Peano Arithmetic and Finite Zermelo Fraenkel Set Theory II

Zuzana Haniková

Institute of Computer Science of the Czech Academy of Sciences

Logika v souvislostech a aplikacích Dpt. of Logic, Faculty of Arts, CUni *Feb & March 2024*

Outline

▶ Natural numbers and Peano arithmetic.

- ▶ Notions of finiteness.
- ▶ Theories of finite sets and axioms.
- Ackermann interpretation of ZF_{fin} in PA.
- ▶ Theories of finite sets and classes.

Main source:

Richard Kaye, Tin Lok Wong: On Interpretations of Arithmetic and Set Theory. *Notre Dame J. Formal Logic* 48, 2007.

Peano Arithmetic (PA)

First-order theory in logic with equality. Language: $\{0, S, +, \cdot\}$.

Axioms:

 $\begin{array}{ll} (\mathrm{Q1}) & S(x) \neq \bar{0} \\ (\mathrm{Q2}) & S(x) = S(y) \to x = y \\ (\mathrm{Q3}) & x \neq \bar{0} \to (\exists y)(x = S(y)) \\ (\mathrm{Q4}) & x + \bar{0} = x \\ (\mathrm{Q5}) & x + S(y) = S(x + y) \\ (\mathrm{Q6}) & x \cdot \bar{0} = \bar{0} \\ (\mathrm{Q7}) & x \cdot S(y) = (x \cdot y) + x \\ (\mathrm{Q8}) & x \leq y \leftrightarrow (\exists v)(v + x = y) \\ (\mathrm{Ind}) & \varphi(\bar{0}) \& (\forall x)(\varphi(x) \to \varphi(S(x))) \to (\forall x)\varphi(x) \end{array}$

$\mathrm{ZF}_{\mathrm{fin}}$ and TC

 $\mathrm{ZF}_{\mathrm{fin}}$:

(extensionality) $\forall x, y \ (\forall z \ (z \in x \leftrightarrow z \in y) \to x = y)$ (empty set) $\exists x \forall y \neg (y \in x)$ (pair) $\forall x, y \exists z \forall u \ (u \in z \leftrightarrow u = x \lor u = y)$ (union) $\forall x \exists y \forall z \ (z \in y \leftrightarrow \exists u \ (z \in u \land u \in x)))$ (power set) $\forall x \exists y \forall z (z \in y \leftrightarrow \forall u \ (u \in z \to u \in x)))$ (separation) $\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \& \varphi(z))$ (φ any formula, y not free in φ)

(replacement) $\forall x \ [\forall u \in x \exists ! v \ \varphi(u, v) \rightarrow \exists y \ \forall v \ (v \in y \leftrightarrow \exists u \in x \ \varphi(u, v))]$ (φ any formula, y not free in φ) (regularity) $\forall x \ (x \neq \emptyset \rightarrow \exists y \ (y \in x \land y \cap x = \emptyset))$ \neg (infinity) $\neg \exists x \ (\emptyset \in x \& \forall y \in x \ (y \cup \{y\} \in x))$

transitive closure:

(TC) $\forall x \exists y (x \subseteq y \& \operatorname{Trans}(y))$

The notion of an interpretation

Let T and S be first-order theories in languages \mathcal{L}_T and \mathcal{L}_S resp.

The pair (α, \star) is a translation of \mathcal{L}_T to \mathcal{L}_S provided that: (i) α is a formula of \mathcal{L}_S with one free variable; (ii) the map \star assigns to each

- ▶ *n*-ary fct. symbol F of \mathcal{L}_T an *n*-ary fct. symbol F^* of \mathcal{L}_S ;
- *n*-ary pred. symbol P of \mathcal{L}_T an *n*-ary pred. symbol P^* of \mathcal{L}_S (= translates to itself);
- for φ atomic of \mathcal{L}_T , φ^* of \mathcal{L}_S is obtained by replacing each F or P of \mathcal{L}_T with its *-image;
- (iii) * commutes with logical connectives;
- (iv) * relativizes quantifiers: for φ of \mathcal{L}_T ,

•
$$(\forall x \varphi(x))^*$$
 is $\forall x(\alpha(x) \to \varphi^*(x));$

 $\blacktriangleright (\exists x \varphi(x))^* \text{ is } \exists x (\alpha(x) \& \varphi^*(x)).$

Extend \star to each formula of \mathcal{L}_T by induction on formula structure.

Let T and S be first-order theories in languages \mathcal{L}_T and \mathcal{L}_S resp.

S interprets T iff there is a (conservative) extension by definitions S' of S and a translation $(\alpha, {}^{\star})$ of \mathcal{L}_T to $\mathcal{L}_{S'}$ such that (i) $S' \vdash \exists x \alpha(x);$ (ii) if F is n-ary in \mathcal{L}_T , then $S' \vdash \forall x_1, \ldots, x_n(\alpha(x_1), \ldots, \alpha(x_n) \to \alpha(F^*(x_1, \ldots, x_n)))$ (iii) $S' \vdash \varphi^*$ for each axiom φ of T.

If T is interpreted in S, we have $S \vdash \varphi^*$ for any theorem φ of T.

Relative consistency

Assume S interprets T.

Suppose T is inconsistent: i.e., $T \vdash \varphi$ and $T \vdash \neg \varphi$ for some φ (and hence, for every φ) of \mathcal{L}_T .

Then also S is inconsistent, since by assumption S proves both φ^* and $\neg(\varphi^*)$.

By contraposition, if S is consistent, then so is T. In such a case we say that T is consistent relative to S.

In case T is consistent relative to S, and S is consistent relative to T, then T and S are said to be equiconsistent.

NB. Role of metatheory. Relative consistency or equiconsistency are meaningful if one cannot prove the consistency of T or of S.

Example: the "ordinal" intp. of PA in $\rm ZF_{fin}~(+TC)$

A set is an ordinal number iff is transitive and totally ordered by \in .

Let On denote the class of ordinals.

As usual, $\emptyset \in \text{On and } \emptyset$ has no predecessor; $\alpha \in \text{On implies } \alpha \cup \{\alpha\} \in \text{On and the latter is immediate successor of } \alpha$ within On.

The interpretation (o, \circ) is given as follows:

o(x) is $x \in \text{On}$; $S(x)^{\circ}$ is interpreted as $x \cup \{x\}$; $(x + y)^{\circ}$ is interpreted as ordinal addition of x and y; $(x \cdot y)^{\circ}$ is interpreted as ordinal multiplication within ZF_{fin} (+TC).

Then (o, \circ) is an interpretation of PA in ZF_{fin} . (We have already mentioned this. It also works in ZF.)

Binary numerals

Let $n \in N$. Write n_2 for the binary numeral representing n.

In other words, we have

$$n = \sum_{i=0}^{k-1} p_i 2^i$$

for some k, with $p_i \in \{0, 1\}$ and $p_{k-1} = 1$. Also $k = \lfloor \log_2(n) \rfloor + 1$.

Then n_2 is $p_k p_{k-1} \dots p_1 p_0$.

E.g., *n* is 26. We have 26 = 16 + 8 + 2, i.e., $26 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$. So 26_2 is 11010.

"Membership" on ${\cal N}$

Define ε on N, using binary representations.

Let $m, n \in N$. Let n_2 be $p_{k-1} p_{k-2} \dots p_1 p_0$ with $k = \lfloor \log_2(n) \rfloor + 1$. Define

 $m \varepsilon n$ if and only if *m*-th digit in n_2 is 1

									1
• • •	• • •		• • •			• • •		• • •	
• • •	0	0	0	1	1	0	1	0	26
	• • •								
	0	0	0	0	1	0	1	0	10
	0	0	0	0	1	0	0	1	9
	0	0	0	0	1	0	0	0	8
	0	0	0	0	0	1	1	1	7
	0	0	0	0	0	1	1	0	6
	0	0	0	0	0	1	0	1	5
	0	0	0	0	0	1	0	0	4
	0	0	0	0	0	0	1	1	3
	0	0	0	0	0	0	1	0	2
	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0	

"Membership" on N - cont'd

Running example: 26_2 is 11010. Therefore $26 = \{4, 3, 1\}$.

A coding of finite sets:

$$a(\sum_{i=0}^{k-1} p_i 2^i) = \{a(i) \mid p_i = 1\}$$

Example:

- binary unions and intersections;
- singletons and pairs;
- successors.

Ackermann interpretation of $\mathrm{ZF}_{\mathrm{fin}}$ in PA

Work in PA or fragment.

1. the formula α , delimiting the "domain", will be just x = x. Comment: within N, every number stands for some set, as we have seen.

2. Further we define the translation \mathfrak{a} of the symbol \in . (Our definition of intp. stipulates that = translates to itself. In other words, set-theoretic = translates to arithmetical =.)

 $(x \in y)^{\mathfrak{a}}$ is

$$\exists w < y \, \exists p \le y \, \exists r < p \, (p = 2^x \, \& \, y = (2w + 1)p + r)$$

Notice that if $n = \sum_{i=0}^{k-1} p_i 2^i$, then *n* can be written as

$$(p_{k-1}2^{l-1} + p_{k-2}2^{l-2} + \dots + p_{k-l+1}2 + 1)2^{k-l} + r$$

where $r < 2^{k-l}$ if and only if $p_{k-l} = 1$ in n_2 .

Ackermann interpretation of ZF_{fin} in PA – cont'd

3. It remains to define $p = 2^x$. Exponentiation is not available in the language of PA.

A suitable formula $\operatorname{Pow}(y,x)$ that represents "y is the x-th power of 2". Properties: $\operatorname{Pow}(1,0)$ and $\operatorname{Pow}(y,x)\to\operatorname{Pow}(2y,x+1)$ and $\operatorname{Pow}(v,x)\,\&\,\operatorname{Pow}(w,x)\to v=w.$

The formula says, in plain words, there is the (code of the) sequence

 $\langle 0, 2, 4, 8, \dots y \rangle$

of length x + 1 and with the recursive property.

Then PA proves $\forall x \exists y \operatorname{Pow}(y, x)$. (In fact already $I\Sigma_1$.) **Theorem:** [Ackermann] $(\alpha, ^{\mathfrak{a}})$ defines an interpretation of ZF_{fin} in PA.

Proof: consists in verifying that the formula $\varphi^{\mathfrak{a}}$ is provable in PA whenever φ is an axiom of ZF_{fin} .

NB. We cannot "reason in the standard model", since we need to establish provability of the translations (i.e., validity in all models).

[Kaye-Wong] remark that one can prove translations of extensionality, empty set, union, foundation, and some others, in $I\Delta_0$.

Provided 2^x is total, one can prove existence of singletons (and pairing and power). Notice that $a^{-1}(\{x\})$ is coded by $2^{(a^{-1}(x))}$.

Ackermann interpretation of $\mathrm{ZF_{fin}}$ in PA – cont'd

Moreover [Kaye–Wong] also show:

Lemma:

Let $(\alpha, {}^{\mathfrak{a}})$ be the Ackermann interpretation of ZF_{fin} in PA. Then $I\Delta_0 \vdash TC^{\mathfrak{a}}$.

Proof sketch:

Consider an arbitrary model M of $I\Delta_0$ and its element x, obtained by "subtracting 1" from the smallest power of 2 that is bigger than x.

Existence: Δ_0 -induction gives a least u s.t. $\exists z \leq x(2^u = z)$ no longer holds.

Then if $(u \in v)^{\mathfrak{a}} \& (v \in y)^{\mathfrak{a}}$, we have u < v < y so u-th digit in y_2 is 1.

However $\operatorname{ZF}_{\operatorname{fin}} \not\vdash \operatorname{TC}$, as discussed.

More from [Kaye–Wong]

Inverse Ackermann interpretation:

working in $\mathrm{ZF}_{\mathrm{fin}}{+}\mathrm{TC},$ define $\mathfrak b$ by recursion:

$$\mathfrak{b}(y) = \Sigma(\{2^{\mathfrak{b}(x)} \in \mathrm{On} \mid x \in y\})$$

where Σ is ordinal addition.

This is a bijection from V to On.

Taking β again to be x = x and equipped with ordinal arithmetic on the range of \mathfrak{b} , this gives

 $(\beta, {}^{\mathfrak{b}})$ is an interpretation of PA in ZF $_{\rm fin}+{\rm TC}.$

Then they obtain $PA \vdash \varphi \leftrightarrow ((\varphi^{\mathfrak{b}})^{\mathfrak{a}})$ $ZF_{fin}+TC \vdash \psi \leftrightarrow ((\psi^{\mathfrak{a}})^{\mathfrak{b}})$ for arithmetical sentences φ and sentences ψ in language of set theory.

(More) analysis of provability from fragments.

Every model of $\rm ZF_{fin}$ has a transitive submodel of $\rm ZF_{fin}+TC$ with the same ordinals.