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Institute of Computer Science of the Czech Academy of Sciences

Logika v souvislostech a aplikaćıch
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Outline

I Natural numbers and Peano arithmetic.

I Notions of finiteness.

I Theories of finite sets and axioms.

I Ackermann interpretation of ZFfin in PA.

I (time permitting) Theories of finite sets and classes.
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First-order logic with equality

Fix a first-order language L (such as, e.g., {∈}).
This yields the notion of well-formed L-formula.

Propositional axioms:

I (α→ (β → γ))→ ((α→ β)→ (α→ γ))

I α→ (β → α)

I (¬β → ¬α)→ (α→ β)

Axioms for quantifiers:

I ∀xϕ→ ϕ(x/t) t any L-term substitutable in ϕ

I ∀x (α→ β)→ (α→ ∀xβ) x not free in α

Rules:

I (mp) α, α→ β / β

I (gen) α / ∀xα

Throughout, α, β, γ are wff’s of L.
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First-order logic with equality (cont’d)

Axioms of equality:

I = is an equivalence;

I
∧

i≤n(xi = yi)→ F (x̄) = F (ȳ)
for each n ∈ N and each n-ary function symbol F of L

I
∧

i≤n(xi = yi)→ (P (x̄)→ P (ȳ))
for each n ∈ N and each n-ary predicate symbol P of L.

A theory in L is a set of L-sentences.
E.g., ZF is a theory in the language {∈}.

Convention on bounded quantifiers:
- (∀y ∈ x)α means (∀y)(y ∈ x→ α)
- (∃y ∈ x)α means (∃y)(y ∈ x&α)
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Natural numbers

The term “arithmos”, used in Euclid’s Elements, always denotes a positive
integer.
Number theory is treated in Books VII – IX.

http://aleph0.clarku.edu/ djoyce/java/elements/elements.html

The Elements were a blueprint of the axiomatic method,
to be surpassed only in 19th century
(starting with the works of Frege and Hilbert).

Elements clearly demarcate the discrete quantities and the continuous ones.
The investigation of the natural number series and the continuum have
remained the agenda for the ongoing developmnent of mathematics.
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Dedekind’s simple infinite systems

Develops and employs set-theoretic methods, starts with (or works his way
down to) investigating natural numbers.

Set S and an N ⊆ S.
N is called simply infinite if there exists a function f on S and an
element 1 of N such that:

I f : N 7→ N ;

I N is the chain (minimal closure) of {1} in S under f ;

I 1 is not in the image of N under f ;

I f is 1-1.

Simply infinite systems are isomorphic.
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Peano Arithmetic (PA)

First-order theory in logic with equality.

Language: {0, S,+, ·}.

Axioms:

(Q1) S(x) 6= 0̄

(Q2) S(x) = S(y)→ x = y

(Q3) x 6= 0̄→ (∃y)(x = S(y))

(Q4) x+ 0̄ = x

(Q5) x+ S(y) = S(x+ y)

(Q6) x · 0̄ = 0̄

(Q7) x · S(y) = (x · y) + x

(Q8) x ≤ y ↔ (∃v)(v + x = y)

(Ind) ϕ(0̄) & (∀x)(ϕ(x)→ ϕ(S(x)))→ (∀x)ϕ(x)

[R. Kaye: Models of Peano Arithmetic. Clarendon Press, Oxford, 1991.]
[P. Hájek, P. Pudlák. Metamathematics of First-Order Arithmetic.
Springer, 1993.]
[C. Smoryński. Lectures on Nonstandard Models of Arithmetic. Proc. LC
1982.]
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Sets and numbers

(Infinite) sets provide enough structure to define (embed, interpret)
mathematical theories and structures usually under consideration.

This includes the “arithmetization” and axiomatic rendering of geometry.

Some structural properties of finite sets (and natural numbers)
were transferred also to infinite sets and infinite ordinals, by design.

The set theoretic universe is “uniform” in this sense.
(This is called “Cantorian finitism” by J. P. Mayberry.)

We shall investigate a connection between
hereditarily finite sets and finite ordinals.
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Some axioms for sets

(extensionality) ∀x, y (∀z (z ∈ x↔ z ∈ y)→ x = y)

(empty set) ∃x∀y ¬(y ∈ x) Introduce ∅.
(pair) ∀x, y ∃z ∀u (u ∈ z ↔ u = x ∨ u = y)

(union) ∀x∃y ∀z (z ∈ y ↔ ∃u (z ∈ u ∧ u ∈ x))

(power set) ∀x∃y ∀z(z ∈ y ↔ ∀u (u ∈ z → u ∈ x))

(separation) ∀x∃y ∀z(z ∈ y ↔ z ∈ x&ϕ(z))
(ϕ any formula, y not free in ϕ)

(replacement)
∀x [∀u ∈ x ∃!v ϕ(u, v)→ ∃y ∀v (v ∈ y ↔ ∃u ∈ xϕ(u, v))]

(ϕ any formula, y not free in ϕ)

(regularity) ∀x (x 6= ∅ → ∃y (y ∈ x ∧ y ∩ x = ∅))
a.k.a. (foundation)

NB: all these axioms are exactly as in ZF.
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Finiteness

In the theory ZF, the axiom

(infinity) ∃x (∅ ∈ x&∀y ∈ x (y ∪ {y} ∈ x))

can be viewed as confirming actual infinity: any process, incl.
“infinite processes” (such as successively adding a distinct element) s has
been completed.

Theory of finite sets formalizes the opposite view.

“We want to study a set theory in which the cantorian axiom of infinity is
explicitly negated, precisely because we do not want to admit the possibility
of considering a procedure going on forever as completed, as one element.”

[Baratella, Ferro: A Theory of Sets with the Negation of the Axiom of
Infinity]

ZFfin has the following axioms:
(extensionality), (empty set), (pair), (union), (power set),
(separation), (replacement), (regularity), ¬(infinity)

(Called “ZF–inf” in [Kaye–Wong]).
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Finiteness (2)

(induction) ϕ(∅) & ∀x, y [ϕ(x)→ ϕ(x ∪ {y})]→ ∀xϕ(x)
(ϕ any formula, y not free in ϕ)

Claim: ZFfin proves induction for any formula ϕ.

Proof: let ϕ be given.

For contradiction, assume there is a set x s.t.
ϕ(∅) and ∀y, q [ϕ(y)→ ϕ(y ∪ {q})] but ¬ϕ(x).

Let z = {y | y ⊆ x&ϕ(y)}. Separation from P (x).

By assumption x 6∈ z.
We have ∅ ∈ z, since by assumption ϕ(∅); thus z is nonempty.

Let y ∈ z. This means y ⊆ x and ϕ(y), and since ¬ϕ(x), we have x \ y 6= ∅.
Let q ∈ x \ y. Then by assumption ϕ(y ∪ {q}) and y ∪ {q} ⊆ x, so
y ∪ {q} ∈ z.
This contradicts ¬(infinity). QED

[Sochor: Meta – AST II, p. 60]
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Finiteness (3)

Write
– x ≈ y if there is a bijection between x and y;
– x � y if there is a 1-1 function f mapping x into y;
– x ≺ y if x � y but x 6≈ y.

A set x is Dedekind finite (FinD) provided that ∀y(y ( x→ y ≺ x).

Claim [ZFfin]: every set is Dedekind finite.

Proof: we prove ∀x∀u ⊂ xu 6≈ x by induction.

It is enough to verify the induction step.
Let u ⊂ x ∪ {y} for y 6∈ x.

Suppose first u ⊂ x and let f be a bijection of x ∪ {y} onto u. Then
f \ {〈y, f(y)〉} is a bijection of x onto u \ f(y) ⊆ u ⊂ x. This contradicts the
assumption w ⊂ x→ w 6≈ x.

Now suppose y ∈ u. Again let f be a bijection of x ∪ {y} onto u. We have
f(y) = w ∈ u and also f(v) = y for some v ∈ x. Then f \ {〈y, w〉} ∪ {〈v, w〉}
is a bijection of x onto u, again this contradicts assumption. QED

[Vopěnka: Mathematics in the AST, p.24]
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Finiteness (4)

A set x is Tarski finite (FinT) provided that every subset of P (x)
has a maximal element w.r.t. inclusion.

Claim [ZFfin]: every set has a minimal/maximal element w.r.t. inclusion.

Proof by induction, cf. [Vopěnka. p.24]

Vopěnka’s book uses a stronger version of regularity (cf. p. 25) than ours.
(More on that below.)
However the proofs on this and previous slide do not use regularity.

NB. Instead of ¬(infinity), one can postulate that every set is Tarski finite.

See [Běhounek] for the nuances.
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Ordinal numbers in ZFfin

A set is an ordinal number iff is transitive and totally ordered by ∈.

Let On denote the class of ordinals.
Then On is transitive and totally ordered by ∈.

As usual, ∅ ∈ On and ∅ has no predecessor;
α ∈ On implies α ∪ {α} ∈ On and the latter is immediate successor of α
within On.

Claim: For α 6= ∅ there is a β s.t. α = β ∪ {β}.
Proof by induction. [Vopěnka, Mathematics AST, p. 59]

Observe On is not a set.

Claim: for each set x there is a unique α ∈ On s.t. x ≈ α.

Proof of existence by induction, unicity from Dedekind finiteness.

NB. Existence of bijection of x to a finite ordinal is yet another way

of defining finiteness of x — Finf(x) in [Baratella–Ferro, p. 5].

Equip On with ordinal addition and multiplication (defined as usual).
This yiels a structure that satisfies all axioms of PA.
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Well-ordering in ZFfin

(WO) Every set can be well-ordered.
a.k.a. “Zermelo’s theorem” within context of ZF.

≤ is well order on x iff ≤ is a total order on x and
each non-empty subset of x has a least element w.r.t. ≤.

[Vopěnka, Math. AST, p.32] proves the following: if x totally ordered by ≤
and x′ ⊆ x is nonempty, then x′ has a least and a greatest element w.r.t. ≤.
Proved by induction.

This means that each α ∈ On is well ordered by “x ∈ y ∨ x = y”.
Then use the above claim ∀x∃!α ∈ Onx ≈ α.

[Baratella, Ferro, p. 7] formulate the axiom as follows:

(WO) ∀x∃α ∈ On (x ≈ α)

(having established well-order on each ordinal). The axiom is formulated
in a context beyond ZFfin and eventually proved as a theorem in ZFfin.
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More axioms

(regularity’) ∃xϕ(x)→ ∃x(ϕ(x) & ∀y ∈ x¬ϕ(y))
(ϕ any formula)

[Vopěnka] and [Sochor] call this axiom simply (regularity).
In particular, Sochor mentions a “regularity in a form which is strong
enough” in the context of finite sets [Sochor, Meta-AST I, p. 699]. More on
this below.

(∈-induction) ∀x(∀y ∈ xϕ(y)→ ϕ(x))→ ∀xϕ(x)
(ϕ any formula)

(TC) ∀x∃y (x ⊆ y& Trans(y)) “transitive closure”

NB. The axiom states that each set is contained in a transitive set.
This is equivalent to having TC(x) as a (provably total in ZFfin) function
where y = TC(x) is defined as

x ⊆ y& Trans(y) & ∀y′(x ⊆ y′& Trans(y′)→ y ⊆ y′)

over a weak fragment of ZFfin. Cf. [Kaye, Wong, p. 501] for details.
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A theorem on TCs

Claim [ZFC]: ZFfin ∪ {¬(TC)} is consistent.

Proof sketch:
A. Let f be a (definable) bijection on Vω.
Define a new membership relation ∈f on Vω as follows:

x ∈f y iff x ∈ f(y).

Claim 1: 〈Vω,∈f 〉 is a model of ZFfin \ {(regularity)}.
B. Define f as follows.
Let ω? be the set {{n+ 1} | n ∈ ω} = {{x ∪ {x}} | x ∈ ω}.
ω is {0, 1, 2, 3, 4, . . . }
ω? is {{1}, {2}, {3}, {4}, {5} . . . }. Clearly ω ∩ ω? = ∅.

Let f(n) = {n+ 1} and f({n+ 1}) = n and f(a) = a for a 6∈ ω ∪ ω?.
Clearly f is a bijection.

Claim 2: 〈Vω,∈f 〉 |= (regularity). (!)

We have n+ 1 ∈f n since n+ 1 ∈ {n+ 1} = f(n).
In particular, the set TCf (∅) is clearly not in Vω.

[A. Mancini, D. Zambella: A Note on Recursive Models of Set Theories.
Notre Dame J. Formal Logic 42(2), 2001, p. 112]. See also
[Baratella, Ferro, Thm. 5.5].
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(regularity’) is logically equivalent to (∈-induction)

T. f. a. e.:

∃xϕ(x)→ ∃x(ϕ(x) & ∀y ∈ x¬ϕ(y))

¬∃x(ϕ(x) & ∀y ∈ x¬ϕ(y))→ ¬∃xϕ(x)

∀x¬(ϕ(x) & ∀y ∈ x¬ϕ(y))→ ∀x¬ϕ(x)

∀x(ϕ(x)→ ¬∀y ∈ x¬ϕ(y))→ ∀x¬ϕ(x)

∀x(∀y ∈ x¬ϕ(y)→ ¬ϕ(x))→ ∀x¬ϕ(x), which is ∈-induction for ¬ϕ.

NB. No properties of ∈ have been used.
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(regularity) and (TC) as instances of (regularity’)

We work in ZFfin \ {(reg.)}.

A. Assume (regularity’) , i.e., ∃xϕ(x)→ ∃x (ϕ(x) & ∀y ∈ x¬ϕ(y)).

In particular, for a given z, we have
∃x (x ∈ z)→ ∃x (x ∈ z&∀y ∈ x¬(y ∈ z)).

B. Assume (∈-induction) ∀x(∀y ∈ xϕ(y)→ ϕ(x))→ ∀xϕ(x).
(Already established to be equivalent to (regularity’).)

Let x be given.
Assume ∀y ∈ x∃w (w = TC(y)).
Clearly the set

⋃
{TC(y) | y ∈ x} satisfies the requirements for TC(x),

i.e., ∃w (w = TC(x)).

20 / 23



(regularity) and (TC) yield (regularity’)

Let ϕ(x) be arbitrary formula.

Let v be s.t. ϕ(v) holds. Apply (TC) and get ∃y (v ∈ y& Trans(y)) (take
v ∪ TC(v)).

Let x = {u ∈ y | ϕ(u)}, so in particular, v ∈ x.

Since x 6= ∅, we have ∃q ∈ x (q ∩ x = ∅) by (reg.)

Notice ϕ(q) since q ∈ x.
But no element of q satisfies ϕ, since q ∩ x = ∅.

By trans. of y, q ⊆ y, but q ∩ x = ∅, therefore all elements of q are in y \ x.
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Vopěnka’s Alternative Set Theory (AST)

The AST is a theory of sets and classes. Here we refer to its set fragment.

AST axioms for sets:

I (extensionality) ∀xy(x = y ↔ ∀z(z ∈ x↔ z ∈ y);

I (existence of sets) ∃x∀y(y 6∈ x) and ∀xy ∃z (z = x ∪ {y});
I (induction) ϕ(∅) & ∀xy(ϕ(x)→ ϕ(x ∪ {y}))→ ∀xϕ(x);

I (regularity’) ∃xϕ(x)→ ∃x(ϕ(x) & ∀y ∈ x¬ϕ(y)).

(ϕ a set formula).

The set fragment of the AST is equivalent to ZFfin ∪ {TC}.

In fact, (ZFC proves that) AST is conservative over its set fragment.
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Stocktaking — on finite sets

Caution is advised whenever removing axioms.
— What does “ZFfin” mean?

I Replacing (inf.) with ¬(inf.) impacts other axioms — such as (reg.);

I different versions of finity may engender different properties.

A first-order “theory of hereditarily finite sets” can, of course, have
nonstandard models.
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