Plasma physics

2023 winter s. 2/1 , C+Ex prof. Juraj Glosík, doc. Radek Plašil

- Negative ions in plasma
- Elementary processes: recombination

 $\overline{}$

Negative ions—anions—in plasma

 $\frac{T_e}{T_{anion}} \lesssim 10$

 $\frac{n_{anion}}{\leq} 3$

 n_{ρ}

Electronegative plasma boundary condition for validity of Bohm criterion

$$\frac{n_{\rm anion}}{n_e} \lesssim 10$$

Species	Electron Affinity "EA"
02	0.45 eV
Н	0.75 eV
С	1.3 eV
0	1.5 eV
Cl	3.6 eV
C ₆ H	3.8 eV

McCarthy M. C. et al. *ApJ* 652 (2006) L141 doi: 10.1086/510238

https://webbook.nist.gov/chemistry/ea-ser/

"Electron Affinity of The Elements" Published on Jun 19, 2021.

https://breakingatom.com/learn-the-periodic-table/electron-affinity-of-the-elements

 \sim

Formation of anions in plasma

• Ion-pair formation

$$H_2 + hv \rightarrow H^- + H^+$$

 $H_2 + hv \rightarrow H^- + CH_3^+$
Maximum cross sections
≈ 20 eV

• Radiative electron attachment

H + e⁻ \rightleftharpoons (H⁻)^{*} → H⁻ + hv at 300 K C₆H + e⁻ \rightleftharpoons (C₆H⁻)^{*} → C₆H⁻ + hv k = 3 \cdot 10^{-16} cm³ s⁻¹ at 300 K

Dissociative attachment

$$CH_4 + e^- \rightarrow CH_2^- + H_2$$

HCN + $e^- \rightarrow CN^- + H$

 \odot

Solar opacity

Transitions

- bond-bond transitions $hv + H(n_1) \rightarrow H(n_2 > n_1)$
- free-free transitions inverse Bremsstrahlung $hv_1 + e^- + H^+ \rightarrow hv_2 + e^- + H^+$
- bond-free transition

 $hv + H(n) \rightarrow H^+ + e^-$

Photosphere of Sun 6500 to 4200 K the energy is transferred by radiation, convection is stopped photon mean free path 1 to 100 km

 $n = 1 \Rightarrow 13.6 \text{ eV}; n = 2 \Rightarrow 3.4 \text{ eV}$

```
h\nu + H^- \rightarrow H + e^-
n = 1 \Rightarrow 0.75 \text{ eV}
electron affinity
```


The continuum radiation is mostly formed by bond-free transitions of the anion H⁻. It is very similar to the black body radiation with a maximum at $\lambda = 500$ nm.

S

Recombination of positive ions

Recombination rate coefficient $\alpha \equiv k_{recombination}$

Net recombination loss due to one type of cation "i"—for example O_2^+

$$\zeta(t) = \frac{n_{\rm i}}{n_e}$$
$$\frac{\mathrm{d}n_e}{\mathrm{d}t} = -\alpha \ n_{\rm i}n_e = -\alpha \ \zeta(t)n_e^2$$

Afterglow plasma Recombination and Diffusion losses

Recombination of positive ions

Dissociative recombination of positive ions

Direct recombination

Indirect recombination

Bardsley J. N., Biondi M. A. 1970. Advances in atomic and molecular physics. In: DR Bates, editors. New York: Academic Press. pp 1–57.

 $Ar^{+} + e^{-} + e^{-} \xrightarrow{\alpha_{ternary}} Ar + e^{-}$ Collisional Radiative Recombination $Ar^{+} + e^{-} + He \xrightarrow{\alpha_{ternary}} Ar + He$ Neutral Assisted Recombination $Ar^+ + e^- + M \xrightarrow{\alpha_{ternary}} Ar + M$

 ∞

Example of dissociative recombination O_2^+

FIG. 1. Schematic of the diabatic potential curves relevant for the DR of O_2^+ . The dissociation limits connected with each valence capture state are given on the right. The labels (a)–(c), and (e) refer to Eqs. (1a)–(1c) and (1e), respectively.

Petrignani A. et al. *J. Chem. Phys.* 122 (2005) 23431 doi: 10.1063/1.1937388.

 $0_{2}^{+}(X^{2}\Pi_{g}, v = 0) + e^{-} \xrightarrow{\alpha_{diss}} 0(^{3}P) + 0(^{3}P) + 6.7 \text{ eV}$ $\longrightarrow 0(^{3}P) + 0(^{1}D) + 5.0 \text{ eV}$ $\longrightarrow 0(^{1}D) + 0(^{1}D) + 3.0 \text{ eV}$ $\longrightarrow 0(^{3}P) + 0(^{1}S) + 2.8 \text{ eV}$ $\longrightarrow 0(^{1}D) + 0(^{1}S) + 0.8 \text{ eV}$

FIG. 2. DR rate coefficient k as a function of electron collision energy from 1 meV to 5 eV. Statistical errors are shown at the 1σ level. The dotted line shows the threshold $E^{-1/2}$ behavior. Both the rate coefficient and the energy are shown on a logarithmic scale.

6

- AF

Peverall R. et al. *J. Chem. Phys.* 114 (2001) 6679 doi: 10.1063/1.1349079

DR without curve crossing

10

FIG. 1. The calculated HeH dissociative potential-energy curves (solid lines), the n = 3 Rydberg states (dashed lines), and the HeH⁺ ground state (solid line) with the v = 0 level are shown. The v = 8 resonance level of the $D^{2}\Sigma^{+}$ state is shown as the dashed line. The dotted line shows the product, $2A(R)d\chi_{0}/dR$, with its ordinate axis on the right.

Steven L. Guberman S. L. *Phys. Rev. A* 49 (1994) R4277. doi: 10.1103/PhysRevA.49.R4277

DR of HeH⁺

Astrophysical detection of the helium hydride ion HeH⁺

Rolf Güsten¹*, Helmut Wiesemeyer¹, David Neufeld², Christophe Risacher^{1,5} & Jürgen Stutzki³

Güsten R. et al. *Nature* 568 (2019) 357. doi: 10.1038/s41586-019-1090-x

Reaction	Rate coefficient [cm ³ s ⁻¹]	Notes
$He^+ + H \rightarrow HeH^+ + hv$	1.4×10^{-16}	1
$\text{HeH}^+ + e \rightarrow \text{He} + \text{H}$	$3.0 \times 10^{-10} (T/10^4 \text{ K})^{-0.47}$	2
$\text{HeH}^+ + \text{H} \rightarrow \text{He} + {\text{H}_2}^+$	$1.2 \times 10^{-9} (T/10^4 \text{ K})^{-0.11}$	3

Novotný O. et al. *Science* 365 (2019) 676. doi: 10.1126/science.aax5921

FIG. 5. Plasma rate coefficients are shown for different initial rotational states j' = 0, 1, 2. The solid curves result from the present theory, while the dashed curves are taken from the experiment at the CSR [4]. The dot-dashed line represents data employed by Guesten *et al.* [1] in their chemistry kinetics simulations of NGC 7027.

Čurík R. et al. *Phys. Rev. Lett.* 124 (2020) 043401 doi: 10.1103/PhysRevLett.124.043401

Figure 4.3: Sketch of tunneling mode dissociative recombination.

Electron capture via Jahn-Teller coupling of electronic and ro-vibrational motion

DR of H_3^+

In previous years more than 25 experimental studies resulted in very different values.

DR experiments 40 – 300 K, 100 – 10k Pa

DR of H_3^+

15

-ÀF

Plašil R. et al. *Int. J. Mass Spectrom.* 218 (2002) 105. Glosík J. et al. *J. Phys.: Conf. Ser.* 4 (2005) 104. Macko P. et al. *Int. J. Mass Spectrom.* 233 (2004) 299. Glosík J. et al. *Phys. Rev. A* 79 (2009) 052707.

Ternary recombination of positive ions

Kokoouline V. and Greene Ch. *Phys. Rev. A* 68 (2003) 012703. doi: 10.1103/PhysRevA.68.012703

Glosík J. et al. *Phys. Rev. A* 79 (2009) 052707. doi: 10.1103/PhysRevA.79.052707

Dohnal P. et al. *Phys. Rev. A* 90 (2014) 042708. doi: 10.1103/PhysRevA.90.042708

Binary DR of para/ortho H₃⁺

Hejduk M. J. Chem. Phys. 143 (2015) 044303 doi: 10.1063/1.4927094

