Chapter V
APPLICATIONS OF XRIPKE MODELS

C. A, Smorynski

§ 1. Kripke models.

5.1.1. Discussion. In Kripke 1965, S. Kripke introduced a set-theoretic
semantics for the intuitionistic predicate calculus. In this Chapter, we
study this set-theoretic machinery and apply it to the investigation of
Heyting's Arithmetic. Sinee the set-theoretic approach may seem out of
place in a study of intuitionistic systems, we remark in Section 5.1.26 on
how intuitionistic proofs of some of the results can be ‘recovered.

Kripke's model theory bears no resemblance to intuitionistic reasoning
despite various attempts to make it a plausible interpretation of intuition-
istic reasoning. (The reader who disagrees will certainly change his mind
by the time he finishes this chapter.) Formally, however, the same logical
laws are valid in the Kripke models and in the intuitionistic predicate
calculus. This fact, combined with the ease in handling the Kripke models,
makes them an extremely useful tool in the metamathematical investigation
of Heyting's Arithmetic.

Before defining the Kripke models, let us consider one of these inter-
pretations in order to motivate somewhat the formal definition of a Kripke
model. The interpretation we consider is that of intuitionistic logic as a
logic of "positivistic research". We have various "states of knowledge",
which form themselves into a partial order. At each state of knowledge
there is a collection of objects we have mentally constructed. A larger
state of knowledge may require us to mentally construct new objects. Also,
an atomic relation, e.g. an equation, may or may not be seen to hold on the
basis of a given state of knowledge. Obviously, if it is seen to be true
on the basis of a given state of knowledge, it must be seen to be true on
the basis of any extension of the given state of knowledge. Further, this
should hold for more complicated properties than atomic relations. The
problem, then, is to find an interpretation of the logical connectives and
quantifiers which preserve this property. Conjunction, disjunction, and
existential quantification are straightforward - e.g. we see ™TxAx to be
true on the basis of some state of knowledge iff we have some mentally con-
structed object a such that Aa is seen to be true on the basis of this
state of knowledge.

The other connectives and quantifier are problematical and it is here
that the interpretation loses its plausibility. Consider, e.g., the impli-

cation A-B. If A=B is adjudged true on the basis of a state of
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knowledge, then A~B is also true in any extension of this state of know-
ledge and, if A 1is true in such an extension, so is B. The converse,
that, if, for every extension of our knowledge, once we know A +to be true
we also know B to be true, then we know A—B to be true, is not at all
obviousy but a usable condition to define the connective = 1is needed and
we accept it. Negation and the universal quantifier are treated similarly.
The interpretations of &, v, and ¥ seem natural enough, but those
of the more negative connectives and quantifiers are a little forced. The
net result is that, to show that we cannot assert the truth of a statement
on the basis of a given state of knowledge, we appeal not to the lack of
positive knowledge ~ but to the fact that some extension of our knowledge
contains false assertions., Modifying the treatment of the negative connec-
tives might make the interpretation more palatable. Such a task, however,
lies beyond the scope of this Chapter and we turn now to the formal defini-

tion of Kripke'!s models.

5.1.2. Definition. By a Kripke model (Kripke 1965) we shall mean a quad-

ruple K = (K,S,]),|f), where (XK, <) is a nom-empty partially ordered
set, D 1is a ;on-descreasing function associating elements of K with non-
empty sets, and |f- is a relation between elements of K and formulae with
no free variables (but which may possess constants denoting elements of the
Da's) which satisfies the following (where small greek letters denote
elements of X)) :

i) for A(x1,...,xn) atomic, B> a, a,y...,a € Da,

if el A(a1,...,an), then B|f—A(a1,...,an);

ii) o |fFA&B iff o|FA and a|FB;

1ii) @|fFAVB iff o|FA or «|+B;

iv) o|FA-B iff YBX>o(B|FA = B|FB);

v) a||l=- A iff ¥R «(B|FA);

vi) o|bExAx iff Hae De(a|Aa);

vii) o|f ¥xAx iff ¥B> @ Ybe DB(B |f-Ab).
The relation " alf—A " may be read " A is true at « " or, for those
familiar with set theory, " @ forces A ", The elements of KX will be
denoted by small greek letters and will be called nodes in order to avoid
confusion with the elements of the domains of the nodes - i,e. elements of

the sets Do, The triple (X, <, D) is often called a guantificational

model structure (or qms ). If we restrict our attention to the proposition-

al calculus, a propositional model structure ( pms) is just a partially

ordered set (K, <) and a propositional model is a triple (K,$,|f0 , where
| satisfies (i) - (v).
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As in classical model theory, one may define a notion of validity:
A will be called valid in the model X iff Q'H—A for all wo€eK. A will
be called valid (universally valid) if A is valid in every model K.
More generally, if T is a set of formulae, We say I entails A, written
Pl=A, iff A is valid in every model in which every formula of [ is

valid, We shall prove later on:

T|=A iff 1"~}—A.

5.1.3. Some basic properties of Kripke models.

Before giving some examples of Kripke models, let us remark on some of
their basic properties. The first is that conditions (ii) - (vii) on the
forcing relation H— constitute the recursion clauses for an inductive
definition of a forcing relation on a qms. In particular, if we specify
which atomic formulae are forced at which nodes of the gms (in such a manner
that (i) holds), then the relation extends uniquely (by using clauses (ii) =
(vii)) to a forcing relation on that qms.

A second remark is that the first condition on atomic formulae specifies
a property that holds for all formulae. I.e. if o H—A and @< B, then
B H—A . The proof of this is by induction on the length of a formula. For
atomic formulae, the result is immediate. Let A be a conjunction, say

A = B&C. Then

@l = o |-Bande |+c
= B |FBadp|-C, by induction hypothesis,
= B|FB&C.

Disjunction and existential quantification are handled similarly, For impli-
cation, negation, and universal quantification, we use the fact that we have
required our condition defining «|FA to hold for all B> a. For example,

let A =B-C and B2 c.

¢|FB=C = ¥y2a(v|FB = v|C)
= Yy>B(v|FB = v|-C), since B2
= B|FB~C.

Negation and universal quantification are treated similarly.
A final remark is that the truthof o H—A depends only on those B
which are > @ - each clause in the definition of the forcing relation refers
*

only to those B>@. Let K be a model and define K, = (Ku <40 D0 [Hg)
for aoeK by:

K, = {Bex s p2ol},

Ly #nd D, are the restrictions of < and D %o K, » and |y is defined
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by letting B|F A iff B|F-A, for A atomic and BeX,. We should
expect that, for any A, aH—A in K iff « H_aA in K, . Indeed, a
simple induction on the length of A shows that B|FA in K iff B H—aA
in K, for all BeK,. Thus, to verify that o|fA, we need only look at
those B2« (i.e. we may restrict ourselves to the model 5@) .

5.1.4. Examples. Let us first consider examples of models for the proposi-
tional calculus., We indicate the model by drawing a graph, the vertices of
which determine nodes of the model. A node o« precedes a node B in the
ordering if the vertex corresponding to o is connected by a series of

ascending lines to the vertex corresponding to PB. E.g. @< P in the pms:

|
2
We indicate the forecing relation by writing atomic formulae next to the

nodes forcing them. E.g. using the pms just given, we obtain a model by

letting o |FA, B|FA,B:
Bl A,B

o

A .

Observe that, in the model just given, (i) o H;‘B V-aBj; (ii) o H— - 1B,
but o H'7‘B , Wwhence H7‘ 2 —B-Bjs (iii) B forces any tautologys; and
(iv) @a|f(C=D) V(D=C) for any formlae C,D.

One can get more complicated models by allowing the graphs to branch :

L

For the quantificational theory, we must add domains. Just as it is hard
to draw models for classical theories, it will be hard to do this for intui-
tionistic theories. For simple cases, however, we may indicate the domains

by listing their elements at each vertex of the graph. E.g.:

{a9b}

fal .

We may use this gqms to construct a model :

g {a,b} A,Ba

|

O’{a} Ba .
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Here A is a propositional sentence, Observe that aH— V(A VBx), but
o | AV VxBx.

As one may easily verify, the formula Vx(AVBx) — AV VxBx is valid in
all models with constant domains (i.e. models in which D is a constant
function), where we again assume that x does not occur free in A. (It
is known that this class of models is complete for intuitionistic logic with
this scheme added. Cf. Gabbay 1969 A or Gornemann 1971.)

Another interesting classically valid sentence which is not intuitionistic-

ally valid is — - Vx(Ax V —Ax) . Consider the model :

{0, 1,2} 40, a1

{0, 1} a0

|
fol .

I.e. we have a sequence ao< 0'1 ... of nodes with Dan = {O,...,n} and

@ |FAn iff m>n. Suppose @ | - 2 ¥x(Ax v 0Ax) . Then Y = &,

B |l 2 V¥x(Ax V 7Ax) . In particular, o |FF - ¥x(Ax v 7Ax) . But then

B2 o B | ¥x(AxV —Ax) . Let B=o . letting x=n, o [fFAnv-An, i.e.
o [Fan  or o [F—An. But a | An by definition and o |F# —An since
L |FAn. It not only follows that @ | — 7 ¥x(Ax vV 2Ax) , but, in fact,
that o |~ ¥x(Ax vV 0 Ax) .

When we have a classical model, e.,g. the standard model, w, of arith-
metic, instead of listing the domain and the atomic formulae to be forced,
if we wish to force those atomic formulae true in the model, we simply place
an o at the vertex. E.g. if o' and o' are non-standard models of

arithmetic, we will write
w! /w+
\w
for the intended Kripke model.

We could continue to give several further examples of Kripke models, but
feel it would be more instructive for the reader to construct some of his
own., E.g. he may wish to construct countermodels to —AV A,
((A»B)—=A)->A, (A-B)V(B=A). We should like to stress that he should

pay close attention to the geometry of his countermodels, The geometry of

the Kripke models is the basic tool used in this Chapter.
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5¢1.5-5.1.11. The completeness theoremn.

5.1.5. 8o far we have constructed a model theory for the intuitionistic
predicate calculus and used this model theory to demonstrate the failure of
certain basic laws of classical logic which are not intuitionistically valid.
It is now our job to demonstrate how closely the model theory fits intuition-

istic reasoning. Formally, the fit is exact:

5.1.6. Theorem. (The completeness theorem.) T A iff T|A.

The proof of soundness, T*—A implies T|=A., is long but easy. One
merely has to show that each axiom is valid and that the rules of inference
preserve truth. E.g. consider the rule PL2: A,A-*Bi—B . Iif
K = (K, &, 0D, “—) is given and o€ X is such that o H—A s CYH—A—'B, then,
by the definition of o|FA=B, it follows that o« |B. Hence, this rule
is sound.

The more ambitious reader may prove the soundness theorem for any of the
formulations of the intuitionistic predicate calculus given in Chapter I.

We now turn to proving the completeness theorem, The weak form,

f—A iff F.A, is due to Kripke 1965, The form we shall prove, often called
a strong completeness theorem, is due independently to Aczel 1968, Fitting
1969, and Thomason 1968. For the sake of subsection 5.1.26, we shall follow
Thomason's treatment., These proofs are modelled on Henkin's proof for
classical logic. -

Let M Dbe a first-order language containing

i) a denumerable set Yy of individual variables j

ii) a denumerable set CM of individual ?onstants, and

iii) for each 3> 0, a denumerable set Fﬁ of j ~-ary predicate letters.
Formuylae are to be built up from atomic formilae by using &, V, =, 7, 4,
and V. Fmy, will denote the set of such formulae. Note that FmM is

denumerable, SnM, will denote the set of sentences - i.e. the formulae with
no free variables.

5.1.7. Definition. A set Fg;SnM is called M - saturated if

i) I' is consistent ;

ii) A€ S, and THA=4ael;

iii) A,BeSnM&AVBeI‘=A€1" or BeTl; and

iv) if AxE'FmM, x 1is the only free variable in A and ®ExaxeTl,

then, for some c¢€ CM’ Ace ',

Those familiar with the algebraic representation theorems may consider a
saturated set T to be a sort of counterpart to a prime filter in a distrib-
utive lattice. Basically, these prime filters will yield nodes of a model
and their inclusion relations will yield an orderijng. Matters are slightly

complicated by the necessity of introducing new constants to successively
enlarge the domains.
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5.1.8. Lemma, Let I U {a} S Sny and suppose A . Let {c1, Cos ceel
be a denumerably infinite set of symbols disjoint from CM and let M! Dbe
obtained by add.ing {c1, Cos ...} to the constants CM of M. Then there
is an M! - saturated superset I‘w of T such that A;(I“w.

Proof. Set I‘o-: ' and define rk+1 inductively as follows s

Case 1. k is even. Let #xB be the first existential sentence of M!
not already treated such that I'k l—ExB and let ¢ be the first constant in
x+ Then set rk_m - I‘k U {Bel.

Cage 2. k is odd, Let BVB' be the first disjunctive formula of M!

not already treated such that I'k FBVBY. If I"k U {B} 4, put

{c1, Cos ...f not occurring in T

= . i = ! -
Tepq = T U {B} Otherwise Tepq = T U {B1}
Finally, set I"w = kU Tk . We must show that I"w satisfies conditions
=0

(1) - (iv) of 5.1.7 above.

(1).We show by induction that l"k A . Let r2n+1 FA. Then
1"2n+1 = I'ZnU {Bc} for some B, ¢ where ¢ does not occur in any formula of
Fpy+ Thus T, ,Bcp-A, whence T, [-Bc—A and, by @4, T, [HExB-A.
But r2n t @xB , whence 1"2n A, a contradiction.

Similarly, PL5 allows us to conclude that, if F2n+2 l—A , then
Toner A+

Hence, for all k TkHA. But I"w !—A iff I'k A for some k, from
which it follows that Tm AL

(iii) , (iv),If BVC € I‘w, then I‘i - BVC for some i, Hence, for
some odd k>i, BVC is the first disjunction not treated. Thus
Tepq = T U {B} or r.u fcl, i.e. Be r, or Cel . sinmilarly, if

xBe Iy, then Bcely for some c.
(ii). If Ty A, then Ty A VA and, by (iii), A€ Ty. Q. E. D.

5.1.9. Theorem. If I is M- saturated, then for some Kripke model
K= (X< D, |F), and for some aeK,

i = {A s aH—A}.

In fact, o may be assumed to be 2 minimum element of K.

Proof, Let M_ =M and let Mi+1 be obtained from Mi by adding the set
i+1 i+n

Si= fc1 9 eeas C y +eal to CMi, where SiﬂCMi=¢. Set

K = fA:_T_gA and A is Mi - saturated for some i} » We define A AY iff

1

Ac AY, DA = CM- , Where A is Mi -~ saturated, Finally, for atomic formulae

1
A(c1,...,cn) with Cqresssl € CMi, let

A “—A(c1,...,cn) iff A(c1,...,cn) €A,
We wish to show that this last equivalence holds for all applicable
formulae (i.e. formulae with no free variables and whose parameters are from

the proper language). For this, we need the following
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51,10, Lemma, Let A¢K.

(a) B=CeA iff YA*2A (Be A = CeAt);
(b) —Bed iff YA'2A B¢ Aty

(c¢) VxBxed iff YA'2A Yece DA Bce A',

Proof. (a) If B-—CeA, BeAt, and A'24, then At |-C and, by satura-
tion, Ce At Conversely, suppose B-‘C,{ A. Then A U {B} HC and, for
4" saturated A' 2 AU {B}
such that C¢ A'. This contradicts the assumption Be A' = Ce At

(b) Similar to (a).

(c) Again, one direction is trivial, Suppose, conversely, that
JyaA*2A Yoe DA* Bee A' and VxBxgA. Let A be M, -saturated. Since
At ¥xBx , we conclude, by @1, that A|#Bc for ce Cy. . = Cy, - Henece,
- saturated A'2A such that A' [ Be ,1+J'1..e. Be g Ar,

A Mi-saturated, there is, by lemma 5.1.8, an Mi+

there is an M,
i+
Q. E. D.
We may now complete the proof of theorem 5.1.9 by proving by induction on
the length of A that

1

Alpa(eysaes o) Iff A(eyy wvesc)) € 4,
for 01, cowy cn € CM- y Where A is Mi -~ saturated, The case A is atomic
i
follows by definition, The case A = B%C is trivial. Let A = BVC:
A|FBVC iff A|FB or A|RC
iff Be A or Ce A, Dby induction hypothesis
iff BVCe a, by saturation.
Let A = B=C;
AlfFB=C iff YA*2A(A'|FB -~ A'|FC)
iff YA'2A(B e A' = C e A') , by induction hypothesis
iff B=Ce A, by lemma 5,1.10.

The cases A = 3B and VxB are similar.

Let A = 3xBx:

A |-8Bx iff Fee DA A|fBe
iff gce DA Bce A, by induction hypothesis
iff HxBxe A, by saturation.
This completes the proof. Q. E. D.

We may now complete the proof of the completeness theorem.

5.1.11. Proof of theorem 5.1.6. We have yet to prove T |=A implies
FT'HA. Let THA and find a saturated I2T such that T |/A. By
theorem 5.1,9, there is a model X = (X, <, D, ”—) and @€ X such that for
all B,
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o|FB iff Bel.

In particular, «|B for BeTl and o|FA. Hence T|#A. Q. E. D.

5¢1.12 «5,1.18, The Aczel slash.

5.1.12, By theorem 5.1.9, for any M- saturated set T, there is a Kripke
model X and a node o« such that

r= {A : aH—Ax.

The converse, that every such set is M! - saturated, where M!' is obtained

from M by extending C to include names for all elements of D&, is an

easy verification which ;]{vle leave to the reader. As observed in Aczel 1968,
we can obtain more information on M - saturation from the proof of theorem
5.1.9 than just this.

Observe that I = {A: o H—AZ for some @ implies that o is a minimum
element in the pms constructed. Thus, let us start with the model X con~
structed and add a new node o such that ao_ga for all @€ K, let

Dao.—. CM’ and extend the forcing relation by defining, for A atomic,
o |FAo iff T4,
The Aczel slash is defined by
I'l A iff @, H—A .
Also, define |(T) = {a:T|a}.

5.1.13. Lemma, |(T) is M- saturated and |(T) c {A: I‘{—A} .
Proof. Clear.

5.1.14. Theorem. |(T) is a maximal M- saturated subtheory of T.
Proof. Let |(T) cac {a:T |—A} y A M- saturated. We show that A4
implies A€ |(T).
(i). If A is atomic,

A A=TFA=8e|(D).
(ii) , (4ii). A = B&C, BVC. These cases are trivial.
(iv). Let A = B=C:

Af B=C =T |B=C.

a) |() B Then AI—B and so AFC. Thus | (T) Fc.
b) |(F) }#B. B=C¢|(T) implies FB> o(p|fBand |H£C) .

But B = A'DT and so Be A! =2 Ce A', a contradiction.
[£%] A= B . Similar to {iv),
(v). Let A = FxBx:

A 3xBx = Hae Cy AfBa, by M- saturation
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A} BBx = Bae |(T)
= &xBxe |(T) .

(vii) A = VxBx. Similar to (iv). Q. E. D.

5.1.15. Corellary. Let T be closed under deducibility. Then

I is M- saturated iff TI= |(T)
iff Tc |(T).

5.1.16. Corollary. The intuitionistic predicate calculus is saturated.

5.1.17. Corollary. A|A in the sense of Aczel iff AlA in the sense of
Kleene (cf. § 3.1).

5.1.18. Theorem (Characterization of the Aczel slash by an inductive
definition). The relation I‘|A is inductively defined by the following :

(i) For atomic A
Tla iff Tla;
(i) r|B&c iff T|B and T|C
(iii) T|BvC iff T|B or TI|C;
(iv) T|B=C iff T|B=C and (F|B =T|C);
(v) T|-B iff TF-®  and I"IB;
(vi) T | 3xAx 4iff T |Aa for some ace Cy 3
(vii) T| ¥xAx iff T |- VxAx and T|Aa for all ae€Cy.

Proof. (i) by definition ; (1i), (iii), and (vi) are obvious.

(iv) Let T[B=~C, i.e. o |FB=C. Then o |FB = a |FC, i.e.
F|B=T|c, Since |(F)gT, Tl B=C.

Conversely, if T fB=cC, i.e. o |F£ B=C, then either @ |FB and
o lF¢ or afB, & Hc for some saturated ADT. The latter can
only be true if THB-*C; the former if T|B, TfC.

(v) and (vii) are similar. Q. E. D.

5.1.19 - 5.1.21. The operation ( ) = (L )'.

5.1.19. The Aczel slash, like the Kleene slash, may be used to prove satu~-
ration results (often called explicit definability results). In Aczel 1968,
Aczel used the inductive characterization (theorem 5.1.18) to give a version
of Kleene's slash - theoretic proof of the ED ~ property for % . However,
our interest in this chapter is primarily in the model theory and in model -
theoretic proofs. Thus, let us ignore theorem 5.1.18 and reconsider what we

did in proving theorem 5.1.14.
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The proof of the completeness theorem involved our constructing a model
of a theory I'. We observed (i) that [I' is saturated iff it is the set of
formulae forced by a minimum node of that model, and (ii) that, if we added
a minimum node, we got a maximal saturated subtheory of I, We shall gener-
alize the model-theoretic construction of (ii).

Let X be a Kripke model and let a language M with a non-empty set C
of constants be given. We will let X! denote any model (K',_g‘, DY, “—)
obtained by adding a new node o to K such that

(1) aos fa for all oeKg

(i1) Dra =Cp;

(11i) if A is atomic, o |F'A 2« |-A for all acK.

Then, for &€ X and any formula A, a”—' A iff «|FA. Of special in-

M

terest is the case in which the implication in (iii) is replaced by an
equivalence., This is the case we most often encounter,

By theorem 5.1.14, if the class of models of a theory I is closed under
the operation K—K', then I is M- saturated. We shall give another
proof of this shortly. First we must introduce another operation on models.

Let ¥ = {guz B € N} be a family of Kripke models. The disjoint sum,
IF, of the model X = (K;<, D, |f) defined by

i K= U K x

(1) U K, futs

(ii) (O’,p%_{_(ﬂ,v) iff p=v and a_<_(_!s;

(1ii) D(e,p) =D,

(iv) for atomic A, (o,u) |FA iff aH—UA.

E.g. suppose F is the family consisting of the following models (where
CM== {a} )!
B fa,b} Pa vy {a,b] Pb
K, s | K, |
o {a} o {a,b} .

Then EZF 1is the model :
(Bs1) f{asb} Pa  (v,2) fa,b} Pb

LR | |
(0’1) {a} (0'92) {a,b} .

The relation (iv) in the definition of IF may be shown by induction to
hold for all A:

(08) |Fa iff ol .

Remark. Alternatively, we may use the final remark of subsection 5.1.3 to

prove this without another induction.
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If ¥ 1is a family of Kripke models, we can apply the two operations

successively: F = £F — (ZF)'. E.g. for the family F given, (ZF)' is:

(Bs1) f{a,b} Pa (v,2) {a,b} Pb

(0,1) {a} (@,2) {aab}
o f{al

5.1.20. Theorem. Let the class of models of the theory [ be closed under

the operation F = (8F)!'. Then [ is M- saturated.

Proof. Let Ax contain only x free and let, for each ac€ CM s T h#Aa.

Then, for each ace CM’ we can find a model X, such that K, has a least

node, say « , and aa|fan.

Let F = {K, : ac CM} and let a be the least node of (SF)' . Suppose

@ |f-3xAx. Then, for some aeCy = Da_, @ |f-Aa. But @ > and so

Ga|f'Aa s a contradiction,

(Recall that forcing at @ in K, is the same as that in (zE)'.)
Disjunction being handled similarly, we have the required result. Q. E. D.
Observing that the class of models of T is closed under the operation

F = IF, we have the immediate

5.1.21. Corollary. Let the class of models of the theory I be closed

under the operation X = X'. Then [ is M~ saturated.

Remark. The difference between using theorem 5.,1.14 and theorem 5.1.20 to
prove that I' is saturated is that, to apply theorem 5.1.14, one has to

show that a particular model X of T yields a model X' of T, while
theorem 5.1.20 requires one to show that, for any model X of I, X' is

g model of T . Model - theoretically, both tasks should be equally difficult.
Theorem 5,1.18 makes the first task easier - but, it is the second approach

that we will find more useful.

5.1.22 =5.1.23, Models with equality.

5.1.22, 1In working with Kripke models, one may treat equality as a binary
relation satisfying certain axioms. One doesn't always have the option one
had in classical model theory to assume that equality is interpreted by

actual identity - if equality is interpreted by identity, then

Vxy(x=y V-x=y) is forced - but there are intuitionistic equality relations
which are not decidable (e.g. the equality of the reals).

When equality is decidable, however, it suffices to consider the class of



336

normal models - i,e. models in which the equality predicate is interpreted

as actual identity.

5.1.23. Theorem, Let I have a decidable equality. Then [ is strongly
complete for the class of models in which the equality of two constants is
forced iff they denote the same object.

Proof. Let K = (K, &, D, ||F) be a model of T'. We shall define a corres
sponding normal model g? by using the following equalence relation JﬁKDa:

xRy iff ::1«@&”—;:: )

Let [x] = {y: xt:y] be the equivalence class of x wunder ==, Define E?
by
(1) £ =Ky
(11) <" =<
(iii) D%a = {[x] + xeDa}s and
(iv) for atomic A, a|+31A([a1],..., [an]) if
aH—A(a;,..., ar'l), where aiaai and a]!-EDa.

By the standard induction on the length of A, the equivalence (iv) is
seen to hold for all A. Q. E. D.
Since Heyting's arithmetic has a decidable equality, we shall, in the

sequel, only consider normal models.

5.1.24. Function symbols. Another device we could use is function symbols,

While we can show proof - theoretically that function symbols are eliminable,
we cannot conclude from this that the theories determined by the classes of
models with and without functions coincide. (To do this, we would have to
prove completeness of the theories possessing function symbols with respect
to their models possessing functions.) We shall, therefore, indicate the
model - theoretic proof of the eliminability of function symbols for the
special case of a theory with decidable equality.

Let T Ybe a theory with the language M and let M possess function
symbols., An interpretation of the symbol f in a model K is given by
choosing a family of functions §fa : Q€ K} such that (if f is n -ary)
£yt (pa)* = De ana, if @< B, fﬁr Da = f . The interpretation of atomic
formulae involving terms constructed by the use of such function symbols is
handled as in classical model theory.

Suppose we now replace M by a language M! in which every n - ary
function symbol is replaced by an n+1-ary relation symbol, as discussed in
§ 1.2, If T' 4is obtained by translating the axioms of I into M' and
adding the function axioms, then, just as in classical model theory, there is

a natural correspondence between models of I and models of T'.
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This is proven by mimicking the clagsical proof, Thus we may restrict
our attention to models with functions replacing certain relations (namely

their graphs). The details are left to the reader.

5.1.25. Conventions. Let us finally make, in addition to our convention
concerning models of ﬂé that they be normal, a convention that they do not
possess functions and the simplifying convention that they all possess min-
imum (or least) nodes, which we shall call origins. An origin of X will
usually be denoted by o and has the defining property that aog.a for all
e K. (Observe that such models are not closed under F—:IF and, hence,

we shall have to apply theorem 5.1.20 rather than its corollary.)

5.1.26. Intuitionism?

What, one may ask, does all of this set-theoretic machinery have to do
with intuitionism ? We shall not attempt to answer this question - instead
we merely outline how certain proofs obtained by the use of this machinery
can be transformed into intuitionistically meaningful proofs. (See e.g.
Mints 1969.)

The key to this transformation lies in the Hilbert - Bernays completeness
theorem (cf. e.g. Kleene 1952), by which certain outwardly set~-theoretic
constructions may be replaced by arithmetical ones. Specifically, by arith-
metizing the completeness theorem for classical logic, one can show that,
for any r.e. theory T, if Con(T) is added to classical arithmetic, then
a provably arithmetical model exists - i.e. there is a model with an arith-
metically definable domain and arithmetically definable relations such that
the translations of the axioms of T are all provable,

The same is true of the completeness theorem given above (especially in
the treatment by Thomason). Thus, if we use the completeness theorem to
prove (say) an independence result, we can prove the result in classical

arithmetic augmented by some consistency statements. This is true of all the
o
2
case of an independence result), we know from a previous chapter that the

results of this chapter. If, in addition, the result is 0, (e.g. as in the
proof in the classical system can be transformed into a proof in the corre-
sponding intuitionistic system.

We shall not prove this result here, however, since most of the results
we give can be obtained constructively by less devious means and since the
only results which we need for our classical proofs are (i) the existence of
arithmetically definable models for any r.e. theory (intuitionistic or
classical) and (ii) the fact that the models are provably arithmetical if we
add the statement of consistency of the theory to classical arithmetic, For

classical theories, this is the Hilbert - Bernays completeness theorem.
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For intuitienistic theories this almest reduces to the Hilbert - Bernays
completeness theorem as follows: Observe that a Kripke model is a classical
model when viewed as a structure in its own right. That is, given K, T,
and M, let M!' be obtained by replacing each atomic formula A(x,,,...,xn)
by a new formula A(a, x1,...,xn) and adding new atomic formulae D(a,x),
K(o) , and a<B. (Let us assume for simplicity that there are no function
symbols.) The relation A(a,x1,...,xn) is to be interpreted by
Q’H—A(x1,...,xn) . We then translate all statements about X into M' as
follows :

. . T
(i) for A atomic, (G|f-A(x1,...,xn» = A(a,x1,...,xn);

(11) (a|Fa&B)T « (a|Fa) e (a|FB)"

(iii) (ct”—AVB)T (aH—A)TV(a!'FB)T;

(1v) (a|Fa=B)" = vB2 a((B|F4) = (B ]FB)T) ;

W) (elFon" - veran(e o))"

(vi) (e|f @uax)’ - 2(D(ex) & (a|bFax)T) ;

(vii) (e | Veax)T = VB> o W[D(B,x)— (B |Fax)T].
We define T' by taking, in addition to axioms asserting that we have a
Kripke model (e.g. (aH—A)T& alB = (B H—A)T), the axioms (aH—-A)T for

axioms A of T[. Then [ is r.,e, iff I'' is r.e. and we obtain an arith~-

1] []
-

metical model of I from one of TI'. The only problem at this stage is
that the provable arithmeticity of the models depends here on the consistency
statement for TI' rather than for [I. However, this loss of precision will

cause us no trouble.



339

§ 2. The treatment of Heyting'!s arithmetic

5.2.1-5.2,4. The operation ( )= (Z )'.

5.2.1. So far, aside from specializations of the form of the models used (to
being normal, to not having functions, and to having origins), the only
results which we have proven concern saturation or explicit definability.

The result we wish to apply first to Heyting's arithmetic is theorem 5.1,20
which implies that, if we show the class of models of HA to be closed under

the operation ( ) - (2 )t , then we may conclude the following

5.2.2, Theorem (Explicit definability). If Ax has only x free and
HA I~ @xAx, then HA} An for some n.

5.2.3. Theorem (Disjunction property). Let A,B be closed. If HA| AVB,
then HA A or HAIB.

To prove this, we shall have to choose a formulation of I‘;“A; The simplest
one for our purposes is the one with constants 0, 1, ... for each natural
number, relations S(x,¥y), A(X,y,2z), and M(x,y,z) defining the functions
of successor, addition, and multiplication.

Typographically, we find it convenient to reserve in this chapter the
letters n,m (possibly indexed) to denote numerals (in contrast %o the other
chapters, where n,m usually stood for numerical variables, and numerals
were written with a bar:; n, m, X, ¥, ... etc.).

The axioms of HA are, in addition to the axioms of the predicate calcu-
lus with equality :

(1) -15(x,0) ,

x=0 = CHyS(y,x) ’
S(x,y) & 8(x,2) = y=32,
S(y,x) &S(z,x) = y=2,
By S(x,¥) 3
(ii)  A(x,¥yy2) kA(X,y,W) > z2=w,
Hz A(X,¥,2)
A(x,0,x) ,
A(x,y92) & S(y,w) &S(z,v) = A(x,w,v) j
(1ii) M(x,y,z) &M(x,y,w) = z=w,
3z M(x,y,2) ,
M(x,0,0) ,
M(x,y,2) &S(y,w) &A(z,x,v) = M(x,w,v) ;

(iv) S(n,n+1), for each constant n;
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and the scheme, for any formula A whose free variables include x and do
not include y:

(v) A0 & Vxy(Ax &S(x,y)—Ay) — ¥xAx.

Aesthetically, it is more pleasing to use a formulation with function
symbols and, as shown in 5.1.24, we may do so. However, that would require a
little more care in defining various structures and a little more work in
proving results about them. We shall, occasionally, however, freely use the
fact that there is a natural correspondence between models of our official
system above and the system with function symbols (or, if one prefers, we
shall abuse notation by using function symbols).

Our first step is to prove the following

5.2.4, Theorem. The class of mpdels of Eé is closed under the operation
()=(z)r.

Recall that, in the definition of X—-K', we left open the problem of
deciding which atomic formulae to force at ao’ stating that we usually have
@ |f-A iff a|FA for all «@eK. (Recall also that the proof of theorem
5.1.20 merely required us to have gome model of the form K'.) For HA,
there is no ambiguity ~ closed atomic formulae are decided by the theory and,
if XK' is to be a model of HA, we must have ao|f-A iff A is true in
the standard model.

Thus our operation E—*(ZE)‘ is given by tacking on a new node o below
all nodes of IF, setting Do - {0,1, ...}, and letting oblf” A iff A
is true, for any atomic A, E,g, if o' and o* are non-standard models
of classical arithmetic, then (using the graphic representation of subsection
5.1.4) (o's o¥)r is
%

(D\w/ﬂ.)

°

Proof of theorem 5.2.4. The assertion that F is a model of HA means that

every axiom of g& is valid in every member of F (i.e. forced at each node
of each model in E). TFor (ZE)' not to be a model of HA, some node «
of (Zg)' must fail to force some axiom of HA . Obviously, we cannot have
o> ao’ since then @¢ K for some K€ F (making the obvious identification -
i.e. ignoring the operation used to make members of F disjoint). Thus, to
prove that (ZE)' 4is a model of HA, it suffices to show that ao|f—A for
each axiom A of g&.

The only non-trivial case to consider is the induction axiom. For simplic-
ity, we assume that Ax has only the variable x <free. The general case is
left to the reader (i.e. we let the reader verify the validity of the univer-

sal closure of the scheme with free variables).
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Let o ||#A0 & vxy (Ax & S(x,y) = Ay) - VxAx . Then, for some B> @,
B |- 40 & Vxy(Ax ¥S(x,y)=Ay), but B |* VxAx . Now we cannot have B> @y
since then PBeK for some K€F and B forces all axioms of I;Lé' Hence
o |- 40 & Vxy (Ax & S(x,y)=Ay) , but @ |* vxAx . Since o ||+ VxAx , there
is some B>« and some beDP such that B [ Ab. Again B= @ and b
is some natural number, Let m be the smallest such number, Since Ofo H— A0,
m is a successor, say n+1, and, since m is the smallest number b such
that o |H4ab, @ |FAn. But o It vxy (Ax %S(x,y)=Ay) , whence
o |t An % S(n, n+1) »A(n+1) . Thus @ H—A(n+1) y lee. FAm, a contra-
diction. Q. E. D.

Theorems 5.2.4 and 5.1.20 immediately yield theorems 5.2.2 and 5.2.3

as corollaries.

5.2.5 ~5.2.7. Applications of the operation ( )= (Z )'.

5.2.5. The closure of the class of models of I—“Ié_ under ( )= (z )t is one
of the basic tools of the Kripke model approach to studying % . E.g. we
have already used this to prove ED, the explicit definability property.

Its use here is simply that it allows us to take countermodels to AO, A1, ...
and put them together to construct a countermodel to dxAx. It is in this
construction of models that this operation is so useful. Consider, e.g.,
the 0ld result of Kreisel's (Kreisel 1958):

5.2.6. Theorem, Let Ax have only x free and suppose t—Vx(AxV -1Ax) ,
i denoting derivability in HA . Then

b VxAx VEx—Ax  iff | - VxAx— Ex-Ax
iff | Ey[- VxAx--Ay].

Proof. (Cf. alse 3.8.5 )., We shall show that | = VxAx—8x71Ax implies
kﬂy[ﬂ VxAx— ~|Ay] and leave the rest to the reader. Suppose
b - VxAx— Ex—Ax and b+ %[~ VxAx— —Ay]. Then, |#-1VxAx—fn for each n.
But |- An- (0 ¥xAx= —1An) , whence |# —An. By the decidability of A
and the DP, {An.
On the other hand, |- ¥xAx—[-VxAx~ —AO0], and so [ Vxix,
Let X be a model of HA with «eX such that o|fFVxAx. Then
B> aFbeDp B |HAb. By decidability » B|F —Ab and hence
Bt — VxAx.
Now consider _ISB (recall the definition from subsection 5.1.3) and
especially @B)’ :
X
B

w .
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Observe that vy2> ao implies y= ao or y>B and that y2 P implies

vy | - vxAx. Also, a |+ vxAx  since, if o |t VxAx , then B |t ¥xAx and
one has a contradiction. Thus v ||#VxAx for all y2 o, and [} ~Vxax .
We now use the fact that 1—- -1 VxAx—= Hx—1Ax 1o conclude O!o H— Hx 1 Ax . But

Do = {0,1, ...} and, for some n, o | "An, a contradiction. Q. E. D.

5.2.7. We have not really used the basic operatien ( )= (Z )* in the direct
construction of models. We turn our attention now to this task.

Let T-(T7,{) be a finite tree., By a iterminal node of the tree we shall
mean a maximal node of the tree - i.e. a node with no successors. We shall
let Ter denote the set of terminal nodes of T, For any node o€ T~ Ter,
S(@) will denote the set of successors of «.

Let us assume that we have assigned models of classical arithmetic to each

of the terminal nodes - say w is assigned to o€ Ter. We now associate

with each o¢ T a Kripke modef k(@) as follows:

(1) if oeTer, k(@)= 0, (viewed as a one-node Kripke model) ;

(11) if of Ter, K(a)=(ﬂgs(a)§(e))'.
Finally, define §T=§(a°) » where & is the origin of T.
5.2.8, Theorem. __I_{_T is a model of HA .
Proof. We show by bar induction that K(@) is a model of HA. The theorem
is trivial fer terminal nodes. If o is not terminal, apply theorem 5,2.4.
It follows that X(@) is a model of HA for all @eK. Letting o=a
completes the proof. Q. E. D.
Note. Obviously, we may replace the finiteness restriction on T by the
well-foundedness restriction.

As an example, we know by Godel's theorem that there is an independent
sentence A of classical arithmetic, Thus there are models W, and w, of
A and —A, respectively. Associating these models with the terminal nodes
of the tree,

Q‘1 02
-'I__‘.: \ /
ao y

we have the model :

(1)1A w2 1A
o W N
o

Observe e.g. that a I Av=aA.
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A stronger version of Godel's theorem allows us, for any n, to find Z?‘
sentences A1""’An which are mutually independent over classical arithme -
tic, In particular, we can find models Wygeoes® such that Aj is true
in @, iff i=7j. (We shall discuss this further in section 3.) Letting

1

n=3% and relabelling A1,A2,A as A,B,and C, let Wy Wy and o be

3 3

associated with the terminal nodes of the tree

011 02 015
I: \ |/
o .
o
Then K is

=T
w, A

1 wZB wBC
a W N
o

Observe that o | (mA=BVC)= ((mA=B) V(mA=C)). (See chapter Il
section 2.26 for an application.)

Let Wy Wy and w be as in the preceding example and let T be:

3

Q o, o
J 3
Ka4/
4

Associating w1,w2, and with 01,02, and ¢ we have

3 37

w

w o
\ N2
K. W of
e 4
[«4 w/ .
[
Observe that, although o and 014 both have copies of w associated with

them, they de not behave dlike, e.g. oy IF -4, - = (BVC), but
o H-?L =1A, = 1 (BVC) .

5.2.9-5.2,12. Formulae preserved under ( )= (Z )'.

5.2.9., If T 1is a set of sentences, we may ask whether or not various meta-
mathematical properties of % also hold for Ijé+ I'. For instance, one may
ask whether or not the explicit definability theorem holds for HA+ I' or
whether or not _’H‘.’A‘+ I' is closed under the derived rules given by theorem
5.2.6. Since the only property used in deriving these properties of HA is
the closure of the class of models of HA under the operation ( )= (Z )*,
to prove these results for %+ ', we need only show that the class of
models of HA+T 1is closed under this basic operation

0f course, to prove explicit definability, one could use the Aczel slash

- its inductive definition makes it fairly usable. The operation ( )= (L )!
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has the advantage that, if I and A are preserved by it, then T+ A is
preserved - i,e, if the validity of HA+T 4is preserved by the operation
F—(ZF)' and if the same holds of HA+A, then HA+T+4A is also preserved
by this operation. Thus, the class of sets of formulae preserved by this
operation exhibit betier closure properties than the class of sets, [, of

formulae which yield saturated extensions, HA+T, of HA.

5.2.10, Lemma. Let the sentence A have no strictly positive V or &
(i.e. A 1is a Harrop sentence, see 1.10.5 ). Then A is preserved
under the operation ( )= (I )'.

Proof. We shall prove this by induction on the length of A. To carry out
the induction step corresponding to (v), we must make a convention involving
free variables, Let A have Xy9eee9X  8S free variables -~ we shall prove
that A(m,l,...,mn) is rreserved for all numbers m,,...,m . The result
then follows trivially for sentences,

(i) The preservation of atomic formulae follows by the decidability of
atomic formulae in HA.

(ii) Let A(m1,...,mn)&:B(m1,...,mn) be valid in F. Then A(m1,...,mn)
and B(m1,...,mn) are valid in F. But each of these is preserved under
F— (ZF)?', whence A&B is valid in (ZF)!.

(iii) Let A(m1,...,mn)-»B(m1,...,mn) be valid in F. TFor this impli-
cation to fail to be valid in (ZF)!', we must have o H—A(m1,...,mn) ’
QO‘HB(m1,...,mn). But then A(m1,...,mn) is valid in F, whence
B(m,l,...,mn) is valid in F. Again B(m1,...,mn) is preserved, whence
o I+ B(m1,...,mn) , a contradiction,

(iv) Similar to (iii).

(v) Let A(x,m1,...,mn) be given, ’v'x_A(x,m,l,...,mn) valid in F.

For VxA(X,m1,...,mn) to fail to be valid in (ZF)', we must have
ao|h%A(m,m1,...,mn) for some me Da = {0,1, ...}. But A(m,m1,...,mn) is

valid in F and is preserved, leading to a contradiction. Q. E. D.

5.2.11. Theorem. The class P of sets, ', such that the validity of
HA+ T is preserved by the operation ( )= (Z )' has the following closure
properties :

(i) P is closed under arbitrary union j

(ii) if TeP and A is a Harrop-sentence, then TU{a}leD;

(iii) if Te®P, A has only the variable x free, and HA+ T FAn for
each numeral n, then TU {vxax]} e D.
Proof. The only case we haven't proven already is (iii). The proof of this

is basically the same as that of case (v) in the preceding proof.



345

5.2.12. Corollary. (Friedman A) Let Te P, Then ED and DP hold for
HA+ T,

5.2,13 ~5.2.23. Examples. Reflection principles and transfinite induction.

5.2,13, Condition (iii) in the definition of P was introduced in Friedman
A for the purpose of proving results like corollary 5.2,12. By it, if we
have an axiom scheme for which we wish to prove a preservation theorem, we
need only prove the theorem for the scheme without free variables. For in-
duction,

A0 & Vxy (Ax & S(x,y) = Ay) = Ax,

we need only prove the preservation result for each instance,
A0 & Vxy(Ax 4S(x,y)=Ay)—An.

If we examine the proof we gave, we notice that we reduced the problem to
proving the preservation of this last sentence. We shall now consider some
further schemata and apply condition (iii) to prove preservation theorems
for them,

Let < be a primitive recursive (or even provably decidable - 1i.e.
]{7‘ i—x <y V Tx <y) well-ordering of the natural numbers., By the scheme,

T1(<), of transfinite induction on < is meant the following :
AO & Vx[ Vy <xAy—Ax]- VxAx,

where, for convenience, 0O 1is taken to be the first element of the ordering.

5.2.14. Lemma. Let I be the subscheme of TI(<) determined by the re-
striction that Ax have only x free, Then the preservation theorem holds
for HA+T.

W
Proof. Let F be a family of models of HA+ [ and observe that < is a

genuine well-ordering on ®. Thus, if T is not valid in (ZF)', we have
o [t 40 & Vx[ ¥y <xAy— Ax],
o ﬂj‘An .

Letting n be the least such n, a |fFFAm for all m<n, and B |- VxAx
for all B> a_ , whence a | ¥y<n,Ay , whence o |t-An, a contradiction.

Q. E. D.

5.2,15. Theorem. The scheme TI{<) is preserved.
Proof. Let I be as in lemma 5.2.14 and let B<X‘I""’Xn) denote the

instance,
A(O,}C,l,...,xn) & Vx[Vy<xA(y,x1,...,xn)—'A(x,x1,.. "xn)]—. Vx.A(x,x1,...,xn) ’

if TI(<). For each choice Dyseeeym  of numerals to replace
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XygenesX s B(m1,...,mn)e ', whence HA+ Tf—B(m1,...,mn). It follows by
condition (iii) that HA+T+Be®P. Thus HA+TI(<) =

Ufga+T+B| BeTI(<)}eB. Q. E. D.

5.2.16. Corollary. Let T extend HA by the addition of some schemata of
transfinite induction on primitive recursive well-orderings. Then T sat-
isfies DP and ED.,

5.2.17. To discuss the next set of schemata, let, for an r.e. extension T
of HA ,T%aofT(x,y) be the canonical proof predicate. The properties of
Prwﬂ%(x,y) which we use are that

(i) ProofT is decidable, and

(i1) En HA | Proof(n, TAT) iff T4,
where "A" is the godel number of A, If A contains the free variable
¥y, we let "Ay " denote s(y,"A"), where s is a primitive recursive

function such that
s(n,rA1) = r[y/n]A1 is the godel number of the sentence

obtained by replacing the variable y in A by the numeral =n.
We may use this notation to list the following schemata :

Local reflection for T, RF(T):
RF(T) Ex ProofT(x,"A1)-*A , for sentences A,

Uniform reflection for T, RFN(T) :
RFN(T) Wy [ Ex ProofT(x,rAi’)-*Ay], for A containing only y free.

Uniform' reflection for T, RFN'(T)
RFN'(T) VylﬁcProofT(x,rAi1)—~VyAy , for A containing only y free.

Consistency of T, CON(T) :
CON(T) - dx ProofT(x,rO=1") .

w - Consistency of T, w~C (T):
w-CON(T) x Proofy(x, "= ¥yAy ) = - Vy @x Proof o(x, Ay "), for A containing
only y free.

Feferman 1962, theorem 2,19 gives an intuitionistic proof of the following:

5.2.18. Lemma. The schemata RFN(T) and RFN'(I) are equivalent.
Thus, we need not consider RFN‘(Q). For the relative strengths of

these reflection principles, see Feferman 1962 and Kreisel - Levy 1968.

5.2.19. Theorem. CON(T) and - CON(T) are preserved by the operation
()=(z ).

Proof. CON(T) and ®-CON(T) have no strictly positive V or &, Q.ED.
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5.2.20. Lemma. Let A be a sentence. If T |-A, then HA+ RF(T) |-A .
Proof. Observe T |-A implies HA |-x ProofT(x, TAY) . RF(T) yields
HA +RF(T) 4. Q. E. D.

5.2,21. Theorem. If T is preserved by the operation ( )= (& )', then
so is HA +RF(T) .

Proof. Let F be a family of models of HA+ RF(E“) and let (2F)' fail to
be a model of HA+RF(T). Then

@ I & ProofT(x,"A") y H7‘A ,
for some sentence A. Thus, for some n, a ”—ProofT(n,'"A‘) .
But ProofT is decidable, whence HA l—- ProofT(n,"A") and T 1—-A .
By lemma 2.4.6, T is valid in F, whence, by hypothesis, T 1is valid in
(ZF)* . Thus o ”'"A , a contradiction. Q. E. D,

5.2.22, Corollary. If T is preserved by the operation ( )= (Z )', then
so is HA + RFN(T) .

5.2.23., Corollary. If T is preserved by the operation ( )= (X )', then
so are T+RF(T), T+RFN(L), T+RF(T+RF(T)), etc.
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5¢3.1. Statement of de Jongh's theorem.

In addition to its use in proving explicit definability resulis and the
validity of an occasional derived rule, we observed in 5.2.4 that we could
use the operation ( )= (% )' to construct Kripke models of HA out of
models of classical arithmetic, This last application has, as a corollary,

a simple proof of the propositional case of an interesting theorem of de

Jongh., In the sequel, Pp denotes intuitionistic propositional logic.

Let A(p1,...,pn) be a propositional formula constructed from the pro~-
positional variables PyrecesP o In an as yet unpublished paper (de Jongh A,
see de Jongh 1970), D.H.J. de Jongh proved the following

5.3.2, Theorem, If ?;)HA(p1,...,pn), then %HA(B1,...,Bn), for some
sentences B1""’Bn of arithmetic.

According to this theorem, if A(p1,...,pn) is not an intuitionistic
tautology, there are arithmetical substitution instances resulting in a
sentence underivable in HA. Alternatively, we can view this as a complete-
ness result if we define the validity of a formula A(p1,...,pn) in HA to
be the validity of the scheme A(B1,...,Bn) determined by A(p1,...pn ).

Actually, de Jongh proved a stronger result: The choice of substitution
instances B1,...,Bn of Pyre-esP ~ cED be made uniformly in all
A(p1,..-,pn) » A proof of this by means of Kripke models is more difficult
and will be given in section 6.

Another result of de Jongh's is a completeness theorem for the predicate
calculus. To date, the only proof of this result is de Jongh's original

proof, which combines the use of Kripke models and realizability.

5.3.3-5.3.8. Preliminaries on the propositional calculus.

5.3+3. The proof of the completeness theorem given in 5.1.6 - 5.1,11 special-
izes easily to the prop0sitional calculus. Kripke's original proof (Kripke
1965) also yields the completeness (but not strong completeness) of the in-
tuitionistic propositional calculus, Pp , for the class of models whose
underlying pms is a finite tree. Our first task is to retrieve this result.
¥e do this by starting with a countermodel to a formula A and pluck out
finitely many nodes needed to falsify A, splitting and ordering them into
a tree in the process.

Ye will let o, T denote finite sequences., < > denotes the empty se-
quence., <a> denote the sequence whose only element is a. ©oxr will

denote the concatenation of o, - i.e. if o = <s1,...,sm>, T=:<t1,...,tn>,
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then ox%r = <s1,...,sm,t1,...,tn>. In particular, o x<a> = <s1,...,sm,a>.

5.3.4. Theorem. (Finite tree theorem.) Let (X,<, ||) be a model with
origin o such that a°|h*A.. Then there is a finite tree model
(x*,<*, |F*) such that < > |F*A.

Proof. Let S ©be the set of subformulae of A, and, for BeK, let
s(g) = {Bes : g B},

Set a<>= ao.
Given Bc’ let B°*<1>,...,ﬂc*<k> be a maximal set of YyseeesYy such
that

(1) B ,&y; for all i,
(ii) s(Bg) # s(yi) for all i,
(iii) if B <v<y; » then S(y)=5(B,) or S(v)=5(y;), and
(iv) s(v;) # S(Yj) for ifj.
Now let X* = {c: ﬁc has been defined}, and let <* be the usual tree
ordering., For atomic B, define o |[F*B iff ﬂc|f-B.
We prove by induction on the length of B, for BeS, that U‘k"B iff
b I3 -
(i) The atomic case follows by definition.
(ii) - (iii). Let B be C&D or CVD. The proofs are trivial.
(iv) Let B be C=D., Let o |f*C=D.
Then there is a T>¢ such that T H—-*C » T|H#*D. But then B, Fc,
B, |+ D and, since B < Br» By Fc-2.
Conversely, let a°|h%C-*D.
Case 1. B |FC. Then B |#D and o |F*C, o|f*D. Then o |F*C-D.

But, by construction, there is a r>*¥o such that S(BT) = S(y) and so
ces(B.), D¢S(B.). Thus r|*C, r|#*D and o |f*C-D.
(v) Let B be =C. The proof is similar to (iv). Q. E. D.

5+3.5. Corollary (Kripke). Pp is complete for the class of finite tree
models, i.,e. ¥ h‘A iff A has a countermodel in a finite tree.

We shall find it convenient to work with a special class of trees. To
prove completeness for them, we prove the following result (which generalizes

a result of Gabbay 1969 B).

5.3.6. Theorem (Extension theorem). Let (KO’S@) be a finite subtree of
the finite tree (K1,$1). Let |kb be a forcing relation defined on
(Ko,so). Then there is a forecing relation |ka on (K1,$1) such that, for
all @€KX and all formulae A,

alf A iff a| A
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Note. By "subiree" we do not merely mean "tree which is a subordering of"
- the result is false in this case. The successors of a node o€ K must
be successors in the tree (K1,_<_1) . For convenience, we also require the
origins of the two trees to coincide.
Proof. For o€K_  and atomic A, define o, A iff o A. For each
Be Ko s choose a terminal node ts}_ﬁ in the tree (Ko,_<_o) . Let we K1-K0 .
Then there is a maximum Be Ko such that c::_)1 B. Define, for atomic A,
oy A Lff ty b, 2 -

We now show, for all A,

(i) if o€ Ko, , a”—1A iff a”—OA,

(ii) if o€K,-K , o|F,A iff tB”—-OA,
where tﬂ is defined as above.

(i) For atomic A, the result follows by definition,

(ii) - (iii) The cases A =B&Z, BVC are trivial

(iv) ILet A = B=C.

(a) Let «| B=C, B2, o such that B, B. If Bek , B[~ B by
induction hypothesis and so B ”—o C. Thus B ”—1 C. If Be K1-Ko ,y We
have, for some ¥<, B, B ”——1 B iff tY”—-OB. Now tvg v> o (since the
predecessors of B are linearly ordered) and so tY ”—o C, whence the in-
duction hypothesis yields B |, C. Hence B2, @ implies that, if g |, 3B,
then B ”—-1 C and we have a”—-1 B=C.

(b) Let ofl# B-C. Then there is a PeK_, B2 o such that Bl B,
ﬁ”-74°C. Then B||--1B, a”-7‘10 and aH'7‘1B—’C.

(¢) Let «ace K1-K0 . Let 321 o and let we Ko be maximal such that
'y_<_1 o . Then vy is maximal in Ko such that Y$1 B . By induction hypo~
thesis, a,B ”—1 B iff ty H—o B and aP H"1 c iff ty ”—o C.

|, B=C 1ff Y82, o(B |, B = B, C)
iff o|fyB = ol C

J:.ff tyn——oB:tyn»—oC
iff tVH—OB—»c,

since, for terminal % the forcing semantics is the same as in classical

Y’
logic.
(v)  The proof for negation is similar to that for case (iv). Q. E.D.

E.g. Consider the trees (Ko,_<_o) and (K1,_<_1):

p Y P
(Ko’io) s \ /Q’/ (K1 ’$,1) : \ >OI/

If we embed (Ko,s_o) in (K1,_<_1) in the obvious manner, and if we have a
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foreing relation !fb on (Ko,io), in order to extend to a relation ”—1,

we must decide how vy is to behave. We cannot necessarily let vy Dbehave
like &, because o« has an extra node beyond it which may affect g's
behavior., However, we can make ¥ behave like any terminal node beyond o

- which in this case is B. Now, « cannot distinguish vy from § and
hence ¢« behaves the same in (Ko,so,|kb) and (K1’$1, ”—1)-

Note. In this proof, we need only assume (Ko’ﬁo) is finite. The theorem
holds when both (KO,SO) and (K1,g1) are infinite. In this case, the
terminal nodes are replaced by complete sequences (in the sense of Qgggg1966).

Theorem 5.3.6 has the immediate corollary :

5.3.7. Corollary. Let {(Kn’én)}n be a sequence of finite trees with the
property that every finite tree (X,{) can be embedded as a subtree of some

(Kn,jn) . Then Pp 1is complete for the sequence (Kn,gn).

5.3.8. Examples.
A) The diagonal sequence. This is the sequence whose n - th element

(n>1) is n-ary and of height =n:

B) The Jaskowski sequence. This economical sequence, due to Jaskowski
(Jaskowski 1936) (see also Rose 1953, Qal, Rosser, and Scott 1958, Scott 1957,
Gabbay 1969 , and Mostowski 1966. Gabbay 1969 gives a treatment similar

to ours for this sequence,), is obtained by letting the n+1- st tree be the

, etec.

result of taking n copies of the n - th tree and dropping a node below them:

J1‘ J2 J3 J4
, etc.
C) The modified Jaskowski sequence.
* * * *
{1 J2 J J4

, etc.
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Let us finish this subsection by remarking on a useful property of the
modified Jaskowski trees (a property shared, incidentally by the diagonal
trees) + Every node of J: is determined by the terminal nodes lying beyond

it, PFrom this, we can prove the following lemma :

5¢3¢9. Lemma. Let Upgeeer® be the terminal nodes of J;. Suppose we
have a forcing relation, |, defined on Jrf such that, for each i, there

is a formula Ai such that

oy A, iff J-i.
Then, if S 1is a set of nodes of J; such that o€ S and o f imply
BeS, there is a formula A constructed from the Ai's s for which
S =1{as aH—A} - In particular, for any «, there.is an A = such that
{p:B2al=18s8|al.
Proof. Since wa¢€ J; is determined by those O’iZQ” it is also determined

- * = -
by those ai_Za. Let Aa— a'iMZa —|Ai for *) af o and let A‘_‘\{O_A1 A1.

We must show that B|-A ~iff B>a. For o, this is trivial.
Let af o - If B H—Aa, the set of terminal nodes not beyond P includes
those not beyond o« (otherwise B ”7‘ A, for some i ). Hence the set of
terminal nodes of B (i.e. beyond PB) is included in the set of terminal
nodes of . Let o be one of these. Since the set of predecessors of
o, is linearly ordered, either o<B or B<a. But B<A would imply
that o« and B have the same terminal nodes beyond them, a contradiction.
Thus B> ao. The converse is easy s aizcy implies aiz_ﬁ and B H— _|Ai
(since no extension of B forces Ai ). Hence B H-Aor'

Finally, let S have the property stated in the lemma and let

A q. E. D.

= W A .
agS o
Let us comment briefly on the content of this lemma., We know that Pp

is complete with respect to the modified Jaskowski sequence. Thus, if

Pp H A(p1,...,pn) , there is a J;l and a forcing relation, ”-—, on J:

such that o I+ A(p1,...,pn) . With each p,, We can associate the set

Si of nodes B such that B

f“pi . The lemma gives a simple sufficient
condition on a forcing relation on J; that there exists a formula
behaving like P, . Recall that, if we have associated non-standard models
Wpgeees® o of arithmetic with the nodes @q9eees@ , s We Can define a
model KJﬁ of HA. As long as the sentences Ai have no constants

) M, W are used for repeated conjunctions and disjunctions respectively.
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denoting non-standard numbers, the proof of the lemma carries through for

EJ* . This is the key to our simple proof of de Jongh's theorem.
n

5¢3%.10-12 The Godel - Rosser - Mostowski - Kripke - Myhill theorem.

A straightforward iteration of the Godel -~ Rosser theorem will give us
independent sentences A1""’Am for any m. For the sake of obtaining
the simplest possible substitution instances in theorem 5,3.,2, we want the
independent sentences A1,...,Am to be Z: . This result has been proven by
Mostowski 1961, Kripke 1963, and Myhill 1972,

We shall present Myhill's proof of the follcwing

5+3.11. Theorem, Let ~T*o’ T1, ee. be an r.e., sequence of consistent r.e.

b

. [e]
extensions of classical (Peano) arithmetic, %c . Then we can find a I,
sentence A such that A is independent over each theory Ei .
Proof. Let X,Y be recursively inseparable sets and let X,Y be represent-

ed by formulae ¥yR(x,y), EyS(x,y), respectively, in such a way that:

neX iff FyR(n,y) iff HA | FyR(n,y),
neY iff JyS(m,y) iff %l—!iys(n,y),

and 2 b (&R(n,y) & FyS(n,y)) .
Let X, = {x: I, | TR(x,y) 1,
X o= {xs I F &Ry
and consider X* = UZX,, X' = &) X .
1

By the reduction theorem in recursion theory (see e.g. Rogers 1967, Pe 72),

there are r.e. sets U,V such that

Tuv = x*Uuxr,
UnNv =¢,
UcX*, and VcX'.

Clearly XcU. For, if neXNV, neXt' and, for some I
I, ‘— TyR(n,y) and T, F —3yR(n,y) , contradicting the consistency of I, -
Also, YcV, since neY implies I, b EyS(n,y), whence
I, f —EyR(n,y) . But neT implies I b %R(n,y) for some i, again
contradicting consistency.
Now, U and V separate X and Y, whence there is an nog’UUV .

Then, if we let A = SyR(no,y) » we see that A 1is independent over each T. .

Q. E. D.

5.3.12. Corollary. For any m, we can find m Zc; sentences independent

c
over HA~ .
A
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Proof. Let A1 be independent over }‘Lﬁc; A2 independent over % ’
. c c c

% + A, A; independent over HA"+A +A,, HAT+A, +7A,, HAT4—A, +A

HA + —lA + -|A2 etc. Q. E. D.

5¢3.13-5.3.15. de Jongh's theorem. Let us now combine the results of
5¢343=5.3.12 to prove theorem 5.3.2, which we restate here:

5.3.13. Theorem. If Pp h‘A(p1,...,pn) , then %HA(BV'“’Bn)’ for some
sentence B1""’Bn of arithmetic.

Proof. Let a ”7‘A(p1,...,pn) for some forcing relation on Ji and let
A1,...,A ! be independent over %c and find, for each i, a model o,

of A + | ﬁA Associate these models with the terminal nodes of J: and
look at Fé

E.g. J* is

w, A w A wA A w A
q\1w/22 /44 “’5{(”/66

Let, for each P; Si be the set of nodes foreing P, - By lemma 5.3.9,

we can find a sentence Bi of arithmetic built up from the Aj's such that
{ B: B H— Bi b,
Now, a simple induction can be used to show that, for any formula

C(p1,...,pn) and any node B,
ﬂ”"C(P1’---’Pn) iff BH‘C(BV---an)y
under the two forcing relations. In particular,
o, | A(ByseeesB)) - Q.E.D.

The sentence corresponding to S is (except in the trivial case o, € s)
of the form,
W M AL,
13 1)
whence we have the following corollary due to Myhill :

5.3.14., Corollary. The substitution instances B1, voay Bn in theorem 5.3%.13
may be taken to be disjunctions of II:)

Observe that one cannot use II: sentences, because, if B 1is II: ’
HA |— -1 1 B=B.

Starting with A1”"’Am Hc; and independent, we have the following

sentences.
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5.3.15. Corollary. The substitution instances B1""’Bn in theorem 5.3.13
may be taken to be disjunctions of double negations of Z: sentences,

Since the only properties of E& used in proving de Jongh's theorem
were the closure of the class of models of HA under the operation
()=(z )r, the consistency of HA with classical logic (so that CIPRERRL N
could be chosen), and the incompleteness of @&c, we can conclude that de
Jongh's theorem also holds for HA+T for any r.e. F'eP (as in section
5.2.11) which is consistent with classical logic., In particular, de Jongh's
theorem holds for HA +TI(<), HA+RF(HA), HA+RFN(HA) , etc. If HA+T is
not consistent with classical logic, the independence of A 1is replaced by
the independence of —1A, so that models of A and —1A exist. Then the

models w1,...,wm are replaced by Kripke models.

5:3416. de Jongh's theorem for one propositional variable.

In Nishimura 1960, Iwao Nishimura characterized the lattice of formulae
in one propositional variable in the intuitionistic propositional calculus.
It happens that there are close relations between these lattices and pmsts.

From Nishimura's work, it is not hard to prove the following

5.3.17. Theorem. Let (K,<, |) be the model shown below and let A(p) be
a formula in the variable p such that Pp }#A(p). Then for some a€K,

o |[H£A(R) -
(X,%, H‘) : P P

. .
»
. v

The proof of this lies beyond the scope of these notes. A proof avoiding

the use of lattices may be found in de Jongh B.

Let B be zfl’,

which B is true. Consider the model

independent over %&c. Then there is a model w' in
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+
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— e — g — € — &€

/

This allows us to prove the following result, due independently to de

Jongh and ourselves,

5.3.18. Theorem. Let B be I,
Then HA |#A(B).
Proof. Prove by induction on the length of C(p) +that, for o€k,
aH— C(p) in the first model iff a”— C(B) in the second model. Then apply
theorem 5.3%.17. Q. E. D.
Recall theorem 5.2.6, by which e.g. we showed % i—VxAx vax —Ax iff
HA |-~ VxAx—3x 7Ax, when HA |- Vx(Ax Vv —Ax) .
We may restate this equivalence as HA |- ExAx V —@3xAx iff
HA }— -1 71 ExAx— Exdx , for decidable A. But, for this formulation, theorem
5.3.18 readily applies. In HA HE{AXV - ExAx , then HA }7‘ ExAx and
HA H - ExAx, whence Vﬂéc H 8xAx , IjﬂA;c F - ExAx. The decidability of A

implies that —8xAx is true in ® and there is a non-standard model w+

independent over %c , and let VPp|[FA(p).

of ®ExAx . Now, applying the proof of theorem 5.3.18 to the sentence ExAx
and the propositional formula ™ Tp—p, we have the result.
The case HA |- &xAx V -1 ExAx is trivial., (In particular, we have an in-
dependence proof for Markov's schema - —1HxAx— ExAx, Ax primitive re-
cursive., - Markov's schema is studied in section 4, below.)

Another point worth stressing is that, for one propositional wvariable, we
have a best possible result: uniform Zc,: substitution instances.

Finally, observe that we do not have the result for all HA+ T, Te D,
since we must have [ valid in w. One can get around this slightly by

considering models s
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We leave the investigation of such results to the reader, taking time only

to mention the following result of de Jongh's:

5.3.19. Theorem. Let B be a sentence such that HA | 7B, HA H BB,
Then, if Pp HFA(p), we have HA HA(B).

Remark. We may use theorem 5.3.6 (the extension theorem) to prove the
following : If Pp |#A(p), then ao|h#A(p) for some finite tree model X

in which p is forced only at terminal nodes (if at all), This will give

a simple proof of theorem 5.3%.18 without using the Nishimura pms.

5.3.20. Another theorem of de Jongh (digression).

The Nishimura pms was used by de Jongh to solve a problem of Kreisel.
In the last paragraph of Kreisel - Levy 1968, Kreisel and Levy mention that,
when one wants a truth definition for formulae of bounded complexity, one
must include the number of nested implications and negations occurring in a
formula as well as the number of nested alternating quantifiers in omne's
measure of complexity. The infinitude of the Nishimura lattice tells us
that there are infinitely many propositional formulae in one variable which
are non-equivalent over Pp. Kreisel asked for a proof that there is no
truth definition within gé for the substitution instances - i.e. for any
formula Tx and some sentence B, not all of the following equivalences

are derivable:
T(TA(B)7) «» A(B) ,

where A(p) ranges over all propositional formulae in one variable and
“A(B) 7 denotes the godel number of A(B).

We present de Jongh's proof of this result here:

5.%.21. Theorem, Let B be 2‘1’,
only x free. Then, for some propositional formula A(p),

HA A T("A(B)Y) > A(B) .

independent of g&c, and let Tx have

In other words, for any independent Z: sentence B, there is no truth
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definition for the set of propositional formulae in B.

Proof. Since B is 3z and independent, B is false in the standard model.

1
Let ®' be a non-standard model of %c +B, and assign levels to the nodes
of the Nishimura model as follows:

+

B -1B level O

w
|
w level 1
|
w

g — g — E

level 2
/

. ° °
° ° °

Let C(x1,...xn) be a formula with free variables as indicated, We shall
prove by induction on the length of C that there is a level ncz1 such
that, for any my,...,m , if C(m1,...,mn) is forced by a node of level
ng, then C(m1,..,,mn) is forced by all nodes,

(i) Let C be atomic., Then ny=1.

(i1) - (4i1) If C is D&E or DVE, n, = max(nD,nE) will do the trick.

(iv) Let C be D—=E. Then take n, = max(nD,nE) +1. To see this,

label the nodes as follows :

Let n = max(nD,nE) and let o , |FD—=E. First, observe that o |FD—E
and, if o H—D y o H—E and all nodes force D and E, whence they force
D-E, If Bn H—~D y all nodes force D, whence o H—D , whence all nodes
force D=-E.

If, for some v, y”74 D-E, then there is a 6>%y such that & H——D,
8 |F#E. If the level of & is >n, then o or B is >6. But, if
this is the case, cyn or Bn forces D and all nodes force the implication.

»

On the other hand, there is no node of level <n which is not 2°'n+1

Hence all nodes force D= E.

The case in which B FD-E is similar,

n+1 |
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(v} C is =D, Similar to (iv).
(vi) Let C(x1,...,xn) be ExD(x,x1,...,xn). Then ng=np.
Since nD2_1, the domain at level np is {0,1, eeel.  Let eug.
anD|k-3xD(x,m1,...,mn) . Then, for some m, an|}-D(m,m1,...,mn) and all
nodes force D(m,m1,...,mn), whence they force Bx.D(x,m1,...,mn).
BnD is handled similarly.
(vii) C(x1,-..,xn) is VxD(x,x1,...,xn). Then n,=np and the proof
is similar to that in case (vi).
Thus, any formula Tx will have a level ng associated with it in such
a way that, for all TA(B)*, if % |FT("A(B)") or B |FT(TA(B)) ,
then alf-T('A(B)‘) for all nodes « in the model, The proof is completed
by the following lemma.

5.3.22, Lemma, For each level n, there is a sentence A(B) which is
forced at a node of level n, but at no nodes of level n+1 or higher.
The proof of this is not difficult, but is rather long and we omit it.
The reader is referred to de Jongh B, for the proof. Alternatively, if he
is willing to accept theorem 5.3.17 and the infinitude of the set of in-
equivalent formulae in one propositional variable, lemma 5.3.22 for arbi-
trarily large n follows by a simple cardinality argument - with only
finitely many nodes of level {n to distinguish these formulae, we can
only find finitely many inequivalent formulae. By either approach, the
proof of theorem 5.3,21 is completed. Q. E. D.

5¢3.23. Further results on de Jongh's theorem,

In theorem 5.3.13 (theorem 5.3%,2), we proved that, for any underivable
A(p1,...,pn) » arithmetical B,,...,B ~ can be found such that A(B1,...,Bn)
is underivable in HA . de Jongh's original proof (de Jongh A) gave
B,.,...,Bn uniformly in all A(p1,..,,pn). Friedman A improved this by
showing that, where uniformity is desired, any collection B1,...,Bn of 1n°

2
sentences independent over g&c augmented by all true n® sentences will

work, Friedman's proof made use of his generalization of1the Kleene slash.
We shall present a (Kripke) model ~-theoretic proof of his result in section 6,
below.

In terms of the simplicity of the substitution instances, corollary 5.3.15
shows that By,eee,B) (in the non-uniform version) may be taken to be dis-
Junctions of double negations of 22 sentences, which, classically, would
be Z:. We obtain Z? substitution instances in section 6.

When restricting one's atiention to a particular number of variables, we
outlined a proof of the existence of uniform E: counterexamples in 5.3.16 ~

5.3.19 above. TUsing an alternate proof involving the arithmetization of the
Kleene slash, de Jongh 1971 and B reproved his theorem 5.3.19 (ef. also 3.1.46).
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§ 4. Markov's schema

5ee1~5.4.3 , Markov's schema.

5.4.1. We have already encountered Markov's schema in our discussion of the
Kripke models. In section 2, we presented a model-theoretic proof of
Kreisel's version of the independence of Markov's schema (theorem 5.2.6) and
in section 3, we observed that this result also came as a corollary to a
special version of de Jongh's theorem for the special case of one proposi-
tional variable, Both proofs are off-shoots of the simple fact that Markovts
schema is not preserved by the operation ( )= (I )'.

Before discussing this last fact, let us consider several formulations of
Markov's schems :

(1)  Wx(Ax V mAx) & = Exhx - TxAx ,

(i1) Vxy(Axy VvV "Axy) & Vx =1 ByAxy— Vx By Axy ,

(i1i) Vxy(Axy Vv —1Axy)— Vx[ 1 ByAxy— Zy Axy ] ,

(iv) Wx[Vy(Axy Vv —1Axy) & =1 ByAxy— %y Axy] ,

(v) Vz[ ¥xy (Axyz V —1Axyz) & ¥x —— ByAxyz— Vx By Axyz],
where A contains only the free variables shown., Observe that the schemata
obtained by replacing x,y, or =z bv finite sequence of variables reduce to
the present schemata via a pairigcg\tf‘g'rf‘ims, there is no loss of generality in
considering only (i) ~ (v). For the treatment of Markov's schema by other
methods, see also 1.11.5 and § 3.8.

5.4.2. Lemma, (v) <> (iv) = (iii) = (ii) = (i).
Proof, (v) = (iv). Trivial,

(iv) = (v). Let X be a model of (iv) and let o€ K be such that
o | Vz[ Vxy(Axyz V —Axyz) & Vx 718y Axyz— Vx 8y Axyz] . Then, for some B>«
and beDB, we have B | Vxy(AxybV TAxyb), B | Vx- 18 Axyb, and
] H-f Vx &y Axyb .

But then there are y>PB and ce€Dy such that v H7/-E{yAcyb . We also
have v | Vy(AcybV —Acyb) & 718 Acyb . Let d = j(c,b), where J 1is the
standard primitive recursive pairing function with inverses j1, j2 .

Then v [ Vy(A(3,4d, ¥y, 3,4) VIA(S,d, ¥, §,d)) and
Y H‘ - _'&YA(j1d’ ) 32(1) » whence, applying (iv) to At'xy: A(j1x, ) jzx) ’
we have v |} EyA(j1d, ¥y 3,d) , a contradiction.

(iv) = (iii). Let K be a model of (iv), o |- Vxy(Axy V - Axy) and
o | ¥[8y Axy— Zy Axy] . Then there are B>a@ and be DB such that
Bl 78y Aby, B | & Aby. Now B |FVy(Abyv —Aby) and, by (iv),

B | ¥y(Aby vV —1Aby) ¥ = m By Aby - Fy Aby , whence B H— ¥y Aby , a contradiction.
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(iii) = (ii). Let K be a model of (iii), a|F Vxy(AxyV —Axy), and
o ”74 Vx 01 EyAxy— Vx By Axy , Then there are B> o and be DB SuChﬂ‘;:llqla.."é‘fEl%#:\)y
B |H Ey Aby . But, by (iii), B |~ Aby— &y Aby, a contradiction.

(i1) = (1)« Trivial. Q. E. D.

Unfortunately, we cannot settle any of the converse implications (simple
model-theoretic independence proofs are ruled out - when we replace the
operation ( )= (Z )' by one which preserves Markov's schema, we will see

that all five schemata are preserved.). However, we can prove the following:

5.4.3. Theorem, The scheme (iv) is derivable in vHé+RFN((i)).
Proof. The proof is based on a remark of Kreisel's that the uniform reflec-

tion principle allows one to add free variables. We show
HA ‘——Vx Hz PTOOfHA+(i)(Z’ T¥y(Axy vV AXy) & =18y Axy— FyAxy') .
Let Bo(x), .es be a primitive recursive enumeration of all instances of
Vy(Axy V mAxy) & 7= ByAxy— TyAxy .
r Nor .l M . . <
a) HA#Vw PrOOfHA+(i)( BW(O) , BW(O) ), i.e. every axiom is its own proof.
r )0 imi i -

b) lLet Vwdz Proofm+(i)(z, Bw(x) ). Also, let f be primitive recur

sive such that

HA l—-Bw(x+1) > B, (x) .

By well-known properties of Proof,
(o A\t [ bl
HA |3z PrOOfHA+(i)(Z’ Bw(x+1) ) ¢ Hz PTOOfHA+(i)(Z’ Bfw(x) ).
r )\ [ S
But BXPTOOfHA-g.(i)(Z’ B, (X)) and so %z ProofHA+(i)(z, Bw(x+‘l) e
¢) Thus

HA |- Vwiz PIOOfHA+(i)(Z’ Bw(x) )= Vw 3z PrOOfHA+(i)(Z’ Bw(x+1) ).

This and (a) yields
r >\

HA l—Vw Vx ¥z ProofHA+(i)(z, Bw(x) ).
RFN'(HA + (1)) (which is equivalent to RFN(HA+ (i)) by lemma 5.2.18 - the
implication RFN—RFN', however, is trivial) yields, for w the index of
Vy(Axy V 7Axy) & 28y Axy— GyAxy ,

HA + RFN(HA + (1)) | Vx[ Vy(Axy V 7Axy) & == ByAxy— EyAxy] . Q. E. D.
Thus, if schemata (i) - (iv) are not formally equivalent, they are almost
equivalent. Combining this with our model-theoretic inability to distinguish
these sChemata, we shall allow ourselves to be sloppy and let MP denote any

of the schemata (i) - (v) (for the present chapter).

We note that MP may be formulated as a rule of inference (see3.8.1 ).
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5¢4.4 ~5.4.6. The independence of MP.

As remarked above, we have already proven the independence of MP twice.

This time, however, we shall be more direct.

5.4.4. Theorem. Let HA+T be r.e., T'e€P (as defined in section 5.2.11).
Then, some instance of MP is not derivable in HA+ T,

In fact, let #xAx be independent with Ax primitive recursive (so
HA 1- ¥ (Ax vV 7Ax)) . Then

HA.;.I"HﬂﬁEXAx—‘ExAx.
WA

Proof. Let &xAx be independent of HA+T and let X be a model of HA+T
with a node B such that B | 3xAx and consider (gs)' :

We will show o H7‘ 7T ExAx— @xAx . Since y> o implies y=-o  or y2B,
B |f @xAx implies o, F——@xAx . But, if @ |l @xAx , then o, |- An  for
some n, As usual, this means ‘I-’I:A; l—-An and so VH& l—-ExAx , contradicting
independence.

But TeP and so HA+T 1is preserved by the step from X. to (Xg)'.Q.ED.

B
For example, MP is independent of @+RFN(%) , HA+ TI(<) ,
HA + CON(HA + MP) , etc.

In addition to outright independence results, one can obtain resulis on the

8)

form of the axiomatization of MP as follows. First, let us define a meas-
urey, m, of the complexity of a formula of number theory. We do this in-
ductively as follows,

(i) 4if A is atomic, m(A)=1,

(i1) - (iv) m(A&B) = m(AVB) = m(A=B) = max(m(4),n(B)),

(v)  m(=4) = m(a),

(vi) m(TxAx) n(Ax) , Ax = HyBxy for some B

n(Ax) + 1, otherwise,
(vii) m(VxAx)

{m(Ax) , Ax = VyBxy for some B

m(Ax) + 1, otherwise,

Observe that, for classical arithmetic, Ijéc , this is a reasonable measure
in the sense that a truth definition for formulae of bounded complexity can
be given. We have observed in 5.3.20 that no such definition can be given in
BA. (To obtain one, redefine m(A=B) = max(m(A),m(B))+1 and
n(A) = m(A) +1.)
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5¢4.5. Theorem, HA+MP is not axiomatized by any restriction of the schema
to formulae A for which m(A)ino for any n_. I.e. no set of instances
of MP of bounded complexity can axiomatize MP (over %).

Proof. We know from recursion theory that all formulae whose complexity is
of measure Sno lie in a certain level of the arithmetical hierarchy. We
also know from the hierarchy theorem and the completeness theorem (for
classical logic) that there is some non-standard model ot or %C in which
the truth of a sentence at or below the given level of the hierarchy agrees
with truth in the standard model, but truth at higher levels does not,

Thus consider (w+)’ :

o +

€ — E

%

We first show by induction on m(A) and on the length of A, that, if
m(A)ino, @ o |FA iff A is true in o (written w}jA). For this, we
use the facts that o|FA iff o |4

iff w A,
Atomic A are decidable and there is no problem. The connectives & and
V also offer no difficulty. Consider B--C., If o H—B—-C , then
CYH-B-*C y Whence ot |=A . Since m(B—‘C)ino y W |=A . If « H—;‘B—’C y, then
o, H—f-B—#C . So suppose o, ”7‘B—»C y Whence « oOT o, ”—B ’ ”7‘C. a”—B
and the length of B is less than that of B—=C, whence w‘:B R H—-B.
But o |F#B=C, whence @ |#C. Again wpf C, whence w[#B=C.
Also o ”7‘-B- C,

—1B is handled similarly.

Now consider the quantified formulae. For convenience, we only exhibit
one quantifier, although there may actually be a block of like quantifiers.

Thus, consider #xBx.

@ || ExBx = o |} @xBx
= u)+ |= HxBx

= w | @xBx, by choice of ot

Conversely,

wf @Bx = 3n wlBn

=

o o H— Bn, by induction hypothesis.

u

For VxBx,

@ | ¥xBx = o | VxBx
w+|= VxBx
w F ¥xBx, by choice of ot .

u

U
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If o |= YxBx , then wt |= VxBx and ¢ H—- VxBx. To conclude o H—- VxBx, it

suffices to show o |f=Bn for all numerals n. But

wl=V¥xBx = ¥n ok Bn
=¥ e |FFBn, by induction hypothesis.

Thus, we see that, for m(A)_Sno )

o, |FA iff affa
iff u)|= A,

But o' is not an elementary extension of w and, for some prenex sen-
tence A, of |=A, wl~A . Let A be such a sentence for which m(A) is
minimal.

Then A is of the form &x,...x B, where m(B)<m(A). To see this,
observe that, by minimality of m(A), the above argument holds for allprenex(C
for which m(C)<m(A). In particular,

a |Fc iff alFcC
iff ol C,
and C is decidable (since CYOH—C"" o|C and oroﬂ— mCerallC ),
Suppose A is of the form Vx‘l...an(x‘l,.q.,xn) , m(B)<m(A). Then
o | VK eeoX BXeuox = ol Vx oo0x B
= 18,1...an€Da(a”--B(a1,...,an))
= Em1...mn€w (a H—B(m1""’mn))
Em1o--mn€w(ao ”“B(m1,oo-,mn)},

1

u

since m(B) < m(A) . This last fact, together with the fact that
o | Vx,...x B implies o I+ Vx,...x B. But, more importantly, since
n(B) <m(4) ,

o H—B(m1,...,mn) = wl= B(m1,...,mn) y
whence o | Vx1..,an and A cannot be of the form suggested.
+
Hence we have W Bx,.e0x B, w }:ﬂ{ﬂ’x1...an, and
o |+ Vx1...xn(B(x1,...,xn) v —1B(x1,...,xn)) (by the fact that m(B)<m(A)).
But o|f8x,...x B, and so @ |k -= Ex,...x B, But we cannot have
n o 1 n

o, I+ @x,...X B. Contracting quantifiers, we have an instance,
Vx(Btx V 1 B'x) A=~ @xBtx= #xB'x ,

of (i) which is not forced at o, -

Finally, for m(C)<Nn,-1, we have m(3Ex C)< nNo , whence &xC
is decidable in the model ( m(3xCV -1H®xC) = m(ExC)< ny ). But, whether
o [ @xC or o, | ~8xC, we have

o, [ vx(Cx v = Cx) A == BxCx— ExCx .
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Hence, MP is true in the model for instances of low complexity, but not
for high complexity. The fact that we can make the "low complexity" large
enough to include n yields the theorem, Q. E. D.

5.4.6. Corollary. MP is not derivable from the subscheme,
Vx - EyAxy - Vx ¥y Axy ,

where A is primitive recursive.

The above proof was rather long, but the idea is simple, If we start with
a model o' of géc which agrees with w in the truth of formulae of low
complexity, but not for formulae of high complexity, then formulae of low
complexity are decidable in the model :

U.)+

W
0!0 ’

whence MP holds for sentences of low complexity. But, sentences of high
complexity are not decidable and, in particular, there is some sentence ®xBx
which is not decidable at o, but for which. B yields a decidable proper-
ty. Hence MP fails in some instance of high complexity.

We might also comment on the measure of complexity used, One might object
that we should consider an intuitionistically meaningful measure - i.e. one
for which the bounded truth definition can be given in g& as well as in
géc « As observed above, such a measure m' is obtained by defining
mt(A-B) = max(m'(A),mn*'(B))+1 and m'(—A) = m'(A)+1. But then, for any
formula A, m'(A)>m(A), whence a bound on mt(A) yields one on m(A) and
the result follows from theorem 5.4.5. Further, concerning the specific
choice of a measure m, theorem 5.4.5 can be shown to hold for any measure
for which truth definitions for formulae of bounded complexity can be given
in E&c (and hence for those measures whose bounded truth definitions can
be given in E&).

The above theorem 5.4.5 and corollary 5.4.6 easily generalize 1o any r.e.

HA+T, where TeP and T is true in the standard model, e.g. HA + RFN(HA).

5¢4.7~5.4.9. A comment on proof-theoretic closure properties.

5.4.7. We have used the failure of MP %o be preserved by the operation
( )=(2 )* to prove its independence and to prove that it cannot be replaced
by a bounded set of instances of itself. 1In 5.4.10-14, we will replace the
operation ( )= (Z )!' by one which will allow us to extend many standard

results for gﬁ to HA +MP.

We have also given a derived rule (whose proof was based on this failure

to be preserved) :
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5.4.8. Theorem. Let A contain only x free and let &A;_ l—-Vx(Ax \ ﬁAx) .
Then the following are equivalent :

(1) HA b ExAx Vv 1 ExAx ,

(i1) HA b - ExAx- ExAx,

(ii1) HA b Fy[-—Exax—Ay] .
(This is theorem 5.2.6.)

An almost trivial derived rule is

5.4.9. Theorem, Let A contain only x free and let I‘-LAI—— Vx(Ax V -1 Ax)
and HA [~ - ExAx. Then HA |- 3xAx.
Proof. Observe that HA | - ExAx implgf‘se that &xAx is true in the
standard model and hence An is true torVn. But HA l—- AnvV 77An  and the
disjunction property yields HA l——An or HA I— TAn. Hence HA !*—An y 1i.e.
HA l—- HxAX . Q. E. D.
From an earlier chapter, we know that this last result holds when A is
allowed to have other free variables. The present proof admits no easy ex-
tension to this generalization. Suppose then that we decide to attempt to
prove this directly., That is, let K be a model with node ¢« such that
o|}# ¥x By Axy . Then, for some B>, beDB, B|HTyAby. Since
HA | Vx(Axy V Axy) , we see B | —Abc for all ceDB. Also, since
HA FVx——EyAxy , we can find some y>B and ceDy such that v|FAbe.
But ce€Dy~DB and we obtain no contradiction. We cannot pull DB out of
the model X and define a nonstandard model of arithmetic on it, because it
does not follow from the fact that an axiom is forced at a given node that it
will be true in the classical model determined by the domain and atomic for-
mulae forced at that node. (Note: We have not here done anything that we
would not do to show HA l—- Vxy(Axy vV - Axy) & Vy 21— 3x Axy— Vy Zx Axy . Thus
we should not expect to get anywhere, Also, unfortunately, there seems to

be no place at which to apply the trick used in proving theorem 5.2.6.)

5¢4:.10 -5.4.44. ()= (2 +w)r.

5.4.10. The failure of MP 1o be preserved under ( )= (Z )* has its
applications, But applications such as the ED -~ theorem required preservatim
under ( )= (Z )t and, to obtain such results, we must give a similar such
operation under which MP is preserved. Fortunately, the solution to this
problem is simple: If F is a family of models of MP, define an operation

on F by F— (2F+w)'. E.g. let F = {K,K,}. Then (ZF+w)' is:

K, kK, o
\I
w .
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5.4.11. Theorem. If HA+MP is valid in F, then it is valid in (ZF+ w)!
~ i,e. the validity of %+MP is preserved by the operation ( )- (T +w)',
Proof. We consider the schema (i). It being valid in IF+®w, we need only
look at o . Let o H*- Vx(Ax V 2 Ax) & 71 ExAx . TLet o> o, be the node
corresponding to w. Then e H»-ﬁ-ﬁ @xAx , whence o« |FExAx. Do = {0, 1, ..
and so, for some =n, aH—An. A 1is decidable and so I:’IwA |'- An, whence

o |FAn, i.e. @, | 8Ax. Thus

o, | Vx(Ax v = Ax) & == BxAx— ExAx . Q. E. D.

5.4,12. Corollary. HA +MP possesses ED, DP,
Proof. We cantt quite quote theorem 5.1.20, but we can observe that the
proof carries over easily, the additional summand being used only to guarantee
the validity of MP. Q. E. D,
Regarding closure properties of the class 13(” of sets [I' such that the
validity of HA+T is preserved by the operation ( )= (I +w)', we get
almost exactly the properties corresponding to ( )= (z )t (theorem 5.2.11).
The difference is that we must also insist that I be true in the standard

model.

5.4.13. Theorem. The class ‘Dw of sets, [, such that the validity of
HA+ T 1is preserved by the operation ( )= (I +®)' has the following closure
properties :
(1) B’ is closed under arbitrary union ;
(i1) if Te®’ and A is a Harrop - sentence and o|=A, then
rufated’;
(iii) if TeP®, A nas only the variable x free, and HA+ T [An
for each numeral n, then TU{VxAx}eD®.
(Note that, in (iii), the fact w |- YxAx follows from the facts that
%+Tt—An for all n and w%r.)
Proof. The proof of theorem 5.4.13 is identical to that of theorem 5.2.11
and we omit it,
The results of 5.2,13-5.2.23 carry over easily. We leave the verification

to the reader.

5.4.14. Remark, The proof of de Jonghts theorem does not carry over:

Consider J¥:

3
a.

o o2 o [o? &,
1\/2 3\8/4 5\8/6

81\ l:/ 3 |
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If we wish 31 to force MP when we turn this into a model of g&, we must
associate the standard model with either o, Or 5. Similarly, it must be

associated with one of and and with one of 05 and o - Thus, we

o3 ¥
end up with something of the form:
o, 0, o, w

IR A NP4

w

But now the proof of de Jonghts theorem does not go through: Lemma 5.3.9

does not apply since and % all behave identically. A sophistica~

o, o
2 Y
tion of our technique in section 6 will allow us to get around this problem.
Also, it will yield a method of generalizing theorem 5,4.13 to cases where T

need not be true in the standard model.
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§ 5. The schema IPg

5.5.17. In addition to MP, the schema
1P : Vk(Ax V -Ax) & (VxAx— ByBy) = By (VxAx—By) ,

where A, B have only the free variables indicated, is valid under Godel's
interpretation (see 3.5.10). As in section 4, where we considered variants
of MP, we may consider variants of this schema, IP0 , however, is simply
not as susceptible to study by means of the Kripke models as MP, and, thus,
we shall only consider the schema as presented (i.e. with no free variables).

The reader may consider varianits as he pleases (in particular, IP )e

5¢5¢2~5.5.3. Proof theoretic closure results.

Let P and '13(” be as defined in sections 5.2.711 and 5.4.13, respectively.

5:5.2. Theorem, Let A have only the variable x free, B only the vari-
able y free, Let TeP. If HA+T | Vx(AxV —Ax) and HA+T b~ ¥xAx— EyBy ,
then

HA + ' |- By (VxAx—By) .

Proof. Suppose HA+ I'|# 3y(VxAx—By). Then, for each n there is a model
K with origin B, such that Sn |t Vxax , B, |H#Bn. Let @ be the origin
of (zg{_n)' . By the decidability of A and and the fact that B/ | vxAx
for all =n, o, | ¥xAx . Hence o |- &By and, for some =n, o |FBn. But

B>, and so B H—Bn , a contradiction. Q. E. D.
5.5.3. Theorem, ILet A,B be as in theorem 5.5.2 and let Te¢ v, If
HA+ T ¥x(AxV —Ax) and HA+T |- ¥xAx—3yBy, then
HA + I' |- By (VxAx-By) .
]
Proof. Replace (Zgn)' by (E’.I_{_n+w) . Q. E. D.

For instance, we may let I = MP, TI(<), RFN(HA), RFN(HA +MP), etc.

5:5:4 -5.5.7. Mutual independence of MP and IPg.

There is one useful property that IPg has: It is not preserved under

()=(z )t or ()=(2 +w)t, Because of this, we may prove the following

5.5.4. Theorem, Let T'eP® be r.e. Then there is a primitive recursive A

Ax and a formula By (each with only the free variables indicated) such that

HA + T} (VxAx— GyBy) — Ty (VxAx— By) .
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Proof, Let JdzCz and VxAx be formally undecidable in }vléc+1", Ax and
Cz primitive recursive. Also, let VxAx& ¥zCz be consistent (e.g. use

corollary 5.3.12), Define

By ={y=08%8zCz) Vv (y=1 &~ 8zCz).

Let w+, ott pe classical models of VxAx& ®BzCz and —1VxAx, resp2ctive-

ly. Also, observe that ® is a model of VxAx % - HzCz, Consider

+ o+
w+w +w )t

+ ++
o, W Vx Ax k- 8zCz o, O VxAx dzCz ai/w -1 VxAx

o
Now o |FT by theorem 5.4.13.and a | ¥x(Ax v =Ax) by the primitive
recursiveness of Ax. Also, a |t VxAx— 3yBy , since only A H— VxAx
and o |FB1, o |FBO.
But o || %y (VxAx—By) , since then o |t VxAx—=B0 or o |- VxAx-3B1.
In the first case, it follows that oy H— VxAx—=BG and, in the second case,
that o, H— VxAx—-B1, both implications leading to contradictions. Q. E.D.
It is worth singling out the case I'=MP :

5.5.5. Corollary. IP:: is not derivable from MNMP.
However, IPg is preserved under a special case of ( )= (Z )*, under

which MP is not preserved :

5.5.6. Theorem., Let o' be a model of %c . Then %_”A+ IPg is wvalid in
(w*)r.
Proof. Suppose that, in the model (w*)t,

+

€

o

o w
0 9

. c
o, does not force an instance of IP0 :

o |+ vx(Ax v —1Ax) & (VxAx— GyBy) — By (VxAx—By) .

IPg being valid at o, we must have

o | vx(Ax v —Ax) & (VxAx— TyBy) ,
o |+ % (VxAx-3By) .
By this last statement, o ||# VxAx—BO and, for some B2a_, B |t Vxax ,

B H—;‘ BO. In particular, {3”— VxAx and, A being decidable, a H—An for
all =n. It follows that o |t ¥xAx .  But o |t VxAx— EyBy , whence
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o, |+ ZyBy and, for some n, o, |FBn. Thus o, |t ¥xAx—Bn and so
o, H— Ty (VxAx—= By) , a contradiction. Q. E, D.

The immediate corollary is

5.5.7. GCorollary. Let HA+T be r.e., Tle®, HA®+ T consistent. Then
some instance of MP is not derivable in HA+ T+ IPg .

Proof. HA+T+ IP is valid in (o*)t  for any model ot of vHécf I'. But,
as shown in the proof of theorem 5.4.5, MP is not valid in {w+ )’unless w+

is an elementary extension of w. Q. E, D.

5.5.8., Final comments on IPg . The non-preservation of IPg under

( )=(z )t allows us to prove for IPg an analogue to theorem 5,4,5. We
may also generalize theorem 5.4.5 by using the fact that IPg is preserved
under ot (w+)' . Also, aside from such results, and formulations of such
corollaries as the independence of IP:: from @+MP+HN(@+M) +
CO“(HA+IP§) +TI(<), etec., we may observe that we can obtain subtler results

such as the following:

5.5.9. Theorem. There is a formula By and a primitive recursive Ax

(each with only the indicated free variables) such that

(1) HA+MP |+ (VxAx— ByBy)— 3y (VxAx- By) ,

(ii) HA+IP |- @xAx— IxAx .

(In other words, the same formula A works in both independence proofs.)
Proof. Observe that A may be taken in both independence proofs above to be
arbitrary up to the requirement that ®HxAx be independent of %c . Q.E,D.

Beyond this, there is little we can do model-theoretically since (i) the
only models of IPE we have so far are (except for those given by the come
pleteness theorem) models w' of E&c and models of the form (w')', and
(ii) the only models to which we know we can apply the operation ( )= ( )t

and preserve IPg are the models of HA®.
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§ 6. Definability of models of gggc : applications

5.6.1. The operation ( )= (z )*.
The operation ( )=(£ )', while extremely useful, is too restrictive for
certain purposes. In proving de Jongh's theorem,for instance, we had models

of the form

w w w

1 %2 A R NEA
N/ N/

w .

This cannot possibly give us Zc,l) substitution instances since 81, 32 and
B3 mist all force the same Z? sentences (and similar results for models on
the other modified Jaskowski trees). The observant reader will also have
noticed that, to apply ( )= (2 +w)* in proving (say) the ED - property for
HA + MP + 'y we had to assume that T was true in the standard model.

Let F be a family of models and let ot be a non-standard model of HA®

such that (i) the domain of ot is contained in Do for all «e€ K, KeF,
and (ii) atomic formulae whose constants name elements in ot are forced at
any node o exactly when they are true in ot Then, we can define a model
(ZE)* in the manner in which we defined (EF)!'. E.g. let F = {K1’K2} .

Then (ZEF)* is

Unfortunately, we dontt know if (ZF)* will always be a model of HA.
For, what have we got to guarantee that the induction schema will be forced
at ao? Truth in o is not convincing ~ the law of the excluded middle is
true in %, but not forced at ag. In ()=(z )t, we did not merely have
a model of IiA;\c placed at o, - we had the natural numbers themselves.

Let us consider how we proved the induction axiom to be valid in (ZF)t.
Our "second proof" consisted in observing that, by theorem 5,3.11 (iii), to
conclude that induction was valid, we had not to look at the schema without

free variables other than x in Ax, but we only had to look at all instances
A0 & Vxy(Ax & S(x,y)—=Ay)—An.

This is obviously valid in (ZF)* - but, since the domain at o  has non-
standard integers, we cannot conc¢lude from the fact that

o |-A0 & vxy (Ax & S(x,y) —»Ay) that o, |-Aa for all a€Da , but only that
o, |FAao, A1, ...
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The actual proof we gave in proving theorem 5.2.4 was based on the follow-
ing reasoning: If o ||-A0 & Vxy(Ax&S(x,y)—Ay) and a |+ vxAx, there is
a least n such that o H7‘An . There are two cases in which we can guar-
antee the existence of a least element in ' of which A is not forced:

(1) o*'=w, and (ii) the condition " o |FA ™ is expressible in the language
of o' -in other words, if the truth (or, forcing) definition for a formula

in the Kripke model can be given within the classical model ot

5.6.2-5,6.7. Definability.

5.6.2, In this subsection, we formally define what we mean by the definabil-
ity of a Kripke model in a model of \I}é\c . Suppose K 1is a Kripke model, in
which HA is valid, o' a2 nonstandard model of arithmetic. Let, for each

e K, aae le, aa denote a number in w+ indexing By We assume that we

have formulae as follows, with the free variables as indicated :

K(a) ,

D(a,x) ,
a<B,

S(Of, Xy Y) ’
Alay x,5,2) ,
Moy Xy s z) .

Also, 0, 7, ... will denote indices of O, 1, ses
Let us suppose that there is a one - to - one correspondence between elements
o€ K and elements a of o' for which o' |=Ka y 1in such a way that, if

a, b are associated with @, B, respectively, then

@<B iff o' agub,
and

ot |= ny(xsy—»Kx&Ky) .

Then, obviously, we may identify elements of K with a definable subset of
the domain of o' and £ with the definable partial ordering on this subset.
We also assume that

(.U+

D(a &)
and

+
w

= D(@,a) ® a is an index aa for some a ¢ Do.

We may assume either that the set of constants {5.0{: a,€ Da} is contained in

{EB : bBG I)B} or that there is a definable function f(x,y,z) such that

f(a B, Ea) is an index of a € DB (x < ).

In what follows, however, we shall ignore this minor distinction.
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Finally, if, in addition to all of this, we have

) iff aH—B(a,Ia,...,ana) ,

for all atomic B, nodes g, and elements a

that the model K is definable in w+.

+
w

= B(Q,a,la,--- ,ana

10,...,anae Do, then we say

The definability of a classical model, ot , in ot can be taken as the
definability of the one node Kripke model, or can be taken in the obvious
manner,

Three rather obvious lemmas are

5.6.3. Lemma. Let X be definable in wt. Then, for any formula
A(x,l,...,xn) with free variables as shown, there is a formula A*(x,x,l,...,xn)
with free variables as shown and parameters from ot sucn that, for all

o€ K, a,

9 caay 8 € Do,

o ng

aH—A(a,la,...,a

na) iff w+|= A*(a,a1a,...,a ).

ne

5.6.4. Lemma. Let F = {K,,...,K | be such that each X, is definable in
o*, then IF¥ 1is definable in ot

5.6.5, Lemma, Let X be definable in ot* and let o' be definable in

w*. Then K 1is definable in ot

These lemmas will be applied shorily in the construction of models. For
this, we will need to prove that (ZF)* is a model of HA when each Ke€F
is definable in o' (F finite). But, before we can do this, We need the

following :

5.6.6. Lemma. Let K be a model of HA definable in o' and let X have
a least node o . There is a canonical embedding of ot into the domain of
ao ~i.e, a map of the domain of w+ into qu which is one - to - one and
preserves the atomic formulae.

Proof., Obviously one can match up the 0 of o with the 0 of Dey the
1 of o' with the 1 of Dao , ete, But, for non-standard elements, we must
observe that, in HA, the relation "y is the result of the x - fold appli-
cation of the successor function of X to 0" (i.e. y=Sx0) is expressible.
By the closure of Do (in K) wunder the successor function, and by induction
in w+, for all x in ' there is an element in D°’o which is the x -~
fold application of successor to 0. The truth of atomic formulae S(a,b)

is obviously preserved under the map which associates x with the object

SXO in Dao N The preservation of the truth of other atomic formulae follows
from the validity of the recursion equations in K and induction in ot .

Q. E. D.
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(Note: It is in steps like this that the embedding functions f(e, B, x)
are introduced in the model, We shall, however, suppress further mention of
these functions in favor of a more informal approach to the proofs, in much
the same way that algebraists avoid mentioning such minor difficulties.)

We may now prove the following
5.6.7. [Theorem, Let F = 1K1,..,,£{m} be definable in w', Then (ZE)*,
Ky <o K
\ +/
w ’
. . < + . . ++ * .
is a model of HA. If, in addition, w  1is definable in o  , (ZF) is

definable in m++ o

Proof. By lemma 5.6.4, SF is definable in w'. Obviously, o' is defin-

able in o'. To define (ZF)* in %, first recall that, formally,

I¥ = K where
K = K, X {1} u szfz} Ueio U Knx{n}, ete.
Thus o = (0,0) ¢ K and we may let , be the node for ot and define
* .
@™ B iff a=o v(af o kal B)
Thus K ,£ are definable. Let
D*(ex) © (a=a, kxeut)vie>a, Dlax)).

(To explain "x¢ wt ", recall that the elements of o' index elements in all
domains and so we must choose special indices to denote elements of ot -
that is we have a formula singling out the indices for ot . If acot , a
will denote its index. (Recall that o* is definable in «* and consider
what we mean by this,).)

To complete the proof that (ZF)* is definable in o', we need only show
now to define the atomic formulae. Let us assume that o' is defined in o'
as a Kripke model (say with node o, ). Let B be atomic: BZ denotes its

definition in ZF BY its definition in w*. Then

+ b
B¥ (% gy eee,X ) (a= o &B (ao,x1,...,xn))V(a> o, & B (@ yseessx )

Now, by lemma 5,6.3, for any formula A, there is a formula

A*(x,x,l,...,xn) such that, for any node «, and elements a,,...,a €Da,
@|FA(aqg,...,a ) iff ot | A¥(ey8 500058 )

Suppose (ZE)* is not a model of HA . Then, for some A(x,x,l,...,xn) with

only x,x1,...,xn free,

0’0 ”‘7‘ VX1.--Xn[A(O,X1,..o,Xn)& VX}’(A(XQX‘l,--',Xn) & S(X,y)—’A(y,X,I,...,xn))—’
—tV}CA(x,x;I,.an,Xn)] .
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+
Then, for some a,l,...,anew R

@, lva A(O,a1,...,an)&V}cy(A(x,a,I,...,an)&S(x,y)—'A(y,a,I,...,an))—’
—»VxA(x,a,l,...,an) .
Then
o I+ A(O,a1,...,an), VXy(A(x,a,I,.,..,an)& S(x,y)—'A(y,a,l,...,an)),
o \ra A(a,a,l,...,an)
for some ae€w'. Letting a be such that o, ”—;‘ A(a,a,l,...,an) s, We see,
for A¥* defining @ H—A(x,x,l,...,xn),

(D+ |= A*(Q’c)’ 69 5’1’.",511) ’

(1) o | Wy [A* (e, %y 00 ,8,) A% (@ %,7) =A% (09T 18500 e08) ]
+ - - -
w HA*(Woy a, 31,---,an) .

Now S*(ao,)'c,fr) 3 5(x,y), whence (1) becomes

(2) o | vy (A% (a8 e, 8) 8 5(,y) =A% (00T 28 s ns8y)]

But the map a—a is definable in ot , whence there is a least a, such
that

+ = - -
w HA*(QOQAOQ a1,oOu,an) .
aoiéo , Whence a_ = b+1 for some b. By minimality,
+ - -
w I= A*(Q'o, 59 31,---9311)'
By this last statement and (2 ),
+ - - -
W [—-—A*(ao,ao,a,l,...,an),

a contradiction. Thus (ZF)* is a model of HA,

The final comment, that (ZF)* is definable in ot if o' is definable

in o't follows from the definability of (ZF)* in o' and lemma 5.6.5.

Q. E. D.

5.6.8~5.6.9., The Hilbert - Bernays completeness theoren.

5.6.8. In 5.6.,2-5.6.7, we proved two important results: (i) If KyseeesX,

are definable in u)+, then @1 + o +_I§n)* is a model of HA: and
(i1) if o', as above, is definable in o'*, then (£1+... +_Ign)* is also

definable in o', But, to be able to apply these results, we need a stock

of definable Kripke models and definable non~standard models of VH\!}‘C . This

is obtained by appeal to the Hilbert - Bernays completeness theorem,

5.6.9. Theorem (Hilbert - Bernays completeness theorem). Let T be a con-
sistent r,e, extension of H‘Ac . Then, for any model ot of HA%- CON(';‘) ’

-
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there is a non-standard model o't of I which is definable in w' .

For a proof, see Kleene 1952, XIV, Thms 36 -~ 40, or Feferman 1960, theorem
6.2,

506,10 = 5.6.12, The Godel - Rosser - Mogtowski - Kripke - Myhill theorem

revisited,

5.6.10. Our first two applications of the above results will be a proof of

the existence of Zg

instances in de Jonghts theorem, For these results, we need two refinements

substitution instances and uniform ﬂg substitution

of theorem 3,3,1 and its corollary, For Z: substitution, we need, for r.e.
c

2, Ayp... A such that T+A, is consistent and such that HA A= ﬂAj

for i;é j. We present Kripkets proof :

5.6.11. Theorem. Let T be a consistent r.e. extension of JH‘I}_C . There is
an r.e, relation P(y) such that, for every natural number n,

T+ Pn+ d¢xPx is consistent.

Proof.( Kripke 1965.) Let R(e,x,y) numeralwise represent the relation

{e}(x) =y . Define a partial recursive function as follows :
o(x)=y if “];1" = (R(x,%,y) & TtzR(x,x,2)) ,

(choosing the first theorem of this form if there are more than one). Then

¢ has an index, e. Let Px be R(e,e,x). We show that, for all n,
Pn & ¥t xPx

is consistent with T.
First, observe that ¢(e) is undefined. If not, o(e) =n_  for some n_.
Then

“}“I- ﬁ(R(e,e,no) & Tt zR(e,e,z)) .

But clearly, if o(e) =n_,
Tt R(e,e,no) & 7t zR(e,e,z) ,

a contradiction., Hence ®(e) is undefined and for no n do we have
Tt -1 (R(ese,n) & T xR(e,e,x)) .

Hence, for all n, T4+R(e,e,n)+ Tt xR(e,e,x) is consistent. Q.E. D.
Letting An be Pn, we have the desired result. One might mention that
we have %]—Ai—’—‘}\j for i#3j as well as H_}ﬁcf—Aiﬂ _'Aj'

For the 1o substitution, we need the following

2
5.6.12, Theorem, Let H denote I‘:I’A;c augmented by all true Hc,; sentences
of arithmetic. If T2DOH is consistent and has a Zg enumeration, then there

is an infinite family, {A,I,...,An,...} of Hg sentences independent over



378

T (in the sense of 5.3.710 that we may choose any subset of them to be true
and the rest to be false).

If we observe that the proof predicate is Zg and that the Zg relations
are precisely those numeralwise representable in gd we can mimic the proofs

of theorem 5.3.11 and corollary 5.3.12 to obtain an infinite set of indepen-

dent Zg sentences. Replacing these sentences by their negations yields the
theorem.

5.6.13 «5.6.,%. Z? Substitution instances in de Jonght's theorem.

5.6.13, Recall that the reason we used the modified Jaskowski trees in
proving de Jonght's theorem was that every node was determined by the set of
terminal nodes not lying beyond it. Thus, if each terminal node was the
unique node satisfying a particular sentence, it followed that every node
was the least node satisfying a conjunction of negations of sentences corre-
sponding to terminal nodes, Then, any set which could be the set of nodes
foreing a propositional variable under a propositional foreing relation was
now the set of nodes forcing a disjunction of such conjunctions of negations.
In proving the existence of 2: substitution instances, we will assign to
each node of a tree a 22 sentence which is forced only at and above that
node, The substitution instances will be disjunctions of these sentences
(and will thus be Z?).

Note that we no longer need to use the special property of the modified
Jaskowski trees that every node is determined by a set of terminal nodes,

Nonetheless, it will still be convenient to work with them. Consider, e,g.,

Starting at the terminal nodes and working our way down the tree, we shall

assign theories to the nodes., Let A1""’A6 be Z?

over g&c (or, let them be obtained by theorem 5.6.11). Assign to o, the

mutually independent

theory
c
T. = HA” + A. + —A. .
vi b 1 5?1 J
By the independence of the family !A1,...,A6} R gi is consistent. Now

choose B BZ’ B5 individually independent over

‘I,
Ié&c + CON(T,) + «u. + C()N(_’J]G) + AL+ el + AL (which is true in o and

hence consistent) such that @&c|— Bi—’"ﬂBj for i#j. Assign to B, the
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theory

6 6
7t = HA® + B, + A CON(T.) + M =4, .
“i —~ i 11 -1 i=1 1

Again, 2{ is consistent, Finally, assign to o, the theory

%c + CON(q;;) + CON('gé) + CON(Q%) + 7B, + 7By + 7B;.

Having assigned such theories, we now assign models of géc to the nodes,
Place w at o« . Now w}.:CON(’g!I) + CON(TS) + CON(‘_E%) , whence there are

models Woy W5y and w of T!, Tt, and T! respectively, such that each

5 ,,.1, “29 5 b
w, is definable in w, Now,
6
o 7! = HA® + B, + MCON(Z.) + M A,
1 1 1 j=1 J 3=1 J
Thus, in 0, there are definable models of ?1,..., 26' Let Waqs @yo be
models of 21, 22, respectively, definable in Wy 5 Wous wo, models of
T T defi i . . .
I30 &y efinable in W, 3 and Wz 49 w52 models of 25, 26 definable in u)5
Thus, we have
w w W w w w
11 12 21 22 34 32
1 w, 0y
w o

Now, successively apply the lemmas 5.6.3 -5.6.6 to conclude that the result-
ing structure is a model of HA. TFurther, as we shall prove below, A, is

1
forced only at the node corresponding to CI A2 at P A3 at Wog 9 aee e

B1 is forced only at w, and above, 32 at o, and above, and 35 at w5

and above. Any provable Z: sentence is forced at w. Hence each node is

characterized by a Z: sentence and we may proceed from here,
For ease in assigning theories and models to nodes in the general case, and
for ease in giving the proof, let us use the notation for trees of finite

sequences as described in 5.3.3. Jg, €.8.5, Will be represented by

<1,1i\ <1,2> 2,1 2,2> <3,1z\ {3,2>
_— N ////
<1y <2> <3>/
<> .
Let J; be given and let CseassC be its terminal nodes. Choose
[ R\ such that HA® + A 4+ M —A_  is consistent and let
o470 Foyy = Tl T gk ey

c .
Ea = HA™ + Aci + 5?1‘1A°j. Let CPEEETPL be the non-terminal nodes of
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length m and let o %<1, ..o, 0, %<1> (i=1,...5k) Dbe the nodes of length
c . ) s
m+, Let Aa']’ cesy Aok be chosen such that HA ’— Aoi—b _|AUJ- for i ,4 3

and such that each Ac- is consistent with
i
c k1 k 1
T = HA M M CON(T . + M —A .
smt T 9=t T 5o (“°1*<J>) i=1 j=1 X<

(Observe that ® is a model of this theory and, thus, it is consistent.)

Thus, every node ¢ gets a theory Ec assigned to it, Further, if

=T
Vi

¢x<j> 1is a successor of ¢, then CON(§°*<J.>) is provable in Eo » Thus
every model Wy of Ec has a definable model of -T-c*<j> .« Let W be w
and, for each w, and successor o x<j>, let wc*(j) be a model of Qu*(j)
definable in Wy e Having defined these models, assign Kripke models X

to the nodes as follows:
(i) kK, = @, for terminal o,
(ii) let e*<1>, ..., 0%x<k> bhe the successors of o, and let

*
Ky = (TEgpqsy)™ s

l{c!-)e<:'L> AR Kc*<k>
[y .
-]

By the lemmas 5.6.3-5.6.6, each i is a model of HA.

5.6.14. Lemma, Let A be a 37 sentence. o|fFA iff o |-A.

If ¢ H— ZxBx, say B primitive recursive, we know that ¢ H—Bs for some
s€eDo. Let 720 be terminal. Then |-Bs. Now, it does not follow
trivially that Wy }:Bs -~ model-theoretically, the well-known characterization
of recursiveness is preservation under extension and restriction for end ex-
tensions (i.e. extensions in which all of the new elements are larger than
the old ones, Of course, Matiyasevich 1970 now gives us the result for arbi-
trary extensions - but this is far from trivial.).

Proof of lemma 5.6.14. There are three tricks we can use here :

(i) Expand the language so that primitive recursive relations are atomic.
The lemma follows trivially,

+ : :
+ of (1)+ is an end extension.

(ii) Observe that the definable extension
The lemmg now follows, because, for se€ w+, ¥x< s means the same in both
models,

(iii) Apply the theorem of Matiyasevich 1970 by which, if A is Zfl, ’

HA'- A & Zx,l..nxml)(x,‘.“xm) , where D is quantifier free, The lemma then
follows trivially, Q. E, D.
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5.6.15. Lemma. w_ | A iff o> 7.
Proof. Clearly w_ |=A'r . Then H—AT , Whence, if @>T, © H—AT , whence
Wy |=AT .

Conversely, consider AT. First, assume T 1is terminal., Then w°|=A
implies that o, |=AT for all terminal +'>0 . But, the only terminal

T

wT,|=A# is T. Hence ©=T, by the property of the modified Jaskowski
trees. (To avoid using this property, let o¢< 7. Then, for some o<ot,
T=0tx<i>, but w |FA =o|FA =o' |FA =w  |[-A , contradicting the
fact that Yot |=Ec' = %c + {,,-(\'_'AT' * f\' CON(AT' * 'T"/?T'-‘AT") » Where T',
™ range over terminal nodes.)

Let 7 not be terminal and let w, | A_. Assume c)rt. o cannot be
of length less than 7, because, by choice,

g E _lAp ,

for any p of length greater than that of o . Thus, the length of ¢ is
at least that of 7 and o>ot for some o' of length the same as 7.
Now, wc'|=Ac' s Whence gt H—AU' , whence a|f—Ac', whence w_|=A_, .
But HAC f-Ac'—"WAT , by definition, a contradiction, Q. E. D.

Note, The above proof could have been simplified by unifying the cases
- which could have been done by stipulating that theorem 5.6.,11 be used in
treating the terminal nodes, The non~terminal nodes must be treated by
using theorem 5,6,11. - Unless we know g&c k Ao'_‘_jAT' we have no guar-
antee that AT will be false in extensions ¢ of ot, (This observation
is due to de Jongh, who found and corrected the corresponding error in our

original attempt at proving the existence of ZEI) substitution instances.)

We May now prove

5.6.16. Theorem. Let Pp h‘A(p,I,...,pn) . Then there are Zc,l) sentences
B'l""’Bn such that EA;’ HA(B1,I‘.,BH) °
Proof. Let JZ be given with a forcing relation on it such that
< >H-74 A(p,l,...,pn). Let, for each p,,

B, ¢ W A,

o|fpy

(If no o forces ;s let Bi be any refutable Z? sentence.) Then Bi
is ZEI) y © H— B; iff o H— Py » and a simple induction on the length of
C(p,l,...,pn) shows

cH—-C(p,I,...,pn) iff cH—C(B,I,...,Bn). Q. E, D.
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506,17 - 5.6.19, Uniform Hg substitutions in de Jonghts theorem.

5.6.17. The problem with the 3£° substitutions is that we could not choose

1

the nodes at which we wanted a particular 29

1 sentence to be forced. E.g.

consider the tree

azB\ /0[5 "
o
1 7 B

%

Suppose we want A, B forced as indicated, A,B€ Zc,l) . Then, at we must

%

have a model w, of

%c + B+ CON(ILAC+B+ —A) + CON(@C+B+A) .
Since B 1isg false in the standard model,

I};A;c+—8 + CON(@&C+B+ SA) 4+ CON(I_I’A;’C+B+A)

is also consistent and B must be independent over

%c + CON(@C+B+ =1A) 4+ CON(H_AC+B+A) . Larger trees will require larger
nested consistency statements and we just dontt know if any such Zf‘)
tences exist. (Observe that we cannot have as much independence from con-

EI) sy then

sen-

sistency statements as with Hg- sentences, since, if Be€Z

B + CON(E.‘_AC+ -1B) is inconsistent.)

If, however, B1""’Bn are Hg and mutually independent over g&c when
augmented by all true N° sentences of arithmetic, we can assign nodes to

1
the formulae as desired. This is the basis of the following model-theoretic

proof of a result of Friedman A:

5.6.18, Theorem. (Friedman). Let Bysess,B  be Hg, independent over VI:LAC

augmented by all true II: sentences, and let Pp HA(p,l,...,pn) « Then

HA A A(ByyeeeyB)

Proof, Let (K,<, |F) be an arbitrary tree model of P and let
<O A(p1,...,pn) . Let B,,...,B satisfy the hypothesis of the theorem

and assign theories to nodes as follows:

c
If + 1is terminal, T =HA  + M B. + (Y\ —B, .
[ 4 ~—~— 1 1
i TI7P1

If © has successors @ x<1>, suey 0 %x<k>,

) .

k
[+]
T =HA + M B, + -B, + MONT_ .
A Y S qﬁ:\Lpi 17504 (-c*<3>



383

Each \'I"c is obviously consistent and we may define models Wy as usual,

¢« Then K is defined
<> =

and, finally, we have a model of HA . E.g. with the tree featured above,

starting at < > with an arbitrary model of T

we have

“2,1> Y¢2,2>

w
<1
Ceo>

>

Vhere o, yuy Oen oy Wepy By 0, o AL

o .
5.6.19. Lemma, Let A be I,. o|A iff ¥r>e o |A.
Proof. Probably the simplest thing to do is to appeal to Matiyasevich 1970
or add new predicate symbols so that A is of the form,
VX1...Xn Ey1-.-ymc(x1,..- yxny }"1,---, ym) ’
where € is quantifier-free and decidable. Then
oA =Fr>0 7|A
=>¥r>o Es1...sn€D'r §t1..otm€DT(TH-C(S1,...,sn, t1,...,‘bm))
= z72¢zs1nuasn€ DT ‘:’E‘t1...tn U-)T I:: C(S1’-oo,sn’ t1,---,'tm)
220w I ¥ eeox By 0e.y Cy deed o Fa.

The converse is just the definition of forcing for an VE combination.

Q. E. D,
To finish the proof of the theorem, observe that
o By iff ¥r>o w [B;
iff ¥Yrl>e T“—pi
iff o H—
The rest is just the usual induction. Q. E,. D.

5.6.20 «5.6.22, De Jonghts theorem for MP .

5.6.20, Just as MP was not preserved by ( )= (£ )*, it is not in general
preserved by ( )= (z )*. If, however, each element of F = 351,...,5_:1} is
definable in o' , and if MP 4is valid in ¥, them MP is valid in

(ZF + w+)* . This is Just a variation of the result we will need. A direct
verification of this variant is left to the reader., The general lemma we

will need is the following :
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5.6,21, Lemma. Let K be a tree model of HA obtained by the process of
placing non-standard models of arithmetic at the nodes. Suppose that, for
every node ¢, there is a terminal node rt2>¢ such that 0, =0 . Then MP
is valid in X.

Proof., Assume MP is not valid in X - take MP in the form (iv) of

section 4:

<> ”7‘ ¥x[ ¥y (Axy v 7 Axy) & = ByAxy - ByAxy] .

Then, for some ¢>< >, seDo,
o H‘f' Vy(Asy V mAsy) &—— IyAsy— ZyAsy .
Thus, for some p>0@, whence t € Dp . Also,
ol ¥y(Asy v DAsy) , p|F—mEyAsy, o | yAsy.

Let 7> p be terminal with © =wo . Then 7 |f-FyAsy, say T |fFAst,teDr.
But Dr=Dp, whence t€Dp. Also,

p H-As‘b V—Ast,

whence p|f-Ast, i.e. p|f-FyAsy, a contradiction. Q. E. D.

5.6.22. Theorem., Let Pp HA(p1,...,pn) . Then there are sentences B‘I""’Bn
such that

HA + MP [ A(ByyeeesB )

Proof, Let J: be given and define theories as follows: 21 = %0+A1 ,

where A1 is Z:, independent of Hvéc.

[¢]

T = HA

Tpeq = BA” 4 QON(T)) +7A + A

m4+1 ’
c s c

where A, is independent of HA" + CON(@m) +7A . Let aiye..,9 ), be

be a model of ‘Tn! .

the terminal nodes of J; . Let w Given a model

pl
w of T let w, be a model of Em definable in o Assign

m+1 “m+1? m+1 *
W to the terminal node am. In going down the tree, assign to ¢ the
classical model assigned to the right-most successor of @. J; 9y €uZey

looks like

(D1 (1)2 3 (1)4 (1)5 (1)6
N
Yg

This gives us a Kripke model of HA. By the lemma, i} is also a model of

MP . Finally, each terminal node is the unique node forcing a particular
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sentence « The proof of de Jongh's theorem in section 3 now goes through

easily. Qn En D.
o

Note that Z: substitutions are impossible: If A 1is 21,

&A+MP’—"'!-1A—’A.

5.6.23 =~ 5.6,25. Other applications.

We first present a lemma.

5.6.23, Lemma. Let < be primitive recursive, K models of

Kypenosk
HA +TI(<), each K, definable in ot, and ot | TI(<) . Then TI(<) is
valid in (SF)*.

Proof. Use TI(<) in o' applied to A*(a s %, Xyp000,% ) to verify that
TI applied o A(x,x1,...,xn) is forced at a . Q.ED.

By insisting that each theory “]_?c used in 5.6.1% - 5.6.22 also contain

[o)

TI(<), every model X/ encountered is a model of TI(<). Thus, the I,

=g
substitution and uniform I'Ig substitution results hold for HA + TI(<)

. c
(where independence over HA

(%c + true II:)) is replaced by independence
over HA +TI(<) (%C+TI(<) + true II':)) . Further, the unrefined version of
de Jongh's theorem holds for HA+ MP+TI(<).

A similar proof does not work for RF(T) or REN(T). Recall that, to
prove RF(T) was preserved if T was, when we assumed Ex Proofy, (x,"A")
was forced by o« in (z¥)r, it followed that ProofT(n,rA‘) was forced

for some natural number n. From this it followed that A was indeed

provable, We can no longer reason in this manner for (IF)*. We can,
however, appeal to the following result of Kreisel - Levy 1968 ; (Theorem 12,
P. 125):

5.6.24. Theorem, For small ordinals «, HA +together with the scheme
TI(<€a) (transfinite induction on the canonical well-ordering of type ea)
is equivalent to the system obtained from HA by iterating the process

I - T+RFN(T) 1+ timesj e.g. HA+RFN(HA) = HA + TI(<€0) .

5.6.25. It follows from theorem 5.6.24 and the above remark that the Zc;

and ng results hold for HA+RFN(HA), HA+RFN(HA+RFN(HA)), etc. The
results for HA+RF(HA) follow trivially from the results for the extension
HA + RFN(HA) .

It also follows that we get the unrefined version of de Jongh'!s theorem
for HA+MP+TI(<), HA+MP+RFN(HA), HA+MP+RF(HA) - we do not have the
result for HA+MP+RFN(HA+MP) because it is not known if

HA + MP + RFN(HA + MP) = EA;+MP+TI(<€ ).
o
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In discussing the operations ( )= (Z )', ( )=(Z +w)', we gave some
closure properties of the classes B, ‘Bw, respectively, of sets [ preserved
by these operations. In disussing the operation ( )= (Z )* and the class
of models described in the statement of lemma 5,6,21, we should comment on
the classes PB* of sets of sentences valid in the Kripke model of the lemma
provided they are valid in all of the non-standard models of which the Kripke
model is composed, We both lose and gain some closure conditions.

In both cases, we lose Friedmants condition (iii) (theorems 5,2,11 and
5.4.13 above) which we restate here for convenience:

Condition (iii) If TeB(B”), A has only x free, and HA + Pk An for
all n, then TU {¥xax)e D (resp., ‘Bw) .

Recall that, if T+ VxAx was valid in F, WxAx could only fail to be valid
in (ZF)* or (ZF+w)t when some instance An was not forced at the node
o, - which is ruled out by the hypothesis. Obviously, this is no longer
valid reasoning in the present situation where the new origins have non-
standard integers in their domains.

For ( )= (z )*, the use of definability does not give us an alternative
to condition (iii),, For applications to MP, however, we do have a slight
rebate., Rather than to try to state an intelligible analogue to theorem

5¢4.13, let us consider an example :

5.6.,26, Theorem. Let ‘151 be the class obtained by the following :

(1) HA+MP € B,

(ii) HA+TI(<) € B,

(iii) the union of any r.e. sequence of elements of ‘.[51 is in ’151,'
(iv) if Te B,y A is a Harrop-sentence and A 1is consistent with
%c + all true I'Ifl) sentences, then TU A} € ’131 .

Then, for any I € ’151 s HA+T has DP.

Proof. First, by (iii) all Te P, are consistent with ‘;H&c + all true Hc;
sentences, which includes the consistency statements needed to define models.
Also, if T € 151 y [ is r.e. and, if HA+T|FfA, HA+T B, we can find
Kripke models X K definable in some model o* of HA+T, in which A,
resp. B, fails to be forced. (To see that these are definable Kripke
models, use the reduction of the problem to the Hilbert - Bernays completeness
theorem outlined in 5.1.26.) Then (K, +§2+w+)* is a model of HA+ [ in
which A VB is false. Q. E. D.

We cannot generalize this to obtain ED, First, the domain at the origin
would have non-standard integers and o |- #xAx would not imply o |t An
for some n., Second, to have the definability of forecing for (ZF+ w+)* in
wt sy for an infinite family ¥, we must have a uniform forcing definition

for all elements in the class. But, the minute we have this, we have models
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Ka for non-standard a occurring in our description of F - i.e, we are
not defining the model we want to define.

Such esoteric results as theorem 5.6.26 are of little interest in them-
selves, They do, however, illustrate the differences in our ability to

treat HA and HA+MP (as do such negative results as our inability to
prove ED for TE‘p1 ).
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§ 7. Other systems

5¢7¢1~-5.7.2, Subsystems of Heytingts arithmetic.

5.7.1. In van Dalen - Gordon 1971, van Dalen and Gordon apply Kripke models

to settle some independence questions regarding subsystems of %. For
example, consider the system T with the constant 0, function symbols
ty +, °, and axioms (in addition to axioms of the intuitionistic predicate

calculus with equality)

Xt=yt m»x=y —x? = 0

x+0 =x X4yt = (x+y)c
x+0 =0 Xeyt = Xey + X
X+Y = y+X Xey =yF-+X
x+y)+2z = x+(y+2) (xe¥) =2 = xo(yo2)

—x=0= Ty(yt=x).

Then, van Dalen and Gordon proved :

5.7.2. Theorem, T | Vxy(x=yV mx=y).

Proof. (van Dalen - Gordon 1971). Let *R be a non-standard extension of R,

the field of real numbers., Let *N denote the set of elements of *R

which are infinitesimally close to some natural number - i.e.
* * . PR . }
N = {xe*R: Hne o Finfinitesimal 6(x=n+8)].

Now, consider the model,

where Do, = Do = *N, the operations t, 4, * on *N,, *N, are those in-

1’ 2

herited from *R, o |fra=b iff a, b actually denote the same element of
*R, and @, H-a=b iff a and b are infinitesimally close (i.e, iff

a, b are close to the same natural number). The axioms of g are otviously
forced at @y but the decidability of equality is not forced, since, if &
is infinitesimal, o |/ n=n+é and, since @, |t n=n+¢, o, |+ "n=n+s.

Thus o | n=n+6 vin=n+6. Q.E. D.

Observe that, in the model given in the proof of the theorem, the model
at oy is, basically, the standard model . Thus, every instance of in~
duction is forced at o, and the double negation of every instance of in-
duction is forced at o . Hence, although equality is provably decidable
by induction, it is not provably decidable by the double negation of induction

- or by induction on Harrop - formulae, since, as the reader may easily verify,
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if such a formula is forced at o, , it is forced at o . Thus, as one
might expect, one cannot use a negative form of induction to prove the posi-
tive result that equality is decidable.

This raises the question:
How much induction is needed to prove the decidability of equality ?
By induction on quantifier-free formulae, one can prove, for each n,
¥ (n=xV 7n=x). (Thus, quantifier-free induction fails to hold in the
above model and quantifier-free induction is not derivable from the negative
formulations of induction mentioned.) Can one use induction on quantifier-

free formulae to derive the decidability of equality - ka(x:y‘V'ﬂx:y) 7

5.7+3. Extensions of HA: Theory of species,

Aside from some comments on free choice sequences in Kripket!s original
paper Kripke 1965, the only discussion of Kripke models and higher systems
published to date is Prawitz 1970 in which Prawitz proves the completeness
of the cut-free rules of the second-order intuitionistic predicate calculus
with respect to second-order Kripke models (and also with respect to a proper
subclass of these models, namely, the second-order Beth models). Since the
induction scheme is given by a single axiom of this second-order language,
this yields a completeness theorem for second-order arithmetic plus compre-
hension with respect to these second-order models.

The simplest way to describe the second-order Kripke models is to say
that the domain function D splits into two functions D1 and D2, each
satisfying the monotonicity condition, and such that there is a binary
membership relation, €, between elements of D1a and Dza (for given a).
Further, when discussing comprehension, one assumes that for every node o«
and every formula A(x) with parameters from D1a and Dza,>&the only free

variable in A, there is an element X of Dza such that

o |f [Ax > xeX].

(In the presence of a little arithmetic, we can restrict ourselves to unary
relations in Dza.)

In attempting to construct models of second-order arithmetic, the obvious
approach is to mimic our procedure in constructing models of first-order
arithmetic - but also insisting that the classical models being used be
models of the second-order theory with comprehension. We have not considered
this possibility thoroughly enough to say whether or not it will lead any-
where,

Let us consider a simple example, Suppose (w++,B) is definable in
(w+,A), where B and A are the classes of sets of numbers in the iwo

models, We wovld define a model :
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(w++, B)
!
o (w*, a%) .
The choice of B 1is obviocus; but what do we choose for A¥*¥? We cannot
simply chcose A since, €.8., {xl C(x) 1is true in (w+,A)} need not be
{x] C(x) 1is forced at aof. (E.g. as long as 't is not an elementary
extension of w+, there will be arithmetical C(x) for which these sets
will have to differ.) The obvious approach is to start with species X

for arithmetical C such that
o |Fx[xeX, «>C(x)].

We cannot do this for C with species variables since we dontt know yet
what A¥*¥ is. Adding a species at a time, one can handle comprehension for

formulae
EX1...Xn C(x,X1,...,Xn),

where C has no bound species variables 3 but one cannot automatically
handle more complex formulae - each new species added changes the domain of
species and hence the nature of universal quantification.

Another possibility is the use of w-models - i.e, models in which the
individuals are precisely the natural numbers, The induction scheme, even
applied to second-order formulae, will obviously be forced and the only
problematic scheme is that of comprehension. A simple way to guarantee
comprehension is to guarantee that all possible species are in the domains.
Let X be a model, with partial order (K,<), and let Ax be a formula
with only the variable x free. Let A = {ac Do : a]f—Aa}. To guarantee
comprehension, we need at o, a set Xe Dzao such that for any o and
any a€D,a, a]f-ae X iff a|r-a€AAa. To guarantee this, we simply let
oK’ of
o g’ and let
8§ Dbehave like Sa at node «. For any formula A, the system A;:{AQ}QGK

Dza:=D20b be the set of all partially ordered systems, S = {Sa}
sets of natural numbers indexed by X satisfying ofB =S _C95
automatically represents A and comprehension is wvalid,

This latter type of model can be used to obtain certain formal results,

e.g. it is easy to consiruct a model (the full binary tree) in which
Vx“1VX1...VXnA(x€ Xyseee,x€ Xn)

is valid for any propositional formula A(p1,...,pn) which is not derivable
in the intuitionistic propositional calculus. As a second-order counter-—
example, A(x¢ X1,...,erXn) is as simple as they come - one might hope for
an arithmetic counterexample, or at least a version of de Jongh's theorem ;

but these models will not yield such results, because all true arithmetic
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formulae are valid in them, Similarly, they cannot be used to prove the

explicit definability or disjunction theorems.

5¢Tede Other set-theoretic approaches.

The Kripke models only form one of several classical modellings of in~-
tuitionistic systems, Others include the Beth models, interpretations in
lattices, and topological interpretations., Their applications to the propo-
sitional calculus and the first-order predicate calculus are well-known,

For higher systems, they have barely been applied. Prawitz 1970 applies the
Beth bodels (and also Kripke models) %o the theory of species sy Scott 1968
and Scott 1970 apply the topological interpretation to the theory of the
order of the continuumj; and Moschovakis A applies the topological inter-
pretation to second-order arithmetic ~ i.e, arithmetic with quantification
over functions,

In Scott 1970, Scott proved the validity of Kripke's schema in his model,
Moschovakis, in Moschovakis A, showed the consistency of this schema with

a system of second-order intuitionistic arithmetic, Kripkets schema,

Bof Tx(exf 0 <> A(x))],

is important in that it contradicts many theorems of classical analysis

(see e.g. Hull 1967).



