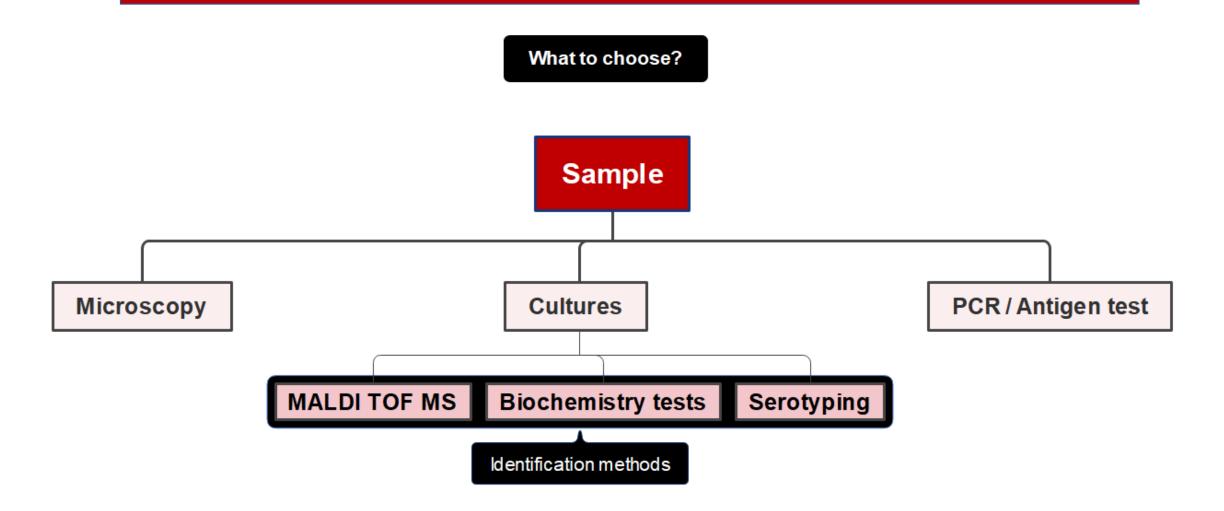


Microbiology I.Practical training



Bacterial culture and procedures for bacterial identification

Jakub Hurych

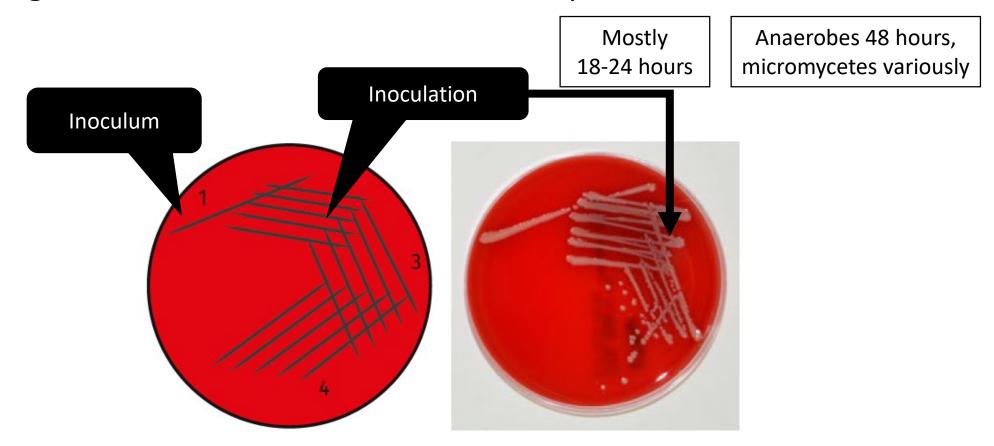
Department of Medical Microbiology 2nd Faculty of Medicine, Charles University and Motol University Hospital

Methods of direct proof

Cultures

What is it?

How is it done?


What are we prooving by that?

What agar plates do we use?

What are the benefits?

Bacterial culture

= Targeted and controlled bacterial multiplication for their detection

Apart from bacteria: fungi, less parasites and rarely viruses

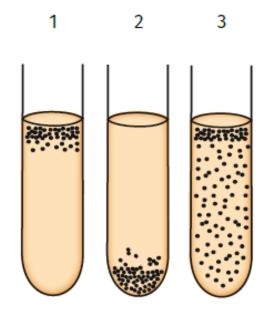
Cultures

What is it?

How is it done?

What are we prooving by that?

What agar plates do we use?


What are the benefits?

Culture media

They provide an energy substrate for the cultivation of the microbe

Two basic types:

1) Liquid

- 1 Gathering at top
- 2 Gathering at bottom
- 3- Turbid growth

ConditionsPossibilitiesEnergy sourceIn the plate / mediumAtmosphereO2 vs. CO2 vs. anaerostatTemperature25°C vs. 37°CAnotherHumidity, pH, pressure

2) Solid

Thioglycolate broth

Composition of Thioglycollate Broth

Ingredients	Gms/liter
L-cystine	0.50
Sodium chloride	2.50
Glucose	5.50
Yeast extract	5.00
Pancreatic digest of casein	15.0
Sodium thioglycollate	0.5

Final pH (at 25°C): 7.1 ± 0.2

https://microbenotes.com/thioglycollate-broth/

Common ingredients of culture media

- **Peptone** source of carbon and nitrogen.
- **Beef extract** source of amino acid, vitamins, minerals.
- **Yeast extract** source of vitamin, carbon, nitrogen.
- Distilled water
- Agar- solidifying agent.

https://microbenotes.com/types-of-culture-media/

Solid media

- 1 blood agar, 2 Schaedler agar, 3 chocolate agar, 4 CLED agar,
- 5 MacConkaey agar, 6 deoxycholate-citrate agar, 7 Sabouraud agar

Solid media

Including both basic and selective ones

Medium	Usage
Blood agar	Almost everything, especially G+ bacteria (hemolysis)
Schaedler's agar	Anaerobes
Chocolate agar	Fastidious bacteria
CLED agar	Urine
MacConkey agar	G- bacteria
Deoxycholate agar	Salmonella
Sabourad agar	Yeasts
Karmali agar	Campylobacter
CIN agar	Yersinia
Müller-Hinton agar	AST

Cultures

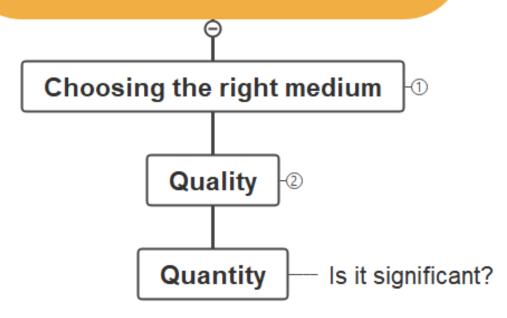
What is it?

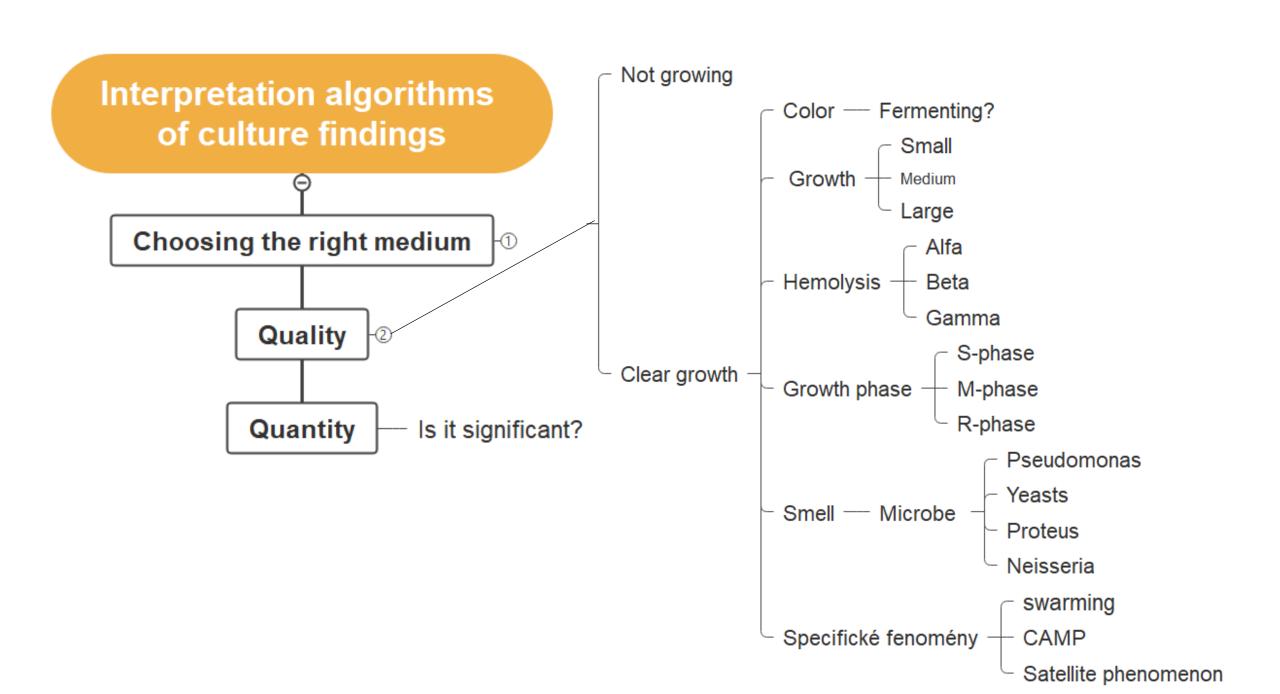
How is it done?

What are we prooving by that?

What agar plates do we use?

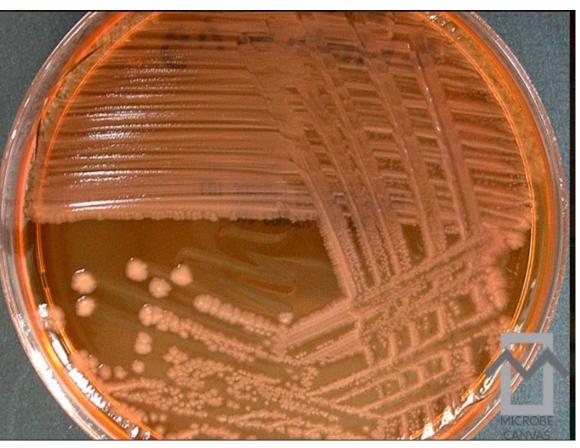
What are the benefits?


Přednosti kultivace



- Everything depends on the acquisition of live culture
- Detection of properties and phenotypes
 - Hemolysis clarification with the destruction of erythrocytes
 - Phase S, M, R
- Determination of AST (Antibiotic Susceptibility Testing)
- Possible serotyping if pathogenetically or epidemiologically important

Culture interpretation


Interpretation algorithms of culture findings

Color – lactose fermentation

Lac +: Escherichia, Citrobacter, Enterobacter and Klebsiella

Lac - : Shigella, Salmonella, Seratia or nonfermenting rods

Color – lactose fermentation, what to do next

Lac+: Escherichia, Citrobacter, Enterobacter and Klebsiella When is that not enough?

Serotyping/agglutination

Туре	Note
O157:H7	Word
O26	CZE
O104:H4	Epidemics
O103	Often cause of HUS
O111	Often cause of HUS
O1415	Often cause of HUS

Children under 2 years of age due to HUS

Haemolytic uremic syndrome (HUS)

= thrombocytopenia, haemolytic anaemia and acute renal failure Typical for children under 2 years old, in epidemics (summer) beef, unpasteurized dairy products.

Události

Názory

Magazín

Kultura

Orientace

Seriály

Video

Obrazem

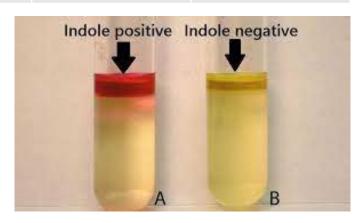
≡

Bakterie EHEC už usmrtila 35 lidí, z toho 34 v Německu

SVĚT 12. června 2011 20:24

BERLÍN - Počet úmrtí na infekci střevní bakterie EHEC v Německu vzrostl o další dvě osoby na 34 a úřady se obávají, že to ještě není konečná bilance už ustupující epidemie.

1 příspěvek


I se Švédkou, která zemřela koncem května, si epidemie vyžádala už 35 mrtvých. Němečtí odborníci se navíc obávají těžkých a možná doživotních zdravotních následků u osob, u nichž se nákaza enterohemoragické E. coli (EHEC) projevila. Světová zdravotnická organizace (WHO) uvádí, že nákaza nebo podezření na ni se objevila dohromady u 3255 osob.

Color – lactose fermentation, what to do next

- How do I know it's *Shigella* and not *E.coli*?
 - MALDI-TOF MS will not help

Test	E.coli	Shigella
Gas	+ (bubles)	- (no)
Indol	+ (pink)	- (yellow)

Lac - : Shigella, Salmonella, Seratia or nonfermenting rods and 10% of E.coli straons

Color – H2S utilization

Salmonella and Citrobacter

Serotyping

Determinants of O-antigen	Determinants of H-antigen	
1,9,12	g,m	Enteritidis
1,4,12	i	Typhimurium
6, 7, 14	R	Infantis
9,12	d	Typhi (+ capsular antigen Vi)

Color – H2S utilization

Salmonella and Citrobacter

Serotype	O Antigens	H Antigens Phase 1	H Antigens Phase 2
Agona	1, 4, [5], 12	f, g, s	[1, 2]
Anatum	3, {10} {15} {15, 34}	e, h	1, 6
Bareilly	6, 7, 14	у	1, 5
Blockley	6, 8	k	1, 5
Bovis Morbificans	6, 8 ,20	r, [i]	1, 5
Brandenburg	1, 4, 12	e, h	e, n, z15
Bredeney	1, 4, 12, 27	l, v	1, 7
Chester	1, 4, [5], 12	e, h	e, n, x
Derby	1, 4, [5], 12	f, g	[1, 2]
Dublin	1, 9, 12, [Vi]	g, p	-
Enteritidis	1, 9, 12	[f], g, m, [p]	[1, 7]
Gallinarium	1, 9, 12	-	-
Glouchester	1, 4, 12, 27	i	l, w
Hadar	6, 8	z10	e, n, x
Heidelberg	1, 4, [5], 12	R	1, 2
Indiana	1, 4, 12	Z	1, 7
Infantis	6, 7, 14	R	1, 5
Javiana	1, 9, 12	l, z28	1, 5
Kentucky	8, 20	i	z6
Kottbus	6, 8	e, h	1, 5
Lagos	1, 4, [5], 12	i	1, 5
Lille	6, 7, 14	z38	-
Livingstone	6, 7, 14	d	l, w
Mbandaka	6, 7, 14	z10	e, n, z15
Meleagridis	3, {10} {15} {15, 34}	e, h	l, w
Montevideo	6, 7, 14	g, m, [p], s	[1, 2, 7]
Muenchen	6, 8	d	1, 2
Newport	6, 8, 20	e, h	1, 2
Orion	3, {10} {15} {15, 34}	У	1, 5
Paratyphi B	1, 4, [5], 12	b	1, 2
Saintpaul	1, 4, [5], 12	e, h	1, 2
Senftenberg	1, 3, 19	g, [s], t	-
Stanley	1, 4, [5], 12, [27]	d	1, 2
Thomson	6, 7,14	k	1, 5
Typhimurium	1, 4, [5], 12	i	1, 2
Virchow	6, 7	r	1, 2
Weltervreden	3, {10} {15}	r	z6

Color – oxidase production

P. aeruginosa

Hemolysis and colony sizes

S. aureus

S. pyogenes

Hemolysis and colony sizes

S. pneumoniae

E. faecium

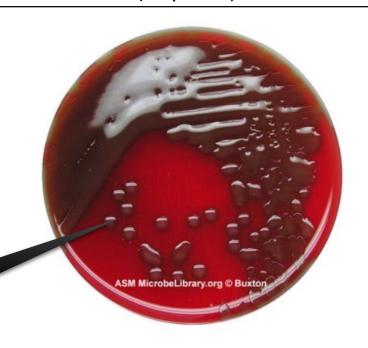
Fastidious bacteria

• Haemophilus

• Neiserria

Satellite phenomenon

Growth on media


• S-phase – normal, smooth

• M-phase – mucosal, mucus

• R-phase – dry, in the absence of r

Encapsulated = more virulent

Streptococcus pneumoniae (M-phase)

• Proteus

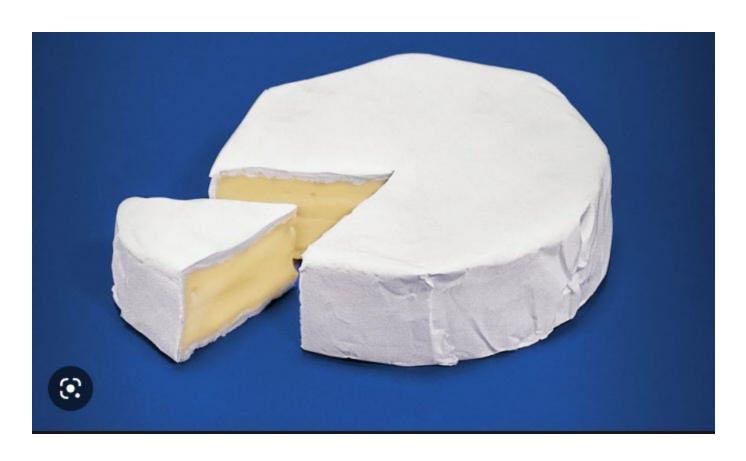
Pseudmonas

Neisseria

Proteus

Pseudmonas

• Neisseria

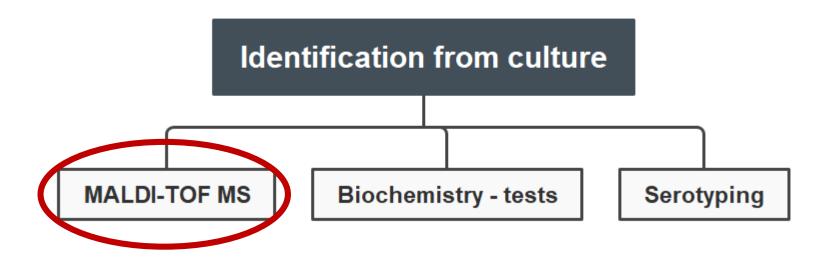


Proteus

Pseudmonas

• Neisseria

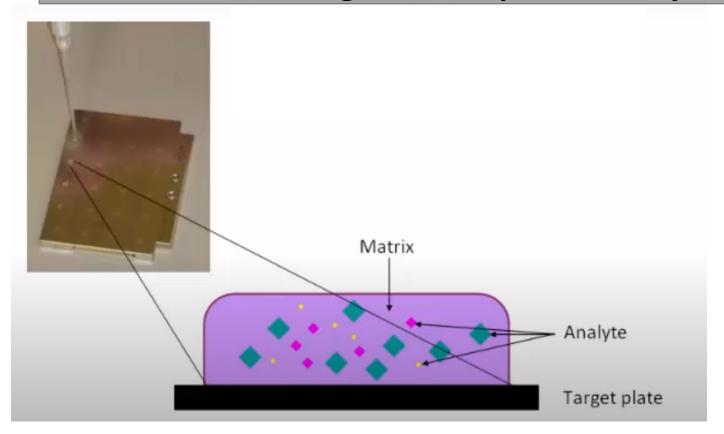
Proteus


• Pseudmonas

• Neisseria

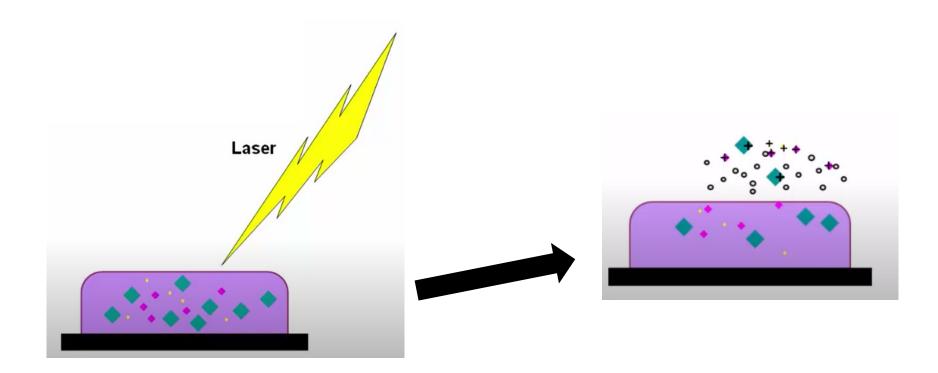
<u>Smell</u>	<u>Microorganism</u>
Dirt, earthy, rain, <u>geosmin</u>	soil microbes like <i>Streptomyces</i>
Fake grape, rotting fruit	Pseudomonas aeruginosa
Corn chips, corn tortillas	Pseudomonas aeruginosa
Butterscotch	Streptococcus anginosus
Yogurt	Lactobacillus
Poop	Escherichia coli Nissile
Poop and vomit	Clostridium
Cream corn or cooked broccoli	Campylobacter
Ammonia and alcohol-ey bread	Exophiala dermatitidis (Black yeast)
New shoe, rubber	Pseudomonas chlororaphis

ID from cultures

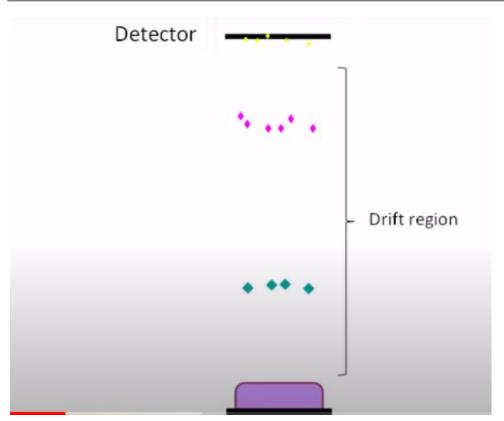


Matrix-Assisted Laser Desorption Ionization Time Of Flight Mass Spectrometry

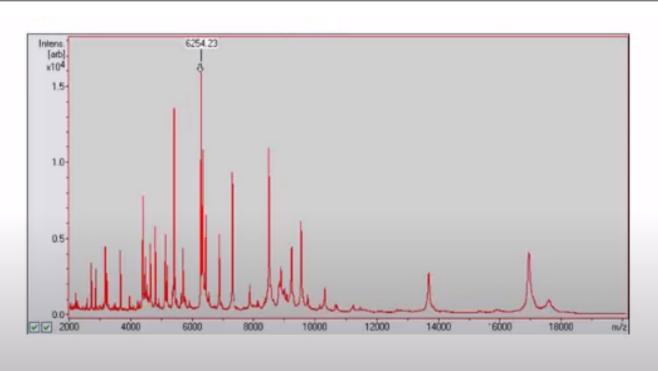
- Principles of MALDI-TOF MS
- Pros and cos



Matrix-Assisted Laser Desorption Ionization Time Of Flight Mass Spectrometry



Video YT


Matrix-Assited Laser Desorption Ionization Time Of Flight Mass Spectrometry

Matrix-Assited Laser Desorption Ionization Time Of Flight Mass Spectrometry

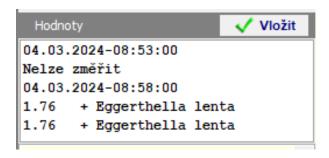
Matrix-Assited Laser Desorption Ionization Time Of Flight Mass Spectrometry

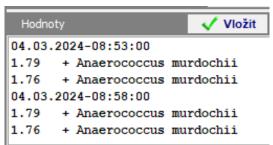
Platforms

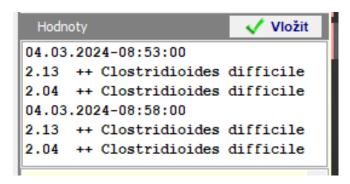
- MALDI-ToF MS = gold standard for identification of bacteria
- Four platforms on the european market

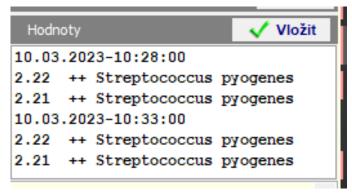
BIOTYPER Smart/Sirius (Bruker, Germany)

VITEK MS (Biomerieux, France)


AXIMA Performance (Shimadzu, Japan)




EXS 2600 (Zybio, China)


Result:

Score	Interpretaion
≥ 2.00	Reliable species ID
1.70 - 1.99	Reliable genus only ID
≤ 1.69	Not reliable

How does it work - summary

MALDI-ToF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) is an analytical technique used for the identification of microorganisms and other biomolecules. Here is a simplified description of how it works:

- **Sample preparation**: Microorganisms are first isolated from a culture and placed on the surface of a matrix, which is a substance that helps to create ions from the sample.
- **Laser irradiation**: The sample in the matrix is bombarded with a pulsed laser, causing molecules to evaporate from the surface of the matrix along with microorganisms. This process generates ions from molecules in the sample.
- **Ion flight**: The generated ions are accelerated by an electric field towards the detector. In this step, time-of-flight plays a crucial role, which depends on the mass of the ions. Heavier ions have a longer flight time than lighter ones.
- **Detection** and analysis: Ions are detected based on their time-of-flight and used to create a mass spectrum. This spectrum contains peaks corresponding to different masses of ions in the sample.

What does it show? The mass-to-charge ratio (m/z) ultimately indicates the mass number (mass) of the ion divided by its charge. This value is crucial for the identification of molecules and microorganisms because each type of molecule has its characteristic mass-to-charge ratio. By comparing the mass spectra of samples with reference spectra, it is possible to identify the composition of the sample.

Advantages

- Cost-effective
- Short processing time, high sample turnover
- Wide range of detected microorganisms
- Interlaboratory reproducibility and adaptability (when having the same supplier)

Limitace

- Does not have a sensitivity test to antibiotics
- Problem detection of some microorganisms (Bruker)
 - Misidentification: Shigella as E.coli
 - They do not distinguish related species
 - Klebsiella
 - Enterobacter
 - Listeria
 - Streptococcus mitis group
- Different protocols and databases may not allow data transfer between laboratories

How does the result look like?

ÚSTAV LÉKAŘSKÉ MIKROBIOLOGIE UK 2.LF a FN v MOTOLE

V Úvalu 84, 15006 Praha 5 - Motol, tel: 224435370 Přednosta: prof. MUDr. Pavel Dřevínek, Ph.D.

K-23-2382 předbežný výsledek

Materiál: BAL - bronchoalveolární laváž

Vyšetření: DCD - kultivace

MIKROSKOPICKY

Preparát z klinického materiálu: řasinkové epitelie, leukocyty ojediněle, g+koky ojediněle

PRIMOKULTIVACE

Nález 1: viridující streptokoky ojediněle

Nález 2: Streptococcus pneumoniae mukozní ojediněle

	ANTIBIOGRAM	(disková	difusní	metoda)	
penicilin	C		norf]	Loxacin	C
ampicilin	C		cefot	axim	C
erythromycin	C		rifar	mpicin	C
klindamycin	C		vanko	omycin	C
kotrimoxazol	C		linea	olid	C

Nález 3: Neisseria sp

POMNOŽENÍ

Nález 4: Streptococcus pyogenes Beta-hemolytický streptokok, skupina A

Mikroaerofilní kultivace

Nález 5: Haemophilus influenzae

	ANTIBIOGRAM	(diskova	difushi	metoda)	_	
ampicilin	. с		tetra	cyklin		C
amoxicilin /klavulanát	. с		nalid	lixová	kyselina	C
cefuroxim	. с		chlor	amfeni	kol	C
cefotaxim	. с		kotri	moxazo	1	C

AMERICAN AND A SECOND ASSESSMENT OF THE SECOND

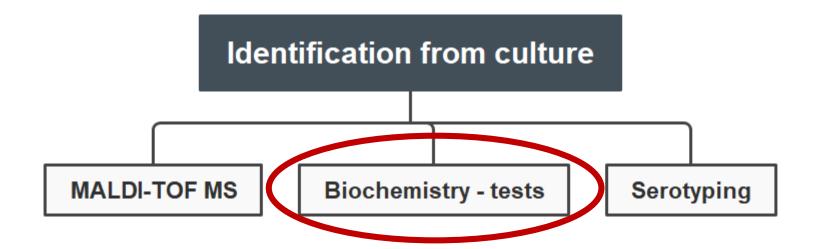
Vazhy mezi antihiotiky

Kys. nalidixová - screening: Výsledek "citlivý" znamená, že testovaný kmen je citlivý k ciprofloxacinu, leofloxacinu, moxifloxacinu a ofloxacinu.

Screening na kvasinky a plísně

Nález:

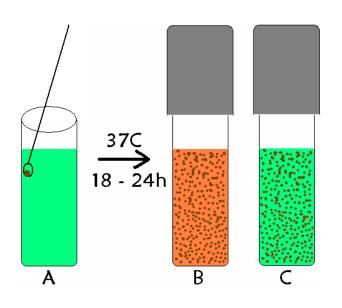
negativní


Výsledek prodloužené mykologické kultivace sdělíme v případě pozitivity dodatečně - celková délka kultivace je 5 dní.

Zkratky: C = citlivý, R = rezistentní, I = intermediální, * = výsledek k dispozici po konzultaci s ATB střediskem

Výsledek předběžně uvolnil:09.03.2023-12:09 MUDr.Kabelíková Petra

Let's take a look!


But before that – sometimes it's unfair, but one game is not the whole <u>career</u>

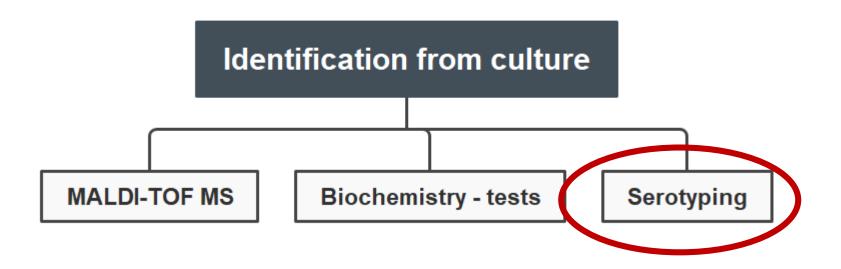
Biochemical tests

Use of enzyme and gas production, fermentation of sugars, etc. individual tests in a test tube, diagnostic strips

Commercially manufactured kits

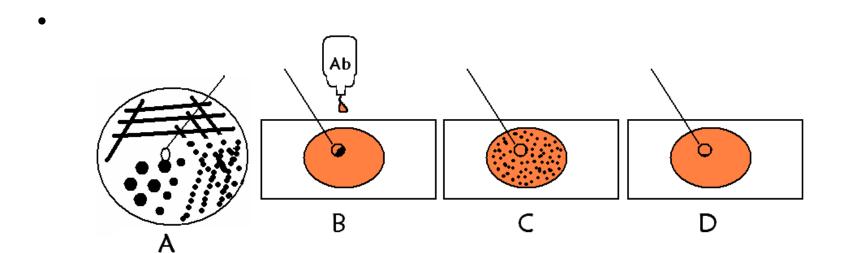
Biochemical identification

- A. Inoculation of pure microbial culture into liquid soil with substrate (e.g. sugar), pH indicator and cultivation
- B POSITIVE REACTION: use of the substrate (e.g. fermentation or oxidation) by microbial culture and colour change of indicator
- C. NEGATIVE REACTIONS

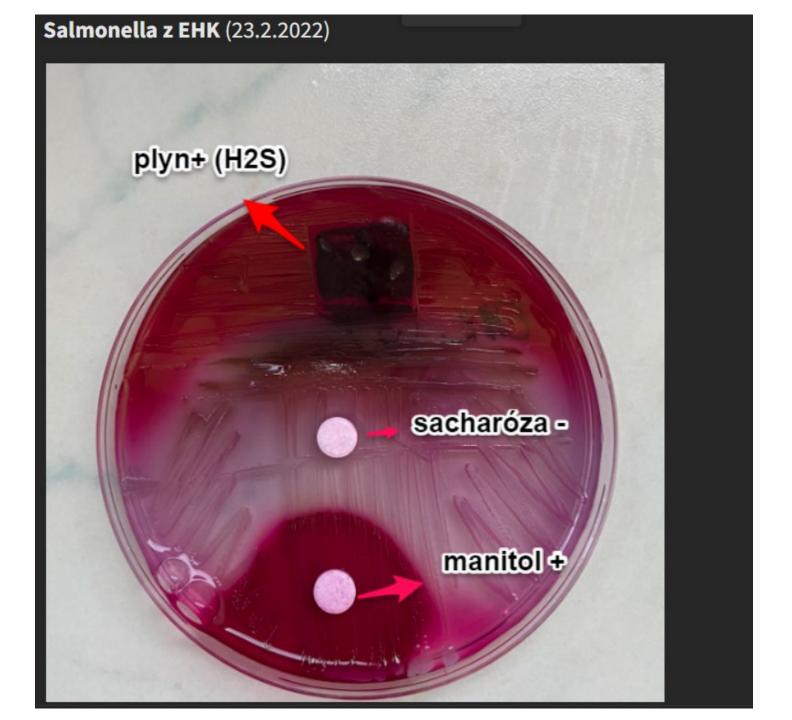

Biochemical tests in G-bacteria

DON'T TAKE THE EXAM

– IT'S JUST FOR AN


OVERVIEW

	Glukóza	Laktóza	Sacharóza	Manitol	Urea	Sirovodík	Indol
Salmonella	+	-	-	+	-	+	-
Typhi							
Většina	+	-	-	+	-	+	+
ost.salmonel							
Escherichia	+	+	+/-	+	-	-	+
coli							
Klebsiela	+	+	+	+	+	-	+/-
pneumoniae							
Enterobakter	+	+	+	+	+/-	-	-
cloacae							
Proteus	+	-	?	-	+	+	-
mirabilis							
Morganella	+	-	-	-	+	-	+
morgani							


Performing serotyping

- Use the loop to scoop up one colony of the grown culture (A) and mix
 with the antibody (B) on a slide
- By swinging the slide we mix the suspension and observe the formation of agglutinates visible to the eye (up to about 30 s)(C), negative reaction (D)

When is it useful?

- Especially for E. coli/shigella and salmonella
- Suitable for the exam

Color – lactose fermentation, what to do next

Lac+: Escherichia, Citrobacter, Enterobacter and Klebsiella When is that not enough?

Serotyping/agglutination

Туре	Note
O157:H7	Word
O26	CZE
O104:H4	Epidemics
O103	Often cause of HUS
O111	Often cause of HUS
O1415	Often cause of HUS

Children under 2 years of age due to HUS

Haemolytic uremic syndrome (HUS)

= thrombocytopenia, haemolytic anaemia and acute renal failure Typical for children under 2 years old, in epidemics (summer) beef, unpasteurized dairy products.

E. coli serotyping

Туре	Note
O157:H7	World
O26	CZE
O104:H4	The german epidemics (2011)
O103	Belong to hout the most common EHEC
O111	
O145	

Salmonella serotyping

Determinants of O-antigen	Determinants of H-antigen	
1,9,12	g,m	Enteritidis
1,4,12	i	Typhimurium
6, 7, 14	R	Infantis
9,12	d	Typhi (+ capsular antigen Vi)

E. coli serotyping based on the detection of:

- somatic O-antigens (174 types),
- flagellum H-antigens (53 types), and
- capsular K-antigens (80 types).

The O-antigen identifies the serogroup, the H-antigen identifies the specific serotype.

More about EHEC on SZÚ website: zde

