H₃⁺ in Interstellar space

EPRP LS 2025 5AAA 11 03 2025

<u>motto</u>

If you understand hydrogen, you understand all that can be understood. V. Weisskopf (Taken from G. Herzberg).

Electronvolt

E←→kT 1eV ~ 11 604.505 K 1K ~ 9x10⁻⁵eV

By definition, it is equal to the amount of kinetic energy gained by a single unbound electron when it accelerates through an electric potential difference of one volt

Conversion factors:

1 eV = $1.6021765(40) \times 10^{-19}$ (the conversion factor is numerically equal to the <u>elementary charge</u> expressed in <u>coulombs</u>). 1 eV (per atom) is 96.485 <u>kJ/mol</u>.

1.6 to 3.4 eV: the <u>photon energy</u> of visible light.

1.65eV 2.50 3.27 eV

+1V

13.6 eV: The energy required to <u>ionize atomic hydrogen</u>. <u>Molecular bond energies</u> are on the <u>order</u> of one eV per molecule

1 TeV: A trillion electronvolts, or 1.602×10^{-7} J, about the kinetic energy of a flying mosquito

14 TeV: the design proton collision energy at the Large Hadron Collider (which has operated at half of the energy since March 30, 2010).

10-12

Atomic number

The cosmic elemental abundances extend over 12 orders of magnitude.

Interstellar medium

92.1% of nucleons in the universe are protons7.8% are helium nuclei !0.1%.....C,N,O,S,Si....

Cosmic abundance

Andromeda composite

~0.005%.....D

Estimated abundances of the chemical elements in the Solar System (logarithmic scale)

The cosmic elemental abundances extend over 12 orders of magnitude.

H₂ and H₃⁺ Story

(IMR & Recombination of H₃⁺)

<u>motto</u>

If you understand hydrogen, you understand all that can be understood. V. Weisskopf (Taken from G. Herzberg).

motivation?... \$\$\$?

called Smith's Cloud, after the astronomer who discovered it in 1963

called Smith's Cloud, after the astronomer who discovered it in 1963, contains enough hydrogen to make a million stars like the Sun. Eleven thousand lightyears long and 2,500 light-years wide, it is only 8,000 light-years from our Galaxy's disk. It is careening toward our Galaxy at more than 150 miles per second, aimed to strike the Milky Way's disk at an angle of about 45 degrees. Don't worry! It will hit 30,000 light years away from Earth.

.... What about energy...

Smith's Cloud

Our Galaxy will get a rain of gas from this cloud, then in about 20 to 40 million years, the cloud's core will smash into the Milky Way's plane," The cloud will likely strike a region somewhat farther from the Galactic center than our Solar System and about 90 degrees ahead of us in the Milky Way disk. The collision may trigger a period of rapid star formation fueled by the new gas and the shock from the collision. Some theories say that the ring of bright stars near the Sun, called Gould's Belt, was created by just such a collision event.

Approximate Impact Six1

contains enough hydrogen to make a million stars like the Sun

$240 \text{ km/s} \sim 562 \text{ eV} \sim 5 \times 10^6 \text{ K}$

Importance of Interstellar Hydrogen

Subaru Telescope Mauna Kea, Hawaii

Integrated area of absorption lines

Nicholas U. Mayall Telescope Kitt Peak, AZ

United Kingdom Infrared Telescope Mauna Kea, Hawaii

Importance of Interstellar H₃⁺

Table 2 Molecules detected in diffuse molecular clouds

Weight	Species	Method	Target	N(X)/N _H	Reference
2	H ₂	UV	ζ Oph	0.56	1
3	HD	UV	ζ Oph	4.5 (-7)	2
3	H3+	IR	ζ Per	5.1 (-8)	3
13	CH	Optical	ζ Oph	1.5 (-9)	4
13	CH+	Optical	ζ Oph	2.4 (-8)	5
14	¹³ CH ⁺	Optical	ζ Oph	3.5 (-10)	6
15	NH	Optical	ζ Oph	6.2 (-10)	7
17	OH	UV	ζ Oph	3.3 (-8)	8
24	C ₂	Optical	ζ Oph	1.3 (-8)	9
25	C ₂ H	mm abs.	BL Lac	1.8(-8)	10
26	CN	Optical	ζ Oph	1.9 (-9)	11
27	HCN	mm abs.	BL Lac	2.6 (-9)	12
27	HNC	mm abs.	BL Lac	4.4 (-10)	12
28	N_2	UV	HD 124314	3.1 (-8)	13
28	CO	UV	X Per	6.4 (-6)	14
29	HCO+	mm abs.	BL Lac	1.5 (-9)	15
29	HOC+	mm abs.	BL Lac	2.2 (-11)	15
29	¹³ CO	UV	X Per	8.9 (-8)	16
29	C ¹⁷ O	UV	X Per	7.4 (-10):	16
30	C ¹⁸ O	UV	X Per	2.1 (-9):	16
30	H ₂ CO	mm abs.	BL Lac	3.7 (-9)	17
36	C ₃	Optical	ζ Oph	1.1 (-9)	18
36	HCl	UV	ζ Oph	1.9 (-10)	19
38	C_3H_2	mm abs.	BL Lac	6.4 (-10)	10
44	CS	mm abs.	BL Lac	1.6 (-9)	20
64	SO ₂	mm abs.	BL Lac	≤8.2 (−10)	20

Subaru Telescope Mauna Kea, Hawaii

Integrated area of absorption lines

Plasma

Hydrogen containing molecules

d	<u>H</u> 2 rogen + co <u>CH</u> *CH4	H ₃ arbon cont <u>CH</u> ⁺	aining mole	cules					
Hy di	rogen + ca <u>CH</u> *CH ₄	arbon cont <u>CH</u> ⁺	aining mole	cules					
	<u>СН</u> *СН ₄	<u>СН</u> ⁺	GTT						
	*С ₆ Н	H₂CCC CH₃C₂H	СH ₂ с-С ₃ H ₂ *С ₇ H	C ₂ C ₄ H C ₆ H ₂	C₂H *C₅ 1 - H₂C ₆	<u>C</u> 3 *C ₂ H ₄ *C ₈ H	C₂H₂ [★] C₅H CH₃C₄H	l - C ₃ H C ₄ H ₂ c-C ₆ H ₆	с-С ₃ Н 1 - Н ₂ (
Hydi	rogen + ox	xygen + ca	rbon contain	iing molecu	les				
<u>и</u> Н Н С	<u>0#</u> I₃0 ⁺ IC₂CHO CH₃CH₂OH	<u>СО</u> НОСО ⁺ СН ₃ СНО ((СН ₃) ₂ СО	CO ⁺ H ₂ CO c-CH ₂ OCH ₂ CH ₃ OC ₂ H ₅	H ₂ O C ₃ O CH ₂ CHOH (C ₂ H ₅) ₂ O	HCO CH2CO CH3COOH (CH2OH)2	HCO ⁺ HCOOH HCOOCH₃	HOC ⁺ H₂COH ⁺ C₂H₅OH	C₂O CH₃OH H₂COHCH	C) C ₂ 10 C)
Hydi	rogen + n	itrogen + c	arbon conta	ining molec	cules				
	<u>NH</u> H₂CN CH₃CN HC ₆ CN	<u>CN</u> HCCN CH3NC HC7CN	N2 C3N HC3NH ⁺ HC10CN	HCN CH2NH CH3NH2	HNC HC₂CN C₅N	N ₂ H ⁺ HC ₂ NC CH ₂ CHCN	NH₂ HNCCC HC₄CN	NH3 NH2CN CH3C2CN	HCNI CH2C CH3C
Hydi	rogen + n	itrogen + a	xygen + car	bon contain	ing molecul	les			
	NO	HNO	N ₂ O	HNCO	NH ₂ CHO				
Othe	er species								
:	CS HF OCS	SO *CP HCS ⁺ *SiC	SO+ *NaCl H ₂ S C-S	SN *AICI c-SiC ₂ CH-SH	*SiC *KCl H ₂ CS *N2CN	SiN *AIF HNCS *MaCN	SiO PN C ₃ S	SIS C ₂ S *HSiC ₂ ? SICN	HCl SO ₂ SiC ₃

Plasma.

•

 $C_6 H^{-\dots}$

Motivations

- H₃⁺ is the cornerstone of ion-molecule reactions in the interstellar medium (ISM)
- Simple chemistry allows for the inference of various physical parameters (density, temperature, ionization rate, cloud size)

Table 1 Classification of Interstellar Cloud Types							
	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular			
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^n{}_{H_2} > 0.1 \ f^n{}_{C^+} > 0.5$	$f^{n}{}_{C^{+}} < 0.5 \ f^{n}{}_{CO} < 0.9$	$f^n{}_{\rm CO}>0.9$			
A _V (min.)	0	~0.2	~1-2	~5-10			
Typ. n _H (cm ⁻³)	10-100	100-500	500-5000?	>104			
Тур. Т (К)	30-100	30-100	15-50?	10-50			
Observational Techniques	UV/Vis H I 21-cm	UV/Vis IR abs mm abs	Vis (UV?) IR abs mm abs/em	IR abs mm em			

 $Figure \ I.$ "The Astronomer's Periodic Table". The area of each element is proportional to its cosmic abundance.

History of H₃⁺

J. J. Thomson.

Phil. Mag. 24, 209 (1912)

A. J. Dempster, Phil. Mag. 31, 438 (1916)

J. J. Thomson **1912**

Existence of H_{3} —On several plates taken when the discharge-tube contains hydrogen, the existence of a primary line for which mc = 3 has been detected. There can, I think, be little doubt that this line is due to H_{3} The existence of this substance is interesting from a chemical point of view, as it is not possible to reconcile its existence with the ordinary conceptions about valency, if hydrogen is regarded as always monovalent. The polymeric modification of hydrogen seems to require special conditions for its formation, for it cannot be detected on many of the plates taken with hydrogen in the tube.

m=3

 $\overline{\mathrm{H}_{2}^{+}} + \overline{\mathrm{H}_{2}} \rightarrow \overline{\mathrm{H}_{3}^{+}} + \overline{\mathrm{H}_{3}}$

 $\rightarrow {\rm H_{3}^{+}}$ formed in secondary reaction

1916

1935 Charles A. Coulson

- · First Ph.D. student of Lennard-Jones
- · First ab initio calculation on a polyatomic molecule
- "It appears that the ion H₃* should exist in stable equilateral form with a nuclear distance about 0.85 Å, and that all excited levels are unstable."
- Prediction not accepted by Eyring, Hirschfelder, and others
- With advent of computers, prediction was confirmed (Christoffersen, Hagstrom, & Prosser 1964, Conroy 1964)

C. A. Coulson, Proc. Camb. Phil. Soc. 31, 244 (1935)

- No excited electronic state
- No dipole moment in ground state
 - \rightarrow no pure rotational spectrum
- v_1 symetric stretch infrared inactive
- v_2 vibration fundamental band feasible freq. ~2700 cm⁻¹

Intensive laboratory search for H₃⁺ spectra 1912 1920 1930 1970 1980

H₃⁺ in Interstellar space

Interstellar H₃+

ON THE POSSIBLE OCCURRENCE OF H₃⁺ IN INTERSTELLAR SPACE

The possibilities for detection of the molecular ion H_2^+ by radio-astronomical techniques have recently received considerable attention, and theoretical predictions of the spectrum have been made by Mizushima (1961) and by Burke (1961). Recent work on ion-molecule reactions indicates that the molecular ion H_3^+ may also be expected in interstellar space. In fact, with the presence of quantities of molecular hydrogen, H_2^+ will react to form H_3^+ .

Formation of H_s^+ through the reaction $H_2^+ + H_2 \rightarrow H_s^+$ has been observed independently by Stevenson and Schissler (1958) and by Barnes, Martin, and McDaniel (1961). The cross-section for this reaction has been found to have a remarkably large value of the order of 10^{-14} cm² at normal thermal energies. This is much greater than the gas-kinetic cross-section for neutral hydrogen molecules. The cross-section for H_s^+ formation by this reaction varies inversely with the relative velocity of the H_2^+ ion and the hydrogen molecule (Stevenson and Schissler 1958; Lampe and Field 1959). The experimental work of Barnes, Martin, and McDaniel furthermore shows that H_3^+ ions persist over very many subsequent collisions with hydrogen molecules. The H_3^+ ion is stable against spontaneous dissociation. Its binding energy of 4.18 ev (Varney 1960) exceeds that of H_2^+ (2.65 ev), so the formation reaction is exoergic (Hirschfelder, Curtiss, and Bird 1954).

Thus it may be expected that H_2^+ will be converted to H_3^+ upon encounter with a hydrgoen molecule, and the population of H_2^+ will be very strongly influenced by the density of neutral molecular hydrogen. It now appears desirable to consider the possibilities for detecting H_3^+ because this molecular ion may be present under some circumstances to the virtual exclusion of H_2^+ .

D. W. Martin E. W. McDaniel M. L. Meeks

June 13, 1961 GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GEORGIA

Martin, McDaniel, & Meeks, Astrophys. J. 134, 1012 (1961)

1961

H₃⁺ in Interstellar space

Interstellar Chemistry

Another important subclass of reactions are those involving H_3^+ . This ion is produced by the well-studied reaction

4.
$$H_2 + H_2^+ \rightarrow H_3^+ + H$$
,

and then reacts with many neutral species according to the general formula

$$H_{3}^{+} + X \to XH^{+} + H_{2},$$
 (4)

1973

E. Herbst & W. Klemperer, Astrophys. J. 185, 505 (1973)

Astrophys. J. 183, L17 (1973)

also: W. D. Watson

where X = CO, N₂, H₂O, NH₃, etc. These reactions have been studied by Burt et al.

- H₃⁺ "universal protonator"
 - $H_3^+ + O \rightarrow H_2^- + OH^+$
 - $OH^+ + H_2 \rightarrow H + H_2O^+$
 - $H_2O^+ + H_2 \rightarrow H + H_3O^+$
 - $H_3O^+ + e^- \rightarrow H_2O^+ + H_2O^+$
- Origin of Earth's water (?)

Search for H₃⁺ in laboratory Oka's Search for H₃⁺

- 6/12-8/3 (1978)

- 12/18-1/26 (1978-79)
- 4/24-12/18 (1980)

R(1,0) April 25, 1980.

•

- Oka and Allen Karabonik in lab
- Keiko came in at 10 pm

Watson assigned it overnight

Positive Column Discharge

Every morning, he transferred six 50 liter cans of liquid nitrogen to the laboratory!

The Long Search

Four and a half years. Much of it assembling the DF system and discharge cell.

(nicknamed "Black Widow").

1912 . 1916 ... 1935

1980 - Laboratory

T. Oka -IR Spectroscopy Observation of H₃⁺

Oka, T. 1980 Phys. Rev. Lett 45, 531.

1980

"Black Widow"

R(1,1)u originates from the lowest para level (J = 1, K = 1), while R(1,0) comes from the lowest ortho level (J = 1,K = 0). Note that the (J = K = 0) level is forbidden by the Pauli principle.

Back to the Interstellar Search

Back to the Interstellar Search

Observation of H₃⁺: 1987-1993 Ionosphere of large planets: Jupiter (1987), Saturn (1993), Uran(1993)

Search for H₃⁺ - Interstellar space

First detection!

LETTERS TO NATURE

1996

Detection of H⁺₃ in interstellar space

T. R. Geballe* & T. Oka†

* Joint Astronomy Centre, University Park, Hilo, Hawaii 96720, USA † Department of Astronomy and Astrophysics, Department of Chemistry and the Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1403, USA

Search for H₃⁺ - Interstellar space

Confirmed by Doppler Shift

1996

1.00 April 0.95 AFGL2136 0.90 April 0.90 W33A 0.85 M3660 36700 36720

reprocessed ↓ Doppler shift confirms interstellar origin

B. J. McCall, T. R. Geballe, K. H. Hinkle & T. Oka Astrophys. J. 522, 338 (1999)

Conditions in ISM

3.666

 $N_{para} = 4.0(9) \times 10^{14} \text{ cm}^{-2}$

T. R. Geballe & T. Oka Nature 384, 334 (1996)

April 29

July 15

3.664

1.02

1.00

0.92

Relative Intensity 96.0 86.0 97.0 **Dark Clouds:**

• T ~ 10K

• H_2 density ~ 10^4 cm⁻³

The Orion molecular clouds

© Royal Observatory , Edinburgh/Anglo-Australian Observatory

Molecular Cloud GL2136. The first detection of interstellar H₃⁺ CGS4 spectrometer at UKIRT

 $N_{ortho} = 3.0(6) \times 10^{14} \text{ cm}^{-2} (\Delta E \sim 32.9 \text{ K})$

3.668

Wavelength (µm)

3.670

3.672

Aastrophysical – Observations OF <u>H₃⁺(v=0)</u>

1980 - Laboratory

T. Oka -IR Spectroscopy Observation of H₃⁺ Oka, T. 1980 *Phys. Rev. Lett* **45**, 531.

<u>1987 -2006</u>; Observation of H₃⁺: Supernova 1987A Interstellar clouds (1998....)

Centre of Galaxy (1999) Ionosphere of large planets: Jupiter (1987), Saturn (1993), Uran(1993)

Geballe, T. R. & Oka, T. 1996 Nature 384, 334.

Jupiter

R(1,1)u originates from the lowest para level (J = 1, K = 1), while R(1,0) comes from the lowest ortho level (J = 1,K = 0). Note that the (J = K = 0) level is forbidden by the Pauli principle.

Galactic Center (2MASS/MSX)

Balance in ISM

Interstellar medium

92.1% of nucleons in the universe are protons 7.8% are helium nuclei ! 0.1%.....C,N,O,S,Si....

Cosmic abundance

D/H ratio ~ 10⁻⁵

@ 10-50K

DENSE INTERSTELLAR

 $H_3^+ + e^- \xrightarrow{\alpha} neutral products$

 α (10 K) = ????

Emotional history of experiments

-"time evolution" of $\alpha(H_3^+)$, $\alpha(D_3^+)$

 H_3^+

Interstellar medium, HD role

92.1% of nucleons in the universe are protons7.8% are helium nuclei !0.1%.....C,N,O,S,Si....

Cosmic abundance

 H_3^+

HD

@ 10-50K

Laboratory astrophysics

The Supernova of 1604

Johannes Kepler Prague 1600-1612

Juraj Glosík

Charles University

Faculty of Mathematics and Physics

para-H₃+

ortho-H₃⁺

Radek Plašil Petr Dohnal Rainer Johnsen

11

Stepan Roucka Ábel Kálosi

Oldrich Novotny Viktoria Poterya Andryj Pysanenko Petr Macko Chris H. Greene Ihor Korolov Tomáš Kotrík

Petr Hlavenka Jozef Varju Slava Kokoouline **Michal Hejduk** Peter Rubovič

Charles University Faculty of Mathematics and Physics

Juraj.glosik@mff.cuni.cz

1912 ... 1936 ... 1949 ... 1990 ... 2003 ...2008 ...2016...2023

04. 12. 2023

H₃⁺, H₂D⁺, HD₂⁺ D₃⁺ are fundamental

A&A 494, 623–636 (2009) DOI: 10.1051/0004-6361:200810587 © ESO 2009 Astronomy Astrophysics

Chemical modeling of L183 (L134N): an estimate of the ortho/para H₂ ratio*

L. Pagani¹, C. Vastel², E. Hugo³, V. Kokoouline⁴, C. H. Greene⁵, A. Bacmann⁶, E. Bayet⁷, C. Ceccarelli⁶, R. Peng⁸, and S. Schlemmer³

Fig. 4. Main reactions involved in the H_3^+ chemical network. When CO and N_2 are depleted, the reactions with bold arrows are dominant.

$H_3^+ + e^-$	$\alpha_{\text{binH3}} \rightarrow \text{neutral products}$
$H_2D^+ + e^$	α_{binH2D} >neutral products
$HD_{2}^{+} + e^{-} -$	$\alpha_{\text{binHD2}} \rightarrow \text{neutral products}$
$D_{3}^{+} + e^{-}$	$\xrightarrow{\alpha_{\text{binD3}}} \text{neutral products}$

H_3^+ , H_2D^+ , $HD_2^+D_3^+$ are fundamental

PHYSICAL REVIEW LETTERS

PRL 102, 023201 (2009)

A&A 494, 623--636 (2009) DOI: 10.1051/0004-6361:200810 ESO 2005

Chemical modeling of L183 (L134N): an estimate of the ortho/para H2 ratio*

L. Pagani¹, C. Vastel², E. Hugo³, V. Kokoouline⁴, C. H. Greene⁵, A. Bacmann

H_{3}^{+} Nuclear spin dependence of H_{3}^{+} recombination

- B. J. McCall, et al. *Physical Review A* (2004)
- H. Kreckel, J. Glosik, et al. Phys. Rev. Lett. 2005,

....2008, new improved calculations

Theory of Binary DR

The main mechanism (Jahn-Teller coupling) that leads to the fast dissociation when electron recombines with the ion requires <u>vibrational excitation of ionic core</u>

L. Pagani¹, C. Vastel², E. Hugo³, V. Kokoouline⁴, Chris H. Greene⁵, A. Bacmann⁶, E. Bayet⁷, C. Ceccarelli⁶, R. Peng⁸, and S. Schlemmer³

- M. Larsson, B.J. McCall, A.E. Orel (2008)
- J. Glosik, R. Plasil, et al. Phys. Rev. A, 2009.
- H. Kreckel, O. Novotny, et al., Phys. Rev. A (2010).
- K. N. Crabtree, N. Indriolo, et al., Astrophys. J. (2011)
- J. Varju, M. Hejduk, J. Glosik, et al. Phys. Rev. Lett., 2011.
- P. Dohnal, M. Hejduk, J. Glosik, et al. J. Chem. Phys., 2012.

Doubts 2011

"Presently no rate coefficient measurement with a confirmed temperature below 300 K exists".

Petrignani et al. Phys. Rev. A (2011)

FIG. 5. (Color online) The present theoretical thermal rate coefficient for dissociative recombination of H_3^+ is compared with the experimental rate coefficient deduced from the storage ring experiment of McCall and co-workers (Refs. 9 and 10).

3D 60 K

Unfortunately the experiments on storage rings were stopped

H₃⁺ Potential CUIVES In the case of H₃⁺, a simple 2-dimensional picture of molecular states suggests that recombination should be very inefficient

FIG. 1. Energy diagram of triatomic hydrogen (D_{3k}) geometry) showing the location of the bound Rydberg states and the unstable ground state of H_3 in relation to the neutral and ionic dissociation limits.

Metastable: $H_3 2p^2 A_2''$ (N=K=0)

Line intensity H₃⁺

Energy (cm⁻¹)

LIR - H_2D^+ and D_2H^+ precision of 10⁻⁸

~26K

Stationary afterglow + Spectroscopic identification of recombining ions

$$\frac{d[H_3^+]}{dt} = -\alpha [H_3^+] n_e = -\alpha [H_3^+]^2$$

CRDS

IR-CRDS Laser absorption spectroscopy

Spectrum - He/Ar/H₂ microwave discharge

1469nm

Pulsed discharge – plasma decay

From Doppler broadening

Absorption studies

6536.301

0.018

0

6536.319(2)

Ionic composition of H_2/D_2 plasma

Observation of high population of deuterated molecules

The first detection of deuterated molecules were made in the early 1970s...... Observed enhancement of D in molecules

H_2D^+ H_2D^+ HD_2^+ CH_2DOH NHD_2/NH_3 D_2CO/H_2CO NH_2D/NH_3	Stark Caselli Vastel Parise Roueff Loinard D Loinard Bacmann J. Hatchell	(1999) (2003) (2004) (2003, 2004) (2000) (2001) (2002) (2003) (2003)	 1₁₀-1₁₁ transition of ortho- emission from detected towards L1544. the first detection b) have detected 4 isotopomers of deuterate is 0.005 in the cold cloud L134N and 0.03 is between 0.01 and 0.4 in a low-mass prohigh ratios~4-33% in protostellar cores 	young stellar object NGC 1333 IRAS4A. d methanol 3 in the low-mass protostar 16293 E otostars and prestellar cores
ND ₃ /NH ₃	3 Lis	(2002)	ratio $\sim 10^{-3}$ cold dense Barnard 1 cloud	frequency (GHz) 309.6 309.8 310 310.2
	Tak Observed 1 statistical r	(2002) ratio ~10 ⁻³ ratio ~ (D/H)	Class 0 protostar NGC 1333 IRAS4A ³ $\square 10^{-14} \rightarrow \text{Enhancement of } 10^{11}$	0.2 VI 0.1 VI 0.
	Cos	mic D/H	$ratio = 1-2x10^{-5}$	$\begin{array}{c} -0.1 \\ 0.1 \\ 0.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

			HD H3	H₂D⁺	D_2H^+			
	C	osmic D/H $\approx 10^{-5}$	N₂D⁺	DCO ⁺	DCN			
D +	X	$D/XH \approx 10^{-1} - 10^{-3}$	DNC	HDCS	D ₂ CS			
3	X	$D_2 / XH_2 \approx 10^{-2}$	HDO	DC₃N	DC ₅ N			
	X	$D_3 / XH_3 \approx 10^{-3}$	C₃HD	HDCO	D ₂ CO			
in the second			CH₃OD	CH₂DOH	CHD ₂ OH			
0	Section 1		CD₃0H	<u>CH₂DCN</u>	NH ₂ D			
			NHD ₂	ND_3	CHD ₂ CCH			
Cosmic D/H	ratio = 1-2x10	0 ⁻⁵	CH ₃ CCD	C ₂ D	C ₄ D			
Species	Observed ratio	0	HDS	D_2S				
NH ₂ D/NH ₃	0.01		Deuterated m	olecules that hav	e been detected			
HDCO/H ₂ CO	0.005-0.11		in interstellar clouds as of February 2005.					
DCN/HCN	0.023							
DNC/HNC	0.015	Gas phase react	tions,					
C ₂ D/C ₂ H	0.01		ion-molecul	<u>e reactions,</u>				
DCO ⁺ /HCO ⁺	0.02		<u>recombinations</u>	<u>on</u>				
N_2D^+/N_2H^+	0.08	Grain surface r	eactions ensation and eve	anoration from	orain surface			
DC ₃ N/HC ₃ N	0.03-0.1				Stant Surface			
HDCS/H ₂ CS	0.02							

Different views & different plasmas

H₃⁺ and its interaction of with e⁻ is FUNDAMENTAL

I JAKO KOMIKS.

J.E.P. Connerney and T. Satoh, Phil. Trans. R. Soc. Lond. A358, 2471 (2000)

H₃⁺, H₂D⁺, HD₂⁺ D₃⁺ are fundamental

Chemical modeling of L183 (L134N): an estimate of the ortho/para H₂ ratio*

H₃⁺ interaction with **e**⁻

FIG. 1. The scheme of the proposed H_3^+ recombination mechanism. Used symbols are explained in the text.

Figure 5. Temperature dependences of α_{bin} , α_{F} , and their sum $(\alpha_{\rm bin} + \alpha_{\rm F})$. The diamonds and squares indicate $(\alpha_{\rm bin} + \alpha_{\rm F})$ measured in pure H2 and in He/Ar/H2 mixture, respectively. The fit of the data (dashed line) gives the temperature dependence: $(\alpha_{\rm hin} + \alpha_{\rm F}) = (2.0 \pm 0.4) \times 10^{-7} (T/300 \text{ K})^{-(0.81 \pm 0.30)} \text{ cm}^3 \text{ s}^{-1}$ The filled circles indicate the values of α_{bin} for H⁺₃ ions in He/Ar/H2 mixtures that were obtained in several stationary and flowing afterglow experiments (for details see [22, 26]). The full line indicates the dependence $\alpha_{\rm bin} = (6.5 \pm 1.4) \times 10^{-8} (T/300 \text{ K})^{-(0.26 \pm 0.07)} \text{ cm}^3 \text{ s}^{-1}$ obtained by fitting α_{bin} data at temperatures 80–340 K. Included are the present data and data from [22, 26]. The dependence of $\alpha_{\rm F}$ on temperature (dot-dashed line) was obtained by subtracting α_{bin} (full line) from the sum of $(\alpha_{\text{bin}} + \alpha_{\text{F}})$ (dashed line). The rate coefficients measured by Amano [30] in pure H2, assumed to be due to binary recombination only, are plotted as open triangles for comparison. The dotted line indicates a fit to Amano's data: $\alpha_{\text{Amano}} = 1.7 \times 10^{-7} (T/300 \text{ K})^{-0.94} \text{ cm}^3 \text{s}^{-1}$. The theoretical temperature dependence of the binary rate coefficient of dissociative recombination of H⁺₂ ions calculated by Fonseca dos Santos et al [12] is plotted by a double dot-dashed line denoted Theory.

Figure 6. Temperature dependences of the three-body rate coefficients K_{H2} (closed squares) and K_{He} (open squares) of H₂ and He assisted recombination of H₃⁺ ions. Closed circles: K_{He} of H₃⁺ ions obtained in our previous experiments [21, 23, 24, 34]. Open triangles: Three-body recombination rate coefficients of He-assisted collisional radiative recombination K_{HeAr+} of Ar⁺ ions measured in a Cryo-FALP II experiment [50]. Filled stars: K_{He-CRR} as measured by Cao *et al* [51] for a mixture of atmospheric ions in He. Dotted line: Theoretical dependence of Bates and Khare [32] scaled for Ar⁺ ions in He by the reduced mass. Full triangle, pentagon and diamond indicate three-body rate coefficients measured for He₂⁺ ions in helium by Berlande [52], Deloche [53] and Johnson [54], respectively.

FIG. 7. Cryo-FALP II data. Dependence of ${}^{e}\alpha_{eff}$ and ${}^{n}\alpha_{eff}$ on [He] and [H₂] measured at T = 60 K in experiments with ${}^{e}H_2$ and with ${}^{n}H_2$, respectively. The upper surface is a fit of Eq. (6) to the data (indicated by circles) obtained with ${}^{e}H_2$. The lower surface represents a fit of Eq. (6) to the data obtained with ${}^{n}H_2$ (data points are omitted for clarity). The data points deviate from the surfaces by amounts on the order $<2 \times 10^{-8}$ cm³ s⁻¹ as is shown by red lines connecting the data points with the plane. The parameters of the fits are listed in Table I.

H₃⁺ interaction with **e**⁻

FIG. 7. Cryo-FALP II data. Dependence of ${}^{e}\alpha_{eff}$ and ${}^{n}\alpha_{eff}$ on [He] and [H₂] measured at T = 60 K in experiments with ${}^{e}H_2$ and with ${}^{n}H_2$, respectively. The upper surface is a fit of Eq. (6) to the data (indicated by circles) obtained with ${}^{e}H_2$. The lower surface represents a fit of Eq. (6) to the data obtained with ${}^{n}H_2$ (data points are omitted for clarity). The data points deviate from the surfaces by amounts on the order $<2 \times 10^{-8}$ cm³ s⁻¹ as is shown by red lines connecting the data points with the plane. The parameters of the fits are listed in Table I.

FIG. 8. Cryo-FALP II and SA-CRDS. Nuclear spin state-specific binary recombination rate coefficients measured in Cryo-FALP II, FALP, and SA-CRDS experiments. Triangles and squares indicate ${}^{p}\alpha_{bin}$ and ${}^{o}\alpha_{bin}$, respectively. The values at 85 K, 140 K, 165 K, and 195 K were taken from our previous experiments.¹⁹ The values of ${}^{n}\alpha_{\text{bin}}$ (circles) were measured in the Cryo-FALP II, FALP, and SA-CRDS experiments and some data were taken from our previous studies.^{19,41} The diamonds refer to ${}^{n}\alpha_{bin}$ (open diamonds) and ${}^{e}\alpha_{bin}$ (closed diamonds) measured in the present Cryo-FALP II experiment. The full lines are fits to ${}^{p}\alpha_{bin}$, ${}^{o}\alpha_{bin}$, and ${}^{n}\alpha_{bin}$ to the function in Eq. (7) that is used in astrophysical databases. For details and for the parameters of the fits see the text and Table II. The arrows on the right hand side of the figure denoted as p, o, and n indicate the values of ${}^{p}\alpha_{bin}$, ${}^{o}\alpha_{bin}$, and ${}^{n}\alpha_{bin}$ obtained in CRYRING,¹³ respectively. The dashed lines indicated as para, ortho, and thermodynamic equilibrium (TDE) are theoretical dependences for para $-H_{2}^{+}$, ortho- H_2^+ , and for H_2^+ ions in TDE.^{33,35} The dashed-dotted lines E-CRR_{SA} and E-CRRFALP are effective binary rate coefficients of ternary E-CRR calculated for electron number densities $n_e(\text{SA-CRDS}) = 3 \times 10^{10} \text{ cm}^{-3}$ and $n_{\rm c}$ (Cryo-FALP II) = 5 × 10⁸ cm⁻³.^{19,27–29}

H₃⁺ interaction with e⁻

THE JOURNAL OF CHEMICAL PHYSICS 136, 244304 (2012)

Binary and ternary recombination of para- H_3^+ and ortho- H_3^+ with electrons: State selective study at 77–200 K

Petr Dohnal,¹ Michal Hejduk,¹ Jozef Varju,¹ Peter Rubovič,¹ Štěpán Roučka,¹ Tomáš Kotrík,¹ Radek Plašil,¹ Juraj Glosík,¹ and Rainer Johnsen²

FIG. 12. Ternary recombination rate coefficients ${}^{p}K_{\text{He}}$, ${}^{o}K_{\text{He}}$, and ${}^{n}K_{\text{He}}$. The data obtained in previous CRDS (closed circles) and FALP/SA (open squares) experiments^{33,34} are also shown. The dotted lines drawn through the para and ortho data are only meant to guide the eye. In the insert diagonal elements Q_{ii} of fifetime Matrix **Q** for the two lowest initial rotational states of H₃⁴ are plotted. Each curve is labeled with the corresponding quantum numbers (J,G).^{8,34}

FIG. 13. Measured temperature dependences of the binary recombination rate coefficients ${}^{n}\alpha_{bin}$, ${}^{p}\alpha_{bin}$, and ${}^{o}\alpha_{bin}$ for normal-H⁺₃ (measured in experiments with ⁿH₂), para-H₃⁺, and ortho-H₃⁺, respectively (see also Ref. 78). Previous FALP data^{8, 33, 34} measured with ⁿH₂ are indicated by full circles. Combined SA-CRDS/FALP data at 100 K and 305 K (Refs. 8 and 34) are indicated by a full circle in a square. The temperature T in the SA-CRDS experiments is given by $T_{\rm Kin}$, while in the FALP it is the temperature of the flow tube. That is why we use T = 82 K for data obtained in experiment made with discharge tube (SA-CRDS) immersed in liquid nitrogen, otherwise we indicate it as 77 K (e.g., in Fig. 5). Error bars (present CRDS data) represent statistical errors (see linear fits in Figs. 10 and 11). The dashed lines indicate the theoretical rate coefficients for para- H_3^+ , ortho- H_3^+ , and for H_3^+ ions in the thermal equilibrium (TDE).⁶ The curves labeled CRR are the effective binary rate coefficients of collisional radiative recombination (CRR) calculated from the Stevefelt formula (see Refs. 31, 32, and 38) for electron densities $n_e = 5 \times 10^9$ cm⁻³ (dotted line) and $n_e = 3 \times 10^{10}$ cm⁻³ (dash-dotted line). For details see the Appendix.

Electron trap

