
SOME INTRODUCTORY FACTS ON LOOPS AND
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1. Definitions and some basic facts

Let · be a binary operation upon a set Q. For each a ∈ Q define the left
translation La : Q → Q, x 7→ ax. Similarly, Ra : Q → Q, x 7→ xa, is the right
translation of Q.

Say that (Q, ·) is a quasigroup if all La and Ra, a ∈ Q, are permutations of Q
(i.e., La, Ra ∈ SQ, where SQ is the symmetric group upon Q).

If Q is a quasigroup, then the equations ax = b and ya = b have unique solutions
x and y for all a, b ∈ Q. This can be used as an alternative definition of a quasigroup.

Let Q be a quasigroup, and assume a, b ∈ Q. Set x = a\b if ax = b, and y = b/a
if ya = b. Now, \ and / are binary operations on Q. It is easy to see that

x(x\y) = y = x\(xy) and (y/x)x = y = (yx)/x (1.1)

for all x, y ∈ Q. On the other hand, it is also easy to see that if upon a set Q
there are defined binary operations ·, \ and / that satisfy (1.1), then (Q, ·) is a
quasigroup, and

x/(y\x) = y = (x/y)\x (1.2)

for all x, y ∈ Q, since x/(y\x) = (y · (y\x))/(y\x) = y.
A quasigroup Q is a loop if it possesses a neutral element, i.e. an element 1 ∈ Q

such that x1 = x = 1x for all x ∈ Q. Clearly x/1 = x = 1\x.
Note that every quasigroup is cancellative, i.e. if ax = bx or xa = xb, then a = b.

This property means that left and right translations are injective. If Q is finite,
then this suffices for (Q, ·) to be a quasigroup.

1.1. The multiplication group and congruences. Let Q be a quasigroup. The
permutation group ⟨Lx; x ∈ Q⟩ is called the left multiplication group of Q. The
right translations generate the right multiplication group. Furthermore, Mlt(Q) =
⟨Lx, Rx; x ∈ Q⟩ is called the multiplication group of Q.

If G is a permutation group upon a set Ω and ω ∈ Ω, then Gω = {g ∈ G;
g(ω) = ω} is a subgroup of G, the stabilizer of G at ω.

If Q is a loop, then (Mlt(Q))1 is known as the inner mapping group, and is
usually denoted by Inn(Q).

Let G be a transitive permutation group upon Ω, ω ∈ Ω, and for each α ∈ Ω let
tα ∈ G be such that tα(ω) = α. Assume that tω = idΩ and that G = ⟨X⟩. It is
well known that then Gω = ⟨t−1

x(α)xtα; x ∈ X and α ∈ Ω⟩.

Proposition 1.1. Let Q be a loop. Then Inn(Q) = ⟨L−1
xy LxLy, R

−1
yxRxRy, R

−1
x Lx⟩.
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Proof. Put G = Mlt(Q) and note that Ly(1) = y for every y ∈ Q. Therefore the
set of all L−1

xy LxLy and L−1
yxRxLy generate Inn(Q). Obviously, R−1

x Lx ∈ Inn(Q).

The rest follows from Ly = Ry(R
−1
y Ly) and L

−1
yx = (R−1

yxLyx)
−1R−1

yx . □

An equivalence ∼ is a congruence of a quasigroup Q if and only if it is compatible
with all the three operations, i.e. with ·, \ and /. This can be slightly simplified:

Lemma 1.2. Let ∼ be an equivalence upon Q, Q a quasigroup. Then ∼ is a
congruence of Q if the following implication is true for all u, v, x ∈ Q:

u ∼ v ⇒ ux ∼ vx, xu ∼ xv, u/x ∼ v/x and x\u ∼ x\v. (1.3)

Proof. What is needed is to prove that if (1.3) holds for all u, v, x ∈ Q, and u ∼ v,
then x/u ∼ x/v and u\x ∼ v\x. By (1.2), u = x/(u\x) ∼ v. Hence x ∼ v(u\x)
and v\x ∼ u\x. The case x/u ∼ x/v is mirror symmetric. □

Let G be permutation group upon Ω. A set Γ ⊆ Ω is called a block of G if Γ ̸= ∅,
and

∀α, β ∈ Γ and ∀g ∈ G (g(α) ∈ Γ ⇒ g(β) ∈ Γ). (1.4)

It is easy to see that if Γ is a block, and g ∈ G, then either g(Γ) = Γ or g(Γ)∩Γ = ∅.
Furthermore, g(Γ) is also a block—all such blocks are called conjugates of Γ. If G
is transitive, then a complete set of conjugate blocks partitions Ω. Each block thus
induces an equivalence upon Ω, if G is transitive. If such an equivalence is denoted
by ∼, then it fulfils α ∼ β ⇒ g(α) ∼ g(β) for all α, β ∈ Ω and g ∈ G. On the other
hand, if ∼ satisfies this condition, then each block of ∼ is a block of G.

Proposition 1.3. Let Q be quasigroup. Then S ⊆ Q is a block of Mlt(Q) if and
only if it is a block of a congruence of Q.

Proof. Note that L−1
x (u) = x\u and R−1

x (u) = u/x. Thus, by Lemma 1.2, ∼ is
a congruence of Q if and only if u ∼ v implies ψ(u) ∼ ψ(v) for all u, v ∈ Q and
ψ ∈ Mlt(Q). □

If Q is a loop and ∼ a congruence of loop, then N = [1]∼ is a subloop of Q.
Indeed x ∼ 1 and y ∼ 1 imply xy ∼ 1 · 1 = 1, x/y ∼ 1/1 = 1 and x\y ∼ 1\1 = 1.
A subloop of a loop is called normal if it is a block of a congruence.

Theorem 1.4. Let Q be a loop and let N be a subloop of Q. The following is
equivalent:

(i) N is normal;
(ii) φ(N) ⊆ N for each φ ∈ Inn(Q);
(iii) φ(N) = N for each φ ∈ Inn(Q);
(iv) xN = Nx, x(yN) = (xy)N and (Ny)x = N(yx) for all x, y ∈ Q.

Proof. If N is a block of a congruence ∼, x ∈ N and φ ∈ Inn(Q), then 1 = φ(1) ∼
φ(x). Hence (i) ⇒ (ii). If (ii) holds and φ ∈ Inn(Q), then both φ(N) ⊆ N and
φ−1(N) ⊆ N are true. Thus φ(N) = N , and (ii) ⇒ (iii). The condition (iv) can
be also expressed as L−1

xy LxLy(N) = N , R−1
yxRxRy(N) = N and R−1

x Lx(N) = N .
In view of Proposition 1.1 this means that (iii) ⇔ (iv).

It remains to prove (iii) ⇒ (i). Each element of Mlt(Q) can be written as Lxφ,
where φ ∈ Inn(Q) and x ∈ Q. If x ∈ N , then Lxφ(N) = xN = N . If x /∈ N , then
Lxφ(N) = xN and xN ∩N = ∅. This means that N is a block of Mlt(Q). □
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1.2. Isotopy, inverse property, nucleus. Suppose that Q1 and Q2 are quasi-
groups. A triple (α, β, γ) is said to be an isotopism Q1 → Q2 if each of α, β and γ
is a bijection Q1 → Q2, and

α(x)β(y) = γ(xy) for all x, y ∈ Q1. (1.5)

If (α1, β1, γ1) : Q1 → Q2 and (α2, β2, γ2) : Q2 → Q3 are isotopisms, then the com-
position (α2α1, β2β1, γ2γ1) is an isotopism Q1 → Q3. This is clear, and it is also
clear that (α−1

1 , β−1
1 , γ−1

1 ) is an isotopism Q2 → Q1.
An isotopism Q → Q is called an autotopism. By the observations above, all

autotopisms of Q form a group. This group will be denoted by Atp(Q).

Lemma 1.5. Let Q be a loop, and let (α, β, γ) ∈ Atp(Q). Put a = α(1) and
b = β(1).

(i) If a = 1, then β = γ = Rbα; and
(ii) If b = 1, then α = γ = Laβ.

Proof. Assume a = 1. By (1.5), β(y) = α(1)β(y) = γ(1y) = γ(y), for each y ∈ Q.
Furthermore, α(x)b = β(x) for each x ∈ Q. □

For a loop Q put Nλ(Q) = {a ∈ Q; a(xy) = (ax)y for all x, y ∈ Q, and call
it the left nucleus of Q. The right nucleus Nρ(Q) consists of all a ∈ Q such that
(xy)a = x(ya) for all x, y ∈ Q.

Lemma 1.6. Let Q be a loop, and let α, β, γ ∈ SQ.

(i) (idQ, β, γ) ∈ Atp(Q) if and only if there exists b ∈ Nρ(Q) such that β =
γ = Rb.

(ii) (α, idQ, γ) ∈ Atp(Q) if and only if there exists a ∈ Nλ(Q) such that α =
γ = La.

An element a ∈ Q is said to satisfy the left inverse property (LIP) if there exists
b ∈ Q such that L−1

a = Lb. The latter fact can be expressed both as a(bx) = x or
b(ax) = x, x ∈ Q. Hence b = 1/a = a\1. If a satisfies the LIP, then it is therefore
usual to write 1/a = a\1 as a−1.

It is also usual to say that a is an LIP element, instead of saying that a satisfies
the LIP. Note that the LIP can be succinctly expressed as L−1

a = La−1 . Similarly,
the mirror notion of RIP can be expressed as R−1

a = Ra−1 .

Lemma 1.7. Let Q be a loop. If a ∈ Nλ(Q), then a is an LIP element. If
a ∈ Nρ(Q), then a is an RIP element.

Proof. Indeed, a((a\1)x) = (a(a\1))x = x for every a ∈ Nλ(Q) and x ∈ Q. If
a ∈ Nρ(µ), then (x(1/a))a = x((1/a)a) = x. □

Let Q be a quasigroup and S a set. Suppose that α, β and γ are bijections
Q → S. Then there clearly exists just one quasigroup operation upon S such
that (α, β, γ) is an isotopism Q → S. This operation can be described by formula
γ(α−1(x)β−1(y)). We shall call it the quasigroup induced by (α, β, γ).

Let Q be a quasigroup, and let α, β ∈ SQ. Then x ∗ y = α−1(x)β−1(y) defines a
strucure of another quasigroup upon Q. This quasigroup is induced by (α, β, idQ).
Every such quasigroup is called a principal isotope of Q.

Suppose the principal isotope x ∗ y = α−1(x)β−1(y) of a quasigroup Q is a loop,
with u the unit. Put f = β−1(u) and e = α−1(u). Then α(x) = α(x) ∗ u = xf =
Rf (x), and β(y) = Le(y), for all x, y ∈ Q. Hence x ∗ y = (x/f)(e\y).
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Proposition 1.8. A principal isotope of a quasigroup Q is a loop if and only
if there exist e, f ∈ Q such that the operation of the isotope can be expressed as
x ∗ y = (x/f)(e\y), for all x, y ∈ Q.

Proof. We have already observed that there must exist e, f ∈ Q such that x ∗ y =
(x/f)(e\y) for all x, y ∈ Q. If the operation ∗ is determined in such a way, then it
is a loop since ef is its unit. □

Let (α, β, γ) : Q1 → Q2 be an isotopism of quasigroups. Define a new loop Q3

so that γ : Q3
∼= Q2. Note that Q1 and Q3 share the same underlying set. Now,

Q3 has to be a principal isotope of Q1 since

(α, β, γ) = (γ, γ, γ)(γ−1α, γ−1β, idQ1).

In view of Proposition 1.8 we can thus immediately state:

Theorem 1.9. Let Q be a quasigroup. Each quasigroup isotopic to Q is isomorphic
to one of its principal isotopes. For each loop isotopic to Q there exist e, f ∈ Q such
that the loop is isomorphic to the loop Q(∗), x ∗ y = (x/f)(e\y) for all x, y ∈ Q.

Let Q be a loop. An element x ∈ Q is said to satisfy the inverse property (IP) if
satisfies both the LIP and the RIP. Such elements are also known as IP elements.

The middle nucleus Nµ(Q) of a loop Q is defined as {a ∈ Q; x(ay) = (xa)y for
all x, y ∈ Q}. The intersection Nλ(Q)∩Nµ(Q)∩Nρ(Q) is known as the nucleus of
Q, and is denoted by N(Q).

Lemma 1.10. Let Q be a loop. Each a ∈ Nµ(Q) is an IP element, b = a−1 ∈
Nµ(Q) and (Rb, La, idQ) ∈ Atp(Q). On the other hand, if (α, β, idQ) ∈ Atp(Q),
then there exist a, b ∈ Nµ(Q) such that b = a−1, α = Rb and β = La.

Proof. Let a be an element of the middle nucleus. Put b = a\1. Then (xa)b =
x(ab) = x. Hence a is an RIP element, and b = a−1. Now, a is a also an LIP
element, by mirror argument. Consider (xb)y and write x as za. Then (xb)y =
(za · b)y = zy and x(by) = (za)(by) = z(a(by)) = zy, since a is an LIP element.
Thus b ∈ Nµ(Q), and hence (xb)(ay) = xy for all x, y ∈ Q. The latter fact means
that (Rb, La, idQ) ∈ Atp(Q).

Suppose that (α, β, idQ) ∈ Atp(Q). Then (α−1, β−1, idQ) ∈ Atp(Q), and by
Proposition 1.8 there exist a, b ∈ Q such that α = Rb and β = La. Thus (xb)(ay) =
xy for all x, y ∈ Q. Setting x = 1 and y = 1 implies that a and b are IP elements,
b = a−1. Thus (xb)(ay) = xy = ((xb)a)y for all x, y ∈ Q since (xb)a = x. Setting
z = xb yields z(ay) = (za)y, and so a ∈ Nµ. □

1.3. Closure conditions on translations and loop laws. Let Q be a loop. Put
L = {Lx; x ∈ Q}. Say that L is closed under

– inverses if ψ−1 ∈ L for every ψ ∈ L;
– compositions if φψ ∈ L for all φ,ψ ∈ L;
– conjugations if φψφ−1 ∈ L for all φ,ψ ∈ L; and
– twists if φψφ ∈ L for all φ,ψ ∈ L.

Similar conditions can be stated for R = {Rx; x ∈ Q}.
It is clear that L is closed under inverses if and only if every element of Q is an

LIP element. Such loops are called LIP loops. In such a loop 1/x = x\1 = x−1 for
each x ∈ Q, (x−1)−1 = x and x−1(xy) = y, for all x, y ∈ Q.



SOME INTRODUCTORY FACTS ON LOOPS AND QUASIGROUPS 5

RIP loops are defined in a mirror way. A loop is an IP loop if it is both an
LIP loop and an RIP loop. A loop Q is said to have the antiautomorphic inverse
property if 1/x = x\1 for all x ∈ Q and (xy)−1 = y−1x−1 for all x, y ∈ Q. Instead
of saying that Q has such a property it is usual to say that Q is an AAIP loop.

Lemma 1.11. Each IP loop is also an AAIP loop.

Proof. LetQ be an IP loop, and x, y ∈ Q. Then y(xy)−1 = (x−1(xy))(xy)−1 = x−1,
and so (xy)−1 = y−1x−1. □

If L is closed under compositions, then for all a, b ∈ Q there exists c ∈ Q such that
LaLb = Lc. This implies c = Lc(1) = LaLb(1) = ab. However, the equality LaLb =
Lab is just a form of the associative law. Hence L is closed under compositions if
and only if Q is a group.

If L is closed under conjugations, then for all a, b ∈ Q there exists c ∈ Q such
that LaLbL

−1
a = Lc. Then LaLb = LcLa, and ab = ca. Thus c = (ab)/a. Hence L

is closed under conjugation if and only if a(b(a\x)) = ((ab)/a)x for all a, b, x ∈ Q.
Loops satisfying the law x(y(x\z)) = ((xy)/x)z are called left conjugacy closed

(LCC). The RCC lops are those that satisfy ((z/x)y)x = z(x\(yx)). The conjugacy
closed loops (CC) are the loops that are both LCC and RCC.

If L is closed under twists, then for all a, b ∈ Q there exists c ∈ Q such that
LaLbLa = Lc. Clearly, c = a(ba). Hence L is closed under twists if and only
if Q satisfies the law x(y(xz)) = (x(yx))z. This is known as the left Bol, and
the loops that satisfy this law are called left Bol loops. The right Bol loops satisfy
((zx)y)x = z((xy)x). Loops that are both left Bol and right Bol are calledMoufang.

The variety of Moufang loops can be described by a single law. While it will not
be proved here, it is true that the variety of loops is the variety of Moufang loops
if and only if it is given by any (and thus all) of the following three identities:

x(y(xz)) = ((xy)x))z, ((zx)y)x = z(x(yx)) and (xy)(zx) = x((yz)x). (1.6)

2. Nucleus, center and the nilpotency

Proposition 2.1. Let Q be a loop. Then each of Nλ(Q), Nµ(Q), Nρ(Q) and N(Q)
is a group that is a subloop of Q.

Proof. Because of mirror symmetry it suffices to prove only the cases of Nλ(Q)
and Nµ(Q). Let a, b ∈ Nλ(Q). By Lemma 1.6, (L−1

a , idQ, L
−1
a ) is equal to some

(Lc, idQ, Lc), c ∈ Nλ(Q). Clearly, c = a\1. By Lemma 1.7, a−1 ∈ Nλ(Q). By
Lemma 1.6, (LaLb, idQ, LaLb) = (Lab, idQ, Lab) ∈ Atp(Q), and ab ∈ Nλ(Q). Since
a is a LIP element, a\b = a−1b ∈ Nλ(Q) too. There is also a/b ∈ Nλ(Q), since
a/b = ab−1, by (ab−1)b = a(b−1b) = a.

Suppose now that a, b ∈ Nµ(Q). By Lemma 1.10, a and b are IP elements, with
a−1, b−1 ∈ Nµ(Q). Hence a/b = ab−1, a\b = a−1b, and so the only remaining step
is to show that ab ∈ Nµ(Q). If x, y ∈ Q, then (x(ab))y = ((xa)b)y = (xa)(by) =
x(a(by)) = x((ab)y). □

For a loop Q put C(Q) = {a ∈ Q; ax = xa for all x ∈ Q}, and Z(Q) =
C(Q) ∩N(Q). Call Z(Q) the center of Q.

Lemma 2.2. Let Q be a loop, and let z be an element of Q. Then z ∈ Z(Q) if and
only if φ(z) = z for every φ ∈ Inn(Q).
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Proof. Note that z ∈ Nλ(Q) if and only if z is fixed by every R−1
yxRxRy, z ∈ Nρ(Q)

if and only if z is fixed by every L−1
xy LxLy, and z ∈ C(Q) if and only if z is fixed by

every R−1
x Lx. Thus, by Proposition 1.1, z is fixed by every φ ∈ Inn(Q) if and only

if z ∈ Nλ(Q) ∩ Nρ(Q) ∩ C(Q). It remains to prove that such z belongs to Nµ(Q)
as well. However, that is easy, since for every such z and every x, y ∈ Q it is true
that x(zy) = x(yz) = (xy)z = z(xy) = (zx)y = (xz)y. □

Note that Lemma 2.2 can be also expressed as the first equivalence in

z ∈ Z(Q) ⇔ (Mlt(Q))z ⊇ Inn(Q) ⇔ (Mlt(Q))z = Inn(Q). (2.1)

For the second equivalence consider ψ ∈ (Mlt(Q))z and express it as Laφ, φ ∈
Inn(Q). Then z = ψ(z) = La(z) = az, which implies a = 1.

If G is permutation group upon a set Ω, and ω ∈ Ω, then the set {α ∈ Ω;
Gα = Gω} is always a block of G. Furthermore, the normalizer NG(Gω) can be
expressed as {g ∈ G; Gg(ω) = Gω}. These well known fact will be used in the
following statement.

Theorem 2.3. Let Q be a loop. Then Z(Q) is a normal subloop of Q, Z(Mlt(Q)) =
{Lz; z ∈ Z(Q)} and NMlt(Q)(Inn(Q)) = Z(Mlt(Q)) Inn(Q).

Proof. By (2.1), Z(Q) is a block of Mlt(Q). By Proposition 1.3 it is a normal
subloop of Q. Each element of Mlt(Q) can be uniquely expressed as Lxφ, φ ∈
Inn(Q) and x ∈ Q. If this element centralizes each Ry, then xφ(y) = LxφRy(1) =
RyLxφ(1) = xy. This implies φ = idQ. Hence each element of Z(Mlt(Q)) is equal
to some Lz, z ∈ Q. Now, LzLx = LxLz means that z(xy) = x(zy), which gives
z ∈ C(Q) and z ∈ Nρ(Q). Furthermore, LzRx = RxLz yields z(yx) = (zy)x, which
means that z ∈ Nλ(Q). Then z ∈ Nµ(Q) as well, as proved in the last part of the
proof of Lemma 2.2. □

Let Q be a loop. Define iterated centers Zi(G), i ≥ 0, as normal subloops of
Q such that Z0(Q) = 1 and Zi+1(Q)/Zi(Q) = Z

(
Q/Zi(Q))

)
. Call Q nilpotent if

Zs(Q) = Q for some s ≥ 0. The least such s is called the nilpotency degree of the
(nilpotent) loop Q.

The nilpotent loops behave similarly as nilpotent groups. This will be elaborated
in a future version of this text.

3. Medial quasigroups

A good illustration of the strength of autotopisms is a proof of the Toyoda theo-
rem given below. Toyoda theorem is concerned with medial quasigroups, i.e. quasi-
groups Q such that

(xy)(uv) = (xu)(yv) for all x, y ∈ Q. (3.1)

Law (3.1) is called medial. However, some authors prefer to call it entropic. It is
easy to verify that if G is an abelian group, c ∈ G, and φ,ψ ∈ Aut(G) commute,
then the formula

x ∗ y = φ(x) + ψ(y) + c for all x, y ∈ G (3.2)

describes a medial quasigroup (G, ∗). Toyoda theorem states the converse:
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Theorem 3.1. Let ∗ be a quasigroup operation upon a set G. Suppose that ∗
satisfies the medial law (3.1). Then upon G there can be defined an abelian group
with operation + such that (3.2) holds for some c ∈ G and φ,ψ ∈ Aut(G(+)),
where φψ = ψφ.

Proof. Consider a principal isotope of ∗ that is a loop. The existence of such an
isotope follows from Proposition 1.8. Therefore upon G there exists a loop Q with
operation ·, and α, β ∈ SG such that x ∗ y = α(x)β(y). The medial law can thus be
expressed as

α
(
α(x)β(y)

)
· β

(
α(u)β(v)

)
= α

(
α(x)β(u)

)
· β

(
α(y)β(v)

)
,

and that is equivalent to

α
(
xβα−1(u)

)
· β

(
α(y)v

)
= α

(
xβ(y)

)
· β(uv).

The latter equality means that

(αLxβα
−1, βLα(y), Lα(xβ(y))β) ∈ Atp(Q) for all x, y ∈ G.

Hence also

(αβ−1L−1
x α−1, L−1

α(z)β
−1, β−1L−1

α(xβ(z))) ∈ Atp(Q) for all x, z ∈ G.

By composing the two autotopisms we get that

(idG, βLα(y)L
−1
α(z)β

−1, Lα(xβ(y))L
−1
α(xβ(z))) ∈ Atp(Q) (3.3)

for all x, y, z ∈ Q. Fix x = x0 and choose z = z0 in such a way that α(x0β(z0)) = 1.
By (3.3) and Lemma 1.6, α(x0β(y)) ∈ Nρ(Q) for every y ∈ Q. However, that means
that every element of Q is in the right nucleus, and so Q is a group, i.e. the operation
· is associative.

From Lemma 1.6 and (3.3) it also follows that for all u ∈ Q there exists v ∈ Q so
that βLuβ

−1 = Lv. This means that β(ux) = vβ(x) for all x ∈ Q. Setting b = β(1)
and x = 1 yields v = β(u)b−1. Hence β(xy) = β(x)b−1β(y) for all x, y ∈ Q.
Writing this as β(xy)b−1 = β(x)b−1β(y)−1b−1 implies that ψ : x 7→ β(x)b−1 is an
automorphims of Q, and that β(x) = ψ(x)b for all x ∈ Q.

Making a mirror argument (i.e. using the fact that the quaisgroup opposite to
∗ is medial, and its operation can be expressed as α(y)β(x) = β(x) ◦ α(y), where
◦ is the operation of the opposite loop Qop) implies that there exist a ∈ Q and
φ ∈ Aut(Q) such that α(y) = φ(y) ◦ a = aφ(y) for all y ∈ Q.

By Lemma 1.6 and (3.3), the value of

α(xβ(y))α(xβ(z))−1 = aφ(x)φβ(y)φβ(z)−1φ(x)−1a−1 = aφ(xβ(y)β(z)−1x−1)a−1

(3.4)
depends only upon y and z. Thus x commutes with every β(y)β(z)−1, and that
makes Q a commutative group. The value of (3.4) is equal to φ(β(y)β(z)−1) =
φ(ψ(yz−1)).

Now, βLα(y)L
−1
α(z)β

−1 = ψ(Lα(y)(α(z))−1)ψ−1 = Lψφ(yz−1). Using (3.3) and

Lemma 1.6 once more yields φ(ψ(yz−1)) = ψφ(yz−1) for all y, z ∈ Q. Thus
φψ = ψφ and x ∗ y = φ(x) · ψ(y) · (ab) for all x, y ∈ Q. □


