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Intuitionistic Logic

5.1 Constructive Reasoning

In the preceding chapters, we have been guided by the following, seemingly
harmless extrapolation from our experience with finite sets: infinite universes
can be surveyed in their totality. In particular can we in a global manner
determine whether 2l = Jxp(z) holds, or not. To adapt Hermann Weyl’s
phrasing: we are used to think of infinite sets not merely as defined by a
property, but as a set whose elements are so to speak spread out in front of
us, so that we can run through them just as an officer in the police office
goes through his file. This view of the mathematical universe is an attractive
but rather unrealistic idealization. If one takes our limitations in the face of
infinite totalities seriously, then one has to read a statement like “there is a
prime number greater than 101°"” in a stricter way than “it is impossible
that the set of primes is exhausted before 101°""”. For we cannot inspect the
set of natural numbers in a glance and detect a prime. We have to exhibit a
prime p greater than 100",

Similarly, one might be convinced that a certain problem (e.g. the deter-
mination of the saddle point of a zero-sum game) has a solution on the basis
of an abstract theorem (such as Brouwer’s fixed point theorem). Nonetheless
one cannot always exhibit a solution. What one needs is a constructive method
(proof) that determines the solution.

One more example to illustrate the restrictions of abstract methods. Con-
sider the problem “Are there two irrational numbers a and b such that a® is
rational?” We apply the following smart reasoning: suppose \/5\/5 is rational,
V2
then we have solved the problem. Should V2 v be irrational then (\/5\/5

is rational. In both cases there is a solution, so the answer to the problem is:
Yes. However, should somebody ask us to produce such a pair a, b, then we
have to engage in some serious number theory in order to come up with the
right choice between the numbers mentioned above.
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Evidently, statements can be read in an inconstructive way, as we did in
the preceding chapters, and in a constructive way. We will in the present chap-
ter briefly sketch the logic one uses in constructive reasoning. In mathematics
the practice of constructive procedures and reasoning has been advocated by
a number of people, but the founding fathers of constructive mathematics
clearly are L.. Kronecker and L.E.J. Brouwer. The latter presented a complete
program for the rebuilding of mathematics on a constructive basis. Brouwer’s
mathematics (and the accompaying logic) is called intuitionistic, and in this
context the traditional nonconstructive mathematics (and logic) is called clas-
sical.

There are a number of philosophical issues connected with intuitionism,
for which we refer the reader to the literature, cf. Dummett, Troelstra-van
Dalen.

Since we can no longer base our interpretations of logic on the fiction
that the mathematical universe is a predetermined totality which can be sur-
veyed as a whole, we have to provide a heuristic interpretation of the logical
connectives in intuitionistic logic. We will base our heuristics on the proof-
interpretation put forward by A. Heyting. A similar semantics was proposed
by A. Kolmogorov; the proof-interpretation is called the Brouwer-Heyting-
Kolmogorov (BHK)-interpretation .

The point of departure is that a statement ¢ is considered to be true
(or to hold) if we have a proof for it. By a proof we mean a mathematical
construction that establishes ¢, not a deduction in some formal system. For
example, a proof of ‘2 + 3 = 5’ consists of the successive constructions of 2,3
and 5, followed by a construction that adds 2 and 3, followed by a construction
that compares the outcome of this addition and 5.

The primitive notion is here “a proves ¢”, where we understand by a proof
a (for our purpose unspecified) construction. We will now indicate how proofs
of composite statements depend on proofs of their parts.

(A) a proves ¢ A :=a is a pair (b, c) such that b proves ¢ and ¢ proves 1.

(V) a proves p V 1 := a is a pair (b, c) such that b is a natural number and
if b =0 then ¢ proves ¢, if b # 0 then ¢ proves .

(—) a proves ¢ — 1) := a is a construction that converts any proof p of ¢
into a proof a(p) of .

(L) no a proves L.

In order to deal with the quantifiers we assume that some domain D of

objects is given.

(V) a proves Vap(r) := a is a construction such that for each b € D a(b)
proves ¢(b).

(3) a proves Jzp(z) := a is a pair (b, ¢) such that b € D and ¢ proves ¢(b).

The above explanation of the connectives serves as a means of giving the
reader a feeling for what is and what is not correct in intuitionistic logic. It is
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generally considered the intended intuitionistic meaning of the connectives.

Ezxamples.

1. ¢ A — @ is true, for let (a,b) be a proof of ¢ A1, then the construction
¢ with ¢(a,b) = a converts a proof of ¢ A1) into a proof of ¢. So ¢ proves
(P A — o).

2. (pANY — 0) — (¢ — (¢ — 0)). Let a prove ¢ Ay — o, i.e. a converts
each proof (b, c) of ¢ A into a proof a(b, ¢) of 0. Now the required proof
p of ¢ — (¢ — o) is a construction that converts each proof b of ¢ into
a p(b) of ¥ — 0. So p(b) is a construction that converts a proof ¢ of ¢
into a proof (p(b))(c) of 0. Recall that we had a proof a(b, ¢) of o, so put
(p(b)(c) = a(b,c); let q be given by q(c) = a(b,c), then p is defined by
p(b) = q. Clearly, the above contains the description of a construction
that converts a into a proof p of ¢ — (¢ — o). (For those familiar with
the A-notation: p = Ab.Ac.a(b, ¢), so Aa.\b.Ac.a(b,c) is the proof we are
looking for).

3. ~Jzp(z) — Ve—p(x).

We will now argue a bit more informal. Suppose we have a construction a
that reduces a proof of Jzp(x) to a proof of 1. We want a construction
p that produces for each d € D a proof of p(d) — L, i.e. a construction
that converts a proof of (d) into a proof of 1. So let b be a proof of
©(d), then (d,b) is a proof of Jxy(x), and a(d,b) is a proof of |. Hence
p with (p(d))(b) = a(d,b) is a proof of Vz—p(x). This provides us with a
construction that converts a into p.

The reader may try to justify some statements for himself, but he should
not worry if the details turn out to be too complicated. A convenient handling
of these problems requires a bit more machinery than we have at hand (e.g.
A-notation). Note, by the way, that the whole procedure is not unproblematic
since we assume a number of closure properties of the class of constructions.

Now that we have given a rough heuristics of the meaning of the logical
connectives in intuitionistic logic, let us move on to a formalization. As it
happens, the system of natural deduction is almost right. The only rule that
lacks constructive content is that of Reduction ad Absurdum. As we have seen
(p- 38), an application of RAA yields - ——¢p — ¢, but for -—¢ — ¢ to hold
informally we need a construction that transforms a proof of =— into a proof
of . Now a proves ——p if a transforms each proof b of —¢ into a proof of
1, i.e. there cannot be a proof b of —p. b itself should be a construction that
transforms each proof ¢ of ¢ into a proof of 1. So we know that there cannot
be a construction that turns a proof of ¢ into a proof of |, but that is a long
way from the required proof of ¢! (cf. ex. 1)
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5.2 Intuitionistic Propositional and Predicate Logic

We adopt all the rules of natural deduction for the connectives V, A, —, |, 4,V
with the exception of the rule RAA. In order to cover both propositional and
predicate logic in one sweep we allow in the alphabet (cf. 2.3,p. 60) 0-ary
predicate symbols, usually called proposition symbols.

Strictly speaking we deal with a derivability notion different from the one
introduced earlier (cf. p.36), since RAA is dropped; therefore we should use a
distinct notation, e.g. ;. However, we will continue to use - when no confu-
sion arises.

We can now adopt all results of the preceding parts that did not make use
of RAA.

The following list may be helpful:

Lemma 5.2.1 FoAy <A (p.32)
FoVy Ve
FeAY)Ao— oA (P Ao)
FeVy)Vo ooV (PVo)
FeV(h o) = (Vi) A(pVo)
FoA@WVao)o (eAY)V(pAa) (p.bl)
F o — =g (p.33)
Flp— (b —0)) < (pAp—o0) (p.33)
Fo— (¥ =) (p37)
Fo = (np =) (p.37)
(e V) o e At
—p V= =(p AY)
(e V) = (¢ = ¥)
(p =) = (b — —¢)(p-37)
(p=v) = (¥ —0) = (¢—0)) (p-37)
Fle (e A w) (p 37)
F Ax(e(x) V() < Taxp(x) V Iz ()
F Va(o(x) A p(x)) < Vap(x) AV (z)
~Jzp(z) < Voop(r)
F drop(x) — —Vae(r)
EVz(p — ¥(x)) < (p — V’M/)(’v))
Fx(e — () — (p — Tzp(x))
(p VVzY(x)) — V(e V ib())
(o A Jzt(x)) = Fo(p A1h(x))
Fdz(p(z) — ¥) — (Vop(r) — )
) EVz(e(r) — ) < (Jre(r) — )
(Observe that (19) and (20) are special cases of (26) and (25).
All of those theorems can be proved by means of straight forward applica-
tion of the rules. Some well-known theorems are conspicuously absent, and in

(1
(2
(3
(4
(5
(6
(7
(8
9
(10)
(11) F
(12)
(13) F
(14) =
(15) =
(16)
(17)
(18)
(19) =
(20)
(21)
(22)
(23) F
(24) F
(25)
(2

)
)
)
)
)
)
)
)
)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
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some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in =(@A)) F —pV—1) the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) F —p < ———p

) E (A=) = =(p — 1)

) (= 9) = (mmp — =)
)=l = 9) « (= =)
) E (e AY) < (mmp A=)
) F==Vap(z) — Vo--p(r)

I
In order to abbreviate derivations we will use the notation = in a deriva-
'
tion when there is a derivation for I" F ¢ (I" has 0,1 or 2 elements).

Proof. (1) ~¢p — === follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

. [0 A —]?
L il PR M
——p [-=¢)? » —
T, T
S —(p = ¥)
e (e A ~5) = ~(p — )
[ o — 9]
v o2
.
[~—¢)? -
1
2
—\—\1/) 3

(¢ =) = (529 = =)
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Prove (3) also by using (14) and (15) from 5.2.1

(4) Apply the intuitionistic half of the contraposition (Lemma 5.2.1(14)) to
(2):

) M 2 R

—(p A=) pA-Y
1
N 1 5
—p [l
1
2

—\—|(p — —\—\'l/)

For the converse we apply some facts from 5.2.1.

[=(p — ¥)]!
(e V) [~(p — ¥))!
——p At (e V)
- [~ — ——)? ——p A
-1 -
1

— 1
ﬁﬁ(gp — 1)

(= =) = (e = ¥)

(5) —: Apply (3) to o A — p and p Ap — 1. The derivation of the converse
is given below.

[e]' [
Flend)? oAy
Ly [==p A =]t
—p ¢
[=—p A =] Ly
=) -1

—3
(e A1)




5.2 Intuitionistic Propositional and Predicate Logic 159

(6) F dr—p(r) — —Vep(x), 5.2.1(20)

so  —Vap(x) — —Jroe(x), 5.2.1(14)

hence =—Vayp(x) — Vr——p(x). 5.2.1(19)

Most of the straightforward meta-theorems of propositional and predicate
logic carry over to intuitionistic logic. The following theorems can be proved
by a tedious but routine induction.

Theorem 5.2.3 (Substitution Theorem for Derivations) If D is a
derivation and $ a propositional atom, then D]p/$] is a derivation if the free
variables of @ do not occur bound in D.

Theorem 5.2.4 (Substitution Theorem for Derivability) IfI'+ o and
$ is a propositional atom, then I'[¢/$] F o[p/$], where the free variables of ¢
do not occur bound in o or I.

Theorem 5.2.5 (Substitution Theorem for Equivalence)

I' (p1 < p2) = (Ve1/3] < Dle2/9)),

I'Epr oo = I'EPe1/8] < Plpa /9],
where $ is an atomic proposition, the free variables of p1 and w2 do not occur
bound in I' or 1 and the bound variables of 1 do not occur free in I.

The proofs of the above theorems are left to the reader. Theorems of this
kind are always suffering from unacsthetic variable-conditions. In practical
applications one always renames bound variables or considers only closed hy-
potheses, so that there is not much to worry. For precise formulations cf. Ch. 6.

The reader will have observed from the heuristics that V and 3 carry most
of the burden of constructiveness. We will demonstrate this once more in an
informal argument.

There is an effective procedure to compute the decimal expansion of
m(3,1415927...). Let us consider the statement ¢, := in the decimal ex-
pansion of 7 there is a sequence of n consecutive sevens.

Clearly @100 — 99 holds, but there is no evidence whatsoever for
~®100 V P99-

The fact that A, —,V, L do not ask for the kind of decisions that V and -
require, is more or less confirmed by the following

Theorem 5.2.6 If ¢ does not contain V or 3 and all atoms but 1 in ¢ are
negated, then - ¢ «— ——p.

Proof. Induction on ¢.
We leave the proof to the reader. (Hint: apply 5.2.2.) [ |
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By definition intuitionistic predicate (propositional) logic is a subsystem
of the corresponding classical systems. Godel and Gentzen have shown, how-
ever, that by interpreting the classical disjunction and existence quantifier in
a weak sense, we can embed classical logic into intuitionistic logic. For this
purpose we introduce a suitable translation:

Definition 5.2.7 The mapping °© : FORM — FORM s defined by
(i) 1°:= 1 and ¢° := == for atomic ¢ dinstinct from 1 .
(i) (P AN)°i=° NY°
(iit) (V) i==(=° A —1)p°)
(i) (o= Y)° =" —Y°
(0) (Vap(n))® = Vag® (x)
(i) (Gap(r))® = Vg ()
This mapping is called the Gédel translation.
We define I'° = {¢°|¢ € I'}. The relation between classical derivability (+.)
and intuitionistic derivability (F; is given by

Theorem 5.2.8 I'F. o < I°F; ©°.

Proof. Tt follows from the preceding chapters that . ¢ < ¢°, therefore < is
an immediate consequence of I' F; ¢ = ', .

For =, we use induction on the derivation D of ¢ from I

1. ¢ € I', then also ¢° € I'° and hence I'™° I-; ¢©°.

2. The last rule of D is a propositional introduction or elimination rule. We
consider two cases:

-1 [¢] Induction hypothesis I'°, ©° F; 1°.
D By — I I'° F; ¢° — 1°, and so by definition
Ik (p—¥)°.
P
p—
VE ] W

Induction hypothesis: I'° F; (¢ V 1)°,
D Dl DQ FO,(}QO Fz O'OFO,’l/)O Fz o°
(where I' contains all uncancelled
hypotheses involved).

%
I° by =(=p° A=p°), I° by o° — 0°, 1° = ° — o°.

The result follows from the derivation below:

pVy o o
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[p]" ¥° —0° (V]2 ¥ —o0°
- o) - oo}’
1 1
o 1 wo 2
‘\(ﬁgpo A ﬁ1/)o) ‘\(po A\ ‘\'(/)o
1
3

-0

O_O

The remaining rules are left to the reader.
The last rule of D is the falsum rule. This case is obvious.

The last rule of D is a quantifier introduction or elimination rule. Let us
consider two cases.
vl D Induction hypothesis: I'° t; o(x)°
ByVI I'° b, Vap(x)°,so I'° F; (Vep(x))°.
¢(x)
Vap(z)
[o(x)] Induction hypothesis: ™ F; (Jxp(x))°,
JE: g D, I'° o(x)° b, 0°.
So I'° k; (=Va—p(x))® and
Jrp(x) o I° by Vr(p(x)° — o).
o
Va(o(w)? — 0°)
[o(z)°]! p(r)” —0°
o [-0°])2
1
—p(x)°
Vrp()° YTk
1
2
-0
O_O

We now get I'° F; o°.
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5. The last rule of D is RAA.
[-¢] Induction hypothesis I'°, (—p)° F,; L .
D so I'° F; =—¢°,and hence by Theorem 5.2.6 I'° t-; ©°
1
o [ ]
Let us call formulas in which all atoms occur negated, and which contain
only the connectives A, —,V, |, negative.
The special role of V and 7 is underlined by

Corollary 5.2.9 Classical predicate (propositional) logic is conservative over
intuitionistic predicate (propositional) logic with respect to negative formulae,
i.e. Fo o b @ for negative p.

Proof. ¢°, for negative ¢, is obtained by replacing each atom p by ——p. Since
all atoms occur negated we have ; p° < ¢ (apply 5.2.2(1) and 5.2.6). The
result now follows from 5.2.8. |

In some particular theories (e.g. arithmetic) the atoms are decidable, i.e.
I' ¢V = for atomic ¢. For such theories one may simplify the Godel trans-
lation by putting ¢° := ¢ for atomic .

Observe that Corollary 5.2.9 tells us that intuitionistic logic is consistent
iff classical logic is so (a not very surprising result!).
For propositional logic we have a somewhat stronger result than 5.2.8.

Theorem 5.2.10 (Glivenko’s Theorem) . ¢ & FH; ——p.

Proof. Show by induction on ¢ that F; ¢° < == (use 5.2.2), and apply 5.2.8.
|

5.3 Kripke Semantics

There are a number of (more or less formalized) semantics for intuitionistic
logic that allow for a completeness theorem. We will concentrate here on the
semantics introduced by Kripke since it is convenient for applications and it
is fairly simple.

Heuristic motivation. Think of an idealized mathematician (in this context
traditionally called the creative subject), who extends both his knowledge and
his universe of objects in the course of time. At each moment & he has a stock
27k of sentences, which he, by some means, has recognised as true and a stock
Ay, of objects which he has constructed (or created). Since at every moment
k the idealized mathematician has various choices for his future activities
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(he may even stop alltogether), the stages of his activity must be thought
of as being partially ordered, and not necessarily linearly ordered. How will
the idealized mathematician interpret the logical connectives? Evidently the
interpretation of a composite statement must depend on the interpretation
of its parts, e.g. the idealized mathematician has established ¢ or (and) ¢ at
stage k if he has established ¢ at stage k or (and) ¢ at stage k. The implica-
tion is more cumbersome, since ¢ — 1 may be known at stage k£ without ¢ or
1 being known. Clearly, the idealized mathematician knows ¢ — 1 at stage
k if he knows that if at any future stage (including k) ¢ is established, also
is established. Similarly Vzp(z) is established at stage & if at any future stage
(including k) for all objects a that exist at that stage (@) is established.

Evidently we must in case of the universal quantifier take the future into
account since for all elements means more than just “for all elements that
we have constructed so far”! Existence, on the other hand, is not relegated to
the future. The idealized mathematician knows at stage k that Jrp(x) if he
has constructed an object a such that at stage k he has established ¢(@). Of
course, there are many observations that could be made, for example that it
is reasonable to add “in principle” to a number of clauses. This takes care of
large numbers, choice sequences etc. Think of VryJz(z = a¥), does the ide-
alized mathematician really construct 10'° as a succession of units? For this
and similar questions the reader is referred to the literature.

We will now formalizealize the above sketched semantics.
It is for a first introduction convenient to consider a language without
functions symbols. Later it will be simple to extend the language.

We consider models for some language L.

Definition 5.3.1 A Kripke model is a quadruple K = (K, X, C, D), where K
is a (non-empty) partially ordered set, C' a function defined on the constants
of L, D a set valued function on K, a function on K such that

- C(c) € D(k) for allk € K,
- D(k) #0 for allk € K,
- X(k) C Aty, for allk € K,

where Aty is the set of all atomic sentences of L with constants for the ele-
ments of D(k). D and X satisfy the following conditions:

(i) k <l= D(k) C D(l).

(i1) L X(k), for all k.

(iii) k <1 = X(k) C X(1).

D(k) is called the domain of IC at k, the elements of K are called nodes

of K. Instead of “p has auxilliary constants for elements of D(k)” we say for
short “p has parameters in D(k)”.

X assigns to each node the ‘basic facts’ that hold at k, the conditions (i),
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(i), (iii) merely state that the collection of available objects does not decrease
in time, that a falsity is never established and that a basic fact that once has
been established remains true in later stages. The constants are interpreted
by the same elements in all domains (they are rigid designators).

Note that D and Y together determine at each node k a classical structure
(k) (in the sense of 2.2.1). The universe of (k) is D(k) and the relations of
2A(k) are given by X(k) as the positive diagram: (a) € R2®) iff R(a) € X (k).
The conditions (i) and (iii) above tell us that the universes are increasing:

k<= (k)] € [2()]
and that the relations are increasing:

k<l= R¥® C RO,

Furthermore ¢ = %) for all k and 1.

In X' (k) there are also propositions, something we did not allow in classical
predicate logic. Here it is convenient for treating propositional and predicate
logic simultaneously.

The function X tells us which atoms are “true” in k. We now extend X to
all sentences.

Lemma 5.3.2 X has a unique extension to a function on K (also denoted by
X) such that X (k) C Senty, the set of all sentences with parameters in D(k),
satisfying:

(1) pVip e X(k) < ¢ e X(k) or € X(k)

(i) o N € X(k) < ¢ € X(k) and ¢ € X(k)

(iti) o — Y € X(k) < foralll >k (p € X(I) = ¢ e X())

(iv) Jxp(x) € X (k) < there is an a € D(k) such that p(@) € X(k)

(v) Vxp(x) € X(k) < for alll > k and for all a € D(1) ¢(a) € X(1).
Proof. Immediate. We simply define ¢ € X(k) for all k£ € K simultaneously
by induction on . |
Notation. We write kl- ¢ for ¢ € Y (k), pronounce ‘k forces ¢’

Exercise for the reader: reformulate (i) - (v) above in terms of forcing.

Corollary 5.3.3 (i) k |- —p < for alll > k LIt/ o.
(ii) k |F ——p < for alll > k there exists a p > 1 such that (plF ).

Proof. kIt —p & ElF ¢ —»1& for all I > k(lIF ¢ = [IFL) & for all

1>k .
klF ——p < foralll > k [t/ mp < for all | > k not ( for all p > 1 pltf ¢) &
for all [ > k there is a p > [ such that pl- . |

The monotonicity of X for atoms is carried over to arbitrary formulas.
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Lemma 5.3.4 (Monotonicity of IF) k<[, klFp=1IFp.
Proof. Induction on .

atomic ¢ : the lemma holds by definition 5.3.1.

w=@1 N :let kIF @1 Ao and k < [, then klIF ¢1 A g2 < klIF ¢ and
kI @2 = (ind. hyp.) IlIF 1 and [I- o2 < 1F @1 A @a.

@ = 1 Vs : mimic the conjunction case.

@ =1 — po Let kl- 1 — wa, [ > k. Suppose p > [ and pl- ¢ then, since
p >k, plE s, Hence [+ o1 — ps.

¢ = dxpy(z) : immediate.

© =Vapy(r) : let k- Vo (x) and | > k. Suppose p > [ and a € D(p), then,
since p > k,plk ¢1(@). Hence [+ Ve, (x). |

We will now present some examples, which refute classically true formulas.
It suffices to indicate which atoms are forced at each node. We will simplify
the presentation by drawing the partially ordered set and indicating the atoms
forced at each node. For propositional logic no domain function is required
(equivalently, a constant one, say D(k) = {0} ), so we simplify the presenta-

tion accordingly.
2k k191,02
¢<> @,
ko® ¢1
¢

d

kigy  kiqy kog 1
ko \ko/
a b

(a) In the bottom node no atoms are known, in the second one only ¢, to
be precise koll/ ¢, k1l- ¢. By 5.3.3 kolE ==, so kol =—p — ¢. Note,
however, that kqlt/ =, since k1l . So kolt/ ¢ V —p.

(b) kil o AW (i =0,1,2), so kol- =(@ A ). By definition, kolF —¢ V -t <
kol =g or kgl —1p. The first is false, since k1 I ¢, and the latter is false,
since kol 1. Hence kol =(o A ) — = V —h.

(c) The bottom node forces ¢ — , but it does not force =) V ¢ (why?). So
it does not force (Y — ¢) — (=¥ V ).

(d) In the bottom node the following implications are forced: o — @1, @3 —
2,93 — @1, but none of the converse implications is forced, hence kg It/
(P14 2) V (2 < 93) V (03 < p1).

We will analyse the last example a bit further. Consider a Kripke model

with two nodes as in d, with some assignment Y of atoms. We will show

that for four arbitrary propositions o1, 02, 03,04

kol \X/ 0; < 0y, i.e. from any four propositions at least two are
1<i<;<a

equivalent.

There are a number of cases. (1) At least two of 01,09, 03, 04 are forced in
ko. Then we are done. (2) Just one o; is forced in kg. Then of the remaining
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propositions, either two are forced in k1, or two of them are not forced in
k1. In both cases there are o; and o/, such that kol o; < o;. (3) No o;
is forced in kp. Then we may repeat the argument under (2).

(e) (i) kolF ¢ — Jzo(x), for the only node that forces ¢ is k1, and
indeed kil o (1), so kyIF Jxo(z).
Now suppose kg I- 3z(¢ — o(z)), then, since D (ko) = {0},
kol ¢ — o(0). But k1 lF ¢ and k117 0(0).
Contradiction. Hence koIt (¢ — Jxo(z)) — Jz(p — o(x)).

Remark. (¢ — Jxo(x)) — Jx(p — o(x)) is called the independence of
premise principle. It is not surprising that it fails in some Kripke models,
for ¢ — Jzo(x) tells us that the required element a for o(@) may depend on
the proof of ¢ (in our heuristic interpretation); while in Jx(¢ — o(x)), the el-
ement a must be found independently of . So the right hand side is stronger.

(ii) kol —Va(x) < kil Vay(z)(i = 0,1). ki It/ (1), so we have shown
kol =Vay(x). kol Jz—1)(z) < kol —1p(0). However, kil 1(0), so
ko It Jz—)(x). Hence kol —-Vxip(x) — Jz—1p(x).

(iii) A similar argument fs kolt/ (Vzip(x) — 7) — Jx(v(x) — 7), where
7 is not forced in k.

(f) D(k;) ={0,...,i}, X(k;) = {¢(0),...,0(i — 1)}, kolF Vz——¢(x) & for
all i k;I- =—p(4), 7 <i. The latter is true since for all p > i k, = ¢(j),
j < i. Now kol —=Vxp(x) < for all ¢ there is a j > i such that k;I-
Vzp(zr). But no k; forces Vry(x). So kol Ve——p(x) — ——Vrp(x).

Remark. We have seen that =——Vrp(x) — Vr——p(x) is derivable and it is
easily seen that it holds in all Kripke models, but the converse fails in some
models. The schema Ve——p(xr) — ——Vap(z) is called the double negation
shift (DNS).

The next thing to do is to show that Kripke semantics is sound for intuitionistic
logic.
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We define a few more notions for sentences:

(i) KIF g if kI for all k € K.
(ii) I ¢ if Kl ¢ for all K.

For formulas containing free variables we have to be more careful. Let
¢ contain free variables, then we say that klF ¢ iff kI Cl(p) (the universal
closure). For a set I" and a formula ¢ with free variables x;,, x;,, Z;,, . . . (which
we will denote by ;), we define I'l ¢ by: for all I, k € K and for all
(ae D(k)) [kI- ¥(a) for all ¥ € I' = ki o(a)]. (ae D(k) is a convenient
abuse of language).

Before we proceed we introduce an extra abuse of language which will
prove extremely useful: we will freely use quantifiers in our meta-language.
It will have struck the reader that the clauses in the definition of the Kripke
semantics abound with expressions like “for all | > k7 “ for all a € D(k)”.
It saves quite a bit of writing to use “VI > k", “Va € D(k)” instead, and it
increases systematic readability to boot. By now the reader is well used to
the routine phrases of our semantics, so he will have no difficulty to avoid a
confusion of quantifiers in the meta-language and the object-language.

By way of example we will reformulate the preceding definition:

'l = (VK)(Vk € K)(¥ ae D)V € I'(kl- (a)) = kl- o(a)].

There is a useful reformulation of this “semantic consequence” notion.

Lemma 5.3.5 Let I' be finite, then I'l- ¢ < = CI(N ' — @) (where Cl(X)

is the universal closure of X ).

Proof. Left to the reader. |

Theorem 5.3.6 (Soundness Theorem) I'F ¢ =Tl .

Proof. Use induction on the derivation D of ¢ from I'. We will abbreviate
“kl-4(a) for all » € I by “kl- I'(a)”. The model K is fixed in the proof.

(1) D consists of just ¢, then obviously kI I'(a) = kl- o(a) for all k and
(a) € D(k).
(2) D ends with an application of a derivation rule.
(AI) Induction hypothesis: VAV ae D(k)(klF I'(a) = kIt ¢i(a)), for
i =1,2. Now choose a k € K and ae D(k) such that kIF I'(@), then
kb o1 (a) and kl- o (@), so kl- (o1 A @2)(a).

Note that the choice of @ did not really play a role in this proof. To
simplify the presentation we will suppress reference to 5, when it does
not play a role.

(AE)) Immediate.

(VI) Immediate.
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(VE) Induction hypothesis: Vk(kl- I' = klb o V), VE(kIF I = klF o),
VE(kl- Iy = k- o). Now let kI I', then by i.h. kIF ¢ V¢, so kI ¢ or
k= . In the first case kI I, p, so kI o. In the second case k- I',, so
k- o. In both cases kl- o, so we are done.

(— I) Induction hypothesis: (Vk)(Y ae D(k)) (k- I'(a),¢(a) =
kI 1(a)). Now let kl- I'(a) for some a€ D(k). We want to show
kIF (¢ — ¥)(a),soletl > k and LI+ (). By monotonicity I+ I"(@), and
ac D(1), so the ind. hyp. tells us that Il 1/)(3) Hence VI > k(I ¢(a)
= 1I- (), so kl- (o — ¥)(a).

(— E) Immediate.

(L) Induction hypothesis VE(kI- I" = kI-_1). Since, evidently, no k can force
I' VE(kI- I = kIF @) is correct.

(VI) The free variables in I" are 7, and z does not occur in the sequence
7. Induction hypothesis: (Vk)(V @,b € D(E))(kI- I'(a) = kIF ¢(a,b)).
Now let klF I"(@) for some a € D(k), we must show kl- Vzp(a, z). So let
I >k and b € D(l). By monotonicity Il I'(a) and a€ D(l), so by the

ind. hyp. I1- @(a,b). This shows (VI > k)(Vb € D(1))(IIF ¢((a,b), and

hence kl-Vzo(a, z).
(VE) Immediate.
(3I) Immediate.

(3E) Induction hypothesis: (Vk)(V ae D(k)(kl- I'(a) = kIF Jz¢(a,z))
and (VE)(Y @,b € D(k)(kIF o(a,b), k- I'(a) = kl- o(a)). Here the
variables in I" and o are ;, and z does not occur in the sequence 7. Now
let kIF I'(a), for some ae D(k), then kl- Jz¢(a, z). So let kI o(a,b)
for some b € D(k). By the induction hypothesis kI o(a). |

For the Completeness Theorem we need some notions and a few lemma’s.

Definition 5.3.7 A set of sentences I is a prime theory with respect to a
language L if

(i) I' is closed under -

(ii)) oV el =pel orpel

(1ii) Jxp(x) € I' = ¢(c) € I' for some constant ¢ in L.

The following is analogue of the Henkin construction combined with a
maximal consistent extension.

Lemma 5.3.8 Let I' and ¢ be closed, then if I' t/ ¢, there is a prime theory
I in a language L', extending I' such that I t/ .
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Proof. In general one has to extend the language L of I' by a suitable set of
‘witnessing’ constants. So we extend the language L of I" by a denumerable
set of constants to a new language L’. The required theory I is obtained by
series of extensions Ip C I1 C I5.... Weput Iy :=1".

Let I} be given such that I}, I/ ¢ and I}, contains only finitely many new
constants. We consider two cases.

k is even. Look for the first existential sentence 3z (z) in L’ that has not
yet been treated, such that I, - Jxip(x). Let ¢ be the first new constant
not in I'y. Now put I11 := I} U{v(c)}.

k is odd. Look for the first disjunctive sentence 11 Vpo with I, F 11 Voo that
has not yet been treated. Note that not both Iy, ¢1 F ¢ and I, v F ¢
for then by V3 I, - .

_ _Jhou{nif D, e
Now we put: [ii1 := {Fk U {12} otherwise.

Finally: I := U 1.
k>0
There are a few things to be shown:

1. I'" i/ . We first show I; I/ ¢ by induction on i. For i = 0, I t/ ¢ holds
by assumption. The induction step is obvious for ¢ odd. For i even we
suppose I11 F . Then I, ¢¥(c) b . Since I; - Jzp(x), we get I F ¢
by JE, which contradicts the induction hypothesis. Hence I'; 11 I/ ¢, and
therefore by complete induction I'; I/ ¢ for all i.

Now, if I'" F ¢ then I'; ¢ for some i. Contradiction.

2. I is a prime theory.

(a) Let 11 Vg € I'" and let k be the least number such that I = 11 V.
Clearly 17 V 95 has not been treated before stage k, and I}, F 11 Vo
for h > k. Eventually 11 V 195 has to be treated at some stage h > k,
so then ¢y € I},41 or e € I 11, and hence ¢y € I or ¢y € I".

(b) Let Jatp(x) € I, and let k be the least number such that I, +
Jzip(x). For some h > k Jxi)(x) is treated, and hence ¢ (c) € I}41 C
I for some c.

(¢) I'" is closed under F. If IV + 1), then I F ) V 1, and hence by (a)
el

Conclusion: I is a prime theory containing I", such that I t/ ¢. [ |

The next step is to construct for closed I" and ¢ with I' I/ ¢, a Kripke
model, with I I" and klt/ ¢ for some k € K.
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Lemma 5.3.9 (Model Existence Lemma) If I' I/ ¢ then there is a
Kripke model K with a bottom node ko such that kol I and kot .

Proof: We first extend I" to a suitable prime theory I’ such that I t/ ¢. I'" has
the language L’ with set of constants C”. Consider a set of distinct constants
{ct.li > 0,m > 0} disjoint with C’. A denumerable family of denumerable sets
of constants is given by C* = {ci |m > 0}. We will construct a Kripke model
over the poset of all finite sequences of natural numbers, including the empty
sequence (), with their natural ordering, “initial segment of”.

Define C(()) := C" and C(n) = C({)) UC° U...UC* ! for n of positive
length k. L(7) is the extension of L by C(n), with set of atoms At(n). Now
put D(n) := C(n). We define ¥(n) by induction on the length of 7.

2(()) == I" 1 At(()). Suppose X(n) has already been defined. Consider
an enumeration (o9, 7o), (01, 71), .. . of all pairs of sentences in L(7) such that
I'(n),0; t/ 7;. Apply Lemma 5.3.8 to I'(n)U{o;} and 7; for each i. This yields
a prime theory I'(n,i) and L(7,i) such that o; € I'(n,i) and I'(n,i) t 7.

Now put X(7,i) := I'(n,i) N At(n,i). We observe that all conditions for

a Kripke model are met. The model reflects (like the model of 3.1.11) very
much the nature of the prime theories involved.

Claim: 7 |- ¢ < I'(n) F 1.

We prove the claim by induction on .

— For atomic ¥ the equivalence holds by definition.

— 1 =1 A1y — immediate

— Y =191V
(a) m IF ¢y Vibg &7 |- 4y or n IF 4y = (ind. hyp.) I'(n) ¢ or
I(n) b by = D(0) F 4y Vs
(b) I'(n) b by Vaho = I'(n) F 1hy or I'(n) F 1y, since I'(n) is a prime
theory (in the right language L(H)) So, by induction hypothesis, 7 I 1
or 1 I 1, and hence n I b1 V tho.

— =11 — o
(a) 7 I+ by — 1. Suppose I'(1) b thy — 1o, then I'(n), ¥y t 1hy. By the
definition of the model there is an extension m= (ng,...,ng_1,1) of n

such that I'(n) U {11} C I'(m) and I'(m) I/ 1. By induction hypothesis
m |+ ¢y and by m>n and n |- ¥y — by, m |F . Applying the
induction hypothesis once more we get I' (771) F 1. Contradiction. Hence
I(n) by — 1.

(b) The converse is simple; left to the reader.

— Y =Vary(z).

(a) Let n I Vap(x), then we get V m>7n Ve € C(m)(m |- ¢(c)). Assume
I'(n) i/ Vap(x), then for a suitable i F(ﬁ,i) t/ Vep(z) (take T for o; in
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the above construction). Let ¢ be a constant in L(7,) not in I'(n, i), then
F(?i, i) ¥ ©(c), and by induction hypothesis (ﬁ, i)l p(c). Contradiction.
(b)I'(n) F Vap(x). Suppose 1 It Vap(x), then m I/ ¢(c) for some m>n
and for some ¢ € L(m), hence I'(m) t ¢(c) and therefore I'(m) ¥ Vap(x).
Contradiction.
— ¥ = Jap().

The implication from left to right is obvious. For the converse we use the
fact that I'(7) is a prime theory. The details are left to the reader.

We now can finish our proof. The bottom node forces I" and ¢ is not forced. B

We can get some extra information from the proof of the Model Existence

Lemma: (i) the underlying partially ordered set is a tree, (i) all sets D(m)
are denumerable.

From the Model Existence Lemma we easily derive the following

Theorem 5.3.10 (Completeness Theorem — Kripke) I'H; ¢ & I'l- ¢
(I" and ¢ closed).

Proof. We have already shown =-. For the converse we assume [I; I/ ¢ and
apply 5.3.9, which yields a contradiction. [ |

Actually we have proved the following refinement: intuitionistic logic is
complete for countable models over trees.

The above results are completely general (safe for the cardinality restric-
tion on L), so we may as well assume that I' contains the identity axioms
Ii,..., 14 (2.6). May we also assume that the identity predicate is interpreted
by the real equality in each world? The answer is no, this assumption consti-
tutes a real restriction, as the following theorem shows.

Theorem 5.3.11 If for all k € K kl-a@ =b = a = b for a,b € D(k) then
Kl=Vay(r =y Vv #vy).

Proof. Let a,b € D(k) and kl/ @ = b, then a # b, not only in D(k), but in all
D(l) for I > k, hence for all | > k,llIl/a =10, so kl-a # b. [ |

For a kind of converse, cf. Exercise 18.
The fact that the relation a ~y, b in A(k), given by kl-@ = b, is not the iden-
tity relation is definitely embarrassing for a language with function symbols.
So let us see what we can do about it. We assume that a function symbol F
is interpreted in each k by a function Fj. We require £ < [ = Fj, C F;. F
has to obey I :V ¥y (£=y— F(x) = F(¥)). For more about functions see
Exercise 34.
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Lemma 5.3.12 The relation ~y, is a congruence relation on A(k), for each k.

Proof. Straightforward, by interpreting I; — Iy |

We may drop the index k, this means that we consider a relation ~ on the
whole model, which is interpreted node-wise by the local ~’s.

We now define new structures by taking equivalence classes: 2* (k):=4(k)/~,
i.e. the elements of |A* (k)| are equivalence classes a/~;, of elements a € D(k),
and the relations are canonically determined by

Ri(a/ ~,...) & Ri(a,...), similarly for the functions F}(a/ ~,...) =
Fk((l,, .. )/ ~.

The inclusion 2A(k) C 2(l), for k& < [, is now replaced by a map [ :
A* (k) — A*(1), where fy; is defined by fii(a) = a®*® for a € |2*(k)|. To be
precise:

a/~p— a/~, so we have to show a ~p a’ = a ~; a’ to ensure the well-
definedness of fy;. This, however, is obvious, since kl-@ =da’ = lI-a@ = a.

Claim 5.3.13 fj; is a homomorphism.
Proof. Let us look at a binary relation. Rj(a/~,b/~) < Ry(a,b) < kIF
R(a,b) = lIF R(a,b) < Ri(a,b) & Rj(a/~,b/~).

The case of an operation is left to the reader. |

The upshot is that we can define a modified notion of Kripke model.

Definition 5.3.14 A modified Kripke model for a language L is a triple K =
(K, 2L, f) such that K is a partially ordered set, 2 and [ are mappings such
that for k € K,(k) is a structure for L and for k,l € K with k <1 f(k,l) is
a homomorphism from A(k) to A(l) and f(I,m)o f(k,1) = f(k,m),

f(k k) =id.

Notation. We write fi; for f(k,1), and kIF*¢ for (k) = ¢, for atomic ¢.

Now one may mimic the development presented for the original notion of
Kripke semantics.

In particular the connection between the two notions is given by

Lemma 5.3.15 Let K* be the modified Kripke model obtained from IC by
a

dividing out ~. Then kl- ¢(a) < kl-* p(a /~) for all k € K.
Proof. Left to the reader. |

Corollary 5.3.16 Intuitionistic logic (with identity) is complete with respect
to modified Kripke semantics.
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Proof. Apply 5.3.10 and 5.3.15. |

We will usually work with ordinary Kripke models, but for convenience we
will often replace inclusions of structures 2(k) C (I) by inclusion mappings

5.4 Some Model Theory

We will give some simple applications of Kripke’s semantics. The first ones
concern the so-called disjunction and existence properties.

Definition 5.4.1 A set of sentences I' has the

(i) disjunction property (DP) if '@V =TF ¢ or 't 1.
(ii) existence property (EP) if I' = Jxp(x) = I+ ¢(t) for some closed term
t (where  V 1 and Jxp(x) are closed).

In a sense DP and EP reflect the constructive character of the theory
I' (in the frame of intuitionistic logic), since it makes explicit the clause ‘if
we have a proof of Jrp(r), then we have a proof of a particular instance’,
similarly for disjunction.

Classical logic does not have DP or E'P, for consider in propositional logic
po V —pg. Clearly k. pg V —pg, but neither . py nor . —pg!

Theorem 5.4.2 Intuitionistic propositional and predicate logic without func-
tions symbols have DP.

Proof. Let - ¢ V 1, and suppose I/ ¢ and I/ ¢, then there are Kripke models
K1 and Ky with bottom nodes k1 and ko such that &y It/ ¢ and ko I/ 1.

kl @ k2

for too

2
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It is no restriction to suppose that the partially ordered sets K1, K5 of K7 and
Ko are disjoint.

We define a new Kripke model with K = K; U Ky U {ko} where ko ¢
K, U Ky, see picture for the ordering.

Ay (k) for k € K,
We define 2A(k) = { (k) for k € Ko
|2(] for k = ko.

where |2(| consists of all the constants of L, if there are any, otherwise |2(| con-
tains only one element a. The inclusion mapping for (ko) — A(k;)(i = 1,2)
is defined by ¢ — ¢*(*¢) if there are constants, if not we pick a; € A(k;) ar-
bitrarily and define foi(a) = a1, fo2(a) = aq. A satisfies the definition of a
Kripke model.

The models K1 and Ky are ‘submodels’ of the new model in the sense that the
forcing induced on IC; by that of K is exactly its old forcing, cf. Exercise 13.
By the Completeness Theorem kg F ¢ V 9, so kglb ¢ or kolb . If kgl o,
then k1 I+ . Contradiction. If kg F 9, then ko F 1. Contradiction. So I/ ¢ and
t# 1) is not true, hence - ¢ or - 1. [ ]

Observe that this proof can be considerably simplified for propositional
logic, all we have to do is place an extra node under k; and ks in which no
atom is forced (cf. Exercise 19).

Theorem 5.4.3 Let the language of intuitionistic predicate logic contain at
least one constant and no function symbols, then EP holds.

Proof. Let F Jzp(x) and I/ ¢(c) for all constants c. Then for each ¢ there is
a Kripke model I, with bottom node k. such that k. I/ ¢(c). Now mimic the
argument of 5.4.2 above, by taking the disjoint union of the K;’s and adding
a bottom node kq. Use the fact that kol Jzp(z). |

The reader will have observed that we reason about our intuitionistic logic
and model theory in a classical meta-theory. In particular we use the principle
of the excluded third in our meta-language. This indeed detracts from the
constructive nature of our considerations. For the present we will not bother
to make our arguments constructive, it may suffice to remark that classical
arguments can often be circumvented, cf. Chapter 6.

In constructive mathematics one often needs stronger notions than the
classical ones. A paradigm is the notion of inequality. E.g. in the case of the
real numbers it does not suffice to know that a number is unequal (i.e. not
equal) to 0 in order to invert it. The procedure that constructs the inverse
for a given Cauchy sequence requires that there exists a number n such that
the distance of the given number to zero is greater than 27". Instead of a
negative notion we need a positive one, this was introduced by Brouwer, and
formalized by Heyting.
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Definition 5.4.4 A binary relation # is called an apartness relation if
(i) Vay(x = y < ~z#y)
(i) Yoy (r#y < y#)
(iii) Vryz(x#y — c#z V y#z)

Ezxamples.

1. For rational numbers the inequality is an apartness relation.

2. If the equality relation on a set is decidable (i.e. Vay(z = y V & # y)),
then # is an apartness relation (Exercise 22).

3. For real numbers the relation |a — b| > 0 is an apartness relation (cf.
Troelstra-van Dalen, 2.7, 2.8.).

We call the theory with axioms (i), (ii), (iii) of 5.4.4 AP, the theory of apart-
ness (obviously, the identity axiom x; = xo A y1 = y2 A T1#y1 — To#ys is
included).

Theorem 5.4.5 AP FVry(——r =y — z=y).
Proof. Observe that ——x = y <« ———x#y <« —xH#y < r =1y. [ |

We call an equality relation that satisfies the condition Vay(——x =y — = = y)
stable. Note that stable is essentially weaker than decidable (Exercise 23).

In the passage from intuitionistic theories to classical ones by adding the
principle of the excluded third usually a lot of notions are collapsed, e.g.
——z = y and x = y. Or conversely, when passing from classical theories to
intuitionistic ones (by deleting the principle of the excluded third) there is
a choice of the right notions. Usually (but not always) the strongest notions
fare best. An example is the notion of linear order.

The theory of linear order, LO, has the following axioms:

(i) Vzyzlzx<yAy<z—ox<2)

(ii) Veyz(zr <y —z<yVe<z)

(i) Veyz(r =y < w<yA-y <x).
One might wonder why we did not choose the axiom Vayz(z < yVz =yVy <
x) instead of (ii), it certainly would be stronger! There is a simple reason: the
axiom is too strong, it does not hold, e.g., for the reals.

We will next investigate the relation between linear order and apartness.

Theorem 5.4.6 The relation x <y Vy < x s an apartness relation.

Proof. An exercise in logic. |

Conversely, Smorynski has shown how to introduce an order relation in
a Kripke model of AP: Let KCIF AP, then in each D(k) the following is an
equivalence relation: kI a#tb.

(a) klF a = a < —a#a, since k- a = a we get kI —a#a and hence k I/ a#a.
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(b) kI a#b — b#a, so obviously kI a#b < kIt b#a.
(c) let kI a#b, kI b#c and suppose kI afte, then by axiom (iii) k- a#tb
or kI ¢#b which contradicts the assumptions. So kI a#c.

Observe that this equivalence relation contains the one induced by the iden-
tity; kl- a = b = kl/ a#b. The domains D(k) are thus split up in equivalence
classes, which can be linearly ordered in the classical sense. Since we want
to end up with a Kripke model, we have to be a bit careful. Observe that
equivalence classes may be split by passing to a higher node, e.g. if £ < [ and
kI/ a#b then lI- a#b is very well possible, but [/ a#b = klIt/ a#b. We take
an arbitrary ordering of the equivalence classes of the bottom node (using the
axiom of choice in our meta-theory if necessary). Next we indicate how to
order the equivalence classes in an immediate successor [ of k.

The ‘new’ elements of D(I) are indicated by the shaded part.

(i) Consider an equivalence class [ag]x in D(k), and look at the corresponding
set ag := U{[(]]”() S [Oo]k}
This set splits in a number of classes; we order those linearly. Denote the
equivalence classes of ag by agb (where b is a representative). Now the
classes belonging to the b’'s are ordered, and we order all the classes on
Uaolao € D(k)} lexicographically according to the representation agb.

(ii) Finally we consider the new equivalence classes, i.e. of those that are not
equivalent to any b in (J{ao|lap € D(k)}. We order those classes and put
them in that order behind the classes of case (i).

Under this procedure we order all equivalence classes in all nodes.

We now define a relation Ry, for each k: Ry (a,b) := [a]x < [b]x, where < is the
ordering defined above. By our definition k¥ < I and Ry(a,b) = Rj(a,b). We
leave it to the reader to show that I is valid, i.e. in particular kl- Vzyz(x =
' Nx <y—a' <y), where < is interpreted by Ry.

ao
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Observe that in this model the following holds:

(#) Vay(a#y oz <yVy <z,

for in all nodes k, k- a#b < kl-a <bor kl- b < a.
Now we must check the axioms of linear order.

(i) transitivity. kolk Veyz(x < y Ay < z — x < z) < for all k& > ko, for
all a,b,c € D(k)klFa < bAb < c— a < ¢ forall k> ky, for all
a,b,ce D(k) and for alll > kllFa<bandilFb<ec=llFa<ec.

So we have to show R;(a,b) and R;(b,c) = R(a,c), but that is indeed the
case by the linear ordering of the equivalence classes.

(ii) (weak)linearity. We must show kol Vryz(z <y — 2z <y Vax < z). Since
in our model Vzy(z#y <> x <y Vy < x) holds the problem is reduced to
pure logic: show:

AP +Vayz(x < yAy <z -z < z)+Vaeylz#y <z <yVy<zx) bk
Vaeyz(z <y —z<yVaze<z).
We leave the proof to the reader.

(iii) anti-symmetry. We must show kol Vay(z =y « -z <y A-y < z). As
before the problem is reduced to logic. Show:
AP +Vay(z#y cx<yVy<z)bEVaylr=y < ~x <yA-y<zx).

Now we have finished the job — we have put a linear order on a model with
an apartness relation. We can now draw some conclusions.

Theorem 5.4.7 AP + LO + (#) is conservative over LO.
Proof. Immediate, by Theorem 5.4.6. |

Theorem 5.4.8 (van Dalen-Statman) AP + LO + (#) is conservative
over AP.

Proof. Suppose AP t/ ¢, then by the Model Existence Lemma there is a tree

model K of AP such that the bottom node kg does not force ¢.

We now carry out the construction of a linear order on K, the resulting model

KC* is a model of AP + LO + (#), and, since ¢ does not contain <, ko It/ ¢.

Hence AP + LO + (#) I/ ¢. This shows the conservative extension result:
AP +LO+ (#)F ¢ = AP | o, for ¢ in the language of AP. [ |

There is a convenient tool for establishing elementary equivalence between
Kripke models:
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Definition 5.4.9 (i) A bisimulation between two posets A and B is a relation
R C A x B such that for each a,a’,b with a < a/,aRb there is a b’ with a‘Rb
and for each a,b,b’ with aRb,b < V' there is an a’ such that a’ RV’ .

(i) R is a bisimulation between propositional Kripke models A and B if it is
a bisimulation between the underlying posets and if aRb = X (a) = X(b) (i.e.
a and b force the same atoms).

Bisimulations are useful to establish elementary equivalence node-wise.

Lemma 5.4.10 Let R be a bisimulation between A and B then for all
a,b,p, aRb= (alF ¢ < blIF ).

Proof. Induction on ¢. For atoms and conjunctions and disjunctions the
result is obvious.
Consider ¢ = 1 — @o.
Let aRb and al- p1 — po. Suppose bltf o1 — 3, then for some ' > b VI
1 and V' I/ po. By definition, there is an a’ > a such that a’ Rb’. By induction
hypothesis a’ I ¢ and a’ i/ 5. Contradiction.

The converse is completely similar. |

Corollary 5.4.11 If R is a total bisimulation between A and B, i.e. domR =
A,ranR = B, then A and B are elementarily equivalent (Al- ¢ < Bl ¢).

We end this chapter by giving some examples of models with unexpected

properties.
" (=) o)

1.
f g

T

f is the identity and g is the canonical ring homomorphism Z — Z/(2).
K is a model of the ring axioms (p. 86).

Note that kol 3 # 0,koll/ 2 = 0,kolt/ 2 # 0 and kollf Va(z # 0 —
Jy(zy = 1)), but also kolt/ Jx(z # 0 A Vy(zy # 1)). We se that K is a
commutative ring in which not all non-zero elements are invertible, but
in which it is impossible to exhibit a non-invertible, non-zero element.
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Again f and g are the canonical homomorphisms. IC is an intuitionistic,
commutative ring, as one easily verifies. medskip

KC has no zero-divisors: kol —=Jry(x Z0Ay # 0Azy = 0) < for all
i kil Jxy(x 0Ny #0Axy =0). (1)
For i = 1,2 this is obvious, so let us consider ¢ = 0. kol Jxy(x #
0Ny #0ANzy =0) < kol-m £0An #0Amn =0 for some m,n. So
m # 0,n # 0, mn = 0. Contradiction. This proves (1).
The cardinality of the model is rather undetermined. We know kgl F
dry(x # y) - take 0 and 1, and kolF —Tryw073 /X\ x; # x;. But

1<i<j<4
note that k0||71 3.771.?72.773 /X\ T 7& .?7]‘,](70”7( V.T?1.772773IE4 \X/ T, = Ty
1<i<j<3 1<i<j<4
and k0||7[ _\Hivll’givg M\ T 7é Tj.
1<i<j<3

Observe that the equality relation in K is not stable: kgl —=—=0 = 6, but

koll/ 0 = 6.
kl Q

Sy, is the (classical) symmetric group on n elements. Choose n > 3. ko
forces the group axioms (p. 85). kol- =Vay(zy = yx), but kol Jry(xy #
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yx), and kol Vry(xy = yx). So this group is not commutative, but one
cannot indicate non-commuting elements.

Define an apartness relation by k1l a#b < a # b in Z/(2), idem for ks.
Then KIF Va(z#0 — Jy(xy = 1)).

This model is an intuitionistic field, but we cannot determine its char-
acteristic. k1 F Vo(z 4+ 2 = 0), k2l Va(x + 2 + 2 = 0). All we know is
KIF Vx(6.x = 0).

In the short introduction to intuitionistic logic that we have presented we
have only been able to scratch the surface. We have intentionally simplified
the issues so that a reader can get a rough impression of the problems and
methods without going into the finer foundational details. In particular we
have treated intuitionistic logic in a classical meta-mathematics, e.g. we have
freely applied proof by contradiction (cf. 5.3.10). Obviously this does not do
justice to constructive mathematics as an alternative mathematics in its own
right. For this and related issues the reader is referred to the literature. A
more constructive appraoch is presented in the next chapter.

Exercises

1. (informal mathematics). Let ¢(n) be a decidable property of natural
numbers such that neither Jng(n), nor Yn—p(n) has been established
(e.g. “n is the largest number such that n and n + 2 are prime”). Define
a real number a by the cauchy sequence:

> 27 if VE < np(k)
i=1
k
> 27" if k< n and o(k) and —p(i)for i < k.

i=1

Show that (a,,) is a cauchy sequence and that “——a is rational”, but
there is no evidence for “a is rational”.

2. Prove
Foa(p =) = (¢ = =), F==(p V—p),

(e Vi) < =(mp — ).
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(a) o V-, V- F (oll)) V = (o), where B € {A,V, —}.
(b) Let the proposition ¢ have atoms py, ..., p,, show
A iV -pi) FoV-p.
Define the double negation translation ¢ of ¢ by placing —— in front
of each subformula. Show ; ¢° < ¢ " and k. p & F; .

Show that for propositional logic F; —¢ <k, —p.

Intuitionistic arithmetic HA (Heyting’s arithmetic) is the first-order in-
tuitionistic theory with the axioms of page 87 as mathematical axioms.
Show HA F Vazy(x =y V x # y) (use the principle of induction). Show
that the Gddel translation works for arithmetic, i.e. PA F ¢ < HA F ¢°
(where PA is Peano’s (classical) arithmetic). Note that we need not dou-
bly negate the atoms.

Show that PA is conservative over HA with respect to formula’s not
containing V and .

Show that HA F ¢ V¢ « Jz((x =0 — @) A (z £ 0 — 1)).

(a) Show I (¢ — ) V (¥ — ¢); V (m2p — @) — (¢ V ~p);
VooVl (mo =Y Vo) = [(-p = ¥) V(e — o)

(b) Use the completeness theorem to establish the following theorems:
(D) = (=)
(i) (pVe) — ¢
(ili) Veyp(r,y) — Vyze(z,y)
(iv) JaVyp(z, y) — Vydre(z,y)
(¢) Show kl- Vayp(xy) < VI > kVa,b € D(1) lI- o(a,b).
ko — ¢ < 3 > k(- ¢ and LI/ ).

Give the simplified definition of a Kripke model for (the language of)
propositional logic by considering the special case of def. 5.3.1 with X'(k)
consisting of propositional atoms only, and D(k) = {0} for all k.

Give an alternative definition of Kripke model based on the “structure-
map” k +— A(k) and show the equivalence with definition 5.3.1 (without
propositional atoms).

Prove the soundness theorem using lemma 5.3.5.
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A subset K’ of a partially ordered set K is closed (under <) if k € K’,
k<l=1¢€e K' If K'is a closed subset of the underlying partially
ordered set K of a Kripke model KC, then K’ determines a Kripke model
K" over K’ with D'(k) = D(k) and kI ¢ < klF ¢ for k € K’ and ¢
atomic. Show klIF ¢ < klF ¢ for all ¢ with parameters in D(k), for
k € K’ (i.e. it is the future that matters, not the past).

Give a modified proof of the model existence lemma by taking as nodes
of the partially ordered set prime theories that extend I" and that have
a language with constants in some set CO U Ct U ... U C*~! (cf. proof
of 5.3.9 ) (note that the resulting partially ordered set need not (and, as
a matter of fact, is not) a tree, so we lose something. Compare however
exercise 16).

Consider a propositional Kripke model IC, where the X' function assigns

only subsets of a finite set I" of the propositions, which is closed under

subformulas. We may consider the sets of propositions forced at a node

instead of the node: define [k] = {¢ € I'|klF ¢}. The set {[k]|k € K} is

partially ordered by inclusion define X' ([k]) := X' (k) N At, show that the

conditions of a Kripke model are satisfied; call this model K, and denote

the forcing by I-r. We say that K is obtained by filtration from K.

(a) Show [k]lFr ¢ < klF @, for ¢ € T.

(b) Show that K has an underlying finite partially ordered set.

(¢) Show that - ¢ < ¢ holds in all finite Kripke models.

(d) Show that intuitionistic propositional logic is decidable (i.e. there is
a decision method for - ¢), apply 3.3.17.

Each Kripke model with bottom node kg can be turned into a model
over a tree as follows: K, consists of all finite increasing sequences
<I§70, ki,..., k‘n>, k, < kiJrl(O <i< 77,), and Q[tr(<k07 ey kn>) = Q[(kn)
Show (ko, ..., kn), - © © kI @, where I, is the forcing relation in
the tree model.

(a) Show that (¢ — )V (¥ — ) holds in all linearly ordered Kripke
models for propositional logic.

(b) Show that LC I/ ¢ = there is a linear Kripke model of LC in which o
fails, where LC is the propositional theory axiomatized by the schema
(p = )V (¢ — ¢) (Hint: apply Exercise 15). Hence LC is complete
for linear Kripke models (Dummett).

Consider a Kripke model K for decidable equality (i.e. Vey(zx = y V
x # y)). For each k the relation kI @ = b is an equivalence relation.
Define a new model K’ with the same partially ordered set as K, and
D' (k) = {[a]x]a € D(k)}, where [a] is the equivalence class of a. Replace
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the inclusion of D(k) in D(I), for k < I, by the corresponding canonical
embedding [a]; — [a];. Define for atomic ¢ kl-" ¢ := kI ¢ and show
kI ¢ < kI ¢ for all .

Prove DP for propositional logic directly by simplifying the proof of 5.4.2.

Show that HA has DP and E P, the latter in the form: HA + Jxp(x)) =
HA + p(7) for some n € N. (Hint, show that the model, constructed in
5.4.2 and in 5.4.3, is a model of HA).

Consider predicate logic in a language without function symbols and
constants. Show F Jxp(x) =+ Vrp(z), where FV () C {z}. (Hint: add
an auxiliary constant ¢, apply 5.4.3, and replace it by a suitable variable).

Show Vxy(x = yVx # y) b A AP, where AP consists of the three
axioms of the apartness relation, with x#y replaced by #.

Show Vey(——x =y — x =y) /Vey(x =y vV #£y).

Show that kl- ¢V —¢ for maximal nodes k of a Kripke model, so X(k) =
Th(A(k)) (in the classical sense). That is, “the logic in maximal node is
classical.”

Give an alternative proof of Glivenko’s theorem using Exercises 15
and 24.

Consider a Kripke model with two nodes ko, k1; ko < k1 and (ko) = R,
(k1) = C. Show kol =Vao(z? +1 # 0) — Jz(z? +1 =0).

Let D = R[X]/X? be the ring of dual numbers. D has a unique max-
imal ideal, generated by X. Consider a Kripke model with two nodes
ko, k1; ko < k1 and (ko) = D, (k1) = R, with f : D — R the canonical
map f(a+bX) = a. Show that the model is an intuitionistic field, define
the apartness relation.

Show that Vz(p Vi(x)) — (¢ VVr(x))(z € FV(e)) holds in all Kripke
models with constant domain function (i.e. VEI(D(k) = D(1)).

This exercise will establish the undefinability of propositional connectives
in terms of other connectives. To be precise the connective B is not
definable in (or ‘by’) Mo, ..., W, if there is no formula ¢, containing only
the connectives l,, . .., B, and the atoms pg, p1, such that - pollyp; < .
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(i) V is not definable in —, A, |. Hint: suppose ¢ defines V, apply the
Godel translation.

(ii) A is not definable in —, Vv, L. Consider the Kripke model with three
nodes ki, ko, k3 and k1 < k3, ko < k3, k1l D, kol q,k3|F P, q. Show
that all A-free formulas are either equivalent to | or are forced in k
or ]Cg.

(iii) — is not definable in A,V,—, L. Consider the Kripke model with
three nodes ki, ko, k3 and ky < k3, ko < k3, k1 I- p, ksl- p, q. Show for
all — —free formulas ko lF ¢ = k1 I- .

In this exercise we consider now only propositions with a single atom p.
Define a sequence of formulas by g :=1,¢1 := p, s (= =P, Pants =
Von+t1 V Pant2, Pontd ‘= Pant2 — Pont1 and an extra formula oo == T.
There is a specific set of implications among the ¢;, indicated in the

diagram on the left.
p

aq by

® 0

ag ba
b3
by

a4

a5 bs

Fmmmmmmm e m———m
bmmmmmmmmm——m

(i) Show that the following implications hold:
F 0241 = P2nt3, Qa1 — ©onga, I Ponge — ©ongs,
F o — ©n, Fn — .

(ii) Show that the following ‘identities’ hold:
F (902n+1 - 992n+2) = Yoy, (4,02n+2 - 992n+4) > Pont4,
F (2n4+3 = ©2nt1) < Ponta, (V2044 = P2n41) < P2nt6,
F (2n45 = ©ant1) < Poant1, (V2046 = P2n41) < P2n44,
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F (o = Qont1) < Yang1 for k>2n+7,
F (k= Yant2) < Pongo for k> 2n + 3.
Determine identities for the implications not covered above.

(iil) Determine all possible identities for conjunctions and disjunctions
of ¢;’s (look at the diagram).

(iv) Show that each formula in p is equivalent to some ;.

(v) In order to show that there are no other implications than those
indicated in the diagram (and the compositions of course) it suffices
to show that no ¢, is derivable. Why?

(vi) Consider the Kripke model indicated in the diagram on the right.

a1+ p and no other node forces p. Show: Va,, Jo;Vk(kI- ¢; <
k> ay), Vb, 30 VE(kl- ¢ < k > by,)
Clearly the ¢;(y;) is uniquely determined, call it ¢(ay,), resp. (by,).
Show p(a1) = @1, @©(b1) = @2, p(az) = @1, @(b2) = s, P(ant2) =
[(plant+1)Ve(bn)) = (p(an)Ve(bn))] = (@(ant1) Vb)), o(bni2) =
[((an+1) V ©(bpt1)) = (p(an+1) V o(bn))] = (©(ant1) V ©(bni1).

(vii) Show that the diagram on the left contains all provable implications.

Remark. The diagram of the implications is called the Rieger-Nishimura

lattice (it actually is the free Heyting algebra with one generator).

Consider intuitionistic predicate logic without function symbols. Prove
the following extension of the existence property: - Jyp(xy, ..., T, y) <
Fo(x1,..., 2, t), where ¢ is a constant or one of the variables 1, ..., z,.
(Hint: replace x1,...,x, by new constants ai,...,a,).

Let Q171 ... Qnrne(¥, §) be a prenex formula (without function symbols),
then we can find a suitable substitution instance ¢’ of ¢ obtained by replac-
ing the existentially quantified variables by certain universally quantified
variables or by constants, such that b Q121 ... Q¢ (Z,¥) <k ¢ (use
Exercise 31).

Show that F ¢ is decidable for prenex . (use 3.3.17 and Exercise 32).
Remark. Combined with the fact that intuitionistic predicate logic is
undecidable, this shows that not every formula is equivalent to one in
prenex normal form.

Consider a language with identity and function symbols, and interpret
an n-ary symbol F' by a function F) : D(k)® — D(k) for each k in a
given Kripke model K. We require monotonicity: k <1 = Fj C Fj, and
preservation of equality: @ ~p b= F, (@) ~p Fy (5), where a ~p b < k
I-a@ = b.

(i) Show K- Vidly(F (%) =vy)

(ii) Show KCIF Iy.
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(i) Let K- VZTlye(Z,y), show that we can define for each k and Fj,

satisfying the above requirements such that I V(Zp(Z, F(Z)).
(iv) Show that one can conservatively add definable Skolem functions.
Note that we have shown how to introduce functions in Kripke mod-
els, when they are given by “functional” relations. So, strictly speaking,
Kripke models with just relations are good enough.





