Electric discharges– Paschen law shortened second lecture

Doporučená literatura:

Úvod do fyziky plazmatu ČSAV, Academia Praha 1984 Francis F. Chen

Professor Dr. Yuri P. Raizer

This edition is based on the original second Russian edition: *Fizika gazovogo razryad* © Nauka, Moscow 1987, 1992

1st Edition 1991 Corrected 2nd Printing 1997

ISBN 3-540-19462-2 Springer-Verlag Berlin Heidelberg New York

Viktor Martišovič ZÁKLADY FYZIKY PLAZMY Bratislava 2004 Učebný text pre 3. ročník magisterského štúdia FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO

The voltage of Nicola Tesla's man-made lightning can be calculated from altitude and gap

Plazmatické světelné zdroje

Nízkotlaké světelné zdroje, zářivky, sodíkové nízkotlaké výbojky, Vysokotlaké plazmatické světelné zdroje, konstrukce a provoz, plazmové zobrazovače

Gas Discharge Light Sources

Marco Miebach Presentation incoherent light sources

Historical overview

- > 1675: Phenomenon of glowing vacant space in a Barometer while moving it, discovered by Jean-Felix Picard
- > 1705: First Demonstration of gas discharge lamp by Francis Hauksbee
- > 1857: Development of Geissler Tubes (low-pressure gas discharge tubes) by Heinrich Geissler
- 1898: Discovery of Neon by William Ramsay and Morris W. Travers
- > 1910: Commercialization of Geissler Tubes as neon lighting, used in neon signs

Jean Picard (1620-1682) Astronom Zodpovědný za první přesné měření poloměru Země

Jean Picard si všiml, že prázdný prostor v jeho rtuťovém barometru zářil, jak se rtuť chvěla, když nesl barometr. Francis Hauksbee poprvé předvedl plynovou výbojku v roce 1705. Ukázal, že evakuovaná nebo částečně evakuovaná skleněná koule, do které umístil malé množství rtuti, nabíjená statickou elektřinou, může produkovat světlo dostatečně jasné, aby se dalo číst.

Generator built by Francis Hauksbee. From Physico-Mechanical Experiments, 2nd Ed., London 1719

Geisslerovy trubice

Heinrich Geisler (1814-1879)

Dvě elektrody v trubici s plynem (neon, argon, krypron, xenon, vodík, CO_2) o nízkém tlaku, doutnavý výboj

Neonové výbojky

Komerčně produkoval Georges Claude od roku 1910

0.4 – 3 kPa, doutnavý výboj (hlavně pozitivní sloupec)

Oranžová barva (neon)

Další barvy s využitím jiných plynů (vodík – červená, helium – žlutá, CO2 – bílá, rtuť – modrá) a luminoforů

Neon glow lamp (doutnavka)

Vypínače, indikátory, ochrana proti přepětí, stabilizátory napětí atd. Tlak řádově stovky Pa Dvě elektrody blízko sebe, doutnavý výboj

Zkoušečka

Types of gas light sources

Overview

Overview:

- > Low pressure gas discharge lamps
- > High pressure gas discharge lamps
- > Excimer lamp

Rtuťová výbojka (za atmosférického tlaku)

Wavelength (nm)	Name (see <u>photoresist</u>)	Color
184.45		ultraviolet (UVC)
253.7		ultraviolet (UVC)
365.4	I-line	ultraviolet (UVA)
404.7	H-line	violet
435.8	G-line	blue
546.1		green
578.2		yellow-orange
650		red

Výbojem v argonu se začne vypařovat rtuť a tlak vzroste na 2 – 18 atmosfér -> výboj v parách rtuti, tato nástupní fáze trvá několik minut během nichž lampa svítí čím dál tím více. Luminofor kolem výbojky se používá, aby bylo záření příjemnější pro oči).

Přítomnost silného ultrafialového záření se využívala k desinfekci.

Dnes se většinou k osvětlení nepoužívají (příliš mnoho rtuti)

Types of gas light sources

Low pressure gas discharge lamp

Sketch of a low pressure mercury vapour gas discharge fluorescent lamp.

Fachhochschule

Münster University of

Applied Sciences

Komerční vývoj zářivek byl inicializován výzkumy Arthura Comptona (Nobel prize 1927) ve třicátých letech.

Zářivky (Low pressure fluorescent lamp)

Zářivky (Low pressure fluorescent lamp)

Types of gas light sources

Low pressure gas discharge lamp

Phosphor composition:

- > "Old" Halophosphate-type Phosphor:
 - > Mainly emits yellow and blue light
 - > Weak emission of red and green light
 - > Appears white to the eye
 - > Has incomplete Spectrum => CRI ~ 60
- > "New" Triphosphor mixture (since 1990s):
 - > Based on Eu and Tb
 - > More evenly distributed VIS spectrum
 - > CRI typically 82-100

CRI – color rendering index (100 sun black body radiation)

Types of gas light sources

Fachhochschule Münster University of Applied Sciences

Low pressure gas discharge lamp

Spectrum from a 48" Philips F32T8 natural sunshine fluorescent light

Plazmové zobrazovače

Spektralni charakteristiky typicky používaných luminoforů

Plazmové zobrazovače

Lepší kontrast než LCD, velmi dobrá reprodukce barev Velmi široký úhel, ze kterého je možné se na televizi dívat Vysoká obnovovací frekvence a odezva Relativně velká spotřeba elektřiny "Vypalování obrazu" – přehřátí luminoforu <u>Dnes už komerčně nahrazeny LCD a OLED</u> Větší hmotnost než LCD obrazovky

Plasma displays were first used in PLATO computer terminals. This PLATO V model illustrates the display's monochromatic orange glow seen in 1981

http://www.exo.net/~pauld/origins/glowdisharge.html

Louis Carl Heinrich Friedrich Paschen (22 January 1865 - 25 February 1947)

He is also known for the Paschen series, a series of hydrogen spectral lines in the infrared region that he first observed in 1908. He established the now widely used Paschen curve in his article "Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drücken erforderliche Potentialdifferenz".[1]

 H_2

Xe

Louis Carl Heinrich Friedrich Paschen (22 January 1865 - 25 February 1947)

He is also known for the Paschen series, a series of hydrogen spectral lines in the infrared region that he first observed in 1908. He established the now widely used Paschen curve in his article "Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drücken erforderliche Potentialdifferenz".[1]

 H_2

Xe

Contents

Electric discharges V-A characteristic

Direct current (DC) glow discharge

Doporučená literatura:

Reactive plasmas Andre Ricard

Glow discharges

Several parts of a glow discharge. Luminous intensity (I light), electric field (E) and voltage (V). V_c cathode potential.

Glow discharges

Obr. 5.9: Štruktúra tlecieho výboja a priebehy pozdĺžneho poľa E, potenciálu U, koncentrácie nabitých častíc n_+ a n_- a hustoty prúdu kladných iónov a elekrónov i_+ a i_-

Struktúra tlecieho výboja a priebehy pozdlzneho pola E, potenciálu U, koncentrácie nabitých castic n+ a n- a hustoty prúdu kladných iónov a elekrónov i+ a i-

Several parts of a glow discharge. Luminous intensity (I light), electric field (E) and voltage (V). V_c cathode potential.

Glow discharges

 $p\cong 0.1-10$ mbar ; $U\cong 150-2000$ V

A simple glow discharge theory I. – the positive column

A simple glow discharge theory II. – the negative glow

Self sustained discharge: the number of ions created in an avalanche can produce one new electron on the cathode

Gas lasers

The He-Ne laser

Segmented hollow-cathode silver ion laser

+ 20 μ m silver

Electric discharges

Introduction to Electric Discharges

FP III/P5 C- 2005

Electric discharges– Paschen law, time dependencies Breakdown voltage

Doporučená literatura:

Úvod do fyziky plazmatu ČSAV, Academia Praha 1984 Francis F. Chen

> J. Phys. D: Appl. Phys. **35** (2002) R91–R103 **TOPICAL REVIEW** Electrical breakdown in low pressure gases M M Pejovic, G S Ristic, and J P Karamarkovic

Reactive plasmas Andre Ricard

CHARACTERISTICS OF PLASMAS-DISCHARGES	11-30
Plasma characteristic scales	11-15
Electrical discharges	15-30

RF diode discharge

For technological applications – surface treatments

Microwave discharge

Microwave discharge \rightarrow surfaguige discharge

Vlnovodwaveguide

Surfatron discharge

A special characteristic of surface waves is to propagate along the discharge tube wall and to penetrate inside the tube to create the plasma. The radial distribution of electric field is given by the following equation (note 2 p. 11):

$$E(r) = A I_o (B n_e^{1/2} r)$$
(1-34)

where A and B are constant values and I_o is the modified Bessel function.

Axial distribution of electron density, measured in microwave plasma columns (Ar, 0.1 Torr, R = 1.3 cm) at 200 and 500 MHz.

Surfatron

Thus, the E(r) value is maximum for r = R and it is minimum for r = 0. The local maximum of electric field at the tube wall is more pronounced as the electron density and the tube radius increase. This effect has been observed by analyzing the plasma light⁽⁹⁾

Radial distribution of the Ar I 549.6 nm line intensity in microwave discharge.

(a) 600 MHz, 0.1 Torr and several values of diameter (2a)
(b) diameter 2a = 26 mm and several values of microwave frequencies.
Two Sputtering Systems

Several kilovolts are applied and gas pressures usually range from a few to a hundreds millitorr.

Types of plasmas (electron density)

- Stars (density $n < 10^7 \text{ cm}^{-3}$)
- Solar winds (density $n < 10^7 \text{ cm}^{-3}$)
- Coronas (density $n < 10^7 \text{ cm}^{-3}$)
- Ionosphere (density $n < 10^7 \text{ cm}^{-3}$)
- Glow discharge (density $n = 10^8 \sim 10^{14} \text{ cm}^{-3}$)
- Arcs (density $n = 10^8 \sim 10^{14} \text{ cm}^{-3}$)
- High-pressure arc (density n ~ 10^{20} cm⁻³)
- Shock tubes (density n ~ 10^{20} cm⁻³)
- Fusion reactors (density n ~ 10^{20} cm⁻³)

Principal Glow Discharge Mechanism by Biased Parallelplate

v

Principal Glow Discharge Mechanism by Biased Parallelplate

- 1. A stray electron near the cathode carrying an initial current i_0 is accelerated toward the anode by the applied electric field (E).
- 2. After gaining sufficient energy the electron collides with a neutral gas atom (A) converting it into a positively charged ion (A⁺), i.e., $e^- + A \rightarrow 2e^- + A^+$.
- 3. Two electrons are generated and are accelerated and bombard two additional neutral gas atoms, generating more ions and electrons, and so on.
- 4. Meanwhile, the electric field drives ions in the opposite direction.
- 5. Ions collide with the cathode, ejecting, among other particles, *secondary electrons*.
- 6. Secondary electrons also undergo charge multiplication. (step 2)
- 7. The effect snowballs until a sufficiently large avalanch current ultimately causes the gas to breakdown.

http://webhost.ua.ac.be/plasma/pages/glow-discharge.html

PLASMAS – THE 4th STATE OF MATTER

CHARACTERISTICS OF TYPICAL PLASMAS

Plasmas consist of freely moving charged particles, i.e., electrons and ions. Formed at high temperatures when electrons are stripped from neutral atoms, plasmas are common in nature. For instance, stars are predominantly plasma. Plasmas are a "Fourth State of Matter" because of their unique physical properties, distinct from solids, liquids and gases. Plasma densities and temperatures vary widely.

http://fusedweb.pppl.gov/CPEP/Translations.html

$j \sim f(d, E/N)$

Рис. 5.3. Экспериментальный график, демонстрирующий постоянство а и экспоненциальный характер нарастания тока в разрядном промежутке; ионизационные коэффициенты определяются наклонами прямых [6]

Рис. 5.4. Ионизационный коэффициент Таунсенда
 α в N_2 по разным измерениям

Obr. 5.2: Zapaľovanie výboja: a) výbojka na meranie zapaľovacieho napätia: K - katóda, A - anóda, UV - ultrafialové žiarenie zabezpečujúce emisiu primárnych elektrónov, VS - napojenie na vákuový systém; b) elektrónová lavína; c) označenie polohy elektród

$$\frac{\mathrm{d}j_-}{\mathrm{d}x} = \alpha n_- = \frac{\alpha}{V_-} n_- V_- = \delta j_-$$

 $j \sim j_0 exp(\alpha x)$

E/N 1 Townsend = 1 Td = 10^{-17} Vcm² = 10^{-21} Vm² E/p at 293 K (cca 20 C)..... 1V/cmTorr=3.034Td, resp. 1 Tc

1 Td = 0,3296 V/cmTorr

Ionization frequency and ionization coefficient

For example, in argon, $C_i = 2 \cdot 10^{-17} \text{ cm}^2/\text{eV}$. If $T_e = 1 \text{ eV}$, then $\bar{v} = 6.7 \cdot 10^7 \text{ cm/s}$ and $k_i = \langle v\sigma_i \rangle = 3 \cdot 10^{-16} \text{ cm}^3/\text{s}$. If p = 50 Torr and T = 300 K, then $N = 1.7 \cdot 10^{18} \text{ cm}^{-3}$. This gives $\nu_i = 510 \text{ s}^{-1}$. At these T_e and N, the equilibrium degree of ionization is $(n_e)_{eq}/N = 0.021$. The values of C_i for several other gases (in $10^{-17} \text{ cm}^2/\text{eV}$) are

He-0.13 , Ne-0.16 , Hg-7.9 , $N_2-0.85$, $O_2-0.68$, $H_2-0.59$.

N will be double within 1.4ms \rightarrow if $n_0=1 \rightarrow$ at T=1eV equilibrium will be reached within 75ms Experiments are giving time many times shorter

It is more convenient, therefore, to characterize the rate of ionization not by frequency $\nu_i s^{-1}$, but by the *ionization coefficient* αcm^{-1} , that is, the number of ionization events performed by an electron in a 1 cm path along the field.

 $\alpha = \nu_{\rm i}/v_{\rm d}$, $\nu_{\rm i} = \alpha v_{\rm d}$

Note that the primary and complete characteristic of the rate of ionization is the frequency ν_i , not α . The distribution function gives us this frequency, as well as the drift velocity. The ionization coefficient α is a derived quantity, found from (4.3). Actually, α is not very meaningful in fast-oscillating fields. However, dc measurements give us α , not ν_i .

Breakdown cannot be simply explained by ionization

Electric discharges – data semi-empirical approach

Рис. 5.3. Экспериментальный график, демонстрирующий постоянство а и экспоненциальный характер нарастания тока в разрядном промежутке; ионизационные коэффициенты определяются наклонами прямых [6]

Рис. 5.4. Ионизационный коэффициент Таунсенда α в N₂ по разным измерениям

E/N 1 Townsend = 1 Td = 10^{-17} Vcm² = 10^{-21} Vm²

E/p at 293 K (cca 20 C)..... 1V/cmTorr=3.034Td, resp. 1 Td = 0,3296V/cmTorr

Breakdown cannot be simply explained by ionization

POZOR ROZDIEL

 $\frac{\mathrm{d}j_-}{\mathrm{d}x} = \alpha n_- = \frac{\alpha}{V_-} n_- V_- = \delta j_-$

Рис. 5.3. Экспериментальный график, демонстрирующий постоянство а и экспоненциальный характер нарастания тока в разрядном промежутке; ионизационные коэффициенты определяются наклонами прямых [6]

Рис. 5.4. Ионизационный коэффициент Таунсенда α в N₂ по разным измерениям

- *i*: charge current
- α : Townsend ionization coefficient
- γ_e : Townsend secondary electron emission coefficient
- d: Distance between electrodes

Breakdown cannot be simply explained by ionization

Measurements of α and similarity laws

10-5

12

Fig. 4.2. Ionization coefficient in a) He, b) air, c) Ar, d) N₂. From [4.2]

10

40

E/p[V/cm. Torr]

120

80

dU/dt is not considered

Data for Paschen law

с, демонстрирующий постоянство α и экстока в разрядном промежутке; ионизационэляются наклонами прямых [6]

ент Таунсенда α в N₂ по разным измерениям

Tabi	e 4.1. Constant	s in the formula:	s for the ionizati	on coefficient,	and regions of appli	icability [4.4,5]
Gas	Α	В	E/p	С	D	E/p <
	cm-1Torr-1	V/(cm · Torr)	V/(cm · Torr)	cm ⁻¹ Torr ⁻¹	V/(cm · Torr)1/2	V/(cm · Torr)
He	3	34	20-150	4,4	14	100
Nc	4	100	100-400	8.2	17	250
Ar	12	180	100-600	29.2	26.6	700
Kr	17	240	100-1000	35.7	28.2	900
Xe	26	350	200-800	65.3	36.1	1200
Hg	20	370	150-600			
H ₂	5	130	150-600			
N ₂	12	342	100-600			
N_2	8.8	275	27-200			
Air	15	365	100-800			
CO_2	20	466	500-1000			
H ₂ O	13	290	150-1000			

See next slide

$d\mathcal{N}/dx = \alpha \mathcal{N}$, $\mathcal{N}(x) = \mathcal{N}_0 \exp(\alpha x)$

4.1.5 Interpolation Formula for α

The theoretical and numerical analysis of discharges widely uses a conventional empirical formula suggested by Townsend:

$$\alpha = Ap \exp(-Bp/E) . \tag{4.5}$$

The constants A and B are determined by approximating the experimental curves (Table 4.1). In a number of cases the relation (4.5) can be attributed a certain physical meaning. Assume, for example, that an electron undergoes only ionizing collisions. (This assumption may be realistic at high E/p and moderate energies.) The energy picked up by an electron along a free path length x is slightly greater than the ionization potential I. The probability that it will move the distance x = I/eE without collisions and then be involved in an ionizing collision in a distance dx is $\alpha dx = dx l^{-1} \exp(-I/eEl)$, where $l = l_1/p$ is the mean-free-path length. This gives us (4.5) with $A = l_1^{-1}$, $B = I/el_1$. If $\sigma = 5 \cdot 10^{-16}$ cm², then $l_1 = 0.06$ cm \cdot Torr; if I = 15 eV, then A = 17, B = 250, which is quite close to tabulated values.

The fraction of electrons in a Maxwellian spectrum that are capable of ionizing an atom is proportional to $\exp(-I/kT_e)$. If $T_e \propto E/p$ (see Sect. 2.3.5), we again arrive at a dependence of ν_i and α on E of type (4.5), but now the constant B has a different meaning. It will be shown in Sect. 7.4.7 that an approximate solution of the kinetic equation that takes into account the large role of inelastic losses of electron energy on excitation also leads to a relation of type (4.5), but again with a changed meaning of B. For inert gases, the formula

 $\alpha = Cp \exp\left[-D(p/E)^{1/2}\right]$

Electric discharges <u>semi-empirical approach</u>

The theoretical and numerical analysis of discharges widely uses a conventional empirical formula suggested by Townsend:

$$\alpha = Ap \exp(-Bp/E) \qquad \alpha = Cp \exp\left[-D(p/E)^{1/2}\right]$$

Tabl	e 4.1. Constant	s in the formula	s for the ionizati	on coefficient,	and regions of appli	icability [4.4,5]
Gas	A	В	E/p	С	D	E/p <
	cm ⁻¹ Torr ⁻¹	V/(cm · Torr)	V/(cm · Torr)	cm ⁻¹ Torr ⁻¹	$V/(cm \cdot Torr)^{1/2}$	V/(cm · Torr)
He	3	34	20-150	4,4	14	100
Ne	4	100	100400	8.2	17	250
Ar	12	180	100-600	29.2	26.6	700
Kr	1 7	240	100-1000	35.7	28.2	900
Xe	26	350	200-800	65.3	36.1	1200
Hg	20	370	150-600			
H_2	5	130	150-600			
N ₂	12	342	100-600			
N_2	8.8	275	27-200			
Air	15	365	100-800			
CO ₂	20	466	500-1000			
н-О	13	290	1501000			

empirical formula for air at relatively high E/p (see also Table 12.1)

,

$$\alpha/p = 1.17 \cdot 10^{-4} (E/p - 32.2)^2 \text{ cm}^{-1} \text{ Torr}^{-1}$$

 $E/p \approx 44 - 176 \text{ V}/(\text{cm} \cdot \text{Torr})$.

4.1.7 Stepwise Ionization

The atoms of a weakly ionized gas are mostly ionized from the ground state. Many excited atoms and molecules may be formed if the gas is highly ionized, and stepwise ionization may be predominant. Atoms are first excited by electron impact and then ionized by subsequent collisions. Long-lived metastable excited particles play an important role in this process (Table 4.2); their ionization cross sections are rather high (Fig. 4.6).

Fig. 4.1. Cross sections and probabilities of electron impact ionization. From [4.1]

Comparable values lower threshold energies \rightarrow higher probability at given T_e

Table 4.3. Cross sections of photoionization of atoms and molecules from the ground state close to the threshold

Gas	$\hbar\omega = I, \mathrm{eV}$	λ,Å	σ_{ν} , 10^{-18} cm ²
Н	13.6	912	6.3
He	24.6	504	7.4
Ne	21.6	575	4.0
Ar	15.8	787	35
Na	5.14	2412	0.12
Κ	4.34	2860	0.012
Cs	3.89	3185	0.22
Ν	14.6	852	9
0	13.6	910	2.6
O2	12.2	1020	~ 1
N_2	15.58	798	26
H ₂	15.4	805	7

4.2.3 Associative Ionization

This process of type $A + A^* \rightarrow A_2^+ + e$, discovered by Hornbeck and Molnar in 1951, is sometimes important in inert gases. The separation of an electron is facilitated by the release of a small binding energy of order 1 eV in the association of an ion and an atom into a molecular ion. A reaction in helium involves atoms excited to states with the principal quantum number n = 3; their electron binding energies are from 1.52 to 1.62 eV. The binding energy of He₂⁺ is somewhat higher, 2.23 eV, so that the electron can be ejected. At T = 400 K, the reaction cross sections are $2 \cdot 10^{-16} - 2 \cdot 10^{-15}$ cm². The associative ionization in mercury vapor involves two excited atoms,

$$\operatorname{Hg}(6^{3}P_{1}, E^{*} = 4.9 \,\mathrm{eV}) + \operatorname{Hg}(6^{3}P_{0}, E^{*} = 4.7 \,\mathrm{eV}) \rightarrow \operatorname{Hg}_{2}^{+} + e$$

the first atom being in a resonance and the second, in a metastable state. The total energy is 9.6 eV, less than that required to ionize an Hg atom ($I_{Hg} = 10.4 \text{ eV}$); together with the binding energy of an Hg⁺₂ molecular ion, however (0.15 eV), it is sufficient to ionize the molecule ($I_{Hg_2} = 9.7 \text{ eV}$).

Electric discharges - Penning ionization

4.2.2 Ionization by Excited Atoms

Even the high kinetic energy of slow heavy particles is not effective in ionization processes. Ionization requires the velocities of atoms and molecules to be comparable to the electron velocity in atoms, 10⁸ cm/s, which corresponds to energies of 10 to 100 keV, not realizable in discharge conditions. On the other hand, the atomic excitation energy E^* is easily spent on liberating an electron from another atom, provided, of course, that it exceeds the ionization potential I. Resonance-excited atoms are especially effective in this respect. Thus the ionization cross sections of Ar, Kr, Xe, N₂, and O₂ in impacts by He($2^{1}P$) atoms with $E^* = 21.2 \,\mathrm{eV}$ is $\sigma \approx 2 \cdot 10^{-14} \,\mathrm{cm}^2$, which is much greater than the gas-kinetic value [4.8]. Cross sections for ionization by metastable atoms, also with $E^* > I$ (Penning effect), are smaller but metastable atoms are much more numerous than short-lived resonance-excited atoms. Cross sections for ionization of Ar. Xe. N2. CO₂ by metastable He(2^3S) atoms with $E^* = 19.8 \,\text{eV}$ reach $10^{-15} \,\text{cm}^2$, and that of Hg is exceptionally large: $1.4 \cdot 10^{-14} \text{ cm}^2$ [4.8].

Electric discharges – processes going again ionization

4.3.1 Decay of Plasma

In the absence of an electric field, the charge densities $n_e = n_+$ in a plasma without electronegative components decay with time according to the law

$$\left(\frac{dn_{\rm e}}{dt}\right)_{\rm r} = -\beta n_{\rm e} n_{\rm +} , \quad n_{\rm e} = \frac{n_{\rm e}^0}{1 + \beta n_{\rm e}^0 t} \xrightarrow[t \to \infty]{} \frac{1}{\beta t} . \tag{4.8}$$

For example, if the <u>electron-ion recombination coefficient $\beta = 10^{-7} \text{ cm}^3/\text{s}$ and the initial plasma density $n_e^0 = 10^{10} \text{ cm}^{-3}$, then the characteristic decay time $\tau_r = (\beta n_e^0)^{-1} = 10^{-3} \text{ s}$. The recombination coefficient can be determined experimentally, by measuring $n_e(t)$ and plotting n_e^{-1} as a function of t. The slope of the straight line gives β .</u>

4.3.2 Dissociative Recombination

4.3.3 Radiative Recombination

Cross sections of the process $A^+ + e \rightarrow A + h\nu$ are very small: $\sigma_c \sim 10^{-21} \text{ cm}^2$. The recombination coefficient is correspondingly small [4.9]

$$\beta_{\rm rr} = \langle v\sigma_{\rm c} \rangle \approx 2.7 \cdot 10^{-13} \left\{ T_{\rm c} [\rm eV] \right\}^{-3/4} \rm cm^3/s \sim 10^{-12} \, \rm cm^3/s \;. \tag{4.9}$$

4.3.4 Radiative Recombination in Three-Body Collisions

This process follows the scheme $A^+ + e + e \rightarrow A + e$; it is the main process in high-density low-temperature equilibrium plasma where $T \approx T_e \sim 10^4$ and the concentration of molecular ions is too low for dissociative recombination to be significant. In three-body collisions, electrons are captured by ions to form very high by excited atoms with a binding energy of order kT. An excited atom is then gradually deactivated by subsequent electron impacts, it "cascades" down the level staircase, and finally falls to the ground state from the lower excited state by radiative transition. This completes the process of recombination; its coefficient is [4.9]

$$\beta_{\rm crr} = 8.75 \cdot 10^{-27} \{T[eV]\}^{-9/2} n_e$$

= 5.2 \cdot 10^{-23} \{T[kK]\}^{-9/2} n_e \cdot cm^3/s . (4.10)

According to (4.9, 10), β_{crr} exceeds the radiative recombination coefficient if

$$n_{\rm c} > 3.1 \cdot 10^{13} \{T[eV]\}^{3.75} = 3.2 \cdot 10^9 \{T[kK]\}^{3.75} \,{\rm cm}^{-3}$$
. (4.11)

The recombination rate constant of triple collisions involving an atom as a third particle, β/N , is less than β_{crr}/n_e of (4.10) by a factor of $10^7 - 10^8$. This process is not typical for discharge conditions and can manifest itself only at very weak ionization and high pressures.

Electric discharges – <u>Electron attachment</u>

4.4 Formation and Decay of Negative Ions

4.4.1 Attachment $e + O_2 + 3.6 eV \rightarrow O + O^-$, $e + CO_2 + 3.85 eV \rightarrow CO + O^-$, $e + H_2O + 4.25 eV \rightarrow OH + H^-$, $e + H_2O + 3.6 eV \rightarrow H_2 + O^-$, $e + H_2O + 3.2 eV \rightarrow H + OH^-$.

a/p/10-3cm-1. Torr-1

Fig. 4.11. Dissociative attachment rate constant of O_2 as a function of mean electron energy. From [4.12]

Fig. 4.12. Electron attachment coefficient in pure oxygen at T = 300 K and various pressures. From [4.12]

Fig. 4.13. Electron attachment coefficient in moist air, for various air humidity values: A: dry air; B: total pressure 150 Torr, water vapor pressure 2.5 Torr (150/2.5); C (150/5); D (150/9); E (150/15); F and G – air with negligible amount of water vapor. From [4.13, 14]

The multiplication of electrons in an avalanche is determined by the effective coefficient $\alpha_{\text{eff}} = \alpha - a$. If $\alpha < a$ (this happens at E/p less than a certain value for a given gas, see Sect. 7.2.5), multiplication becomes impossible.

Ionization contra electron attachment

Fig. 4.13. Electron attachment coefficient in moist air, for various air humidity values: A: dry air; B: total pressure 150 Torr, water vapor pressure 2.5 Torr (150/2.5); C (150/5); D (150/9); E (150/15); F and G – air with negligible amount of water vapor. From [4.13, 14]

$dN_{\rm e}/dx = (\alpha - a)N_{\rm e}$, $N_{\rm e} \propto \exp{(\alpha - a)x}$;

Breakdown condition

Fig. 7.5. Ionization and attachment frequencies in air, calculated using the solution of the kinetic equation. Intersection at E/p = 41 V/cm·Torr

Electric discharges - cathode

Fig. 4.14. Current density of thermionic emission as a function of cathode temperature for a number of materials. From [4.16]

photon energy. From [4.2]

Paschen law – data gama

$$i = \frac{i_0 \exp(\delta d)}{1 - \sqrt[n]{\exp(\delta d)} - 1]}$$

,

<u>V důsledku emise opouští povrch katody elektrony s hustotou toku γj_+ </u>

*Е/р~*30—40 В/(см • тор), характерных для просоя плотных газов, в

(5.5)

7.2 Breakdown and Triggering of Self-Sustained Discharge in a Constant Homogeneous Field at Moderately Large Product of Pressure and Discharge Gap Width

Electric discharges Townsend avalanche theory

Obr. 5.2: Zapaľovanie výboja: a) výbojka na meranie zapaľovacieho napätia: K - katóda, A - anóda, UV - ultrafialové žiarenie zabezpečujúce emisiu primárnych elektrónov, VS - napojenie na vákuový systém; b) elektrónová lavína; c) označenie polohy elektród

Electric discharges Townsend avalanche theory

$$\frac{\mathrm{d}j_-}{\mathrm{d}x} = \alpha n_- = \frac{\alpha}{V_-} n_- V_- = \delta j_-$$

Obr. 5.2: Zapaľovanie výboja: a) výbojka na meranie zapaľovacieho napätia: K - katóda, A - anóda, UV - ultrafialové žiarenie zabezpečujúce emisiu primárnych elektrónov, VS - napojenie na vákuový systém; b) elektrónová lavína; c) označenie polohy elektród

medzi elektródami (obr. 5.2 c). Povrch katódy K sa nachádza v mieste x = 0 a povrch anódy A v mieste x = d. Elektróny sa pohybujú smerom k anóde a vytvorené kladné ióny ku katóde, kde zanikajú. Podobne ako v odseku 4.3.1, môžeme napísať rovnicu kontinuity pre elektróny v jednorozmernej geometrii a v ustálenom stave

$$\frac{\mathrm{d}j_-}{\mathrm{d}x} = \alpha n_- = \frac{\alpha}{V_-} n_- V_- = \delta j_-, \qquad (5.2)$$

kde V_{-} je driftová rýchlosť elektrónov v elektrickom poli (v homogénnom poli je konštantná) a $\delta = \alpha/V_{-}$ je **prvý Townsendov koeficient**. Analogická rovnica platí aj pre kladné ióny

$$\frac{\mathrm{d}j_+}{\mathrm{d}x} = \alpha n_- = \delta j_- \,. \tag{5.3}$$

Electric discharges Townsendov výboj

Prvý Townsendov koeficient δ má rozmer m⁻¹ a označuje počet ionizácii, ktoré vykoná jeden elektrón v smere elektrického poľa na jednotkovej dráhe (na rozdiel od ionizačnej frekvencie α udávajúcej počet ionizácií za jednotku času). Ak rovnice odčítame, dostaneme

$$\frac{\mathrm{d}(j_+ - j_-)}{\mathrm{d}x} = 0 \quad \Rightarrow j_+ - j_- = K = \text{ konšt}.$$

Potom hustota elektrického prúdu medzi elektródami $i = e(j_+ - j_-) = eK$ je taktiež konštantná, napriek tomu, že hustoty toku elektrónov a iónov sa menia s polohou x.

V homogénnom poli je Townsendov ko
eficient δ konštantný a preto môžeme rovnice kontinuity ľahko integrovať

$$j_{-} = C \exp(\delta x);$$
 $j_{+} = C \exp(\delta x) + i/e,$

kde C je integračná konštanta. Hodnota tejto integračnej konštanty sa dá určiť z hustoty toku elektrónov na katóde: $C = j_{-}(0)$. Potom

$$j_{-} = j_{-}(0) \exp(\delta x); \qquad j_{+} = j_{-}(0) \exp(\delta x) + i/e.$$
 (5.4)

Problém určenia hustoty toku $j_{-}(0)$ spočíva v tom, že okrem primárnych elektrónov emitovaných z katódy ultrafialovým žiarením (ich hustotu toku označíme j_{0}), elektróny emitujú aj dopadajúce kladné ióny. Tento typ emisie sa nazýva **potenciálová emisia**.

Potenciálová emisia

Obr. 5.3: Emisia elektrónu pri dopade kladného i
ónu na povrch kovu: a) i
ón je ďaleko od povrchu: ε_i - ionizačná energia atómu,
 Φ - výstupná práca kovu a ε_F - Fermiho energia;
 b) kladný ión pri dopade na povrch kovu: 1 - elektrón prechádza na neobsadenú hladinu v ióne, 2 - emitovaný elektrón preberá prebytočnú energiu Augerova emisia

plynu. Ak však vypneme ultrafialové žiarenie, hustota primárnych elektrónov i_0 klesne na nulu a potom tiež i = 0. Lavínová ionizácia sa teda samostatne neudrží. Preto tento typ výboja nazývame **nesamostatný výboj** alebo tiež **Townsendov výboj**. Townsendov výboj je teda predprierazovým štádiom. Pri dostatočne silných poliach sa začne lovej emisie opúšťajú povrch elektróny s hustotou toku γj_+ . Koeficient γ reprezentuje výťažok elektrónov pri emisii, ktorý sa často (nelogicky) nazýva koeficient sekundárnej emisie. V teórii zapaľovania výboja sa zvykne nazývať **druhý Townsendov koeficient** (v staršej literatúre aj tretí Townsendov koeficient). Obvykle nadobúda hodnoty $0,1 - 10^{-3}$ (pre ióny veľkých organických molekúl až 10^{-10}).

Breakdown condition: Paschen's law

When the electric field in the in the electrode space <u>*E* is sufficiently high to create the multiplication</u> of the electrons and ions, <u>the avalanche appears</u>. If this multiplication creates a sufficient number of electrons and ions, it will lead to the electrical breakdown. However, if the processes of free charge species losses are emphasized, the avalanche multiplication can cease. Due to the <u>statistical nature</u> of both creation and loss of free species, breakdown may not occur even if applied voltage *U*w is higher than the breakdown voltage *U*b.

The breakdown condition for the gases at low pressures can be obtained using Townsend's theory, including the fact that influence of the space charge can be neglected in the early stage of the breakdown. Space charge is needed for the determination of the regime that will be established after the breakdown.

$$N_{\rm a} = N_0 \frac{\exp(\alpha d)}{1 - \gamma [\exp(\alpha d) - 1]},$$

The breakdown condition

 $\alpha = Ap \exp \beta$

Apd exp

$$\gamma \left[\exp(\alpha d) - 1 \right] = \frac{1}{\gamma} \alpha d = \ln \left(1 + \frac{1}{\gamma} \right)$$

Figure 1. Breakdown voltage U_b in three gases as a function of pd values (Paschen curves).

It also means that the current can be sustained if the external source of radiation is absent ($N_0 = 0$), i.e. it is self-sustaining discharge. In other words, equation (5) represents a condition for breakdown initiation.

$$U_{\rm b} = \frac{Bpd}{\ln(Apd) - \ln[\ln(1+1/\gamma)]}$$

Fig. 7.2. Breakdown potentials in various gases over a wide range of pd values (Paschen curves) on the basis of data given in [7.1,2]

Paschenovej krivky

Fig. 7.2. Breakdown potentials in various gases over a wide range of pd values (Paschen curves) on the basis of data given in [7.1, 2]

$$U_{\rm b} = \frac{Bpd}{\ln(Apd) - \ln[\ln(1 + 1/\gamma)]}$$

$$(pd)_{\min} = \frac{\bar{\mathbf{e}}}{A} \ln\left(\frac{1}{\gamma} + 1\right) , \quad \left(\frac{E}{p}\right)_{\min} = B , \quad V_{\min} = \frac{\bar{\mathbf{e}}B}{A} \ln\left(\frac{1}{\gamma} + 1\right)$$

Paschen law curves

Fig. 7.2. Breakdown potentials in various gases over a wide range of pd values (Paschen curves) on the basis of data given in [7.1, 2]

Breakdown Fields in Moderately Large Gaps in Air and Other Electronegative Gases at Atmospheric Pressure. Limiting Values of *pd* for the Townsend Breakdown Mechanism

v/N[cm³/s]

Fig. 7.5. Ionization and attachment frequencies in air, calculated using the solution of the kinetic equation. Intersection at E/p = 41 V/cm·Torr

Gas	Constant field than several d	Microwaves, $p \sim 100-300$ Torr	
	E/p kV/(cm⋅atm)	E/p V/(cm·Torr)	E/p V/(cm·Torr)
He	10	13	3
Ne	1.4	1.9	3-5
Ar	2.7	3.6	5-10
H ₂	20	26	10-15
N ₂	35	46	~ 25
O_2	30	40	35
Air	32	42	~ 30
Cl ₂	76	100	
$CCl_2F_2^*$	76	100	
CSF ₈	150	200	
CCl4	180	230	
SF ₆	89	117	
Breakdown

Газ	Постоянное поле, недлинные промежутки, <i>p</i> ~1 атм		СВЧ, р~100—300 тор
	Е _t /р, кВ/(см∙атм)	Е _t /р, В/(см∙тор)	Е _t /р, В/(см∙тор)
He	10	13	3
Ne	1,4	1,9	3-5
Ar	2,7	3,6	510
H_2	20	26	1015
N_{2}	35	46	~25
$\overline{O_2}$	30	40	35
Воздух	32	42	~30
Cl ₂	76	100	
CCl ₂ F ² , *)	76	100	
ĊŜŦĸ	150	200	
CC1,	180	230	
SF ₆ **)	89	117	
*) Фреон **) Элегаз			

Таблица 13.1. Ориентировочные пороги пробоя газов при высоких давлениях

Breakdown in Microwave Fields and Interpretation of Experimental Data Using the Elementary Theory

Fig. 7.8. Measured thresholds of microwave breakdown [7.6] (a) air, f = 9.4 GHz, diffusion length Λ is indicated for each curve; (b) Heg gas (He with an admixture of Hg vapor), $\Lambda = 0.6$ cm

Influence of diffusion length

Fig. 7.10. Thresholds of microwave breakdown: (a) Ar, (1) f = 2.8 GHz, $\Lambda = 0.15$ cm; (2) f = 0.99 GHz, $\Lambda = 0.63$ cm; (b) Xe, f = 2.8 GHz, $\Lambda = 0.10$ cm. Solid curves, results of calculations [7.7]; dashed curves and crosses give experimental data [7.5]

for the total number of electrons, N_e , in the discharge volume:

$$\frac{dN_{\rm e}}{dt} = (\nu_{\rm i} - \nu_{\rm a} - \nu_{\rm d})N_{\rm e} , \quad \nu_{\rm d} = D/\Lambda^2 , \qquad (7.7)$$

where ν_d is the frequency of diffusion losses of electrons. This equation describes the ionization kinetics of the gas.

RF discharges

Influence of diffusion length

Influence of diffusion length

7.3.2 Ionization Kinetics Equation

When oscillation displacements are small, electron densities obey an equation of type (2.44):

$$\partial n_{\rm e}/\partial t = D_{\nabla}^2 n_{\rm e} + (\nu_{\rm i} - \nu_{\rm a})n_{\rm e} , \quad D \equiv D_{\rm e}$$
 (7.6)

(electrons diffuse freely in breakdown). If the condition $\omega \gg \nu_m \delta$ (Sect. 5.5.2) holds (it is satisfied for microwave frequencies), the electron energy distribution is quasisteady and the ionization and attachment frequencies, ν_i and ν_a , are determined by the root-mean-square field E. The dependencies $\nu_i(E)$, $\nu_a(E)$ are much stronger than $D_e(E)$, so that $D_e(E) \approx \text{const.}$ For simplification, assume that the field is spatially homogeneous, and hence, ν_i and ν_a are independent of coordinates. Averaging (7.6) over the volume, we obtain, in accord with the results of Sect. 4.5, an equation for the mean density, or (which is equivalent) for the total number of electrons, N_e , in the discharge volume:

$$dN_{\rm e}/dt = (\nu_{\rm i} - \nu_{\rm a} - \nu_{\rm d})N_{\rm e} , \ \nu_{\rm d} = D/\Lambda^2 ,$$
 (7.7)

where ν_d is the frequency of diffusion losses of electrons. This equation describes the ionization kinetics of the gas.

7.3.3 Steady-State Background Criterion

Assume that the external field is switched on in a time small in comparison with the characteristic time of multiplication and remains constant during the avalanche buildup. This constraint covers not only stationary, but also pulsed fields with not too short pulses and sufficiently small rise time. Under this assumption, $\nu_i(t)$, $\nu_a(t) = \text{const after the moment } t = 0$ at which the field is switched on, and (7.7) has an exponential solution typical of an avalanche process:

$$N_{\rm e} = N_{\rm e0} \exp\left[(\nu_{\rm i} - \nu_{\rm a} - \nu_{\rm d})\right] = N_{\rm e0} \exp\left(t/\Theta\right), \tag{7.8}$$

where Θ is the avalanche time constant, and N_{e0} is the number of seed electrons that start the avalanche.¹ Breakdown is impeded in experiments with short pulses, since the probability of an electron appearing in the region of the field at the necessary moment is quite low and the avalanche has to be initiated by injecting a small number of electrons. For this purpose, a weak radioactive source is used.

According to (7.8), an avalanche develops if $\nu_i - \nu_a - \nu_d > 0$; this condition is met if the field exceeds a threshold E_t determined by the steady-state breakdown criterion:

$$\nu_{\rm i}(E_{\rm t}) = \nu_{\rm d} + \nu_{\rm a}(E_{\rm t}) \ . \tag{7.9}$$

As an example, consider breakdown in helium, for p = 1 Torr, $\lambda = 3$ cm, diffusion length $\Lambda = 1$ cm, $D = 2 \cdot 10^6$ cm²/s, time of diffusion to the walls $\nu_d^{-1} \approx 5 \cdot 10^{-7}$ s, diffusion frequency $\nu_d \approx 2 \cdot 10^6$ s⁻¹, and no attachment. The avalanche develops if $\nu_i > \nu_d \approx 2 \cdot 10^6$ s⁻¹. We will show a little later that the ionization frequency $\nu_i \propto E^2$ under the most favorable conditions for multiplication (zero electron energy losses). If losses, especially inelastic, are nonzero, the ν_i vs. E curve is much steeper. Hence, if the field increases by 10% in comparison with E_t , then $\Theta^{-1} = \nu_i - \nu_d \ge 0.2\nu_d \approx 4 \cdot 10^5$ s⁻¹. The number of electrons is doubled every $\Theta/\ln 2 \le 1.7 \,\mu$ s, which is a very high rate. In many cases, it is sufficient for a reliable realization of breakdown. As a result, stationary criterion (7.9) determines with good accuracy [like criterion (7.1)] the breakdown threshold of gases for "not too short" pulses.

7.5 Optical Breakdown

The discovery of the optical breakdown effect, in 1963 [7.8], became possible only after the development of Q-switched lasers that produce light pulses of tremendous power, called "giant pulses". When the light of such a (ruby) laser was passed through a focusing lens, a spark flashed in the air, in the focal region, as in the electrical breakdown of a discharge gap. The discovery was a complete surprise for physicists and produced a sensation at the time, though the element of surprise has worn off by now. Gas breakdown at optical frequencies requires a tremendous field strength, 10^{6} – 10^{7} V/cm, in the light wave; this was unthinkable before the advent of the laser. Furthermore, the necessary light intensity, about 10^{5} MW/cm², could only be reached by focusing the light of not just an ordinary laser, but one operating in th giant pulse regime. The new effect caused unparalleled interest among physicists. In a short time, it was experimentally and theoretically investigated to such a degree [7.7], that by now we know at least as much about it as about its closest analogue, the microwave field breakdown.

Fig. 7.11. Measured threshold fields for the breakdown of Ar and He by ruby laser radiation; pulse length 30 ns, diameter of focal spot $2 \cdot 10^{-2}$ cm [7.9]

Fig. 7.12. Breakdown thresholds in Ar, He, N₂ for ruby laser radiation over a wide pressure range [7.10]. Pulse length 50 ns, focal spot diameter 10^{-2} cm

Fig. 7.13. Breakdown thresholds of inert gases in the radiation of a CO_2 laser [7.7]. The *black dots* represent data for helium of a higher purity

7.5.3 Breakdown Thresholds of Atmospheric Air

These data are very important. Quite a few physical experiments employ highintensity laser beams. Electrical breakdown of air on the beam path to the target is an obstacle for light propagation because of absorption in the plasma. For example, in such experiments with high-power beams as target irradiation for fusion experiments one has to send the beam to the target through vacuum. The threshold intensity for the giant pulse of a ruby laser and an ordinary focal spot diameter of 10^{-2} cm is $S_t \approx 10^{11}$ W/cm², and the field is $E_t \approx 6 \cdot 10^6$ V/cm.

The breakdown threshold of nonfiltered air by focused CO_2 laser radiation is roughtly $2 \cdot 10^9$ W/cm², and that of dust-free air is not lower than 10^{10} W/cm². The tiniest dust particles floating in the air greatly facilitate the breakdown by CO_2 laser radiation, while their effect is negligible for the neodymium and, in particular, ruby lasers. This difference appears because the short-wave radiation of solidstate lasers "supplies itself" with the seed electrons required for starting an avalanche. The long-wave radiation of CO_2 lasers cannot do this in a pure gas.

7.7 Breakdown in RF and Low-Frequency Ranges

Calculation of avalanche...

Definition of breakdown voltage and time delay

Electrical breakdown in gases does not take place instantly upon applying a voltage U_b to the electrodes of gas-filled tube, but <u>after a corresponding delay</u> known as electrical breakdown time delay t_d that is mutually dependent on U_b . Due to the statistical nature of processes which initiate breakdown, U_b and t_d are mutually dependent stochastic variables with certain distributions. The distribution function of t_d defines the probability of electrical breakdown in any time interval.

$\underline{U_{b}}$ is the voltage when the gas transits from non-selfsustaining to self-sustaining discharge

Due to the fluctuation of the parameters α and γ with time, the electrical breakdown usually does not occur for the same voltage in a series of experiments. Also, the breakdown voltage depends on the time dependence of the applied voltage.

 $t_{\rm d}$ is the time elapsed from the instant of time when applied voltage reaches the breakdown voltage to the moment when it starts to decrease due to the breakdown in gas-filled tube

The other definition states that t_d is the time interval between the moment of U_w ($U_w > U_s$) application on the tube and the moment when the tube current exhibits a detectable discharge.

The t_d consists of the statistical time delay (t_s) and formative time (t_f) , i.e. $t_d = t_s + t_f$

Breakdown voltage as a function of rate

 $U_{\rm b}$ is the measured breakdown voltage and k is the rate of the increase of the applied voltage

Breakdown voltage as a function of rate

Figure 3. Breakdown voltage U_b as a function of the rate $k = 1-12 \text{ V s}^{-1}$ of increase of the applied voltage.

estimated $U_{\rm S}$ value was $\approx 390 \rm V$

Extrapolation of the $U_{\rm b} = f(k)$ dependence to the intersect with $U_{\rm b}$ -axis (for k = 0) gives the estimation of $U_{\rm s}$.

The t_d consists of the statistical time delay (t_s) and formative time (t_f) , i.e. $t_d = t_s + t_f$

Breakdown voltage as a function of rate Statistical character of τ_d

Figure 9. Mean value of time delay \bar{t}_d as a function of overvoltage $\Delta U/U_s$ for three different values of afterglow period for nitrogen-filled tube at pressure 1.3 mbar [27] (©1998 IEEE).

Figure 8. Mean value of time delay \bar{t}_d and breakdown probability *W* as a function of overvoltage for kripton-filled tube at pressure 2.7 mbar [31].

Breakdown voltage as a function of rate

Statistical character of τ_d

Figure 9. Mean value of time delay \bar{t}_d as a function of overvoltage $\Delta U/U_s$ for three different values of afterglow period for nitrogen-filled tube at pressure 1.3 mbar [27] (©1998 IEEE).

Figure 7. Formative time t_f as a function of afterglow period τ for nitrogen-filled tube at pressure 1.3 mbar [28].

Influence of different experimental parameters on time delay

Figure 10. Mean value of time delay \bar{t}_d as a function of overvoltage Figure 14. Mean value of time delay t_{d} as a function of glow current $\Delta U/U_{\rm s}$ for two different values of glow current for nitrogen-filled ig for three nitrogen-filled tubes with different pressures [40].

Discharge current

tube at pressure 1.3 mbar [27] (©1998 IEEE).

Pressure (diffusion...)

Figure 12. Mean value of time delay \bar{t}_{d} as a function of difference between the applied voltage and the static breakdown voltage $U_{\rm w} - U_{\rm s}$ for nitrogen-filled tube at pressure 7.0 mbar with three pairs of electrodes made of Al, Pb and Mo [35].

Electrode material

Figure 11. Mean value of time delay \bar{t}_{d} as a function of overvoltage $\Delta U/U_s$ for nitrogen-filled tube at pressure 1.3 mbar in the cases with/without illumination lamps [32].

Illumination

Figure 13. Mean value of time delay \bar{t}_{d} and static breakdown voltage U_s as a function of a number of breakdowns N for nitrogen-filled tube at pressure 97.5 mbar. (A) $\bar{t}_{d} = f(N)$, $\tau = 10$ s; (B) $U_s = \varphi(N)$ [39].

Number of breakdowns

Breakdown dependence on history

Figure 15. Memory curves for three nitrogen-filled tubes with different pressures.

Figure 17. Memory curves for hydrogen-filled tube and nitrogen-filled tube at pressure 6.7 mbar [66].

Figure 16. Memory curves for Cu and Au cathode for nitrogen-filled tube at pressure 6.7 mbar [57].

Figure 20. Memory curves for krypton-filled tube at pressure 1.3 mbar without irradiation and two values of irradiation dose rate [71].

DC glow discharges

- Electron multiplication
- Emission of secondary electron from a cathode

Fig. 2-1 DC glow-discharge setup.

Electron

Fig. 2-2 The I-V characteristic of a DC glow discharge.

Paschen's law 1

$$I = \frac{I_0 e^{ad}}{1 - \gamma(e^{ad} - 1)}$$

When $1 - \gamma(e^{\alpha d} - 1) = 0$, the breakdown occurs.

$$\alpha = A \cdot p \exp(-\frac{B \cdot p}{E})$$

and $V_b = Ed$,

$$V_b = \frac{C_1(pd)}{C_2 + \ln(pd)}$$

where d = distance between electrodes
 C_1 and C_2 = constants that change with the nature of the gas

http://science-education.pppl.gov/SummerInst/SGershman/Structure_of_Glow_Discharge.pdf

Current–voltage (i - V) characteristics of direct current (dc) electrical discharge

 $V_{\rm b}$ is the breakdown voltage,

- $V_{\rm n}$ is the normal operating voltage, and
- $V_{\rm d}$ is the operating voltage of arc discharge.

http://www.spectroscopynow.com/Spy/pdfs/jwfeed/sample_0471606995.pdf

Characteristics of DC glow discharge 1

Fig. 2-4 Regions and characteristics of a DC glow discharge: (a) discharge regions;
 (b) potential distribution in discharge tube;
 (c) distribution of electric field in discharge tube.

• The dark regions are called the cathode or Crooke's dark space, the

Faraday dark space, and the anode dark space.

• The luminous regions are called the cathode glow, the negative glow,

and the negitive column

Low pressure normal glow discharge

 <u>Cathode</u>: made of an electrically conducting metal, γ, of which has a significant effect on the operation of the discharge tube.

- <u>Aston dark space</u>: a thin region with a strong electric field and a negative space charge. The electrons are of too low a density and/or energy to excite the gas, so it appears dark.
- <u>Cathode glow</u>: has a relatively high ion number density. The length depends on the type of gas and the gas pressure.
- <u>Cathode (Crookes, Hittorf) dark space</u>: has a moderate electric field, a positive space charge, and a relatively high ion density.

Penning discharge plasma sources produce a dense plasma at pressures far below than most other glow discharges

- Strong axial magnetic fields: to prevent electrons from intercepting the anode.
- Axial electric fields: electrons are reflected by opposing cathodes.
- Multiple reflection of the electrons along axis.

http://www.exo.net/~pauld/origins/glowdisharge.html

http://www.exo.net/~pauld/origins/glowdisharge.html

Sprite and Glow Discharge Tube

Sprite light in the atmosphere (**left**) and in a laboratory glow discharge tube (**right**). In both cases, the light near the positive (anode) end is red and arises from the collisional excitation of neutral nitrogen molecules by free electrons. Also in both cases, the light near the negative (cathode) end is blue and arises from the collisional excitation of N_2^+ ions by free electrons.

Regions in the DC Glow Discharge Tube

A glass tube, about *16 inches long* and *1 1/2 inches in diameter*, is hermetically sealed at both ends. Two metal probes are fused into the tube at each end. The physicist applies a potential of a few thousand volts across both probes. With the aid of a vacuum pump he sucks the *air* out of the tube, thus lowering the pressure inside the glass tube.

Regions in the Glow Discharge Tube II

Plasma Sources Sci. Technol. 12 (2003) 295–301

Potentials along the Tube

Yu. P. Raizer. Gas Discharge Physics. Springer, Berlin, 1991.

Figure 4-3 Structure of a DC glow discharge with corresponding potential, electric field, charge, and current distributions.

Formation and destruction of H₃⁺(v=0) in He/Ar/H₂ microwave discharge

Laser – Single-mode tuneable <u>diode laser</u>, $\lambda = 1470 \pm 10nm$; P ~ 3 mW Mirrors – <u>R = 99.994%</u>,

TEST TUBE

H₃

PULSE REGIME

Kinetic temperature of H₃⁺(v=0) measured from the Doppler broadening

μw PULSES

From the spectrum rotational temperature is determined

Recombination of H₃⁺(v=0) in He/Ar/H₂ Stationary afterglow

PULSE REGIME

CRDS 2003

Yesterday's results

1/n x10¹⁰[cm³]

n x 10¹⁰[cm-3]

100µs ····· 1000µs

Decay of H_3^+(v=0) iteration

Spectroscopy of discharge in He/Ar/H2

Formation of para-H3+ and ortho-H3+

$${}^{p}H_{3}^{+} + e^{-} \xrightarrow{P_{\alpha_{eff}}} \text{neutral products}$$

$${}^{o}H_{3}^{+} + e^{-} \xrightarrow{P_{\alpha_{eff}}} \text{neutral products}$$

$${}^{p}H_{3}^{+} \underbrace{V_{po}}_{V_{op}} \xrightarrow{O} H_{3}^{+}$$

$$\frac{d[{}^{p}H_{3}^{+}]}{dt} = -{}^{p}\alpha_{eff}[{}^{p}H_{3}^{+}]n_{e} - \frac{[{}^{p}H_{3}^{+}]}{\tau_{D}} - \nu_{po}[{}^{p}H_{3}^{+}] + \nu_{op}[{}^{o}H_{3}^{+}]$$
$$\frac{d[{}^{o}H_{3}^{+}]}{dt} = -{}^{o}\alpha_{eff}[{}^{o}H_{3}^{+}]n_{e} - \frac{[{}^{o}H_{3}^{+}]}{\tau_{D}} + \nu_{po}[{}^{p}H_{3}^{+}] - \nu_{op}[{}^{o}H_{3}^{+}]$$

$$\frac{dn_{\rm e}}{dt} = -({}^{\rm p}\alpha_{\rm eff} {}^{\rm p}f_3 + {}^{\rm o}\alpha_{\rm eff} {}^{\rm o}f_3)n_{\rm e}^2 - \frac{n_{\rm e}}{\tau_{\rm D}}$$

Electric discharges - data

Рис. 5.3. Экспериментальный график, демонстрирующий постоянство а и экспоненциальный характер нарастания тока в разрядном промежутке; ионизационные коэффициенты определяются наклонами прямых [6]

Рис. 5.4. Ионизационный коэффициент Таунсенда α в N₂ по разным измерениям

 $E/N \dots 1$ Townsend = 1 Td = 10⁻¹⁷ Vcm² = 10⁻²¹ Vm²

E/p at 293 K (cca 20 C)..... 1V/cmTorr=3.034Td, resp. 1 Td = 0,3296V/cmTorr

Electric discharges Townsend avalanche theory

$$\frac{\mathrm{d}j_-}{\mathrm{d}x} = \alpha n_- = \frac{\alpha}{V_-} n_- V_- = \delta j_-$$

Obr. 5.2: Zapaľovanie výboja: a) výbojka na meranie zapaľovacieho napätia: K - katóda, A - anóda, UV - ultrafialové žiarenie zabezpečujúce emisiu primárnych elektrónov, VS - napojenie na vákuový systém; b) elektrónová lavína; c) označenie polohy elektród

medzi elektródami (obr. 5.2 c). Povrch katódy K sa nachádza v mieste x = 0 a povrch anódy A v mieste x = d. Elektróny sa pohybujú smerom k anóde a vytvorené kladné ióny ku katóde, kde zanikajú. Podobne ako v odseku 4.3.1, môžeme napísať rovnicu kontinuity pre elektróny v jednorozmernej geometrii a v ustálenom stave

$$\frac{\mathrm{d}j_{-}}{\mathrm{d}x} = \alpha n_{-} = \frac{\alpha}{V_{-}} n_{-} V_{-} = \delta j_{-}, \qquad (5.2)$$

kde V_{-} je driftová rýchlosť elektrónov v elektrickom poli (v homogénnom poli je konštantná) a $\delta = \alpha/V_{-}$ je **prvý Townsendov koeficient**. Analogická rovnica platí aj pre kladné ióny

$$\frac{\mathrm{d}j_+}{\mathrm{d}x} = \alpha n_- = \delta j_- \,. \tag{5.3}$$

Electric discharges Townsendov výboj

Prvý Townsendov koeficient δ má rozmer m⁻¹ a označuje počet ionizácii, ktoré vykoná jeden elektrón v smere elektrického poľa na jednotkovej dráhe (na rozdiel od ionizačnej frekvencie α udávajúcej počet ionizácií za jednotku času). Ak rovnice odčítame, dostaneme

$$\frac{\mathrm{d}(j_+ - j_-)}{\mathrm{d}x} = 0 \quad \Rightarrow j_+ - j_- = K = \text{ konšt}.$$

Potom hustota elektrického prúdu medzi elektródami $i = e(j_+ - j_-) = eK$ je taktiež konštantná, napriek tomu, že hustoty toku elektrónov a iónov sa menia s polohou x.

V homogénnom poli je Townsendov ko
eficient δ konštantný a preto môžeme rovnice kontinuity ľahko integrovať

$$j_{-} = C \exp(\delta x);$$
 $j_{+} = C \exp(\delta x) + i/e,$

kde C je integračná konštanta. Hodnota tejto integračnej konštanty sa dá určiť z hustoty toku elektrónov na katóde: $C = j_{-}(0)$. Potom

$$j_{-} = j_{-}(0) \exp(\delta x); \qquad j_{+} = j_{-}(0) \exp(\delta x) + i/e.$$
 (5.4)

Problém určenia hustoty toku $j_{-}(0)$ spočíva v tom, že okrem primárnych elektrónov emitovaných z katódy ultrafialovým žiarením (ich hustotu toku označíme j_{0}), elektróny emitujú aj dopadajúce kladné ióny. Tento typ emisie sa nazýva **potenciálová emisia**.

Potenciálová emisia

Obr. 5.3: Emisia elektrónu pri dopade kladného i
ónu na povrch kovu: a) i
ón je ďaleko od povrchu: ε_i - ionizačná energia atómu,
 Φ - výstupná práca kovu a ε_F - Fermiho energia;
 b) kladný ión pri dopade na povrch kovu: 1 - elektrón prechádza na neobsadenú hladinu v ióne, 2 - emitovaný elektrón preberá prebytočnú energiu Augerova emisia

plynu. Ak však vypneme ultrafialové žiarenie, hustota primárnych elektrónov i_0 klesne na nulu a potom tiež i = 0. Lavínová ionizácia sa teda samostatne neudrží. Preto tento typ výboja nazývame **nesamostatný výboj** alebo tiež **Townsendov výboj**. Townsendov výboj je teda predprierazovým štádiom. Pri dostatočne silných poliach sa začne lovej emisie opúšťajú povrch elektróny s hustotou toku γj_+ . Koeficient γ reprezentuje výťažok elektrónov pri emisii, ktorý sa často (nelogicky) nazýva koeficient sekundárnej emisie. V teórii zapaľovania výboja sa zvykne nazývať **druhý Townsendov koeficient** (v staršej literatúre aj tretí Townsendov koeficient). Obvykle nadobúda hodnoty $0,1 - 10^{-3}$ (pre ióny veľkých organických molekúl až 10^{-10}).

Teraz sa vrátime k rovniciam (5.4). Hustotu toku $j_{-}(0)$ možno totiž napísať ako súčet toku primárnych elektrónov a elektrónov od potenciálovej emisie

$$j_{-}(0) = j_0 - \gamma j_{+}(0) \,.$$

Záporné znamienko pred hustotou toku kladných i
ónov súvisí s orientáciou súradníc, pretože $j_{-}(x) \ge 0$, $j_{0} > 0$
a $j_{+}(x) \le 0$. Z (5.4) vyplýva $j_{+}(0) = j_{-}(0) + i/e$, čo umožní napísať výslednú hustotu toku elektrónov na katóde

$$j_{-}(0) = \frac{j_0 - \gamma i/e}{1 + \gamma}.$$

Týmto vzťahom už máme určený súvis medzi hustotami toku nabitých častíc a hodnotami j_0 a hustotou prúdu *i*. Pripomeňme, že z orientácie osi *x* vyplýva $i \leq 0$. Kladné ióny – na rozdiel od elektrónov – sa pohybujú smerom ku katóde. Smerom k anóde ich hustota toku by mala klesať. Vzhľadom na to, že anóda neemituje kladné ióny zo svojho povrchu, hustota toku kladných iónov na anóde je nulová: $j_+(d) = 0$. Potom postupne dostaneme nasledujúce vzťahy

$$j_{+}(d) = j_{-}(0) \exp(\delta d) + \frac{i}{e} = \frac{j_{0} - \gamma i/e}{1 + \gamma} \exp(\delta d) + \frac{i}{e} = 0.$$

Z posledného vzťahu možno vypočítať hustotu elektrického prúdu

$$i = \frac{i_0 \exp(\delta d)}{1 - \gamma [\exp(\delta d) - 1]}, \qquad (5.5)$$

$$i = \frac{i_0 \exp(\delta d)}{1 - \gamma [\exp(\delta d) - 1]},$$
(5.5)

V slabom elektrickom poli elektróny nezískavajú dostatočnú energiu na ionizáciu, preto $\delta = 0$. Vtedy $i = i_0$ – prúd medzi elektródami prenášajú len primárne elektróny od ultrafialového žiarenia. Ak elektrické pole zosilňujeme, zväčšuje sa aj prvý Townsendov koeficient δ a prúd *i* začne rýchlo narastať. Tento nárast súvisí s lavínovou ionizáciou plynu. Ak však vypneme ultrafialové žiarenie, hustota primárnych elektrónov i_0 klesne na nulu a potom tiež i = 0. Lavínová ionizácia sa teda samostatne neudrží. Preto tento typ výboja nazývame <u>nesamostatný výboj</u> alebo tiež Townsendov výboj. Townsendov výboj je teda predprierazovým štádiom. Pri dostatočne silných poliach sa začne

$$\gamma \left[\exp(\delta d) - 1 \right] = 1 \,,$$

(5.6)

hustota prúdu *i* diverguje a stáva sa nezávislá od hodnoty i_0 . Preto práve túto podmienku považujeme za kritérium zapálenia výboja. Hovoríme tiež, že nesamostatný výboj prechádza na <u>samostatný výboj</u>. Vtedy totiž kladné ióny dopadajúce na katódu emitujú dostatočný počet elektrónov, ktoré nahradia primárne elektróny od ultrafialového žiarenia. Preto výboj sa už udrží aj vtedy, keď katódu prestaneme ožarovať ultrafialovým žiarením. V samostatnom výboji koncentrácia nabitých častíc prudko narastie, takže priestorový náboj sa začne uplatňovať. Preto vzťah (5.5) už za týchto podmienok neplatí. V niektorých typoch výboja existujú oblasti, kde je aj naďalej prítomná lavínová ionizácia; treba ju už ale opísať rovnicami, ktoré zohľadňujú prítomnosť priestorového náboja.

Paschenov zákon

 $\gamma \left[\exp(\delta d) - 1 \right] = 1 \,,$

Podmienka (5.6) ešte nie je priamo použiteľná na určenie <u>zápalného napätia</u>. Táto veličina je totiž schovaná v prvom Townsendovom koeficiente. Preto musíme sa teraz zaoberať problémom závislosti prvého Townsendovho koeficientu δ od intenzity elektrického poľa. Exaktné odvodenie je jedine možné pomocou kinetickej rovnice, k čomu treba ale poznať detailnú závislosť prierezov pre pružné zrážky a pre ionizáciu molekúl elektrónmi. Jednoduchší prístup využíva možnosť priameho merania δ od intenzity elektrického poľa s využitím rovnice (5.5). Prv než uvedieme poloempirické vzťahy, <u>nájdeme zákony po-</u> dobnosti pre prvý Townsendov koeficient.

(5.6)

Ak vyjadríme frekvenciu ionizácie α pomocou (4.16) a driftovú rýchlosť elektrónov pomocou pohyblivosti $V_{-} = \mu_{-}E$, prvý Townsendov koeficient sa dá napísať v tvare

$$\delta = \frac{\alpha}{|V_-|} = \frac{n_g \langle \sigma_i v_- \rangle}{|\mu_- E|} \,.$$

Formálne môžeme vykonať nasledujúce úpravy

$$V_- = \mu_- E = n_g \mu_- \frac{E}{n_g} \,,$$

kde koeficient $n_g \mu_-$ nezávisí od koncentrácie molekúl plynu n_g

Paschen law

kde koeficient $n_g \mu_-$ nezávisí od koncentrácie molekúl plynu n_g (pozri odsek 3.4.3). Stredná hodnota $\langle \sigma_i v_- \rangle$, ktorá určuje schopnosť elektrónov ionizovať molekuly plynu, závisí od energie, ktorú elektrón nadobudne tesne pred zrážkou od elektrického poľa. Táto energia je úmerná práci $e|E|\langle\lambda_-\rangle$, ktorú vykoná elektrické pole na strednej voľnej dráhe elektrónu $\langle\lambda_-\rangle$, čo formálne môžeme zapísať (F_2 je zatial neurčená funkcia)

$$\langle \sigma_i v_- \rangle = F_2(e|E|\langle \lambda_- \rangle) = F_2\left(en_g \langle \lambda_- \rangle \frac{|E|}{n_g}\right)$$

Výrazy $n_g \mu_-$ a $en_g \langle \lambda_- \rangle$ nezávisia od koncentrácie molekúl n_g a teda aj od tlaku plynu. Je zrejmé, že veličiny V_- a α/n_g závisia od E a n_g prostredníctvom pomeru $|E|/n_g$, takže prvý Townsendov koeficient možno napísať

$$\frac{\delta}{n_g} = \Phi\left(\frac{|E|}{n_g}\right) \,,$$

kde Φ je zatial neurčená funkcia. Pomer $|E|/n_g$ je významnou veličinou vo fyzike elektrických výbojov, ktorej rozmer je Vm². Na praktické meranie je to však príliš veľká jednotka. Preto sa zaviedla jednotka **Townsend**

1 Townsend = 1 Td = 10^{-17} Vcm² = 10^{-21} Vm².

Pomocou pomeru $|E|/p_0$ možno vyjadriť δ v tvare

$$\frac{\delta}{p_0} = F\left(\frac{|E|}{p_0}\right) \,,\tag{5.7}$$

$$\frac{\delta}{p_0} = F\left(\frac{|E|}{p_0}\right) \quad \delta = \frac{\alpha}{|V_-|} = \frac{n_g \langle \sigma_i v_- \rangle}{|\mu_- E|}$$

so zatiaľ neznámou funkciou F. Ak si označíme ako δ_z hodnotu prvého Townsendovho koeficientu, ktorý spĺňa podmienku (5.6) (platí $\delta_z d = \ln(1 + 1/\gamma))$, môžeme formálne vyjadriť intenzitu elektrického poľa $|E_z|$ potrebného na zapálenie výboja

$$\frac{|E_z|}{p_0} = F_{inv}\left(\frac{\delta_z}{p_0}\right) = F_{inv}\left[\frac{\ln\left(1+\frac{1}{\gamma}\right)}{p_0d}\right],$$

kde F_{inv} je inverzná funkcia k funkci
iF.Z hodnoty elektrického poľa potrebného na zapálenie výboja už ľahko vypočí
tame aj zápalné napätie

$$U_z = d|E_z| = p_0 dF_{inv} \left[\frac{\ln\left(1 + \frac{1}{\gamma}\right)}{p_0 d} \right].$$
(5.8)

Z tohoto výsledku možno formulovať uzáver vo forme zákonitosti:

Paschenov zákon – Zápalné napätie U_z je pre daný plyn funkciou súčinu redukovaného <u>tlaku p_0 a vzdialenosti elektród d.</u>

Na aproximáciu experimentálnych hodnôt sa často používa poloempirický vzťah

$$\frac{\delta}{p_0} = A \exp\left(-\frac{Bp_0}{|E|}\right),\tag{5.9}$$

kde hodnoty konštánt možno najsť v tabuľke 5.1 pre rôzne plyny. Tiež je uvedený rozsah hodnôt $|E|/p_0$ pre ktoré je aproximácia (5.9) použiteľná. Inverznou funkciou k funkcii

$$F(x) = A \exp\left(-\frac{B}{x}\right)$$

je funkcia

$$F_{inv}(x) = \frac{B}{\ln(A/x)}.$$

Рис. 5.3. Экспериментальный график, демонстрирующий постоянство а и экспоненциальный характер нарастания тока в разрядном промежутке; ионизационные коэффициенты определяются наклонами прямых [6]

Рис. 5.4. Ионизационный коэффициент Таунсенда с в N_2 по разным измерениям

a la cu-1 mon-1

Data for Paschen law

с, демонстрирующий постоянство α и экстока в разрядном промежутке; ионизационмяются наклонами прямых [6]

ент Таунсенда α в N₂ по разным измерениям

Paschen law – data gama

$$i = \frac{i_0 \exp(\delta d)}{1 - \gamma [\exp(\delta d) - 1]}$$

(5.5)

V důsledku emise opouští povrch katody elektrony s hustotou toku γj_+

Рис. 6.13. Коэффициент ионно-электронной эмиссии, определенный из разрядного эксперимента (п. 4.1): а — медный катод в инертных газах; б — различные металлы в Аг; в — различные металлы в N₂ [6]

Na aproximáciu experimentálnych hodnôt sa často používa poloempirický vzťah

$$\frac{\delta}{p_0} = A \exp\left(-\frac{Bp_0}{|E|}\right),\tag{5.9}$$

kde hodnoty konštánt možno najsť v tabuľke 5.1 pre rôzne plyny. Tiež je uvedený rozsah hodnôt $|E|/p_0$ pre ktoré je aproximácia (5.9) použiteľná. Inverznou funkciou k funkcii

$$F(x) = A \exp\left(-\frac{B}{x}\right)$$

je funkcia

$$F_{inv}(x) = \frac{B}{\ln(A/x)}.$$

Tabulka 5.1: Koeficienty A a B pre poloempirický vzťah (5.9) podľa [19]. Posledný stĺpec označuje rozsah hodnôt $|E|/p_0$, v ktorom možno aproximáciu použiť

Plyn	А	В	oblasť $ E /p_0$
	$[\rm cm^{-1} Torr^{-1}]$	$[Vcm^{-1}Torr^{-1}]$	$[Vcm^{-1}Torr^{-1}]$
He	3	34	20 - 150
Ne	4	100	100 - 400
Ar	14	180	100 - 600
Kr	17	240	100-1000
Xe	26	350	200 - 800
vzduch	15	365	100-800
H_2	5	130	150-600
N_2	12	342	100 - 600
$\rm CO_2$	20	466	500-1000
H_2O	13	290	150-1000
Hg	20	370	200 - 600

Použitím tejto funkcie vo vzťahu (5.8) dostaneme

$$U_z = \frac{Bp_0 d}{\ln(Ap_0 d) - \ln[\ln(1+1/\gamma)]}$$
(5.10)

Obr. 5.5: Zápalné napätie U_z výboja v argóne ako funkcia súčinu p_0d pre rôzne hodnoty druhého Townsendovho koeficientu γ . Medzi zvislými šípkami sa nachádza oblasť hodnôt E/p_0 z tab. 5.1, v ktorej platí vzťah (5.9)

Obr. 5.6: Výbojka s bočnou dráhou B na demonštráciu nestability nízkotlakovej vetvy Paschenovej krivky

Paschen law curves

393

Electric discharges – electron attachment versus ionization

$$dN_e/dx = (\alpha - a)N_e, N_e \sim \exp[(\alpha - a)x],$$

указывают, что $\alpha_{a\phi} \rightarrow 0$ при $(E/p)_1 \approx 35$ В/(см.тор), что как раз соответствует $(E/p)_{npe_{II}} \approx 26$ кВ/(см.атм). При $E/p < (E/p)_1$ размножение

Рис. 13.5. Пробивающие поля в плоском воздушном промежутке длины *d* при *p*=1 атм по данным разных авторов [21]

Рис. 13.6. Частоты ионизации и прилипания в воздухе, рассчитанные на основе решения кинетического уравнения. Пересечение при E/p=41 B/(см·тор) [10]

Paschen low curves

	Постоянное по промежутки	СВЧ, <i>р~</i> 100—300 тор	
Газ	Е _t /р, кВ/(см∙атм)	Е _t /p, В/(см∙тор)	Е _t /р, В/(см∙тор)
He	10	13	3
Ne	1,4	1,9	35
Ar	2,7	3,6	5-10
Ha	20	26	10-15
N _o	35	46	~25
O.	30	40	35
Возлух	32	42	~30
Cla	76	100	
CCl _a F _a *)	76	100	
CSF.	150	200	
CCL.	180	230	
SF ₆ **)	89	117	
*) Фреон **) Элогаа	•		

Таблица 13.1. Ориентировочные пороги пробоя газов при высоких давлениях

RF discharges

Рис. 13.10. Измеренные пороги СВЧ пробоя: a воздух, частота f=9,4 ГГц, около кривых указаны диффузионные длины Λ ; δ — несколько газов, f= =0,99 ГГц, Λ =0,63 см; s — Нед-газ (гелий с добавкой паров ртути), Λ =0,6 см [24]

Table 4.3. Cross sections of photoionization of atoms and molecules from the ground state close to the threshold

Gas	$\hbar\omega = I, \mathrm{eV}$	λ,Å	σ_{ν} , 10^{-18} cm ²
Н	13.6	912	6.3
He	24.6	504	7.4
Ne	21.6	575	4.0
Ar	15.8	787	35
Na	5.14	2412	0.12
Κ	4.34	2860	0.012
Cs	3.89	3185	0.22
Ν	14.6	852	9
0	13.6	910	2.6
O2	12.2	1020	~ 1
N_2	15.58	798	26
H ₂	15.4	805	7

7.3.2 Ionization Kinetics Equation

When oscillation displacements are small, electron densities obey an equation of type (2.44):

$$\partial n_{\rm e}/\partial t = D_{\nabla}^2 n_{\rm e} + (\nu_{\rm i} - \nu_{\rm a})n_{\rm e} , \quad D \equiv D_{\rm e}$$
 (7.6)

(electrons diffuse freely in breakdown). If the condition $\omega \gg \nu_m \delta$ (Sect. 5.5.2) holds (it is satisfied for microwave frequencies), the electron energy distribution is quasisteady and the ionization and attachment frequencies, ν_i and ν_a , are determined by the root-mean-square field E. The dependencies $\nu_i(E)$, $\nu_a(E)$ are much stronger than $D_e(E)$, so that $D_e(E) \approx \text{const.}$ For simplification, assume that the field is spatially homogeneous, and hence, ν_i and ν_a are independent of coordinates. Averaging (7.6) over the volume, we obtain, in accord with the results of Sect. 4.5, an equation for the mean density, or (which is equivalent) for the total number of electrons, N_e , in the discharge volume:

$$dN_{\rm e}/dt = (\nu_{\rm i} - \nu_{\rm a} - \nu_{\rm d})N_{\rm e} , \ \nu_{\rm d} = D/\Lambda^2 ,$$
 (7.7)

where v_d is the frequency of diffusion losses of electrons. This equation describes the ionization kinetics of the gas.

Fig. 4. Efficiency of ionization in hydrogen, argon, neon, and helium.

where P is a net production or loss rate. Generally this will be written nv_i where v_i is the net ionization rate per electron. Combining the above equations, we obtain

$$(\partial n/\partial t) = \nabla^2 (Dn) + nv_i.$$

(2)

This equation has many solutions depending on the initial and boundary conditions, but one of the most useful can be written

$$n = n_0 \exp[(v_i - D/\Lambda^2)t], \qquad (3)$$

where Λ is the characteristic diffusion length which is determined by the boundary conditions. For a right circular cylinder of length L and radius R, for example, it is given by

$$1/\Lambda^2 = (\pi/L)^2 + (2.405/R)^2$$

(d) Attachment When an electron becomes attached to an ion in a microwave discharge, the net effect is the same as though it were lost from the region in which the field acts. This is so because the negative ion which replaces the electron is at least two thousand times as heavy and so will be accelerated so little during a cycle of the field that energy transfer to it will be negligible. The attachment rate is significant in oxygen and in air and so is of much importance in breakdown phenomena in the atmosphere. There has been considerable work done on attachment in oxygen and much less on attachment rates in air. (Burch and Geballe, 1957; Schulz, 1962; Craggs *et al.*, 1957; Buchel'nikova, 1959; Bradbury, 1933; Harrison and Geballe, 1953.)

valid. The definition of the characteristic diffusion length for the right circular cylinder given earlier,

$$\frac{1}{\Lambda^2} = \left(\frac{\pi}{L}\right)^2 + \left(\frac{2.405}{R}\right)^2,$$

gives an indication of the dimensions for which the nonuniformity of the field is important. If the second term is large enough so that it significantly

4. MAGNETIC FIELDS

The introduction of a dc magnetic field changes the motion of the electrons because the acceleration term changes from $(e/m)\mathbf{E}$ to $(e/m)(\mathbf{E} + \mathbf{v} \times \mathbf{B})$, where **B** is the magnetic induction. The electrons move in spiral fashion changing the mode of diffusion differently in different directions so that diffusion is no longer isotropic. When the modified force term is put into Eqs. (4)–(8) the analysis is very complicated and leads to a modified expression for the effective electric field:

$$E_{eb}^{2} = \frac{E^{2} v_{m}^{2}}{2} \left[\frac{1}{v_{m}^{2} + (\omega - \omega_{b})^{2}} + \frac{1}{v_{m}^{2} + (\omega + \omega_{b})^{2}} \right],$$
 (23)

where ω_b is equal to eB/m. Assuming that the collision frequency v_m is independent of energy, the effect of the magnetic field on energy transfer is taken account of by replacing E_e by E_{eb} in all equations. Because the electron paths are changed by the magnetic forces, the diffusion rates are also changed. The analysis, which in general leads to a second-order tensor diffusion coefficient, will not be reproduced here. For the simple case of a magnetic field applied along the axis of a right circular cylinder, the characteristic diffusion length Λ can be replaced by Λ_b , where

$$\frac{1}{\Lambda_{b}^{2}} = \frac{1}{\Lambda_{r}^{2}} \left(\frac{\nu_{m}^{2}}{\nu_{m}^{2} + \omega_{b}^{2}} \right) + \frac{1}{\Lambda_{z}^{2}},$$
(24)

where Λ_r and Λ_z are, respectively, R/2.405 and L/π . Thus the diffusion in directions perpendicular to the magnetic field is reduced by an amount equivalent to increasing the dimension by a factor

$$\left(\frac{1+\omega_b^2}{v_m^2}\right)^{1/2}$$

Lax et al. (1950) made measurements in Heg gas in S-band microwave fields and with the magnetic fields applied both transverse and parallel to the electric field. Figure 6 shows both experimental data and the theoretical prediction based on the breakdown as in Eq. (18) with the effective field and diffusion length modified as in Eqs. (23) and (24). The cyclotron resonance, the reduced breakdown field caused by the magnetic field, and the excellent agreement between theory and experiment are evident from the figure.