

Acute diabetic complications Diff.dg.of hypoglycaemia

Kateřina Štechová

DIABETIC KETOACIDOSIS (DKA)

Diabetic ketoacidosis (DKA)

- A potentially life-threatening complication, typically in DM1 patients
- DKA results from an absolute shortage of insulin
 → burning fatty acids and production acidic
 ketone bodies → symptoms, complications
 - First described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost universally fatal
 - Still a mortality rate 3-4% (varies between centres)

DKA

- The first symptom of previously undiagnosed diabetes
- In known diabetics for a variety of reasons:
 - Poor compliance with insulin therapy
 - Intercurrent illness
 - Recreational drugs, eating disorder
 - 30-40% cases ???

The cardinal biochemical features

 Hyperketonaemia – glucose and ketones in urine; fingerprick blood ketones > 3 mmol/l

Metabolic acidosis – pH < 7.3;
 bicarbonate < 15 mmol/l

Hyperglycaemia > 11 mmol/l

Mechanism

- Absolute lack of insulin + corresponding excess of glucagon →
 - ↑ release of glucose by the liver (from glycogen through gluconeogenesis) + renal gluconeogenesis
 - — ↑ Catabolic hormones, fatty acids → tissue insulin resistance
- Osmotic diuresis (glucose + Na, K)
- ⇒ Significant dehydratation

Mechanism (2)

- FFA (Free Fatty Acids) the principal substrate for hepatic ketogenesis
- In DKA, the hormonal imbalance favours entry of FFA into mitochondria and the preferential formation of ketone bodies
 - Acetoacetate (acetone is formed by the spontaneous decarboxylation of acetoacetate, does not contribute to metabolic acidosis)
 - 3-hydroxybutyrate
 - An energy source for the brain

Mechanism (3)

- The body initially buffers this with the bicarbonate buffering system, but this is quickly overwhelmed
 - → other mechanisms (hyperventilation) compensate
- Ketones participate as well in osmotic diuresis, further Na, K loss.
- ⇒ A total body water shortage of about 6 I (100 ml/kg) + substantial losses of Na, K, Cl, phosphate, Mg, Ca

Prevention

"Sick day rules"

Signs and symptoms

- The symptoms usually evolve over the period of about 24 hours.
- Nausea, vomiting
- Pronounced thirst
- Excessive urine production
- Abdominal pain (particularly in the young)
- In severe DKA Kussmaul respiration
 - Confusion, letargy, stupor, even coma

Physical examination

- Dehydratation
 - If profound → ↓ in the circulating blood volume → tachycardia, low blood pressure
- A ketotic odour "fruity", like the smell of pear drops
- ↑ respiratory rate (if Kussmaul respiration present)
- The abdomen may be tender
- (Non-specifially ↑ serum transaminases, creatine phosphokinase)

Initial management

DKA – stages of severity according to ADA (2006, for adults)

Mild

pH: 7.25-7.3, serum bicarbonate 15-18 mmol/l,
 the patient is alert

Moderate

pH: 7.0-7.25, serum bicarbonate 10-15 mmol/l, mild drowsiness

Severe

 pH below 7.0, bicarbonate below 10 mmol/l, stupor or coma may occur

Anion gap

 DKA usually presents with an anion gap acidosis (typically 25-35 mmol/l):

sodium – (chloride+bicarbonate) > 15 mmol/l

Causes of anion gap acidosis

- Ketoacidosis
 - Diabetic
 - Alcoholic
- Lactic acidosis
- Chronic renal failure
- Drug toxicity
 - Methanol (metabolized to formic acid)
 - Ethylene glycol (to oxalic acid)
 - Severe salicylate poisoning

Management

The main aims in the treatment of DKA replaining the lost of fluids and electrolytes while suppressing hyperglycaemia and ketone production with insulin.

Management (2)

Regular checking of many parameters

ICU may be necessary

- A urinary catheter if oliguric
- A cardiac monitor if hyperkalaemia
- A nasogastric tube if a reduced consciousness

Average electrolyte def.in adults with DKA

Electrolyte	Deficit (mmol)	
Sodium	500	
Chloride	350	
Potassium	300 - 1000	
Calcium	50 – 100	
Phosphate	50 – 100	
Magnesium	25 - 50	

Acidosis + insulin deficiency + renal impairment →
plasma potassium levels usually N/high at presentation
However – potassium concentration will fall during treatment
(insulin → redistributing potassium into cells).

Initial fluid replacement

Fluid	Rate (ml/hr)	Time (hrs)
0.9% NaCl	1000	1
0.9% NaCl + KCl	500	2
0.9% NaCl + KCl	500	2
0.9% NaCl + KCl	250	4
0.9% NaCl + KCl	250	4
0.9% NaCl + KCl	250	4
0.9% NaCl + KCl	125	8
Total	71	25

Insulin

Guidelines bias but

- 1. The potassium level must be known.
- 2. Start with fluids and after 1 hr insulin to reduce the risk of cerebral oedema
- 3. 0.1 IU/kg bolus (6 IU/hr and later switch to 3 IU/hr)
- 4. Bellow 14 mmol/l (glycaemia) start glucose/K/insulin infusion
- 5. Transfer to insulin s.c.

Varia

- The most dangerous complication of DKA is cerebral oedema.
- Bicarbonate???
- During treatment of DKA ↑ 3-hydroxybutyrate → acetoacetate (cave nitroprusside-based urine tests)
- Re-education, specific groups eldery patient, adolescents...

HYPEROSMOLAR HYPERGLYCAEMIC SYNDROME

HHState (ADA)

 DM2, much less common than DKA, a much higher mortality rate

- Hyperglycaemia, often > 50 mmol/l
- Profound dehydratation (serum osmolarity > 350 mOsmol/l)+ pre-renal uremia
- ↓ Consciousness

Lipolysis suppressed

HHS usually precipitated by acute illness...

The absence of vomiting

Neurological signs, including focal signs

 Total body sodium reduced, plasma concentration at presentation N/low/high

- Isotonic saline is preferred.
- Thromboembolic complications, subsequent antidiabetic treatment

LACTIC ACIDOSIS

INTERNÍ KLINIKA
FAKULTNÍ NEMOCNICE V MOTOLE
UNIVERZITA KARLOVA 2. LF

Lactate > 5 mmol/l + serum pH < 7.35

- Raised lactate levels are indicative of tissue hypoxia, hypoperfusion and possible damage.
- If the oxygen supply inadequate, the mitochondria are unable to continue ATP synthesis at a rate sufficient to supply the cell with reguired ATP → glycolysis is increased to provide additional ATP, and the excess pyruvate

→ lactate

But binding protons resulting from ATP hydrolysis
 → proton concentration rises and causes an acidosis

 Lactate is a good marker of hypoxia, but itself is not the cause of the low pH

Signs

Deep and rapid breathing

Vomiting

Abdominal pain

The Cohen-Woods classification

Type A: decreased perfusion or oxygenation

- Type B:
 - B1 underlying diseases (sometimes causing type A)
 - B2 medication/intoxication
 - B3 inborn error of metabolism

Hyperlactataemia in DKA (10-15%)

- Biguanides
 - Phenformin

 The generally poor prognosis (an exception after generalized epileptic convulsions) due to usually serious cause of MA

Bicarbonate ???

HYPOGLYCAEMIA

Causes

- In DM patients
 - Insulin
 - Insulin secretagogues

Symptoms and signs

- Autonomic (adrenergic): tremor, sweating, anxiety...
 - Earlier than the level at which cerebral function becomes impaired

- Neuroglycopenia (below 2.7 mmol/l)
- Non-specific: hunger, weakness, blurred vision

Clinically hypogl.may be graded:

- Grade 1 Biochemically confirmed but the absence of symptoms
- Grade 2 Mild symptomatic successfully treated by the patient
- Grade 3 Severe asssistance required
- Grade 4 very severe → coma/convulsions

Hierarchy of hormonal response to acute hypoglycaemia

Blood glucose (mmol/l)

 Failure of counter-regulatory hormone responses predisposes to severe recurrent hypoglycaemia.

- Hypoglycaemia unawareness
 - Long-standing DM1
 - Who attempt to maintain glucose levels close to normal range.
 - Alcohol!!!
 - Beta-blockers

Driving

- Nocturnal hypoglycaemia
 - "Dead in bed syndrome"

CGM (Continuous Glucose Monitoring)

Treatment and prevetion

- Grade 1 2 : 15-20 g of carbs (glucose bonbons etc.)
- Grade 3 4

Glucagen Hypokit