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Outline

I Natural numbers and Peano arithmetic.

I Notions of finiteness.

I Theories of finite sets and axioms.

I Ackermann interpretation of ZFfin in PA.

I Theories of finite sets and classes.

Main source:

Richard Kaye, Tin Lok Wong: On Interpretations of Arithmetic and Set
Theory. Notre Dame J. Formal Logic 48, 2007.
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Peano Arithmetic (PA)

First-order theory in logic with equality.

Language: {0, S,+, ·}.

Axioms:

(Q1) S(x) 6= 0̄

(Q2) S(x) = S(y)→ x = y

(Q3) x 6= 0̄→ (∃y)(x = S(y))

(Q4) x+ 0̄ = x

(Q5) x+ S(y) = S(x+ y)

(Q6) x · 0̄ = 0̄

(Q7) x · S(y) = (x · y) + x

(Q8) x ≤ y ↔ (∃v)(v + x = y)

(Ind) ϕ(0̄) & (∀x)(ϕ(x)→ ϕ(S(x)))→ (∀x)ϕ(x)
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ZFfin and TC

ZFfin:

(extensionality) ∀x, y (∀z (z ∈ x↔ z ∈ y)→ x = y)

(empty set) ∃x∀y ¬(y ∈ x)

(pair) ∀x, y ∃z ∀u (u ∈ z ↔ u = x ∨ u = y)

(union) ∀x∃y ∀z (z ∈ y ↔ ∃u (z ∈ u ∧ u ∈ x))

(power set) ∀x∃y ∀z(z ∈ y ↔ ∀u (u ∈ z → u ∈ x))

(separation) ∀x∃y ∀z(z ∈ y ↔ z ∈ x&ϕ(z))
(ϕ any formula, y not free in ϕ)

(replacement)
∀x [∀u ∈ x ∃!v ϕ(u, v)→ ∃y ∀v (v ∈ y ↔ ∃u ∈ xϕ(u, v))]

(ϕ any formula, y not free in ϕ)

(regularity) ∀x (x 6= ∅ → ∃y (y ∈ x ∧ y ∩ x = ∅))
¬(infinity) ¬∃x (∅ ∈ x& ∀y ∈ x (y ∪ {y} ∈ x))

transitive closure:

(TC) ∀x∃y (x ⊆ y& Trans(y))
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The notion of an interpretation

Let T and S be first-order theories in languages LT and LS resp.

The pair (α, ?) is a translation of LT to LS provided that:
(i) α is a formula of LS with one free variable;
(ii) the map ? assigns to each

I n-ary fct. symbol F of LT an n-ary fct. symbol F ? of LS ;

I n-ary pred. symbol P of LT an n-ary pred. symbol P ? of LS

(= translates to itself);

I for ϕ atomic of LT , ϕ? of LS is obtained by replacing each F or P of
LT with its ?-image;

(iii) ? commutes with logical connectives;
(iv) ? relativizes quantifiers: for ϕ of LT ,

I (∀xϕ(x))? is ∀x(α(x)→ ϕ?(x));

I (∃xϕ(x))? is ∃x(α(x) &ϕ?(x)).

Extend ? to each formula of LT by induction on formula structure.
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The notion of an interpretation – cont’d

Let T and S be first-order theories in languages LT and LS resp.

S interprets T iff there is a (conservative) extension by definitions
S′ of S and a translation (α, ?) of LT to LS′ such that

(i) S′ ` ∃xα(x);

(ii) if F is n-ary in LT , then
S′ ` ∀x1, . . . , xn(α(x1), . . . , α(xn)→ α(F ∗(x1, . . . , xn)))

(iii) S′ ` ϕ? for each axiom ϕ of T .

If T is interpreted in S, we have S ` ϕ? for any theorem ϕ of T .
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Relative consistency

Assume S interprets T .

Suppose T is inconsistent: i.e., T ` ϕ and T ` ¬ϕ for some ϕ
(and hence, for every ϕ) of LT .

Then also S is inconsistent, since by assumption
S proves both ϕ? and ¬(ϕ?).

By contraposition, if S is consistent, then so is T .
In such a case we say that T is consistent relative to S.

In case T is consistent relative to S,
and S is consistent relative to T ,
then T and S are said to be equiconsistent.

NB. Role of metatheory. Relative consistency or equiconsistency are
meaningful if one cannot prove the consistency of T or of S.

7 / 16



Example: the “ordinal” intp. of PA in ZFfin (+TC)

A set is an ordinal number iff is transitive and totally ordered by ∈.

Let On denote the class of ordinals.

As usual, ∅ ∈ On and ∅ has no predecessor;
α ∈ On implies α ∪ {α} ∈ On and the latter is immediate successor of α
within On.

The interpretation (o, o) is given as follows:

o(x) is x ∈ On;
S(x)o is interpreted as x ∪ {x};
(x+ y)o is interpreted as ordinal addition of x and y;
(x · y)o is interpreted as ordinal multiplication
within ZFfin (+TC).

Then (o, o) is an interpretation of PA in ZFfin.
(We have already mentioned this. It also works in ZF.)
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Binary numerals

Let n ∈ N .
Write n2 for the binary numeral representing n.

In other words, we have

n =

k−1∑
i=0

pi2
i

for some k, with pi ∈ {0, 1} and pk−1 = 1.
Also k = blog2(n)c+ 1.

Then n2 is pk pk−1 . . . p1 p0.

E.g., n is 26.

We have 26 = 16 + 8 + 2, i.e., 26 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20.

So 262 is 11010.
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“Membership” on N

Define ε on N , using binary representations.

Let m,n ∈ N . Let n2 be pk−1 pk−2 . . . p1 p0 with k = blog2(n)c+ 1.

Define
mεn if and only if m-th digit in n2 is 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 0 0 1 1 0 1 0 26

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 0 0 0 1 0 1 0 10

. . . 0 0 0 0 1 0 0 1 9

. . . 0 0 0 0 1 0 0 0 8

. . . 0 0 0 0 0 1 1 1 7

. . . 0 0 0 0 0 1 1 0 6

. . . 0 0 0 0 0 1 0 1 5

. . . 0 0 0 0 0 1 0 0 4

. . . 0 0 0 0 0 0 1 1 3

. . . 0 0 0 0 0 0 1 0 2

. . . 0 0 0 0 0 0 0 1 1

. . . 0 0 0 0 0 0 0 0 0

. . . 7 6 5 4 3 2 1 0
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“Membership” on N – cont’d

Running example: 262 is 11010.

Therefore 26 = {4, 3, 1}.

A coding of finite sets:

a(

k−1∑
i=0

pi2
i) = {a(i) | pi = 1}

Example:

I binary unions and intersections;

I singletons and pairs;

I successors.
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Ackermann interpretation of ZFfin in PA

Work in PA or fragment.

1. the formula α, delimiting the “domain”, will be just x = x.
Comment: within N , every number stands for some set, as we have seen.

2. Further we define the translation a of the symbol ∈.
(Our definition of intp. stipulates that = translates to itself.
In other words, set-theoretic = translates to arithmetical =.)

(x ∈ y)a is

∃w < y ∃p ≤ y ∃r < p (p = 2x & y = (2w + 1)p+ r)

Notice that if n =
∑k−1

i=0 pi2
i, then n can be written as

(pk−12l−1 + pk−22l−2 + · · ·+ pk−l+12 + 1)2k−l + r

where r < 2k−l if and only if pk−l = 1 in n2.
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Ackermann interpretation of ZFfin in PA – cont’d

3. It remains to define p = 2x.
Exponentiation is not available in the language of PA.

A suitable formula Pow(y, x) that represents “y is the x-th power of 2”.

Properties: Pow(1, 0) and Pow(y, x)→ Pow(2y, x+ 1)
and Pow(v, x) & Pow(w, x)→ v = w.

The formula says, in plain words, there is the (code of the) sequence

〈0, 2, 4, 8, . . . y〉

of length x+ 1 and with the recursive property.

Then PA proves ∀x∃yPow(y, x).
(In fact already IΣ1.)
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Ackermann interpretation of ZFfin in PA – cont’d

Theorem: [Ackermann] (α, a) defines an interpretation of ZFfin in PA.

Proof: consists in verifying that the formula ϕa is provable in PA
whenever ϕ is an axiom of ZFfin.

NB. We cannot “reason in the standard model”,
since we need to establish provability of the translations
(i.e., validity in all models).

[Kaye-Wong] remark that one can prove translations of
extensionality, empty set, union, foundation, and some others, in I∆0.

Provided 2x is total, one can prove existence of singletons
(and pairing and power).

Notice that a−1({x}) is coded by 2(a−1(x)).
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Ackermann interpretation of ZFfin in PA – cont’d

Moreover [Kaye–Wong] also show:

Lemma:
Let (α, a) be the Ackermann interpretation of ZFfin in PA.
Then I∆0 ` TCa.

Proof sketch:
Consider an arbitrary model M of I∆0 and its element x,
obtained by “subtracting 1” from the smallest power of 2 that is bigger
than x.
Existence: ∆0-induction gives a least u s.t. ∃z ≤ x(2u = z) no longer holds.

Then if (u ∈ v)a & (v ∈ y)a, we have u < v < y so u-th digit in y2 is 1.

However ZFfin 6` TC, as discussed.
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More from [Kaye–Wong]

Inverse Ackermann interpretation:
working in ZFfin+TC, define b by recursion:

b(y) = Σ({2b(x) ∈ On | x ∈ y})

where Σ is ordinal addition.

This is a bijection from V to On.

Taking β again to be x = x and
equipped with ordinal arithmetic on the range of b, this gives

(β, b) is an interpretation of PA in ZFfin+TC.

Then they obtain
PA ` ϕ↔ ((ϕb)a)
ZFfin+TC` ψ ↔ ((ψa)b)
for arithmetical sentences ϕ and sentences ψ in language of set theory.

(More) analysis of provability from fragments.

Every model of ZFfin has a transitive submodel of ZFfin+TC with the same
ordinals.
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