Plasma physics

2023 winter s. 2/1 , C+Ex prof. Juraj Glosík, doc. Radek Plašil

- Langevin theory of ion molecule collisions
- Elementary processes in plasma: excitation, ionization

Chemical kinetics

 $A + B \rightarrow Products$

number of collisions $\cdots \sigma_{AB} I_A n_B = \sigma_{AB} v_{AB} n_A n_B$

 $\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -\langle \sigma_{\mathrm{AB}} v \rangle_f n_{\mathrm{A}} n_{\mathrm{B}} \qquad \langle \sigma_{\mathrm{AB}} v \rangle_f = \int \sigma_{\mathrm{AB}}(v) v f dv$ Energy distribution of reactants *f* $\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -\frac{k}{2} n_{\mathrm{A}} n_{\mathrm{B}}$ $A \xrightarrow{k_1} Products \quad k_1: s^{-1}$ $A + B \xrightarrow{k_2} Products \qquad k_2: \text{ cm}^3 \text{s}^{-1}$ $A + B + C \xrightarrow{k_3} Products \qquad k_3: cm^6 s^{-1}$ $\mu = \frac{m_{\rm A}m_{\rm B}}{m_{\rm A} + m_{\rm B}}$ **Rigid Spheres** $\sigma_{\rm RS} = \pi (r_{\rm A} + r_{\rm B})^2 \qquad \langle \sigma_{\rm AB} \, v_{\rm AB} \rangle = \langle \pi (r_{\rm A} + r_{\rm B})^2 \cdot v_{\rm AB} \rangle = \pi b^2 \sqrt{\frac{8k_{\rm B}T}{\pi\mu}} = b^2 \sqrt{\frac{8\pi k_{\rm B}T}{\mu}}$

 \sim

Langevin collisional model

 ∞

2023 week 08

Langevin collisional rate coefficient

$$J_{\max} = \frac{1}{2} \frac{b_c^4}{\alpha} \frac{E_k^2}{q^2}$$

$$U_{\max} \leftrightarrow E_k \qquad b_c = \sqrt[4]{\frac{2\alpha q^2}{E_k}}$$

$$\sigma_L = \pi b_c^2 = \pi q \sqrt{\frac{2\alpha}{E_k}}$$

$$k_L = \int \underbrace{v \sigma_L f(v) dv}_{-} = \int \underbrace{v \pi q \sqrt{\frac{2\alpha}{\frac{1}{2}\mu v^2}}}_{-} f(v) dv = 2\pi q \sqrt{\frac{\alpha}{\mu}} \int f(v) dv$$

For once charged ions and molecules without a permanent dipole

$$k_{\rm L} = 2.34 \cdot 10^{-9} \sqrt{\frac{\alpha({\rm \AA}^3)}{\mu({\rm Da})}} ~{\rm cm}^3 {\rm s}^{-1}$$

https://cccbdb.nist.gov/pollistx.asp

 \mathbf{A}

 $k_{\rm L} = 2\pi q \sqrt{\frac{\alpha}{\mu}}$

Collisional rate coefficient – permanent dipole

$$K_{\rm cap}(T_{\rm R}, I^*) = \frac{k_{\rm cap}(T)}{k_{\rm L}}$$

 $T_{\rm R} = 2\alpha \frac{k_{\rm B}T}{\mu_{\rm D}^2}$

 $=\frac{\mu_{\rm D}I}{\alpha q\mu}$

- lpha Angle-averaged polarizability
- μ_{D} Dipole moment

I Moment of inertia of the neutral

Parametrization of the ion-polar molecule collision rate constant by trajectory calculations Su T., Chesnavich W. J. *J. Chem. Phys.* 76 (1982) 5183 doi: 10.1063/1.442828

Electron – Atom collisions

Electron impact cross sections for various elastic and inelastic processes of Xe.

Electron impact ionization cross sections for Xe.

Mukundan V., Bhardwaj A. *Proc. R. Soc. A* 472 (2016) 20150727. doi: 10.1098/rspa.2015.0727

Excitation collisions

 ∞

• Photon

• Electron

• Molecule

Molecule A-B

Maguire H. et al. *Phys. Rev. Lett.* 123 (2019) 093601. doi: 10.1103/PhysRevLett.123.093601

N₂ molecule – excitation by electron

FIG. 13.47. Excitation spectrum of nitrogen obtained by Schulz using the trapped-electron method. (a) with well depth of 0.2 V. (b) with well depth of 0.8 V.

Ionization collisions

• Photon

• Electron

• Molecule

Molecule A-B

Maguire H. et al. *Phys. Rev. Lett.* 123 (2019) 093601. doi: 10.1103/PhysRevLett.123.093601

Ionizations by electron impact $Ar + e^{-}(\varepsilon_{0}) \rightarrow Ar^{+} + e^{-}(\varepsilon_{1}) + e^{-}(\varepsilon_{2})$ $N_{2} + e^{-}(\varepsilon_{0}) \rightarrow N_{2}^{+}(\varepsilon) + e^{-}(\varepsilon_{1}) + e^{-}(\varepsilon_{2})$ $\rightarrow N^{+}(\varepsilon_{1}) + N(\varepsilon_{2}) + e^{-}(\varepsilon_{3}) + e^{-}(\varepsilon_{4})$

$$\begin{array}{l} {\rm CH}_4 + e^- \to {\rm CH}_4{}^+ + e^- + e^- \\ \to {\rm CH}_3{}^+ + {\rm H}^+ e^- + e^- \\ \to {\rm CH}_3{}^+ + {\rm H}^- + e^- \\ \to {\rm CH}_2{}^+ + {\rm H}_2 + e^- + e^- \\ \to {\rm CH}_2{}^+ + {\rm H}_2 + e^- + e^- \\ \to {\rm CH}^+ + {\rm H}^- + {\rm H}_2 + e^- + e^- \\ \to {\rm CH}^+ + {\rm H}_2{}^- + {\rm H}_2{}^- + e^- \\ \to {\rm C}^+ + {\rm H}_2{}^- + {\rm H}_2{}^- + e^- + e^- \\ \to {\rm C}^{2+} + {\rm H}_2{}^- + {\rm H}_2{}^- + e^- + e^- \end{array}$$

2023

Ionizations near the threshold

$$\sigma(\varepsilon) = const \left(\varepsilon - \varepsilon_{\text{Threshold}}\right)^{\mu_{\text{E}}/2^{-1}/4} \qquad \mu_{\text{E}} = \frac{1}{2} \sqrt{\frac{100 \, Z - 9}{4 \, Z - 1}}$$

$$Z \text{ charge state of the final ion}$$

$$\sigma(\varepsilon) = const \left(\varepsilon - \varepsilon_{\text{Threshold}}\right)^{1.127} \qquad \text{Single ionization of atoms}$$

$$\sigma(\varepsilon) = const \left(\varepsilon - \varepsilon_{\text{Threshold}}\right)^{p} \qquad \text{Wannier exponent}$$

Wannier G. H. *Phys. Rev.* 90 (1953) 817. doi: 10.1103/PhysRev.90.817

Ion signal as a function of electron energy for the formation of He^{n+} .

Ion signal as a function of electron energy for the formation of Kr^{n+} ions (n = 1-6) in the near-threshold region.

Denifl S. et al. J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 4685. doi: 10.1088/0953-4075/35/22/310

digital board for nevf122

Do not distribute

Ionization details near threshold - molecules

FIG. 13.19. Variation of the ionization cross-section of H_2 near the threshold as observed by Marmet and Kerwin.

Do not distribute

FIG. 13.46. Potential energy curves for some electronic states of N_2 and N_2^+ .

Do not distribute

Ionization BEB theory

The Binary-Encounter-Bethe (BEB) model

electron – atom (molecule, ions)

$$\sigma_{\text{BEB}} = \frac{S}{t+u+1} \left[\frac{\ln(t)}{2} \left(1 - \frac{1}{t^2} \right) + 1 - \frac{1}{t} - \frac{\ln(t)}{t+1} \right]$$

t = T/B u = U/B $S = 4\pi a_0^2 N R^2/B^2$

a₀ Bohr radius (= 0.5292 Å) *R* Rydberg energy (= 13.6057 eV)

T incident electron energy
N electron occupation number
B binding energy
U average kinetic energy of the orbital

physics.nist.gov/ionxsec

Kim Y.-K., Rudd M. E. *Phys. Rev. A* 50 (1994) 3954. doi: 10.1103/PhysRevA.50.3954 Kim Y.-K et al. *J Res Natl Inst Stand Technol* 105 (2000) 285. doi: 10.6028/jres.105.032 http://physics.nist.gov/ionxsec

Ionization – Residual Gas Analysis (RGA)

week 08 2023 digital board for nevf122 Do not distribute

Ionization by electron impact

Grid ion source

- Open design
- Two filaments (W)
- Low degassing rate
 - mimimum amount of material
 - Pt-Ir wires for formation chamber
 - Molybdenum filament holders
- Easy to degas via electron bombardment
- Filaments on positive potential

Cross Beam ion source with magnets

- Two filaments
- Easy to degas
- Good ion focussing
- Bakeable to 300°C

Electron – Molecule collisions Fragmentation

Stanković V. V. et al. *Plasma Chem. Plasma P.* 40 (2020) 1621. doi: 10.1007/s11090-020-10106-x

Ionization – fragmentation patterns

NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce

Ionization – fragmentation patterns

FIG. 6. Ionization efficiency curves for several ions from acetylene (493).

NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce

Penning ionization

$$X^* + A \rightarrow X + A^+ + e^-$$

 $X^* + AB \rightarrow X + AB^+ + e^-$ Penning Ionization (PI) $X^* + A \rightarrow XA^+ + e^-$
 $X^* + AB \rightarrow XAB^+ + e^-$ Associative Ionization (AI)He* + He \rightarrow He2^+ + e^-Hornbeck-Molnar process

Helium metastable

Grotrian diagram of the lowest energy levels in helium.

Tol P. J. J. *Trapping and Evaporative Cooling of Metastable Helium*, thesis, Vrije Universiteit (2005)

Metastable species

Excited Species	Excitation Energy (eV)	Lifetime (s)
$H^{*}(2s^{2}S_{1/2})$	10.1988	0.14
${\rm He}^{*}(2^{1}{\rm S}_{0})$	20.6158	0.0196
$He^{*}(2^{3}S_{1})$	19.8196	9000
$Ne^{*}(^{3}P_{0})$	16.7154	430
$Ne^{*}(^{3}P_{2})$	16.6191	24.4
$\operatorname{Ar}^{*}({}^{3}\mathrm{P}_{0})$	11.7232	44.9
$\operatorname{Ar}^{*}(^{3}\operatorname{P}_{2})$	11.5484	55.9
$Kr^{*}(^{3}P_{0})$	10.5624	0.49
$\mathrm{Kr}^{*}(^{3}\mathrm{P}_{2})$	9.9152	85.1
$Xe^{*}(^{3}P_{0})$	9.4472	0.078
$Xe^{*}(^{3}P_{2})$	8.3153	150
$O^{*}(2p^{3}3s^{5}S_{2})$	9.146	1.85×10^{-4}
${\rm H_2}^*({\rm c}^3\Pi_{\rm u}^{-})$	11.764	1.02×10^{-3}
$N_2^{*}(A^3\Sigma_u^{+})$	6.169	1.9
${ m N_2}^*({ m A}^1\Pi_{ m g})$	8.549	1.20×10^{-4}
$N_2^*(E^3\Sigma_g^+)$	11.875	1.90×10^{-4}
$CO^*(a^3\Pi)$	6.010	$>3 \times 10^{-3}$

. .

24

Hotop H. *Detection of metastable atoms and molecules*. In *Atomic, Molecular, and Optical Physics: Atoms and Molecules*; Dunning, F.B., Hulet, R.G., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1996; pp. 191–216.

N₂ molecule – metastable

Penning ionization – model

$$X^* + A \rightarrow [XA]^* \rightarrow XA^+ + e^- \rightarrow X + A^+ + e^-$$

$$XA^* \qquad XA^* \qquad X + A^+$$

$$XA^* \qquad X + A^+$$

26

 $\overline{}$

week 08 /

2023

digital board for nevf122

Penning ionization studies

Figure 1. The crossed molecular beam apparatus used in Penning ionization studies.

Penning ionization examples

Collision energy (eV)

He*(2¹S, 2³S) + Ar \rightarrow He + Ar⁺ + e⁻ \rightarrow HeAr⁺ + e⁻

 $\begin{aligned} &\text{He}^*(2^3\text{S}) + \text{Ar} \rightarrow \text{He} + \text{Ar}^+({}^2\text{P}_{3/2}) + e^- \\ &\text{He}^*(2^3\text{S}) + \text{Ar} \rightarrow \text{He} + \text{Ar}^+({}^2\text{P}_{1/2}) + e^- \end{aligned}$

Penning ionization, superelastic collisions

The measured decay of electron density in He_2^+ dominated afterglow plasma in pure He and the increase of n_e after injection of Xe.

Evolution of EEDF in $He/Ar/Xe/H_2$ plasma obtained from measured characteristics of Langmuir probe. The EEDFs are normalized to 1.

Plašil R. et al. EPJD 54 (2009) 391. doi: 10.1140/epjd/e2009-00144-3

Excimers

Excited molecules that are not stable at ground state

Typically, at least one atom has a valence shell completely filled with electrons.

	Excimer molecule	Wavelength (nm)	Photon energy (eV)
$D_{\sigma} * \perp D_{\sigma} \perp M \rightarrow D_{\sigma} * \perp M$	NeF*	108	11.48
$\text{Kg}^{+} + \text{Kg}^{+} + \text{M} \rightarrow \text{Kg}_{2}^{+} + \text{M}$	Ar ₂ *	126	9.84
	Kr ₂ *	146	8.49
$Rg^* + AB \rightarrow RgA^* + B$	F ₂ *	158	7.85
0 0	ArBr*	165	7.52
	Xe ₂ *	172	7.21
	ArCl*	175	7.08
	KrI*	190	6.49
$Rg^+ + A^- + M \rightarrow RgA^* + M$	ArF*	193	6.42
	KrBr*	207	5.99
	KrCl*	222	5.58
	KrF*	248	5.01
Every an UV lampa	XeI*	253	4.91
Excliner UV lamps	Cl_2^*	259	4.79
	XeBr*	282	4.41
	Br ₂ *	289	4.29
	XeCl*	308	4.03
	I ₂ *	342	3.63
	XeF*	351	3.53

