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3. Statistical methods of data processing

Probability, random vectors, pseudorandom sequences, bias and variance
of estimates, correlation coefficients, parametric methods.

4. Data modelling

Interpolation, maximum likelihood methods, general linear least squares
method, singular values decomposition (SVD): theory and examples, non-
linear least squares methods, confidence intervals, Golay-Savitzky filters,
splines.

5. Random processes

Mean value, correlation, stationarity ergodicity, convolution, power
spectra, multidimensional spectral analysis, wavelet analysis.
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to challenge from experiment.
That simple but powerful idea
has generated a vast body of
knowledge. Since its birth in the
17th century, modern science
has changed the world beyond recognition, and overwhelm-

ingly f
But success can breed complacency. Modern scientists a
doing too much trusting and not enough verifying—to the det-
ole of science, and of humanj
Too many of the findings that fill the academic ether are the
result of shoddy experiments or poor analysis (see pages 21-
24). A rule of thumb among biotechnology venture-capitalists
is that half of published research cannot be replicated. Even
that may be optimistic. Last year researchers at one biotech
firm, Amgen, found they could reproduce just six of 53 “land-
mark” studies in cancer research. Earlier, a group at Bayer, a
drug company, managed to repeatjust a quarter of 67 similarly
importantpapers. A leading computer scientist frets that three-
quarters of papers in his subfield are bunk. In 2000-10 roughly
80,000 patients took part in clinical trials based on research
that was later retracted because of mistakes or improprieties.

What aload of rubbish
Even when flawed research does not put people’s lives at risk—
and much of itis too far from the market to do so—it squanders
money and the efforts of some of the world’s best minds. The
opportunity costs of stymied progress are hard to quantify, but
they are likely to be vast. And they could be rising.

One reason is the competitiveness of science. In the 1950s,
when modern academic research took shape after its success-
es in the second world war, it was still a rarefied pastime. The
entire club of scientists numbered a few hundred thousand.
As their ranks have swelled, to 6m-7m active researchers on
the latest reckoning, scientists have lost their taste for self-pol-
icing and quality control. The obligation to “publish or perish”
has come to rule over academic life. Competition for jobs is
cut-throat. Full professors in America earned on average
$135,000 in 2012—more than judges did. Every year six freshly
or every academic post. Nowa
on (the replication of other people’s results) does little to ad-
vance aresearcher’s career. And without verification, dubious
findings live on to mislead.

The Economist October 19th 2013
Leaders

How science goes wrong

Scientific research has changed the world. Now it needs to change itself

Careerism also encourages exaggeration and the cherry-
picking of results. In order to safeguard their exclusivity, the
leadmg Journals impose ates: in excess of 90%

g a
greatest chance of makrng it onto the page. Little wonder that
onein three researchersknows of a colleague who has pepped
D a paper by, say, excludmg inconvenient data from results

betworld work on a problem, the odds shorten that at lea
one will fall prey to an honest confusion between the sweet
srgnal of a genuine discovery and a freak of the statistical
RQise. Such spurrous correlations are often recorded in jo
nals eaperte
going semle or lettrng children play video games, they may
well command the front pages of newspapers, too.

Conversely, failures to prove a hypothesis are rarely even
offered for publication, let alone accepted. “Negative results”
now account for only 14% of published papers, down from
30% in 1990. Yet knowing what is false is as important to sci-
ence as knowing what is true. The failure to report failures
means that researchers waste money and effort exploring
blind alleys already investigated by other scientists.

The hallowed process of peer review is not all it is cracked
up to be, either. When a prominent medical journal ran re-
search past other experts in the field, it found that most of the
reviewers failed to spot mistakes it had deliberately inserted
into papers, even after being told they were being tested.

If it’s broke, fix it
All this makes a shaky foundation for an enterprise dedicated
to discovering the truth about the world. What might be done
to shore i disciplines to fol-

oW (he example of those thathave done most to tightenSts
dards A start would be getting to grips with statistics, especial-
ly in the growing number of fields that sift through untold
oodles of datalooking for patterns. Genetrcrsts have done thi:

sequencing into a trickle of truly significant ones.

Ideally, research protocols should be registered in advance
and monitored in virtual notebooks. This would curb the
-temptation to fiddle with the experiment’s design midstream
so as to make the results look more substantial than they are.
(It is already meant to happen in clinical trials of drugs, but
compliance is patchy) Where possible, trial data also should
be open for other researchers to inspect and test.

The most enlightened journals are already becoming less
averse to humdrum papers Some government funding agen-
c1es lncludmg Amer1 4 es of Health, which

ow best to encourage replication. And growing numbers of
screntrsts, especially young ones, understand statistics. But

space for “unintere
aside money to pay for it. Peer rev1ew should be tightened—or
perhaps dispensed with altogether, in favour of post-publica-
tion evaluation in the form of appended comments. That sys-
tem has worked well in recent years in physics and mathemat-
ics. Lastly, policymakers should ensure that institutions using
public money also respect the rules.

Science still commands enormous—if sometimes be-
mused-—respect. But its privileged status is founded on the ca-
pacity to be right most of the time and to correct its mistakes
when it gets things wrong. And it is not as if the universe is
short of genuine mysteries to keep generations of scientists
hard at work. The false trails laid down by shoddy research are
an unforgivable barrier to understanding. m



1. Classical probability

of anevent A is
the number of cases favorable to the event (number of elementary events composing A),
divided by the number of all possible cases (humber of elements of the sample space).

where each elementary event

is a single element of the sample space (set of elementary events)
and corresponds to one of the mutually exclusive outcomes
with equal probabilities.

* Luca Pacioli (Franciscan, mathematician, friend of Leonardo da Vinci, father of double-
entry system): Summa de arithmetica, geometrica, proportioni et proportionalita
(1494).

Game of chance with two players A and B who have equal chances of winning each
round.

The players contribute equally to a prize pot, and agree in advance that the first
player to have won 6 rounds will collect the entire prize.

The game is interrupted by external circumstances before either player has
achieved victory: A has won 5 rounds, B has won 3 rounds. How does one then
divide the pot fairly? Pacioli says: A gets 5/8, B gets 3/8




Girolamo Cardano: Liber de Ludo Aleae (1564?). The 16th century treatment of the probability calculus.
It could be also viewed as a gambling manual. Notion of justice, based on Aristotle's rule for a just act:
“..there is one general rule, namely, that we should consider the whole circuit (note: Cardano’s term for
‘sample space’), and the number of those casts which represent in how many ways the favorable result
can occur, and compare to that number to the remainder of the circuit, and according to that proportion
should the mutual wagers be laid so that one may contend on equal terms.”

Discussion of Blaise Pascal and Pierre de Fermat (1654) : The 17th century beginnings of modern probability theory

Problem reposed by a French writer Antoine Gombaud (Chevalier de Méré):

* Game of chance with two players A and B who have equal chances of winning each round.

* The players contribute equally to a prize pot, and agree in advance that the first player to have won 6 rounds will collect
the entire prize.

* The game is interrupted by external circumstances before either player has achieved victory: A has won 5 rounds, B has
won 3 rounds. How does one then divide the pot fairly? Pacioli said: A gets 5/8, B gets 3/8

Fair solution:

* The game continues by 3 hypothetical rounds which

have 2x2x2 = 8 possible outcomes.

Only one of them is favorable to the event that B wins

Therefore, fair distribution of funds from the pot is:
1/8 for B, 7/8 for A

Pierre de Fermat 1601 - 1665 Blaise Pascal 1623 - 1662



Another problem posed to Pascal by Chevalier de Méré:
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* We need at least 4 rolls to obtain >50% probability
of getting at least one "6" for a single 6-sided die:

- (3)' = 05177,

* How many rolls do we need to obtain >50%
probability of getting at least one "6, 6" for two 6-
sided dies:

* intuition: 6 times more =24

* Chevalier de Méré guessed that intuition is
misleading in this case. He posed the
guestion to Pascal, who solved the problem
and proved de Méré correct:

= |'3‘ ~0.4914.
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~ (.5055.

Disadvantage of classical probability: too special
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2. A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933)

e (2... Sample space (set of all elementary events)

e Event: subset A C Q (notall possible subsets are necessarily events)

e [3... Event space: set of all events, system of subsets of (2.

Assumptions:

1. Q € B. (the whole set of elementary events is an event)
2. A€ B= Q\A ..complement € B. Then: () € B. (empty setis an event)
3. Ay, Ag, ... A, € B ... finite or at least countable system of events

n

=1

Therefore (De Morgan’s laws) : (union of events is an event)

n

m A; € B.

=1 Andrey Nikolaevich Kolmogorov
(intersection of events is an event) (1903-1983)

DEFINITION: B issigma-algebra



Kolmogorov probability axioms (1933)

1.

The probability of an event A € B is a non-negative real number P(A)

The probability of the sample space (which is an event) is 1: P({2) =1

In other words: the probability that at least one of the elementary events in the entire
sample space will occur is 1.

If A;,:=1...n isacountable system of disjoint sets (with empty intersections)

representing mutually exclusive events - none of events can occur together with either of
other events:

AZQAJZQ,VZ#‘],Z,jzln

then

n

P(l J4i) = ZP(Az')-

1=1



Some consequences of Kolmogorov probability axioms:
1. The probability of an event represented by empty set (never occurs) is P(@) —0

2. If Ais asubset of, or equal to B, then the probability of A is less than, or equal to the
probability of B: if ACB then P(A) < P(B).

Proof: P(A) + P(B\ A) = P(B)
3. The probability of a complement to the sample space (the probability that the event
will not happen: P(Q\ A) =1— P(A)

4. S le:
HMIE T p(AU B) = P(A) + P(B) — P(AN B).

The probability of a union of A and B (probability that an event A or event B will happen) is

the sum of the probability of an event A and the probability of an event B, minus the

probability of an intersection of A and B (probability that both A and B happen).



3. Conditional probability

Let {2, B, P} be a measure space: () is aset, B is sigma-algebra on the set 2, P is a measure on (2, B)
probability space, when P is probability

Then, we can define the conditional probability as the probability of an event A occurring,
given that another event B has already occurred (by assumption or by evidence): P(A M B)

P(AIB) = =55

"the probability of A under the condition B"
or "the conditional probability of A given B"

Properties: 1. 0< P(A|B) < 1.
2. A; ...systemof disjointevents A, N A; = 0,Vi # j:

n

— P(U Ai|B) = ZP(AAB).

=1

3. Occurrence of event B implies occurrence of event A:
BC A= P(A|B)=1.

4. Probability that both A and B happen (probability of intersection of A and B):
P(AN B)= P(A|B) P(B).



4. Independent events

« Definition: Events A and B are independent if P(A N B) = P(A) P(B)
* Consequence for the conditional probability of A given P(A|B) = P(A).

« Different from mutually exclusive events for which the intersection, and P(A|B) are = 0

5. Total probability
 By,..., B, aredisjoint events fulfilling €} = U B;, it means that they form

a complete system of events (P (U B;) = Z P( i) =1)
* Then, for an event A: ZP P(A|B;).

e Proof: A = UBﬂA

1=1



6. Bayes' theorem (a.k.a. Bayes rule, Bayes' law)

Let By, ..., B, be a complete system of events (hypotheses)

Then, for an event A (outcome of an experiment):

P(A|By) P(By)

P(BIA) = s 5048y P(B)

P(Bg|A) ... posterior probabilities of hypotheses By, ..., B,

P(By) ... prior probabilities of hypotheses By, ..., B,



7. Random variable

Random variable & is a real function defined on the set of elementary events (sample set)
mapping €2 — R such, that sets of all w € Q fulfilling {(w) < a are events Vg € R

{w:€(w)<a}eB VaeR,

and hence have probability.

8. Distribution function of a random variable (a.k.a. cumulative distribution function, CDF)

Distribution function is a real function of a real variable, which returns probability that £ < z



Properties of the distribution function F£ (il?) 4

non-decreasing

®
° 1 ;
0 Tele) =0
lim F. i °
-+ i Fele) =
* right-continuous for discrete random variables

countable number of discontinuities

Example: random variable ¢ = sum of points on two dice
3 =28 n: 1500: TorlShms a5l
— 1 2 2 6 5 il
.P(é—ﬂf) 367367 °"7362367367" 736"

1 3 1o 21 26 36
® Fe(i) = 3636136367360 > 36°



9. Probability density function (PDF), probability mass function (PMF)

The probability density function f(u)is defined for a continuous random variable &
with a cumulative distribution F :

Fe(z) = j f(u)du,

for a discrete random variable ¢ : probability mass function (a.k.a. discrete density function)
a function giving the probability that a discrete random variable is exactly equal to some value

Fe(z)= Y  P(§ =)

W



10. Expected value, expectation, mathematical hope

Idea: 17th century, Pascal, de Fermat during the discussion on the
division of stakes. Christiaan Huygens, 1657, De ratiociniis in ludo aleee:
,...lf | expect a or b, and have an equal chance of gaining them, my
Expectation is worth (a+b)/2.”

Pierre-Simon Laplace, 1814, Théorie analytique des probabilités:

...this advantage in the theory of chance is the product of the sum hoped
for by the probability of obtaining it... We will call this advantage
mathematical hope.”

Discrete random variable:

&) =E(§) = Z%P(ﬁ = ;).

Continuous random variable:

(€) = B(€) = / u f(u) du

2
Pierre-Simon,
marquis de Laplace
1749 — 1827

Christiaan Huygens
1629 -1695



Expected value of a real function of a random variable

Discr. r.v.:E((b(f)) = Z ¢(z;) P(E =z;). Cont.rv.: E(Cb(f))

Moments
kth moment: ¢(&) = €5, mi(§) = E(£*) = / u® f(u) du. Note: m1(§) = E(§)
Central moments

kth central moment: M (§) = E([{ — E(g)]k) = / [w— E©)]" f(u) du.
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11. Variance as a measure of dispersion of a random variable

2nd central moment, square of the standard deviation o
(0. 9]

va(¢) = D(§) = *(€) = Mal&) = [ [u— B f(w) du

2
- Z [z — E(&)]" P(€ = =) for discrete random var.



12. Quantiles (percentiles, decils, quartiles)
) is a p-quantile of a random variable ¢ : the cumulative distribution function F'(z,) = p

® o5 ... Median =M

120

|
mode

® x(.25(0.75) - - - lower (upper) quartile
50%|50% gl
median ® 373/10 ... /-th decile

60

Number of students

40

r

® T;/100 - - - {-th percentile

20 b

- L ki L L_ I, 1 e '

] 10 20 30 40 50 60 70 80 90 100
Grade Distribution

13. Mode
value z,, for which the probability density function f(:z:m) has a local maximum
(more local maxima: bimodal or multimodal distribution)



Examples of discrete distributions

14. Binomial distribution

Discrete random variable (£): number of occurrences of an event in n independent
experiments; occurrence probability of this event is equal to 7 in each particular experiment.

Probability mass functionfor §E =z, =z =0...n:

(;”) 7 (1— )"

® Expected value : E(§) = nm;

o,
78t
||
<
||

count

e Variance: var(§) = nn(1 — ).

Binomial distribution converges to a normal distribution
for large n

9000

6000+

3000+

0_

events

B <35

‘ | | B35
fffff ||||‘| hhll
20 30

40
Number of heads in 50 coin flips



15. Poisson distribution

Limit of the binomial distribution for a large number of
independent experiments when the probability of success in each
particular experiment decreases as A\/n (n — oo, nm — A).

Probability mass function: Siméon Denis Poisson

1781-1840

P(€=1z) = exp(=A)—

1 un
£ -
1

o & o
;s
=)

e Expected value : E(§) = A; ol \ )
e Variance: var(§) = A — o(&) = VA, A
e Relative error : o(£)/E(€) = 1/V\;

B {
L §
(]l»- /
oLl I
. §




Property of the Poisson distribution: if random variables
-&1,& ... & have Poisson distributions

with A\j, Ag... A\, then > & has

a Poisson distribution with " ;.

Examples:
 number of random values in a given interval,
 number of typos in a text,
 number of independent events occurring in a time
interval 7: A = IT
o Radioactive decay counts
o Large meteorites hitting the moon
 number of randomly placed points occurring in a
predefined area (blood cells in a microscope)




Examples of continuous distributions

16. Uniform distribution
The probability density function is a constant on an interval (a, b):

| - 1 | |
f(u) =0 pro (u<a)V(u>b); f(u):b pro (u>a) A (u<b).
Cumulative distribution function:
F(z)=0 for x<a  F(z)=1 for = 2> F(a:)::;:z for (z >a)A(z <Db).
Expected value: b .
U
E(§) = du = —(a + b). | e T
©= [ 7 du=5a+y .
1 . a LT ‘\ |1 lUl.l',\ m | mp\l mpn 1
Variance: ﬁj \ LB -l?:\ gL \
(]F Il HH HJ IHH/HH HH/!H HH}HH JH’HHJHH HH,HH ] i‘IHIH

Var(g):f (w-3a+8) = du=(b—ap | |

iecm  2cm  3em

41mm 59mm 80mm = 8cm
or 0.08m



Example:

Simulated
uniform noise
<-1,+1>

+
Sine signal with
unit amplitude

g =

Channel 0:

Channel 1:

ELMAVAN Waveforms from elm20111030_133435_simul_signal_noise_dat.bin processed Sun Oct 30 13:53:28 21%1 1
30 . : ; : : 1

-0.00, 0=0.97
TM units

=

-0.01, 0=0.96
TM units

=

Vs [7 sin®(2)de + (b — a)?/12

~ \/1/2 + 22/12 ~ 0.9

Channel 2:

-0.00, ¢=0.97

u=

TM units
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t (milliseconds)
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17. Normal distribution 040 [

Probability density function:

0.30 |

1 1 fu—p ?
f(u)znﬁ,g(u)za = €Xp (_5( o )) £ oa0f

Expected value: E(§) =p 010 |
Variance: var(§) = o2
Cumulative distribution function: ] e
z—p
Fla)= N @) = - [ (tQ)dt 1[1+ f(
T) = o\T) = X —— = — er
& o P\ 2 2 V2

Yy
2 2 i
Error function erf (y) = "= / exp (—t%) dt; d(y) = \/; / exp (—
> 0

0

Probability within ao: ®(a) = P(—ac < £ — p < ao) :
$(0.67) = 0.5, O(1) = 0.68, ®(2) =095 &(3)=0.997

FWHM (full width at half maximum) = 2v2In20 = 2.3550 (I)(VZ]nZ) ~ 0.76



18. Exponentia' dist ri bution EXAMPLES OF EXPONENTIAL DISTRIBUTION SHAPES

Probability density function:

1 | k
0 0
Cumulative distribution function (x = 0): N\
F (93) =1 — exp (—%) - b S EM

Consequence: distribution without memory: P(( >a+ 2z | £ > a) = P(£ > z).
Hint for proof: P({ >a+ 2z | {>a) = P(E > a+ ) /P(g > a) :(1 — F(a+ :c))/(l —F(a])
Expected value:  |E(§) = 4.

Variance: var(§) = 2.

Example: Duration of time intervals between independent events of a Poisson process.
(Without memory: If an event has not occurred after 30 seconds, the conditional probability
that occurrence will take at least 10 more seconds is equal to the unconditional probability of
observing the event more than 10 seconds after the initial time.)



19. Chi-square distribution

istributi - ~ (& — B(&))’
Distribution of a random variable x* =) (
= VELI'(&;)

, Where all ¢ are normally distributed
v ... number of degrees of freedom

Probability density function:

Fflu) = 2"'/2F1(1//2) u’?71 exp (—E) , where T'(z) = Zotz_l exp(—t)dt.

Ev.8  2Hz SPSD [nT*Hz]=3.2e-05 Ev.8 631Hz SPSD[nTYHz=1.1e-10
T T T T T 8 T T T T T

Expected value: FE(¢§) =v.

)

PDF x 10

Variance: var(§) = 2v.

5
3
2_
4
0

2 3 4 5 6 0.35 0.40 0.45 0.50 0.55
PSD [nT#Hz] x 10* PSD [nT?Hz] x 10°

Property: for large v converges to a normal distribution

1



20. Central limit theorem
De Moivre-Laplace theorem:
The shape of the discrete binomial distribution based on n trials

converges to the continuous Gaussian curve of the normal distribution
as n grows large.

n . k 1 _ (k—np)?
p°q" e 2w p+q=1,p,qg>0
k \/ 2Tnpq , , %’
for n— o0

THE

DOCTRINE

CHANCES

A Method of La[culat ng the Probability
of Events in Play.

I DR R SIS 1 R G e
By A De Moiwre, TR,
ARG PR NI T T T 55 I A B DL 5
LONDON:
Teinted by W. Pearfen, for the Anthor. M DCCXYIINL

Abraham de Moivre
1667- 1754



Lindeberg-Lévy central limit theorem:

{£,}, n € N is a sequence of mutually independent random
variables with the same probability distributions,
with the expected value ¢ and a finite variance 0% < 0.

lim P{ alﬁ (21: i —w) < 33} = No(),

where Ny 1(z) is the cumulative distribution function
of a normally distributed random variable
with zero expected value and unity variance.

Paul Pierre Lévy

Then, for z € R 1886-1971

Jarl Waldemar Lindeberg
1876-1932



Ljapunov central limit theorem:

V2 E (& — i)

L : . lim
If the following limit for the 3rd central moment is zero: I \/27‘7@2

then, the distributions of the random variables ¢ do not have to be identical

and the following expression converges to Ny 1(z) for n — 00

n . n . ja | gﬂHHVHDB
Zi:l 1 Zz‘:l M g8 T _
W _ ,;-'- Mlmmmumm <
n 2 - " N L oF YT GRBTAHGUS PP
=1 g, . N AT, IPAIGEPAR BCECHITHLD | B8
= L - N +o BloMul BUEHWH -

MATEMATHE 7 |
TA MEXAHRIK, 1

ARATEMIK

Aleksandr Mikhailovich Lyapunov
1857- 1918



A simple example of the central limit theorem:

A sum of a large number of random variables with uniform distribution on the interval

<0, 1> (each with expected value = 0.5. and variance =1/12) can approximate the normal
distribution.

From the Lindeberg — Lévy central limit theorem, a radom variable

converges to a normally distributed random variable with zero expected value and unity
variance.



