21. Multivariate random variable or random vector

—

¢ =[6,6,...,€] random vector is composed of individual random variables

Multivariate cumulative probability distribution
or joint cumulative probability distribution: mapping R" — [0, 1]
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Multivariate probability density function
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Expected value for a function of a random vector (mapping R" — R)
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22. Expected value of a linear combination of random variables
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23. Variance of a linear combination of random variables
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24. Covariance

cov(&;, &) = E{[& — E(&)][S — E(&)]}

Auto-covariance of a random variable is the same as its variance

cov(&, &) = E {[& — E(&)]?} = D(&)



Independent random variables
Multivariate cumulative distribution of independent random variables

a1 80 0ey8nx) = PLELS @1) NG 80) Neowe DG E Tn)
— P(Slgml)P(£2£$2)P(Eﬂ,gﬁfn)
= F(x1) - F(xg)-...- F(z,)
Multivariate probability density function of independent random variables
f(.fEl,.T}g,...,LBn) — f(:l:l) f($2) f(mn)

25. Expected value of a product of independent random variables
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26. Covariance of independent random varlables

cov(&i, &) = E{l& — E(&)]l& — E()]} = El& — E(&)] - El§; — E(§)] =0 for i#]

27. Variance of a linear combination of independent random variables
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28. Covariance matrix

cov(é,&1) -+ cov(éy,én)
C = : E :

CDV(Q:mgl) CDV(&H:&%)

 Symmetric by definition

* Only the main diagonal for independent random varaibles, cross-covariances are zero
* Main diagonal: auto-covariances cov(§;, &) = D(&)

* For linearly dependent random variables (& = a;&):

cov(ai€, a;€) = E {{aié — B()]lajé — E(a;€)]} = aia; D(€) = %,/D(E)D(&;)

29. Coefficient of linear correlation

cov(&;, &)
P(&i, 5) ==
" /DE)D(E)
Independent random Lineraly dependent random variables:

variables:

p(&i &) =0 & =agj,a>0:p6,&) =1 &=a§,a<0:p(&,§)=—1



30. Pseudo-random sequences

* QObservation: a realization of the random variable
 Computers are usually deterministic: how to obtain a random number?

* Only pseudo-random — requirements depend on a particular purpose:

length of the sequence

internal bounds within a sequence of pseudo-random samples

Test of internal bounds: sequence of k pseudo-random numbers defines a point
in the k-dimensional space. These points usually form k-1 dimensional
hyperplanes.



31. Uniform distribution — basis for all other distributions

* Linear congruential generators [;11 = (al; +¢) mod m ()
* Period < m, a,c,m must be carefully selected
* Simple example: 4 byte (32 bit) generator with
m = 231 — 1 =2147483647, c = 0, a = 7° = 16807
* Test: sequence of k pseudo-random numbers defines a point in the k-dimensional
space. These points form a maximum number of m¥/ k-1 dimensional hyperplanes.

p— A

(=)
N

* Modification of the linear congruential generator
to decrease the strength of internal bounds:

iwvp

OUTPUT

* Define an array of 32 numbers from (x) .

* y=0 \g —
e (+) The yth element goes to the output -
. The yth element is refilled from (*)

*  The last 5 bits of the output = next y i g
> (+) iva




32. Transformation method to generate an arbitrary distribution

* Probability of observing a value between x and x + dx: dP = f,(x) dx,
where f, isthe probability density function

* Transformed random variable y(x) : dP = f,(x)dx = f, (y)dy - f,(y) = fr(x) Z—i
* Uniform distributionon (0,1): f,(x) =1 - f,(y) = Z—; - x=E{) > y= Fy_l(x)
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33. Pseudo-random sequence with an exponential distribution

Probability density function of an exponential distribution:

forp() = sexp (=)

Cumulative distribution function of an exponential distribution:

Foxp(x) =1 —exp (— %)

Transformation of a uniform distribution

X = Fexp_l(Y)
x =—6In(1—y)=—-456In(u)

X has an exponential distribution,
for a uniform distribution of y oru on (0,1)



34. Pseudo-random sequence with a normal distribution

Multivariate (joint) probability density of a transformed random vector y(x):
dP = f (x1, %5, ., X)) dxydx, o dx, = fL,(V1,Y5, 0 ¥) Ay, Ay, .. dy,

0x, ox,
2y, oy,
fy(:VPYZ;-..;yn): . . . fx(xl,xz,...,xn)
0x, ox,
2y, 2y, f
where | ... | is the determinant of the Jacobian matrix e

Box-Muller method (1958):

. . . . 1 2 2
X, X, ...uniform distribution on (0,1) 21 = exp | =5 (yi +12)
— il gt 1

Y1 \/ 2Inzq cos2mas | ] gy — = arctan 22
ﬁ 27T yl

Yo =/ —2Inz; sin 2wz 1 y 1 ./

= | eV 2| | ——e Y2 2]
| | {\/271‘ ] [\/271‘

Y1,Y,...normal distribution y = 0,0 =1



35. Rejection method

General method to generate an arbitrary distribution with a probability density function p(x)
Does not need the inverse cumulative probability function

* Choose a “nice” comparison function f(x) > p(x), with a finite A = ffooof(u)du

e Calculate the inverse function F~1(y) to F(x) = f_xoof(u)du

* Generate a random number y, uniformly distributed on (0, A) - X, = F‘l(yl)
* Generate a random number y, uniformly distributed on (0, f(x,)) — reject or accept x,

A

first random
Vi foatats  — s v we s

reject x

‘.f('\'())
acceptx,
BE%0 second random yz
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36. Mathematical statistics: application of probability theory

 Statistical population: set of objects (existing or hypothetical), the latter can be infinite
* Sample: a finite subset of a given statistical population, selected by a known procedure
* Sample size: a finite number of elements of the sample

* Observations, a.k.a sample points, sample units: elements of the sample

« Random sample: a sample with defined (e.g., equal) selection probabilities for all elements
of the population;
For a hypothetical infinite statistical population generated by a random process with a
given probability distribution, the random sample with a sample size N is a set of
realizations of N independent, identically distributed (i.i.d.) random variables.

* A sample statistic: a quantity calculated from elements of a sample;
for a random sample, every statistic is a random variable

« An estimator U: a sample statistic is a random variable designed to estimate a parameter
U of the population



37. Bias of an estimator 9
b(9) = E(d) — 9

b(@) = ( for an unbiased estimator

Example: sample mean value obtained as the arithmetic average
N
1= X
H = N i
=1

Is it an unbiased estimator of the expected value (population mean) u of N independent,

identically distributed (i.i.d.) random variables X; ?
1 Nu

N 1
b(@) = E(yZiiXi)—n = T EG)—u = —pu=0

BUT: taking just the last value X (and trash X;..Xy_1): fiy = X is also unbiased



38. Asymptotically consistent estimator 3,\,
converges to the true value 9 for the sample size N - co:

Ve > 0: lim P(|1§N — 9 | > e) =0 (convergence in probability)

N—>oo

N . N 1
Example: {i; = Xp: no convergence, while the sample mean i = - Iivlei converges to u

But: an estimator can be biased and still asymptotically consistent

fp=~(333+3M,X) > b)) =="#0 while lim g, =y

N—->oo

Conclusion: We need BOTH unbiased AND asymptotically consistent estimators

39. Variance of an estimator: D(9) = E {[19 — E(@)]Z} - lim D(4) =0 = consistency

N—-oo

Example:

_ 2 2
D(4) = E{ Ien x ) } = L2EYN (x. — _ E(EX,) = ZE(X,)
() (2N X ) —u] CE{ZN. - ]} PR

- %E{Zlivzlin — M]Z} t %E{ZZ#][(XL' — M)(Xj - M)] } = / are independent r. v.

1 [ 1 1 1
=F £V=1 E{_Xl_:u]z} +FZZ£¢] [E:(Xl _‘U)E(X]—‘Llll ZFNO'Z =N0.2
0 . 0




Friedrich Wilhelm Bessel
Accountant in a Bremen trade
company; navigation -
astronomy. Orbit calculations of
Halley's comet. Director of the
Konigsberg observatory. First
‘ measured the distance of a star
émmglc dil;“h: ;‘ ; fg:rggﬁz::;mg its palrallax. '
W : personal equation.

Geodesy: Earth’s ellipsoid.

40. Unbiased estimator of variance,
Bessel's correction

Average squared deviations from the sample
mean: d = % N (X, — )2 with fi = %Z{\Ile

E(d) = EE T IX — ) — (1 - w]?} =
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Unbiased estimator of variance 6 using Bessel's correction —: N-14&1=1V0
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41. Sample standard deviation

A = A 1 A
6 = V6%, where 6% = EZﬁv:l(Xi — [1)?

BUT: E(W) +E(6%) = b(6%) =E(6?) —o0° =0 — unbiased estimator of variance
and b(6) = b(W) = E(W) —+o? # 0 - biased estimator of standand deviation

Bias depends on the probability distribution of X;. For a normal distribution b(6) = %

«— Exact solution for b(6),
for a normal distribution
witho =1

Bias
000 001 002 003 004 005 0.06
|

[} L] ] ] L]
20 40 60 80 100

Sample Size



42. Practical calculation of the sample variance

Single pass

accumulation of Sy = YN . X; and Syy = YN, X;?

then

N N
1 1
6% =7 E X - =1 E (Xi* = 2X;0 + %) =

i=1

=1

N -1

BUT: has a large accumulated round-off error (cancellation effect)

Two-pass procedure

1. Sample mean [ = "

1

N
i=1Xi

2. Sample variance with round-off correction

62 =

1
N -1

( N
P
A i —H N
\l—l

M=

(X; —

1
Sxx _NSX



Recursive procedure
Used when adding new data to improve the ji and 2 estimators — recurrence relation

Welford’s algorithm (1962)

. 1 . 1 .
Sample mean: UnN = ;Z{-V:l Xi = fy-1+ N(XN — An-1)
Sample variance: §2y = YL, (X, — )% = 82y_q + (Xy — fiy_1) Xy — i)
a2
621\[ — >N



43. Estimators of higher moments

Nondimensional quantities:

(3 = 0 = symmetrical

(, = 0 & normal

E[(X )3] Skewness Kurtosis N

— M 13 positive

Skewness (3= = , —_— [ (leptokurtic)
E[(X B u)2]3/2 0’ negative—>’/ «— positive (platylfliftic‘:} Y J,

. E[(X — p)*

Kurtosis (g = ( B =& .
B(X—p2 ot |-

Excess Kurtosis {, = G4 —3

s _ 1N (XioB)?

6
Sample skewness N

: 5 24
X; normal = variance D(Q) ~ N

Sample (excess) kurtosis



44. Sample median, average absolute deviation

The sample median M as an estimator of the population median M makes use of only one or two of the
middle values out of the entire sample of N values X; < --- < X, and is thus not affected by extremes
(a robust statistic):

A~

<

- X(N+1)/2 for Odd N
M =%(XN/2 + Xn/2+1) foreven N

The distribution of M from a population with a probability density function

_ 1
f (x) is asymptotically normal with the expected value M and variance D(M) = INFOD)?
- 2
For samples with a normal distribution: f(M) = 1/V2mo? and D(M) = %

Pierre-imon,
marquis de Laplace
1749 — 1827

1

The sample average absolute deviation 5,\7, =NZ§V=1|XL-—M| IN /2] forloddN IN/2]

N N U P 1o o\ amn 4200 1 T T 1
* Using M minimizes DM:N(M —Xl) + '~+E(XN — M), 0Dy /0M = Sttt ) = e == =0
- Using i minimizes 6% 862/ = ——¥,0(X; — 2)? /o = ——[¥; X; — NA] =

(N-1) (N-1)



N

Practical calculation of the median estimator M

1. Sorting the entire sample of N values sothat X; < -+ < Xy
obtains not only median but all the quantiles - Quicksort, Heapsort
— number of operations scales as N In(N)

2. Direct selection of (N/2)th largest value
— number of operations scales as N

3. lterative procedure

_ —
ZN Ai-Mo_ = M, = 1K = My
i=1|Xi—M| N 1

X = My |



45. Are sample means of two sets of data significantly different from each

other? ‘ Stu dent,

. ~ A Statistical
2samples:  X; i1=1..Ny — samplemean [y oo
Y; i=1..Ny, — sample mean [y WILLIAM
, SEALY
Student’s t: R
. . Ny . Ny . E.S. ?Eéns'()N
o Hx TRy Yo Xy —fAx)? + X0 (Y —dy)* (1 N 1 v pLACKETT
SD ) D NX + NY . 2 NX NY | G. A. BARNARD
t measures the difference of the two sample means. William Sealy Gosset

1876 — 1937

- . . . Guinness Head Brewer
Probability of obtaining a value of |t| or larger randomly, with otherwise

equal expected values of the underlying distributions of the two populations
(null hypothesis):
P=1-A(t Ny + Ny — 2)
where A(t,v) is the CDF of the Student’s distribution with v degrees of freedom.
Small P < a means that [iy and fiyare significantly different
— reject the null hypothesis at the significance level of a (typically 0.05 or lower).



Student’s distribution

Cumulative distribution function A(t,v), one parameter v — number of degrees of freedom:
v+1

A(t,v):WBl(%’%)j_ttG _|_x72) 2 dx

where B(z,w) is the beta function

1

B(z,w) = j tZ71 (1 - )W 1dt
0.40 0
. 0.35} A v=1 .
Probability .| A\ —v=2 Cumulative

\
N — =5
\

distribution
function:

density 2 025}

function: \2 0.20¢
“~ 0.15}

0.10 L.
0.051 Finitev —

normal T T heavy tail

YV — OO




46. Pearson’s correlation coefficient: estimator of the linear correlation coefficient
Recall: p(&i, &) = \/nggﬁg) for independent random variables: (&, ¢;) =0
!r ’ &=aa>0:p(6,6)=1 a<0:p(§,§)=—1

2 samples of the samesize: X; i(=1..N — sample mean fiy
Y; i=1..N — sample mean [y
Pearson’s correlation coefficient:

S (X — ) (Y = fiy)

r =
JELL 0 = 0 B, 01— )2

Karl Pearson
1857- 1936

Which value of 7 means that we can reject the null hypothesis of independent populations X and
Y ? At which significance level? Approximate answer: For large N and normally distributed
X;and Y; the values of r are = normally distributed with E(r) =0, D(r)= 1/N

N—-2

1-12

Less approximate answer for lower N: ¢t = r has Student’s t-distribution withv = N — 2.




47. Spearman’s correlation coefficient: non-parametric estimator

2 samples of the same size
X; i =1...N — convert to ranks R;. Example: X=[0.34,0.29,2.85] - R=[2,1,3]
Y; I =1..N — ranks S;. Randomly decide cases of equal values —» X = %N(N + 1)

Spearman’s correlation coefficient
(robust, tests a monotonic relation) :

ey (R — ) (s — 4

Ty =
2 2
LB R =252 5 (5, - 4

| Las personas que son brillantes
= BN un area, a menudo destacan

tambienen ofra area.

Charles Spearman
_

Charles Edward Spearman 1863- 1945, psychologist

N-2

with the number of degrees of freedom v = N — 2.

For an arbitrarily distributed X; and Y;, t = 15 has = Student’s t-distribution

fP=1—A(t,N — 2) < a then we can reject the null hypothesis of independent populations
at the significance level of a. A(t,v) is the CDF of the Student’s distribution.



