitions of limit, continuity, and so on, proposed by Cauchy and improved

by Weierstrass all fall in this line. I note that Russell also quotes this sentence from
Ramsey (Russell [1959], p. 125).
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PROOFS AND REFUTATIONS

EpsiLon: I mean the abbreviation. I forget about the old meaning.
I create freely the meaning of my terms while scrapping old vague
terms. I also create my problems freely, while scrapping old obscure
ones.

ArpHA: You cannot help being an extremist. But go on.

EpsiLoN: By this change in my programme I certainly gain one thing:
one of your doubts is herewith eliminated. If definitions are abbrevia-
tions, then they cannot be false.

ArpHA: But you lose something which is much more important. You
114179 tn ractrist ninr pnn"rlnqn nraorammea tn thanrisae wit na nnflu
avie LU LLoluLive Uul Lutullall plugialiilile (U WILULIVS Wil pliitiu

known concepts, and when you want to pull theories with vague
concepts into the scope of this programme, you cannot do this by your
translational techmque as you said, you do not translate, rather you
create new meaning. But even if you tried to translate the old meaning,
some essential aspects of the original vague concept may get lost in this

tranclatinn 1 a NnAws I" aar roncent mav nnt serve Fnr f“\n cn]l nn n‘r
ViAlioiailliVUll. A LA LAV VY wivai \/Ull\r\rtlb -llLa] AAVUULV JOViA VO AUVUL Viiv JVviw A\Jll. JA4
1 - £ w=-L: 1L P R A _A--- A. P TL conaa

m for which the old concept was meant to serve. 1If you
regard your translation as infallible, or, if you consciously scrap the old
meaning, both these extremes will yield the same result: you may push
out the original problem into the limbo of the history of thought -
which in fact you do not want to do.2 So if you calm down, you have
to admit that definition must have a touch of modified essentialism: it
must preserve some relevant aspects of the old meaning, it must
transfer relevant elements of meaning from left to right.?

1 A classical example of a translation which did not satisfy the (usually implicit) adequacy
criterion was the nineteenth-century definition of the area of a surface, which was
knocked out by the Schwartz ‘ counterexample’.

The trouble is that adequacy criteria may change with the emergence of new problems
which may occasion a change in the conceptual tool-cabinet. A paradigm case for such
a change is the story of the concept of the integral. It is a shame of present mathematical
education that students can quote exactly the different definitions of the Cauchy,

D Am’lﬂ“\ T pl’\pcnnn ot |nfnnrn]c ‘I7If‘]‘\f\l1f "ﬂ{\‘l"ﬂl’f ‘llh‘f‘h nrn]‘\]nmc fl’\ﬂ" wmrare
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invented to solve, or in the course of the solution of which problems they were dis-
covered. As adequacy criteria change, definitions usually devclop in such a way that the
definition complying with all of the criteria becomes dominant. This could not happen
to the definition of the integral, because of the inconsistency of the criteria - this is why
the concept had to be split up. Proof-generated definitions play a decisive role even in
building up transiatory definitions in the Euclidean programme.

* This process is very characteristic of twentieth-century formalism.

3 This trivial point is curiously enough missed by nominalists like Pascal and Popper.
Pascal writes (loc. cit.): ‘.. .geometers and all those who operate methodically, impose
names on things only to abridge discourse’. And Popper writes ([1945], volume 2,
p- 14): ‘In modern science only nominalist definitions occur, that is to say, shorthand
symbols or labels are introduced to cut a long story short’. It is intriguing how nominal-
ists and essentialists can each be blind to the rational kernel of the other’s argument.
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DOUBTS ABOUT FINALITY OF PROOF

Beta: But even if Epsilon will accept this modified essentialism in
definitions, the resignation from the essentialist approach will still be
a huge withdrawal from his original Euclidean programme. Epsilon
now says that there are Euclidean theories with perfectly known terms
and infallible inferences - like arithmetic, geometry, logic, set theory
I suppose, and he now makes the Euclidean programme consist of
translating non-Euclidean theories with vague, obscure terms and
uncertain mferences — like calculus and probability theory — into these
_eOrleSi t‘h 118 On(-‘nan‘ new avenues nF (]f‘vt’lﬂﬁm(’nf

r-|

theories.

EpsitoN: I'shall call such an “already Euclidean’ or established theory
a dominant tneory.

GamMA: I wonder what is the field of applicability of this shrunken
programme? It certamly will not cover phy51cs. You Wlll never

ALK, VY F S ¥4 L ik g i1k ] . p L Vi w“u
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Bera: I have a problem about those translatory definitions. They
seem to appear as mere abbreviations in the dominant theory and
thus there they are true ‘by definition’. But they seem to be falsifiable
if we regard them as referring to the non-Euclidean realm.2

EpsiLoN: That is right.

1 See above, p. 121.

32 The methodological importance of this difference has not yet been properly worked out.
Pascal, the great advocate of abbreviatory definitions and the great opponent of the

Arlstotehan essentialist theory of deﬁmtlon, did not notice that to abandon essentialism
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replacement of a vague term by an arbitrarily chosen precise one, one in fact abandons
the original field of enquiry and turns to another. But Pascal certainly did not want this.
Cauchy and Weierstrass were essentialists when carrying out the arithmetisation of
mathematics; Russell was an essentialist when carrying out the logicisation of mathe-
matics. All these men thought of their definitions of continuity, real numbers, integers
and so on as capturing the essence of the concept involved. When stating the logical
form of statements in ordinary language, i.e. translating ordinary language into artificial

]anonaap Russell fhnnnkr — at least in his ‘honevmoon period’ (l'rn:n] ) Fn\ — that he
1guage eyr 1 pe (l1959], p. 73) —that h

was gulded by an mfalhble intuition. Popper, in his justified onslaught agamst essential-
ist definitions does not pay enough attention to the important problem of translatory
definitions and I guess that this may account for what seems to me his unsatisfactory
treatment of logical form in his [1947], p. 273. According to him (and here he follows
Tarski) the definition of valid inference hinges only on the list of formative signs. But
vaiia'ity of an intuitive inference depends also on the translation of the inference from ordinary
lrs anitlssestloal onsesndessa 1 \ Jasamioamn o Jasiaal 1asaeinsae Aoeeeade nse $lio #amaso
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lation we adopt.
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PROOFS AND REFUTATIONS

BEeTA: It would be interesting to see how one falsifies such definitions.

THETA: I should like now to switch the discussion back to the
question of the infallibility of Epsilon’s deduction. Epsilon, do you
still claim certainty for your theorem?

EpsiLoN: Certainly.

THETA: So you cannot imagine a counterexample to it?

EpsiLon: As I told Kappa, my proof is infallible. There are no
counterexamples to it.

THETA: Do you mean you would rule out counterexamples as
monsters?

EpsiLoN: Not even a monster can refute it.

THETA: So you claim that whatever I substitute in the place of your
perfectly known terms, the theorem remains true?

EpsiLoN: You can substitute anything in the place of the perfectly

known terms which are specific to vector algebla

Tuaera: I ¢
i+ o

‘dll’, ‘dud’, ‘2’ and SO O1 ¢

EpsitoN: No. But you can replace anythlng in the place of my
specific perfectly known terms like ‘vertex’, ‘edge’, ‘face’ and so on.
By this I think I clarified what I mean by refutatlon.

THETA: You did. But then you either can be rcfuted or you indeed
did not do what you thought you did.

EpsiLon: I do not understand your obscure hint.

THETA: You will, if you want to. Your characterisation of the idea
of a counterexample seems reasonable. But if that is what a counter-
example is, then the meaning of your ‘perfectly well known terms’
is immaterial. And this, if your claim is justified, is precisely the merit
ﬂ‘F Vn"r ﬁrﬂnF A nrnnF I‘F Irrf‘ﬁ]fﬁ]’\]f‘ AOPQ not hlngﬁ— hv thc VPI"\JI
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concept of an irrefutable proof —on the meaning of the specific
‘perfectly well known terms’. So the burden of your proof - if you
are right — is fully borne by the meaning of the non-specific, under-
lying terms — in this case arithmetic, set-theory, logic — but not in the
least by the meaning of your specific terms.

I shall call such proofs formal proofs, as they do not depend at all on
the meaning of th The
depends n the non-specific terms. The perfectly known character of
these terms —I shall call them formative terms-is very important
indeed. By pinning down their meaning we state what can be accepted
as counterexamples and what cannot. Thus we regulate the spate of

counterexamples. e€re arc¢ no counterexamples to the theorem, we
t ples. If th t les to the th
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DOUBTS ABOUT FINALITY OF PROOF

shall call the theorem a tautology: in our case an arithmetico-set
theoretical tautology.

ArpHA: We seem to have quite a gamut of tautologies according to
our choice of quasilogical constants. But I see here a host of problems.
First: how do we know of a tautology that it is a tautology?

Karea: You will never know beyond any possibility of doubt. But if
you have serious doubts about a dominant theory then scrap it, and
replace it by another dominant theory.!

Editors’ note. This section of the dialo
should have tried to persuade Lakatos to continue the dialogue along the
following lines:

THETA: But from what has Just been said it seems to follow that if we can
cast our proofs in systems in which the dominant theory is logic, then so long
as we have no serious doubts about our logic, we shall be able to ensure the
infallibility of our deductions and throw all the doubt not on the actual proof,
but on the lemmas, on the antecedents of the theorem.

AL

-t

1 Such changes in the dominant theory imply the reorganisation of all our knowledge.
In antiquity the paradoxicality and, indeed, seeming inconsistency of arithmetic induced
the Greeks to abandon arithmetic as the dominant theory and replace it by geometry.
Their theory of proportions served the purpose of translating arithmetic into geometry.
They were convinced that all astronomy, and all physics could be translated into
geometry.

Descartes’s great innovation was to replace geometry by algebra; maybe because he
thought that in the dominant theory analysis itself should lead to truth.

The modern mathematical ‘revolution of rigour’ consisted in fact of the re-establish-
ment of arithmetic as the dominant theory via the huge programme of the arithmetisa-
tion of mathematics which went on from Cauchy to Weierstrass. The theory of real
numbers - felt to be artificial by quite a few working mathematicians — was the crucial
step; analogous to the similarly ‘artificial’ theory of proportions of the Greeks.

Russell in turn made logic the dominant theory of all mathematics. The interpretation
of the history of metamathematics as a search for a dominant theory may throw new
light on the history of this subject, and one may be able to show that the Gédelian
‘discovery’ that the natural dominant theory for metamathematics is arithmetic, led
straight to the present stage of inquiry, and opened new vistas both in arithmetic and in
metamathematics.

Another example of a remarkable Euclidean translation was the modern embedding
of probability theory into measure theory.

Dominant theories and the change of dominant theories also determine much of the
dcveiopmen‘t of scicnce in general. The elaboration and then the breakdown of rational

mrarnhaniecs Ao tha A~ nt thanrv o€ mhucire nlavad a ntral rala odeare hicenry ~AF
IMECaanics as Ui¢ Qominant tieory O1 Palysics piayCa a ceiitra: ro:¢ inn moaGlrn 1istory o1

science. The struggle of biology against being ‘translated’ into chemistry, the struggle
of psychology against being translated into physiology, are intriguing features of the
history of recent science. The translation procedures are vast reservoirs of problems,
historical trends which represent huge patterns of thought at least as important as the
Hegelian triad. Such translations usually speed up the development of both the dominant
and the absorbed theory, but later the translation will become an impediment to further
development as the weak spots of the translation come into the foreground.
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PROOFS AND REFUTATIONS

EpsiLoN: I am glad that at least Theta finally caught on. My proof can in fact
be cast in a system of which the dominant theory is logic. The conditional
statement with all the lemmas incorporated as antecedents can be proved in this
system, and we know that (relative to the given stock of formative ‘logical’
terms) there are no counterexamples to any statement Wthh can be proved in

this wav. No matter I'\nw th ACSCI nt1 1ve terms are re- preted rhm cOonN-
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ditional statement will remain true.

Lamepa: How do ‘we know’?

EpsiLoN: We don’t know for certain - it is an informal theorem about logic
Dut, INOIre€éover, we KﬁOW Ula[, PrCSCi‘ltca WIm aﬁ'y' 3 égcu PrOOI lIl SULII a
system, we can check completely mechanically using a procedure which is
guaranteed to produce an answer in a finite number of steps, whether or not it
is indeed a proof. In such systems, then, your ‘proof-analysis’ reduces to a
triviality.

ArpHA: But you would agree, Epsilon, that ‘proof-analysis’ retains its im-
portance in informal mathematics; and that formal proofs are always trans-
lations of informal proofs and that the problems that have been raised about
translation are very real.

LamBpA: But anyway, Epsilon, how do we know that proof checking is
always accurate?

EpsLoN: Really Lamb

B/
nbda, y
tiresome ! How 1 nany times W
certain? But your de51rc for certamty is maklng you raise very boring problems

—and is blmdmg you to the interesting ones.
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APPENDIX I
ANOTHER

C
OF PROOF

pattern of mathematlcal discovery. However, it seems that it was
discovered only in the 1840s and even today seems paradoxical to
many people; and certainly it is nowhere properly acknowledged.
In this appendix I shall try to sketch the story of a proof-analysis in
mathematlcal analysis and to trace the sources of resistance to the
method o an ion
illustrated by my case-study of hc Cauch proo
Euler conjecture

There is a simple pattern of mathematical discovery - or of the
growth of informal mathematical theories. It consists of the following

stages:!
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(1) Primitive conjecture.

(2.\ Proof (a muah thought-experiment or argument, decomposing
prtmztwe conjecture into subconjectures or lemmas).

(3) ‘Global’ counterexamples (counterexamples to the primitive con-
Jecture) emerge.

(4) Proof re-examined: the ‘guilty lemma’ to which the global counter-
example is a ‘local’ counterexample is spotted. This guilty lemma may have
nrpvmus‘lv remained ‘ hidden’ or may have been misidentified. Now it is made
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the improved conjecture — supersedes the primitive conjecture with the new
proof-generated concept as its paramount new feature.?

1 As I have stressed the actual historical pattern may deviate slightly from this heuristic
pattern. Also the fourth stage may sometimes precede the third (even in the heuristic
order) - an ingenious proof analysis may suggest the counterexample.

8% Editors’ note: In other words this method consists (in part) of producing a series of state-
ments Py,..., P, such that P, &... & P, is supposed to be true of some domain of
interesting objects and seems to imply the primitivc conjccture C. This may turn out
st b ban thha mnaa thae wxrmeds cxea Gead ~ncas fev wrhi il ia £alaa £C 1 L]l an
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examples’) but in which P, to P, hold. This leads to the articulation of a new lemma
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PROOFS AND REFUTATIONS

These four stages constitute the essential kernel of proof analysis. But
there are some further standard stages which frequently occur:

(s) Proofs of other theorems are examined to see if the newly found
lemma or the new proof-generated concept occurs in them: this concept may
be found lying at cross-roads of different proofs, and thus emerge as of basic
importance.

(6) The hitherto accepted consequences of the original and now refuted

conjecture are checked.
les are turned into new pxamnlpc-mw ﬁelds

( ) C ounterexamp
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ould now like to consider another case-study. Here the prtmxtwe

ecture is that the limit of any convergen
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of this conjecture, whose truth had been taken for granted and assumed
therefore not to be in need of any proof throughout the eighteenth
century. It was regarded as the special case of the ‘axiom’ according to
which ‘what is true up to the limit is true at the limit’.! We find the

conjecture and its proof in Cauchy’s celebrated [1821] (p. 131).
\3“78“ t at fkic Cornectnre, a lﬁitkerto beeh ren-qrr]prl ac fr;xn'r\”v
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the conjecture?

As we shall see, the situation was not quite so simple. With the
benefit of hindsight we can now see that counterexamples to the Cauchy
conjecture had been provided by Fourier’s work. Fourier’s Mémoire
sur la Propagation de la Chaleur? actually contains an example of what,
according to present notions, is a convergent series of continuous
functions which tends to a Cauchy discontinuous function, namely:

cos x—% cos 3x+3% cos sx—... (1)

P,, ., which is also refuted by the counterexample (‘local counterexample’). The original
proof is thus replaced by a new one which can be summed up by the conditional state-

ment P, &...&P, & P,,, > C.
The (logical) truth of this conditional statement is no longer impugned by the counter-

uaamplc \auu.,» the antecedent is now false in this case and hence the conditional state-
ment true).

1 Whewell [1858], 1. p. 152. Whewell is in 1858 at least ten years out of date. The principle
stems from Leibniz’s principle of continuity ([1687], p. 744). Boyer in his [1939], p. 256,
quotes a characteristic restatement of the principle from Lhuilier [1786], p. 167.

2 This Mémoire was awarded the grand prix de mathématiques for 1812, having been
refereed by Laplace chcndre and Lagrange It was pubiishcd oniy after Fourier’s

ClaSSlcal 1 neone ae la L,nateur WﬂlCIl appcarcu ﬂl 1012, a ycar an:cr \.,aucny N [CX[DOOK,
but the content of the Mémoire was then already well known.
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CAUCHY ON THE ‘PRINCIPLE OF CONTINUITY’

quite clear (and

a) He states that verywher convergent.

(b) He states that its llmlt function is composed of separate straight
lines, each of which is parallel to the x-axis, and equal to the circum-
ference. These parallels are situated alternately above and below the
axis, with a distance of m/4 between any two, and are joined by
perpendiculars which themselves make part of the line.!

Fourier’s words about the perpendiculars in the graph re telling.
He considered these limit functions to be (in some sense) continuous.
In fact, Fourier certainly regarded anything as a continuous function
if its graph could be drawn with a pencil which is not lifted from the
paper. Thus Fourier would not have regarded himself as having
constructed counterexamples to Cauchy’s continuity axiom.? It was
only in the light of Cauchy’s subsequent characterisation of continuity
that the limit functions in some of Fourier’s series came to be regarded
as discontinuous, and thus that the series themselves came to be seen as
counterexamples to Cauchy’s conjecture. Given this new, and counter-
intuitive defmition of continuity, Fourier’s innocent continuous draw-
1hos ceemer] to become wwked counterexambn l es to the n](] lgng

arignd 2V VacalS e LISV LLLG LAY s R W LA <222r 2

established continuity principle.
Cauchy’s definition certainly translated the homely concept of con-
tinuity into arithmetical language in such a way that ‘ordinary

! Fourier, op. cit., sections 177 and 178.

2 After writing this I discovered that the term ‘discontinuous’ appears in roughly the
Cauchy sense in some hitherto unpublished manuscripts of Poisson (1807) and of
Fourier (1809), which were being studied by Dr. J. Ravetz, who kindly permitted me to
look at his photostats. This certainly complicates my case, though it does not refute it.
Fourier obviously had two different notions of continuity in mind at different times,
and indeed these two different notions arise quite naturally from two different domains.
If we interpret a function like:

sinx—4sin2x+4sin3x—...

as the initial position of a string, it will certainly be considered as continuous, and to
cut out the perpendicular lines - as was to be required by Cauchy’s definition - will
seem unnatural. But if we interpret this function as, say, representing temperature along

A mmrmeem alio Lot 1Y Lo _L__:__-_'I_ ................ s o) NPERSRRIPS. P
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counter to the ‘string-interpretation’ of a function, may have been stimulated by
Fourier’s investigation of heat phenomena. Secondly, Fourier’s insistence on the
perpendiculars in the graphs of these (according to the ‘heat-interpretation’) discon-
tinuous functions may have stemmed from an effort not to come into conflict with the
Leibniz principle. *Editors’ note: For further information on Fourier’s mathematics,
see I. Grattan-Guinness (in coliaboration with J. R. Ravetz), joseph Fourier, 1768-1830
(M.LT. Press, 1972).
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PROOFS AND REFUTATIONS

commonsense’ could only be shocked.! What sort of continuity is it
that implies that if we rotate the graph of a continuous function a
little, it turns into a discontinuous one ?2

So if we replace the intuitive concept of continuity by the Cauchy
COi‘lCc‘:‘PL then \dud Oi‘u'y' then!) ) does the axiom fCOiiLiﬁuiL'y' seem to be

.y

contradicted by Fourier’s results. This looks like a strong, perhaps
decisive, argument against Cauchy’s new definitions (not only of
continuity, but also other concepts like that of limit). No wonder then

that Cauchy wanted to show that he could indeed prove the continuity

aviom 1h |1lc new internretation nFn r]usrpl\v nrnvnhno- fhp valpnre
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that his definition satisfies this most strmgent adequacy requirement.
He succeeded in providing the proof - and thought he had thereby
dealt a mortal biow to Fourier, that talented but woolly and unrigorous
dilettante, who had unintentionally challenged his definition.

Of course if Cauchy’s proof were correct, then Fourier’s examples,

despite appearances, could not be real counterexamples. One way of
nanxnﬂn that thatry xxrara nr\f- "Ah] ﬁntihkaravnnthnn 111{\11]4 Ln L 70 Y 1 7
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that the series apparently converging to functions which were dls—
continuous in Cauchy’s sense were not convergent at all!

And this was a plausible guess. Fourier himself was doubtful about
the convergence of his series in these critical cases. He noticed that the
convergence was slow: ‘The convergence is not sufficiently rapid to
produce an easy approximation, but it suffices for the truth of the

q U1 OII

With hindsight we can see that Cauchy’s hope that in these critical
cases Fourier’s series do not converge (and thus do not represent the
function) was also justified in a way by the following fact. Where the
limit function is discontinuous, the series tends to 3/ f(x+o\ +f(x—0)],

and not simply to f(x). It tends to f(x) only if f(x) = %[fx+o +fx o)].

But this was not known before 1829, and in fact general opinion was at

1 That is string-commonsense or graph-commonsense.

2% Editors’ note: Whatis violated here is, perhaps, not our intuitive notion of continuity, but
rather our belief that any graph representing a function would still represent some
function when slightly rotated. Fourier’s curve is continuous from an intuitive point of

VICW, anu (ms IHCUICIOII can S(.lu DC accouru;cu IOI' b_y- fLC €, 0 (lCIll'll(lOl'l 0[ conumuty
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dxculars, is parametncally reprcsentable by two continuous functions.

8 Op. cit., section 177. This remark, of course, is a far cry from the discovery that the
convergence is in these places infinitely slow, which was made only after 40 years
experience in calculating Fourier series. And this discovery could not possibly be made
before Dirichlet’s decisive improvement on Fourier’s conjecture showing that only
those functions can be represented by Fourier series whose value at the discontinuities

is #{ f(x+0) +f(x - 0)].
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CAUCHY ON THE ‘PRINCIPLE OF CONTINUITY’

first behind Fourier rather than Cauchy. Fourier’s series seemed to
work and when Abel, in 1826, five years after the publication of
Cauchy’s proof, mentioned in a footnote of his [1826b],! that there are
‘exceptions’ to Cauchy’s theorem, this constituted a rather intriguing
double victory: Fourier series were accepted, but so was Cauchy’s
startling definition of continuity and the theorem he had proved using it.

It was precisely in view of this double victory that it now seemed
that there must be exceptions to the specific version of the principle of
continuity we are considering, even though Cauchy had flawlessly

t.

Cauchy must have reached the same conclusion as Abel for in the
same year he gave, without of course giving up his characterisation of
continuity, a proof of the convergence of the Fourier series.? He must
have been very ill at ease with the situation however. The second
volume of the Cours d’Analyse was never pubhshed And, which is still

wi 1g Nis pupii 1v1uignu, When the pressure for a text
become too great, to publish his notes of his lectures.?

Given that Fourier’s examples were now interpreted as counter-
examples, the puzzle was evident: how could a proved theorem be
false, or ‘suffer exceptions’? We have already dlscussed how people in
the same period were puzzled by the ‘exceptions’ to the Euler theorem

despite the fact that it had been proved.

2. Seidel’s Proof and the Proof-Generated Concept of Uniform Convergence

Everybody felt that this Cauchy-Fourier case was not just a harmless
!I) ’7’7]P I\nr n Fnral l\]emlch oOn rhp W]‘lnlp nrr]'\P new rlonrnnc mar]'\e-

b AAViNA AVAZAASAA \JAA viiw AANJaWw \JA waAw arw VY o Jutuladiaid Py ¥i-13 VL

matics. Dirichlet in his celebrated papers about Fourier series,* while
preoccupied with showing exactly how convergent series of con-
tinuous tunctions represent discontinuous functions, and while ob-
viously very much aware of the Cauchy version of the continuity
principle, did not mention the obvious contradiction at all.

It was left to Seidel at last to solve the riddle by spotting the guilty
1AAnn ]nmmh 1N Pn|1r 17’(- ﬁfnl\rs Rt 0-1-\1'0 thhnnatl l\h]‘l' m TRAm
A11UINILLL IV 111111 111 vaul .ll.y 9 LVUVUL. AUV LillO llatlr’bllbu Vil 111 LUL4. /.

Why did it take so long ? To answer this question we shall have to look
at Seidel’s celebrated dlscovery a little more closely.

1 Abel [1826b], p

2 Cauchy|[r 826] Th roof is based on an incorrigibly false assumption (see e.g. Riemann,
[1868]). 3 Mo 1gno [1840-1]. 4 Dirichlet [1829]. 5 Seidel [1847].
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PROOFS AND REFUTATIONS

Let X f,(x) be a convergent series of continuous functions and, for any

n, define S, (x) = )5 Jm(x) and r,(x) = 5 fu(x). Then the gist of
m=0

m=n+1

Cauchy’s proof is the inference from the premise:

Given any € > o:

(1) there is & such that for any b, if |b] < 8, then |S,(x +b) - S,(x)|
< € (there is such a & because of the continuity of S,(x));

(2) thereisan N, such that |r,(x)| < € for all » > N (there is such
an N because of the convergence of 2 f(x));

(3) there is an N’ such that |r,(x+b)| < efor all n > N’ (there is
such an N’ because of the convergence of Z f,(x +b));

(o]
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P
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(¢}
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t

,fx+b)—f(x)l = ,Sn(x+b)+rn(x+b)_sn(x)-'n(x)|
< [Saloe+b) = Sy(x)] + |raf)] + |rale + )]
< 3¢ forallb < &

Now the global counterexamples provided by series of continuous
functions which converge to Cauchy-discontinuous functions show
that something is wrong with this (roughly stated) argument. But
where is the guiity lemma?

A slightly more careful proof analysis (using the same symbols as

before but making explicit the functional dependencies of some of the
Q\ nerl]fPQ fh(‘ Fﬂ]]nWlno lnFPrPan

(1) |Su(x+b)—S,(x)| < eifb < &€, x, n)
(2") |ra(x)] < €if n > Nie, x)
(3") |ra(x+b)| < €if n > Ne, x+b)
therefore
| S, +b) +1,(x +b) = S,(x) = r,(x)| = |floc+b)=f(x)| < 3€

if n > max, N(e, z) and b < 0(e, x, n).

The hidden lemma is that this maximum, max, N(e, z), should
exist for any fixed €. This is what came to be called the requirement of
uniform convergence.

There were probably three major impediments in the way of making
this discovery.

The first was Cauchy’s loose usage of ‘infinitely small’ quantities.!
The second was that even if some mathematicians had noticed that the
1 This prevented Cauchy from giving a clear critical appraisal of his old proof and even

from formulating his theorem clearly in his [1853] (pp. 454-9).
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SEIDEL’S PROOF: UNIFORM CONVERGENCE

assumption of the existence of a maximum of an infinite set of N is
involved in this proof, they may very well have made it without a
second thought. Existence proofs in maximum problems occur first
in the Weierstrass school. But the third and main obstacle was the
prevalence of Euclidean methodology — this good and evil spirit of
early nineteenth century mathematics.

But before discussing this in general let us see how Abel solves the
problem posed for the Cauchy theorem by the Fourier counter-

examples. I shall show that he solves it (or rather ‘solves’ it) by the
«v:m;b:trg ‘o‘ynnﬁf-:nn_l\n‘-‘ﬂnn, " at /\A 1
Plll L1V CA\-\«PLIUII Udllllls A1ICLIIVU,.

3. Abel’s Exception-Barring Method

Abel states the problem, which I claim to be the basic background
problem of his celebrated paper on the binomial series,? only in a

¢
footnote. He writes: "It seems to me that there are some CXCC?UOHS
RS JUNN IO SO, ISR DS SV LI ISP RIS PR ot RSN S
to Laucny s tneorem , ana imineaiatery gives tne €xXampic or tic Sserics

sin@d—4 sin 29 +4 sin 3¢—...2

Abel adds that ‘as it is known, there are many more examples like
this’. His response to these counterexamples is to start guessing: * What
is the safe domain of Cauchy’s theorem?’

His answer to this question is this: the domain of validity of the
theorems of analysis in general, and that of the theorems about the
continuity of the limit function in particular, is restricted to power
series. All the known exceptions to this basic continuity principle were
trigonometrical series, and so he proposed to withdraw analysis to

P Y
vmf]—nn fhp Squ l«nnnr] es F nower c‘“lv fl‘\nc lpavn\a l’\P]\lh(]
168, Ul

VY AVALALL vvuctuusav o2 3 v vy -~ AV s V asA W NALiAdies

Fourier’s cherished trigonometrlcal series as an uncontrollable jungle —
where exceptions are the norm and successes miracles.

In a letter to Hansteen dated 29 March 1826, Abel characterised
‘miserable Eulerian induction’ as a method which leads to false and
unfounded generalisations and he asks what the reason is for such

procedures having in fact led to'so few calamities. His answer

A LEA VT AL

[y
w

To my mind the reason is that in analysis one is largely concerned with func-
tions that can be represented by power-series. As soon as other functions enter —
and this happens but rarely — then [induction] does not work any more and an

See above, pp. 24-30. % Abel [1826b], p. 316.
Abel fails to mention that precisely this example had already been mentioned in this
context by Fourier.
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PROOFS AND REFUTATIONS

infinite number of incorrect theorems arise from these false conclusions, one
leading to the others. I have investigated several of these and I was lucky enough
to solve the problem. . .1

In Abel’s paper, we find his famous theorem - which, I claim,
stemmed from his grappling with the classical metaphysical principle
of Leibniz - in the following restricted form:

If the series
fa = vog+va+v,at+ ... v+

is convergent for a given value § of &, it will also converge for every value
smaller than 8, and for steadily decreasing values of £, the function f(cc— )

will approach the limit fo indefinitely, provided that ¢ is smaller than or
equal to 4.2

Modern rationalist historians of mathematics who consider the
history of mathematics as the history of a homogeneous growth of
knowledge on the basis of unchanging methodology, assume that
anyone who discovers a global counterexample and proposes a new

conjecture which is not subject to refutation by the counterexample in

Atiectiat  hae atntarmatically diceavere d the corresvondine hidden
\iuCD 1011, I11aS autoinatiCai y Qiscoverca wuic <Corres Puuuuzs 1niaacn
c

lemma and proof-generated concept. In this way such students of
history attribute the discovery of uniform convergence to Abel. So
in the authoritative Encyclopd‘die der Mathematischen Wissenschaften,
Pringsheim says that Abel ‘demonstrated the existence of the property

fnr‘ay ra"Pr" nrnrnrm converoence 3 Harr‘v c]mrpc pﬂnachmm S View

NSEE Y A b 4 LiligUiivaias Ve o

In his [1918] paper he says that ‘the idea ‘of uniform convergence is

1 Letter to Hansteen ([1826a]). The rest of the letter is also interesting and reflects Abel’s
exception-barring method: ‘When one proceeds by a general method, it is not too
difficult; but I have had to be very circumspect, for propositions once accepted without
rigorous proof (i.e. without any proof) are so rooted within me that I at each moment
risk using them without further examination.” Thus Abel checked these general con-

iecturae one after the ather and tried to cuece the domain of their vali r‘:ty

JVLUEHLALO ULt @it Wib Uil aidll Vit LU 5 Ulos LIV WULLLGa: UL uitan Vadilel

This Cartesian self-imposed restriction to the absolutely clear power-series explains
Abel’s particular concern about the rigorous treatment of the Taylor-expansion:
‘Taylor’s theorem, the basis of all the infinitesimal calculus is not better founded. I have
only found one rigorous demonstration and that is M. Cauchy’s in his Résumé des lecons
sur le calcul infinitesimal, where he demonstrated that one will have

P(x+a) = P(x) +ad’(x) +a2@"(x) + ..
as long as the series is convergent; but one employs it without attention in all cases.’
(Letter to Holmboé [1825].)
2 Abel [1826b], I. p. 314. The text is a retranslation from German, (Crelle translated the
original French into German).* Editors’ note: It seems that Abel forgot the modulus sign
around a. 3 Pringsheim [1916], p. 34.

bt
W
-



ABEL’S EXCEPTION-BARRING METHOD

present implicitly in Abel’s proof of his celebrated theorem’.! Bourbaki
is even more explicitly false: according to him, Cauchy

did not at first perceive the distinction between simple convergence and uni-
form convergence, and considered himself able to demonstrate that every
convergent series of continuous functions has as its sum a continuous function.
The error was almost as soon revealed by Abel, who proved at the same time
that every complete [?] series is continuous in the interior of its interval of
convergence by the reasoning which has become classical and which uses

essentially, in this particular, the idea of uniform convergence. It only remained
to disentangle the latter in a general manner, which was done mdependently by
Stokes and Seidel in 1847-8 and by Cauchy hlmself in 1853.2

?
So many sentences, so many mistakes. Abel did not reveal Cauchy’s
mistake in identifying the two sorts of convergences. His proof does

not exploit the concept of uniform convergence any more than does
Cauchy’s. Abel’s and Seidel’s results are not in the relation of ‘special”
and ‘general’ - they are on quite different levels. Abel did not even
notice that it is not the domain of eligible functions which has to be
restricted, but rather the way they converge! In fact for Abel there is only

one sort gf cgn,;grg ce, thp ctmnlp one; :mr] t] secret Qf the qha_m rermmty
of his proof lies in his cautious (and lucky) zera=uqﬁnitions:3 as we now
know, in the case of power series, simple convergence coincides with

uniform convergence !4

1 Hardy [1018], p. 148.

* Bourbaki [1949], p. 65 and [1960], p. 228. 3 Cf. above, pp. 24-30.

¢ There were two mathematicians who noticed that Abel’s proof was not quite flawless.
One was Abel himself, who comes to grips with the problem again — without success -
in his posthumously published paper ‘Sur les Séries’ ([1881], p. 202). The other was
Syiow, the coeditor of the second edition of Abel’s Collected Works. He added a
critical footnote to the uxEOi‘em, in which he pomted out that we have to requxre uniform
convergence in the proof and not simple convergence, as Abel does. But he did not use
the term ‘uniform convergence’ about which he did not seem to know, (the second
edition of Jordan’s Cours d’Analyse had not then appeared) and he referred instead to a
later generalisation of du Bois-Reymond, which only shows that even he did not see
clearly the nature of the flaw. Reiff, in his [1889], rejected Sylow’s criticism with the
maive argument that Abel’s theorem is valid. Reiff says that while Cauchy was
the founder of the theory of convergence, Abel was the founder of the theory of
the continuity of series:

Bneﬂ:’v summanz:ﬂg fhe ac'unvement nr (‘anrl'\‘y ')r\r‘ nf Abnl we can Q’IIY paut‘h‘r

discovered the theory of the convergence and divergence of infinite series in hls Analyse
Algébrique, and Abel discovered the theory of the continuity of series in his Treatise on
the Binomial Series. ([1889], pp. 178-9.)
To say this in 1889 was certainly a piece of pompous ignorance.
But of course the validity of Abel’s theorem is due to the very narrow zero-definition,
and not to the proof. Abel’s paper was later published in Ostwald’s Kiassiker (Nr. 71),
Leipzig, 1895. In the notes Sylow’s remarks are reproduced without any comment.
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PROOFS AND REFUTATIONS

Whilst I am criticizing the historians I should just mention that the
first counterexample to Cauchy’s theorem has generally been attributed
to Abel. That it occurs in Fourier was noticed only by Jourdain. But
he, in the ahistorical spirit already noted, draws from this fact the
LUi‘LSéqut‘:nCt‘: tnat rourier Ior wnoimn JO‘L‘l‘fdam naa a great admiration
came close to discovering the concept of uniform convergence.! The
point that a counterexample may have to fight for recognition, and
when recognised it still may not lead automatically to the hidden

lemma and thereby to the proof-generated concept in question, has

4. Obstacles in the Way of the Discovery of the Method of Proof-Analysis

But now let us return to the main problem. Why did the leading
mathematicians from 1821 to 1847 fail to find the simple flaw in

Cauchy’s proof and improve both the proof-analysis and the theorem?
’T‘]—\a n‘-cf '- h]17 c lanf- fl\n1r r];rl nant Lhr\xxr nl‘tni‘lf thao rnnfl-\r\rl Arhrnn Q
4L 11 LIl OoV 111] al Lilu Ciu 11UV DLV YVY UUUL L1l 111V L1IIVG VL tJLUULD

and refutations. They did not know that after the discovery of a
counterexample they had to analyse their proof carefully and try to
find the guilty lemma. They dealt with global counterexamples with
the help of the heuristically sterile exception-barring method.

In fact, Seidel discovered the proof-generated concept of uniform
convergcnce and the method of proofs and refutations at one blow. He
””” s fully conscious of his method Og‘ aiscovery* 2 which he stated
in his paper with great c ianty:

Starting from the certainty just achieved, that the theorem is not universally
wralid nee A Laimn thons 160 svrmnnl 10t mact A2 amtra awten hiddam acerte bt Ao
lelu, dllu 11CI10C Llidl 1D PLUUL 1 luat LUJL VIl DUILLIU CALLA4 11IUULCILL 4DDU llyblull, VLI
then SUDJCLCS the Pruof to a more detailed “‘r‘}‘y‘sls It is not very difficult to

discover the hidden hypothesis. One can then infer backwards that this condi-
tion expressed by the hypothesis is not satisfied by series which represent dis-
continuous functions, since only thus can the agreement between the otherwise
correct proof sequence, and what has been on the other hand established, be
restored.’

Y/lnt tnaran ad tha ganeratrint hefare Seidal Gn
What chvcuwu ulic€ gencration ocioic oc1uc1 ITo111
1 1\

The main reason (which we already mentioned) was 'ne p evalence of
Euclidean methodology.

1 Jourdain [1912], 2, p. 527.

3 Rationalists doubt that there are methodological discoveries at all. They think that
method is unchanging, eternal. Indeed methodological discoverers are very badly
treated. Before their method is accepted it is treated like a cranky theory; after, it is
treated as a trivial commonplace. 8 Seidel [1847], p. 383.
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METHOD OF PROOF-ANALYSIS

The Cauchy revolution of rigour was motivated by a conscious
attempt to apply Euclidean methodology to the Calculus.! He and his
followers thought that this was how they could introduce light to
dispel the ‘tremendous obscurity of analysis’.2 Cauchy proceeded in
the spirit of Pascal’s rules: he first set out to define the obscure terms of
analysis — like limit, convergence, continuity, etc.—in the perfectly
familiar terms of arithmetic, and then he went on to prove everything

that had not previously been proved or that was not perfectly obvious.

an in the Euclidean framework there is no Pmnr frvlng to prove
yn * f
L

~ 1 ner M
A9/ lllltl \AY I.l.l. akl

mathematical conjectures by jettisoning the false rubblsh In order to
improve the conjectures, he applied the method of looking out for
exceptions and restricting the domain of validity of the original, rashly
stated conjectures to a safe field, i.e. he applied the exception-barring
method.3

ot

o o

L 44
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A writer in the 1865 edition of the Larousse (probably Catalan)
S TS L IR U NP S A S TS 1.
IdUICT bd[bdb[“—dll)’ CI1dIdCLCILIDCU \a‘luclly > SCALCI1 101 u)untt:rcxamplcs.
He wrote
He has introduced into science only negative doctrines. . .it is in fact almost
always the negative aspect of the truth which he came to discover, that he takes

care to make evident: if he had found some gold in whiting, he would have
announced to the world that chalk is not exclusively formed of carbonate of
lime.

A parr of a letter which Abel wrote to Holmboé is further evidence of
this n heartsearchmg mood of the Cauchy school:

I have begun to examine the most important rules which (at present) we
ordinarily sanction in this respect, and to show in which cases they are not
proper. This goes well enough and interests me infinitely.4

What was considered by the rigourists to be hopeless rubbish, such
as conjectures about sums of divergent series, was duly committed to
the flames.’ ‘Divergent series are’, wrote Abel, ‘the work of the devil’.
They onl  cause ‘ calamities and paradox1ca11t1e 8

antly endeavouring to improve their conjectures by

1 ‘As for methods, I have had to give them all the rigour that one demands in geometry,
s0 as never to resort to reasons drawn from the generality of algebra.” (Cauchy [1821],
Introduction.) 2 Abel [18264], p. 263.

3 ‘To bring useful restrictions to too extended assertions.’ (Cauchy, [1821].)

4 ALA1T+0nel o ~e0
LV [10&) ], P 4)0.

5 Contemboraries certainlv reoarde thie ouroe as ‘a little harch? (Cauchv 184711
\Jv‘l‘v“‘rvl“‘lvﬂ ‘vl‘“llll, lvb“i“v“ YALAD r V @I - Adbvvivw ALRAE JAL o \\l-“\tll 1] lLUaLJ,
Introduction.) ¢ Abel [1825], p. 257.



PROOFS AND REFUTATIONS

exception-barring, the idea of improving by proving never occurred to
them. The two activities of guessing and proving are rigidly separated
in the Euclidean tradition. The idea of a proof which deserves its
name and still is not conclusive was alien to the rigourists. Counter-
examples were regarded as grave and disastrous blemishes: they showed
that a conjecture was wrong and that one had to start proving again
from scratch.

This was understandable in view f th fact that in the eighteenth
ntury pieces thahhy nductive

1ing were called proofs.! But

f "man 1’7.“ thhnco ‘r\fr\r\ o, T axr Irar,
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scrapped as ‘not rigorous proofs—that means, no proofs at all’.

Inductive argument was fallible — therefore it was committed to the flames.
Deductive argument took its place — because it was held to be infallible. ‘1
make all uncertainty disappear’, announced Cauchy 3 It is against this
background that the refutation of Cauchy s ‘rigorously’ proved

tl-\nnrnm l'\no N I\n apor

VIILUVANLLL 1lao VWU UV atltl
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case. \JdU(le S ngoroub PIUUI OI the Luler rorinuia was, as we I C

seen, followed likewise by papers stating the well known ‘exceptions’.

There were only two ways out: either to revise the whole infallibilist
philosophy of mathematics underlying the Euclidean method, or
somehow to hush up the problem. Let us first see what would be
involved in revising the infallibilist approach. One would certainly
have to give up the idea that all mathematics can be reduced to in-
dubitably true trivialities, that there are statements about which our
truth-intuition cannot possibly be mistaken. One had to give up the
idea that our deductive, inferential intuition is infallible. Only these

two admissions could open the way to the free development of the
method of hrnnfc and refutations nnr] its apnlication to the critical

VAL aNINTAS AV220 R2INe AW Sppaavesaas vAAN waavaRa

appralsal of deductive argument and to the problem of dealing with
counterexamples.

1 The eighteenth-century ‘formalism’ was sheer inductivism. Cf. p. 133, Cauchy
rejects in the Preface of his [1821] inductions which are only ‘appropriate to sometimes
present the truth’.

3 Abel, [18264], p. 263. For Cauchy and Abel ‘rigorous’ means deductive, as opposed to
inductive. 3 Cauchy [1821], Introduction.

4#* Editors’ note: This passage seems to us mistaken and we have no doubt that Lakatos, who
came to have the highest regard for formal deductive logic, would himself have changed
it. First order logic has arrived at a characterisation of the validity of an inference which
(relative to a characterisation of the ‘logical’ terms of a language) does make valid
inference essentially infallible. Thus, one need make only the first of the two admissions
mentioned by Lakatos. By a sufficiently good ‘proof analysis’ all the doubt can be
thrown onto the axioms (or antecedents of the theorem) leaving none on the proof
itself. The method of proofs and refutations is by no means invalidated (as is suggested
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METHOD OF PROOF-ANALYSIS

As long as a counterexample was a blemish not only to a theorem
but to the mathematician who advocated it, as long as there were only
proofs or non-proofs, but no sound proofs with weak spots, mathe-
matical criticism was barred. It was the infallibilist philosophical back-
ground of Euclidean method that bred the authoritarian traditional
patterns in mathematics, that prevented publication and discussion of
conjectures, that made impossible the rise of mathematical criticism.

therary criticism can exist because we can apprecmte a poem without
it to be nerferr mathematical or scientific C criticism cannot

o
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yields perfect truth A proof is a proof only if it proves; and it either
proves or it does not. The idea - expressed so clearly by Seidel - that
a proof can be respectable without being flawless, was a revolutionary
one in 1847, and, unfortunately, still sounds revolutionary today.
It is no coincidence that the discovery of the method of proofs and

refutations occurred in the 1840s, when the breakdown of Newtonian
SRR M RN Ll e cimal S tlen 20 Al aia ] Qs a1 Ll
OP[le \mro ugll {ne WOIK Of rresiicl in tneé 1oios ana Io Ub} s 4111 L11C

dlscovery of non-Euclidean geometries (by Lobatschewsky in 1829 and
Bolyai in 1832) shattered infallibilist conceit.!

in the text) by refusing to make the second of these admissions: indeed

method that proofs are improved so that all the assumptions that have
order that the proof be valid, are made explicit.

1 In the same decade Hegel’s philosophy offered both a radical break with its infallibilist
predecessorsand a powerful start for a thoroughly novel approach to knowledge. (Hegel
and Popper represent the only fallibilist traditions in modern philosophy, but even they
both made the mistake of reserving a privileged infailible status for mathematics.) A
passage from de Morgan shows the new fallibilist mood of the forties:

‘A disposition sometimes appears to reject all that offers any difficulty, or does not
give all its conclusions without any trouble in examination of apparent contradictions.
If by this it be meant that nothmg should be permanently used, “and implicitly trusted,
which is not true to the full extent of the assertion made, I, for one, should offer no
opposition to so rational a course. But if it be implied that nothing should be produced
to the student, with or without warning, which cannot be understood in all its generality,
I should, with deference, protest against a restriction which would tend, in my opinion,
not only to give false views of what is actually known, but to stop the progress of
discovery. It is not true, out of geometry, that the mathematical sciences are, in all their
parts, those models of finished accuracy which many suppose. The extreme boundaries
of analysis have always been as imperfectly understood as the tract beyond the boundar-
ies was absolutely unknown. But the way to enlarge the settled country has not been
by keeping within it, [this remark is against the exception-barring method] but by
making voyages of discovery, and I am perfectly convinced that the student should be
exercised in this manner; that is, that he should be taught how to examine the boundary,

as well as how to cultivate the interior. I have therefore never scrupled, in the latter part
of the work, to use methods which I will not call doubtful, because thev are presented

VY Wiy VWU WUV didwwvaa LS VWWalata2 2 Waid 2208 LRl VBUSURARS, SRaSt (23N T 2% paestanssss

as unfinished, and because the doubt is that of an expectant learner, not of an unsatisfied

critic. Experience has often shown that the defective conclusion has been rendered
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PROOFS AND REFUTATIONS

Before the discovery of the method of proofs and refutations the
problem posed by the succession of counterexamples to a ‘rigorously
proved’ theorem could be ‘solved’ only by the exception-barring
method. The proof proves the theorem, but it leaves the question open of
what is the theorem’s domain of validity. We can determine this domain by
stating and carefully excluding the *exceptions’ (this euphemism is character-
istic of the period). These exceptions are then written into the formulation of
the theorem.

The dominance of the exception-barring method shows how the
Euclidean method can, in certain crucial problem situations, have

deleterious effects on the development of mathematics. Most of these
problem situations occur in growing mathematical theories, where
growing concepts are the vehicles of progress, where the most exciting
developments come from exploring the boundary regions of
concepts, from stretching them, and from dlﬁerentlatlng formerly

Stuill
passed through such
most exciting from the historical point of view and should be the most
important from the teaching point of view. These periods cannot be
properly understood without understanding the method of proofs and
refutations, without adopting a fallibilist approach.

This is why Euclid has been the evil genius particularl for the
nlStory OI matncmatlcs ana IOI' tn(: féaching OI matncnla C both on

the lntroductory and the creative levels.1

intelligible and rigorous by persevering thought, but who can give it to conclusions
which are never allowed to come before him? The effect of exclusive attention to those
parts of mathematics which offer no scope for the discussion of doubtful points is a
distaste for modes of proceedings which are absolutely necessary to the extension of
analysis. If the cultivation of the higher parts of mathematics were left to persons trained
for the purpose, there mnght be some show of reason for keeping out of the ordinary
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render the former clear and the latter applicable. As it is, however, the few in this country
who pay attention to any difficulty of mathematics for its own sake come to their
pursuit through the casualties of taste or circumstances; and the number of such casualties
should be increased by allowing all students whose capacity will let them read on the
higher branches of applied mathematics, to have each his chance of being led to the
cultivation of those parts of analysis on which rather depends its future progress than its
present use in the sciences of matter.” (de Morgan [1842], p. vii).

1 According to R. B. Braithwaite, ‘the good genius of mathematics and of unselfconscious
science, Euclid has been the evil genius of philosophy of science — and indeed of meta-
physics’. (Braithwaite [1953], p. 353.) This statement, however, originates in a static
logicist conception of mathematics.
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METHOD OF PROOF-ANALYSIS

Note: In this appendix the supplementary stages s, 6, and 7 (cf. p. 128) of the
method of proofs and refutations have not been discussed. Iwould just mention
here that a methodical hunt for uniform convergence in other proofs (stage )
would very quickly have yielded the refutatlon and improvement of another

theorem proved by Cauchy: the theorem that the integral of the limit of any
convergent series nF continuous functions is the limit of the sequence of the

integrals of the terms, or briefly, that in the case of series of continuous func-
tions, the limit and the integral-operations can be 1nterchanged. This had been
uncontested throughout the cightcenth ccntury, and even Gauss applied it
without giving it a second thought. (See Gauss [1813], Knopp [1928] and Bell
[1945].)

Now it did not occur to Seidel, who discovered uniform convergence in
1847, to look at other proofs to see if it had been implicitly assumed there.
Stokes, who discovered uniform convergence in the same year - though not
with the help of the method of proofs and refutations — uses in this same paper
the false theorem about integration of series, referring to Moigno (Stokes
[1848]). (Stokes made another mistake: he thought he had proved that uniform
convergence was not only sufficient but necessary for the continuity of the

limit function.)

This delay in discovering that the proof that the integration of series also
depends on the assumption of unlform convcrgcncc may have been due to the
fact that this primitive conjecture v futed by a concrete counterexample

ct that this u un
only in 1875 ( arboux [18 , by wh.lch date proof -analysis had already traced
uniform convergence in thc proof without the analysis being catalysed by a
counterexample. The hunt for uniform convergence once fully under way with
Weierstrass at its head soon discovered the concept in proofs concerning term
by term differentiation, double limits, etc.

The sixth stage is to check the hitherto accepted consequences of the refuted
primitive conjecture. Can we rescue these consequences, or does the refutation
of the lemma lead to a disastrous holocaust? Term by term integration, for
instance, was a cornerstone of the Dirichlet proof of Fourier’s conjecture. Du
Bois-Reymond describes the situation in dramatic terms: the theory of trigono-
metric series is ‘cut to the heart’, its two key theorcms ‘have had the ground
cut from under them’ and

with one blow the general theory was pushed back to the state in which it had been before
Dirichlet, back even before Fourier.

(du Bois-Reymond [1875], p. 120.) It makes an intriguing study to see how the
‘lost ground’ has been regained.

In this process a spate of counterexamples was unearthed. But their study -
the seventh stage of the method — started only in the last years of the century.
(E.g. Young’s work on the classification and distribution of points of non-
uniform convergence; Young [1903-4].)
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The Deductivist Approach
dev

Euclidean methodology has developed a certain obligatory style of
presentation. I shall refer to this as ‘deductivist style’. This style starts
with a painstakingly stated list of axioms, lemmas and/or definitions. The
axioms and definitions frequently look artificial and mystifyingly
complicated. One is never told how these complications arose. The
list of axioms and definitions is fOHOWed by the carefully Worded
theorems. These are lo ded with heavy-

hncm]'\] ]'\ tf anx hr\nlrl aver ]'\
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followed by roof

The student of mathematics is obliged, according to the Euclidean
ritual, to attend this conjuring act without asking questions either about
the background or about how this sleight-of-hand is performed. If
the student by chance discovers that some of the unseemly definitions
are proof-generated, if he simply wonders how these definitions,
1(‘: 11IMas ar ld LhC Lheorem cail pOSSibl'y‘ pi‘t‘:Ccdc Lhc PLUUf, thc con Ju“Of

will ostracize him for this display of mathematical immaturity.!

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, immutable
truths. Countcrcxamoles, refutations, criticism cannot possibly enter.
An authoritarian air is secured for the subject by beglnmng with dis-
guised monster-barring and proof-generated definitions and with the
fully-fledged theorem, and by suppressing the primitive conjecture,
the refutations, and the criticism of the proof. Deductivist style hides
the struggle, hides the adventure. The whole story vanishes, the
successive tentative formulations of the theorem in the course of the

nrnnr_hrnrpr]nrp are r]nnmpr] to n‘ﬁ]nn n xr]'n']p fkp
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exalted into sacred infallibility.?

1 Some textbooks claim that they do not expect the reader to have any previous know-
ledge, only a certain mathematical maturity. This frequently means that they expect the
reader to be endowed by nature with the ‘ability’ to take a Euclidean argument without
any unnatural interest in the problem-background, in the heuristic behind the argument.

2 It has not yet been sufficiently rcalised that present mathematical and scientific education
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14&



THE DEDUCTIVIST APPROACH

Some who defend deductivist style claim that deduction is the
heuristic pattern in mathematics, that the logic of discovery is deduc-
tion.! Others realise that this is not true, but draw from this realisation
the conclusion that mathematical discovery is a completely non-
rational affair. Thus they will claim that although mathematical dis-
covery does not proceed deductively, if we want our presentation of
mathematical discoveries to proceed rationally, it must proceed in the
deductivist style.?

is a hotbed of authoritarianism and is the worst enemy of independent and critical
thought. While in mathematics this authoritarianism follows the deductivist pattern just
described, in science it operates through the inductivist pattern.

There is a longstanding tradition of inductivist style in science. An ideal paper written
in this style starts with the painstaking description of the layout of the experiment,
followed by the description of the experiment and its result. A ‘generalisation’ may
conclude the paper. The problem-situation, the conjecture which the experiment had to
test, is hidden away. The author boasts of an empty, virgin mind. The paper will be
understood only by the few who actually know the prob]em—situation — Inductivist style

Y « PR al Ll P, N B
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in fact he starts with a mind full of ideas. This game can only be played - not alway

with success - by and for a selected guild of experts. Inductivist style, just like its
deductivist twin (not counterpart!), while claiming objectivity, in fact fosters a private
guild-language, atomises science, suffocates criticism, makes science authoritarian.
Counterexamples can never occur in such presentation: one starts with observations (not
a theory), and obviously unless one has a prior theory one cannot observe counter-
examples.

1 These people claim that mathematicians start with an empty mind, set up their axioms
and definitions at their pleasure, in the course of a playful free creative activity, and it is
only at a later stage that they deduce the theorems from these axioms and definitions.
If in some interpretation the axioms are true, the theorems will all be true. The mathe-
matical conveyor-belt of truth cannot fail. After our case-study in the proof-procedure
this can be ruled out as an argument for the defence of the deductivist style in general -
if we do not accept the restriction of mathematics to formal systems.

Now while Popper showed that those who claim that induction is the iogic of
scientific msCOVt‘:f‘y‘ arec wrong, these cssays intend to show that those who claim that
deduction is the logic of mathematical discovery are wrong. While Popper criticised
inductivist style, these essays try to criticise deductivist style.

2 This doctrine is an essential part of most brands of formalist philosophies of mathe-
matics. Formalists, when talking about discovery, discriminate the context of discovery
and the context of justification. ‘ The context of discovery is left to psychological analysis,
whereas logic is concerned with the context of justification.” (Reichenbach [1947],
p 2) A similar v1ew can be found in R. B. Braithwaite’s [1953], p. 27, and even in

K.R. Poppers 11939], PP 3i-2, and in his [1935]. Popper, when (li‘x fact in 1934)

dividino fhn qchprfc nf r‘mrnvnrv hatwaan hcvrhn]nnv an] lacice ;n ench 2 wav that no
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place was left for heuristic as an mdependent field of inquiry, obviously had not then
realised that his ‘logic of discovery’ was more than just the strictly logical pattern of the
progress of science. This is the source of the paradoxicality of the title of his book, the
thesis of which seems to be double-faced: (a) there is no logic of scientific discovery -
Bacon and Descartes were both mistaken; (b) the logic of scientific discovery is the logic
of conjectures and refutations. The solution of this paradox is at hand: (4) there is no
infallibilist logic of scientific discovery, one which would infallibly lead to results;

(o
W
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PROOPFS AND REFUTATIONS

So we have nowadays two arguments for deductivist style. One is
based on the idea that heuristic is rational and deductivist. The second
argument is based on the idea that heuristic is not deductivist, but also
not rational.

There is also a third argument. Some working mathematicians who
do not like logicians, philosophers and other cranks interfering in their
work, usually say that the introduction of heuristic style would require
the rewriting of textbooks, and would make them so long that one

This section will contain brief heuristic analyses of some mathematically
important proof—generated concepts. Itis hoped these analyses will show
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As nas alreaay DCCD. mentloned, CCGUCUVIS[ S[Yle tears [ﬂe PfOOf"
generated definitions off their ‘proof-ancestors’, presents them out of
the blue, in an artificial and authoritarian way. It hides the global
counterexamples which led to their discovery. Heuristic style on the
contrary highlights these factors. It emphasises the problem-situation:
it emphasises the ‘logic’ which gave birth to the new concept.

Let us see first how one can introduce in heuristic style the proof-
generated concept of uniform convergence, which we discussed above
(appendix 1). In this and the other examples, we certainly presume

familiarity with the technical terms of the method of proofs and

refutations. But this is no more demanding than the usual requirement
of familiarity with the technical terms of the Euclidean programme,

like axioms, primitive terms, etc.

\a ) Lmﬁ?ﬁ"ﬁ convergeiice

Thesis The specific version of the Leibnizian principle of continuity;

which states that the limit functlon of any convergent sequence of
tions i ive Conjecture)

(b) there is a fallibilist logic of discovery which is the logic of scientific progress. But

Popper, who has laid down the basis of this logic of discovery, was not interested in the

metaquestion of what was the nature of his inquiry and he did not realise that this is

neither psychology nor logic, it is an independent discipline, the logic of discovery,

heuris

3
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1 Althmmh it has to be admitted that thev woul

the problem—sxtuatxon would too obviously di pl ;:h pomtlessnes of quite a few of
them.

much fewer too, as the statement of



THE HEURISTIC APPROACH

Antithesis Cauchy’s definition of continuity raises the thesis to a
higher level. His definitional decision legalises Fourier’s counter-
examples. This definition at the same time excludes the possible
compromise that continuity be restored by perpendicular lines, and
so gives rise — together with some trigonometrical series —to the
negative pole of the antithesis. The ‘positive pole’ gets strengthened
by Cauchy’s proof which will be the proof-ancestor of uniform
convergence. The ‘negative pole’ gets strengthened by more and

also local ones is spotted, the proof improved, the conjecture im-
proved. The characteristic constituents of the synthesis emerge; the
theorem and with it the proof-generated concept of uniform conver-

gence.!

The Hegelian language, which I use here, would I think, ge nerally
L. mne-Ll. € 1 clio o el oo us P I PRV S ma PR I A.
DC (4 P DI€ Or qubuuulg tne various de VCIUPIIIUIILD lll matnematics.
(It has, however, its dangers as well as its attractions) The Hegehan
conception of heuristic which underlies the language is roughly this.
1 F r some reason. uniform convergence is. in some text baoks c A ut for excen—

or some reason, uniform convergence is, in some text books, singled out for excep-
tional (quasi-heuristic) treatment. For instance W. Rudin in his [19 ,_] ﬁtst mtroducesy a
section: ‘Discussion of Main Problem’ (p. 115), where he proposes the primitive con-
jecture and its refutation and only then introduces the definition of uniform conver-
gence. This presentation has two blemishes: (4) Rudin does not present only the primi-
tive conjecture and its refutation, but rather asks whether the primitive conjecture is
true or false, and shows falsehood by the well-known examples. But by doing this he
dUC) llUl BU be'y'(‘)nd lllfd}.}lbl}l)\. al.yxc lu hl) PlUblClll‘DltudllUll l.hcl.c iS 11O LUIIJCLLULC
but rather a sharp and sophisticated question, followed by an example (not by a counter-
example) which gives the unwavering answer. (b) Rudin does not show that the concept
of uniform convergence emerges from the proof, rather, in his presentation, the
definition precedes the proof. This could not be otherwise in the deductivist style,
because if he had given first the original proof, and only then the refutation followed by
the improved proof and by the proof-generated definition, he would have displayed

the movement of ‘eternally static’ mathematics, the fallibility of ‘infallible’ mathe-
ssla ) of

annabdae = Ararniobaced wxr La Reienlidaa - Aled ~ - P o e 3
matics, which is inconsistent with the Euclidean tradition. (Per LL“p it should be added
that I keen aguotine Rudin’s book because it is one of the best texthooks within this

viier a LLLp il avwetel voLUa v

tradition.) In the preface, for instance, Rudin says: ‘It seems important, particularly for
a beginner, to see explicitly that the hypotheses of a theorem are really needed to ensure
the validity of the conclusions. For this purpose a fairly large number of counter-
examples have been included in the text’. Unfortunately these are mock-counter-
examples, as in fact they are examples to show how wise mathematicians are to include
all the hypotheses in the theorem. But he does not say where these hypotheses come
from, that they come from the proof-ideas, and that the theorem does not jump out of
the head of the mathematician, like Pallas Athene, fully armed out of Zeus’s head. His
use of the word ‘counterexample’ should not misguide us into expecting a fallibilist
style. *Editors’ note: All Lakatos’s remarks about Rudin’s work are based on the first
edition of this book. Not all the passages Lakatos quotes are to be found in the second
edition, which appeared in 1964.
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PROOFS AND REFUTATIONS

Mathematical activity is human activity. Certain aspects of this
activity — as of any human activity — can be studied by psychology,
others by history. Heuristic is not primarily interested in these aspects.
But mathematical activity produces mathematics. Mathematics, this
product of human activity, ‘alienates itself” from the human activity
which has been producing it. It becomes a living, growing organism,
that acquires a certain autonomy from the activity which has produced it;
it develops its own autonomous laws of growth, its own dialectic. The

gcnume creative mathcmatlczau 1s_}ust a persomﬁcatlon, an incarnation
A€ thaca lassra sxrhiml ~nte mialer 2nnlice thamacalrac o 1., Ui JRPVLURU , o) R
of these laws which can only realise themselves in human action. Their

incarnation, however, is rarely perfect. The activity f human mathe-
maticians, as it appears in history, is only a fumblmg realisation of the
wonderful dialectic of mathematical ideas. But any mathematician, if
he has talent, spark, genius, communicates with, fecls the sweep of, and
obeys this dialectic of ideas.

Now heuristic is concerned with the auto 1

INOW  1ICUlL b L D COIICCLIICA  WiLllL LUIC dUuLo a
mathematics and not with its history, though it can study its subject
only through the study of history and through the rational reconstruc-

tion of history.2

(b) Bounded variation

The way the concept of bounded variation is generally introduced in
textbooks of analysis is a beautiful example of authoritarian deductivist
style. Let us take Rudin’s book again. In the middle of his chapter on

1 This Hegelian idea of the autonomy of alienated human activity may provide the clue
to some problems concerning the status and methodology of social sciences, especially
economics. My concept of the mathematician as an imperfect personification of Mathe-
matics is closely analogous to Marx’s concept of the capitalist as the personification of
Capital. Unfortunately Marx did not qualify his conception by stressing the imperfect
character of this personification, and that there is nothing inexorable about the realisa-
tion of this process. On the contrary, human activity can always suppress or distort the

s 4 3 * Tha la~t A€ ehio
autonomy Gf alieﬂated Processes ana can give rise tc new Oncs. 14 negiect o1 inis

intc-artion was a central weakness of Marxist dialectic.

Editors’ note: We feel sure that Lakatos would have modified this passage in some
respects, for the grip of his Hegelian background grew weaker and weaker as his work
progressed. He did, however, retain a belief in the central importance of recognising the
partial autonomy of the products of human intellectual endeavour. In this world of the
objective content of propositions (Popper came to call it the ‘third world’: see his
[1972]), problems exist (caused, for example, by logical inconsistencies between pro-
positions) independently of our recognition of them; hence we may discover (rather than
invent) intellectual problems. But Lakatos came to believe that these problems did not
‘demand’ a solution or dictate their own solution; rather, human ingenuity (which may
or may not be forthcoming) is required for their solution. This view is presaged in the

criticism of Marx in the above footnote.
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THE HEURISTIC APPROACH

the Riemann-Stieltjes integral he suddenly introduces the definition of
functions of bounded variation.

6.20. Definition. Let f be defined on [a, b]. We put

(37) V(f) = lub Elf )=flxidls

where the lub is taken over all partitions of [a, b]. If V(f) is finite, we say that

fis of bounded variation on [a, b], and we call V(f) the total variation of f on
[a, b].1

Why should*we be interested in just this set of functions? The de-
ductivist’s answer is: ‘ Wait and see’. So let us wait, follow the exposi-

tion, and try to see. The definition is followed by examples designed
fﬂ Q']VP th rPQ(]Fr some ‘I{']FQQ ahnnt fl’\f‘ Annunn nf' f]'\P {‘ﬂn{‘PPf (thQ

and things like this, make Rudin’s book outstandingly good within
the deductivist tradition). Then a series of theorems (6.22, 6.24, 6.25)

follows; and then suddenly the following proposition:

Corollary 2. If f is of bounded variation and g is continuous on [a, ], then
fe %ix(g)

(R*(g) is the class of Riemann-Stieltjes functions integrable with
respect to g.)

We might be more interested in this proposition if we really under-
stood just why the Riemann-Stieltjes integrable functions are so
important. Rudin does not even mention the intuitively most obvious
concept of integrability, namely Cauchy-integrability, criticism of
which led to Riemann-integrability. So now we have got a theorem
in which two mystical concepts, bounded variation and Riemann-

integrability, occur. But two mysteries do not add up to under-

standing. Or perhaps they do for those who have the ‘ability and
inclination to pursue an abstract train of thought’?3

A heuristic presentation would show that both concepts — Riemann—
Stieltjes integrability and bounded variation —are proof-generated
concepts, originating in one and the same proof: Dirichlet’s proof of

the Fourier coniecture. This proof gives the nrnk]pm_kar](o-rnnnr] of
LA"L PalaS s var-2at N 4
potn concepts.

Now Fourier’s primitive conjecture® does not contain any mystical

1 Rudin [1953], pp. 99-100. 2 Ibid., p. 106. 3 Rudin [1953], Preface.

4 This proof and the theorem which sums it up are in fact mentioned in Rudin’s book, but
they are hidden away in exercise 17, of chapter 8 (p. 164), completely disconnected from
the above two concepts which are introduced in an authoritarian way.

5 Fourier [1808], p. 112.
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PROOFS AND REFUTATIONS

terms. This ‘conjecture-ancestor’ of bounded variation says that any
arbitrary function is Fourier-expandable! — which is a simple and most
exciting conjecture. The conjecture was proved by Dirichlet.? Dirichlet
examined his proof carefully and improved Fourier’s conjecture by
'ouilding into it the lemmas as conditions. These conditions are the
celebrated Dirichlet conditions. The resulting theorem was this: All
functions are Fourler-expandablc (1) the value of which at a point of
jump is #[f(x +0) +f(x —0)], (2) which have only a finite number of
discontinuities, and (3) which have only a finite number of maxima and
All these conditions flow from the proof. Dirichlet’s proof-analysis
was faulty only as regards the third condition: the proof in fact hinges
only on the bounded variation of the function. Dirichlet’s proof-
analysis was criticised and his mistake corrected by C. Jordan in 1881,
who thus became the discoverer of the concept of bounded variation.

. ¢
But he did not invent the concept, he did not ‘introduce’ it* - he rather
discovereditin Dmfl'-let 3 “roof in the course of a critical re-examination.?

Another weakness in Dirichlet’s proof was its use of the Cauchy
definition of the integral which is a suitable tool only for continuous
functions. According to the Cauchy definition, discontinuous func-

1 ‘Fourier-expandable’ stands for ‘expandable into a trigonometrical series with the
Fourier-coefficients’.

2 See his [1829] and [1837]. There are many interesting aspects of the background to this
proof we unfortunately cannot now go into; for example, the problem of the value of
Fourier’s original ‘ proof’, the comparison of the two subsequent Dirichlet-proofs, and
Dirichlet’s crushing criticism of Cauchy’s earlier ([1826]) proof.

3 It should be mentioned here that Dirichlet’s proof was not preceded or stimulated by
counterexamples to Fourier’s original conjecture. Nobody offered any counterexamples,

in fact, Cauchy ‘proved’ the original conjecture
st

i te I

validity of his nroof was the empty set). The first ;ount;rcxamnl s were only suggested

by the ‘lemmas of Dirichlet’s proof partlcularl by the first lemma. Apart from this the

first counterexample to Fourier’s conjecture was prescntcd only in 1876 by du Bois-

Reymond, who found a continuous function which was not Fourier-expandable.

(du Bois-Reymond [1876].)

To ‘introduce’ a concept out of the blue is a magical operation which is resorted to very

often in history written in deductivist style!

5 See Jordan [1881] and Jordan [1893], p. 241. Jordan himself stresses that he does not
modify Dirichlet’s proof, but only his theorem. (‘.. .Dirichlet’s demonstration is thus
applicable without modification to every function where oscillation is limited...").
Zygmund, however, is mistaken when stating that Jordan’s theorem is ‘only more
general in appearance’ than Dirichlet’s (Zygmund [1935], p. 25). This is true of Jordan’s
proof but not of his theorem. But at the same time it is misleading to say that Jordan

‘extended’ Dirichlet’s theorem to the more general domain of functions wnth boundcd
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notice that Dirichlet’s proof is the proof-ancestor of th
bounded variation.
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THE HEURISTIC APPROACH

tions are not integrable at all, and ipso facto they are not Fourier-
expandable. Dirichlet avoided this difficulty by regarding the integral
of a discontinuous function as the sum of the mtegrals on those
intervals on which the function was continuous. This can easily be
done if the number of discontinuities is finite, but leads to difficulties
if it is infinite. This is why Riemann criticised Cauchy’s concept of
integral and invented a new one.

So the two mysterious definitions of bounded variation and of the
Riemann-integral are entzaubert, deprived of their authoritarian magic;
their origin can be traced to some clea"=cut problem situation and to

the criticism of previous attempted solutions of these problems. The
first definition is a proof-generated definition tentatively formulated
by Dirichlet and in the end discovered by C. Jordan, critic of Dirichlet’s
proof-analysis. The second definition comes from the criticism of a
previous definition of the integral which turned out to be inapplicable

N maore rnmh]irqur] hrn]ﬁ]pmc
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Popperian pattern of the logic of conjectures and refutatlons. This
pattern follows history more closely than the Hegelian one, which
dismisses ‘trial and error’ as a sheer fumbling human realisation of
the necessary development of objective ideas. But even in a rational
heuristic of the Popperian brand one has to differentiate between
problems which one sets out to solve and problems which one in fact
solves; one has to differentiate between ‘accidental’ errors on the one
hand which just disappear, and the criticism of which does not play
any role in the further development, and ‘essential’ errors, which in a
sense will be preserved also after refutation and on the criticism of
which further Aeve]nnmenf is based. In the heuristic Presentatiop_ the

V2IRIUA2 2322252 RS VLAWY LIA22A2S 22 Vg0 R2. aate vea

accidental errors can be omitted without loss, to deal with them is the
business of history only.

We have only sketched the first four stages of the proof-procedure
which has led to the concept of bounded variation. Here we merely
hint at the rest of the intriguing story. The fifth stage,! the hunt for the

newly found proof-generated concept in other proofs, imm d iately
led to the discovery of bounded variation in the pr toof of J* e primitive

(4

y
conjecture that ‘all curves are rectifiable’.2 The seventh stage leads us
to the Lebesgue-integral and to modern measure theory.

1 For the list of the standard stages of the method of proofs and refutations, cf. pp. 127-8.

2 In this discovery again, du Bois-Reymond was a forerunner ([1879], [1885]), and again,
the admirably sharp C. Jordan the actual discoverer (Jordan [1887], p. 594-8 and [1893],
p. 100-8).
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PROOFS AND REFUTATIONS

Historical Note. Some heuristically interesting details may be added to the
story told in the text. Dirichlet was convinced that the local counterexamples
to his second and third lemmas were not global; he was convinced that e.g. all
continuous functions, regardless of the number of their maxima and minima,

are Fourier-expandable. He also hnned that this more general result could be
prov,d b 1..-ple local amendments in his m'nof This idea, that (1) Dirichlet’s

re
proof was only a partial one a ( ) the final proof could be achieved by some
minor amendments, was w1dely accepted from 1829 to 1876 when du Bois-
Reymond produced the first genuine counterexample to Fourier’s old con-
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discovery of bounded variation seems to have been stimulated by this counter-
example.

It is interesting to note that Gauss, too, encouraged Dirichlet to improve his
proof so that it should apply to functions with any number of maxima and
minima. It is intriguing that although Dirichlet did not solve this problem,
either in 1829 or in 1837, still in 1853 he thought the solution to be so obvious
that in his letter replying to Gauss’s request, he improvised it (Dirichlet [1853]).
The gist of his solution is this. The condition that the set of maxima and minima
should not have any point of condensation in the interval considered, is in fact

a sufficient condrtlon for his proof. That his second condition, about the finite
~dcd, was S fPA I'\v him n]rPar*]v in his
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discontinuities is nowhere dense. These corrections show that Dirichlet was
very much concerned with the problem of the analysis of his proof, and was
convinced that it applies to more functions than those which satisfy his cautious
conditions, later called ‘Dirichlet conditions’. It is characteristic that in his
[1837] he does not state the theorem at all. He was always convinced that his
theorem held for all continuous functions as his letter to Gauss shows and as he
himself told the probably sceptical Weierstrass. (Cf. Ostwald’s Klassiker der
Exakten Wissenschaften, 186, 1913, p. 125.)

Now the theorem as stated by him in his [1829] in fact embraces all types of
functions ‘which occur in nature’. Further, more refined analysis already leads
into the realm of very ‘pure’ analysis. I claim that the analysis of Dirichlet’s
proof — first of all by Riemann — was the starting point of modern abstract
analysis and I find the recently widely accepted view of P. Jourdain about
Fourier’s decisive role exaggerated. Fourier was not interested in mathematical

arguments which went beyond direct applicability. Dirichlet’s thinking was
indeed different. He vaguely felt that the analysis of his proof required a new
conceptual framework. The last sentence of his [1829] paper is a veritable
prophecy:

But the thing to be done with all the clarlty that one can desire, reqmres some detalls
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THE HEURISTIC APPROACH

But he never published the promised note. It was Riemann who, by criticising
the Cauchy concept of the integral, clarified these ‘details bound up with the
fundamental principles of the infinitesimal calculus’, and who, by articulating
D1r1chlet s vague fechngs, and by introducing a revolutionary technique,

indeed, rationality into the domain of

Coyl, ) 1L LG

as monsters, o, a best uninteresting exceptions or smgularltles . (This wa
Dirichlet’sattitude, expressed in his [1829] paper and in hisletter to Gauss [1853].)

Some infallibilist historians of mathematics use here the ahistorical technique
of condensing a long development full of struggle and criticism into one single
action of infallible insight and attribute to Dirichlet the maturity of later
analysts. These antihistorical historians attribute our modern general concept
of a real function to Dirichlet, and accordingly name this concept the Dirichlet
concept of function. E. T. Bell asserts in his [1945], p. 293 that ‘P. G.L.
Dirichlet’s definition of a (numerical valued) function of a (real, numerical
valued) variable as a table, or correspondence, or correlation, betwecn two sets
of numbers hinted at a theory of equlvalence of point sets’. Bell gives as
reference: ‘Dirichlet: Werke, I, p. 135’. But there is nothing like this there.
Bourbaki says: ‘It is known that it was on this occasion that Dirichlet, making
precise Fourier’s ideas, defined the general notion of a function as we under-

w

. ’ .

stand it today’. (Bourbaki [1960], p. 247.) ‘It is known’ says Bourbaki, but does
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due to Dirichlet’ in most classical textbooks (e.g. Pierpoint [1905] p- 120). Now
there is no such definition in Dirichlet’s works at all. But there is ample evidence
that he had no idea of this concept. In his [1837] paper for instance, when he
discusses piecewise continuous functions, he says that at points of discontinuity
the function has two values:

The curve, whose x and y coordinates are denoted by f and ¢(8) respectively, consists of
several pieces. At points above the x axis corresponding to certain particular values of £,
successive portions of the curve are disconnected; and for each such x co-ordinate there
correspond in fact 2 y co-ordinates, of which one belongs to the portion that ends at that
point, and the other belongs to the portion that begins there. In what follows it will be
necessary to distinguish these two values of ¢(f) and we shall denote them by ¢(8 — o) and

$(f+o0).
These quotations show beyond any reasonable doubt how far Dirichlet was
from the ‘Dirichlet concept of function’.

Those who associate Dirichlet with the ‘Dirichlet definition’ usually think
of the Dirichlet function which occurs on the last page of his [1829] paper: a
function which is 0 where x is rational and 1 where x is irrational. The trouble
again is that Dirichlet still held that all genuine functions are in fact Fourier-

expandable - he devised this ‘function’ exp11c1tly as a monster. Accordlng to
i ] r* real fun on, but of



PROOFS AND REFUTATIONS

function despite its absence, did not notice the titles of his two papers, which
refer to the expansion of any ‘completely arbitrary’(ganz willksirliche) functions
into Fourier series. But this means that — according to Dirichlet - the Dirichlet

function was outside this family of ‘completely arbitrary functions’, that he
nster, because an nrdmarv ﬁmrrmn has to have an inteoral
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and this obvio 1:]\ had none. Riemann, in Far'r sed Dirichle ,S narrow
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concept of a function when criticising Cauchy’s concept of integral together
with its ad hoc amendment by Dirichlet. Riemann showed that if we widen the
concept of integral, a monster like a function which is discontinuous for every
rational number of the form p/2n, where p is an odd number, prime to n, is
integrable, although it is discontinuous on an everywhere dense set. Conse-
quently this function, so akin to Dirichlet’s monster, is ordinary. (There was
nothing ‘arbitrary’ in Riemann’s extension of the integral concept; his revolu-
tionary step was to ask what kind of functions are represented by trigonometric
series, instead of asking what kind of functions are Fourier-expandable. His
aim was to expand the concept of integral so much that all functions which are
the sums of trigonometrical series should be integrable and thereby Fourier-
expandable. This is a most beautiful example of conceptual instrumentalism.)

Perhaps the originator of the tale about Dirichlet’s having set up the ‘Dirichlet
definition of function’ should be identified here. It was H. Hankel, who in
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then, he went on:

It only remained first, to drop the condition that the function should be analytic, on the
grounds that such a condition is without significance, and, secondly, while cutting that
knot, to give the following explication. A function is called y of x if to each value of the
variable x within a certain interval, there correcponds a definite value of y, and this
irrespective of whether y depends on x according to the same law throughout the whole
interval, and of whether this dependence can be expressed by means of mathematical
operations. This purely nominal definition I shall ascribe to Dirichlet because it lies at the
basis of his work on Fourier series, which demonstrated the untenability of that older
concept. ..

(c) The Carathéodory definition of measurable set

The change from the deductivist to the heuristic approach will cer-
tainly be dlﬁicult, but some of the teachers of modern mathematics
already realise the need for it. Let us look at an example. In modern
textbooks on measure theory or probability theory we frequently get
confronted by the Carathéodory definition of measurable set:

Let #* be an outer measure on an hereditary o-ring H. A set E in H is p*
measurable if, for every set A in H,

u*(4) = pX(ANE)+pu*(ANE'}
1 Halmos [1950], p. 44.
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THE HEURISTIC APPROACH

The definition as it stands is bound to be puzzling. Of course there is
always the easy way out: mathematicians define their concepts just as
they like. But serious teachers do not take this easy refuge. Nor can
they say that just this is the correct, true definition of measurability and
that mature mathematical insight should see it as such. Usually in fact,
they give a rather vague hint that we should look to the conclusions
later to be drawn from the definition: ‘Definitions are dogmas; only

the conclusions drawn from them can afford new insight’.! So we have
trust and see what hnrme . Althot
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realised. It is an apology, if still an authoritarian one. Let us quote
Halmos’s apology for Carathéodory’s definition: ‘It is rather difficult
to get an intuitive understanding of the meaning of u*-measurability
except through familiarity with its implications, which we propose to
develop below.’? And then he goes on:

The following comment may, however, be helpful. An outer measure is not
necessarily a countably, nor even finitely, additive set function. In an attempt
to satisfy the reasonable requirement of additivity, we single out those sets
which split every other set additively - the definition of #*-measurability is the
precise formulation of this rather loose description. The greatest justification of
this apparently complicated concept is, however, its possibly surprising but
absolutely complete success as a tool in proving the important and useful
extension theorem of §13.3

Now the first, ‘intuitive’, part of this justification is a bit misleading,
because, as we learn from the second part, this concept is a proof-
generated concept in Carathéodory’s theorem about the extension of

es (which Halmos introduces only in the next chapter) So

IR

mcasures \Wilicil raimos in
whether it is intuitive or not is not at all interesting: its rationale lies
not in its intuitiveness, but in its proof-ancestor. One should never tear
a proof-generated definition off from its proof-ancestor and present it
sections or even chapters before the proof to which it is heuristically
secondary.
M. Loeve, in his [195 5] present the definition very properly in his
1
a

section on the extensior needed in the exten-
sion theorem: ‘We shall need various notions that we collect here.’4
But how on earth can he know which of these most complicated

instruments will be needed for the operation? Certainly he already has

::.

1 OI Imeasures, as a notiot
1
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! K. Menger [1928], p. 76, quoted with approval by K. R. Popper in his [1959], p. 55
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some idea what he will find and how he will proceed. But why then,
this mystical set-up of putting the definition before the proof?

One can easﬂy give more examples, where stating ‘the primitive
conjecture, showing the proof, the counterexamples, and following
the heuristic order up to the theorem and to the proof-generated
definition would dispel the authoritarian mysticism of abstract mathe-
matics, and would act as a brake on degeneration. A couple of case-
studies in this degeneration would do much good for mathematics.

Unfortunately the deductivist style and the atomisation of mathe-
rati nn] lrn (\1‘[1]‘:!1 oo Arntant ¢ A acranarata ’ aare A A 7TArY ~ANcl /J ara 1-\] =N
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Mobius, A. F., 1512, 8on, 98n1
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Poincaré, H., ix, 4n2, 22-3nq, 46nq, 49n,
529, 65n2, 74n, 819, 87-8n

Poinsot, L., 81, 16-171, 18n1q, 19n1. 28n2q,
31n44, 351, 36n, 60-61nq, 614, 62n, 6513,
84n, 8sn
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Polanyi, M., xii

Pdlya, G., xii, 3, 4n2, 7n, on, 29n, 37n,
38nq, 419, 43n2q, 67n2q, 68n2, 734, 741,
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Popper, K. R, xii, 3, 2211, 3In3, 404, 491,
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Pythagoras, s2n2

Quine, W. V. O, 2, 4n1q
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Schréder, E., 18n1g
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Sylow, L., 135n4
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Szego, G. 38n1q
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Tarski, A., 3nq, 45-6n, 103-41, 12312
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Zermelo, E., 52n2
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analysis, gn; Platonic, as 1061 test thought-
experiments, 75; can turn tests into
proofs, 94; see synthesis

a priori synthetic judgments, 108

authoritarianism, 142-3, 146, 154

axioms: absolute truth of, 108; complicated
and artificial, 142; fallibility of, s6-
7*

background knowledge, 56, 70

bounded variation, origin and discovery
of, 146-52

capital, Marx’s theory of, 146n1

Cauchy’s theorem: on continuity, IXx,
128-41, 145; on integrals, 141

cavities, 91-2#n

certainty, 87, 102, 124; and finality, 63,
120

chains, k-, 113e-18; properties of, 114;
form a vector space, 116-17

circuit, k-, 113¢; form a subset of the chain
space, 116

classification: naive versus theoretical, 91;
nominal versus real, 92

clear and distinct ideas, 32n1

COﬁCépf-LU mation, 60, 83-99;

.
cent oncan Ech-pn-l—nn(r
vvr\a, \.«UAA\-\—ru Suiculiulilg

concepts: naive, 89—91; naive and theoreti-
cal, 93-4; precise versus vague, 100,
122; proof-generated, 89-90, 128, 131,
144-54; refutation-generated, 8s; see
concept-formation, concept-stretching

concept-stretching, 20-22, 83-7, 93-5,

101-2; and lemma-incorporation, 88;
of

see Con

refute

A ivaLe

limite tn 00—10¢"
aamits to,

FOy FITIVS,
theorem, 08, 100; surreptitious versus
open, 103; theoretical versus naive,
93-5; see concept formation, concepts

conceptual instrumentalism, 152

conditions: difficult to achieve for Des-
cartes—Euler conjecture, 120; sufficient
and necessary, 63—5; see Theorem

conjectures, 76; ad hoc, $o; improving
26-7, 33-42; inductive, 73; naive
(primitive), 42, 74, 91, 127; plausible
and implausible, 12; proving false, 13-
14, 37, 76; rejection of, 13; subcon-
jectures, 9-14

masr

may a

=
o

SUBJECTS

conjectures and refutations, method of,
73, 149

content, s6, 57—66, 66-83; and depth, 97;
and finality—certainty conditions, 63-4;
increasing, $7—-63, 80, 96—9; comparison
of proofs for, 6513

context of discovery and context of
Jjustification, 14312

continuity: Abel’s theorem on, 134;
Cauchy’s characterisation of, 129-30,

145; Fourier’s conception of, 129;

hlﬂl‘ﬂ‘!,‘ﬂn TLT . h"‘“l"“lﬂ l'\‘. Tary 17 T 4 4

Pl\'b\' VYV 10,4 L ) Ly y&ul\'lylb, VL 14 / L 9 i 4‘*
conventionalist strategem, 99
conventions, I114-15, 119

convergence, 128-36, 14I; infinitely slow,
130; uniform, see uniform convergence

corroborations, 6; and counterexamples,
87n; logical and heuristic, 82

counterexamples, 10; as a reflection on
the mathematician, 139; eccentric, $3;
global, 10-11¢, 14, 33, 43, T44;
global and local, 29, 47, 63, 83, 127, 132,
145; global but not local, 42-56, 43e,
63, 83; local, 10-11¢, 13-14, 43; local
but not global, 10-12, §7-66, 83; logical

114,
~ w7

and heuristic, 82—-3, 86, 92-3, 95; mock,
145n; not necessary for proof analysis,

AR artyu ¢t ralaction of 14-27°
48; petty, sI; rejection of, 14-23;

theoretical and naive, 96-9; see Descartes-
Euler conjecture, proofs, refutations

criticism; fake, 14; and growth, 112;
heuristic, 104; literary, 139; mathemati-
cal, 81n4; may turn mathematical truth
into logical truth, 99-105; of a con-
jecture, 10

decision procedure, 4, 10711

deduction: generalisation by, 9s5; as
heuristic pattern of mathematics, 143—4;
and increased content, 81; and infalli-
bility, 121, 125-6%, 138%

deductivist style, 142-54

definitions, 1; ad hoc, 23; essentialism in,
18n2; essentialist versus nominalist
theory of, o2n, 119-26, 153; ‘hidden’
clauses of, 21; monster-including, 8s;
Pascal’s rules of, 107ns; of polyhedra,
14-22; proof-generated, 12211, 142,
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definitions (cont.)
153-43 rigorous, 100;

Q v
\.UIU\'\,LULUD, 1090, I2

zero, 135§

degeneration, mathematical, 154

depth of a proof, s9-60, 97, 120

Descartes—-Euler conjecture, ix, 6; Becker’s
version of, 97n; Cauchy’s proof of, 7-8,
57, 65, 89, 90, 138; counterexamples to,
(cylinder) 22, (crested cube) 345, (nested
cube) 13, (picture frame) 19, (twin-
tetrahedron) 15, (urchin) 16-17; decom-
posed into two parts, 116-17; different
versions are the result of different
proofs, 65-6; formulated in vector
algebraic terms, 114~16; further general-
ised to include ring-shaped faces, 78-9;
generalised to n-spheroid polyhedra, 77;
Gergonne’s proof of, 59, 65, 9o; irre-
futable master-theorem, 51, 63; Jordan’s
version of, 97n; Legendre’s proof, 60-61,
6s; naive version, 4I, 66; original
problem situation of, 84; perfect
formulations of, 26, 41; Poincaré’s proof
of, 90 106, 17—18' relations analogous

o convex, 28, 30, 41;

no] vhedra

ijaivleia,

59; restrlctcd to 51mplc polyhedra 34;
restricted to simple polyhedra with
simply connected faces, 36, 41, 106;
‘safe’ formulation of, 28, 30, 37

dialectic, 5, 37, 94—5, 146; accounts for
change without criticism, §4—5n

divergent series, 137

dogmatism, 4-5; and the theory of error,
31; see scepticism

dominant theory, 123, 125; see Euclideanism

convey
LA vVea

AVeS

edges: as the boundary of a face, 112,
Cayley s definition of, 96#n; invented by
Euler, 6; undefined, 107

adsi atian

error, 32n1, 149

essentialism: and the Euclidean
gramme, 123n2; in definitions,
119—26; modified, 122~3

Euclideanism, 10713, 123, 138-9, 144;
deleterious effect on mathematics, 140;
Euclidean style, 142—54; separates gues-
sing and proving, 138

evolution, 4, 21-2

exceptlon-barrmg, 24-30, 26e, 41, $8, 66,
83—4, 87n, 133-6, 140; as the standard
method before Scidel, 136; Cauchy’s

pro-
181,

17

method and the revolution in rlgour,

137, comomca Wl[l’l PIOOI—&

Inm n,unnnrhr\ro\fin t'

13-l OrpOLavii, Ju, conl

methods 36-7; modified, 28

faces: boundary of, 112; undefined, 107;
see polyhedra

fallibilism, 139-40

finality, 119—26; and certainty, 63, 107,
120-1; and depth, 120

formalism, 1e-s, 122n2;
century, 138n1; Hilbert’s, 56

four-colour conjecture, 711, 72

Fourier’s conjecture, 141, 147-8; counter-
examples to, 14813, 150; proved and
improved by Dirichlet, 148-150; proved
by Cauchy, 148n3

Fourier series, 130, 133

functions, as monsters, 19-20n, 22-31I,
151-2; see Cauchy’s theorem, conver-
gence, Fourier’s conjecture, uniform
convergence

eighteenth-

geometry: analytical, 18n1; asa ‘dominant’
theory, 123, 125n; Euclidean, 491; non-
24, 55, 139

Goldbach’s conjecture, 72

graph theory, 91-2n

guessing: deductive, 92-3; deductive
versus naive, 70-6; guesswork versus
insight, 30; as a heuristic pattern, 93-5;
increased content by deductive guessing,
7681

Hegelianism, 139n1; and heuristic 145-6;
see dialectic, Hegelian triad

Hegelian triad, 1251, 144-5, 149

heuristic, xii, 3, on; counterexamples, 83,

92-3; criticism, 104; deductive, 73,
143—4; dogmas, 37; follows a zig-zag
+h ITasalian ~ancantinan nf Tie_K

tuu.u, 425 micgeiai conceplion o1, 145—0,
helps to ignore refutations, 74; and
historical variation, 93—4; inductive, 73;
language dynamics, 93; like scientific
heuristic, 74; may deviate from the
historical pattern, 127n1; Pappian, 64n,
7sn; rules of the method of proofs and
refutations, so, 8, 64, 66, 76, 98; and
vagueness, 100; versus deductivist ap-
nrnnrh 14254

hJStOl'lClsm, 54

ideology, political, 491
I
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incidence matrices, 108, 111, 116, 117

induction: Abei’s criticism of, 133; and
analysis, 9n; as the basis of the method
of proofs and refutations, 68-9, goni;
eighteenth-century inductivism, 138;
inductive conjectures and inductive
heuristic, 73; inductivist style, 142-3n

infallibilist history, 151; see Euclideanism,
fallibilism

mﬁmte  regress, 5312, $6; see proofs, vicious

}ntenfa] Canuchv’e 147 124 —0"* Diric lat’c
LIVURAGl e NvaLILl Y Uy LG [y AGUT Yy AALAVIUVY Oy
149; Lesbesgue’s, 149; Riemanr n’s; 152

Riemann’s criticism of Cauchy’s, 149,
152; Riemann-Stieltjes, 147; tcxtbook
presentation of, 12211
interpretations, dogmatic versus sceptical,
99; intended and unintended, 84-6
intuitionism, §1-3, §6; see language
intuitions: as a source of definitions and
axioms, 108; clear and distinct, 121;

conjectures turned into, 107; deductive,
138; mature, S1

knowledge: autonomy of, 146; growth
of, 82-3, 93—4, 96-7; see conjectures

language: and the growth of knowledge,
93; and the problem of universals, 92n;
changes in, 93; formalised, 93n; irrele-
vant to mathematics, $1; laws of, 81n4;
linguistic precision, 80; naive versus
theoretical, 91; natural language reflects
the essence of an object, 115; vagueness
of, 52

33-42; 34e, 66;
dogmatist interpretation of, 47; playing
for safety, §7; rechristened the method
of proof and refutations, so; relies on
the proof, 41; versus exception-barring,
36

lemmas, 9; ad hoc versus suitable, s0;
discovery of, s1; false, 11, hidden, 43-7,
§6, 127, 131, 134, 145; improved, 12;
trivially true, 40-1, 45-6; see lemma
incorporation

logic; ancient, 81n2; Bolzano’s, 103n1; and
deductive infallibility, 138-9*; depends
upon translation, 123n2; of discovery,
3, 143—4n; as the dominant theory, 125~
6; and exception-barring, :
ductive, 26—7n, 73; informal, osnr;
informal theorems of, $6-7*; and
language statics, 93; logical constants,

incornoration

awaisiad & aaalLpianatiil

aveantinn_harringe - ine

b Y
‘L’ ) AAAT

17
7

125; logical form, 103-4n; mathematical,
19—20n, I2In; of mathematics, 143;
situational, 1, 3-4; theory and practice
of, 81n4; three-valued, s4; union with
mathematics, §5-6

logical positivism, 2-3, 93n

logicism, 56

mathematics: autonomy of, 146; de-
generation of, 98, 144nI; as eternal
truth, 142; formalist philosophy of, 1-5;

Fr\"nrlafinnc l'\r
LU ALIVIIS Ul

142~3; union with logic, §5-6

measure theory, 12$n1, 149, 152; Cara-
théodory’s definition of measurable set,
152—4; outer measure, 153

mechanics: Newtonian, 49n;
125n; wave, 123

metamathematics, 1, 3, §, $6; and the
search for a dominant theory, 125n

monster-adjustment, 30-3, $S, 97

monster-barring; and content, 86; in
defence of the theorem, 42-3 ; definitions,
98, 100; disguised, 142; the method of,
14-23e; 25-6, 41, 47, 50, 66, 83-6; and
rigour, $§6; versus exception barring,
29

monsters, 21-2, $0, 96, 98, 124; examples
of, 14-23, 22~3n, 151-2

taachinoe of iv
wadiiiig oL, 1%,

J‘r»

rational,

optics, Newtonian, 139

paradoxes, inventor’s paradox, 67n2; of
set theory, 56
piecemeal engineering, 40

vlavine for caﬁ-\rv 24—20. 28¢
playing for saiet 24-30, 28¢

polygons, 6; heptagon, 18n1, 72; inner,
7912, 91-2n; multiply-connected, 7912,
91-2n; perfect, 76e; ringshaped, 31-2n,
35, 38, 79-8on, 91-2n; star, 16-18, 31,
110; systems of, 14-1§, 70~71; triangular,
18n2, 72

polyhedra, 6; almost convex, 60; boundary
of, 100, 1126, 119; Cauchy, sie, 67;
complex, 85; concave and convex, 2I,
28, 41, 84, 8sn, 87n; cube, $8; crested
cube, 34-s, 38, 78; cylinder, 22, 28,
43, 47, 53, 80, 82-3, 96, 99, 100, IIS,
119, 121; defined in vector-algebraic

terms, 108, 120; definitions of, 14~-17,
dodecahedron

NSV LR LAN AL, Ull’ 58;
107; heptahedron, 110-12;
Lhuilier’s classification of, 91-2n; naive

concept of, 99; nested cube, 13; normal,

o Yo o 2o ) 0N
Iy iy v

essence of,

2
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polyhedra (cont.)
76' n-spheroid 77; octahedron, 110; one-
uucu, 83, 98n1, 110; open, 97, pxuuxc
frame, 19, 21, 33, 48, 67, 77-9, 83;
primitive, 109; prisms and pyramids,
84n2; regular, 6, 84; simple, 34, 84n2,
89, 100, 113; simply~connected, 85, 971,
99, 109, 120; spherical, 33; star, 16-17, 31,
33, 42-3, 62, 64, 84n2, 91, 97n; tabulated
values for F, V, and E, 69; torus, 33;
triangular, 33; twin-tetrahedron, 15,

26 80 a7 T00_T* unsigontliche 164n-°
U=y OUy Y [fy aVUT Ay B LinlL,y AU,

with cavities, 79, o1-2#1, 97

polytopes, 109; see polyhedra

power series, 133—5

pragmatism, $4

probability theory, 1251, 152

problems, 6; one does not solve the prob-
lem one has set out to solve, 9o; problem
situation, I444; problem to prove, 71,

41, 64n; scientific inquiry begins and
ends with problems, 105

proof-analysis, ix, 42-56, 132; approxXi-
mate, s1; as a fermenting agent for
refutations, 48; can make proof in-
fallible, 138-9n*; concludes with a
proof, 107n3;
domain of, 64; and lemma incorporation,
36; may decrease content, §7; no
limitations on the tools of, 107nI;
perfect, 47; and proof, 50, 81n4; reduced
to a triviality, 126; and revolution in
rigour, §§; rigorous, 47e; safe, §8; with-
out proof, 50

proof and refutations, rechristened ‘the
method of proofs and refutations’ 64;

AdA0R22US VL pIUIS Qi LUANNaRiRUiis,

the dlalectxcal unity of, 37; the heuristic
rules of, 50, 58-9; the method of, 47-57,
soe; see proofs and refutations

proof procedure, 10613, 143n1; see proofs
and refutations

proofs, 7-9e; changing standards of, 104~-5;
criticism of, 10-12, 132; crystal clear, §2;
deeper, 57, 64, 66, 120; different proofs
yield different theorems, 65—6; domain
of, 64¢; Euclidean, 107n3; final, 63-5, 97;
formal, 1, 124-5; inductive, 138;
infinite regress of, 40; and meaning,
124; more rigorous and more embracing,
120; perfect versus imperfect, 139; and

PPttt

i H AE Tak av.
aiscovery o1, I30—4I,

nranf analwyeic

Qr . nroofe ancectar
JL dllal’DlD, v l'ﬁl* tlL vV
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153; proving after improving, 106;
JJI? r T

rules of, 56—7n* ; as stage method of

proofs and refutations, 127; as tests, 291,
17

74-5; that do not prove, 29, 37, 4I; to
improve, 11, 29, 37, 42; trivial extensions
of, 97; valid, 1oon*; without a con-
jecture, 78; see proof analysis, proof
procedure, thought experiment

proofs and refutations: and concepts, 89—
90; discovery of, 136—40; logic of, s;
method of, 64, 83-4, 127-8, 140; see
proof and refutations

proportion, theory of, 1251

psychologism: and crystal clear proof, 52;

versus objectivity, s

psychology, and the context of discovery,
143—4n; translated into physxology,

1251

rationalism, critical, 4, 54, 68

rational reconstructions, §, 8412

rectifiable curves, 149

refutability, 100; see counterexamples,
refutationists, refutations

refutationists, 19-201; 84—5

refutations: fermenting agents for proof
analysis, 48; heuristic, 94—5; important
and unimportant, 86, 98; lack of
refutations causes neglect of proof
analysis, 49; logical and heuristic, 92~3;
proof-generated, 48; their diminishing
returns, 98n1; theoretical versus naive,
96-9; see counterexamples

retransmission of falsity, principle of, 47,

5713, 63 o

rigour, 42—56; Abel’s and Cauchy’s con-
cept of, 138n2; absolute, 28n2, 52;

Cauchy-Weierstrass revolution in, ss,
with more

avaa aaaVAS

connections

LRoazialisalraas

I21In

A diavey

1241;
embracing proofs, 120, degrees of, SI, 54;
and Fourier’s counterexamples, 131; and
proof-analysis, s1-2, §5-7; and scepti-
cism, 121; sufficient, $4; see proofs

scepticism, 4~s, 102; and linguistic com-
munication, $I; religious, $4; and
rigour, 1I2I; sceptic turned into
dogmatist, 46—7

set theory, 19~20n, 56

simplicity, 6513

social sciences, methodology of, 146n

surrender, method of, 13-14¢

synthesis, 9n; as proof thought experiment,

con analucic
[_), SLC aiial yoid

tautologies, theorems as, 124-5
Taylor’s theorem, 134n1
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terms: clear and distinct, 121; and counter-
examples, 124~5; logical and descriptive,
103—4n; perfectly known (formative),
124; primitive, 109, 116; specific and
non-specific, 109, 124; technical, 144;
see translation

theorem, s4; domain of validity, s1, 140;
master-theorem, 63; proof-generated,
sI, 88, 127; versus conjecture, 8, 42

theories: formalised, 107n1; growing (in-
formal), 2, 42, 10711, 140; mature, 42

iment, 7, 9¢, 13-14, 74, 78,

, 8r1; distinct from its

vizaLwv
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147y

linguistic articulation, §1; quasi-experi-
ment, 9; stimulated by counter-
examples, 82; see proof

topology, 18n1, 61, 64, 91-21, 96n, 101

Gay Az Jiia Ao

SUBJECTS

translation: and definitions, 122; problem
of, 106-16; procedure, 121I; some
examples, 125n; true translation, 121

truth: certain, 66; retransmission of, 63;
vacuous, 44-5

tunnels, 21, 67, 91-2n

uniform convergence, 131-3, 144-6; as a
hidden lemma in other proofs, 141;
discovery of, 132-6; textbook presen-
tation of, 145n

vertices, 6e; boundary of, 115; sum of,
114; undefined, 107
vicious infinity, §3e, 54, $6, 63, 98-9, 103
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