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Estimating Causal Effects
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and the Problem of Confounders



Plan for Today

- Review: Causation and Randomized Experiments

- Observational Studies

- Confounding Variables or Confounders
- Why Are Confounders a Problem?
- Why Don’t We Worry About Confounders

in Randomized Experiments?

- How Can We Estimate Causal Effects with
Observational Data?
- Interpretation of β̂ When X Is the Treatment

Variable and Y Is the Outcome Variable



Review: Causation

▶ To measure causal effects, we need to compare the factual
outcome with the counterfactual outcome
▶ Fundamental problem: We can never observe the

counterfactual outcome
▶ To estimate causal effects, we must find or create a

situation in which the treatment and control groups are
comparable with respect to all the variables that might
affect the outcome other than the treatment variable itself

▶ Only when that assumption is satisfied can we use the
factual outcome of one group as a good proxy for the
counterfactual outcome of the other, and vice versa, thus,
bypassing the fundamental problem of causal inference



Review: Randomized Experiments

▶ In randomized experiments, we can rely on the random
assignment of treatment to make treatment and control
groups, on average, identical to each other in terms of all
observed and unobserved pre-treatment characteristics

▶ Thus, we can estimate the average treatment effect with
the difference-in-means estimator

Y treatment group − Y control group



Observational Data
▶ But, what happens when we cannot conduct a randomized

experiment and have to analyze observational data?
▶ Observational data: data collected about naturally

occurring events (i.e., researchers do not get to
assign the treatment)

▶ We can no longer assume that treatment and control
groups are comparable

▶ We need to identify and measure any relevant differences
between treatment and control groups (known as
confounding variables or confounders)

▶ Then, we will need to statistically control for them so that
we can make the two groups comparable after statistical
controls are applied



Confounders or Confounding Variables

▶ A confounding variable is a variable that affects both
▶ (i) the likelihood to receive the treatment X and
▶ (ii) the outcome Y

▶ In mathematical notation, we represent a confounding
variable as Z

X

Z

Y



▶ Let’s look at a simple example. Suppose we are interested
in the average causal effect of attending a private school,
as opposed to a public one, on students test performance
▶ What is the treatment variable X?
▶ What is the outcome variable Y ?
▶ Can you think of a confounder Z?

private school

family wealth

test scores



▶ Not confounders:

private school

raised Catholic

scores private school

sleep

scores

private school

small class

scores



Why Are Confounders a Problem?
▶ They obscure the causal relationship between X and Y
▶ In the example above, if we observed that, on average,

private school students perform better than public school
students, we would not know whether it is
▶ because they attended a private school or
▶ because they came from wealthier families that could

afford to provide them with after-school help
▶ We would not know what portion of the observed

differences in test score performance (the
difference-in-means estimator), if any, could be attributed
to the causal effect of the treatment (attending a private
school) and what portion could be attributed to the
confounding variable (coming from a wealthy family)





▶ In the presence of confounders, correlation does not
necessarily imply causation

▶ Just because we observe two variables highly correlated
with each other—when we observe one increase, we
usually observe the other increase or decrease—it does
not automatically mean that one causes the other
▶ There could be a third variable that causes both

▶ For example, ice cream sales and shark attacks are highly
correlated with each other. Does this mean that eating ice
cream increases the probability that a shark attacks you?

ice cream sales

heat

shark attack



IN THE PRESENCE OF CONFOUNDERS

- correlation does NOT necessarily imply causation

- the treatment and control groups are NOT comparable

- the difference-in-means estimator does NOT provide a
valid estimate of the average treatment effect



Why Don’t We Worry About Confounders
in Randomized Experiments?

▶ Randomization of treatment assignment eliminates all
potential confounders

▶ It ensures that treatment and control groups are
comparable by breaking the link between any potential
confounder and the treatment

▶ If we assign who attends a private school at random, we
ensure that nothing related to the outcome is also related
to the likelihood of receiving the treatment

lottery private school

family wealth

test scores



How Can We Estimate Causal Effects
with Observational Data?

▶ We cannot rely on random treatment assignment to
eliminate potential confounders

▶ We need to identify and measure all confounding
variables and statistically control for them

▶ Before we learn how to do that, we should learn how to fit
a simple linear regression model to produce an estimated
coefficient equivalent to the difference-in-means estimator

▶ Let’s quickly review how we fit a line and interpret the
estimated coefficients



scatter plot where every dot is an observation

Y1

X1



first observation: (X1 , Y1 )

Y1

X1

(X1,Y1)



if we summarize the relationship between X and Y with a line

Y1

X1



we can use the fitted line, to compute Ŷ for every value of X

Y1

X1

(X1,Y1)



prediction errors = vertical distance between dots and line

Y1

Y1

X1

ε1 = Y1 − Y1



we choose the line with the smallest possible errors

Y1

X1



the fitted line: Ŷ = α̂ + β̂X

Y1

X1



estimated intercept (α̂): Ŷ when X=0

α

0

(0, α)

Y1

X1



estimated slope (β̂): △Ŷ associated with △X=1

(Xinitial,Yinitial)

(Xfinal,Yfinal)

Y

X

Y1

X1



Using the Simple Linear Model
to Compute the Difference-in-Means Estimator

When X is the treatment variable and Y is the outcome
variable of interest, the estimated slope coefficient (β̂) is
equivalent to the difference-in-means estimator.

▶ Let’s examine this . . .



▶ Mathematical definition of β̂: △Ŷ associated with △X=1

β̂ = △Ŷ (if △X=1)
= Ŷfinal−Ŷinitial (if △X=1)

▶ If X is the treatment variable:
▶ △X=1 is equivalent to changing from the control

group (X=0) to the treatment group (X=1)
▶ the control group is the initial state, and the

treatment group is the final state

β̂ = Ŷtreatment group−Ŷcontrol group



β̂ = Ŷtreatment group−Ŷcontrol group

▶ Recall: Ŷ are average predicted values. In this case:
Ŷtreatment group = Y treatment group and Ŷcontrol group = Y control group

β̂ = Y treatment group − Y control group

▶ Conclusion: When X is the treatment variable and Y is
the outcome variable of interest, the estimated slope
coefficient (β̂) is equivalent to the difference-in-means
estimator



▶ Let’s return to the exercise from Lecture 6: Does Social
Pressure Affect Turnout?

▶ We answer it by analyzing data from a randomized
experiment where registered voters were randomly
assigned to either (a) receive a message designed to
induce social pressure, or (b) receive nothing



Does Social Pressure Affect Turnout?

(Based on Alan S. Gerber, Donald P. Green, and Christopher W. Larimer.
2008. “Social Pressure and Voter Turnout: Evidence from a Large-Scale
Field Experiment." American Political Science Review, 102 (1): 33-48.)

http://www.donaldgreen.com/wp-content/uploads/2015/09/Gerber_Green_Larimer-APSR-2008.pdf
http://www.donaldgreen.com/wp-content/uploads/2015/09/Gerber_Green_Larimer-APSR-2008.pdf
http://www.donaldgreen.com/wp-content/uploads/2015/09/Gerber_Green_Larimer-APSR-2008.pdf


1. Load and look at the data
voting <− read.csv("voting .csv") # loads and stores data

head(voting) # shows first six observations
## birth message voted
## 1 1981 no 0
## 2 1959 no 1
## 3 1956 no 1
## 4 1939 yes 1
## 5 1968 no 0
## 6 1967 no 0

2. Create treatment variable
voting$pressure <−

ifelse (voting$message=="yes",
1, 0) # creates treatment variable



▶ Make sure the new variable was created correctly by
looking at the first few observations again:
head(voting) # shows first six observations
## birth message voted pressure
## 1 1981 no 0 0
## 2 1959 no 1 0
## 3 1956 no 1 0
## 4 1939 yes 1 1
## 5 1968 no 0 0
## 6 1967 no 0 0



3. Compute difference-in-means estimator directly
mean(voting$voted[voting$pressure==1]) −

mean(voting$voted[voting$pressure==0])
## [1] 0.08130991

4. Alternatively, we can fit a linear model where X is the
treatment variable and Y is the outcome variable



▶ Recall: the R function to fit a linear model is lm()
▶ required argument: a formula of the type Y ∼ X

lm(voting$voted ~ voting$pressure ) # or

lm(voted ~ pressure , data=voting)
##
## Call :
## lm(formula = voted ~ pressure , data = voting)
##
## Coefficients :
## ( Intercept ) pressure
## 0.29664 0.08131

▶ Fitted model: v̂oted = 0.30 + 0.08 pressure
▶ Note that β̂ has the same value as the

difference-in-means estimator above (both equal 0.08)



Interpretation of β̂ When X Is the Treatment
Variable and Y Is the Outcome Variable

▶ Start same as in predictive models
▶ definition: β̂ is the △Ŷ associated with △X=1
▶ here: β̂ = 0.08 is the △v̂oted associated with

△pressure=1
▶ in words: receiving the message inducing social

pressure (i.e., an increase in pressure of 1 by going
from pressure=0 to pressure=1) is associated with a
predicted increase in the probability of voting of 8
percentage points, on average

▶ unit of measurement of β̂? same as △Y ; here, Y is binary
so △Y is measured in p.p and so is β̂ (after x 100)



▶ Now, since here X is the treatment variable and Y is the
outcome variable of interest, β̂ is equivalent to the
difference-in-means estimator

▶ As a result, we can interpret β̂ using causal langauge

▶ Predictive language: We estimate that receiving the
message inducing social pressure is associated with a
predicted increase in the probability of voting of 8
percentage points, on average

▶ Causal language: We estimate that receiving the message
inducing social pressure increases the probability of
voting by 8 percentage points, on average



▶ This should be a valid estimate of the average treatment
effect if there are no confounding variables present
▶ if registered voters who received the message are

comparable to the registered voters who did not

▶ Since the data come from a randomized experiment there
should be no confounding variables

▶ And thus the difference-in-means estimator should
produce a valid estimate of the average treatment effect



▶ Whether we compute the difference-in-means estimator
directly or we fit a simple linear model where Y is the
outcome variable and X is the treatment variable, we
arrive to the same conclusion

▶ Conclusion: We estimate that receiving the message
inducing social pressure increases the probability of
voting by 8 percentage points, on average. This is a valid
estimate of the average treatment effect if registered
voters who received the message are comparable to the
registered voters who did not (that is, if there a no
confounding variables). Given that the data come from a
randomized experiment, this is a reasonable assumption.



INTERPRETATION OF THE ESTIMATED SLOPE
COEFFICIENT IN THE SIMPLE LINEAR MODEL:
▶ By default, we interpret β̂ using predictive language:

It is the △Ŷ associated with △X=1.
▶ When X is the treatment variable, then β̂ is

equivalent to the difference-in-means estimator and,
thus, we interpret β̂ using causal language: It is the
△Ŷ caused by △X=1 (the presence of the
treatment). This causal interpretation is valid if there
are no confounding variables present and, thus, the
treatment and control groups are comparable.


