Peano Arithmetic and Finite Zermelo Fraenkel Set Theory II

Zuzana Haniková

Institute of Computer Science of the Czech Academy of Sciences

Logika v souvislostech a aplikacích
Dpt. of Logic, Faculty of Arts, CUni
Feb E March 2024

Outline

- Natural numbers and Peano arithmetic.
- Notions of finiteness.
- Theories of finite sets and axioms.
- Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA.
- Theories of finite sets and classes.

Main source:
Richard Kaye, Tin Lok Wong: On Interpretations of Arithmetic and Set Theory. Notre Dame J. Formal Logic 48, 2007.

Peano Arithmetic (PA)

First-order theory in logic with equality.
Language: $\{0, S,+, \cdot\}$.
Axioms:
(Q1) $S(x) \neq \overline{0}$
(Q2) $S(x)=S(y) \rightarrow x=y$
(Q3) $x \neq \overline{0} \rightarrow(\exists y)(x=S(y))$
(Q4) $x+\overline{0}=x$
(Q5) $x+S(y)=S(x+y)$
(Q6) $x \cdot \overline{0}=\overline{0}$
(Q7) $x \cdot S(y)=(x \cdot y)+x$
(Q8) $x \leq y \leftrightarrow(\exists v)(v+x=y)$
(Ind) $\varphi(\overline{0}) \&(\forall x)(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow(\forall x) \varphi(x)$

$\mathrm{ZF}_{\text {fin }}$ and TC

```
ZF
(extensionality) }\forallx,y(\forallz(z\inx\leftrightarrowz\iny)->x=y
(empty set) }\existsx\forally\neg(y\inx
(pair) }\forallx,y\existsz\forallu(u\inz\leftrightarrowu=x\veeu=y
(union)}\forallx\existsy\forallz(z\iny\leftrightarrow\existsu(z\inu\wedgeu\inx)
(power set) }\forallx\existsy\forallz(z\iny\leftrightarrow\forallu(u\inz->u\inx)
(separation)}\forallx\existsy\forallz(z\iny\leftrightarrowz\inx&\varphi(z)
    ( }\varphi\mathrm{ any formula, }y\mathrm{ not free in }\varphi\mathrm{ )
(replacement)
\forallx[\forallu\inx\exists!v\varphi(u,v)->\existsy\forallv(v\iny\leftrightarrow\existsu\inx\varphi(u,v))]
    ( }\varphi\mathrm{ any formula, }y\mathrm{ not free in }\varphi\mathrm{ )
(regularity) }\forallx(x\not=\emptyset->\existsy(y\inx\wedgey\capx=\emptyset)
\neg(infinity) }\neg\existsx(\emptyset\inx&\forally\inx(y\cup{y}\inx)
```

transitive closure:
(TC) $\forall x \exists y(x \subseteq y \& \operatorname{Trans}(\mathrm{y}))$

The notion of an interpretation

Let T and S be first-order theories in languages \mathcal{L}_{T} and \mathcal{L}_{S} resp.
The pair $\left(\alpha,{ }^{*}\right)$ is a translation of \mathcal{L}_{T} to \mathcal{L}_{S} provided that:
(i) α is a formula of \mathcal{L}_{S} with one free variable;
(ii) the map * assigns to each

- n-ary fct. symbol F of \mathcal{L}_{T} an n-ary fct. symbol F^{\star} of \mathcal{L}_{S};
- n-ary pred. symbol P of \mathcal{L}_{T} an n-ary pred. symbol P^{\star} of \mathcal{L}_{S} ($=$ translates to itself);
- for φ atomic of $\mathcal{L}_{T}, \varphi^{\star}$ of \mathcal{L}_{S} is obtained by replacing each F or P of \mathcal{L}_{T} with its *-image;
(iii) * commutes with logical connectives;
(iv) ${ }^{\star}$ relativizes quantifiers: for φ of \mathcal{L}_{T},
- $(\forall x \varphi(x))^{\star}$ is $\forall x\left(\alpha(x) \rightarrow \varphi^{\star}(x)\right)$;
- $(\exists x \varphi(x))^{\star}$ is $\exists x\left(\alpha(x) \& \varphi^{\star}(x)\right)$.

Extend ${ }^{\star}$ to each formula of \mathcal{L}_{T} by induction on formula structure.

The notion of an interpretation - cont'd

Let T and S be first-order theories in languages \mathcal{L}_{T} and \mathcal{L}_{S} resp.
S interprets T iff there is a (conservative) extension by definitions S^{\prime} of S and a translation ($\alpha,{ }^{\star}$) of \mathcal{L}_{T} to $\mathcal{L}_{S^{\prime}}$ such that
(i) $S^{\prime} \vdash \exists x \alpha(x)$;
(ii) if F is n-ary in \mathcal{L}_{T}, then

$$
S^{\prime} \vdash \forall x_{1}, \ldots, x_{n}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right) \rightarrow \alpha\left(F^{*}\left(x_{1}, \ldots, x_{n}\right)\right)\right)
$$

(iii) $S^{\prime} \vdash \varphi^{\star}$ for each axiom φ of T.

If T is interpreted in S, we have $S \vdash \varphi^{\star}$ for any theorem φ of T.

Relative consistency

Assume S interprets T.
Suppose T is inconsistent: i.e., $T \vdash \varphi$ and $T \vdash \neg \varphi$ for some φ (and hence, for every φ) of \mathcal{L}_{T}.
Then also S is inconsistent, since by assumption
S proves both φ^{\star} and $\neg\left(\varphi^{\star}\right)$.
By contraposition, if S is consistent, then so is T.
In such a case we say that T is consistent relative to S.
In case T is consistent relative to S, and S is consistent relative to T, then T and S are said to be equiconsistent.

NB. Role of metatheory. Relative consistency or equiconsistency are meaningful if one cannot prove the consistency of T or of S.

Example: the "ordinal" intp. of PA in $\mathrm{ZF}_{\text {fin }}(+\mathrm{TC})$

A set is an ordinal number iff is transitive and totally ordered by \in.
Let On denote the class of ordinals.
As usual, $\emptyset \in$ On and \emptyset has no predecessor;
$\alpha \in$ On implies $\alpha \cup\{\alpha\} \in$ On and the latter is immediate successor of α within On.

The interpretation $\left(o,{ }^{\circ}\right)$ is given as follows:
$o(x)$ is $x \in \mathrm{On}$;
$S(x)^{\mathfrak{0}}$ is interpreted as $x \cup\{x\}$;
$(x+y)^{\mathfrak{0}}$ is interpreted as ordinal addition of x and y;
$(x \cdot y)^{0}$ is interpreted as ordinal multiplication
within $\mathrm{ZF}_{\text {fin }}(+\mathrm{TC})$.
Then $\left(o,{ }^{\circ}\right)$ is an interpretation of PA in $\mathrm{ZF}_{\text {fin }}$.
(We have already mentioned this. It also works in ZF.)

Binary numerals

Let $n \in N$.
Write n_{2} for the binary numeral representing n.
In other words, we have

$$
n=\sum_{i=0}^{k-1} p_{i} 2^{i}
$$

for some k, with $p_{i} \in\{0,1\}$ and $p_{k-1}=1$.
Also $k=\left\lfloor\log _{2}(n)\right\rfloor+1$.
Then n_{2} is $p_{k} p_{k-1} \ldots p_{1} p_{0}$.
E.g., n is 26 .

We have $26=16+8+2$, i.e., $26=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}$.
So 26_{2} is 11010 .

"Membership" on N

Define ε on N, using binary representations.
Let $m, n \in N$. Let n_{2} be $p_{k-1} p_{k-2} \ldots p_{1} p_{0}$ with $k=\left\lfloor\log _{2}(n)\right\rfloor+1$. Define $m \varepsilon n$ if and only if m-th digit in n_{2} is 1

| \ldots |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \ldots | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 26 |
| \ldots |
\ldots	0	0	0	0	1	0	1	0	10
\ldots	0	0	0	0	1	0	0	1	9
\ldots	0	0	0	0	1	0	0	0	8
\ldots	0	0	0	0	0	1	1	1	7
\ldots	0	0	0	0	0	1	1	0	6
\ldots	0	0	0	0	0	1	0	1	5
\ldots	0	0	0	0	0	1	0	0	4
\ldots	0	0	0	0	0	0	1	1	3
\ldots	0	0	0	0	0	0	1	0	2
\ldots	0	0	0	0	0	0	0	1	1
\ldots	0	0	0	0	0	0	0	0	0
\ldots	7	6	5	4	3	2	1	0	

"Membership" on N - cont'd

Running example: 26_{2} is 11010 .
Therefore $26=\{4,3,1\}$.
A coding of finite sets:

$$
a\left(\sum_{i=0}^{k-1} p_{i} 2^{i}\right)=\left\{a(i) \mid p_{i}=1\right\}
$$

Example:

- binary unions and intersections;
- singletons and pairs;
- successors.

Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA

Work in PA or fragment.

1. the formula α, delimiting the "domain", will be just $x=x$.

Comment: within N, every number stands for some set, as we have seen.
2. Further we define the translation \mathfrak{a} of the symbol ϵ.
(Our definition of intp. stipulates that $=$ translates to itself.
In other words, set-theoretic $=$ translates to arithmetical $=$.)
$(x \in y)^{\mathrm{a}}$ is

$$
\exists w<y \exists p \leq y \exists r<p\left(p=2^{x} \& y=(2 w+1) p+r\right)
$$

Notice that if $n=\sum_{i=0}^{k-1} p_{i} 2^{i}$, then n can be written as

$$
\left(p_{k-1} 2^{l-1}+p_{k-2} 2^{l-2}+\cdots+p_{k-l+1} 2+1\right) 2^{k-l}+r
$$

where $r<2^{k-l}$ if and only if $p_{k-l}=1$ in n_{2}.

Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA - cont'd

3. It remains to define $p=2^{x}$.

Exponentiation is not available in the language of PA.

A suitable formula $\operatorname{Pow}(y, x)$ that represents " y is the x-th power of 2 ".
Properties: $\operatorname{Pow}(1,0)$ and $\operatorname{Pow}(y, x) \rightarrow \operatorname{Pow}(2 y, x+1)$ and $\operatorname{Pow}(v, x) \& \operatorname{Pow}(w, x) \rightarrow v=w$.

The formula says, in plain words, there is the (code of the) sequence

$$
\langle 0,2,4,8, \ldots y\rangle
$$

of length $x+1$ and with the recursive property.
Then PA proves $\forall x \exists y \operatorname{Pow}(y, x)$.
(In fact already I Σ_{1}.)

Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA - cont'd

Theorem: [Ackermann] $\left(\alpha,{ }^{a}\right)$ defines an interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA.
Proof: consists in verifying that the formula φ^{a} is provable in PA whenever φ is an axiom of $\mathrm{ZF}_{\text {fin }}$.

NB. We cannot "reason in the standard model", since we need to establish provability of the translations (i.e., validity in all models).
[Kaye-Wong] remark that one can prove translations of extensionality, empty set, union, foundation, and some others, in $\mathrm{I} \Delta_{0}$.

Provided 2^{x} is total, one can prove existence of singletons (and pairing and power).
Notice that $a^{-1}(\{x\})$ is coded by $2^{\left(a^{-1}(x)\right)}$.

Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA - cont'd

Moreover [Kaye-Wong] also show:

Lemma:

Let $\left(\alpha,{ }^{\mathfrak{a}}\right)$ be the Ackermann interpretation of $\mathrm{ZF}_{\text {fin }}$ in PA. Then $\mathrm{I} \Delta_{0} \vdash \mathrm{TC}^{\mathrm{a}}$.

Proof sketch:

Consider an arbitrary model M of $\mathrm{I} \Delta_{0}$ and its element x, obtained by "subtracting 1 " from the smallest power of 2 that is bigger than x.
Existence: Δ_{0}-induction gives a least u s.t. $\exists z \leq x\left(2^{u}=z\right)$ no longer holds.
Then if $(u \in v)^{\mathfrak{a}} \&(v \in y)^{\mathfrak{a}}$, we have $u<v<y$ so u-th digit in y_{2} is 1 .

However $\mathrm{ZF}_{\text {fin }} \nvdash \mathrm{TC}$, as discussed.

More from [Kaye-Wong]

Inverse Ackermann interpretation:

 working in $\mathrm{ZF}_{\text {fin }}+\mathrm{TC}$, define \mathfrak{b} by recursion:$$
\mathfrak{b}(y)=\Sigma\left(\left\{2^{\mathfrak{b}(x)} \in \mathrm{On} \mid x \in y\right\}\right)
$$

where Σ is ordinal addition.
This is a bijection from V to On.
Taking β again to be $x=x$ and equipped with ordinal arithmetic on the range of \mathfrak{b}, this gives
$\left(\beta,{ }^{\mathfrak{b}}\right)$ is an interpretation of PA in $\mathrm{ZF}_{\mathrm{fin}}+\mathrm{TC}$.
Then they obtain
PA $\vdash \varphi \leftrightarrow\left(\left(\varphi^{\mathfrak{b}}\right)^{\mathfrak{a}}\right)$ $\mathrm{ZF}_{\text {fin }}+\mathrm{TC} \vdash \psi \leftrightarrow\left(\left(\psi^{\mathfrak{a}}\right)^{\mathfrak{b}}\right)$ for arithmetical sentences φ and sentences ψ in language of set theory.
(More) analysis of provability from fragments.
Every model of $\mathrm{ZF}_{\text {fin }}$ has a transitive submodel of $\mathrm{ZF}_{\text {fin }}+\mathrm{TC}$ with the same ordinals.

