Case reports

MUDr. Ing. Magdaléna Fořtová, Ph.D. MagdalenaFortova@seznam.cz

Department of Medical Chemistry and Clinical Biochemistry, Charles University, 2nd Faculty of Medicine and University Hospital Motol

Patient 1

Middle-aged man

- The patient was found at the sidewalk in the snow at about 6 am, he was very confused, he didn't know what had happened.
- He was slightly supercooled (35.5 °C),
 SpO₂ 94 %, pulse: 96/min, blood pressure: 150/88.
- He was transported using fast rescue service to University Hospital Motol.

blood collection time: 6:48 SAMPLE 1

Hb	144,0	[*]	g/l	Ref. meze 132,0-173,0
Vodivost/Fotometrie Nova SP CCX Hct	45	[*]	%	39-49
Konduktometrie Nova SP CCX 81135 Sodný kation	142	[*]	mmol/l	137-146
Potenciometrie Nove SP CCX 51145 Draselný kation Potenciometrie Nove SP CCX	2,9	*[]	mmol/l	3,8-5,0
31157 Chloridy Potenciometrie Nova SP CCX	109	[]*	mmol/l	97-108
1141 Ca++ - norm.	1,17	[*]	mmol/l	1,13-1,32
Potenciometrie Nova SP CCX 1155 Glukóza	11,13	[]*	mmol/l	3,30-5,80
Amperometric Neva SP CCX 1137 Močovina	3,9	[*]	mmol/l	2,8-8,0
Potenciometrie Nova SP CCX FIO2	20,90		%	

blood collection time: 7:26 SAMPLE 2

Chylózní vzorek	+			Ref. meze
SIIII ALT	3,24	[]*	ukat/l	0,17-0,78
Modifikovaná IFOC metodo při 37°C 31153 GGT (GMT)	0,84	[*]	ukat/l	0,14-0,84
IFCC metoda při 37°C B1121 Bilirubin celkový Vanadátová metoda	3,7	[*]	umol/l	2,0-17,0
S-KREA 1169 Kreatinin	116	[]*	umol/l	55-96
eGFR-krea-(CKD-EPI)	1,17		ml/s/1,73 m2	
1125 Celková bílkovina	67,0	[*]	g/I	65,0-85,0
Biuretová metoda 21153 CRP-HS Imunoturbidimetrie	1,3	[*]	mg/l	0,0-5,0
7111 Separace séra	1x			

Blood collection time:

10:00

SAMPLE 3

			NAME OF TAXABLE PARTY.			Ref. meze
81135	Sodný kation ISE - s ředěním	136	*[]	mmol/l		137-146
81145	Draselný kation	3,5	*[]	mmol/l		3,8-5,0
81157	ISE - s ředěním Chloridy -	114	[]*	mmol/l		97-108
81141	ISE - s ředěním Ca++ - norm.	1,09	*[]	mmol/l		1,13-1,32
81465	ise Hořčík	0,85	[*]	mmol/l		0,66-0,91
81563	Kolorimetrická metoda s xylidilovou modří Osmolalita	336	[]*	mmol/kg	opakovaně	285-295
	Kryoskopie Osmolalita-počítaná	283	*[]	mmol/kg		285-295
81155	počítaná: 2*(Na)+p-Glu+Urea Glukóza v plazmě	7,0	[]*	mmol/I		3,3-5,8
81111	Metoda s HK					0,17-0,78
	Modifikovaná IFCC metoda při 37°C	2,89	[]*	ukat/l		200 600 2-80 6000
81153	GGT (GMT) IFCC metoda při 37°C	1,00	[]*	ukat/I		0,14-0,84
81165	Kreatinkináza Metoda při 37°C (NAC)	28,00	[]*	ukat/I	ředěno	0,41-3,24
81117	Amyláza IFCC metoda při 37°C	1,36	[*]	ukat/l		0,30-2,28
81121	Bilirubin celkový	5,9	[*]	umol/l		2,0-17,0
81123	Vanadátová metoda Bilirubin přímý	1,9	[*]	umol/l		0,0-5,1
81137	Vanadátová metoda Močovina	3,9	[*]	mmol/l		2,8-8,0
	Enzymová metoda s ureázou a GDH S-KREA					
81169	Kreatinin	77	[*]	umol/l		55-96
	Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	1,86		ml/s/1,73 m2		
	hs Tnl + delta	.,,				
81237	hs Troponin I	<2,0		ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
	Absolutní delta hs TnI	nelze spočítat				
	počítaná hodnota Relativní delta hs TnI počítaná hodnota	nelze spočítat				
93135	Myoglobin Imunoturbidimetrie	1596,0	[]*	ug/l	ředěno	23,0-72,0
81125	Celková bílkovina	55,6	*[]	g/l		65,0-85,0
91153	Biuretová metoda CRP-HS	1,2	[*]	mg/l		0,0-5,0
91481	Imuncturbidimetrie Prokalcitonin	0,12	[*]	ug/l		0,00-0,50
97111	ECLIA Cobas 6000 (e601) Separace séra	1x				
~ 1 + + +	ocparace sera	1.4				

Questions A

• What findings from "Sampling 3" could be related to a life-threatening condition?

• Try a differential diagnostic analysis of the causes of these findings.

Blood collection time:

10:00

SAMPLE 3

81135	Sodný kation	136	*[]	mmol/l		Ref. meze 137-146
	ISE - s ředěním Draselný kation	3,5	*[]	mmol/I		3,8-5,0
	ISE - s ředěním Chloridy -	114	[]*	mmol/l		97-108
	ISE - s ředěním Ca++ - norm.	1,09	*[]	mmol/l		1,13-1,32
	ISE Hořčík	0,85	[*]	mmol/l		0,66-0,91
	Kolorimetrická metoda s xylidilovou medží Osmolalita	336	[]*	mmol/kg	opakovaně	285-295
8	Kryoskopie		11.50.5		opakovarie	285-295
	Osmolalita-počítaná	283	*[]	mmol/kg		Mariana Reserva
	Glukóza v plazmě Metoda s HK	7,0	[]	mmol/l		3,3-5,8
81111	ALT Modifikovaná IFCC metoda při 37°C	2,89	[]*	ukat/I		0,17-0,78
81153	GGT (GMT)	1,00	[]*	ukat/l		0,14-0,84
81165	Kreatinkináza	28,00	[]*	ukat/l	ředěno	0,41-3,24
81117	Amyláza IFCC metoda při 37°C	1,36	[*]	ukat/l		0,30-2,28
81121	Bilirubin celkový	5,9	[*]	umol/l		2,0-17,0
81123	Vanadátová metoda Bilirubin přímý	1,9	[*]	umol/l		0,0-5,1
81137	Vanadátová metoda Močovina	3,9	[*]	mmol/l		2,8-8,0
	Enzymová metoda s ureázou a GDH S-KREA					
81169	Kreatinin Enzymová kolorimetrická metoda	77	[*]	umol/l		55-96
	eGFR-krea-(CKD-EPI)	1,86		ml/s/1,73 m2		
0100	hs Tnl + delta	-0.0		/I	out off AIM: M: 240. 7. 450	0,0-34,2
81237	hs Troponin I	<2,0		ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
	Absolutní delta hs Tnl	nelze spočítat				
	Relativní delta hs Tnl	nelze spočítat				
93135	Myoglobin	1596,0	[]*	ug/l	ředěno	23,0-72,0
81125	Celková bílkovina Biuretová metoda	55,6	*[]	g/l		65,0-85,0
91153	CRP-HS	1,2	[*]	mg/l		0,0-5,0
91481	Imunoturbidimetrie Prokalcitonin	0,12	[*]	ug/l		0,00-0,50
97111	ECLIA Cobas 6000 (e601) Separace séra	1x				

Substances that increase osmolality above 3 mmol/kg water at a potentially lethal dose

Substance	Potentially lethal concentration (mg/l)	Osmolal gap (mmol/kg of water)
etanol	3500	81
etyléter	1800	70
izopropanol	3400	60
metanol	800	27
aceton	550	10
trichloretan	1000	4
paraldehyd	500	4
etylenglykol	210	3,4
chloroform	390	3,4

(Weiss, 1988)

Osmolal gap in the case of our patient: **53 mmol/kg**, osmolality is most increased by ethanol, which is also the most common cause of this condition.

In addition, ethanol could be smelled from our patient's breath

Osmolal gap

Osmolal gap: 53 mmol / kg

1g of ethanol in 1L of plasma (i.e. 1 promile) increases osmolality by about 23 mmol / kg

 $P(Ethanol) = OsmGap \times 0.0429 (g/L, promile)$

 $53 \times 0.0429 = 2.2737 \% 4 \text{ hours after}$ finding the patient

 $P(Ethanol) = OsmGap \times 0.9457 (mmol/L)$

 $53 \times 0.9457 = 50.1221 \text{ mmol/L}$

Answers A:

- The difference between osmolalities cryoscopically measured and calculated according to the formula (2x [Na +] + [glucose] + [urea]) > 10 mmol / kg indicates the presence of osmotically active solutes (mostly pathological, in a smaller number of therapeutically administered).
- High levels of creatine kinase (CK) and myoglobin indicate significant skeletal muscle damage. Acute myocardial infarction can be ruled out due to the negative finding of hsTroponin I, hsTnI (if it was an AMI, hsTnI would also be increased at the time of CK increase).

6:48

- The patient (35 years old) is better oriented, says that he was drinking hard alcohol all night (whiskey - 1-2 bottles) + he was smoking marijuana.
- He then quarreled with his girlfriend.
- With the cry "I am the Devil" he jumped out of the window (3rd floor).

Sample 2 with the uncovered ethanol test result (in 7:26)

				Ref. meze
Chylózní vzorek 81723 Ethanol	64,46		mmol/l 2,9 %o	
81111 ALT	3,24	[]*	ukat/l	0,17-0,78
Modifikovaná IFCC metoda při 37°C 81153 GGT (GMT)	0,84	[*]	ukat/l	0,14-0,84
IFCC metoda při 37°C 81121 Bilirubin celkový Vanadátová metoda	3,7	[*]	umol/l	2,0-17,0
S-KREA 81169 Kreatinin Enzymová kolorimetrická metoda	116	[]*	umol/l	55-96
eGFR-krea-(CKD-EPI)	1,17		ml/s/1,73 m2	
81125 Celková bílkovina	67,0	[*]	g/I	65,0-85,0
Biuretová metoda 91153 CRP-HS Imunoturbidimetrie	1,3	[*]	mg/l	0,0-5,0
97111 Separace séra	1x			

→ 1.5 h after finding the patient: 2.9 ‰ ethanol

Questions B

• In "Sample 1", try to explain the cause of **hypokalemia and hyperglycemia**.

• In "Sample 2", try to explain the cause of increased creatinine and ALT.

blood collection time: 6:48 SAMPLE 1

Hb	144,0	[*]	g/l	Ref. meze 132,0-173,0
Vodivost/Fotometrie Nova SP CCX Hct	45	[*]	%	39-49
Konduktometrie Nova SP CCX 81135 Sodný kation	142	[*]	mmol/l	137-146
Potenciometrie Nove SP CCX 51145 Draselný kation Potenciometrie Nove SP CCX	2,9	*[]	mmol/l	3,8-5,0
31157 Chloridy Potenciometrie Nova SP CCX	109	[]*	mmol/l	97-108
1141 Ca++ - norm.	1,17	[*]	mmol/l	1,13-1,32
Potenciometrie Nova SP CCX 1155 Glukóza	11,13	[]*	mmol/l	3,30-5,80
Amperometric Neva SP CCX 1137 Močovina	3,9	[*]	mmol/l	2,8-8,0
Potenciometrie Nova SP CCX FIO2	20,90		%	

blood collection time: 7:26 SAMPLE 2

Chylózní vzorek	+			Ref. meze
SIIII ALT	3,24	[]*	ukat/l	0,17-0,78
Modifikovaná IFOC metodo při 37°C 31153 GGT (GMT)	0,84	[*]	ukat/l	0,14-0,84
IFCC metoda při 37°C B1121 Bilirubin celkový Vanadátová metoda	3,7	[*]	umol/l	2,0-17,0
S-KREA 1169 Kreatinin	116	[]*	umol/l	55-96
eGFR-krea-(CKD-EPI)	1,17		ml/s/1,73 m2	
1125 Celková bílkovina	67,0	[*]	g/I	65,0-85,0
Biuretová metoda 21153 CRP-HS Imunoturbidimetrie	1,3	[*]	mg/l	0,0-5,0
7111 Separace séra	1x			

Answers B:

- Possible causes of hypokalaemia (2.9 mmol/L): exposure to ethanol and marijuana
- Ethanol reduces ADH secretion and has a diuretic effect, high serum concentration may cause electrolyte imbalance (e.g. hypokalaemia, hypophosphataemia, hypomagnesaemia)
- <u>Cannabinoids</u> (especially synthetic) can cause tachycardia, palpitations, chest pain, nausea, agitation and hypokalaemia (caused by the transfer of potassium into the cells, potentiated by an excessive supply of carbohydrates together with cannabinoids).

Answers B:

- Possible causes of hyperglycaemia (11.13 mmol/L):
 - The consequence of alcohol consumption can be ruled out because the patient drank distillate. This could only be a compensatory response to significant hypoglycaemia.
 - Consequence of the stress reaction of the organism:
 increase of corticoids, catecholamines
 - Diabetes mellitus (DM):
 - The patient was probably not hungry. The blood glucose value exceeded 11 mmol/L, which is the diagnostic value for DM. If the patient shows clinical symptoms (eg polyuria, polydipsia, etc.), dg DM is very likely. The diagnosis should be confirmed by fasting glucose, the value should be ≥ 7.0 mmol/L. Furthermore, we could supplement the examination of glycated hemoglobin HbA_{1c}, the value of ≥ 48 mmol/mol indicates DM.
 - → dg DM or impaired glucose tolerance in the patient is likely (later impaired glucose tolerance confirmed)

The effect of alcohol on glycaemia

- It depends on what kind of alcohol it is and how much carbohydrate it contains.
- Beer contains carbohydrates (malt sugar) and increases blood glucose, sweet and semi-sweet wines also increase blood glucose (contain sugar).
- Dry wine and spirits can lower blood glucose (do not contain carbohydrates). This is because such alcohol is generally preferentially metabolized in the liver and prevents the breakdown of insulin (also in the liver). Insulin works longer in the body and may cause severe hypoglycaemia. Furthermore, alcohol prevents the breakdown of glycogen in the liver, so there is no normalization of glycaemia.

Answers B:

- Possible causes of increased creatinine (116 μmol/L):
 - In the patient: > 20-times increased serum myoglobin (above the upper limit of the reference range). Free myoglobin from the bruised muscles is filtered by the glomeruli (which can even directly clog) and causes obturation in the tubules by peeling tubular cells that are overfilled with resorbed myoglobin. Impairment of renal function (acute renal failure) may be the result.
 - Alcohol has a significant diuretic effect, and dehydration of the patient may also have contributed to an increase in creatinine.

Answers B:

• Possible causes of elevated ALT (3.24 ukat /L):

- ALT is found mostly in the liver, in other organs (skeletal muscle, myocardium and others) the activity is lower, in contrast to AST located only in the cytoplasm.
- The increase in ALT is most often caused by liver damage, in the case of our patient it could also be related to alcoholic excess (in this case, the increase together with AST is usually up to twice the upper limit of the reference range). GGT would probably also increase (due to release from bile duct cell membranes; significant increase in GGT about 5-10 times or more in chronic alcohol use due to induction of increased synthesis in damaged hepatocytes during adaptation to alcohol). A slight increase in ALT (along with AST) may also be associated with obesity (which was not the case in our patient).
- In our patient, GGT is still in the reference range (at the upper limit, chronic alcohol abuse can be ruled out)
 AST (in further sampling) is also increased... 3.97 ukat /L.
- The increase in ALT probably occurred due to <u>massive skeletal</u> <u>muscle damage</u> (but for muscle damage, an increase in AST is more typical), the effect of alcohol is also involved

urine collection time: 7:29

Poznámka k materiálu: Masivní nález ery - sediment	nelze hodnotiti!		
			Ref. meze
Moč chemicky			
81325 Spec. hmotnost	1,027	kg/l	
рН	5,0		
Leukocyty	4		
Nitrity	1		
Bílkovina	3		
Glukóza	1		
Ketolátky	1		
Urobilinogen	1		
Bilirubin			
Kyselina askorbová			
Barva	červená		
Zákal	lehce zakalená		
Krev	3		
Elementy v moči			
Erytrocyty	20702	[]* částic/ul	0-10

Questions C

- Try to interpret the patient's urinary finding.
- Try to explain the finding that a patient with the same medical history would have almost all results physiological (including a urinary erythrocyte test) and the only pathological result would be a positive blood test (and possibly a slightly elevated protein).

Answers C:

- Significantly elevated leukocytes, protein, blood, erythrocytes and positive nitrites, indicate a <u>urinary tract infection</u> (Positive erythrocytes and blood could also indicate urinary tract injuries due to a patient's fall...)
- <u>Positive glucose</u> is consistent with dg DM or impaired glucose tolerance, the finding could also be due to damage to renal tubular cells by myoglobin..
- <u>Positive ketones</u> probably after alcohol excess (other options-DM or starvation are less likely).
- If the patient was **positive only for a blood test (not erythrocytes in the urinary elements) and has slightly increased proteinuria, it would be due to myoglobinuria,** because myoglobin (as well as hemoglobin) catalyzes the oxidation of some substrates (e.g. benzidine derivatives, aminophenazone) by hydrogen peroxide (= method for the determination of hemoglobin).

- 8:00
- CT scan was performed:
- Aortic rupture / dissection at the aboral end of the aortic arch with slight leakage of contrast medium
- Contusion changes of pulmonary parenchyma right basal
- Fracture of the right hip bone without dislocation
- Shattering fracture of pubic bone, including both arms
- Interventional radiologists have indicated <u>urgent</u> <u>introduction of stent graft</u>
- Performance was without complications
- From the traumatological point of view, fractures were not indicated for surgical treatment, gradual rehabilitation was recommended

Next steps:

- Repeated psychiatric and psychological examinations
- Intensive rehabilitation, crutches verticalization in about 3 weeks
- A month after the event, transport to the Psychiatric Hospital Bohnice

Patient 2

4.5-year-old boy

- Current disease: from the morning he breathed more, coughed a little, in the afternoon the mother noticed accelerated breathing (respiratory rate 38 /min), BT 36.8 °C
- Medical history: up to 4 years of age he was almost healthy (only 6th childhood disease and 1x tonsillitis), then increased morbidity - 2x obstructive bronchitis, 1x tonsillitis, 1x laryngitis, viral pneumonia 2 months ago
- Due to the anamnesis, the boy was examined in the evening at the emergency of the Motol University Hospital
- Pulse 162/min, BP 110/60, RR 40/min, Sat.O₂ 93–94 %

4.5-year-old boy

Blood collection time: 23:30

81585 pH Potenciometrie Nova SP CCX	7,424	[*]		Ref. meze
pCO2	3,91	*[]	kPa	4,80-6,14
Potenciometrie Nova SP CCX pO 2	8,37	*[]	kPa	9,50-14,00
Amperometrie Nova SP CCX akt. HCO3	19,8	*[]	mmol/l	21,0-26,0
BE	-4.7	*[]	mmol/l	-2,3-2,3
BB			mmol/l	42,1-53,9
Satur. HbO2				92,0-98,0
Satur. FIDOZ Fotometrie Nova SP CCX	92,6	IJ	70	92,0-98,0
Hb	117,0	[*]	a/l	110,0-150,0
Vodhost/Fotometrie Nova SP CCX	117,0	LJ	g/i	110,0 100,0
Hct	25	[*]	0/.	33-41
Konduktometrie Nova SP CCX	33	LJ	70	33 11
81135 Sodný kation	141	[*]	mmol/l	137-146
Potenciometrie Nova SP CCX	141	LJ	TITITO!/I	207 210
81145 Draselný kation	3,9	[*]	mmol/l	3,6-5,9
Potenciometrie Nova SP CCX	3,3	LJ	TITTO//I	3,0 3,3
81157 Chloridy	100	[*]	mmol/l	95-110
Potenciometrie Nova SP CCX	103	LJ	TITITO!/I	30 223
81141 Ca++ - norm.	1 21	[*]	mmol/l	1,20-1,38
Potenciometrie Nova SP CCX	1,31	LJ	TITITO!/I	1,20 1,80
8115 5 Glukóza	C AC	[]*	mmol/l	3,30-5,80
Amperometrie Nova SP CCX	0,40	LI	HIHOW1	0,00 0,00
81171 Laktát	1,80	[*]	mmol/l	0,56-2,25
Amperometrie Nova SP CCX	1,00	LI	HIHOW1	5,55 2,25
Temp P	37,5		°C	
•			_	
FIO2	20,90		%	

 What is the problem with an acid base balance (taking into account laboratory and clinical findings)?

			Ref. meze
81585 pH	7,424	[*]	7,360-7,440
Potenciometrie Nova SP CCX	2.04 *	[]	
pCO2 Potenciometrie Nova SP CCX	3,91	[] kPa	4,80-6,14
pO 2	8 37 *	[] kPa	9,50-14,00
Amperometrie Nova SP CCX	0,51	L1 Ki u	
akt. HCO3	19,8 *	[] mmol/l	21,0-26,0
BE	-4,7 *	[] mmol/l	-2,3-2,3
BB	43,1	[*] mmol/l	42,1-53,9
Satur. HbO2	92,6	[*] %	92,0-98,0
Fotometrie Nova SP CCX		r*1	
Hb Vodkost/Fotometrie Nova SP CCX	117,0	[*] g/l	110,0-150,0
Hct	35	[*] %	33-41
Konduktometrie Nova SP CCX	33	[] /0	
81135 Sodný kation	141	[*] mmol/l	137-146
Potenciometrie Nova SP CCX		F*1	
81145 Draselný kation Potenciometrie Nova SP CCX	3,9	[*] mmol/l	3,6-5,9
8115 7 Chloridy	109	[*] mmol/l	95-110
Potenciometrie Nova SP CCX	103	[] [[[[[[[[[[[[[[[[[[
81141 Ca++ - norm.	1,31	[*] mmol/l	1,20-1,38
Potenciometrie Nova SP CCX		F 30	
8115 5 Glukóza	6,46	[]* mmol/l	3,30-5,80
Amperometrie Nova SP CCX 81171 Laktát	1,80	[*] mmol/l	0,56-2,25
Amperometrie Nova SP CCX	1,00	[] IIIIIOM	-,
TempP	37,5	°C	
FIO2	20,90	%	

It is a **respiratory alkalosis** due to hypoxemic (partial) respiratory insufficiency (type I) with a decrease in pO2 and pCO2 (due to hyperventilation) completely compensated by the kidneys.

Later, viral pneumonia with an uncomplicated course developed.

Patient 3

71-year-old woman

- Patient with long-term nicotine abuse (25-40 cig./day) examined on urgent admission for progressive dyspnea
- She was examined in a pulmonary clinic a few years ago, then she did not go there
- The general practitioner sometimes prescribes beta-mimetics to temporarily improve her breathing
- Objectively: oriented, cooperating, plethoric appearance, obesity
- BP 170/90, pulse 100/min, Sat.O₂ 74 %, mild tachypnoea, BT 36,8 °C
- Emphysematous position of the chest, bilaterally with wheezing and basally crepitation, regular heart rate, slightly accelerated
- Abdomen above the level, anasarca, suspected ascites, lower limbs with diffuse solid swelling

71-year-old woman

Blood collection time: 10:00

81585 pH Potenciometrie Nova SP CCX pCO2	7,303 7,31		kPa	Ref. meze 7,360-7,440 4,40-5,73
Potenciometrie Nova SP CCX PO 2 Amperometrie Nova SP CCX	6,61	*[]	kPa	9,50-14,00
akt. HCO3 BE BB Satur. HbO2	0,9	[*] [*]	mmol/l mmol/l mmol/l %	18,4-26,0 -2,3-2,3 44,0-53,0 92,0-98,0
Fotometrie Nova SP CCX Hb Vodivosti Fotometrie Nova SP CCX	177,0	[]*	g/l	117,0-155,0
Hct Konduktometrie Nova SP CCX	54	[]*	%	35-45
81135 Sodný kation Potenciometrie Nova SP CCX	134	*[]	mmol/l	137-144
81145 Draselný kation Potenciometrie Nova SP CCX	5,2	[*]	mmol/l	3,9-5,3
8115 7 Chloridy Potenciometrie Nova SP CCX	106	[*]	mmol/l	98-107
81141 Ca++ - norm. Potenciometrie Nova SP CCX	1,16	[*]	mmol/l	1,16-1,29
8115 5 Glukóza Amperometrie Nova SP CCX	6,70	[]*	mmol/l	4,60-6,40
8117 1 Laktát Amperometrie Nova SP CCX	2,00	[*]	mmol/l	0,50-2,00
8113 7 Moč ovina Potenciometrie Nova SP CCX	4,2	[*]	mmol/l	2,9-8,2
FIO2	20,90		%	

Further examination

Transthoracic echo: **significant dilatation of hypertrophic right ventricle and its syst. dysfunction**, mild left ventricular hypertrophy

Chest X ray: Lungs airy, without foci and infiltrations, with accentuated vascular drawing. **Heart magnified.** The lung base on the right is obscured by a **small amount of fluid.**

				Ref. meze
Hemolýza	++			
81111 ALT Modifikovaná IFCC metoda při 37°C	0,18	[*]	ukat/l	0,10-0,63
81153 GGT (GMT) IFCC metoda při 37°C	0,47	[*]	ukat/l	0,15-0,92
81121 Bilirubin celkový Vanadátová metoda	18,3	[*]	umol/l	3,0-19,0
S-KREA				
81169 Kreatinin Enzymová kolorimetrická metoda	61	[*]	umol/l	42-80
eGFR-krea-(CKD-EPI)	1,46		ml/s/1,73 m2	
81731 NT - proBNP ECLIA Cobas 6000 (e601)	6133,0	[]*	ng/l	20,0-125,0
81125 Celková bílkovina	65,3	[*]	g/l	62,0-77,0
91153 CRP-HS	3,5		mg/l	0,0-5,0
97111 Separace séra	1x			

 What is the problem with an acid base balance (taking into account laboratory and clinical findings)?

Explain other pathological findings.

		÷r 1		Ref. meze
8 <mark>1585 pH</mark>	7,303	^[]		7,360-7,440
Potenciometrie Nova SP CCX pC O 2 Potenciometrie Nova SP CCX	7,31	[]*	kPa	4,40-5,73
pO 2 Amperometrie Nova SP CCX	6,61			9,50-14,00
akt. HCO3	27.4	[]*	mmol/l	18,4-26,0
BE	0,9	[*]	mmol/l	-2,3-2,3
BB	48,7	[*]	mmol/l	44,0-53,0
Satur. HbO2 Fotometrie Nova SP CCX	79,4	*[]	%	92,0-98,0
Hb	177,0	[]*	g/l	117,0-155,0
Vodivost/Fotometrie Nova SP CCX Hct Kondonometrie Nova SP CCX	54	[]*	%	35-45
8113 5 Sodný kation Potenciometrie Nova SP CCX	134	*[]	mmol/l	137-144
81145 Draselný kation Potenciometrie Nova SP CCX	5,2	[*]	mmol/l	3,9-5,3
8115 7 Chloridy Potenciometrie Nova SP CCX	106	[*]	mmol/l	98-107
81141 Ca++ - norm. Potenciometrie Nova SP CCX	1,16	[*]	mmol/l	1,16-1,29
8115 5 Glukóza Amperometrie Nova SP CCX	6,70	[]*	mmol/l	4,60-6,40
81171 Laktát Amperometrie Nova SP CCX	2,00	[*]	mmol/l	0,50-2,00
8113 7 Moč ovina Potenciometrie Nova SP CCX	4,2	[*]	mmol/l	2,9-8,2
FIO2	20,90		%	

It is a **respiratory acidosis** due to hypoxemic-hypercapnic (global) respiratory insufficiency (type II) with **a decrease in pO₂ and an increase in pCO₂** due to hypoventilation partially compensated by the kidneys (retain HCO_3^-).

The patient was diagnosed with chronic obstructive pulmonary disease (COPD) with associated complications.

Secondary polycythemia (indicated by increased Hb and Hct) due to increased production of erythropoietin, which stimulates the bone marrow to increase red blood cell production = due to impaired oxygen supply to tissues.

High NT-proBNP = marker of heart failure (dg right heart failure is in accordance with the results of imaging methods and clinical manifestations).

- Diuretics with a negative fluid balance, control of the internal environment and potassium substitution (during diuretic therapy) were recommended for medication.
- Bronchodilator therapy was initiated.
- For hyposaturations, an oxygen test was added, a suitable O2 flow was 1 L / min (max 2 L / min).

 On the established diuretic therapy there was a regression of swelling of the abdomen and lower limbs, the diuretics were gradually reduced.

Patient 4

65-year-old man

- Examination at 13:45 at the urgent admission of the Motol University Hospital
- The patient woke up without difficulty in the morning of the day of admission.
- During the morning, he developed paresthesias of his fingertips on his left upper limb, gradually unable to fully lift the limb, scratching his face. He continued to function normally, tripping about his left lower limb about twice, so that he almost fell. At the casino, his friends told him he had a left corner of his mouth below.
- The patient negates the headache, visus is in the norm. The
 patient reports occasional stinging to the heart, which has been
 going on for a long time.
- The armor of the left hand has been repeated in the past 3 months, always disappearing.

65-year-old man Medical history

- Social history: he never worked, he lives with his 15-yearold son, he smokes 40 cigarettes a day and does not drink alcohol
- Past medical history: condition after coronary stent insertion 4 years ago, arterial hypertension
- He is taking antihypertensives, he doesn't know what, he
 was taking about 5 other drugs he received after the stent
 was inserted, he said: he hadn't taken them for at least
 a year he stopped.

65-year-old man

81585 pH	7,265	*[]		Ref. meze
Potenciometrie Nova SP CCX PC O 2 Potenciometrie Nova SP CCX	8,57	[]*	kPa	4,90-6,70
pO 2 Amperometrie Nova SP CCX	5,68	[*]	kPa	4,80-5,90
akt. HCO3	29,5		mmol/l	20,1-26,0
BE			mmol/l	-2,3-2,3
BB			mmol/l	44,0-53,0
Satur. HbO2 Fotometrie Nova SP CCX	68,2	*[]	%	70,0-80,0
Hb Vodhost/Fotometrie Nova SP CCX	167,0	[*]	g/l	132,0-173,0
Hct	51	[]*	%	39-49
Konduktometrie Nova SP CCX 81135 Sodný kation Potenciometrie Nova SP CCX	141	[*]	mmol/l	137-144
81145 Draselný kation Potenciometrie Nova SP CCX	4,7	[*]	mmol/l	3,9-5,3
8115 7 Chloridy Potenciometrie Nova SP CCX	106	[*]	mmol/l	98-107
81141 Ca++ - norm. Potenciometrie Nova SP CCX	1,23	[*]	mmol/l	1,16-1,29
8115 5 Glukóza Amperometrie Nova SP CCX	6,53	[]*	mmol/l	4,60-6,40
81171 Laktát Amperometrie Nova SP CCX	4,30	[]*	mmol/l	0,50-2,00
8113 7 Moč ovina Potenciometrie Nova SP CCX	8,2	[*]	mmol/l	2,9-8,2
FIO2	20,90		%	

Further examination

AngioCT of the brain: postischemic and postmalatic changes I.dx., without acute bleeding or expansion

ECG monitoring: accidentally detected **paroxysmal arrhythmia** – bigeminy

Chest X ray: Lungs airy, increased lung transparency, without foci and infiltrations. Heart unmagnified. **Conclusion: pulmonary emphysema**

Further examination

81111 ALT	0,39	[*]	ukat/l		Ref. meze
Modifikovaná IFCC metoda při 37°C 81153 GGT (GMT)	0,37	[*]	ukat/l		0,15-0,92
IFCC metoda při 37°C 81121 Bilirubin celkový Vanadátová metoda	8,0	[*]	umol/l		3,0-19,0
S-KREA	100	[]*	umol/l		55-96
Enzymová kolorimetrická metoda	103	LJ	umon		00 30
eGFR-krea-(CKD-EPI)	1,01		ml/s/1,73 m2		
hs Tnl + delta					
B1237 hs Troponin I	7,2	[*]	ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	nelze spočítat				
Relativní delta hs Tnl	nelze spočítat				
81125 Celková bílkovina Bluretová metoda	73,2	[*]	g/l		62,0-77,0
9115 3 CRP-HS	15,8	[]*	mg/l		0,0-5,0
97111 Separace séra	1x				
81611 Triacylglyceroly	2,21	[]*	mmol/l		0,40-1,98
81471 Cholesterol	4,6	[*]	mmol/l		3,4-5,0
HDL-CHOL					
81 47 3 HDL cholesterol	0,71	[]	mmol/l		0,72-2,53
non-HDL cholesterol	3,89	[]*	mmol/l		<3,80
81527 LDL cholesterol	3,49	[]*	mmol/l		1,50-3,00
93135 Myoglobin	80,8		ug/l		12,0-92,0
81731 NT - proBNP ECLIA C0088 6000 (e601)	456,5	[]*	ng/l		20,0-125,0

 What is the problem with an acid base balance (taking into account laboratory and clinical findings)?

Explain other pathological findings.

				Ref. meze
8158 <mark>5 pH</mark>	7,265	*[]		7,360-7,440
Potenciometrie Nova SP CCX				
pCO2	8,57	[]*	kPa	4,90-6,70
Potenciometrie Nova SP CCX				
pO2	5,68	[*]	kPa	4,80-5,90
Amperometrie Nova SP CCX	•			
akt. HCO3	29,5	[]*	mmol/l	20,1-26,0
BE	2,3	[*]	mmol/l	-2,3-2,3
BB	50.1	[*]	mmol/l	44,0-53,0
Satur. HbO2	68,2		%	70,0-80,0
Fotometrie Nova SP CCX	00,2	LJ	70	.2,2 25,5
Hb	167,0	[*]	g/l	132,0-173,0
VodNost/Fotometrie Nova SP CCX	101,0	LJ	9/1	
Hct	51	[]*	%	39-49
Konduktometrie Nova SP CCX			7.0	
81135 Sodný kation	141	[*]	mmol/l	137-144
Potenciometrie Nova SP CCX				
81145 Draselný kation	4,7	[*]	mmol/l	3,9-5,3
Potenciometrie Nova SP CCX	-,-			
81157 Chloridy	106	[*]	mmol/l	98-107
Potenciometrie Nova SP CCX				
81141 Ca++ - norm.	1,23	[*]	mmol/l	1,16-1,29
Potenciometrie Nova SP CCX	-,			
8115 5 Glukóza	6.53	[]*	mmol/l	4,60-6,40
Amperometrie Nova SP CCX				1
8117 1 Laktát	4,30	[]*	mmol/l	0,50-2,00
Amperometrie Ninus SP CCV	-			
81137 Močovina	8,2	[*]	mmol/l	2,9-8,2
Potenciometrie Nova SP CCX				
FIO2	20,90		%	

It is an examination of ABB from venous sampling (according to the reference range). It is a combined disorder - metabolic lactic acidosis (anaerobic glycolysis predominates in hypoxic brain tissue and lactate increases) and respiratory acidosis in COPD with CO₂ accumulation. The disorder is partially compensated by the kidneys.

Note:

In the case of a more extensive stroke with attenuation of the respiratory center, **respiratory acidosis** would be the result of the stroke.

Lactic acidosis can also occur in association with chronic lung disease due to tissue hypoxia.

The patient reported occasional "cardiac pricking", examined: **hsTnl and myoglobin**, these markers in the reference range, **AMI was excluded**. "Heart prickling" probably was due to the arrhythmia.

The patient was found to have elevated NT-proBNP, which could be related to cardiac failure in COPD (but the patient did not show clinical signs of heart failure and heart shadow was not dilated), this marker also increases with brain damage (subarachnoid hemorrhage, vasospasm, brain trauma, acute stroke)

increase in NT-proBNP probably mainly due to past acute ischemic stroke

- Patient hospitalized for 4 days, course without complications.
- He was given antiplatelet therapy (ASA, Clopidogrel), due to dyslipidemia he was given a statin (in increased doses - stricter criteria for high CV risk = secondary prevention).
- Cardiac examination was performed on an outpatient basis.

Patient 5

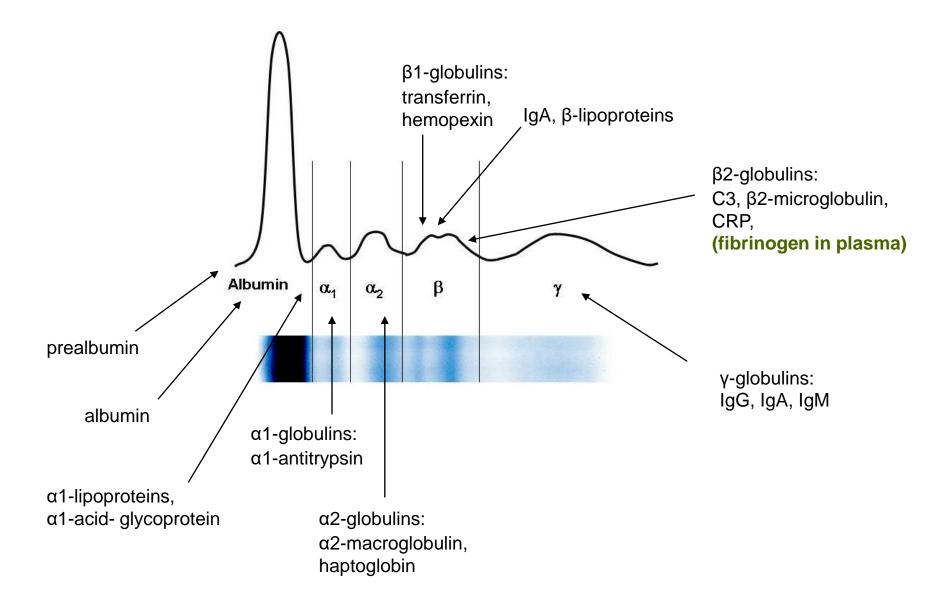
71-year-old patient

- Chief complaint: patient at cardiovascular risk (st.p. PCI RIA, st.p. AMI) admitted for elective coronary angiography for recurrence of exertional angina pectoris.
- Medical history: hypertension on therapy (Betaloc, Prestarium), dyslipidemia (statin), bladder cancer (4 years ago), extirpation cystoscopically + intravesically chemotherapy, recurrence (2 years ago)
- Echocardiogram: good systolic function of the left ventricle, without significant valve defect, borderline size of the left atrium

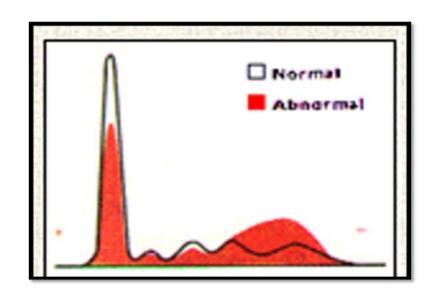
71-year-old patient

Subjectively:

- For the last month, the patient reports exertional chest pain. The pain behind the sternum does not radiate, once or twice the patient's fingers tingled.
- At the same time, the patient reports exertional dyspnea and negates it at rest. He must slow down / stop and the pain will subside within a few minutes.
- Syncopes, palpitations and claudications are negated by the patient.

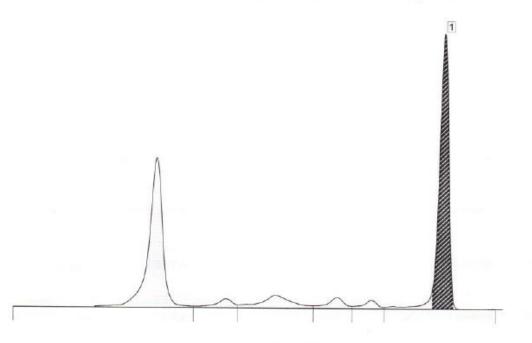

			Ref. meze
81593 Sodný kation	133	*[] mmol/l delta check: newýznamný	137-144
81393 Draselný kation	4,5	[*] mmol/l delta check: nevý=namný	3,9-5,3
81 46 9 Chloridy ISE - s regents	105	[*] mmol/l delta check: nevýznamný	98-107
81337 ALT Modifikovaná IFCC metoda při 37°C	0,46	[*] ukat/l delta check: nevýznamný	0,10-0,63
81 43 5 GGT (GMT) IFCC metoda při 37°C	0,36	[*] ukat/l delta check: newýznamný	0,15-0,92
81 62 1 Močovina Enzymová metoda s ureázou a GDH	7,3	[*] mmol/l delta check: newy=namný	2,9-8,2
S-KREA			
81499 Kreatinin Enzymová kolorimetrická metoda	81	[*] umol/l delta check: newýznamný	55-96
eGFR-krea-(CKD-EPI)	1,39	ml/s/1,73 m2	
81365 Celková bílkovina	114,5	[]* g/l ředěno	62,0-77,0
9115 3 CRP-HS	<0,5	mg/l	0,0-5,0
97111 Separace séra	1x		

WBC	•			-					*	3.5	x1 0^9/1	4.0-10.0
RBC				•	-				*	2.18	x10^12/1	4.00-5.80
HGB	•			•	-				*	77	g/1	135-175
HCT	-	•		•	•				*	0.225	1/1	8.400-0.500
MCV	•			•	•				*	103.2	<u>fl</u>	82.0-98.0
MCH	•	•		•				•	*	35.3	pg	28.0-34.0
MCHC		•			-		•			342.2	g/1	320.0-360.0
RDW		•		•	•	-	•	•	*	15.5	8	10.0-15.2
PLT	•	•			-		•			226	x10^9/1	150-400
MPV		•	•		-	-	•	•		10.4	fl	7.8-11.0
PCT	•	•			-		•			0.230	8	0.120-0.350
PDW		•	•		-	-	•	•		11.2	fl	9.0-17.0
NRBC		•		•	•				*	0.3	8	0.0-0.0
NRBC	#	•	•	•	-		•	•	*	0.010	x10^9/1	0.000-0.000
P-LC	R	•	•				•			26.9	8	15.0-35.0

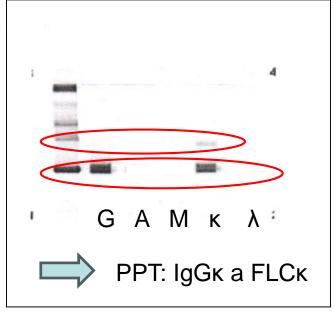

- Significant hyperproteinemia and leukopenia and severe anemia were accidentally detected in a cardiac patient in a laboratory finding.
- What diagnosis is likely, what else would you examine?

- The results indicate the presence of a pathological protein (paraprotein) in hematooncological disease.
- With such a significantly increased serum protein together with severe anemia, multiple myeloma is considered.
- We recommend supplementing the electrophoretic examination of serum proteins, determining the level of serum calcium, performing sternal puncture.
- In advanced disease, renal function may deteriorate (mainly due to tubulopathy), but creatinine and eGFR are currently normal.

Serum protein electrophoresis


β-γ bridging

Sample #: 34 Date: 16/1/2020


ID: 155977

Serum protein electrophoresis

Fractions	%		Ref. %	Conc.	Ref. Conc.
5941-Album	36,8	<	55,8 - 66,1	44,0	40,2 - 47,6
5942-Alp 1	2,8	<	2,9 - 4,9	3,3	2,1 - 3,5
5943-Alp 2	7,2		7,1 - 11,8	8,6	5,1 - 8,5
5944-Beta1	3,3	<	4,7 - 7,2	3,9	3,4 - 5,2
5945-Beta2	2,2	<	3,2 - 6,5	2,6	2,3 - 4,7
5946-Gamma	47,7	>	11,1 - 18,8	57,0	8,0 - 13,5

Peaks	%	g/l	
1	45.1	53.9	PPT v gamma

Ī	81593 Sodný kation	133	*[] mmol/l	137-144
	ise⊸s ředěním 81393 Draselný kation	4,4	delta check: nevýznamný [*] mmol/l	3,9-5,3
	ISE - s redenim 81469 Chloridy	111	delta check: nevýznamný []* mmol/l	98-107
	ISE-s ředěním 81625 Ca celkový	2,14	delta check: rmēna +6% od 15.01.2020 (105) [*] mmol/l	2,05-2,40
	Fotometrie s aršenazo III 81421 Alkalická fosfatáza	1,08	[*] ukat/l	0,88-2,35
	B135 7 AST	0,50	[*] ukat/l	0,16-0,63
	Modifikovaná IFCC metoda při 37°C 81337 ALT	0,46	[*] ukat/l	0,10-0,63
	Modifikovaná IFCC metoda při 37°C 81435 GGT (GMT)	0,35	delta check: nevýznamný [*] ukat/l	0,15-0,92
	B1345 Amyláza	0,90	delta check: nevýznamný [*] ukat/l	0,40-2,51
	B1481 Amyláza pankreat.	0,50	[*] ukat/l	0,22-0,88
	81361 Bilirubin celkový	5,1	[*] umol/l	3,0-19,0
	vanadátová metoda 81363 Bilirubin přímý	1,7	delta check: nevýznamný [*] umol/l	0,0-2,0
	Vanadátová metoda 81523 Kyselina močová	366	[*] umol/l	250-476
	Enzymová metoda s urikázou 81.62.1 Močovina	7,6	[*] mmol/l	2,9-8,2
	Enzymová metoda s ureázou a GDH S-KREA		delta check: nevýznamný	
	81 49 9 Kreatinin	85	[*] umol/l	55-96
	Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	1,31	delta check: nevý=namný ml/s/1,73 m2	
	81365 Celková hílkevina Blustevá metoda	119,6	j g/l ředěno delta check: nevymný	62,0-77,0
	CZE-ELFO bílkovin			
	81397 CZE-Albumin	0,368	*[] rel.j.	0,558-0,661
	CZE-Alfa 1		*[] rel.j.	0,029-0,049
	CZE-Alfa 2	0,072	[*] rel.j.	0,071-0,118
	CZE-Beta 1	0,033	*[] rel.j.	0,047-0,072
	CZE-Beta 2	0,022	*[] rel.j.	0,032-0,065
	CZE-Gamma	0,477	[]* rel.j.	0,110-0,188
	CZE-Mezifrakce 1	0,451	rel.j.	
	9199 7 Para protein	viz komentář, účtovat		
	91167 Free Kappa	2172,1	[]* mg/l	3,3-19,4
	91169 Free Lambda	3,4	*[] mg/l	5,7-26,3
	Kappa/Lambda	638,85	[]*	0,26-1,65
	9319 5 TSH	0,661	[*] mIU/I	0,350-4,800
	CMIA Centaur 9318 9 FT4	12,18	[*] pmol/l	11,50-22,70
	CMIA Centaur 97111 Separace séra	1x		
	•			
	Komentář:	500 // FIG.		
	JF: prokázán PPT typu IgG	kappa 53,9 g/l a FLC kapi	oa.	

Sternal puncture

Proven infiltration by tumor plasma cells. After consultation with a hematologist, the condition was classified as <u>multiple myeloma</u>. The plan is to start chemotherapy.

 Which (not very specific) tumor markers are used to monitor patients with hematooncological disease?

- Lactate dehydrogenase
- β2-microglobulin
- Ferritin

Selective coronarography

Conclusion: gross calcified wall changes on coronary arteries, stent in RIA without restenosis. A conservative approach was recommended.

Transthoracic echo

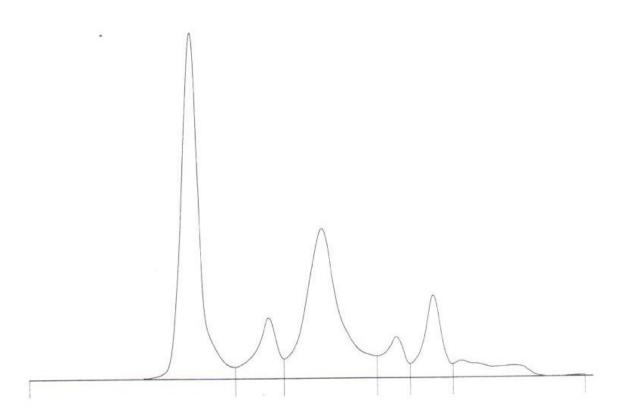
Conclusion: **left ventricular systolic dysfunction** with an ejection fraction of 40 % with acinesis of the apex and adjacent half of the anterosept, **thrombus in the apex of the left ventricle** 12 x 13 mm. Diastolic dysfunction grade 1.

			Ref. meze
Moč chemicky			
81325 Spec. hmotnost	1,010	kg/l	
pH	7,0		
Leukocyty	-		
Nitrity	-		
Bílkovina	1		
Glukóza	-		
Ketolátky	-		
Urobilinogen	Normal		
Bilirubin	-		
Barva	žlutá		
Zákal	průhledná		
Krev	2		
Elementy v moči			
Erytrocyty	842	[]* částic/ul	0-10
Leukocyty	6	[*] částic/ul	0-15
Dlaždicové epit.	0	[*] částic/ul	0-10

Conclusion:

- In the initial blood count, leukopenia and severe macrocytic hyperchromic anemia were substituted by three transfusions.
- Significantly increased level of total protein was found, IgG paraprotein at 53.9 g/L and free kappa chain was confirmed.
- Proven infiltration by tumor plasma cells. The condition was closed as <u>multiple myeloma</u>. The plan is to start chemotherapy.
- Echo of the heart was performed with the finding of systolic LV dysfunction with EF LV 40% with akinesia of the apex and adjacent anterosept, as well as a thrombus in the apex of the LV. Supplemented with SKG, without significant stenosis, stent in RIA without restenosis. Anticoagulant therapy LMWH started at a therapeutic dose.
- Microscopic hematuria was detected in the urine, early control was recommended for the possibility of recurrence of the bladder cancer.
- The patient was transferred to another ward for further care and chemotherapy.

Patient 6


51-year-old man

- The patient came up with acute difficulties.
- He was examined in detail, including serum protein electrophoresis.

 Interpret the electrophoreogram of serum proteins in the following image.

 Which clinical symptoms could correspond to this finding?

Serum protein electrophoresis

Fractions	%		Ref. %	Conc.	Ref. Conc.
5941-Album	39.7	<	55.8 - 66.1	13.86	40.20 - 47.60
5942-Alp 1	8.2	>	2.9 - 4.9	2.86	2.10 - 3.50
5943-Alp 2	32.4	>	7.1 - 11.8	11.31	5.10 - 8.50
5944-Beta1	5.1	857	4.7 - 7.2	1.78	3.40 - 5.20
5945-Beta2	9.3	>	3.2 - 6.5	3.25	2.30 - 4.70
5946-Gamma		<	11.1 - 18.8	1.85	8.00 - 13.50

- In the electrophoreogram we see mainly a low fraction of albumin, a high fraction of α2 and a low fraction of γ (both in relative and absolute values).
- The α2 fraction contains α2-macroglobulin, which due to its very high molecular weight (Mr 720,000) does not pass even through the damaged glomerular membrane.
- The finding is typical for nephrotic syndrome, where the massive loss of protein is caused by increased permeability of the glomeruli. The synthesis of liver proteins is increased, most proteins pass through the damaged glomerular membrane (and are lost), with the exception of the mentioned α2-macroglobulin (it accumulates). Lipoproteins are also large enough to accumulate, and hyperlipidemia is typical of the nephrotic syndrome.

- Clinical symptoms typical for advanced nephrotic syndrome and also occurring in our patient:
 - Hyperhydration: swelling of the lower limbs to anasarca, fluidothorax
 - Hyperhydration induced <u>heart failure</u>
 - Atherosclerotic complications caused by dyslipoproteinemia
 - Common infections due to hypogammaglobulinaemia (and thus secondary immunodeficiency, urinary Ig loss)

 The patient was later diagnosed with multiple myeloma with FLC lambda production and primary amyloidosis (heart and kidney infiltration).

 The relative increase in the β2 fraction in which β2-microglobulin is found corresponds to haematological malignancy.

Other **laboratory** findings:

81593	Sodný kation	140	[*]	mmol/l	Ref. mez
31393	ISE - s ředěním Draselný kation	4,7	[*]	mmol/l	3,8-5,0
	ISE - s ředěním Alkalická fosfatáza	1,83	[*]	ukat/l	0,66-2,20
	IFCC metoda při 37°C (AMP) AST	0,74	[]*	ukat/l	0,16-0,72
	Modifikovaná IFCC metoda při 37°C				0,17-0,78
1337	Modifikovaná IFCC metoda při 37°C	0,76	[*]	ukat/l	
1435	GGT (GMT) IFCC metoda při 37°C	0,94	[]*	ukat/l	0,14-0,84
1361	Bilirubin celkový Vanadátová metoda	6,9	[*]	umol/l	2,0-17,0
1523	Kyselina močová	347	[*]	umol/l	200-420
1621	Enzymová metoda s urikázou Močovina	3,1	[*]	mmol/l	2,8-8,0
	Enzymová metoda s ureázou a GDH S-KREA				
1499	Kreatinin	79	[*]	umol/l	55-96
	Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	1,65		ml/s/1,73 m2	
1611	Triacylglyceroly	2,71	[]*	mmol/l	0,70-1,70
	GPO-PAP Cholesterol	9.6	[]*	mmol/l	3,4-5,0
.365	CHOD-PAP Celkova bilkovina	45,2	*[]	g/l	65,0-85,0
	Biuretová metoda	100 mg/mm			
397	CZE-ELFO bílkovin CZE-Albumin	0,561	[*]	rel.j.	0,558-0,66
	CZE-Alfa 1	0,055	[]*	rel.j.	0,029-0,04
	CZE-Alfa 2	0,236	[]*	rel.j.	0,071-0,118
	CZE-Beta 1	0,054	[*]	rel.j.	0,047-0,07
	CZE-Beta 2	0,058	[*]	rel.j.	0,032-0,06
	CZE-Gamma	0,036		rel.j.	0,110-0,18
397	Paraprotein	viz komentář, účtovat	1.1	Tel.j.	0,220 0,20
		unofixaci 7,7	[*]	mg/l	3,3-19,4
	Imunonefelometrie				
169	Free Lambda Imunonefelometrie	417,5	[]*	mg/l ředěno	5,7-26,3
	Kappa/Lambda	0,02	*[]		0,26-1,65
153	CRP-HS	0,6	[*]	mg/l	0,0-5,0
139	Imunoturbidimetrie Sérový amyloid A	1,73	[*]	mg/l	<10,00
147	Alfa-2-Makroglobulin	3,58	[]*	g/l	1,31-2,93
	Imunoturbidimetrie Separace séra	1x	r no greed with		
Ko	separace sera mentář: prokázány pouze FLC L				

Other laboratory findings:

Doba sběru: 24:00 hod	Množství m	ateria	álu: 1300 ml	
				Ref. meze
Sodný kation				
81593 U-Na	157		mmol/l	
ISE - s ředěním dU-Na	204	[*]	mmol	120-220
Draselný kation				
81393 U-K	47		mmol/l	
ISE - s ředěním dU-K	61,1	[*]	mmol	35,0-80,0
81395 ELFO proteinů Elektroforéza na SDS-agaróze	> povolená frekvence			
Močovina				
81621 U-UREA	207,5		mmol/l	
Enzymová metoda s ureázou a GDH dU-UREA	269,8	[*]	mmol	167,0-583,0
Kreatinin				
81499 U-KREA	14,8	[]*	mmol/l	5,7-14,7
Enzymová kolorimetrická metoda dU-KREA Enzymová kolorimetrická metoda	19,24	[]*	mmol	7,10-17,70
Celková bilkovina sbí	raná moč			
81369 U-CB	12970		mg/l ředěno	
Turbidimetrie - benzetonium chlorid dU-CB	16861	[]*	mg	20-150
dU-CB/m2	7900	[]*	mg/m2	0-96
U-CB/U-Krea	876,35	[]*	mg/mmol Krea	0,00-22,70

Medication was adjusted in the patient:

- deployed bisphosphonates (suppress osteoclast activity, reduce new bone damage, enable healing of already damaged bones)
- potentiated therapy with loop diuretics with simultaneous monitoring of the internal environment and ionogram
- initiated anticoagulant therapy with low molecular weight heparin (due to secondary thrombophilia in nephrotic syndrome)
- initiated antimicrobial prophylaxis due to immunodeficiency
- deployed pantoprazole due to extensive medication and planned chemotherapy
- Chemotherapy started according to the protocol

- In the following course, the following biochemical parameters were monitored:
 - Basic biochemical examination
 - Lactate dehydrogenase, β2-microglobulin, ferritin
 - Electrophoresis of serum and urine proteins
 - FLC kappa and lambda
 - Serum immunoglobulins
 - Proteinuria and waste other substances in the urine
 - Renal function
 - (NT-proBNP and others)

Patient 7

57-year-old man

- Chief complaint: a patient with a history of recurrent deep vein thrombosis and pulmonary embolism (HT, DLP) was recently hospitalized for recurrent pulmonary embolism, now on emergency admission due to chest pain
- At night he woke up with a burning sensation on his chest and shoulder pain, fell asleep, in the morning the burning continued, perhaps a slight relief while sitting and standing, fluctuating in intensity, without accompanying symptoms.
- He has reflux, he attributes the chest pain to this problem, but it has been going on for a long time, so he arrived for an examination (mainly due to a recent pulmonary embolism).
- The patient was given Controloc (pantoprazole), followed by virtually complete relief from the discomfort.

Examination 1, 10:22

81139 Ca celkový	2,18	[*] mmol/l		Ref. meze
Fotometrie s arsenazo III 81141 Ca++ - norm.	1,28	[*] mmol/l		1,13-1,32
81465 Hořčík	0,83	[*] mmol/l		0,66-0,91
Kolorimetrická metoda s xylidilovou modří 81111ALT Modifikovaná IFCC metoda při 37°C	0,17	[*] ukat/l delta check: nevýznan	mný	0,17-0,78
81153 GGT (GMT) IFCC metoda při 37°C	0,26	[*] ukat/l delta check: nevý=nam	mný	0,14-0,84
81121 Bilirubin celkový	11,0	[*] umol/l delta check: nevý=nan	mn♥	5,0-21,0
81137 Močovina Enzymová metoda s ureázou a GDH	3,7	[*] mmol/l delta check: nevýznan		2,8-8,0
S-KREA	0.4	[*]		55-96
81169 Kreatinin Enzymová kolorimetrická metoda	84	[*] umol/l delta check: nevŷ=nam	mnŷ	22-26
eGFR-krea-(CKD-EPI)	1,48	ml/s/1,73 m2	2	
hs Tnl + delta				
81237 hs Troponin I	88,2	[]* ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	-13,3	ng/l		
počítaná hodnota Relativní delta hs Tnl počítaná hodnota	-13,10	%		
81125 Celková bílkovina	61,3	*[] g/l delta check: nevý=nan	mn∜	65,0-85,0
97111 Separace séra	1x		<u> </u>	

Evaluation of results according to the difference of two consecutive values of hs Tnl concentrations with the recommended interval between examinations of 3 hours, the so-called "delta" principle

- "Absolute delta": the difference between currently measured and previous value of hsTnI ≥ 20 (5) ng /L → clinically significant result
- <u>"Relative delta":</u> the difference between currently measured and previous value of hs TnI ≥ 50 % (for input hsTnI below 50 ng /L)
 ≥ 20 % (for input hsTnI over 50 ng/L)

clinically significant result

Three-hour interval: as recommended by the European Society of Cardiology in 2011

 If faster diagnostics are needed, the second collection can be performed as early as 1 to 2 hours after the initial examination. Lp (a): 1071 mg/L

Concentration exceeding 300 mg/L indicates high genetic risk for coronary heart disease!

- In the case of our patient, the hsTnI value in sample 1 was above the reference interval, but did not reach the cut-off value for AMI.
- Absolute and relative delta values have even decreased since the last examination (on discharge from the last hospitalization for pulmonary embolism).
- This slightly increased value of hsTnI is therefore insignificant at this time for these reasons.

Examination 2, 13:15

				Ref. meze
hs Tnl + delta 81237 hs Troponin I	1584,5 []* ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	1496,3	ng/l		
Relativní delta hs Tnl počítaná hodnota	1696,49	%		
97111 Separace séra	1x		<u>—</u>	

On the ECG, a new negative T in the thoracic ducts (NSTEMI), after agreement, the patient is transferred to the coronary unit.

Examination 3, 17:57

			Ref. meze
hs Tnl + delta 81237 hs Troponin I	6886,9 []* ng/l	cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	5302,4 ng/l		
Relativní delta hs Tnl	334,64 %		
97111 Separace séra	1x		

- In sample 2 (approximately after 3 hours according to the recommended algorithm) the values of hsTnI have already exceeded the cut-off value for AMI several times, the values of absolute and relative deltas were also significant.
- The patient was transferred to the coronary unit for <u>urgent intervention</u>.

Patient sent for coronary intervention:

<u>Conclusion:</u> tight 90-95% RIA stenosis treated with PCI (percutaneous coronary intervention) + DES (drug-eluting stent) within NSTEMI.

Examination Day 2, 5:20

			Ref. meze
81135 Sodný kation	137	[*] mmol/l delta check: mmena -3% od 19.11.2019 ()	137-146
81145 Draselný kation	4,2		3,8-5,0
8115 7 Chloridy	108		97-108
81137 Močovina Enzymová metoda s ureázou a GDH	4,0	F43	2,8-8,0
S-KREA			
81169 Kreatinin	81	[*] umol/l delta check: nevýznamný	55-96
eGFR-krea-(CKD-EPI)	1,54	ml/s/1,73 m2	
hs Tnl + delta			
81237 hs Troponin I	6619,5	[]* ng/l cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	-267,4	ng/l	
Relativní delta hs Tnl počítaná hodnota	-3,88	%	
91153 CRP-HS	2,1	mg/l	0,0-5,0
97111 Separace séra	1x	delta check: nevý namný	

Day 3, 5:40

81135 Sodný kation	138	[*] mmol/l delta check: nevý=namný	Ref. meze
81145 Draselný kation	4,1		3,8-5,0
81157 Chloridy ISE - s fedênim	110	[]* mmol/l delta check: nevý=namný	97-108
8113 7 Močovina Enzymová metoda s ureázou a GDH	4,2	[*] mmol/l delta check: newýznamný	2,8-8,0
S-KREA 81169 Kreatinin	89	[*] umol/l	55-96
Enzymová kolorimetrická metoda	03	[] GIIIO// delta check: newŷznamnŷ	
eGFR-krea-(CKD-EPI)	1,38	ml/s/1,73 m2	
hs Tnl + delta		_	\neg
81237 hs Troponin I CMIA Architect	3044,9	[]* ng/l cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	-3574,6	ng/l	
Relativní delta hs Tnl počtaná hodnota	-54,00	%	
97111 Separace séra	1x		

Day 4, 5:50

81135 Sodný kation	137	[*] mmol/ delta_check: nevý=namný	Ref. meze
81145 Draselný kation ISE - s ředěním	3,9	[*] mmol/l delta check: nevý=namný	3,8-5,0
81157 Chloridy ISE - s ředěním	108	[*] mmol/l delta check: nevý=namný	97-108
8113 7 Močovina Enzymová metoda s ureázou a GDH	4,2	[*] mmol/l delta check: nevý=namný	2,8-8,0
S-KREA	81	[*] umol/l	55-96
Enzymová kolorimetrická metoda	01	delta check: nevýznamný	
eGFR-krea-(CKD-EPI)	1,54	ml/s/1,73 m2	
hs Tnl + delta		-	
81237 hs Troponin I	1489,4	[]* ng/l cut-off AIM: M: 342; Ž: 156	0,0-34,2
Absolutní delta hs Tnl	-1555,5	ng/l	
Relativní delta hs Tnl	-51,09	%	
9115 3 CRP-HS imunoturb idimetrie	5,9	[]* mg/ delta_check: rmana +1818 od 02.12.2019 ()	0,0-5,0
97111 Separace sera	1x		

 From the day after the coronary intervention, hsTnI values gradually decreased (sampling on days 2, 3, 4).

- Echocardiography revealed good left ventricular systolic function without significant valve defect.
- In good condition, the patient is discharged to home and outpatient treatment.

Patient 8

84-year-old woman

- Chief complaint: About a month of progression of swelling of the lower limbs above the knees, the patient cannot sleep lying down, she feels short of breath during any load, she is not short of breath at rest, angina pectoris negates, a month ago she had an episode of palpitations.
- The patient negates the cough, temperature or other signs of a respiratory infection or difficulty urinating.
- Medical history: hypertension, dyslipoproteinemia, AMI 2x, chronic atrial fibrillation, hepatopathy, gastric lipoma
- Medication: Furon 40 mg 1-0-1, Omeprazol, Lusopress, Amprilan, Betaloc, Torvacard

 Objectively: BP 100/62 mmHg, pulse 114 / min, SpO2 95%, temperature 36.9 °C

 ECG: atrial fibrillation, ventricles 122 / min, intermediate axis, QRS 108 ms, ST depression V5-6, Q and VL, V1-3

Samples Day 1, 9:15

81111 ALT Modifikovaná IFCC metoda při 37°C	0,33	[*]	ukat/l	0,10-0,63
81153 GGT (GMT)	0,98	[]*	ukat/l	0,15-0,92
BILIZ 1 Bilirubin celkový Vanadátová metoda	26,0	[]*	umol/l	3,0-19,0
S-KREA 81169 Kreatinin Enzymová kolorimetrická metoda	133	[]*	umol/l	42-80
eGFR-krea-(CKD-EPI)	0,52		ml/s/1,73 m2	
hs Tnl + delta 81237 hs Troponin I	72,9	[]*	ng/l cut-off AIM: M: 342; Ž:	156 0,0-15,6
CMIA Architect Absolutní delta hs Tnl počťaná hodnota	nelze spočítat			
Relativní delta hs Tnl	nelze spočítat			
81125 Celková bílkovina Bluretová metoda	61,6	*[]	g/l	62,0-77,0
97111 Separace séra	1x			
НЬ	126,0	[*]	g/l	117,0-155,0
VodNost/Fotometrie Nova SP CCX Hct	39	[*]	%	35-45
Konduktometrie Nova SP CCX 81135 Sodný kation Potenciometrie Nova SP CCX	136	*[]	mmol/l	137-144
81145 Draselný kation Potenciometrie Nova SP CCX	3,6	*[]	mmol/l	3,9-5,3
8115 7 Chloridy Potenciometrie Nova SP CCX	104	[*]	mmol/l	98-107
B1141 Ca++ - norm. Potenciometrie Nova SP CCX	1,23	[*]	mmol/l	1,16-1,29
8115 5 Glukóza Amperometrie Nova SP CCX	5,90	[*]	mmol/l	4,60-6,40
8113 7 Moč ovina Potenciometrie Nova SP CCX	5,6	[*]	mmol/l	2,9-8,2
FIO2	20,90		%	

Ref. meze

18:26

9:25

Ref. meze hs Tnl + delta cut-off AIM: M: 342; Ž: 156 81237 hs Troponin I CMIA Architect 149,5 []* ng/l 0,0-15,6 Absolutní delta hs Tnl 76,6 ng/l počítaná hodnota Relativní delta hs Tnl 105,08 % počítaná hodnota 1x 97111 Separace séra

- In the patient, the hsTnI value was already above the reference range at baseline, but the cut-off value for AMI was not exceeded.
- On the same evening, the hsTnI value was already approaching the cut-off value for AMI and the absolute and relative delta values were exceeded.
- Increased hsTnI also occurs in cardiac failure (in our patient there were significant clinical manifestations, NT-proBNP examination was planned for the next day).
- The patient would be indicated for intervention (especially due to the dynamics of changes – i.e.delta values), but due to comorbidities she would be very at risk.
- Proceeded (at least until day 2) conservatively administered i.v. diuretics.

Ĩ	lkterický vzorek	+				
	81593 Sodný kation	138	[*]	mmol/l		137-144
	ISE - 6 Fedenim 81393 Draselný kation	5,0	[*]	mmol/l		3,9-5,3
	ISE - 6 ředěním 81 46 9 Chloridy	97	*[]	mmol/l		98-107
	ISE - s ředěním 81641 Železo	5,6		umol/l		
	Metoda s ferrozinem 81421 Alkalická fosfatáza	1,52	[*]	ukat/l		0,88-2,35
	IFCC metoda při 37°C (AMP) 8135 7 AST	0,80	[]*	ukat/l		0,16-0,63
	Modifikovaná IFCC metoda při 37°C 81337 ALT	0,51	[*]	ukat/l		0,10-0,63
	Modifikovaná IFCC metoda při 37°C 81435 GGT (GMT)	1,13	[]*	ukat/l		0,15-0,92
	IFCC metoda pri 37°C 81 62 1 Močovina	8,3		mmol/l		2,9-8,2
	Enzymová metoda s ureázou a GDH	-				
	S-KREA 8149 9 Kreatinin	151	[]*	umol/l		42-80
	Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	0.45		ml/s/1,73 m2		
	(21.12.2.4)	2,32				
	81 61 1 Triacylglyceroly	1,01	[*]	mmol/l		0,40-1,98
	81 47 1 Cholesterol CHOD-PAP	4,2	[*]	mmol/l		3,8-7,0
	HDL-CHOL					
	81473 HDL cholesterol	1,01	[*]	mmol/l		0,72-2,69
	non-HDL cholesterol	3,19	[*]	mmol/l		3,80
	81527 LDL cholesterol	2,58	[*]	mmol/l		1,50-5,40
	hs Tnl + delta					
	81237 hs Troponin I	168,8	[]*	ng/l	cut-off AIM: M: 342; Ž: 156	0,0-15,6
	Absolutní delta hs Tnl	19,3		ng/l		
	Relativní delta hs Tnl	12,91		%		
	81731 NT - proBNP	19114,0	[]*	ng/l		20,0-450,0
	81365 Celková bílkovina	63,0	[*]	g/l		62,0-77,0
	Bluretová metoda 9115 3 CRP-HS imuno turb idim etrie	11,0	[]*	mg/l		0,0-5,0
	Transferin					
	9113 7 Transferin Imunoturb idimetrie	3,76	[*]	g/l		1,90-3,80
	Saturace transferinu		*[]			20,0-40,0
	Celk.vaz.kapacita pro železo			umol/l		44,8-80,6
	9319 5 TSH CMIA Centaur	3,348	[^]	mIU/I		0,350-4,800

Day 2

6:20

- On day 2, significant heart failure was confirmed by NT-pro BNP examination.
- hsTnI values increase but due to comorbidities the doctors continued conservatively (i.v. diuretics - CAUTION: with careful monitoring of renal function and ionogram).

Examination after 14 days

				Ref. meze
81135 Sodný kation	141	[*]	mmol/l	137-144
81145 Draselný kation	5,2	[*]	mmol/l	3,9-5,3
ISE - s fedênîm 81157 Chloridy	104	[*]	mmol/l	98-107
ISE - s fedênîm 81563 Osmolalita	305	[]*	mmol/kg	280-301
Kryoskople 81111 ALT	0,56	[*]	ukat/l	0,10-0,63
Modifikovaná IFCC metoda při 37°C 81153 GGT (GMT)	1,40	[]*	ukat/l	0,15-0,92
B1121 Bilirubin celkový	23,7	[]*	umol/l	3,0-19,0
Vanadátová metoda 81137 Močovina Enzymová metoda s ureázou a GDH	11,2	[]*	mmol/l	2,9-8,2
S-KREA 81169 Kreatinin	172	[]*	umol/l	42-80
eGFR-krea-(CKD-EPI)	0,38		ml/s/1,73 m2	
hs Tnl + delta				
81237 hs Troponin I	89,6	[]*	ng/l cut-off AIM: M: 342; Ž: 156	0,0-15,6
Absolutní delta hs Tnl	-79,2		ng/l	
Relativní delta hs Tnl	-46,92		%	
8112 5 Celková bílkovina Bluretová metoda	57,3	*[]	g/l	62,0-77,0
9115 3 CRP-HS	20,0	[]*	mg/l	0,0-5,0
91 48 1 Prokalcitonin	0,37	[*]	ug/l	0,00-0,50
eclia Cobas 6000 (e601) 97111 Separace séra	1x			

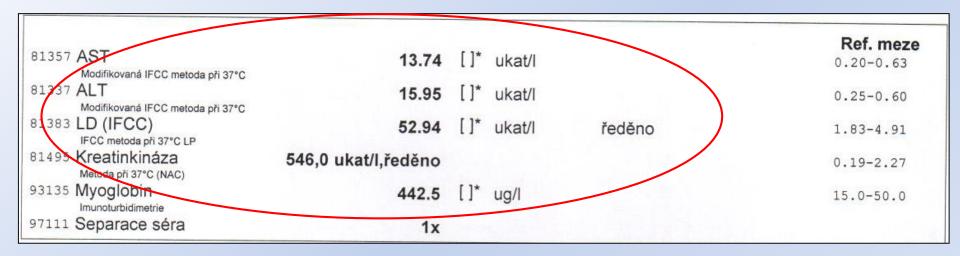
- The values of hsTnI in 14 days indicate its significant decrease (decrease also in delta values), so there was a significant improvement
- Corresponding to this was the decline in the manifestations of heart failure.
- Note: there was a further deterioration in renal function (where renal insufficiency was already present), but life-saving treatment was a solution to the patient's heart failure (even with the knowledge that renal function would deteriorate on diuretic therapy).

Patient 9

4 years old boy

- The boy suffers from frequent falls.
- He walks a normal distance on a plane, but numerous breaks are necessary.
- The boy is more generally tired, he often rests.
- He needs a stroller for longer distances.
- The boy reports the pain of the entire lower limbs almost daily.
- He goes up the stairs with the support of one upper limb.
- He needs help with dressing and hygiene.

Medical history


- The boy from physiological pregnancy, delivery in term
- Normal birth weight and postpartum adaptation
- Repeated respiratory infections

Physical examination:

- Body weight 20 kg, height 110 cm (adequate nutrition)
- BP: 90/50
- The boy is oriented, mental development is normal
- Finding on cranial nerves is normal
- Lower extremities: contracture of Achilles tendons and hamstrings bilaterally, more to the right
- Calf pseudohypertrophy
- Muscular strength normal
- The boy helps himself to get up with upper extremities ("walking" his hands up his legs to stand upright)
- He tends to tiptoe walking
- He has no scoliosis

Laboratory findings

Blood collection date: 15/11/2011

- normal levels of serum electrolytes, calcium, glucose, ALP, GGT, bilirubin, uric acid, urea, creatinine, TAG, cholesterol, total protein
- Blood count: normal finding

Urine collection date: 15/11/2011

				Ref. meze
Moč chemicky				
325 Spec. hmotnost	1.013		kg/l	
pH	6.5			
Leukocyty	Negative			
Nitrity	-			
Bílkovina	-			
Glukóza	Normal			
Ketolátky	-			
Urobilinogen	Normal			
Bilirubin	-			
Hemoglobin				
Kyselina askorbová				
Barva	světle žlutá			
Zákal	průhledná			
Elementy v moči				
Erytrocyty	3	[*]	částic/ul	0-10
Leukocyty	7	[*]	částic/ul	0-20
Hyalinní válce	0		částic/ul	
Dlaždicové epit.	0	[*]	částic/ul	0-15
Bakterie	přítomné			
Hlen	ojediněle			

DNA testing confirms the diagnosis

Duchenne muscular dystrophy.

Duchenne muscular dystrophy

- X-linked recessive disease
- the most common type of muscular dystrophy
- affects about one in 5,000 males at birth
- females with a single copy of the defective gene may show mild symptoms
- the average life expectancy is 26 years
- gene therapy, as a treatment, is in the early stages of study in humansis
- caused by a mutation of the dystrophin gene, located on the short arm of the X chromosome
- dystrophin is responsible for connecting the cytoskeleton of each muscle fiber to the underlying basal lamina, through a protein complex containing many subunits

Duchenne muscular dystrophy

- the absence of dystrophin permits excess calcium to penetrate the sarcolemma
- alterations in calcium and signalling pathways cause water to enter into the mitochondria, which then burst
- mitochondrial dysfunction gives rise to an amplification of stress-induced cytosolic calcium signals and an amplification of stress-induced reactive-oxygen species production
- increased oxidative stress within the cell damages the sarcolemma and eventually results in the death of the cell
- muscle fibers undergo necrosis and are ultimately replaced with adipose and connective tissue

Next course:

- The boy began to be treated with corticoids.
- He also started taking KCl, Vitamin D, Ranisan because of corticoids treatment and dietary supplements (Coenzyme Q10, Protandim, Vitamin E).
- Complex intensive rehabilitation treatment was initiated.

Blood collection date: 24/7/2012

81593	Sodný kation ISE - s ředěním	139	[*]	mmol/l		Ref. meze 137-146
81393	Draselný kation ISE - s ředěním	4.3	[*]	mmol/l		3.6-5.9
81469	Chloridy	101	[*]	mmol/I		95-110
81625	ISE - s ředěním Ca celkový	2.46	[*]	mmol/l		2.05-2.54
	Fotometrie s arsenazo III Osmolalita-počítaná	287	[*]	mmol/kg		285-295
81439	počítaná: 2*(Na)+p-Glu+Urea Glukóza v plazmě	4.2		mmol/l		
	Metoda s HK		[]			3.3-5.8
N. M. S. C.	Alkalická fosfatáza IFCC metoda při 37°C (AMP)	2.58		ukat/l		1.12-6.20
81357	Modifikovaná IFCC metoda při 37°C	6.71	[]*	ukat/I		0.20-0.63
81337	ALT Modifikovaná IFCC metoda pri 37°C	9.49	[]*	ukat/l		0.25-0.60
81435	GGT (GMT) IFCC metoda při 37°C	0.13	[*]	ukat/l		0.10-0.39
81383	LD (IFCC)	30.77	[]*	ukat/l	ředěno	1.83-4.91
81495	IFCC metoda při 37°C LP Kreatinkináza	poznámka účt.			263,43 ukat/l ředěno	0.19-2.27
81361	Metoda pri 37°6 (NAC) Bilirubin celkový	6.2	[*]	umol/l		2.0-17.0
81523	Vanadátová metoda Kyselina močová	260	[*]	umol/l		140-340
	Enzymová metoda s urikázou Močovina		[*]			
	Enzymová metoda s ureázou a GDH	5.1	[]	mmol/l		1.8-6.7
	S-KREA Kreatinin	38	[*]			
	Enzymová kolorimetrická metoda	2000	[]	umol/l		4-40
	eGFR-krea-(Schwartz)	nelze spočítat	r*1			
81611	Triacylglyceroly GPO-PAP	1.23	[*]	mmol/l		1.20-1.60
81471	Cholesterol CHOD-PAP	4.6	[*]	mmol/l		2.6-4.8
81473	HDL cholesterol	1.17	[*]	mmol/I		1.11-1.83
81527	LDL cholesterol	2.84	[]*	mmol/l		0.50-1.50
93135	Přímá metoda Myoglobin	632.3	[]*	ug/l	ředěno	15.0-50.0
81365 (Triunotarbidimento Celková bílkovina	66.8	[*]	g/l		58.0-77.0
81681	Biuretová metoda 25-hydroxyvitamin D total	21.82	*[]	nmol/l		50.00-250.00
	CMIA Centaur Separace séra	1x	1545)	ganetytti ettettivil		
		1/				

Examination 8 years after diagnosis determination

Current status

- Student of 7th grade normal elementary school with assistant, excellent school report.
- Motor status since the last medical check six months ago stationary, only mild progression of Achilles tendons contractures
- Patient was on a one-month spa rehabilitation stay with a good effect
- He tolerates corticosteroids well, only once a month he is hot, his head aches.
- On the plain he goes about 500 meters (at a slower pace), falls exceptionally.
- For longer distances he needs a mechanical wheelchair.
- He walks up the stairs with support.
- Occasional lower limb pain, back pain rarely.

Examination 8 years after diagnosis determination

Objectively

- Body weight 44 kg (+2 kg vs 6 month ago), height 124 cm
- BP 125/70, P 100/min
- Cooperates well, oriented
- Finding on cranial nerves is normal
- Contractures of lower and upper extremities bilaterally, more to the right
- Slight muscle weakness in the hip area
- He sits down with the help of one upper limb
- Walking is slightly myopathic
- He is able to jump on one lower limb
- Spine: hyperlordosis+, scoliosis 0
- Conclusion: Stationary light girdle syndrome in the diagnosis of DMD

Blood collection date: 26/9/2019

	81593 Sodný kation	140	[*]	mmol/l	Ref. meze 137-146
	ISE - s ředěním 81393 Draselný kation	5,1	[*]	mmol/l	3,6-5,9
	ISE - s ředěním 81469 Chloridy ISE - s ředěním	106	[*]	mmol/l	95-110
	81625 Ca celkový Fotometrie s arsenazo III	2,42	[*]	mmol/l	2,05-2,54
	81427 Fosfát anorganický UV fosfomolybdátová metoda	1,49	[*]	mmol/l	1,16-1,90
	81421 Alkalická fosfatáza IFCC metoda při 37°C (AMP)	1,40	[*]	ukat/l	1,35-7,50
	81357 AST Modifikovaná IFCC metoda při 37°C	5,24	[]*	ukat/l	0,20-0,63
	61337 ALT Modifikovaná IFCC metoda pri 37 C	5,34	[]*	ukat/l	0,25-0,60
	81435 GGT (GMT) IFCC metoda při 37°C	0,19	[*]	ukat/l	0,10-0,39
	81363 LD (IFCC) IFCC metoda při 37°C LP	17,90	[]*	ukat/l ředěno	1,83-4,91
/	61495 Kreatinkináza Metoda při 37°C (NAC)	185,63	[]*	ukat/l ředěno	0,19-2,27
	81361 Bilirubin celkový Vanadátová metoda	6,1	[*]	umol/l	5,0-21,0
	81621 Močovina Enzymová metoda s ureázou a GDH	4,1	[*]	mmol/I	1,8-6,7
	S-KREA		54545545		
	81499 Kreatinin Enzymová kolorimetrická metoda	67	[]*	umol/l	19-62
	eGFR-krea-(Schwartz)	1,10		mi/s/1,73 m2 do 1 roku orientační výsledek	
	93135 Myoglobin	747,5	[]*	ug/l ředěno	13,0-90,0
	81329 Albumin Metoda's BCG	45,2	[*]	g/I	35,0-53,0
	81365 Celková bílkovina Biuretová metoda	61,0	[*]	g/l	58,0-77,0
	93195 TSH CMIA Centaur	0,515	[*]	mIU/I	0,340-5,500
	93189 FT4 CMIA Centaur	13,52	[*]	pmol/l	10,50-27,00
	93231 Anti-Tg CMIA Centaur	negativní			0,0-60,0
	93133 LH CMIA Centaur	<0,07		IU/I	0,00-2,90
	93129 FSH CMIA Centaur	0,87	*[]	IU/I	1,40-7,50
	93149 Estradiol ECLIA Cobas 6000 (e601)		*[]	pmol/l	41-159
	93191 Testosteron CMIA Centaur	<0,24	[*]	nmol/l	0,00-19,52
	IGF1 recalc		[*]		400 45
	81699 IGF-1 (recalc.) CLIA Immuliite 1000 IGF1 SD (recalc.)		[*]	ug/i	133-471
	IGF1 SD (recalc.)	-0,90 48,5	*[]	nmol/l	50,0-250,0
	97111 Separace séra	5038.00	35 TH. T.		8 8
	ocparace sera	1x			

Blood collection date: 26/9/2019

			Ref. meze
93171 Parathormon intaktní ECLIA Cobas 6000 (e601)	5,39	pmol/l	1,30-7,60
97111 Separace séra	1x		

Urine collection date: 26/9/2019

				Ref. meze
Moč chemicky				
81325 Spec. hmotnost	1,013		kg/l	
pH	6,0			
Leukocyty	-			
Nitrity				
Bílkovina				
Glukóza	-			
Ketolátky	-			
Urobilinogen	Normal			
Bilirubin				
Barva	žlutá			
Zákal	průhledná			
Krev				
Elementy v moči				
Erytrocyty	0		částic/ul	0-10
Leukocyty	0		částic/ul	0-15
Dlaždicové epit.	0	[*]	částic/ul	0-10

Patient 10

72 years old woman

- 4/9/2018: she was acutely accepted for hospitalization (on the advice of the general practitioner)
- Long-term recurrent urinary infections, monitored by urologist, Triprim prophylaxis
- Four days ago, fever under 39 °C, pain in the lower abdomen and back in the lumbar region on both sides and urine leaks started
- She vomited repeatedly for two days, unable to eat or drink for nausea; she has lost 3 kg in the last days
- 3/9/2018: GP started administering antibiotics (Ofloxin) due to the above mentioned problems

Medical history

- Recurrent urinary tract infections urologically dispensarized
- Glaucoma
- Status post surgery of cerebral aneurysm (2/2013)
- Graves-Based thyreotoxicosis on therapy, goiter of the right lobe of thyroid gland
- Nodi haemorhoidales
- Arterial hypertension with antihypertensive therapy
- Hypercholesterolaemia (treated by statins)

Medication

- Tezeo (telmisartan)
- Loradur mite (amilorid, hydrochlorothiazid)
- Rosucard (rosuvastatin)
- Triprim (trimethoprim)
- Vesicare (solifenacin anticholinergic)
- Godasal (acidum acetylsalicylicum/glycinum)
- Thyrozol (thiamazol thyrostatic)

Performed examinations

- BP 130/80, pulse 80/min, TT 36.5 °C, SpO₂ 98 %
- ECG: physiological finding
- Kidney Ultrasound: bilaterally without dilatation of the calices or renal pelvis, without lithiasis, parenchyma adequate, without suspected abscess
- Significant urine inflammatory finding

Blood collection date: 4/9/2018

01125 Cadný kation	404	*[]		Ref. meze
81135 Sodný kation ISE - s ředěním	131	11	mmol/l	137-144
81145 Draselný kation	4,2	[*]	mmol/l	3,9-5,3
31157 Chloridy	94	*[]	mmol/l	98-107
ISE - s redenim 31563 Osmolalita Kryoskopie	294	[*]	mmol/kg	280-301
Osmolalita-počítaná počítaná: 2*(Na)+p-Glu+Urea	293	[*]	mmol/kg	280-301
B1155 Glukóza v plazmě Metoda s HK	6,3	[*]	mmol/l	4,6-6,4
Modifikovaná IFCC metoda při 37°C	0,80	[]*	ukat/l	0,10-0,63
81153 GGT (GMT) IFCC metoda při 37°C	0,66	[^]	ukat/l	0,15-0,92
31117 Amyláza IFCC metoda při 37°C 31121 Bilirubin celkový	0,74 7,0	[*] [*]	ukat/l umol/l	0,40-2,51 3,0-19,0
Vanadátová metoda B1123 Bilirubin přímý	3,6	[]*	umol/l	0,0-2,0
Vanadátová metoda 31137 Močovina	24,3		mmol/l	2,9-8,2
Enzymová metoda s ureázou a GDH S-KREA				
31169 Kreatinin Enzymová kolorimetrická metoda	369	[]*	umol/l	42-80
eGFR-krea-(CKD-EPI)	0,17		ml/s/1,73 m2	
1125 Celková bílkovina Biuretová metoda	59,0	*[]	g/l	62,0-77,0
B1153 CRP-HS Imunoturbidimetrie	250,8	[]*	mg/l	0,0-5,0
97111 Separace séra	1x			

Microbiological findings

- 4/9/2018:
 - urine culture negative
 - blood culture anaerobic examination negative
 - haemocultivation aerobic examination:
 - Escherichia coli

Blood collection date: 5/9/2018

				7.0		Ref. meze
815	93 Sodný kation ISE - s ředěním	133	*[]	mmol/l		
813	93 Draselný kation	4,6	[*]	mmol/l		3,9-5,3
814	ISE - s ředěním 69 Chloridy	100	[*]	mmol/l		98-107
816	ISE - s ředěním 25 Ca celkový	2,14	[*]	mmol/l		2,05-2,40
816	Fotometrie s arsenazo III 41 Železo	3,6		umol/l		
814	Metoda s ferrozinem 27 Fosfát anorganický	1,47	[]*	mmol/l		0,74-1,29
	Osmolalita-počítaná	300	[*]	mmol/kg		280-301
814	počítaná: 2*(Na)+p-Glu+Urea 39 Glukóza v plazmě	4,8	[*]	mmol/l		4,6-6,4
	Metoda s HK 21 Alkalická fosfatáza	2,90	[]*	ukat/l		0,88-2,35
	IFCC metoda při 37°C (AMP)	1,04	[]*	ukat/l		0,16-0,63
	Modifikovaná IFCC metoda při 37°C	0,90	[]*			0,10-0,63
	Modifikovaná IFCC metoda při 37°C	0,69	[*]	ukat/l		0,15-0,92
	35 GGT (GMT) IFCC metoda při 37°C		[*]	ukat/l		0,40-2,51
	345 Amyláza IFCC metoda při 37°C	0,60				0,22-0,88
814	181 Amyláza pankreat. Kolorimetrická metoda	0,29	[*]	ukat/l		3,0-19,0
813	Bilirubin celkový Vanadátová metoda	5,8	[*]	umol/l		
813	363 Bilirubin přímý Vanadátová metoda	4,0	[]*	umol/l		0,0-2,0
815	23 Kyselina močová	499	[]*	umol/l		208-434
81	Enzymová metoda s urikázou 521 Močovina Enzymová metoda s ureázou a GDH	29,0	[]*	mmol/l		2,9-8,2
	S-KREA					42-80
81	499 Kreatinin Enzymová kolorimetrická metoda	410	[]*	umol/I		42-00
	eGFR-krea (CKD-EPI)	0,15		ml/s/1,73 m2		
81	611 Triacylglyceroly	1,55	[*]	mmol/l		0,40-1,98
	GPO-PAP 471 Cholesterol CHOD-PAP	2,5	*[]	mmol/l		3,8-7,0
0.1	hs Tri + delta	6,8	[*]	ng/l	cut-off AIM: M: 342; Ž: 156	0,0-15,6
81	237 hs Troponin I CMIA Architect			.19/1		
	Absolutní delta hs Tnl	nelze spočítat				
	Relativní delta hs TnI	nelze spočítat				
81	329 Albumin Metoda s BCG	29,2	*[]	g/I		32,0 16,0
81	365 Celková bílkovina	49,2	*[]	g/l		62,0-77,0
91	Biuretová metoga 153 CRP-HS	155,4	[]*	mg/l		0,0-5.0

Blood collection date: 5/9/2018

91481	Prokalcitonin ESUA Cobas 6000 (e601)	2,21	[]*	ug/l	0,00-0,50
91137	Transferin Transferin Imunoturbidimetrie Saturace transferinu Celk.vaz.kapacita pro železo	1,43 10,0 36,0	*[]	g/I % umol/I	1,90-3,80 20,0-40,0 44,8-80,6
81721	sTfR sTfR Imunoturbidimetrie Index sTfR/logFERRIT	2,32 0,92		mg/l	1,90-4,00 0,63-1,80
The state of the s	TSH CMIA Centaur	1,835 14,66		mIU/I pmol/I	0,350-4,800
	FT4 CMIA Centaur Feritin	323,8		ug/l	10,0-291,0
	CMIA Centaur 25-hydroxyvitamin D total CMIA Centaur Separace séra	45,6 1x		nmol/l	50,0-250,0

Urine collection date: 5/9/2018

			Ref. meze
Moč chemicky			
	1,012	kg/l	
200 B (100 B) 1 1 1 1 1 1 1	The state of the s		
Leukocyty	4	≫ praveno	
Nitrity	-		
Bílkovina	2		
Glukóza	-		
Ketolátky	-		
Urobilinogen	. 1		1
Bilirubin	-		
Barva	žlutá		
Zákal	zakalená		
Krev	2	provedeno opa	ak.
Elementy v moči		90 - 100 - 100 - 100	
	296	[]* castic/ul	0-10
			0-15
	0		0-10
The state of the s	přítomny		
	Nitrity Bílkovina Glukóza Ketolátky Urobilinogen Bilirubin Barva Zákal	1325 Spec. hmotnost 1,012 pH 5,5 Leukocyty 4 Nitrity - Bílkovina 2 Glukóza - Ketolátky - Urobilinogen 1 Bilirubin - Barva žlutá Zákal zakalená Krev 2 Elementy v moči 296 Leukocyty 567 Dlaždicové epit. 0	1,012 kg/l pH 5,5 Leukocyty 4 ppraveno Nitrity - Bílkovina 2 Glukóza - Ketolátky - Urobilinogen 1 Bilirubin - Barva Žlutá Zákal zakalená Krev 2 provedeno opa Elementy v moči Erytrocyty 296 []* častic/ul Leukocyty 567 []* částic/ul Dlaždicové epit.

Blood collection date: 6/9/2018

31593 Sodný kation	132	*[]	mmol/l	Ref. meze
ISE - s ředěním 31393 Draselný kation	4,8	[*]	mmol/l	3,9-5,3
ISE - s ředěním	•			
1469 Chloridy	102	[*]	mmol/l	98-107
ISE - s ředěním Osmolalita-počítaná	298	[*]	mmol/kg	280-301
počítaná: 2*(Na)+p-Glu+Urea 1439 Glukóza v plazmě	5,8	[*]	mmol/l	4,6-6,4
Metoda s HK 1421 Alkalická fosfatáza	2,78	[]*	ukat/I	0,88-2,35
IFCC metoda při 37°C (AMP) 1357 AST	0,96	[]*	ukat/l	0,16-0,63
Modifikovaná IFCC metoda při 37°C	1,05		ukat/l	0,10-0,63
Modifikovaná IFCC metoda při 37°C 1435 GGT (GMT)	0,85	[*]	ukat/l	0,15-0,92
IFCC metoda při 37°C .345 Amyláza	0,52	[*]	ukat/l	0,40-2,51
IFCC metoda při 37°C 1361 Bilirubin celkový	5,3	[*]	umol/l	3,0-19,0
Vanadátová metoda 1363 Bilirubin přímý	2,3	[]*	umol/l	0,0-2,0
Vanadátová metoda 1621 Močevi na	(A) 10 (A)	[]*	mmol/l	2,9-8,2
Enzymová metoda s ureázou a GDH S-KREA				
1499 Kreatinin	393	[]*	umol/l	42-80
Enzymová kolorimetrická metoda eG FR-krea- (CKD-EPI)	0,15		ml/s/1,73 m2	
1329 Albumin	26,9	*[]	g/l	32,0-46,0
Metoda s BCG 1365 Celková bílkovina	45,1	*[]	g/l	62,0-77,0
Biuretová metode 1153 CRP-HS	82,4		mg/l	0,0-5,0
Imunoturbidimetrie	0,78		44 45 C	0,00-0.50
1481 Prokalcitonin ECLIA Cobes 6000 (e601)	Total Control	ιJ	ug/i	
7111 Separace séra	1x			

Urine collection date: 6/9/2018

	Coderá kodio a					Ref. meze
81593	Sodný kation U-Na ISE - s ředěním	67		mmol/l		
81393	Draselný kation U-K ISE - s ředěním	24		mmol/l		
81469	Chloridy U-Cl ISE s ředěním	60		mmol/l		
81621	Močovina U-UREA Enzymová metoda s ureázou a GDH	179,2		mmol/l		
8,1499	Kreatinin U-KREA Enzymová kolorimetrická metoda	4,0		mmol/l		
81369	Celková bílkovina nesbíraná moč U-CB Kolorimetrie - pyrokatecholová violeť	856		mg/l		
	U-CB/U-Krea	214,00	[]*	mg/mmol Krea		0,00-22,70
	MIKROALBUMIN-VZOREK U-MIKROALB	330,7		mg/l	Ředěno	
	Imunoturbidimetrie MIKROALB/U-KREA	82,68	[]*	mg/mmol Krea		<2,30

Blood collection date: 7/9/2018

93171 Parathormon intaktní	4,96 [*] pmol/l	Ref. meze 1,30-7,60
97111 Separace séra	ix	

Blood collection date:

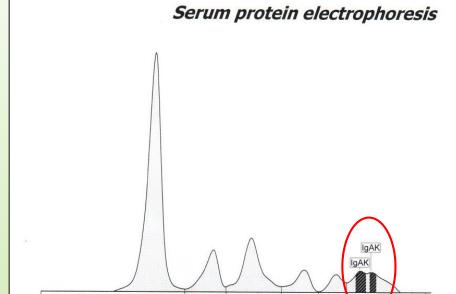
7/9/2018

ſ					Ref. meze
	81593 Sodný kation ISE - s ředěním	135	*[]	mmol/l	137-144
	81393 Draselný kation ISE - s ředěním	4,5	[*]	mmol/l	3,9-5,3
	81469 Chloridy ISE - s ředěním	105	[*]	mmol/l	98-107
	81625 Ca celkový Fotometrie s arsenazo III	1,92	*[]	mmol/l	2,05-2,40
	81465 Hořčík Kolorimetrická metoda s xylidilovou modří	1,06	[]*	mmol/l	0,66-0,99
	81427 Fosfát anorganický UV fosfomolybdátová metoda	1,29	[*]	mmol/l	0,74-1,29
	81421 Alkalická fosfatáza IFCC metoda při 37°C (AMP)	2,21	[*]	ukat/l	0,88-2,35
	81357 AST Modifikovaná IFCC metoda při 37°C	0,74	[]*	ukat/I	0,16-0,63
	81337 ALT Modifikovaná IFCC metoda při 37°C	1,08	[]*	ukat/l	0,10-0,63
	81435 GGT (GMT) IFCC metoda při 37°C	0,74	[*]	ukat/l	0,15-0,92
	81495 Kreatinkináza Metoda při 37°C (NAC)	0,31	*[]	ukat/I	0,41-2,85
	81361 Bilirubin celkový Vanadátová metoda	6,2	[*]	umol/l	3,0-19,0
	81363 Bilirubin přímý Vanadátová metoda	2,6	[]*	umol/l	0,0-2,0
	81523 Kyselina mečevá Enzymová metoda s urikázou	418	[*]	umol/l	208-434
1	81621 Močovina Enzymová metoda s ureázou a GDH	26,5	[]*	mmol/l	2,9-8,2
	S-KREA				III AL
	81499 Kreatinin Enzymová kolorimetrická metoda	292	[]*	umol/l	42-80
	eGER-krea-(CKD-EPI)	0,22		ml/s/1,73 m2	
	93135 Myoglobin	68,5	[*]	ug/l	12,0-76,0
_	Imunoturbidimetrie 81329 Albumin	25,1	*[]	g/l	32,0-46,0
1	Metoda s BCG 81365 Celková bílkovina	45,1	*[]	g/I	62,0-77,0
	Bidretová metoda				
	CZE-ELFO bílkovin 81397 CZE-Albumin	0,535	*[]	rel.j.	0,558-0,661
	CZE-Alfa 1	0,102	[]*	rel.j.	0,029-0,049
	CZE-Alfa 2	0,163	[]*	rel.j.	0,071-0,118
	CZE-Beta 1	0,056	[*]	rel.j.	0,047-0,072
	CZE-Beta 2	0,040	[*]		0,032-0,065
	CZE-Gamma	0,104		rel.j.	0,110-0,188
	CZE-Mezifrakce 1	0,032		rel.j.	.,,
	CZE-Mezifrakce 2	0,032		rel.i.	
	The second state of the second	tář, účtovat			
1	Elektroforéza proteinů s následnou imunofixaci		F 34		
1	91167 Free Kappa	94,2	[]*	mg/l změna metody	3,3-19,4
	Imunoturbidimetrie	The state of the s			

Blood collection date: 7/9/2018

0,26-1,65
2 2 5 2
0,0-5,0
0,00 0,50

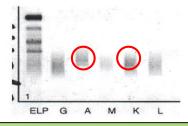
Urine collection date: 7/9/2018


397 Paraprotein	BJB typu Kappa			
dU-CB dU-CB/m2 U-CB/U-Krea	1142 635 118,05	[]* []*	mg mg/m2 mg/mmol Krea	0-96 0,00-22,70
Celková bílkovina sb 369 U-CB Kolorimetrie - pyrokatecholová viole	484		mg/l	
dU-KREA Enzymová kolorimetrická metoda	9,68	[*]	mmol	5,30-15,90
Kreatinin 199 U-KREA Enzymová kolorimetrická metoda	4,1	Ng-mi	mmol/l	
dU-UREA	490,6		mmol	
Močovina 21 U-UREA Enzymová metoda s ureázou a GDH	207,9		mmol/l	
Enzymová metoda s urikázou dU-KM	3,54		mmol	
Kyselina močová 23 U-KM	1,50		mmol/l	
95 ELFO proteinů Elektroforéza na SDS-agaróze	viz komentář, účtovat			
UV fosfomolybdátová metoda dU-P	10,6		mmol	
Fosfát anorganický	4,5		mmol/l	
Plamenová AAS dU-Mg	5,0		mmol	
<i>Hořčík</i> 465 U-Mg	2,13		mmol/l	
Fotometrická metoda s arsenazo III dU-Ca	nelze spočítat			
<i>Vápník</i> 525 U-Ca	<0,25		mmol/l	
ISE s ředěním dU-CI	135		mmol	
Chloridy 469 U-CI	57		mmol/l	
ISE - s ředěním dU-K	47,2		mmol	
<i>Draselný kation</i> 393 U-K	20		mmol/l	
ISE - s ředěním d U-Na	156		mmol	
593 U-Na	66		mmol/l	

Urine collection date: 7/9/2018

81675 LJ MIKROALB	141,8	mg/l	
dU-MIKROALB	334,6	mg	
U-MIKROALB/U-KREA	34,59 []	* mg/mmol Krea	<2,30
81511 Clearance Výpočet	jiný nález. list		

Komentář:


ELFO PROT: Smíšená proteinurie s převahou glomerulární - Prokázán albumin, transferin, IgG, IgA, haptoglobiny, slabě FLC, slabě alfa1-mikroprotein, slabě RBP, slabě beta2-mikroglobulin.

Fractions	%		Ref. %	Conc.	Ref. Conc.
5941-Album	53.5	<	55.8 - 66.1	24.13	40.20 - 47.60
5942-Alp 1	10.2	>	2.9 - 4.9	4.60	2.10 - 3.50
5943-Alp 2	16.3	>	7.1 - 11.8	7.35	5.10 - 8.50
5944-Beta1	5.6		4.7 - 7.2	2.53	3.40 - 5.20
5945-Beta2	4.0		3.2 - 6.5	1.80	2.30 - 4.70
5946-Gamma	10.4	<	11.1 - 18.8	4.69	8.00 - 13.50

Peaks	%	g/dl
IgAK	3.2	1.44
IgAK	2.1	0.95

2xMF v gamma

Signature

- The following examinations were added:
 - Flow cytometry: CD5 + B-lymphoma must be excluded in differential diagnosis, correlation with histological finding is necessary
 - Trepanobiopsy: trilinear mild hypercellular haematopoiesis with reactive changes, due to flow cytometry, minimal CD5 + B-lymphoma infiltration cannot be clearly ruled out, correlation with clinical findings and imaging methods findings is necessary, hematological dispensarization is suitable
 - CT of chest, abdomen and small pelvis: without finding of lymphadenopathy or other pathology
 - PET/CT: without glucose hypermetabolism bearings
- Clinically patient completely asymptomatic

Collection date: 7/9/2018

Doba sběru: 24:	00 hod [Diures	sa: 2360 m	ıl	Výška: 16	32 cm	I motr	nost: 75 kg
S-Urea	26,5	[]*	mmol/l		S-Ca	1,92	*[]	mmol/l
S-Kreatinin	292	[]*	umol/l		S-Fosfát anorg.	1,29	[*]	mmol/l
S-Na+	135	*[]	mmol/l		S-Kyselina močová	418	[*]	umol/l
S-K+	4,5	[*]	mmol/l		S-Osmolalita			
S-Chloridy	105	[*]	mmol/l		S-Mg	1,06	[]*	mmol/l
Renální elimina	асе							
Diuresa	0,027	[]*	ml/s		Diuresa korig.	1311,4	[]*	ml/m2*den
dU-Urea	490,6		mmol		dU-Ca			
dU-Kreatinin	9,68	[*]	mmol		dU-Fosfát anorg.	10,6		mmol
dU-Na+	156	0.00	mmol		dU-Kyselina močová	3,54		mmol
dU-K+	47,2		mmol		dU-Osmolalita			
dU-Chloridy	135		mmol		dU-Mg	5,0		mmol
Clearance								
Kreatininu: zjiš	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	k	corigovaná	*** 7		adnutá (CKD		
	,384 ml/s		0,369	*[]		222 ml/s/1,73 dardní	m2	
	těná	ŀ	corigovaná	*[1	2009 (190000-1900) 5 880			
	,214 ml/s	+1.3	0,206	*[]	ml/s/1,73 m2		[*1	m1/a
Kyseliny močov	é 0,098	*[]	ml/s		K+	0,121	[*]	ml/s
Osmolární		F.4.5			Chloridu	0,015	[*]	ml/s
Na+	0,013	[*]	ml/s		Bezsolutové vody	0.005	[*]	ml/s
Ca		2000			Fosfátu	0,095	[*]	ml/s
Exkreční frakc		[]+	0/		Foofátu	24 044	ſ 1*	0/_
Na+	3,482	[]*	%	>	Fosfátu	24,844	[]*	/0
K+	31,653	[]	%		Osmolární Rozpolutová vody	7 422	[]*	0/
Ca		F 7+	07		Bezsolutové vody	7,122	[]*	%
Chloridu	3,866	[]*	%	>	Urey	55,874	[*]	%
Indexy moč/sé		*** 1		т.	hulární rozornos vodu	02.070	*[1	%
U/S - kreatinin	14,041	*[]		1 U	bulární resorpce vody	92,878	[]	/0
U/S - urea	7,845	*[]		D.	nální prognastiaký fakta	-		
U/S - osmolalita				Ke	enální prognostický fakto			
Indexy	0.000	[*1			U-KM/U-Krea	0.366	[]*	
U-Na/U-K	3,300	[*]				0,366	[]*	
U-Na*S-Krea/U		[]*	mmol/l		U-Mg/U-Krea	0,520	[*]	
S-Urea/S-Krea U-Ca/U-Krea	90,753	[*]			U-Ca/U-Mg			
7000 1000 1000 1000 1000 1000 1000 1000						ACCOUNT OF THE OWNER.	-	
Další hodnoty	olho donelho z¥ii-	nu hi	Ilkovin	-	05.5	g/den		
	ního denního příjr	ומ טוז	ΙΚΟΥΙΠ				rient	ační výsl.
S-Kreatinin (ma						1/mmol	JIEII	acili vysi.
	ota S-Kreatininu					umol/kg		
dU-Krea/kg hm	otnosti					_		
BMI					28,6	kg/m2		

Blood collection date: 10/9/2018

	427	[*]	mmol/l	Ref. meze
1593 Sodný kation	137	[]	mmoi/i	207 277
ISE - s ředěním 1393 Draselný kation	4,7	[*]	mmol/l	3,9-5,3
ISE - s ředěním	•	92/92		00 107
1469 Chloridy	104	[*]	mmol/l	98-107
ISE - s ředěním	2,02	*[]	mmol/l	2,05-2,40
1625 Ca celkový Fotometrie s arsenazo III	2,02		TITITO // T	
1427 Fosfát anorganický	1,17	[*]	mmol/l	0,74-1,29
UV fosfomolybdátová metoda		r*1	1	0,88-2,35
1421 Alkalická fosfatáza	1,59	[*]	ukat/l	0,00-2,55
IFCC metoda při 37°C (AMP) 1357 AST	0,61	[*]	ukat/l	0,16-0,63
Modifikovaná IFCC metoda při 37°C	0,01			
337 ALT	1,01	[]*	ukat/l	0,10-0,63
Modifikovaná IFCC metoda při 37°C		[*1		0,15-0,92
1435 GGT (GMT)	0,53	[*]	ukat/l	0,15 0,52
IFCC metoda při 37°C 1361 Bilirubin celkový	7,9	[*]	umol/l	3,0-19,0
Vanadátová metoda	1,0			
1363 Bilirubin přímý	3,8	[]*	umol/l	0,0-2,0
Vanadátová metoda	0.0	*۱۱	mmol/l	2,9-8,2
1621 Močovina Enzymová metoda s ureázou a GDH	8,9	[]	mmon	-11-
S-KREA	108	[]*	umol/l	42-80
1499 Kreatinin Enzymová kolorimetrická metoda	100	[]	diffori	
eGFR-krea-(CKD-EPI)	0,74		ml/s/1,73 m2	
00111190 (0110 211)				
1329 Albumin	27,3	*[]	g/l	32,0-46,0
Metoda s BCG	47.0	*[]	- //	62,0-77,0
13 63 Celková bílkovina	47,3	[]	g/I	02/0 11/
Biuretová metoda 1153 CRP-HS	31,5	[]*	mg/l	0.0-5,0
Imunoturbidimetrie	T = 2.00			
1481 Prekalcitonin	0,14	[*]	ug/l	0,00-0,50
ECLIA Cobas 6000 (e601)	4	200		
7111 Separace séra	1x			

Blood collection date: 12/9/2018

	- Wayer 3	***		Ref. meze
81593 Sodný kation	138	[*]	mmol/l	137-144
ISE - s ředěním 81393 Draselný kation ISE - s ředěním	4,1	[*]	mmol/l	3,9-5,3
81469 Chloridy	104	[*]	mmol/l	98-107
ISE - s ředěním 81421 Alkalická fosfatáza	1,45	[*]	ukat/l	0,88-2,35
IFCC metoda při 37°C (AMP) 81357 AST	0,45	[*]	ukat/l	0,16-0,63
Modifikovaná IFCC metoda při 37°C 81337 ALT Modifikovaná IFCC metoda při 37°C	0,87	[]*	ukat/l	0,10-0,63
81435 GGT (GMT)	0,48	[*]	ukat/l	0,15-0,92
IFCC metoda při 37°C 81621 Močevina Enzymová metoda s ureázou a GDH	6,1	[*]	mmol/l	2,9-8,2
S-KREA 81499 Kreatinin Enzymová kolorimetrická metoda	73	[*]	umol/l	42-80
eGF R-krea- (CKD-EPI)	1,19		ml/s/1,73 m2	
81731 NT - proBNP	726,0	[]*	ng/l	20,0-125,0
91153 CRP-HS	23,1	[]*	mg/l	0,0-5,0
97111 Separace séra	1x			

Blood collection date: 14/9/2018

81593 Sodný kation	139	[*]	mmol/l	Ref. meze 137-144
ISE - s ředěním 81393 Draselný kation	4,5	[*]	mmol/l	3,9-5,3
ISE - s ředěním 81469 Chloridy	108	[]*	mmol/l	98-107
ISE - s ředěním 81621 Močovina Enzymová metoda s ureázou a GDH	6,0	[*]	mmol/l	2,9-8,2
S-KREA 81499 Kreatinin	71	[*]	umol/l	42-80
Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	1,23		ml/s/1,73 m2	
91153 CRP-HS	18,2	[]*	mg/l	0,0-5,0
97111 Separace séra	1x			

Blood collection date: 17/9/2018

				Ref. meze
S1593 Sodný kation	140	[*]	mmol/l	137-144
ISE-s ředěním B1393 Draselný kation	4,3	[*]	mmol/l	3,9-5,3
ISE - s ředěním 31469 Chloridy	106	[*]	mmol/l	98-107
ISE - s ředěním 1621 Močovina Enzymová metoda s ureázou a GDH	5,7	[*]	mmol/l	2,9-8,2
S-KREA 1499 Kreatinin	62	[*]	umol/l	42-80
Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	1,45		ml/s/1,73 m2	
1329 Albumin	32,3	[*]	g/l	32,0 46, 0
Metoda s BCG 13 65 Celková bílkovina	54,4	*[]	g/I	62,0-77,0
Biuretová metoda 1153 CRP-HS	8,5	[]*	mg/l	0,0-5,0
7111 Separace séra	1x			

- 18/9/2018 the patient was discharged from the hospital to home care with this conclusion:
 - status post <u>acute renal injury (AKIN III) combined etiology</u> (urosepsis, insufficient oral intake, diuretic therapy, negative vasomotor effect of sartans), in chronic medication, sartan and diuretics were discontinued, calcium blocker was deployed
 - status post <u>acute non-obstructive colibacillary</u>
 <u>pyelonephritis</u> (treated with Taximed i.v. (cefotaxim))
 - non-selective glomerular <u>proteinuria</u> (1.1 g/24 h)
 - monoclonal gammopathy, detection of kappa IgA paraprotein in serum (1.4 g/L and 1.0 g/L) and Bence-Jones protein kappa in urine

 16/10/2018: patient was admitted to control hospitalization

Blood collection date: 16/10/2018

81135 Sodný kation	139	[*]	mmol/l	Ref. meze 137-144
81145 Draselný kation	4,6	[*]	mmol/l	3,9-5,3
ISE - s ředěním 81157 Chloridy	107	[*]	mmol/I	98-107
ISE - s ředěním Osmolalita-počítaná	289	[*]	mmol/kg	280-301
počítaná: 2*(Na)+p-Glu+Urea 81155 Glukóza v plazmě	5,2	[*]	mmol/l	4,6-6,4
Metoda s HK 81111 ALT	0,33	[*]	ukat/l	0,10-0,63
Modifikovaná IFCC metoda při 37°C 81153 GGT (GMT)	0,26	[*]	ukat/l	0,15-0,92
IFCC metoda při 37°C 81117 Amyláza	1,10	[*]	ukat/l	0,40-2,51
IFCC metoda při 37°C 81121 Bilirubin celkový	7,6	[*]	umol/l	3,0-19,0
Vanadátová metoda 81137 Močovina Enzymová metoda s ureázou a GDH	6,0	[*]	mmol/l	2,9-8,2
S-KREA 81169 Kreatinin	79	[*]	umol/l	42-80
Enzymová kolorimetrická metoda eGFR -krea- (CKD-EPI)	1,08		ml/s/1,73 m2	
81125 Celková bílkovina	63,8	[*]	g/l	62,0-77,0
Biuretová metoda 91153 CRP-HS	1,4	[*]	mg/l	0,0-5.0
97111 Separace séra	1x			(5)

Blood collection date: 19/10/2018

				Ref. mez
81593 Sodný kation	140	[*]	mmol/l	137-144
ISE - s ředěním 81393 Draselný kation	4,2	[*]	mmol/l	3,9-5,3
ISE - s ředěním 81469 Chloridy	110	[]*	mmol/l	98-107
ISE - s ředěním 81625 Ca celkový	2,27	[*]	mmol/l	2,05-2,40
Fotometrie s arsenazo III 81427 Fosfát anorganický	1,15	[*]	mmol/l	0,74-1,29
UV fosfomolybdátová metoda 81421 Alkalická fosfatáza	1,35	[*]	ukat/l	0,88-2,35
IFCC metoda při 37°C (AMP) 81357 AST	0,26	[*]	ukat/l	0,16-0,63
Modifikovaná IFCC metoda při 37°C 81337 ALT	0,31	[*]	ukat/l	0,10-0,63
Modifikovaná IFCC metoda při 37°C 81435 GGT (GMT)	0,25	[*]	ukat/l	0,15-0,92
IFCC metoda při 37°C 81383 LD (IFCC)	3,54	[*]	ukat/l	1,83-4,10
81361 Bilirubin celkový	6,6	[*]	umol/l	3,0-19,0
Vanadátová metoda 81363 Bilirubin přímý	2,0	[*]	umol/l	0,0-2,0
Vanadátová metoda 81523 Kyselina mečová	296	[*]	umol/l	208-434
Enzymová metoda s urikázou 81621 Močovina Enzymová metoda s ureázou a GDH	5,0	[*]	mmol/l	2,9-8,2
S-KREA 81499 Kreatinin	73	[*]	umol/l	42-80
Enzymová kolorimetrická metoda eGFR-Krea-(CKD-FPI)	1,19		ml/s/1,73 m2	
81329 Albumin	36,5	[*]	g/l	32,0 46,0
Metoda s BCG 81365 Celková bílkovina	59,8	*[]	g/l	62,0-77,0
Biuretová metoda 91153 CRP-HS	0,8	[*]	mg/l	9,0-5,0
Imunoturbidimetrie		1910/00/00	·	1,00-2,30
91193 Beta-2-mikroglobulin	3,20	[]	mg/l	1,00 2,50
97111 Separace séra	1x			

Collection date: 19/10/2018

Doba sběru: 24:00 ho	d C	Diuresa: 2360 ml			Výška: 162 cm Hmotnost: 76 kg			
S-Urea	5,0	[*]	mmol/l	1.79	S-Ca	2,27	[*]	mmol/l
S-Kreatinin	73	[*]	umol/l		S-Fosfát anorg.	1,15	[*]	mmol/l
S-Na+	140	[*]	mmol/l		S-Kyselina močová	296	[*]	umol/l
S-K+	4,2	[*]	mmol/l		S-Osmolalita			70107.7
	110				S-Mg			
S-Chloridy	110	[]*	THITIOI/I		3-IVIY			
Renální eliminace					Antidophysion a Attendance		r 1+	1/- O+ 1
Diuresa	0,027	[]*	ml/s		Diuresa korig.	1304,1	[]*	ml/m2*den
dU-Urea	194,0		mmol		dU-Ca	4,2		mmol
dU-Kreatinin	9,68	[*]	mmol		dU-Fosfát anorg.	21,9		mmol
dU-Na+	165		mmol		dU-Kyselina močová	3,54		mmol
dU-K+	61,4		mmol		dU-Osmolalita			
	165		mmol		dU-Mg			
dU-Chloridy	100	-	THITIOI		do-ivig			
Clearance			10 10				===	
Kreatininu: zjištěná	100000	9	korigovaná	20200		adnutá (CKD		
1,534	ml/s		1,467	[]*	ml/s/1,73 m2 1 ,	186 ml/s/1,73	3 m2	
Urey: zjištěná	11000		korigovaná	Vienes	1 5 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dardní		
0,449	ml/s		0,429	*[]	ml/s/1,73 m2		Service Control	
Kyseliny močové	0,138	[*]	ml/s		K+	0,169	[*]	ml/s
Osmolární					Chloridu	0,017	[*]	ml/s
Na+	0,014	[*]	ml/s		Bezsolutové vody			
Ca	0,022	[*]	ml/s		Fosfátu	0,221	[*]	ml/s
	0,022	r 1	1111/3		1 031414	0,221	1.1	111110
Exkreční frakce							7.43	01
Na+	0,890	[*]	%		Fosfátu	14,399	[*]	%
K+	11,022	[*]	%		Osmolární			
Ca	1,412	[*]	%		Bezsolutové vody	1,780	[*]	%
Chloridu	1,133	[*]	%	>	Urey	29,271	*[]	%
Indexy moč/sérum								
U/S - kreatinin	56,164	[*]	ENTER THE PROPERTY OF THE	Tu	ibulární resorpce vody	98,220	*[]	%
THE RESIDENCE OF THE PERSON OF				10	ibulariii resorpee vody	00,220	1.1	
U/S - urea	16,440	[*]		-	- flat and an action's falst	-		
U/S - osmolalita				Re	enální prognostický fakto			
Indexy						000000	All the same	
U-Na/U-K	2,692	*[]			U-KM/U-Krea	0,366	[]*	
U-Na*S-Krea/U-Krea	1,246	[*]	mmol/l		U-Mg/U-Krea			
S-Urea/S-Krea	68,493	*[]			U-Ca/U-Mg			
	The second secon				5 54.5 mg			
U-Ca/U-Krea	0,439	[*]					-	
The state of the s					NAME THE	40.00		
Další hodnoty		nu b	ílkovin		33,8	g/den		
Další hodnoty Odhad minimálního d	enního příjr	1101 10	S-Kreatinin (max.) výpočtem			mol/l orientační výsl.		
Odhad minimálního d					104	umol/I	ment	acnı vysı.
Odhad minimálního d S-Kreatinin (max.) vý	počtem					1/mmol	oneni	acni vysi.
Odhad minimálního d	počtem -Kreatininu				13,7		oneni	acni vysi.

Urine collection date: 19/10/2018

					Ref. meze
	Sodný kation				
	81593 U-Na ISE - s ředěním	70		mmol/l	
	dU-Na	165		mmol	
	Draselný kation				
	81393 U-K	26		mmol/l	
	ISE - s ředěním d U-K	61,4		mmol	
	Chloridy	01,4		mmor	
	81469 U-CI	70		mmol/l	
	ISE s ředěním				
	dU-CI	165		mmol	
	Vápník	4.0		mmol/l	
	81625 U-Ca Fotometrická metoda s arsenazo III	1,8		mmoi/i	
	dU-Ca	4,2		mmol	
	Fosfát anorganický				
	81427 U-P UV fosfomolybdátová metoda	9,3		mmol/l	
	dU-P	21,9		mmol	
	81395 ELFO proteinů Elektroforéza na SDS-agaróze	viz komentář, účtovat			
	Kyselina močová				
	81523 U-KM	1,50		mmol/l	
	Enzymová metoda s urikázou dU-KM	3,54		mmol	
	Močovina				
	81621 U-UREA	82,2		mmol/l	
	Enzymová metoda s ureázou a GDH			mmol	
	dU-UREA	194,0		mmol	
	Kreatinin 81499 U-KREA	4,1		mmol/l	
	Enzymová kolorimetrická metoda				0.000.000.00
	dU-KREA	9,68	[*]	mmol	5,30-15,90
	Enzymová kolorimetrická metoda Celkevá blíkovina sbír	aná moč			
	81369 U-CB	270		mg/l	
	Kolorimetrie - pyrokatecholová violeť	627		5-10 AV	
	dU-CB dU-CB/m2	637 352	[]*	mg mg/m2	0-96
	U-CB/U-Krea	65,85		mg/mmol	0.00 22,70
		55,55		Krea	
+	91397 Paraprotein	BJB neprokázána			
	lmunofixace				
	Mikroalbuminurie 81675 U-MIKROALB	71,0		mg/l	
	Imunoturbidimetrie				
+	dU-MIKROALB	167,6		mg	

Urine collection date: 19/10/2018

Urine collection date: 22/10/2018

				Ref. meze
Moč chemicky				
81325 Spec. hmotnost	1,010		kg/l	
pH	6,5			
Leukocyty	3			
Nitrity	-			
Bílkovina				
Glukóza				
Ketolátky				
Urobilinogen	Normal			
Bilirubin	-			
Barva	žlutá			
Zákal	průhledná			
Krev	1			
Elementy v moči				
Erytrocyty	44	[]*	částic/ul	0-10
Leukocyty	586	[]*	částic/ul	0-15
Dlaždicové epit.	0	[*]	částic/ul	0-10

- 22/10/2018 discharging from the hospital to home care
- haematological dispensarization was ensured
- continuation of urological dispensarization

23.4.2019:

the last one haematologic control

Blood collection date: 23/4/2019

Ī				D (
	ossoo Cadaú katiaa	427	[*] mmol/l	Ref. meze
	81593 Sodný kation ISE - s ředěním	137	[*] mmol/l delta check: nevýznamný	13/-144
	81393 Draselný kation	3,9	[*] mmol/l	3,9-5,3
	ISE - s ředěním		delta check: nevýznamný	
	81469 Chloridy	104	[*] mmol/l	98-107
	ISE - s ředěním 81625 Ca celkový	2,25	delta check: nevýznamný [*] mmol/l	2,05-2,40
	Fotometrie s arsenazo III	2,25	delta check: nevýznamný	
	81641 Železo	9,3	umol/l	
	Metoda s ferrozinem	4 = 4	delta check: nevýznamný	0,88-2,35
	81421 Alkalická fosfatáza IFCC metoda při 37°C (AMP)	1,54	[*] ukat/l delta check: zména +20% od 23.11.2018 ()	0,00-2,33
	81357 AST	0,41	[*] ukat/l	0,16-0,63
	Modifikovaná IFCC metoda při 37°C	00/70/07/07	delta check: nevýznamný	
	81337 ALT	0,39	[*] ukat/l	0,10-0,63
	Modifikovaná IFCC metoda při 37°C 81:435 GGT (GMT)	0,16	delta check: nevýznamný [*] ukat/l	0,15-0,92
	IFCC metoda při 37°C	0,10	delta check: nevýznamný	
+	81383 LD (IFCC)	3,55	[*] ukat/l	1,83 4,10
Ť	IFCC metoda při 37°C LP		delta check: nevýznamný	3,0-19,0
	81361 Bilirubin celkový Vanadátová metoda	15,9	[*] umoi/ delta check: změna +101% od 23.11.2018 ()	3,0-19,0
	81363 Bilirubin přímý	5,2	[]* umol/l	0,0-2,0
	Vanadátová metoda		delta check: změna +126% od 23.11.2018 ()	
	81523 Kyselina močová	285	[*] umol/l	208-434
	Enzymová metoda s urikázou 81621 Močovina	5,6	delta check: nevýznamný [*] mmol/l	2,9-8,2
	Enzymová metoda s ureázou a GDH	5,0	delta check: nevýznamný	
	S-KREA			
	81499 Kreatinin	76	[*] umol/l	42-80
	Enzymová kolorimetrická metoda		delta check: nevýznamný	
	eGFR-krea-(CKD-EPI)	1,12	ml/s/1,73 m2	
	81329 Albumin	40,5	[*] g/l	32,0-46,0
	Metoda s BCG	00.0	delta check: nevýznamný *[] q/l	62,0-77,0
	81365 Celková bílkovina Biuretová metoda	60,0	*[] g/l delta check: nevýznamný	02,0,0
	CZE-ELFO bílkovin			
	81397 CZE-Albumin	0,670	[]* rel.j.	0,558-0,661
	CZE-Albumin	0,038	[*] rel.j.	0,029-0,049
	CZE-Alfa 1	0,082	[*] rel.j.	0,071-0,118
	CZE-Alia 2 CZE-Beta 1	0,063	[*] rel.j.	0,047-0,072
	CZE-Beta 1	0,035	[*] rel.j.	0,032-0,065
	CZE-Beta 2 CZE-Gamma	0,035	[*] reli	0,110-0,188
1				
ł	91397 Paraprotein Elektrotoréza proteinő s násladogu imunofixaci	neprokázán		
	91167 Free Kappa	12,5	mg/l	3,3-19,4
+	Imunoturbidimetrie		delta check: změna -23% od 23.11.2018 ()	E 7 06 0
	91169 Free Lambda	13,9	mg/l delta check: nevýznamný	5,7-26,3
Ī	Imunoturbidimetrie	0,90	derea check, nevyrhamny	0,20- 1,65
	Kappa/Lambda 91153 CRP-HS	14,2	[]* mg/l	0,0-5,0
	Imunoturbidimetrie	14,2	. 1	
	91129 IgG	7,7	[*] g/I	6,7-15,0
	Imunoturbidimetrie		delta check: nevýznamný	
L				

Blood collection date: 23/4/2019

91131 IgA	0,77	*[] g/I	0,90-3,70
Imunoturbidimetrie 91133 IgM Imunoturbidimetrie	0,64	delta check: nevýznamný [*] g/l delta check: nevýznamný	0,60-2,20
Transferin 91137 Transferin	2,49	[*] g/l delta check: změna +74% od 05.09.2018 ()	1,90-3,80
Imunoturbidimetrie Saturace transferinu	14,9	*[] %	20,0-40,0
Celk.vaz.kapacita pro žele.		[*] umol/l	44,8-80,6
sTfR 81721 sTfR	2,86	[*] mg/l	1,90-4,00
Index sTfR/logFERRIT	1,54		0,63-1,80
91193 Beta-2-mikroglobulin	4,50	[]* mg/l	1,00-2,30
93195 TSH CMIA Centaur	1,459	[*] mIU/I delta check: nevýznamný	0,350-4,800
93151 Feritin	71,4	[*] ug/l delta check: nevýznamný	10,0-291,0
93213 Vitamin B12	451	[*] ng/l	110-769
93115 Kyselina listová (Folát) ECLIA Cobas 6000 (e601)	11,71	[*] ug/l	5,60-45,80
97111 Separace séra	1x		

Urine collection date: 23/4/2019

			Ref. meze
Celková bílkovina sbíraná i	moč		
81369 U-CB	112	mg/l	
Kolorimetrie - pyrokatecholová violeť		delta check: nevýznamný	
dU-CB	314	mg	
		delta check: nevýznamný	
dU-CB/m2	174	[]* mg/m2	0-96
U-CB/U-Krea	nelze spočítat		0,00-22,70
	BJB neprokázána		
Imunofixace	DOD HOPTOMAZANA		

Patient 11

18 years old boy

- Chronic renal failure patient treated with peritoneal dialysis.
- 12/2017 admitted to hospital for hypertensive crisis (BP with maximum 208/129 measured at home).
- Above all, he described the great headache frontal and pressure in the eyes.

Clinical suspicion of PRES syndrome

- Posterior Reversible Encephalopathy Syndrome
- clinico-radiological unit
- diagnostics is based on imaging methods (especially on MR)
- cerebral autoregulation disorder → endothelial disorder → formation of vasogenic edema
- changes initially reversible in early therapy, prolonged duration may result in ischemia or haemorrhage
- localization typically in parietal and occipital lobes (may be also frontal and temporal, in cerebellum and basal ganglia)
- MR of brain was performed:
- The examination <u>confirmed the suspicion of PRES</u>
 <u>syndrome</u>, with the presence of multiple distributed lesions of cortex edema and white matter of both hemispheres of the brain (bilaterally frontoparietoccipitally) and cerebellum.

Blood collection date: 11/12/2017

81593 Sodný kation	143	[*]	mmol/l	Ref. meze 137-146
81393 Draselný kation	5,5	[]*	mmol/l	3,8-5,0
ISE - s redenim 81469 Chloridy	98	[*]	mmol/l	97-108
ISE - s ředěním 81625 Ca celkový	2,54	[*]	mmol/l	2,05-2,54
Fotometrie s arsenazo III 81465 Hořčík	1,55	[]*	mmol/l opakovaně	0,66-0,91
Kolorimetrická metoda s xylidilovou modří 81641 Železo	5,0	*[]	umol/l	7,2-29,0
81427 Fosfát anorganický	3,28	[]*	mmol/l opakovaně	0,65-1,61
Osmolalita-počítaná	314	[]*	mmol/kg	285-295
počítaná: 2*(Na)+p-Glu+Urea 81439 Glukóza v plazmě	4,7	[*]	mmol/l	3,3-5,8
Metoda s HK 81421 Alkalická fosfatáza	1,59	[*]	ukat/l	0,66-2,20
IFCC metoda při 37°C (AMP) 81357 AST	0,59	[*]	ukat/l	0,16-0,72
Modifikovaná IFCC metoda při 37°C 81337 ALT	1,16	[]*	ukat/l	0,17-0,78
Modifikovaná IFCC metoda při 37°C 81361 Bilirubin celkový	2,2	[*]	umol/l	2,0-17,0
Vanadátová metoda 81523 Kyselina močová	682	[]*	umol/l	200-420
Enzymová metoda s urikázou 81621 Močovina	23,6	[]*	mmol/l	2,8-8,0
Enzymová metoda s ureázou a GDH S-KREA				
81499 Kreatinin	2029	[]*	umol/l	19-62
Enzymová kolorimetrická metoda eGFR-krea-(CKD-EPI)	0,04		ml/s/1,73 m2	
81611 Triacylglyceroly	3,91	[]*	mmol/I	0,70-1,70
81471 Cholesterol	7,1	[]*	mmol/I	3,4-5,0
81329 Albumin Metoda s BCG	47,6	[*]	g/I	35,0-53,0
81365 Celková bílkovina Biuretová metoda	75,3	[*]	g/I	65,0-85,0
91153 CRP-HS Imunoturbidimetrie	2,0	[*]	mg/l	0,0-5,0
Transferin				
91137 Transferin Imunoturbidimetrie	1,81		g/I	1,90-3,50
Saturace transferinu Celk.vaz.kapacita pro železo	11,0 45,5	*[] [*]	% umol/l	20,0-40,0
93151 Feritin	127,4	[*]	ug/l	22,0-322,0
CMIA Centaur 81681 25-hydroxyvitamin D total	48,1	*[]	nmol/l	50,0-250,0
CMIA Centaur 97111 Separace séra	1x	0.007-0		
2.111 Copulato Cola	1.7			

Blood collection date: 11/12/2017

93171 Parathormon intaktní ECLIA Cobas 6000 (e601)	15,26 []* pmol/l	Ref. meze 1,30-7,60
97111 Separace séra	1x	

Medication

- Agen (amlodipin)
- Ebrantil (urapidil, a centrally acting antihypertensive agent)
- Piramil (ramipril)
- Moxostad (moxonidin, a centrally acting antihypertensive agent)
- Zoloft (sertralin)
- Calcii carbonici
- Velphoro (iron oxide-hydroxide with sucrose and starch, chewable tablets, non-calcium phosphate binder)
- Vigantol
- Rocaltrol
- B-complex, Acidum folicum
- Ezetrol (ezetimib)
- Omeprazol
- Mircera (pegepoetin beta)
- In the past:
 - Ketosteril (amino acid analogs, in reducing protein intake)
 - Resical (calcium polystyrene sulphonate, indicated in still non-dialysis patients with chronic renal failure with persistent hyperkalaemia 6 mmol/L uncontrollable by other conservative treatment)
 - Fraxiparine

Medical history + current disease

- Firstly the boy thrived well, however, motor development was different for muscle anomaly, from 6 months of age the boy was repeatedly examined at neurology, the condition was closed as facio-humero-scapular dystrophy
- 2004: proteinuria +++ was detected after tonsilitis, subsequently quantitatively 1.1 g
 /24 hours, serum albumin 31 g/L
- 12/2005: renal biopsy: small abnormalities of glomeruli with IgM-positivity
- 1/2006: therapy with Prednisone and Ramil
- After 8-weeks full dose of Prednisone proteinuria was 9 g / 24h → corticoresistance
- 4-7/2006: treatment with Cyclophosphamide, microscopic hematuria was captured
- 11/2008: treatment with cyclosporin A + ACEI, sartan, anopyrin
- 8/2012: feverish state probably in viral respiratory disease
- 9/2013: patient was examined on immunology for recurrent feverish conditions, sometimes associated with cough; this has been associated with immunosuppressive therapy and immunoglobulin administration was initiated
- 4/2014: again febrile state, increased immunoglobulins, <u>especially IgD, SAA</u>, FW, leuko, trombo, amyloidosis was suspected, <u>the patient was released with the diagnosis</u>
 <u>of Hyper IgD syndrome</u> (<u>mevalonate kinase deficiency</u>) <u>very suspiciously, later, however, the genetic examination did not show a diagnosis</u>
 <u>of mevalonate kinase deficiency</u>

Medical history + current disease

- 2014: renal biopsy: nephrotic syndrome with minimal glomerular changes, due to focally segmented mild changes in mesangia and adhesions, it cannot be excluded that focal segmental glomerulosclerosis may develop over time, the presence of amyloid has not been demonstrated
- 5/2017: patient admitted for headache in hypertensive crisis
- <u>5/2017: renal biopsy: progression of focal-segmental glomerulosclerosis,</u> convincing signs of cyclosporin toxicity have not been shown, <u>Nail-Patella syndrome</u> has been genetically proven
- 5/2017: Mycophenolate and a small dose of corticoids therapy
- 6/2017: hospitalization for renal disease progression (creat. 590-645-872, urea 26.0-27.7),
 <u>establishing a catheter for peritoneal dialysis</u>,
 left nephrectomy, introducing a central venous catheter, weight on admission to hospital 58.5 kg, at hospital discharge 44.1 kg
- 6-7/2017 haemodialysis, od 8/2017 peritoneal dialysis
- 9/2017: hospitalization for accelerated hypertension with headache and vomiting due to hyperhydration
- Now 12/2017 pacient comes again for hypertensive crisis, again found hyperhydration, weight on admission to hospital 45,9 kg, at hospital discharge 42,2 kg
- Permitted fluid intake up to 1200 ml / day for this peritoneal dialysis patient (with this PD mode)

Nail-Patella syndrome (hereditary osteoonychodysplasia (HOOD))

- A set of hereditary (AD) abnormalities <u>including dysplasia or aplasia</u> of the patella, nails (most pronounced in first fingers)
- The incidence is approximately 1:50,000 newborns
- Dysplastic changes of elbow skeleton (cubitus valgus) and knee joint (genua valga) often leading to radium head luxation (and limitation of elbow motion) or patella luxation
- Iliac horns + open hip bone shovels with prominent anterior superior spina iliac ("elephant ear" image)
- Spondylolisthesis, scoliosis
- Pes equinovaris, congenital flat leg, abnormal iris pigmentation
- <u>Different degree of kidney involvement (focal and segmental glomerulosclerosis)</u>
- Nephrotic syndrome (+ sometimes haematuria) may be clinically present and renal failure may develop in part (about 1/3) of the affected patients
- Nephropathy most often develops in the 3rd to 4th decades

Blood collection date: 19/2/2015

	elfertation.	£43	17020		Ref. meze
81593 Sodný kation ISE - s ředěním	137	[*]	mmol/l		137-146
81393 Draselný kation	5,2	[*]	mmol/I		3,6-5,9
81469 Chloridy	104	[*]	mmol/l		95-110
ISE - s ředěním 81625 Ca celkový	2,43	[*]	mmol/l		2,05-2,54
Fotometrie s arsenazo III 81427 Fosfát anorganický	1,82	[*]	mmol/l		1,16-1,90
81563 Osmolalita	296	[]*	mmol/kg		285-295
Kryoskopie 81523 Kyselina močová	472	[]*	umol/l		140-340
Enzymová metoda s urikázou 81621 MOČOVÍNA Enzymová metoda s ureázou a GDH	7,6	[]*	mmol/l		1,8-6,7
S-KREA 81499 Kreatinin Enzymová kolorímetrická metoda	67	[]*	umol/l		19-62
eGFR-krea-(Schwartz)	nelze spočítat			do 1 roku orientační výsledek	
81611 Triacylglyceroly	1,18	*[]	mmol/l		1,20-1,60
81471 Cholesterol	6,7	[]*	mmol/l		2,6-4,8
81473 HDL cholesterol	1,70	[*]	mmol/l		1,27-1,71
81527 LDL cholesterol	3,97	[]*	mmol/l		1,60-3,00
Přímá metoda 81329 Albumin	35,7	[*]	g/l		35,0-53,0
Metoda s BCG 81365 Celková bílkovina	63,8	[*]	g/I		58,0-77.0
97111 Separace séra	1x				

Urine collection date: 19/2/2015

				Ref. meze
Moč chemicky				
81325 Spec. hmotnost	1,014		kg/l	
pH	5,5		COORDINATE OF THE PROPERTY OF	
Leukocyty	1			
Nitrity	-			
Bilkovina	2			
Glukóza	Normal			
Ketolátky	-			
Urobilinogen	Normal			
Bilirubin	-			
Hemoglobin	-			
Kyselina askorbová				
Barva	světle žlutá			
Zákal	lehce zakalená			
Elementy v moči				
Erytrocyty	4	[*]	částic/ul	0-10
Leukocyty	32	[]*	částic/ul	0-20
Hyalinní válce	0	[*]	částic/ul	0-10
Dlaždicové epit.	30	[]*	částic/ul	0-15
Hlen	ojediněle			

Blood collection date: 18/6/2015

Doba sběru: 12:00 hod	Množství m	ateria	álu: 1200 ml	
81593 Sodný kation ISE - s ředěním	137	[*]	mmol/l	Ref. meze 137-146
81393 Draselný kation	5,0	[*]	mmol/l	3,8-5,0
81469 Chloridy	108	[*]	mmol/l	97-108
ISE - s ředěním 81625 Ca celkový	2,24	[*]	mmol/l	2,05-2,54
Fotometrie s arsenazo III 81465 Hořčík	0,92	[]*	mmol/l	0,66-0,91
Kolorimetrická metoda s vylidilovou medří 81427 Fosfát anorganický	1,75	[]*	mmol/l	0,65-1,61
UV fosfomolybdátová metoda 81421 Alkalická fosfatáza	3,75	[]*	ukat/l	0,66 2,20
IFCC metoda při 37°C (AMP) 81357 AST	0,45	[*]	ukat/l	0,16-0,72
Modifikovaná IFCC metoda při 37°C 81337 ALT	0,18	[*]	ukat/l	0,17-0,78
Modifikovaná IFCC metoda při 37°C 81495 Kreatinkináza	4,39	[]*	ukat/l	0,41-3,24
Metoda pří 37°C (NAC) 81523 Kyselina močová	488	[]*	umol/l	200-420
Enzymová metoda s urikázou 81621 Močovina Enzymová metoda s ureázou a GDH	6,7	[*]	mmol/I	2,8-8,0
S-KREA 81499 Kreatinin	69	[]*	umol/l	19-62
eGFR-krea-(Sehwartz)	1,45		ml/s/1,73 m2 do 1 roku orientační výsledek	
Cystatin C	4.05	ſ 1*		
81703 Cystatin C Imunoturbidimetrie	1,35	IJ	mg/l	0,55-1,15
eGFR cyst. C (Grubb)	1,02		ml/s/1,73 m2	
81329 Albumin Metoda s BCG	32,9	*[]	g/l	35,0-53,0
∘1365 Celková bílkovina	58,0	*[]	g/l	65,0-85,0
Biuretová metoda 91153 CRP-HS	2,3	[*]	mg/l	0,0-5,0
Imunoturbidimetrie 97111 Separace séra	1x			

Blood collection date: 5/11/2015

Doba sběru: 12:00 hod	Množství m	ateri	álu: 1500 ml	
81593 Sodný kation	135	*[]	mmol/l	Ref. meze 137-146
e1393 Draselný kation	5,4	[]*	mmol/l	3,8-5,0
ISE - s ředěním 81469 Chloridy ISE - s ředěním	104	[*]	mmol/l	97-108
31625 Ca celkový	2,39	[*]	mmol/l	2,05-2,54
Fotometrie s arsenazo III 31465 Hořčík	0,95	[]*	mmol/l	0,66-0,91
Kolorimetrická metoda s xyfidilovou modří 31427 Fosfát anorganický	1,65	[]*	mmol/l	0,65-1,61
UV fosfomolybdátová metoda 81523 Kyselina močová	535	[]*	umol/l	200-420
Enzymeva metoda s urikázou 31621 Močovina Enzymová metoda s ureázou a GDH	8,2	[]*	mmol/l	2,8-8,0
S-KREA 1499 Kreatinin Fozymová kolorimetrická metoda	90	[]*	umol/l	19-62
eGFR-krea-(Schwartz)	1,11		ml/s/1,73 m2 do 1 roku orientační výsledek	(
Cystatin C 1703 Cystatin C Imunoturbidimetrie	1,49	[]*	mg/l	0,55-1,15
eGFR-cyst. C (Grubb)	0,91		ml/s/1,73 m2	
1329 Albumin Metoda s BCG	37,0	[*]	g/l	35,0-53,0
1365 Celková bílkovina Biuretová metoda	64,9	*[]	g/I	65,0-85,0
1153 CRP-HS	1,3	[*]	mg/l	0,0-5,0
Imunoturbidimetrie 37111 Separace séra	1x			

- 5-6/2017 progression of renal disease
 - creatinine 590 \rightarrow 645 \rightarrow 872
 - urea 26.0 → 27.7
- 6-7/2017 haemodialysis
- od 8/2017 peritoneal dialysis

Blood collection date: 15/9/2017

Naměřené hodnoty							
Doba sběru: 09:00 hod		sa: 100 ml		Výška: 172 cm Hmotnost: 48.3 kg			
S-Urea 2	2,2 []*	mmol/l		S-Ca	2,21	[*]	mmol/l
	192 []*	umol/l	•	S-Fosfát anorg.	2,50	[]*	mmol/l
S-Na+	144 [*]	mmol/l		S-Kyselina močo		[]*	umol/l
S-K+	4,7 [*]	mmol/l		S-Osmolalita			
S-Chloridy	102 [*]	mmol/l		S-Mg	1,24	[]*	mmol/l
Renální eliminace	- And Alexander	2719				and the second	
Diuresa 0,	003 *[]	ml/s		Diuresa korig.	171,1	*[]	ml/m2*den
dU-Urea 1	5,8 *[]	mmol		dU-Ca			
dU-Kreatinin 1	,71 *[]	mmol		dU-Fosfát anorg			mmol
dU-Na+	26 *[]	mmol		dU-Kyselina mod	čová 0,43	[*]	mmol
dU-K+	4,0 *[]	mmol		dU-Osmolalita			
dU-Chloridy	19 *[]	mmol		dU-Mg			
Clearance							
Kreatininu: zjištěná	1	korigovaná			odhadnutá (CKD	-EPI)	
0,013 n	nl/s	0,015	*[]	ml/s/1,73 m2	0,060 ml/s/1,73	3 m2	
Urey: zjištěná		korigovaná		5	standardní		
	nl/s	0,009	*[]	ml/s/1,73 m2			
	010 *[]	ml/s		K+	0,010	*[]	ml/s
Osmolární				Chloridu	0,002		ml/s
	002 *[]	ml/s		Bezsolutové vod			
Ca				Fosfátu	0,005	*[]	ml/s
Exkreční frakce				and a supplied property			
Na+ 15,	542 []*	%		Fosfátu	38,233	[]*	%
K+ 74,				Osmolární			
Ca		,,		Bezsolutové vod		[]*	%
	684 []*	%		Urey	62,062	[*]	%
Indexy moč/sérum							
	200 *[1		Tul	bulární resorpce voc	dy 76,687	*[1	%
	290 *[] 662 *[]		Tul	bulanni resorpce voc	10,001	[]	75
1110	7.5		Re	nální prognostický fa	aktor		
		-	1,0	p g. roomony no		71111111	
Indexy				11 128 471 12	2.055	F#1	
	400 []*			U-KM/U-Krea	0,250	[*]	
	380 []*	mmol/l		U-Mg/U-Krea			
	879 *[]			U-Ca/U-Mg			
U-Ca/U-Krea							
Další hodnoty							
Odhad minimálního denního	příjmu bi	ílkovin		2,8	g/den		
S-Kreatinin (max.) výpočtem				110		prienta	ační výsl.
Reciproká hodnota S-Kreatir	inu			0,7	1/mmol		
dU-Krea/kg hmotnosti				35 *[
BMI				16,3	kg/m2		

Urine collection date: 15/9/2017

					F	Ref. meze
	oč chemicky					
81325 Sp	ec. hmotnost 1,0	19		kg/l		
pH	1	7,0				
Le	ukocyty Negati	ve				
Ni	trity	-				
Bí	kovina	3				
Gl	ukóza	1				
Ke	tolátky	-				
Ur	obilinogen Norm	nal				
Bil	irubin	-				
Ky	selina askorbová	-				
Ва	rva světle žlu	ıtá				
Zá	kal průhled	ná				
Kr	ev	1				
El	ementy v moči					
		18	[]*	částic/ul		0-10
	ukocyty	7	[*]	částic/ul		0-25
	ralinní válce	0		částic/ul		
		24	[]*	částic/ul		0-10

Blood collection date:

11/12/2017

81	593 Sodný kation	143	[*]	mmol/l	Ref. meze 137-146
81	393 Draselný kation	5,5	[]*	mmol/l	3,8-5,0
81	ISE - s redenim 469 Chloridy	98	[*]	mmol/l	97-108
81	ISE - s ředěním 625 Ca celkový	2,54	[*]	mmol/l	2,05-2,54
81	Fotometrie s arsenazo III 465 Hořčík	1,55	[]*	mmol/l opakovaně	0,66-0,91
81	Kolorimetrická metoda s xylidilovou modří 641 Železo	5,0	*[]	umol/l	7,2-29,0
81		3,28	[]*	mmol/l opakovaně	0,65-1,61
	Osmolalita-počítaná	314	[]*	mmol/kg	285-295
81	počítaná: 2*(Na)+p-Glu+Urea 439 Glukóza v plazmě	4,7	[*]	mmol/l	3,3-5,8
81	Metoda s HK 421 Alkalická fosfatáza	1,59	[*]	ukat/l	0,66-2,20
81	IFCC metoda při 37°C (AMP) 357 AST	0,59	[*]	ukat/l	0,16-0,72
81	Modifikovaná IFCC metoda při 37°C 337 ALT	1,16	[]*	ukat/l	0,17-0,78
81	Modifikovaná IFCC metoda při 37°C 361 Bilirubin celkový	2,2	[*]	umol/l	2,0-17,0
81	Vanadátová metoda 523 Kyselina močová	682	[]*	umol/l	200-420
81	Enzymová metoda s urikázou 621 Močovina	23,6	[]*	mmol/l	2,8-8,0
	Enzymová metoda s ureázou a GDH S-KREA				
81	499 Kreatinin	2029	[]*	umol/l	19-62
		0,04		ml/s/1,73 m2	Sign and Company Juris 1
81	611 Triacylglyceroly GPO-PAP	3,91	[]*	mmol/l	0,70-1,70
81	471 Cholesterol CHOD-PAP	7,1	[]*	mmol/l	3,4-5,0
81	329 Albumin Metoda s BCG	47,6	[*]	g/I	35,0-53,0
81		75,3	[*]	g/l	65,0-85,0
91	153 CRP-HS Imunoturbidimetrie	2,0	[*]	mg/l	0,0-5,0
	Transferin		* F 1		1 00 2 50
9:	Imunoturbidimetrie	1,81			1,90-3,50
		11,0 45,5	*[] [*]	% umol/l	20,0-40,0
93	151 Feritin 1	27,4	[*]	ug/l	22,0-322,0
8:		48,1	*[]	nmol/l	50,0-250,0
9-	CMIA Centaur 7111 Separace séra	1x			

Blood collection date: 11/12/2017

93171 Parathormon intaktní ECLIA Cobas 6000 (e601)	15,26 []* pmol/l	Ref. meze 1,30-7,60
97111 Separace séra	1x	

Blood collection date: 22/2/2018

91503	Sodný kation	445	[*]		Ref. meze
01333	ISE - s ředěním	145	Γ1	mmol/l	137-146
81393	Draselný kation ISE - s ředěním	6,3	[]*	mmol/l opakovaně	3,8-5,0
81469	Chloridy ISE - s ředěním	99	["]	mmol/l	97-108
81625	Ca celkový Fotometrie s arsenazo III	2,57	[]*	mmol/l	2,05-2,54
81641	Železo Metoda s ferrozinem	24,8	[*]	umol/l	7,2-29,0
81427	Fosfát anorganický	2,77	[]*	mmol/l opakovaně	0,65-1,61
	Osmolalita-počítaná počítaná: 2*(Na)+p-Glu+Urea	319	[]*	mmol/kg	285-295
81439	Glukóza v plazmě Metoda s HK	4,9	[*]	mmol/l	3,3-5,8
81421	Alkalická fosfatáza	1,55	[*]	ukat/l	0,66-2,20
81357	IFCC metoda při 37°C (AMP) AST Modifikovaná IFCC metoda při 37°C	0,35	[*]	ukat/l	0,16-0,72
81337	ALT	0,73	[*]	ukat/l	0,17-0,78
81361	Modifikovaná IFCC metoda při 37°C Bilirubin celkový	3,2	[*]	umol/l	2,0-17,0
81523	Vanadátová metoda Kyselina močová	480	[]*	umol/l	200-420
81621	Enzymová metoda s urikázou IVIOČOVINA	24,4	[]*	mmol/l	2,8-8,9
	Enzymová metoda s ureázou a GDH S-KREA				
81499	Kreatinin	1692	[]*	umol/l	19-62
	eGFR-krea-(CKD-EPI)	0,05		ml/s/1,73 m2	
81611	Triacylglyceroly	3,88	[]*	mmol/l	0,70-1,70
81471	Cholesterol CHOD-PAP	8,1	[]*	mmol/l	3.4 5,0
81329	Albumin	48,8	[*]	g/l	35,0-53,0
81365	Metoda s BCG Celková bílkovina	77,8	[*]	g/l	65,0-85,0
91153	Biuretová metoda CRP-HS Imunoturbidimetrie	<0,5		mg/l	0,0-5,0
	Transferin				
91137	Transferin Imunoturbidimetrie	1,94	[*]	g/I	1,90-3,50
	Saturace transferinu	50,8	[]*	%	20,0-40,0
	Celk.vaz.kapacita pro železo	48,8	[*]	umol/l	44,8-80,6
93151	Feritin CMIA Centaur	345,5	[]*	ug/l	22,0-322,0
81681	25-hydroxyvitamin D total	40,6	*[]	nmol/l	50,0-250,0
97111	Separace séra	1x			

Blood collection date: 8/3/2018

81135 Sodný kation ISE - s ředěním	142 [*] mmol/l	urú an amn ó	Ref. meze 137-146
81145 Draselný kation	6,4 []* mmol/l	provedeno opak.	3,8-5,0
ISE - s ředěním 81157 Chloridy ISE - s ředěním	100 [*] mmol/l		97-108
81139 Ca celkový	2,63 []* mmol/l		2,05-2,54
Fotometrie s arsenazo III Osmolalita-počítaná počítaná: 2*(Na)+p-Glu+Urea	delta check: ne 315 []* mmol/kg delta check: ne	g	285-295
81155 Glukóza v plazmě	5,3 [*] mmol/l		3,3-5,8
Metoda s HK 81111 ALT Modifikovaná IFCC metoda při 37°C	0,93 []* ukat/l delta check: ne		0,17-0,78
81121 Bilirubin celkový Vanadátová metoda	3,6 [*] umol/l delta check: ne		2,0-17,0
B1123 Bilirubin přímý Vanadátová metoda	0,9 [*] umol/l	vyznamny	0,0-5,1
81137 Močovina Enzymová metoda s ureázou a GDH	25,4 []* mmol/l delta check: ner	významný	2,8-8,0
S-KREA B1169 Kreatinin Enzymová kolorimetrická metoda	1722 []* umol/l delta check: new		55-96
eGFR-k rea (CKD- EPI)	0,05 ml/s/1,7	3 m2	
B1115 Albumin Metoda s BCG	47,7 [*] g/l delta check: nev	významnů	35,0-53,0
B1125 Celková bílkovina Biuretová metoda	76,4 [*] g/l delta check: nev		65,0-85,0
1153 CRP-HS Imunoturbidimetrie	<0,5 mg/l		0,0-5,0
97111 Separace séra	1x		

Next course:

- 8/3/2018: <u>kidney transplantation from cadaveric</u> <u>donor</u> + right-sided nephrectomy
- Postoperative course without complications
- Rapid onset of renal graft function
- Immunosuppression initiated (corticosteroids, Simulect, Mycophenolate mofetil, Tacrolimus)

	Creatinine [µmol/L]	eGFR-creat- (CKD-EPI) [mL/s/1.73 m ²]	Urea [mmol/L]	K+ [mmol/L]
8/3/18 (18:30)	1531	0.06	25.2	5.2
8/3/18 (23:30)	1056	0.09	21.2	5.7
9/3/18 (4:45)	931	0.11	20.8	5.2
9/3/18 (13:30)	656	0.16	19.2	4.9
9/3/18 (21:20)	473	0.24	17.8	4.5
10/3/18 (5:20)	341	0.35	14.7	4.0
10/3/18 (13:45)	245	0.53	13.5	4.3
10/3/18 (19:45)	200	0.68	12.5	4.2
11/3/18 (5:00)	150	0.96	10.8	3.8
11/3/18 (17:45)	114	1.33	9.1	3.8
12/3/18 (5:00)	105	1.47	8.7	3.5
14/3/18 (7:45)	101	1.54	6.8	3.7
16/3/18 (7:45)	98	1.60	6.7	4.9
18/3/18 (7:30)	86	1.87	7.2	4.4

Thank you for your attention