CNS infections Dita Smíšková

Meningeal syndrome

Causes of meningeal sy

- ↑ intracranial pressure
- Irritation of spinal roots
- Irritation of the cranial nerves
- Irritation of n.vagus

Diff.dg.meningeal sy

- meningismus (pneumonia, sepsis, pyelonephritis)- positivity of meningeal signs, but normal CSF results
- intracranial hemorrhagic processes
- intracranial expansive processes
- insolation
- trauma
- toxins, allergic reactions
- spondylogenic disorder (spondylodiscitis)

CNS infections

by affected structure

meningitis- encephalitis- myelitis

by time course

acute - subacute - chronic

By type of inflammation

purulent, purulent

non-purulent, serous, aseptic

By etiology

bacterial, viral, mycotic, parasitic

By the place of origin

- Community
- Nosocomial

CNS infections

Purulent

- CNS inflammation limited to the subarachnoid space
- primary (N.menigitidis, Limax amoebae)

secondary

otitis, mastoiditis (*Str.* pneumoniae, H. influenzae) post-traumatic (*S. aureus*)

secondary complication of sepsis

infective endocarditis, spondylodiscitis (S. aureus)

Non purulent

- meningitis
- meningoencephalitis brain and meninges involvement
- encephalitis brain involvement (e.g. cerebellitis, rhombencephalitis)
- myelitis spinal cord involvement

Laboratory diagnostics of CNS infections

	Leuko/	Protei	Glucose	Glyquor	Lactate	pathogen
	mm ³	n	mmol/L	/ G _{sérum}	mmol/L	
		g/L *				
normal	0 - 5	0,1 - 0,45	22-42	0.6-0.8	< 2 0	-
	lymphocytes	(0,6)	2,2 - 4,2	0,0-0,8	< 2,0	
aseptic	tens to					viruses , bacteria
•	hundreds,	1	↔	\leftrightarrow	\leftrightarrow	(spirochetes, intracellular
Inflammation	lymphocytes					bacteria)
purulent	thousands,					Bacteria
inflammation	n outro nhilo	111	↓ ↓	<0,5	<u>†</u> †	omocho
IIIIaIIIIIation	neutrophils					amoeba
mycotic or TB	tens to					cryptococcus
moningitic	hundreds,	† †	Ļ	<0,5	↑ Î	
meningitis	lymphocytes					

• children aged 0-7 days - cell count 0-30/mm³, neutrophils may predominate, protein 0.2-1.4 g/l

- Children aged 7-30 days cell count 0-20/mm³, neutrophils <20%, protein 0.15-1.0 g/l
- Examine the fluid immediately, at 22 ° C up to 50% of the cells could be destroyed in 1 h

Bacterial (purulent) meningitis

- even with antibiotic treatment, the lethality rate is 10-30%
- TOP 10 infectious causes of death worldwide
- decrease in incidence
 - in countries where vaccinations are given
- change in the spectrum of causative agents
 - hemophilus $\downarrow \downarrow$
 - pneumococci, meningococci \downarrow
 - listeria 个个
- shift of disease from childhood to adulthood

Etiology depending on age

0 - 6 weeks	Streptococcus agalactiae			
	<i>E.coli</i> + other Enterobacteriaceae			
	Listeria monocytogenes			
	Enterococcus sp.			
6 weeks - 5 years	Streptococcus pneumoniae			
ala il aluena se alu ulta	Neisseria meningitidis			
children, adults	<i>Haemophilus influenzae</i> b in areas without vaccination			
> 50 years	Streptococcus pneumoniae			
	Listeria monocytogenes			
	Enterobacteriaceae			

Etiology depending on predisposing factors

mesotheitis, mastoiditis, sinusitis	<i>Streptococcus pneumoniae</i> <i>Haemophilus</i> influenzae
neurosurgery, penetrating craniotrauma, liquor shunt	Staphylococcus aureus Staphylococcus epidermidis Pseudomonas aeruginosa Enterobacteriaceae
fracture of the skull base, liquorrhea	Streptococcus pneumoniae bacteria colonizing the nasopharynx

Etiology depending on predisposing factors

cellular immunodeficiency, cytostatic therapy, chronic corticotherapy	<i>Listeria monocytogenes</i> Enterobacteriaceae fungi - <i>Cryptococcus</i>
antibody immunodeficiency, asplenia, neutropenia	Streptococcus pneumoniae Haemophilus infulenzae Neisseria meningitidis
infective endocarditis, spondylodiscitis	Staphylococcus aureus

Pathogenetic classification of suppurative meningitis

Primary:

- colonization of the nasopharyngeal mucosa
- spread by blood, crossing the blood-brain barrier

Secondary:

- primary focus of infection in the skull (otitis, sinusitis), in the spine (spondylodiscitis) → spread per continuitatem elsewhere in the body (pneumonia, endocarditis, pyelonephritis) → haematogenous spread
- craniotrauma, an invasive procedure breaching the dural barrier

Community vs. nosocomial meningitis

- community meningitis
- nosocomial meningitis, health-care associated
- Difficult timing (>48 hrs after admission? <30 days after discharge?)
- meningitis due to iatrogenic dural barrier disorder
- postsurgery (NCH, ENT)
- catheter external drainage, internal drainage
- after spinal anesthesia, perimyelography, puncture
- due to nosocomial bacteraemia

Clinical signs

Fever + impaired consciousness with at least 2 of the 4 symptoms:

- headache
- nausea, vomiting
- positive meningeal symptoms
 - seizures
- symptoms of severe intracranial hypertension and trunk oppression

coma, hypertension, bradycardia, m. nn. paresis.

Purulent meningitis clinical manifestations

Short history, sudden onset

Newborns,

- few specific symptoms
- behavioural change (apathy x irritability)
- seizures
- fever x hypothermia
- development or worsening of icterus

Infants

- vomiting
- fever
- deterioration of peripheral blood circulation
- bulged fontanella
- disorder of consciousness

Children > 1 year and adults

- meningeal syndrome cephalea, vomiting, impaired consciousness
- positivity of meningeal symptoms
- seizures
- photophobia
- petechiae

CAVE! ATBs may mitigate clinical symptoms

Diagnostics of CNS infections

	Leuko/	Protein	Glucose	Glyquor	Lactate	pathogen
	mm ³	g/L *	mmol/L	/ G _{sérum}	mmol/L	
normal	0 - 5 lymphocytes	0,1 - 0,6	2,2 - 4,2	0,6-0,8	< 2,0	-
Aseptic Inflammation	tens to hundreds, lymphocytes	t	¢	↔	÷	viruses , bacteria (spirochetes, intracellular bacteria)
purulent inflammation	thousands, neutrophils	t t t	† †	<0,5	† †	Bacteria amoeba
mycotic meningitis	tens to hundreds, lymphocytes	† †	ţ	<0,5	Ť	cryptococcus

Microbiological diagnostics - detection of agents

Liquor

- **microscopy** sensitivity 60-90%, depends on bacterial concentration, highest in pneumococci
- **culture** sensitivity up to 70% without prior ATB treatment
- molecular genetic methods PCR

Blood

- hemoculture
- (PCR)

Molecular genetic diagnostics - PCR

• multiplex real-time PCR

pathogen-specific hybridization probes amplify genes encoding 16S rRNAs of typical bacterial pathogens:

S. pneumoniae, N. meningitidis, L. monocytogenes, H.influenzae, Fusobacterium nucleatum

• universal detection of bacteria and fungi

primers amplifying genes encoding 16S rDNA (bacterial) and 18S rDNA (fungal), subsequent direct sequencing of the product and comparison of the obtained sequence with the database

It cannot replace culture and ATB susceptibility testing !!!

Treatment

Start as soon as possible, ideally within 1 hour!

Objectives:

- sterilise the CSF <u>antibiotics</u>
- reduce inflammation in the subarachnoid space <u>corticosteroids</u> dexamethasone 0.15 mg/kg (8mg) á 6 h i.v., 4 days before the first dose of ATB or at the same time
- reduce brain edema

corticosteroids, mannitol, resting mode, elevation 30°

- maintain cerebral circulation and oxygenation circulatory and ventilatory stabilization, elimination of spasms
- sanitise the primary focus mastoidectomy, sinus rehabilitation

Empirical antibiotic treatment

Age, predisposition	1.choice	Alternative
0-4 (-8) weeks	AMP + cefotaxime	AMP + GEN
2 months - 50 years	CEFIII	CMP, MER
> 50 years, immunodeficiency	CEFIII + AMP	CMP instead of CEFIII, COT instead of AMP, MER
neurochir. surgery, penetr. craniotrauma, shunt	VAN + CTZ	VAN + MER

Targeted antibiotic treatment

Pathogen	Standard	Alternative
S. pneumoniae	PNC-G	AMP, CEFIII, CMP
N. meningitidis	PNC-G	CEFIII, CMP, MER
H. influenzae	CEFIII	CMP, MER
L. monocytogenes	AMP (+ GEN)	COT, MER
Enterobacteriacae	CEFIII (+ GEN)	MER
P. aeruginosa	CTZ	MER, CIP
S. aureus MSSA	OXA (+ RIF)	VAN, MER (+ RIFF)
MRSA	VAN (+ RIF)	COT, LNZ (+ RIF)

Duration of ATB treatment

Recommended duration of antibiotic treatment [days]

- N. meningitidis 7-10
- S. pneumoniae 10-14
- L. monocytogenes 21
- *S. agalactiae* 10-14
- Gram-negative rods 21-28

adjust according to clinical and laboratory response to treatment

Symptomatic treatment of meningitis

Antiedema treatment

Dexamethasone - \mathbb{P} mozkového edema, intracranial pressure, protects hearing (v.s.blockade of TN Φ - α release)

Mannitol 20% (?)

Hyperventilation (controlled hypocapnia)

Other supportive and symptomatic therapies

- i.v. fluids
- Antipyretics, anticonvulsants
- Treatment of DIC
- Oxygen therapy if necessary

Consequences

- encephalopathy headaches, vertigo, sleep and memory disorders, difficulty concentrating and learning
- hearing impairment
- paresis
- epilepsy
- severe deficits organic psychosyndrome, apalic state

If there is Staphylococcus aureus in the CNS...

..... the source of meningitis is probably

infective endocarditis (embolization) - echocardiography, haemoculture repeatedly

or

spondylodiscitis - MRI of the spine

Subacute and chronic meningitis

- 1. Infectious
- 2. Autoimmune
- 3. Tumor

Infectious etiology

Cryptococcus species Coccidioides immitis Histoplasma capsulatum Blastomyces dermatitidis Aspergillus fumigatus

Mycobacterium tuberculosis

Treponema palidum

Etiological agents of importance in the Czech Republic

Cryptococcus species

Coccidioides immitis Histoplasma capsulatum Blastomyces dermatitidis Aspergillus fumigatus

Mycobacterium tuberculosis

Treponema palidum

Laboratory diagnostics of CNS infections

	Leuko/	Protein	Glucose	Glyquor	Lactate	pathogen
	mm *3	g/L *	mmol/L	/ G _{sérum}	mmol/L	
normal	0 - 5 lymphocytes	0,1 - 0,45 (0,6)	2,2 - 4,2	0,6-0,8	< 2,0	-
Aseptic Inflammatio	tens to hundreds, lymphocytes	Ť	÷	÷	¢	viruses , bacteria (spirochetes, intracellular bacteria)
n						
purulent inflammatio n	thousands, neutrophils	t t t	ţţ	<0,5	t t	Bacteria amoeba
mycotic meningitis, TB	tens to hundreds, lymphocytes	† †	Ļ	<0,5	t	cryptococcus M.tuberculosis

Cryptococcal meningitis

Cryptococcus neoformans

- ubiquitous agents, in soil, bird excreta, tree bark
- inhalation route of infection
- disseminated infection in patients with cellular immunodeficiency - lymphomas, AIDS, post-transplant, chronic corticotherapy and other immunosuppressive drugs, rarely immunocompetent
- the most common agent of meningitis in Africa, the 4th infectious cause of death

Cryptococcal meningitis

Clinical signs

- Subacute development 2-4 weeks
- headache, subfebrile to fever, nausea, vomiting, irritability, behavioural disturbances
- focal symptoms cranial nerve paresis, diplopia
- meningeal symptoms often negative

Cryptococcal meningitis - diagnosis

- microscopic examination of the liquor after staining (sens. 75 %)
- cryptococcal polysaccharide antigen in the lysate (sensitivity up to 95%)
- culture of liquor (sensitivity 90%), blood, sputum, urine
- PCR detection of fungal DNA
- CT hydrocephalus, edema, MR enhancement of leptomening

Cryptococcal meningitis - treatment

- Antifungal
 - induction: amphotericin B + fluconazole 800 mg 2 weeks
 - -consolidation: fluconazole 400-800 mg for 8 weeks
 - suppressive: fluconazole 200-400 mg 6-12 months
- treatment of IC hypertension repeated LP, lumbar drainage, VP shunt, mannitol and corticosteroids not recommended

Tuberculous meningitis

CNS forms of TB ... 0.5-1% of all TB cases

Difficult diagnosis

- ✓ symptomatology not very specific
- ✓ conventional bacteriological methods not very sensitive
- ✓ new laboratory methods a little better

Predisposition

Unvaccinated individual (immigrants), repeated and prolonged contact with TB infection, alcoholism, nutritional withdrawal, HIV infection, immunosuppressive and biological treatment

Pathogenesis

- pulmonary TB ⇒ haematogenous dissemination to the integuments and brain ⇒ tubercles
- rupture of the cerebral tubercle ⇒ meningitis

Tuberculous meningitis

Pathological anatomy

thick to gelatinous exudate with a peak at the base of the brain ("basilar meningitis")

- → 3 main pathological processes:
- \blacktriangleright basal cistern obstruction \rightarrow obstructive hydrocephalus
- ➢ obliterating vasculitis of arteries and veins at the base of the brain → thrombosis, aneurysm → ischemia, hemorrhage
 - formation of fibrous adhesions in the vicinity of the cerebral nerves → cerebral nerve disorders VI, III, IV, VII
- → the severity of these disabilities determines the outcome

Clinical picture of TBM

- gradual, subacute development of difficulties and symptoms
- prodromes fatigue, intermittent headache, subfebrile
- persistent headache, vomiting, fever, photophobia, focal symptoms - paresis, dysarthria, ataxia impaired consciousness, meningeal symptoms rarer: abnormal movements, symptoms of a vascular event
- fever and meningeal symptoms may be absent for a long time
- symptoms of TB infection outside the CNS

Aseptic inflammation of the CNS

Laboratory diagnostics of CNS infections

	Leuko/	Protein	Glucose	Glyquor	Lactate	pathogen
	mm * ³	g/L *	mmol/L	/ G _{sérum}	mmol/L	
normal	0 - 5 lymphocytes	0,1 - 0,6	2,2 - 4,2	0,6-0,8	< 2,0	-
Aseptic Inflammation	tens to hundreds, lymphocytes	t	ţ	¢	t	viruses , bacteria (spirochetes, intracellular bacteria)
purulent inflammation	thousands, neutrophils	<u>†</u> ††	† †	<0,5	††	Bacteria amoeba
mycotic meningitis	tens to hundreds, lymphocytes	† †	ţ	<0,5	t	cryptococcus

- Children aged 0-7 days cell count 0-30/mm³, neutrophils may predominate, protein 0.2-1.4 g/l
- Children aged 7-30 days cell count 0-30/mm³, neutrophils <20%, protein 0.15-1.0 g/l
- Examine the fluid immediately, at 22 ° C up to 50% of the cells will break down in 1 h

Aseptic CNS infections

- meningitis
- meningoencephalitis
- **encephalitis** brain involvement (e.g. cerebellitis, rhombencephalitis)
- myelitis involvement of the spinal cord

The most common agents

<u>Viruses</u>

- TBE
- enteroviruses
- herpes viruses (HSV1,2, VZV)
- mumps virus
- respiratory viruses
- viruses of exanthem. diseases
- HIV

Bacteria

• spirochets (borrelia, treponema,

leptospira)

- Ehrlichie
- Mycoplasmas
- Chlamydia

Parasitic agents Amoeba (?) Trypanosoma

Mycotic agents histoplasmosis

Diagnostics

History

- tick bite
- stay in nature, contact with rodents
- travel
- similar manifestations in the family or collective

Clinical symptoms

- fever
- positivity of meningeal signs
- photophobia, phonophobia,
- ataxia
- unsteady walking, vertigo
- eyelid or fingertip tremor,
- confusion, drowsiness, behavioural changes, sleep disturbances
- dysarthria
- paresis

Laboratory tests - blood

- Blood count, diferential count of WBC
- CRP, basic biochemical examination
 - MEK :↑ AST, ALT
 - − Leptospirosis : ↑ bili, AST, ALT, CK, urea, creat
 - Parotitis: 个 amylase, lipase
- serology TBE, LB, mumps

unnecessary: serology of herpes viruses

Herpetic neuroinfections

- HSV 1
- HSV 2
- VZV
- EBV
- CMV
- HHV 6
- HHV 7

Monkey herpes B-virus - infects macaques. Transmission to humans by bite or scratchvesicles around wound. Fatal in untreated persons (acute ascending encephalomyelitis)

Cave! Hemorrhagic necrotizing encephalitis

- primoinfection or reactivation of Herpes simplex 1 infection
- life-threatening infections formation of necrotic hemorrhagic foci in the CNS
- early initiation of causal therapy is necessary

HSV encephalitis

- HSV 1 90%, HSV 2 10%
- primoinfection and reactivation

Clinical manifestations

- fever, subfebrile
- cephalea
- nausea, vomiting
- confusion
- speech disorder
- behavioural changes (cave alcoholics, drug addicts...)
- Cramps
- somnolence
- coma

HSV encephalitis - diagnosis

- aseptic liquor finding + PCR positivity in liquor
- PCR negativity in the first LP does not exclude disease, repeat after 2-4 days
- synthesis of antibodies in the liquor starts on day 10-12 of the disease

HSV encephalitis - therapy

Initiate prior to confirmation of the agent

- acyclovir i.v. 10mg/kg every 8 hours for 14-21 days
- immunosuppressed patient always 21 days
- dose adjustment according to renal function, especially in old patients

Side effects :

- **Psychiatric symptoms** agitation, confusion, hallucinations, psychotic symptoms.
- Nervous system disorders headache, dizziness, tremor, ataxia, dysarthria, convulsions, somnolence, encephalopathy and coma.

Hemorrhagic necrotizing encephalitis

Diagnostics Imaging methods

- MRI changes mostly in temporal and frontal region, appear on day 3
- CT scan in the first days of the disease normal
- EEG

Tick-borne meningoencephalitis

transmission from a tick within 10 minutes of bite

2-phase course: flu-like symptoms, then 2-7 days of asymptomatic phase, followed by neurological symptoms

- meningitis
- meningoencephalitis
- encephalomyelitis

Paretic complications

in about 5-10% of patients, in elderly people paresis is more severe and longlasting

- cranial nerves (n.VII, III, VI)- usually at the beginning of the disease
- plexus brachialis
- quadruparesis
- bulbar syndrome

No specific antiviral drug Vaccine available

Neuroborreliosis

Clinical manifestations

- aseptic meningitis
- aseptic meningitis + cranial nerve paresis
- meningopolyradiculoneuritis (Bannwarth's syndrome)

╋

Lymphocytic pleocytosis

╋

Intrathecal synthesis of antibodies

Early Lyme borreliosis	Early localised stage (days to weeks after infection)	Erythema migrans - sometimes with general flu-like symptoms		
	Early disseminated stage (weeks to months after infection)	Multiple migratory erythema Borrelial lymphocytoma Acute neuroborreliosis - Cranial neuritis: paresis of n. VII and other cranial nerves - aseptic meningitis, encephalitis - Garin-Bujadoux-Bannwarth syndrome Lyme arthritis - arthralgia, migratory arthritis Lyme carditis - dysrhythmias, myocarditis, pericarditis Affection of the eye - conjunctivitis, keratitis, uveitis, paresis of the eye muscles		
Late Lyme borreliosis	Late disseminated stage (months to years after infection)	Acrodermatitis chronica atrophicans - sometimes with general flu-like symptoms Late neuroborreliosis - chronic progressive encephalitis, encephalomyelitis - chronic polyneuritis Late Lyme arthritis		

Bannwarth syndrome (meningopolyradiculoneuritis)

- aseptic liquor finding
- radicular pain caused by inflammation of the spinal roots
 - usually with impaired hearing and muscle weakness to paresis of the affected limbs
 - -the lumbosacral nerves are most commonly affected
- almost half of the cases also have cranial neuritis paresis of n.VII, less often paresis of the oculomotor nerves

Complications and sequelae of aseptic CNS inflammation

• paresis

- most often neuroborreliosis, MEK
- postencephalitic syndrome
 - headaches
 - disturbances in concentration, memory, sleep
 - neurovegetative imbalance

Regimen after uncomplicated aseptic inflammation of the CNS

- first outpatient follow-up in 2-3 weeks after discharge, possibly follow-up EEG, total follow-up 6-12 months
- limitation of physical and mental exertion for 3-8 weeks
- do not watch TV, PC, limit reading (2 4 weeks)
- prohibition of alcohol
- no sun exposure
- no vaccination for 6 months with a non-live vaccine and 1 year with a live vaccine

Lyme borreliosis - neurological manifestations

Neuroborreliosis

Clinical manifestations

- aseptic meningitis
- aseptic meningitis + cranial nerve paresis
- meningopolyradiculoneuritis (Bannwarth's syndrome)

Lymphocytic pleocytosis

+ Intrathecal synthesis of antibodies (controversial cases - CXCL13)

Cave!

Especially in children, isolated neuritis VII without liquor findings is possible

LB - therapy

ECM + early disseminated phase

• **doxycycline** p.o. 200 mg/day in one or two doses, children over 8 years of age 4mg/kg/day)

- **amoxycillin** p.o. 3 x 500-1000mg, children 50 mg/kg/day
- **cefuroxime axetil** p.o. 2 x 500 mg p.o. , children 30mg/kg/day
- V-penicillin p.o. 3 x 1-1.5 MIU, children 100 000j/kg/day
- **azithromycin** 1 x 500 mg p.o., children 10mg/kg/day, double dose on the first day
- clarithromycin 2 x 500mg p.o., children 7.5 mg/kg/day

Neuroborreliosis

- ceftriaxone i.v., i.m., 1 x 2g, children 50-75 mg/kg/day
- **cefotaxime** 3 x 2 g i.v., children 150-200 mg/kg per day
- **penicillin G** 4 x 5 million i.i.v. children 200,000-400,000 i/kg per day
- in case of allergy to betalactam ATBs or paresis n.VII without liquor findings :
- Doxycycline 200-400 mg/day p.o., children over 8 years 4 -8 mg/kg/day

Isolated IgM positivity - can only be in the first weeks after the tick attachment \rightarrow repeat sampling in 6-8 weeks, if no IgG is formed - **DO NOT treat!**

- false positive (not confirmed by WB)
- a consequence of polyclonal activation of the immune system

Measles

• Czech Republic 2019 583 measles cases

Neurological complications

acute encephalitis - rather

immunopathological reaction within two weeks after sowing

recurrence of fever, cephalea, cerebellar symptoms, cranial nerve paresis, convulsions, impaired consciousness. Lethality 3-5%. **measles inclusion encephalitis** - several months after infection in immunodeficient individuals Prognosis unfavourable **Subacute sclerosing panencephalitis - a** rare but lethal complication, reactivation of virus persisting in the CNS. Years after acute illness, behavioural disturbances, convulsions, hypertonia to spastic paresis with subsequent death.

West Nile Virus

WNF - clinical picture

- 80% of infections are inapparent
- 20-25% of patients febrile influenza-like illness ('**West Nile fever**'), transiently including exanthema, resolves within four to seven days

Neuroinvasive form (1 in 150-250 patients) - elderly or immunosuppressed patients

- serous meningitis (25-35%)
- meningoencephalitis (65-75%)- mortality up to 10%
- manifestation also as acute flaccid paresis myelitis with involvement of the anterior spinal cord horns

Other agents in travellers

- Toscana virus
- Japanese encephalitis
- cerebral form of malaria

The technique for needle lumbar puncture was introduced by the German physician <u>Heinrich Quincke</u>, he first reported his experiences at a conference in Wiesbaden, Germany, 1891.

