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3. Statistical methods of data processing 
Probability, random vectors, pseudorandom sequences, bias and variance 
of estimates, correlation coefficients, parametric methods. 
4. Data modelling 
Interpolation, maximum likelihood methods, general linear least squares 
method, singular values decomposition (SVD): theory and examples, non-
linear least squares methods, confidence intervals, Golay-Savitzky filters, 
splines. 
5. Random processes 
Mean value, correlation, stationarity ergodicity, convolution, power 
spectra, multidimensional spectral analysis, wavelet analysis. 

Motivation:





1. Classical probability

of an event A is 
the number of cases favorable to the event (number of elementary events composing A),
divided by the number of all possible cases (number of elements of the sample space).

where each elementary event
is a single element of the sample space (set of elementary events) 
and corresponds to one of the mutually exclusive outcomes
with equal probabilities.

• Luca Pacioli (Franciscan, mathematician, friend of Leonardo da Vinci, father of double-
entry system): Summa de arithmetica, geometrica, proportioni et proportionalità
(1494).

• Game of chance with two players A and B who have equal chances of winning each 
round. 

• The players contribute equally to a prize pot, and agree in advance that the first 
player to have won 6 rounds will collect the entire prize. 

• The game is interrupted by external circumstances before either player has 
achieved victory: A has won 5 rounds, B has won 3 rounds. How does one then 
divide the pot fairly?                               Pacioli says: A gets 5/8, B gets 3/8



Discussion of Blaise Pascal and Pierre de Fermat (1654) : The 17th century beginnings of modern probability theory
Problem reposed by a French writer Antoine Gombaud (Chevalier de Méré): 
• Game of chance with two players A and B who have equal chances of winning each round. 
• The players contribute equally to a prize pot, and agree in advance that the first player to have won 6 rounds will collect 

the entire prize. 
• The game is interrupted by external circumstances before either player has achieved victory: A has won 5 rounds, B has 

won 3 rounds. How does one then divide the pot fairly?     Pacioli said: A gets 5/8, B gets 3/8

Fair solution:

• The game continues by 3 hypothetical rounds which
have 2x2x2 = 8 possible outcomes.

• Only one of them is favorable to the event that B wins
• Therefore, fair distribution of funds from the pot is: 

1/8 for B, 7/8 for A

Pierre de Fermat 1601 - 1665 Blaise Pascal 1623 - 1662

Girolamo Cardano: Liber de Ludo Aleae (1564?). The 16th century treatment of the probability calculus. 
It could be also viewed as a gambling manual. Notion of justice, based on Aristotle's rule for a just act:
“...there is one general rule, namely, that we should consider the whole circuit (note: Cardano’s term for 
‘sample space’), and the number of those casts which represent in how many ways the favorable result 
can occur, and compare to that number to the remainder of the circuit, and according to that proportion 
should the mutual wagers be laid so that one may contend on equal terms.“



Another problem posed to Pascal by Chevalier de Méré:

• We need at least 4 rolls to obtain >50% probability 
of getting at least one "6" for a single 6-sided die:

• How many rolls do we need to obtain >50% 
probability of getting at least one "6, 6" for two 6-
sided dies:

• intuition:  6 times more = 24
• Chevalier de Méré guessed that intuition is 

misleading in this case. He posed the 
question to Pascal, who solved the problem 
and proved de Méré correct:

(
3
)

Disadvantage of classical probability: too special



2. A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933)

Sample space (set of all elementary events)

Andrey Nikolaevich Kolmogorov 
(1903-1983)

Event: subset  (not all possible subsets are necessarily events)    

Event space: set of all events, system of subsets of 

Assumptions:

Then:…complement 

… finite or at least countable system of events

Therefore (De Morgan’s laws) : (union of events is an event)

(empty set is an event)

(the whole set of elementary events is an event)

(intersection of events is an event)
is sigma-algebra                DEFINITION:



Kolmogorov probability axioms (1933)

1. The probability of an event                  is a non-negative real number

2. The probability of the sample space (which is an event) is 1:
In other words: the probability that at least one of the elementary events in the entire 
sample space will occur is 1. 

3. If                                   is a countable system of disjoint sets (with empty intersections) 
representing mutually exclusive events - none of events can occur together with either of 
other events:

then 



3. The probability of a complement  to the sample space (the probability that the event 
will not happen:

4. Sum rule: 

The probability of a union of A and B (probability that an event  A or event B will happen) is 
the sum of the probability of an event A and the probability of an event B, minus the 
probability of an intersection of A and B (probability that both A and B happen). 

Some consequences of Kolmogorov probability axioms:

1. The probability of an event represented by empty set (never occurs) is

2. If A is a subset of, or equal to B, then the probability of A is less than, or equal to the 
probability of B:

Proof:



3. Conditional probability

Let be a measure space:        is a set,     is sigma-algebra on the set ,       is a measure on (        )    
probability space, when P is probability

Then, we can define the conditional probability as the probability of an event A occurring, 
given that another event B has already occurred (by assumption or by evidence):

"the probability of A under the condition B" 
or "the conditional probability of A given B"

Properties:

system of disjoint events

Occurrence of event B implies occurrence of event A: 

Probability that both A and B happen (probability of intersection of A and B): 



• Definition: Events A and B are independent if

• Consequence for the conditional probability of A given B:

• Different from mutually exclusive events for which the intersection, and                  are :

4. Independent events

5. Total probability

• are disjoint events fulfilling it means that they form

a complete system of events

• Then, for an event A: 

• Proof: 



Let be a complete system of events (hypotheses)

Then, for an event A (outcome of an experiment):

… posterior probabilities of hypotheses

… prior probabilities of hypotheses

6. Bayes' theorem (a.k.a. Bayes rule, Bayes' law) 



7. Random variable

Random variable is a real function defined on the set of elementary events (sample set)
mapping such, that sets of all fulfilling are events

and hence have probability.

8. Distribution function of a random variable (a.k.a. cumulative distribution function, CDF)

Distribution function is a real function of a real variable, which returns probability that



Properties of the distribution function

• non-decreasing

•

•

• right-continuous for discrete random variables

• countable number of discontinuities

Example: random variable sum of points on two dice



9. Probability density function (PDF), probability mass function (PMF)

The probability density function is defined for a continuous random variable
with a cumulative distribution :

for a discrete random variable : probability mass function (a.k.a. discrete density function)
a function giving the probability that a discrete random variable is exactly equal to some value



10. Expected value, expectation, mathematical hope

Idea: 17th century, Pascal, de Fermat during the discussion on the
division of stakes.  Christiaan Huygens, 1657, De ratiociniis in ludo aleæ: 
„…If I expect a or b, and have an equal chance of gaining them, my 
Expectation is worth (a+b)/2.“

Pierre-Simon Laplace, 1814, Théorie analytique des probabilités:
…this advantage in the theory of chance is the product of the sum hoped 
for by the probability of obtaining it… We will call this advantage 
mathematical hope.“

Discrete random variable:

Continuous random variable:

Pierre-Simon, 
marquis de Laplace
1749 – 1827 

Christiaan Huygens
1629 –1695 



Expected value of a real function of a random variable

Discr. r.v.: Cont. r.v.:

Moments
kth moment: Note:   

Central moments
kth central moment:

11. Variance as a measure of dispersion of a random variable
2nd central moment, square of the standard deviation

for discrete random var.



12. Quantiles (percentiles, decils, quartiles)

is a p-quantile of a random variable :    the cumulative distribution function

13. Mode
value         for which the probability density function has a local maximum

(more local maxima: bimodal or multimodal distribution)

Median 

lower (upper) quartile

th decile

th percentile

th decile



Examples of discrete distributions

14. Binomial distribution

Discrete random variable number of occurrences of an event in      independent 
experiments; occurrence probability of this event is equal to     in each particular experiment.

Probability mass function for ,

Expected value    

Variance

Binomial distribution converges to a normal distribution
for large



15. Poisson distribution

Limit of the binomial distribution for a large number of
independent experiments when the probability of success in each
particular experiment decreases as 

Probability mass function:

Expected value  

Variance

Relative error

Siméon Denis Poisson
1781-1840



Property of the Poisson distribution: if random variables
have Poisson distributions

with , then has 
a Poisson distribution with

Examples: 
• number of random values in a given interval, 
• number of typos in a text,
• number of independent events occurring in a time

interval
o Radioactive decay counts
o Large meteorites hitting the moon

• number of randomly placed points occurring in a 
predefined area (blood cells in a microscope)



Examples of continuous distributions
16. Uniform distribution

The probability density function is a constant on an interval 

Cumulative distribution function:

Expected value:

Variance:

for for for



Example:

Simulated 
uniform noise
< -1, +1 >

+
Sine signal with 
unit amplitude



17. Normal  distribution

Probability density function:

Expected value:
Variance: 
Cumulative distribution function:

FWHM (full width at half maximum)    

Laplace functionError function

Probability within :



18. Exponential distribution

Probability density function:

Cumulative distribution function :

Consequence: distribution without memory:
Hint for proof:

Expected value:

Variance:

Example:  Duration of time intervals between independent events of a Poisson process.
(Without memory: If an event has not occurred after 30 seconds, the conditional probability 
that occurrence will take at least 10 more seconds is equal to the unconditional probability of 
observing the event more than 10 seconds after the initial time.)



19. Chi-square distribution

Distribution of a random variable where all are normally distributed

….. number of degrees of freedom

Probability density function:

where 

Expected value:

Variance:

Property: for large converges to a normal distribution



20. Central limit theorem

De Moivre–Laplace theorem:

The shape of the discrete binomial distribution based on n trials
converges to the continuous Gaussian curve of the normal distribution
as n grows large.

for

Abraham de Moivre
1667- 1754



Lindeberg-Lévy central limit theorem:

is a sequence of mutually independent random 
variables with the same probability distributions, 
with the expected value and a finite variance

Then, for

where is the cumulative distribution function 
of a normally distributed random variable 
with zero expected value and unity variance.

Jarl Waldemar Lindeberg
1876–1932

Paul Pierre Lévy
1886-1971



Ljapunov central limit theorem:

If the following limit for the 3rd central moment is zero:

then, the distributions of the random variables     do not have to be identical

and the following expression converges to                for :

Aleksandr Mikhailovich Lyapunov
1857- 1918 

= 0



A simple example of the central limit theorem:

A sum of a large number of random variables with uniform distribution on the interval 
<0, 1> (each with expected value = 0.5. and variance =1/12) can approximate the normal 
distribution.

From the Lindeberg – Lévy central limit theorem, a radom variable

converges to a normally distributed random variable with zero expected value and unity 
variance. 


