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PREFACE

This text is intended as a general introduction to plasma physics
and was designed with the main purpose of presenting a comprehensive,
logical, and unified treatment of the fundamentals of plasma physics based
on statistical kinetic theory. It should be useful primarily for advanced
undergraduate and first-year graduate students meeting the subject of
plasma physics for the first time and presupposes only a basic elementary
knowledge of vector analysis, differential equations, and complex vari-
ables, as well as courses on classical mechanics and electromagnetic theory
beyond sophomore level. Some effort has been made to make the book
self-contained by including in the text developments of fluid mechanics
and kinetic theory that are needed.

Throughout the text the emphasis is on clarity, rather than formality.
The various derivations are explained in detail and, wherever possible,
the physical interpretations are emphasized. The equations are presented
in such a way that they connect together, without requiring the reader
to do extensive algebra to bridge the gap. The features of clarity and
completeness make the book suitable for self-learning and for self-paced
courses.

The structure of this book is as follows. Chapter 1 consists of a
basic introduction to plasma physics, at a descriptive level, intended to
give the reader an overall view of the subject. The motion of charged
particles under the influence of specified electric and magnetic fields is
treated in detail in Chapters 2, 3, and 4. In the next five chapters the
fundamental equations necessary for an elementary description of plasma
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phenomena are developed. Chapter 5 introduces the concepts of phase
space and distribution function, and derives the basic differential kinetic
equation that governs the evolution of the distribution function in phase
space. The definitions of the macroscopic variables in terms of the phase
space distribution function are presented in Chapter 6 and their phys-
ical interpretations are discussed. The Maxwell-Boltzmann equilibrium
distribution function is introduced in Chapter 7, as the equilibrium solu-
tion of the Boltzmann equation, and its kinetic properties are analyzed
in some detail. In Chapter 8 the macroscopic transport equations for a
plasma considered as a mixture of various interpenetrating fluids are de-
rived, whereas the macroscopic transport equations for the whole plasma
as a single conducting fluid are developed in Chapter 9.

The remainder of the book is devoted to applications of these basic
equations in the description of a variety of important phenomena in plas-
mas. The problems of electrical conductivity and diffusion in plasmas are
analyzed in Chapter 10, and other basic plasma phenomena, such as elec-
tron plasma oscillations and Debye shielding, are treated in Chapter 11.
Simple applications of the magnetohydrodynamic equations, such as in
plasma confinement by magnetic fields and the pinch effect, are presented
in Chapters 12 and 13. The subject of wave phenomena in plasmas is
organized in the next six chapters. A review of the basic concepts related
to electromagnetic wave propagation in free space is given in Chapter 14.
The propagation of very low frequency waves in a highly conducting fluid
is analyzed in Chapter 15, under the title of magnetohydrodynamic waves.
The various modes of wave propagation in cold and warm plasmas are con-
sidered in Chapters 16 and 17, respectively. In Chapters 18 and 19 the
various properties of wave propagation in hot nonmagnetized plasmas and
in hot magnetized plasmas, respectively, are analyzed. Collisional phe-
nomena in plasmas are treated in Chapter 20, and the derivations of the
Boltzmann collision integral and of the Fokker-Planck collision term are
presented in Chapter 21. Finally, in Chapter 22 some applications of the
Boltzmann equation to the analysis of transport phenomena in plasmas
are presented.

Problems are provided at the end of each chapter, which illustrate ad-
ditional applications of the theory and supplement the textual material.
Most of the problems are designed in such a way as to provide a guideline
for the student, including intermediate steps and answers in their state-
ments.

The numbering of the equations, within each chapter, starts over
again at each section. When reference is made to an equation using three
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numbers, the first number indicates the chapter and the last two num-
bers indicate the section and the equation, respectively. Within the same
chapter the first number is omitted. Vector quantities are represented by
boldface type letters (such as r) and unit vectors by a circumflex above
the corresponding letter (such as T). Dyadic and triadic quantities are
represented by calligraphic type letters (such as Q).

The system of units used in this text is the rationalized MKSA. This
system is based on four primary quantities: length, mass, time, and cur-
rent. Its name derives from the units meter (m), kilogram (kg), second
(s), and ampere (A).

The book contains more material than what can normally be covered
in one semester. This permits some freedom in the selection of topics
depending on the level and desired emphasis of the course, and on the
interests of the students. The whole text can also be adequately covered
within two semesters.

In this, as in any introductory book, the topics included clearly do
not cover all areas of plasma physics. No attempt was made to present the
experimental aspects of the subject. Moreover, there are some important
theoretical topics that are covered only very briefly and some that have
been left for more advanced courses on plasma physics, such as plasma
instabilities, plasma radiation, nonlinear plasma theory, and plasma tur-
bulence.

I am grateful to the many people who contributed to this book, both
directly and indirectly, and especially to the many students to whom I had
the opportunity to test my ideas in the various courses I taught over the
last twenty-five years. The amount of digitalized information in a book
such as this is truly enormous, and some errors may be bound to occur.
Further feedback from readers will be appreciated. I wish to thank the
many professors, students, and researchers who have used the first two
editions of this book, all over the world, and contributed to its improve-
ment.

J. A. Bittencourt
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INTRODUCTION

1. GENERAL PROPERTIES OF PLASMAS R

1.1 Definition of a Plasma

The word plasma is used to describe a wide variety of macroscopically
neutral substances containing many interacting free electrons and ionized
atoms or molecules, which exhibit collective behavior due to the long-range
coulomb forces. Not all media containing charged particles, however, can
be classified as plasmas. For a collection of interacting charged and neutral
particles to exhibit plasma behavior it must satisfy certain conditions, or
criteria, for plasma existence. These criteria will be discussed in some
detail in the next section.

The word plasma comes from the Greek and means something molded.
It was applied for the first time by Tonks and Langmuir, in 1929, to
describe the inner region, remote from the boundaries, of a glowing
ionized gas produced by electric discharge in a tube, the ionized gas as
a whole remaining electrically neutral.

1.2 Plasma as the Fourth State of Matter

From a scientific point of view, matter in the known universe is
often classified in terms of four states: solid, liquid, gaseous, and plasma.
The basic distinction among solids, liquids, and gases lies in the difference
between the strength of the bonds that hold their constituent particles
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together. These binding forces are relatively strong in a solid, weak in a
liquid, and essentially almost absent in the gaseous state. Whether a given
substance is found in one of these states depends on the random kinetic
energy (thermal energy) of its atoms or molecules, i.e., on its temperature.
The equilibrium between this particle thermal energy and the interparticle
binding forces determines the state.

By heating a solid or liquid substance, the atoms or molecules acquire
more thermal kinetic energy until they are able to overcome the binding
potential energy. This leads to phase transitions, which occur at a constant
temperature for a given pressure. The amount of energy required for the
phase transition is called the latent heat.

If sufficient energy is provided, a molecular gas will gradually dis-
sociate into an atomic gas as a result of collisions between those parti-
cles whose thermal kinetic energy exceeds the molecular binding energy.
At sufficiently elevated temperatures an increasing fraction of the atoms
will possess enough kinetic energy to overcome, by collisions, the binding
energy of the outermost orbital electrons, and an ionized gas or plasma
results. However, this transition from a gas to a plasma is not a phase
transition in the thermodynamic sense, since it occurs gradually with in-
creasing temperature.

1.3 Plasma Production

A plasma can be produced by raising the temperature of a substance
until a reasonably high fractional ionization is obtained. Under thermo-
dynamic equilibrium conditions, the degree of ionization and the electron
temperature are closely related. This relation is given by the Saha equation
(see Chapter 7). Although plasmas in local thermodynamic equilibrium
are found in many places in nature, as is the case for many astrophysical
plasmas, they are not very common in the laboratory.

Plasmas can also be generated by ionization processes that raise the
degree of ionization much above its thermal equilibrium value. There
are many different methods of creating plasmas in the laboratory and,
depending on the method, the plasma may have a high or low density,
high or low temperature, it may be steady or transient, stable or unstable,
and so on. In what follows, a brief description is presented of the most
commonly known processes of photoionization and electric discharge in
gases.

In the photoionization process, ionization occurs by absorption of
incident photons whose energy is equal to, or greater than, the ionization
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potential of the absorbing atom. The excess energy of the photon is trans-
formed into kinetic energy of the electron-ion pair formed. For example,
the ionization potential energy for the outermost electron of atomic oxy-
gen is 13.6 eV, which can be supplied by radiation of wavelength smaller
than about 91 nm, i.e., in the far ultraviolet. Ionization can also be pro-
duced by x-rays or gamma rays, which have much smaller wavelengths.
The Earth’s ionosphere, for example, is a natural photoionized plasma
(see section 3).

In a gas discharge, an electric field is applied across the ionized gas,
which accelerates the free electrons to energies sufficiently high to ionize
other atoms by collisions. One characteristic of this process is that the
applied electric field transfers energy much more efficiently to the light
electrons than to the relatively heavy ions. The electron temperature in
gas discharges is therefore usually higher than the ion temperature, since
the transfer of thermal energy from the electrons to the heavier particles
is very slow.

When the ionizing source is turned off, the ionization decreases
gradually because of recombination until it reaches an equilibrium value
consistent with the temperature of the medium. In the laboratory the re-
combination usually occurs so fast that the plasma completely disappears
in a small fraction of a second.

1.4 Particle Interactions and Collective Effects

The properties of a plasma are markedly dependent upon the particle
interactions. Ome of the basic features that distinguish the behavior
of plasmas from that of ordinary fluids and solids is the existence of
collective effects. Due to the long range of electromagnetic forces, each
charged particle in the plasma interacts simultaneously with a consider-
able number of other charged particles, resulting in important collective
effects that are responsible for the wealth of physical phenomena that take
place in a plasma.

The particle dynamics in a plasma is governed by the internal fields
due to the nature and motion of the particles themselves, and by exter-
nally applied fields. The basic particle interactions are electromagnetic in
character. Quantum effects are negligible, except for some cases of close
collisions.

In a plasma we must distinguish between charge-charge and charge-
neutral interactions. A charged particle is surrounded by an electric field
and interacts with the other charged particles according to the coulomb
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force law, with its dependence on the inverse of the square of the separa-
tion distance. Furthermore, a magnetic field is associated with a moving
charged particle, which also produces a force on other moving charges. The
charged and neutral particles interact through electric polarization fields
produced by distortion of the neutral particle’s electronic cloud during
a close passage of the charged particle. The field associated with neutral
particles involves short-range forces, such that their interaction is effective
only for interatomic distances sufficiently small to perturb the orbital elec-
trons. It is appreciable when the distance between the centers of the in-
teracting particles is of the order of their diameter, but nearly zero when
they are farther apart. Its characteristics can be adequately described
only by quantum-mechanical considerations. In many cases this interac-
tion involves permanent or induced electric dipole moments.

A distinction can be made between weakly ionized and strongly ionized
plasmas in terms of the nature of the particle interactions. In a weakly
ionized plasma the charge-neutral interactions dominate over the multi-
ple coulomb interactions. When the degree of ionization is such that the
multiple coulomb interactions become dominant, the plasma is considered
strongly ionized. As the degree of ionization increases, the coulomb inter-
actions become increasingly important so that in a fully ionized plasma
all particles are subjected to the multiple coulomb interactions.

1.5 Some Basic Plasma Phenomena

The fact that some or all of the particles in a plasma are electrically
charged and therefore capable of interacting with electromagnetic fields,
as well as of creating them, gives rise to many novel phenomena that are
not present in ordinary fluids and solids. The presence of the magnetic
field used, for example, in the heating and confinement of plasmas in con-
trolled thermonuclear research greatly accentuates the novelty of plasma
phenomena. To explore all features of plasma phenomena, the plasma
behavior is usually studied in the presence of both electric and magnetic
fields.

Because of the high electron mobility, plasmas are generally very good
electrical conductors, as well as good thermal conductors. As a conse-
quence of their high electrical conductivity they do not support electro-
static fields except, to a certain extent, in a direction normal to any mag-
netic field present, which inhibits the flow of charged particles in this
direction.

The presence of density gradients in a plasma causes the particles to



1. INTRODUCTION 5

diffuse from dense regions to regions of lower density. Although the diffu-
sion problem in nonmagnetized plasmas is somewhat similar to that which
occurs in ordinary fluids, there is nevertheless a fundamental difference.
Because of their lower mass, the electrons tend to diffuse faster than the
ions, generating a polarization electric field as a result of charge separa-
tion. This field enhances the diffusion of the ions and decreases that of the
electrons, in such a way as to make ions and electrons diffuse at approxi-
mately the same rate. This type of diffusion is called ambipolar diffusion.
When there is an externally applied magnetic field, the diffusion of charged
particles across the field lines is reduced, which indicates that strong
magnetic fields are helpful in plasma confinement. The diffusion of charged
particles across magnetic field lines when the diffusion coefficient is pro-
portional to 1/B2%, where B denotes the magnetic induction magnitude,
is called classical diffusion, in contrast to the so-called Bohm diffusion in
which the diffusion coefficient is proportional to 1/B (see Chapter 10).

An important characteristic of plasmas is their ability to sustain a
great variety of wave phenomena. Examples include longitudinal electro-
static plasma waves and high-frequency transverse electromagnetic waves.
In the low-frequency regime important wave modes in a magnetized plas-
ma are the so-called Alfvén waves and magnetosonic waves. Each of the
various possible modes of wave propagation can be characterized by a dis-
persion relation, which is a functional relation between the wave frequency
w and the wave number k, and by its polarization. The study of waves in
plasmas provides significant information on plasma properties and is very
useful for plasma diagnostics.

Dissipative processes, such as collisions, produce damping of the wave
amplitude. This means that energy is transferred from the wave field to
the plasma particles. An essentially noncollisional mechanism of wave
attenuation also exists in a plasma, which is known as Landau damping.
The mechanism responsible for Landau damping is the trapping of some
plasma particles (the ones that are moving with velocities close to the
wave phase velocity) in the energy potential well of the wave, the net
result being the transfer of energy from the wave to the particles.

It is also possible to have modes with growing amplitudes, as a
result of instabilities, which transfer energy from the plasma particles to
the wave field. Instability phenomena are important in a wide variety of
physical situations involving dynamic processes in plasmas. The existence
of many different types of instabilities in a plasma greatly complicates
the confinement of a hot plasma in the laboratory. The study of these
instabilities is of essential importance for controlled thermonuclear fusion
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research.

Another important aspect of plasma behavior is the emission of
radiation. The main interest in plasma radiation lies in the fact that
it can be used to infer plasma properties. The mechanisms that cause
plasmas to emit or absorb radiation can be grouped into two categories:
radiation from emitting atoms or molecules, and radiation from acceler-
ated charges. At the same time that ionization is produced in a plasma,
the opposite process, recombination of the ions and electrons to form neu-
tral particles, is normally also occurring. As a result of the recombination
process, radiation is often emitted as the excited particles formed dur-
ing recombination decay to the ground state. This radiation constitutes
the line spectra of plasmas. On the other hand, any accelerated charged
particle emits radiation. The radiation emitted whenever a charged par-
ticle is decelerated by making some kind of collisional interaction is called
bremsstrahlung. If the charged particle remains unbound, both before and
after the encounter, the process is called free-free bremsstrahlung. Radia-
tion of any wavelength can be emitted or absorbed in bremsstrahlung.
If the originally unbound charged particle is captured by another parti-
cle, as it emits the radiation, the process is called free-bound radiation.
Cyclotron radiation, which occurs in magnetized plasmas, is due to the
magnetic centripetal acceleration of the charged particles as they spiral
about the magnetic field lines. Blackbody radiation emitted from plasmas
in thermodynamic equilibrium is important only in astrophysical plasmas,
in view of the large size needed for a plasma to radiate as a blackbody.

2. CRITERIA FOR THE DEFINITION OF A PLASMA e o s
2.1 Macroscopic Neutrality

In the absence of external disturbances a plasma is macroscopically
neutral. This means that under equilibrium conditions with no external
forces present, in a volume of the plasma sufficiently large to contain a
large number of particles and yet sufficiently small compared to the char-
acteristic lengths for variation of macroscopic parameters such as density
and temperature, the net resulting electric charge is zero. In the interior
of the plasma the microscopic space charge fields cancel each other and
no net space charge exists over a macroscopic region.

If this macroscopic neutrality was not maintained, the potential en-
ergy associated with the resulting coulomb forces could be enormous com-
pared to the thermal particle kinetic energy. Consider, for example, a



1. INTRODUCTION 7

plasma with a charged particle number density of 102° m~2 and suppose
that the electron number density (n.) in a spherical volume of 1073 m
radius (r) were to differ by 1% from the positive ion number density (n;).
Denoting the ion charge by e and the electron charge by —e, the total net
charge (q) inside the sphere would be

qg= §7rr3(ni —ne)e (2.1)

and the electric potential (¢) at the surface of the sphere would be

1 q_r2e

¢ = (ni — me) (2:2)

dre, r e,

where ¢, is the permittivity of free space. Plugging numerical values into
(2.2) yields ¢ = 6 x 103 volts. Recalling that 1 eV = 1.602 x 10~ joule,
we find that kT = 1 eV when T = 11,600 K, where k is Boltzmann’s
constant (1.380 x 10723 joule/K). Therefore, a plasma temperature of
several millions of degrees Kelvin would be required to balance the electric
potential energy with the average thermal particle energy.

Departures from macroscopic electrical neutrality can naturally occur
only over distances in which a balance is obtained between the thermal
particle energy, which tends to disturb the electrical neutrality, and the
electrostatic potential energy resulting from any charge separation, which
tends to restore the electrical neutrality. This distance is of the order of a
characteristic length parameter of the plasma, called the Debye length. In
the absence of external forces, the plasma cannot support departures from
macroscopic neutrality over larger distances than this, since the charged
particles are able to move freely to neutralize any regions of excess space
charge in response to the large coulomb forces that appear.

2.2 Debye Shielding

The Debye length is an important physical parameter for the descrip-
tion of a plasma. It provides a measure of the distance over which the
influence of the electric field of an individual charged particle (or of a sur-
face at some nonzero potential) is felt by the other charged particles inside
the plasma. The charged particles arrange themselves in such a way as to
effectively shield any electrostatic fields within a distance of the order of
the Debye length. This shielding of electrostatic fields is a consequence of
the collective effects of the plasma particles. A calculation of the shielding
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distance was first performed by Debye, for an electrolyte. In Chapter 11
it will be shown that the Debye length (Ap) is directly proportional to
the square root of the temperature (T') and inversely proportional to the
square root of the electron number density (n.) according to

eokT)1/2
nee?

Ap = ( (2.3)
As mentioned before, the Debye length can also be regarded as a measure
of the distance over which fluctuating electric potentials may appear in
a plasma, corresponding to a conversion of the thermal particle kinetic
energy into electrostatic potential energy.

When a boundary surface is introduced in a plasma, the perturbation
produced extends only up to a distance of the order of Ap from the surface.
In the neighborhood of any surface inside the plasma there is a layer of
width of the order of Ap, known as the plasma sheath, inside which the
condition of macroscopic electrical neutrality may not be satisfied. Beyond
the plasma sheath region there is the plasma region, where macroscopic
neutrality is maintained.

Generally, Ap is very small. For example, in a gas discharge, where
typical values for T and n. are around 10 K and 10® m~3, respectively,
we have A\p = 10™% m. For the Earth’s ionosphere, typical values can be
taken as n. = 102 m™2 and T = 103 K, yielding Ap = 1072 m. In the
interstellar plasma, on the other hand, the Debye length can be several
meters long.

It is convenient to define a Debye sphere as a sphere inside the plasma
of radius equal to Ap. Any electrostatic fields originated outside a De-
bye sphere are effectively screened by the charged particles and do not
contribute significantly to the electric field existing at its center. Con-
sequently, each charge in the plasma interacts collectively only with the
charges that lie inside its Debye sphere, its effect on the other charges
being effectively negligible. The number of electrons Np, inside a Debye
sphere, is given by

4

ND = —7T)\D3’ne =

3 g’”(nEOkT )3/2 (24)

1/3¢2

The Debye shielding effect is a characteristic of all plasmas, although
it does not occur in every medium that contains charged particles. A
necessary and obvious requirement for the existence of a plasma is that
the physical dimensions of the system be large compared to Ap. Other-
wise there is just not sufficient space for the collective shielding effect to
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take place, and the collection of charged particles will not exhibit plasma
behavior. If L is a characteristic dimension of the plasma, a first criterion
for the definition of a plasma is therefore

L> A\p (2.5)

Since the shielding effect is the result of the collective particle behavior
inside a Debye sphere, it is also necessary that the number of electrons
inside a Debye sphere be very large. A second criterion for the definition
of a plasma is therefore

neAp® > 1 (2.6)

This means that the average distance between electrons, which is roughly

1 3, must be very small compared to Ap. The quantity defined

given by ne
by
1

ne>\D3

9= (2.7)
is known as the plasma parameter and the condition g <« 1 is called the
plasma approzimation. This parameter is also a measure of the ratio of
the mean interparticle potential energy to the mean plasma kinetic energy.

Note that the requirement (2.5) already implies in macroscopic charge
neutrality if it is realized that deviations from neutrality can naturally
occur only over distances of the order of A\p. Nevertheless, macroscopic
neutrality is sometimes considered as a third criterion for the existence of
a plasma, although it is not an independent one, and can be expressed as

Ne = an (2.8)

2.3 The Plasma Frequency

An important plasma property is the stability of its macroscopic space
charge neutrality. When a plasma is instantaneously disturbed from the
equilibrium condition, the resulting internal space charge fields give rise
to collective particle motions that tend to restore the original charge neu-
trality. These collective motions are characterized by a natural frequency
of oscillation known as the plasma frequency. Since these collective oscilla-
tions are high-frequency oscillations, the ions, because of their heavy mass,
are to a certain extent unable to follow the motion of the electrons. The
electrons oscillate collectively about the heavy ions, the necessary collec-
tive restoring force being provided by the ion-electron coulomb attraction.
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The period of this natural oscillation constitutes a meaningful time scale
against which can be compared the dissipative mechanisms tending to
destroy the collective electron motions.

Consider a plasma initially uniform and at rest, and suppose that by
some external means a small charge separation is produced inside it (see
Fig. 1). When the external disturbing force is removed instantaneously,
the internal electric field resulting from charge separation collectively ac-
celerates the electrons in an attempt to restore the charge neutrality. How-
ever, because of their inertia, the electrons move beyond the equilibrium
position, and an electric field is produced in the opposite direction. This
sequence of movements repeats itself periodically, with a continuous trans-
formation of kinetic energy into potential energy, and vice versa, resulting
in fast collective oscillations of the electrons about the more massive ions.
On the average the plasma maintains its macroscopic charge neutrality. It
will be shown in Chapter 11 that the angular frequency of this collective
electron oscillations, called the (electron) plasma frequency, is given by

e = (nee2 )1/2 (2.9)

Me€o

Collisions between electrons and neutral particles tend to damp these
collective oscillations and gradually diminish their amplitude. If the oscil-
lations are to be only slightly damped, it is necessary that the electron-
neutral collision frequency (ve,) be smaller than the electron plasma fre-
quency,

Vpe > Ven, (2.10)

where vpe = wpe/2m. Otherwise, the electrons will not be able to behave
in an independent way, but will be forced by collisions to be in complete
equilibrium with the neutrals, and the medium can be treated as a neutral
gas. Eq. (2.10) constitutes, therefore, the fourth criterion for the existence
of a plasma. This criterion can be alternatively written as

wr > 1 (2.11)

where 7 = 1/v,, represents the average time an electron travels between
collisions with neutrals, and w stands for the angular frequency of typical
plasma oscillations. It implies that the average time between electron-
neutral collisions must be large compared to the characteristic time during
which the plasma physical parameters are changing.
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Fig. 1 The electric field resulting from charge separation pro-
vides the force that generates the electron plasma oscillations.

Consider, for example, a gas with an electron number density equal to
10'% m—3 at a temperature of 103 K, which satisfies both criteria L > \p
and n.A3, > 1. If the neutral particle number density (n,) is relatively
small, as in the interstellar gas for example, 7 is relatively large and the
electrons will behave independently, so that the medium can then be
treated as a plasma. On the other hand, if n, is many orders of mag-
nitude greater than n., then the motion of the electrons will be coupled
to that of the neutrals and their effect will be negligible.

The basic characteristics of various laboratory and cosmic plasmas
are given in Fig. 2 in terms of their temperature T" and electron number
density ne, as well as of parameters that depend upon T and n,, such as
the Debye shielding distance Ap, the electron plasma frequency wy., and
the number of electrons Np inside a Debye sphere.

3. THE OCCURRENCE OF PLASMAS INNATURE = w

With the progress made in astrophysics and in theoretical physics
during the last century, it was realized that most of the matter in the
known universe, with a few exceptions such as the surface of cold planets
(the Earth, for example) exists as a plasma.
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Fig. 2 Ranges of temperature and electron density for several
laboratory and cosmic plasmas and their characteristic physical
parameters: Debye length Ap, plasma frequency wpe, and num-
ber of electrons Np in a Debye sphere. MHD, magnetohydrody-
namic.
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3.1 The Sun and Its Atmosphere

The sun, which is our nearest star and upon which the existence of
life on Earth fundamentally depends, is a plasma phenomenon. Its energy
output is derived from thermonuclear fusion reactions of protons forming
helium ions deep in its interior, where temperatures exceed 1.2 x 107 K.
The high temperature of its interior and the consequent thermonuclear
reactions keep the entire sun gaseous. Due to its large mass (2 x 103 kg),
the sun’s gravitational force is sufficient to prevent the escape of all
but the most energetic particles and, of course, radiation from the hot
solar plasma.

There is no sharp boundary surface to the sun. Its visible part is
known as the solar atmosphere, which is divided into three general re-
gions or layers. The photosphere, with a temperature of about 6,000 K,
comprises the visible disk, the layer in which the gases become opaque,
and is a few hundred kilometers thick. Surrounding the photosphere there
is a reddish ring called the chromosphere, approximately 10,000 km thick,
above which flame-like prominences rise with temperatures of the order of
100,000 K. Surrounding the chromosphere there is a tenuous hot plasma,
extending millions of kilometers into space, known as the corona. A steep
temperature gradient extends from the chromosphere to the hotter corona,
where the temperature exceeds 10° K.

The sun possesses a variable magnetic field, which at its surface
is typically of the order of 10=% tesla, but in the regions of sunspots
(regions of relatively cooler gases) the solar magnetic field rises to
about 0.1 tesla.

3.2 The Solar Wind

A highly conducting tenuous plasma called the solar wind, composed
mainly of protons and electrons, is continuously emitted by the sun at
very high speeds into interplanetary space, as a result of the supersonic
expansion of the hot solar corona. The solar magnetic field tends to remain
frozen in the streaming plasma due to its very high conductivity. Because
of solar rotation, the field lines are carried into Archimedean spirals by
the radial motion of the solar wind (see Fig. 3). Typical values of the
parameters in the solar wind are: electron density n. ~ 5 x 106 m=3,
electron and ion temperatures T, ~ 5 x 10* K, T; ~ 10* K, magnetic field
B~ 5 x 1079 tesla, and drift velocity u ~ 3 x 10° m/s.
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Fig. 3 Schematic representation of the Archimedes spiral struc-
ture of the interplanetary magnetic field in the ecliptic plane.

3.3 The Magnetosphere and the Van Allen Radiation Belts

As the highly conducting solar wind impinges on the Earth’s magnetic
field, it compresses the field on the sunward side and flows around it at
supersonic speeds. This creates a boundary, called the magnetopause,
which is roughly spherical on the sunward side and roughly cylindrical in
the anti-sun direction (see Fig. 4). The inner region, from which the solar
wind is excluded and which contains the compressed Earth’s magnetic
field, is called the magnetosphere.

Inside the magnetosphere we find the Van Allen radiation belts, in
which energetic charged particles (mainly electrons and protons) are
trapped into regions where they execute complicated trajectories that spi-
ral along the geomagnetic field lines and, at the same time, drift slowly
around the Earth. The origin of the inner belt is ascribed to cosmic rays,
which penetrate into the atmosphere and form proton-electron pairs that
are then trapped by the Earth’s magnetic field. The outer belt is consi-
dered to be due to and maintained by streams of plasma consisting mainly
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Fig. 4 Schematic configuration of the magnetosphere in the
noon—midnight plane. The dark crescents represent the regions
of trapped energetic particles (Van Allen radiation belts). The
turbulent region between the shock wave (bow shock) and the
magnetopause is known as the magnetosheath. Geocentric dis-
tances are indicated in units of Earth radii.

of protons and electrons that are ejected from time to time by the sun.
Depending on solar activity, particularly violent solar eruptions may occur
with the projection of hot streams of plasma material into space. The
separation into inner and outer belts reflects only an altitude-dependent
energy spectrum, rather than two separate trapping regions.
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Fig. 5 Height distribution of the electrons and of the principal
positive ions, typical of the daytime ionosphere, for average solar
conditions.

3.4 The Ionosphere

The large natural blanket of plasma in the atmosphere, which en-
velopes the Earth from an altitude of approximately 60 km to several
thousands of kilometers, is called the ionosphere. The ionized particles
in the ionosphere are produced during the daytime through absorption of
solar extreme ultraviolet and x-ray radiation by the atmospheric species.
As the ionizing radiation from the sun penetrates deeper and deeper into
the Earth’s atmosphere, it encounters a larger and larger density of gas
particles, producing more and more electrons per unit volume. However,
since radiation is absorbed in this process, there is a height where the rate
of electron production reaches a maximum. Below this height the rate
of electron production decreases, in spite of the increase in atmospheric
density, since most of the ionizing radiation was already absorbed at the
higher altitudes.
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Fig. 5 provides some information on the relative concentration and
altitude distribution of the electrons and of the principal positive ions,
typical of the daytime ionosphere, for average solar conditions. The
Earth’s magnetic field exerts a great influence on the dynamic behav-
ior of the ionospheric plasma. An interesting phenomenon that occurs in
the ionospheric polar regions is the aurora. It consists of electromagnetic
radiation emitted by the atmospheric species and induced by energetic
particles of solar and cosmic origin that penetrate into the atmosphere
along the geomagnetic field lines near the poles.

3.5 Plasmas Beyond the Solar System

Beyond the solar system we find a great variety of natural plasmas
in stars, interstellar space, galazies, intergalactic space, and far beyond to
systems quite unknown before the start of astronomy from space vehicles.
There we find a variety of phenomena of great cosmological and astrophy-
sical significance, including interstellar shock waves from remote supernova
explosions, rapid variations of x-ray fluxes from neutron stars with densi-
ties like that of atomic nuclei, pulsating radio stars or pulsars (which are
theoretically pictured as rapidly rotating neutron stars with plasmas emit-
ting synchrotron radiation from the surface), and the plasma phenomena
around the remarkable black holes (which are considered to be singular
regions of space into which matter has collapsed, possessing such a power-
ful gravitational field that nothing, whether material objects or even light
itself, can escape from them).

The behavior of plasmas in the universe involves the interaction
between plasmas and magnetic fields. The crab nebula, for example, is a
rich source of plasma phenomena because it contains a magnetic field.
The widespread existence of magnetic fields in the universe has been
demonstrated by independent measurements, and a wide range of field
magnitudes has been found, varying from 10~° tesla in interstellar space
to 1 tesla on the surface of magnetic variable stars.

4. APPLICATIONS OF PLASMA PHYSICS T RRSEREEN

A wide variety of plasma experiments have been perfomed in the
laboratory to aid in the understanding of plasmas, as well as to test and
help expand plasma theory. The progress in plasma research has led to a
wide range of plasma applications. A brief description of some important
practical applications of plasma physics is presented in this section.



18 FUNDAMENTALS OF PLASMA PHYSICS
4.1 Controlled Thermonuclear Fusion

The most important application of man-made plasmas is in the
control of thermonuclear fusion reactions, which holds a vast potential for
the generation of power. Nuclear fusion is the process whereby two light
nuclei combine to form a heavier one, the total final mass being slightly
less than the total initial mass. The mass difference (Am) appears as en-
ergy (E) according to Einstein’s famous law E = (Am)c?, where c denotes
the speed of light. The nuclear fusion reaction is the source of energy in
the stars, including the sun. The confinement of the hot plasma in this
case is provided by the self-gravity of the stars.

In the nuclear fusion of hydrogen the principal reactions involve the
deuterium (2H) and tritium (*H) isotopes of hydrogen, as follows:

2H+2H —3He+'n+3.27 MeV (4.1a)
2H+4+2H —3H +'H +4.03 MeV (4.1b)
H+3H — *He+ 'n+17.58 MeV (4.1c)
2H+3He — “He +'H +18.34 MeV (4.1d)

where n represents a neutron. The basic problem in achieving controlled
fusion is to generate a plasma at very high temperatures (with thermal
energies at least in the 10 keV range) and hold its particles together long
enough for a substantial number of fusion reactions to take place. The
need for high temperatures comes from the fact that, in order to undergo
fusion, the positively charged nuclei must come very close together (within
a distance of the order of 10~* m), which requires sufficient kinetic energy
to overcome the electrostatic coulomb repulsion.

Fig. 6 presents the cross sections, as a function of the incident particle
energy, for the nuclear fusion reactions of hydrogen given in (4.1). They
are appreciable only for incident particles with energies above at least 10
keV. This means that the plasma must have temperatures of the order of
108 K. Other fusion reactions involving nuclei with larger values of the
atomic number Z require even higher energies to overcome the coulomb
repulsion.

Many confinement schemes have been suggested and built that use
some type of magnetic field configuration. The main experimental ef-
forts for achieving plasma conditions for fusion can be grouped into four
approaches: (1) open systems (magnetic mirrors); (2) closed systems
(toruses); (3) theta pinch devices; and (4) laser-pellet fusion.
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Fig. 6 Fusion cross sections, in barns (1 barn = 1072 m?2), as
a function of energy, in keV, for the hydrogen reactions given in

(4.1).

The mirror machines are linear devices with an axial magnetic field to
keep the particles away from the wall, and with magnetic mirrors (regions
of converging magnetic field lines) at the ends to reduce the number of
particles escaping at each end (see Fig. 7).

The four principal toroidal systems differ in the way they twist the
magnetic field lines. They are the stellarators (in which the twisting of the
field lines is produced by external helical conductors), the tokamaks (in
which a poloidal field produced by an internal plasma current is superposed
on the toroidal field), the multipoles (which have their magnetic field lines
primarily in the poloidal direction and produced by internal conductors),
and the Astron (in which internal relativistic particle beams modify a
mirror field into a form having stable confinement regions with closed
lines of force).
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Fig. 7 Schematic illustration showing the magnetic field con-
figurations of some basic schemes for plasma confinement.
(a) Magnetic mirror system. (b) Tokamak. (c) Linear 6 pinch.
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Fig. 8 Illustrating laser-pellet fusion.

In the theta pinch devices, a plasma current in the azimuthal direction
and a longitudinal magnetic field produce a force that compresses the
cross-sectional area of the plasma.

Finally, the scheme to ignite a fusion reaction using pulsed lasers
consists in focusing converging laser beams on a small pellet of solid
deuterium-tritium material producing a rapid symmetrical heating of the
plasma, followed by an expansion of the heated surrounding shell and
compression of the pellet core by the recoil (see Fig. 8).

In addition to the plasma heating and confinement problems, atten-
tion must be given to the energy loss by radiation (predominantly electron-
ion bremsstrahlung and electron cyclotron radiation). These radiation
losses constitute a serious problem in maintaining a self-sustaining fusion
device. To generate more energy by fusion than is required to heat and
confine the plasma, and to supply the radiation losses, a condition is im-
posed on the plasma density (n) and the confinement time (7), as well
as on the temperature. It turns out that the product n7 must be higher
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Fig. 9 Schematic diagram illustrating the basic principle of
the magnetohydrodynamic energy generator.

than a minimum value, which, for example, is estimated to be about
10%° m—3s for deuterium-tritium (with 7' > 107 K) and about 10%?> m—3s
for deuterium-deuterium (with 7' > 10® K). This condition is known as the
Lawson criterion. Consequently, controlled fusion can be achieved either
by having a large number density of hot plasma particles confined for a
short period of time, or by having a smaller number density of particles
confined for a longer period of time. For this reason some fusion exper-
iments operate in the regime of high density and short confinement time
utilizing a pulsed mode of operation.

Since controlled nuclear fusion can provide an almost limitless source
of energy, it is certainly one of the most important scientific challenges
man faces today, and its achievement will cause an enormous impact on
our civilization.

4.2 The Magnetohydrodynamic Generator

The magnetohydrodynamic (MHD) energy generator converts the
kinetic energy of a dense plasma flowing across a magnetic field into
electrical energy. While a rigorous discussion of this device becomes quite
involved, its basic principle is quite simple.
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Suppose that a plasma flows with velocity u (along the z direction)
across an applied magnetic field B (in the y direction), as shown schemat-
ically in Fig. 9. The Lorentz force g(u x B) causes the ions to drift
upward (in the z direction) and the electrons downward, so that if elec-
trodes are placed in the walls of the channel and connected to an external
circuit, then a current density J = 0E;,q = ocu x B (where ¢ denotes the
plasma conductivity and E;,q is the induced electric field) flows across the
plasma stream in the z direction. This current density, in turn, produces
a force density J x B (in the z direction), which decelerates the flowing
plasma. The net result is the conversion of some of the plasma kinetic
energy entering the generator into electrical energy that can be applied to
an external load. This process has the advantage that it operates without
the inefliciency of a heat cycle.

4.3 Plasma Propulsion

Plasma propulsion systems for rocket engines are based on a process
that converts electrical energy into plasma kinetic energy, that is, the
reverse of the MHD generator process.

The plasma rocket engine is accomplished by having both electric
and magnetic fields applied perpendicular to each other, across a plasma
(see Fig. 10). The resulting current density J flowing in the direction of
the applied E field gives rise to a J x B force, per unit volume, which
accelerates the plasma out of the rocket. The associated reaction force,
due to conservation of momentum, accelerates the rocket in the direction
opposite to the plasma flow. The ejected plasma must always be neutral,
otherwise the rocket will become charged to a large electric potential.

An important characteristic of plasma propulsion systems is that they
are capable of generating a certain amount of thrust (although small) over
a very long time period, contrarily to chemical propulsion systems. Since
the force the plasma rocket engine provides is too modest to overcome the
Earth’s gravitational field, chemical rockets must still be used as the first
stage of any plasma propulsion system in order to produce the extremely
high values of thrust required to leave the Earth’s gravity. The plasma
rocket engine is appropriate for long interplanetary and interstellar space
travel.

4.4 Other Plasma Devices

A number of other practical applications of plasma physics should be



24 FUNDAMENTALS OF PLASMA PHYSICS

Fig. 10 Schematic diagram illustrating the basic principle of
the plasma rocket engine.

mentioned in addition to controlled fusion, MHD energy conversion, and
plasma propulsion.

The thermionic energy converter is a device that utilizes a cesium
plasma between two electrodes to convert thermal energy into electrical
energy. The cathode is heated, so that electrons are emitted from the sur-
face, and the anode is cooled. Due to the presence of the cesium plasma,
very large electrical currents can be produced at the expense of a signifi-
cant fraction of the thermal energy applied to the cathode.

Examples of applications involving gas discharges include the ordi-
nary fluorescent tubes and neon lights used for illumination and for signs,
mercury rectifiers, spark gaps, a number of specialized tubes like the hy-
drogen thyratrons and the ignitrons, which are used for switching, and
the arc discharges or plasma jets, which are the source of temperatures
two or more times as high as the hottest gas flames and which are used in
metallurgy for cutting, melting, and welding metals.

Two major applications in the area of communications are the long-
distance radio wave propagation by reflection in the ionospheric plasma
and the communication with a space vehicle through the plasma layer that
forms around it during the reentry period into the Earth’s atmosphere.

Finally, there is the realm of solid state plasmas. If the usual lattice
temperature is considered, it can be easily verified that solids do not satisfy
the plasma shielding criterion Np > 1. Nevertheless, quantum mechani-
cal effects, associated with the uncertainty principle, give some solids an
effective electron temperature high enough to make Np sufficiently large,
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so that plasma behavior can be observed. It has been demonstrated that
the free electrons and holes in appropriate solid materials, particularly
semiconductors, exhibit the same sort of oscillations and instabilities as
gaseous plasmas. The most likely application of solid state plasmas is in
electronic circuitry.

5. THEORETICAL DESCRIPTION OF PLASMA PHENOMENA = 0

The dynamic behavior of a plasma is governed by the interaction
between the plasma particles and the internal fields produced by the par-
ticle themselves, and the externally applied fields. As the charged particles
in a plasma move around, they can generate local concentrations of posi-
tive or negative charges, which give rise to electric fields. Their motion can
also generate electric currents and therefore magnetic fields. The particle
dynamics in a plasma is adequately described by the laws of classical (non-
quantum) mechanics. Generally, the momentum of the plasma particles
is high and the density low enough to keep their De Broglie wavelengths
much smaller than the interparticle distance. Quantum effects turn out
to be important only at very high densities and very low temperatures.

5.1 General Considerations on a Self-Consistent Formulation

The interaction of charged particles with electromagnetic fields is
governed by the Lorentz force. For a typical particle of charge ¢ and mass
m, moving with velocity v, in the presence of electric (E) and magnetic
induction (B) fields, the equation of motion is

%—% =q(E+v xB) (5.1)

where p = mv denotes the particle momentum. It is conceivable, at least
in principle, to describe the dynamics of a plasma by solving the equations
of motion for each particle in the plasma under the combined influence of
the externally applied fields and the internal fields generated by all the
other plasma particles.

If the total number of particles is NV, we will have N nonlinear coupled
differential equations of motion to solve simultaneously. A self-consistent
formulation must be used since the fields and the particle trajectories are
intrinsically coupled, that is, the internal fields associated with the
presence and motion of the plasma particles influence their motions,
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which, in turn, modify the internal fields. The electromagnetic fields obey

Mazxwell equations
0B

VxE=-"7 (5.2)

OE
VxB= ,,LO(J + 607%—> (5.3)
V-E-= Eﬁ (5.4)
V.B=0 (5.5)

where p, J, €,, and u, denote, respectively, the total charge density, the
total electric current density, the electric permittivity, and the magnetic
permeability of free space. The plasma charge and current densities can
be expressed, respectively, as

1
Pr=5v Z 4 (5.6)

1
Jp = W z q;V; (57)

where the summation is over all charged particles contained inside a suit-
ably chosen small volume element 6V. Note that since we are dealing with
a discrete distribution of charges and therefore also of current densities,
pp and J, should actually be expressed in terms of Dirac delta functions.
If point charges are considered, the problem gets even more complicated
because the fields become singular at the particle positions. However,
if 6V is chosen big enough to contain a fairly large number of particles,
then (5.6) and (5.7) should give smooth functions for p, and J, which are
suitable for analytical calculations.

Although this self-consistent approach is conceivable in principle, it
cannot be carried out in practice without introducing some averaging
scheme, in view of the extremely large number of variables involved. Ac-
cording to the laws of classical mechanics, in order to determine the posi-
tion and velocity of each particle in the plasma as a function of time under
the action of known forces, it is necessary to know the initial position and
velocity of each particle. For a system consisting of a very large num-
ber of interacting particles these initial conditions are obviously unknown.
Furthermore, in order to explain and predict the macroscopic phenomena
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observed in nature and in the laboratory, it is not of interest to know the
detailed individual motion of each particle, since the observable macro-
scopic properties of a plasma are due to the average collective behavior
of a large number of particles. We must discard, therefore, the possibility
of analytically solving the set of simultaneous equations of motion for a
large number of interacting particles.

With the advent of large and fast computers, it is nowadays possi-
ble to numerically follow the nonlinear motion of many particles in their
own internal self-consistent and externally applied fields and, using some
averaging or smoothing scheme for the internal fields, to determine the
macroscopic variables from the individual particle motion properties. This
method, known as plasma computer simulation via particles, provides a
profound view of plasma phenomena in the microscopic and macroscopic
levels, and complements the analytical theoretical models and experimen-
tal observations.

5.2 Theoretical Approaches

For the theoretical description of plasma phenomena, there are basi-
cally four principal approaches with several different choices of approxi-
mations, each of which applies to different circumstances.

One useful approximation, known as particle orbit theory, consists in
studying the motion of each charged particle in the presence of specified
electric and magnetic fields. This approach is not really plasma theory, but
rather the dynamics of a charged particle in given fields. Nevertheless it is
important, since it provides some physical insight for a better understand-
ing of the dynamic processes in plasmas. It has proven to be useful for
predicting the behavior of very low density plasmas, which is determined
primarily by the interaction of the particles with external fields. This
is the case, for example, of the highly rarefied plasmas of the Van Allen
radiation belts and the solar corona, as well as of cosmic rays, high energy
accelerators, and cathode ray tubes.

Since a plasma consists of a very large number of interacting parti-
cles, in order to provide a macroscopic description of plasma phenomena
it is appropriate to adopt a statistical approach. This implies a great
reduction in the amount of information to be handled. In the kinetic
theory statistical description it is necessary to know only the distribution
function for the system of particles under consideration. The problem con-
sists in solving the appropriate kinetic equations that govern the evolution
of the distribution function in phase space. One example of differential
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kinetic equation is the Viasov equation, in which the interaction between
the charged particles is described by smeared out internal electromagnetic
fields consistent with the distributions of electric charge density and cur-
rent density inside the plasma, and the effects of short-range correlations
(close collisions) are neglected.

When collisions between the plasma particles are very frequent, so
that each species is able to maintain a local equilibrium distribution func-
tion, then each species can be treated as a fluid described by a local density,
local macroscopic velocity and local temperature. In this case the plasma
is treated as a mixture of two or more interpenetrating fluids. This theory
is called two-fluid or many-fluid theory, depending on the number of differ-
ent species considered. In addition to the usual electrodynamic equations,
there is a set of hydrodynamic equations expressing conservation of mass,
of momentum, and of energy for each particle species in the plasma.

Another approach consists in treating the whole plasma as a single
conducting fluid using lumped macroscopic variables and their correspond-
ing hydrodynamic conservation equations. This theory is usually referred
to as the one-fluid theory. An appropriately simplified form of this the-
ory, applicable to the study of very low frequency phenomena in highly
conducting fluids immersed in magnetic fields, is usually referred to as the
magnetohydrodynamic (MHD) approzimation.

PROBLEMS R

1.1 The interatomic or intermolecular forces are usually represented in
terms of a potential energy function V(r) such that F(r) = —dV(r)/dr.
For neutral particles, at large internuclear distances, there is a slight at-
tractive potential between the particles called the van der Waals potential
(which is the long-range part of the Lennard-Jones potential). For like
atoms or molecules in like states the van der Waals interaction potential
can be represented by

V(r) = =Cl(a,/7)® Ry

where C is a constant (which depends on the type of particle), a, is
the Bohr radius (0.0529 nm), and Ry denotes the Rydberg energy unit
(13.605 eV). Calculate the van der Waals force of attraction between two
hydrogen molecules (for which C' = 24.0), and compare with the coulomb
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Fig. 11 One-dimensional perturbation in which the electrons,
in the (y,z) plane, are displaced by a small amount x.

force between a proton and an electron at a distance r = Na,, where
N >1.

1.2 Consider an initially uniform plasma in which the electron and ion
number densities are each equal to n. By some external means, let a one-
dimensional perturbation occur such that the electrons in an infinite plane
(the (y, z) plane) are displaced by a small amount z, as indicated in Fig.
11.

(a) Using Gauss’s law, show that the electric field that appears across
the perturbed plane is given by

E= (ﬁ—e—>x
€o
(b) Show that the equation of motion (Newton’s second law) for each
electron, under the action of this electric field, is

d2z+(ne2>x:0

2 " \me,

Verify that this is the equation of a harmonic oscillator of frequency

2 1/2

("e )
Wpe =
P me,
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1.3 (a) Calculate the amount of energy released by the fusion of 1 g of
deuterium according to the nuclear reactions indicated in (4.1), consider-
ing as end products *He, ' H, and 'n. Assume that the two possible results
shown in (4.1), for the reaction 2H + 2H, occur with equal probabilities.
(b) How much energy can be released from the fusion of all the deuterium
that exists in one liter of ordinary water? Compare this much energy with
the energy obtained from the combustion of one liter of gasoline.

1.4 Calculate the coulomb repulsion force and the associated electric
potential energy due to the coulomb interaction of two deuterium nuclei
when brought together at a distance of 1074 m. What temperature must
have the nuclei in a deuterium plasma, if their average thermal kinetic
energy is to be equal to this electric potential energy?

1.5 In a MHD generator a plasma of conductivity o is driven with velocity
u (in the z direction) across a magnetic field B (in the y direction). Two
electrode plates, each of area A and separated by a distance d, are placed
oriented parallel to the (x,y) plane, as shown in Fig. 9 of Chapter 1.

(a) Show that the open-circuit electric potential difference between the
two electrode plates is given by

¢ = Bud

(b) If an external load of resistance Ry, is connected between the electrodes,
show that the current that flows is given by
Bud

where R, denotes the internal plasma resistance.
(c) Show that the power delivered to the load is

BzuzdzRL
L= """
(R + Ry)?
Verify that this power has a maximum (dPy/dR; = 0) when Ry = R,

and show that the maximum power that can be delivered to the load is
given by

1
PLomaz = ZB2u2dAo

(d) Determine numerical results for items (a), (b), and (c) when B =1
tesla, v = 100 m/s, ¢ = 100 mho/m, d = 0.1 m, and A = 1 m?.
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1.6 Consider a rocket once it is beyond the Earth’s gravitational field.
Let:
v = constant velocity of the exhaust gas relative to the rocket.
u(t) = instantaneous velocity of the rocket.
M (t) = instantaneous total mass of the rocket.
—dM /dt = constant time rate of decrease of M(t), that is, the mass
expelled per unit time.

(a) Verify that the equation of motion (Newton'’s second law) for the rocket
is

d dM

M @Qu®)] = —-lv - u(t)]

and show that the instantaneous acceleration of the rocket is

du v dM

dt — M) dt
(b) Integrate the equation of motion to show that
u(t) = u(to) + v In [M(t,)/M(2))

(c) If the rocket burns for a time interval §t =t —t, and if M (t) < M(t,),
show that the initial acceleration of the rocket is

(dU) _ v M(t)-M@E) v
to M

dt (to) ot ~ ot

(d) Calculate numerically (du/dt):, and u(t) for a chemical rocket with
v = 10> m/s and 6t = 10 s; and also for a plasma propulsion system
with v = 10* m/s and §t = 100 days. For the calculation of u(t) consider
u(t,) =0 and M(t,) =10 M(t).

1.7 Using Maxwell equations (5.3) and (5.4) derive the charge conserva-
tion equation

Op _
E-I—V-J—O

This result shows that conservation of electric charge is already implied
by Maxwell equations.

1.8 From Maxwell curl equation (5.2) derive the equation

V - B = constant
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Therefore, (5.5) can be considered as an initial condition for (5.2) since,
if V- B = 0 at a given initial time, then (5.2) implies that this condition
will remain satisfied for all subsequent times.

1.9 Using Maxwell equations derive the following energy conservation law
for electromagnetic fields, known as Poynting’s theorem,

%/ (%6E2+%/LH2)d3r+7{
14

. = — . 37~
S(ExH) ds / (J-E)d

\%

for a linear isotropic medium, for which D = ¢E and B = pH. Give
the physical interpretation for each term in this equation. What are the
physical dimensions of these terms?

1.10 Consider the following Maxwell equations:

JE
VxB= ﬂo(']t +€o—5t—)

oD

H-= —

V x J+ 5
V-E=2
€o
V-D=p

For a general medium for which
D=¢E+P

where P is the polarization vector and M is the magnetization vector,
show that the total electric charge density (p;) and current density (J)
are given by

pr=p—V-P
J —J+8—P+V><M
b= ot

Explain why E and B are considered as fundamental fields, whereas D
and H are partial fields.



CHARGED PARTICLE MOTION
IN CONSTANT AND UNIFORM
ELECTROMAGNETIC FIELDS

1. INTRODUCTION

In this and in the following two chapters we investigate the motion of
charged particles in the presence of electric and magnetic fields known as
functions of position and time. Thus, the electric and magnetic fields are
assumed to be prescribed and are not affected by the charged particles.
This chapter, in particular, considers the fields to be constant in time and
spatially uniform. This subject is considered in some detail, since many
of the more complex situations, considered in Chapters 3 and 4, can be
treated as perturbations to this problem.

The study of the motion of charged particles in specified fields is
important, since it provides a good physical insight for understanding
some of the dynamic processes in plasmas. It also facilitates obtaining in-
formation on some macroscopic phenomena that are due to the collective
behavior of a large number of particles. Not all of the components of the
detailed microscopic particle motion contribute to macroscopic effects, but
it is possible to isolate the components of the individual motion that con-
tribute to the collective plasma behavior. Nevertheless, the macroscopic
parameters can be obtained much more easily and conveniently from the
macroscopic transport equations presented in Chapters 8 and 9.

The equation of motion for a particle of charge g, under the action of
the Lorentz force F due to electric (E) and magnetic induction (B) fields,
can be written as
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dp

dt
where p represents the momentum of the particle and v its velocity.
This equation is relativistically correct if we take

=F=¢(E+vxB) (1.1)

p =ymv (1.2)

where m is the rest mass of the particle and v is the so-called Lorentz
factor defined by
y=(1—-v?/c?)1/? (1.3)

where c is the speed of light in vacuum. In the relativistic case, (1.1) can
also be written in the form

C;—:+q<v)(v-E):q(E-|—va) (1.4)

noting that the time rate of change of the total relativistic energy
(U = ymc?) is given by dU/dt = q(v-E) and that dp/dt = d(Uv/c?)/dt.

In many situations of practical interest, however, the term v?/c? is
negligible compared to unity. For v?/c? < 1 we have vy ~ 1 and m can
be considered constant (independent of v), so that (1.4) reduces to the
following nonrelativistic expression

mé—: = q¢(E +v x B) (1.5)

If the velocity obtained from (1.5) does not satisfy the condition v? < ¢2,
then the corresponding result is not valid and the relativistic expression
(1.4) must be used instead of (1.5). Relativistic effects become important
only for highly energetic particles (a 1 MeV proton, for instance, has a
velocity of 1.4 x 107m/s, with v?/c? ~ 0.002). For the situations to be
considered here it is assumed that the restriction v? < c?, implicit in
(1.5), is not violated. Also, all radiation effects are neglected.

2. ENERGY CONSERVATION

In the absence of an electric field (E = 0), the equation of motion
(1.5) reduces to
m— = ¢q(v x B) (2.1)

Since the magnetic force is perpendicular to v, it does no work on the
particle. Taking the dot product of (2.1) with v and noting that for any
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vector v, we have (v x B) - v = 0, we obtain

dv d

which shows that the particle kinetic energy (mv?/2) and the magnitude of
its velocity (speed v) are both constants . Therefore, a static magnetic field
does not change the particle kinetic energy. This result is valid whatever
the spatial dependence of the magnetic flux density B. However, if B
varies with time, then, according to Maxwell equations, an electric field
such that V x E = —9B/0t is also present that does work on the particle
changing its kinetic energy.

When both magnetostatic and electrostatic fields are present, we

obtain from (1.5)

%(%mvz) =q(E-v) (2.3)

Since V x E = 0, we can express the electrostatic field in terms of the
electrostatic potential according to E = —V¢, so that

d dr do

7 (amv®) = —a(V9) - v = —¢(V9) - = = —g— (2.4)
This result can be rearranged in the following conservation form:
d
—(3mv® 4+ ¢¢) =0 (2.5)

dt

which shows that the sum of the particle kinetic and electric potential
energies remains constant in the presence of static electromagnetic fields.
Note that the electric potential ¢ can be considered as the potential energy
per unit charge.

When the fields are time-dependent we have V x E # 0 and E is not
the gradient of a scalar function. But, since V - B = 0, we can define a
magnetic vector potential A by B =V X A and write (1.5.2) (Eq. 5.2 in
Chapter 1) as

VxE+a—B=VxE+—8—(VxA):Vx(E+—a~é):0 (2.6)

ot ot ot
Hence, we can express the electric field in the form
0A
E=-V¢- wr (2.7)

In this case the system is not conservative in the usual sense and there is
no energy integral, but the analysis may be performed using a Lagrangian
function L for a charged particle in electromagnetic fields, defined by
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L=1im?-U (2.8)

where U is a velocity-dependent potential energy given by
U=q(¢—v-A) (2.9)

The energy considerations presented in this section assume that the
particle energy changes only as a result of the work done by the fields.
This assumption is not strictly correct since every charged particle when
accelerated irradiates energy in the form of electromagnetic waves. For
the situations to be considered here this effect is usually small and can be
neglected.

3. UNIFORM ELECTROSTATIC FIELD A

According to (1.1) the motion of a charged particle in an electric field
obeys the following differential equation:

dp

=qE 1
- =4 (3.1)
For a constant E field, (3.1) can be integrated directly giving

p(t) = ¢Et + p, (3.2)

where p, = p(0) denotes the initial particle momentum. Using the non-

relativistic expression
dr

= = _— 3-3
p=mv=m_ (3-3)
and performing a second integration in (3.2), we obtain the following

expression for the particle position as a function of time:

E
r(t) = %(%)ﬁ SVt 4T, (3.4)

where r, denotes the particle initial position and v, its initial velocity.
Therefore, the particle moves with a constant acceleration, gE/m, in the
direction of E if ¢ > 0, and in the opposite direction if ¢ < 0. In a direction
perpendicular to the electric field there is no acceleration and the particle
state of motion remains unchanged.
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4. UNIFORM MAGNETOSTATIC FIELD RS

4.1 Formal Solution of the Equation of Motion

For a particle of charge ¢ and mass m, moving with velocity v in a
region of space where there is only a magnetic induction B (no electric
field E), the equation of motion is

dv
mo = q(v x B) (4.1)

It is convenient to separate v in components parallel (v,) and perpendic-
ular (v ) to the magnetic field,

V=V, +V, (4.2)

as indicated in Fig. 1. Substituting (4.2) into (4.1) and noting that
(v x B =0) we obtain

== T (vixB) (4.3)

Since the term (v, x B) is perpendicular to B, the parallel component

equation can be written as
dv,

=0 4.4
and the perpendicular component equation as
dvi ¢
—_— B 4,
% = ., (VL xB) (4.5)

Eq. (4.4) shows that the particle velocity along B does not change
and is equal to the particle initial velocity. For motion in the plane per-
pendicular to B, we can write (4.5) in the form

—dt_ = Qc XV (46)
where €. is a vector defined by
B . .
a,--B_ldBg _ga, (4.7)
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Fig. 1 Decomposition of the velocity vector into components
parallel (v;) and perpendicular (v, ) to the magnetic field.

Thus, ﬁc points in the direction of B for a negatively charged particle
(¢ < 0) and in the opposite direction for a positively charged particle
(g > 0). Its magnitude Q. is always positive (2, = |g| B/m). The unit
vector ﬁc points along €2..

Since €. is constant and, from conservation of kinetic energy, v, (the
magnitude of v ) is also constant, (4.6) shows that the particle acceler-
ation is constant in magnitude and its direction is perpendicular to both
v, and B. Thus, this acceleration corresponds to a rotation of the veloc-
ity vector v, in the plane perpendicular to B with the constant angular
velocity €.. We can integrate (4.6) directly, noting that €. is constant
and taking v = dr./dt, to obtain

v, =Q. Xr, (4.8)

where the vector r. is interpreted as the particle position vector with re-
spect to a point G (the center of gyration) in the plane perpendicular to
B which contains the particle. Since the particle speed v, is constant,
the magnitude 7. of the position vector is also constant. Therefore, (4.8)
shows that the velocity v corresponds to a rotation of the position vector
r. about the point G in the plane perpendicular to B with constant angu-
lar velocity €2.. The component of the motion in the plane perpendicular
to B is therefore a circle of radius .. The instantaneous center of gyration
of the particle (the point G at the distance r. from the particle) is called the
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Fig. 2 Circular motion of a charged particle about the guiding
center in a uniform magnetostatic field.

gquiding center. This circular motion about the guiding center is illustrated
in Fig. 2. R

Note that according to the definition of €., given in (4.7), Q.
always points in the same direction as the particle angular momentum
vector (r. X p), irrespective of its charge.

The resulting trajectory of the particle is given by the superposition
of a uniform motion along B (with the constant velocity v,) and a circular
motion in the plane normal to B (with the constant speed v, ). Hence,
the particle describes a heliz (see Fig. 3). The angle between B and the
direction of motion of the particle is called the pitch angle and is given by

o =sin"? (%) = tan™* (%) (4.9)

where v is the total speed of the particle (v = v7 4+ v3). When v, = 0
but v; # 0, we have a = 7/2 and the particle trajectory is a circle in the
plane normal to B. On the other hand, when v, = 0 but v, # 0, we have
a = 0 and the particle moves along B with the velocity v,.

The magnitude of the angular velocity,

_ld B

Qe (4.10)
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is known as the angular frequency of gyration, and is also called the gyro-
frequency, or cyclotron frequency or Larmor frequency. For an electron
lgl =1.602 x 107° coulomb and m = 9.109 x 1073! kg, so that

Qc(electron) = 1.76 x 10'*B  (rad/s) (4.11)

with B in tesla (or, equivalently, weber/m?). Similarly, for a proton
m = 1.673 x 10727 kg, so that

Q.(proton) = 9.58 x 10°B  (rad/s) (4.12)

The radius of the circular orbit, given by

V1 muvy
r.—=-—-— =
Q. lq B

(4.13)

is called the radius of gyration, or gyroradius, or cyclotron radius, or
Larmor radius. It is important to note that €2, is directly proportional
to B. Consequently, as B increases, the gyrofrequency increases and the
radius decreases. Also, the smaller the particle mass, the larger will be
its gyrofrequency and the smaller its gyroradius. Multiplying (4.13) by B
gives

Br, = muL = PL
lq| lq|

which shows that the magnitude of B times the particle gyroradius is equal
to the particle momentum per unit charge. This quantity is often called
the magnetic rigidity.

(4.14)

4.2 Solution in Cartesian Coordinates

The treatment presented so far in this section was not related to any
particular frame of reference. Consider now a Cartesian coordinate system
(x,y, z) such that B = Bz. In this case, the cross product between v and
B can be written as

~ ~ ~

Xy z
vxB=det|v, vy, v,|=B(v,X—v,y) (4.15)
0 0 B

and the equation of motion (4.1) becomes

dv _¢B

- = R—(vyﬁ —0,Y) = £Q (v, X — v,Y) (4.16)
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Fig. 3 Helicoidal trajectory of a positively charged particle in
a uniform magnetostatic field.

The (+) sign in front of 2, applies to a positively charged particle (¢ > 0)
and the (—) sign to a negatively charged particle (¢ < 0), since Q. is
always positive, according to its definition given in (4.10). In what follows
we shall consider a positively charged particle. The results for a negative
charge can be obtained by changing the sign of (2. in the results for the
positive charge.

The Cartesian components of (4.16) are (for ¢ > 0)

dvy
E = Qc’l)y (417)
dvy

dv,

=0 (4.19)

The last of these equations gives v,(t) = v,(0) = v, which is the initial
value of the velocity component parallel to B. To obtain the solution of
(4.17) and (4.18), we take the derivative of (4.17) with respect to time and
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substitute this result into (4.18), getting

d?v,
dt?

+Q%, =0 (4.20)

This is the homogeneous differential equation for a harmonic oscillator of
frequency 2., whose solution is

v (t) = vy sin(Qt +6,) (4.21)

where v is the constant speed of the particle in the (z,y) plane (normal
to B) and 6, is a constant of integration that depends on the relation
between the initial velocities v;(0) and v, (0), according to

tan(d,) = v;(0)/vy(0) (4.22)

To determine v, (t) we substitute (4.21) in the left-hand side of (4.17),
obtaining
vy(t) = vy cos(Qt + 6,) (4.23)

Note that v2 +v2 = v}. The equations for the components of v can be
further integrated with respect to time, yielding

z(t) = —;’]—i cos(Qet + 0,) + X, (4.24)
AR
y(t) = O sin(Qct + 6,) + Y, (4.25)

where we have defined

Xy =20+ “5% cos(6,) (4.27)
Y, =y, — % sin(6,) (4.28)

The vector r = z,X + y,¥Y + 20% gives the initial particle position. From
(4.24) and (4.25) we see that

(SB - Xo)2 + (y - Yo>2 = (UJ_/QC)2 = Tg (4'29)
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Y,

v

Fig. 4 Circular trajectory of a charged particle in a uniform and
constant B field (directed out of the paper), and the direction of
the associated electric current.

The particle trajectory in the plane normal to B is therefore a circle with
center at (X,,Y,) and radius equal to (v /€Q.). The motion of the point
[Xo, Yo, 2(t)], at the instantaneous center of gyration, corresponds to the
trajectory of the guiding center. Thus, the guiding center moves with
constant velocity v, along B.

In the (z,y) plane, the argument ¢(t), defined by

-1 (y - Y:))
(x — X,)

decreases with time for a positively charged particle. For a magnetic field
pointing towards the observer, a positive charge describes a circle in the
clockwise direction. For a negatively charged particle {1, must be replaced
by —. in the results of this subsection. Hence, (4.30) shows that for a
negative charge ¢(t) increases with time and the particle moves in a circle
in the counterclockwise direction, as shown in Fig. 4. The resulting parti-
cle motion is a cylindrical heliz of constant pitch angle. Fig. 5 shows the
parameters of the helix with reference to a Cartesian coordinate system.

#(t) = tan =—(Qt+6,) ; ¢o=-0, (4.30)
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Fig. 5 Parameters of the helicoidal trajectory of a positively
charged particle with reference to a Cartesian coordinate system.

4.3 Magnetic Moment

To the circular motion of a charged particle in a magnetic field there
is associated a circulating electric current /. This current flows in the
clockwise direction for a B field pointing towards the observer (Fig. 4).
From Ampere’s law, the direction of the magnetic field associated with
this circulating current is given by the right-hand rule, i.e., with the right
thumb pointing in the direction of the current I, the right fingers curl in the
direction of the associated magnetic field. Therefore, the B field produced
by the circular motion of a charged particle is opposite to the externally
applied B field inside the particle orbit, but in the same direction outside
the orbit. The magnetic field generated by the ring current I, at distances
much larger than r., is similar to that of a dipole (Fig. 6).
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Fig. 6 The magnetic field generated by a small ring current is
that of a magnetic dipole.

Since a plasma is a collection of charged particles, it possesses therefore
diamagnetic properties.

The magnetic moment m associated with the circulating current is
normal to the area A bounded by the particle orbit and points in the
direction opposite to the externally applied B field, as shown in Fig. 7.
Its magnitude is given by

|m| = (current) - (orbital area) =IA (4.31)

This circulating current corresponds to a flow of charge and is given
by

lal gl Q&
I=4 - .
.= 2 (4.32)

where T, = 27/}, is the period of the particle orbit, known as the cy-
clotron period or Larmor period. The magnitude of m is therefore

q] 2
|m| = | |27r mre = 1|q| Qer? (4.33)
Using the relations Q. = |g| B/m and 7. = v, /Q¢, (4.33) becomes
1 2
Im| = ami Wy (4.34)

B B
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Fig. 7 Magnetic moment m associated with a circulating
current due to the circular motion of a charged particle in an
external B field.

where W, denotes the part of the particle kinetic energy associated with
the transverse velocity v, . Thus, in vector form,

Wy

4.4 Magnetization Current

Consider now a collection of charged particles, positive and negative
in equal numbers (in order to have no internal macroscopic electrostatic
fields), instead of just one single particle. For instance, consider the case
of a low-density plasma in which the particle collisions can be neglected
(collisionless plasma). The condition for this is that the average time
between collisions be much greater than the cyclotron period. This con-
dition is fulfilled for many space plasmas, for example. For a collisionless
plasma in an external magnetic field, the magnetic moments due to the
orbital motion of the charged particles act together, giving rise to a re-
sultant magnetic field that may be strong enough to appreciably change
the externally applied B field. The magnetic field produced by the orbital
motion of the charged particles can be determined from the net electric
current density associated with their motion.
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Fig. 8 (a) Electric current orbits crossing the surface element
S bounded by the curve C, in a macroscopic volume containing
a large number of particles. (b) Positive direction of the vector
area A.

To calculate the resultant electric current density, let us consider a
macroscopic volume containing a large number of particles. Let S be
an element of area in this volume, bounded by the curve C, as shown
in Fig. 8(a). Orbits such as (1), which encircle the bounded surface only
once, contribute to the resultant current, whereas orbits such as (2),
which cross the surface twice, do not contribute to the net current. If
dl is an element of arc along the curve C, the number of orbits encir-
cling dl is given by nA - dl, where n is the number of orbits of cur-
rent I, per unit volume, and A is the vector area bounded by each or-
bit. The direction of A is that of the normal to the orbital area A, the
positive sense being related to the sense of circulation in the way the
linear motion of a right-hand screw is related to its rotary motion. Thus,
A points in the direction of the observer when I flows counterclockwise,
as shown in Fig. 8 (b). The net resultant current crossing S is therefore
given by the current encircling dl integrated along the curve C,

I, = f InA - dl (4.36)

Since m = TA, the magnetic moment, per unit volume, M (also called
the magnetization vector), is given by

M =nm =nlA (4.37)
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Hence, (4.36) can be written as
In:fM-dlzf(VxM)-dS (4.38)
S
where we have applied Stokes’s theorem. We may define an average mag-
netization current density, J s, crossing the surface S, by

I, = / Iy - dS (4.39)
S

Consequently, from (4.38) and (4.39) we obtain the magnetization current
density as
Jy=VxM (4.40)

where, from (4.37) and (4.35),

nW 1
M=rnm=—("5)B (4.41)
and nW denotes the kinetic energy, per unit volume, associated with the
transverse particle velocity.

The charge density pps associated with the magnetization current
density Jj; can be deduced from the equation of continuity,

%M | G 50 =0 (4.42)
ot
Since Jj; = V x M and since for any vector a, we have V - (V x a) =0,
it follows that the charge density pjs is constant.
In the following Maxwell equation,
OE
VxB =MO(J+60——>

= (4.43)

we can separate the total current density J into two parts: a magnetization
current density Jps and a current density J’ due to other sources,

J=Jy+J (4.44)

Expressing J s in terms of M, through (4.40), and substituting in (4.43),
we obtain

OE
VxB:,uo(VxM+J’+eo§) (4.45)
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which can be rearranged as

=J +e— (4.46)

0
) =T+

Vx(iB—M

Defining an effective magnetic field H by the relation

B = p,(H+ M) (4.47)
we can write (4.46) as
VXH:J'+60%E~) (4.48)

Thus, the effective magnetic field H is related to the current due to other
sources J’, in the way B is related to the total current J. Egs. (4.40) and
(4.47) constitute the basic relations for the classical treatment of magnetic
materials.
A simple linear relation between B and H exists when M is propor-
tional to B or H,
M= yx,,H (4.49)

where the constant x,, is called the magnetic susceptibility of the medium.
However, for a plasma we have seen that M o 1/B [see (4.41)], so that
the relation between H and B (or M) is not linear. Within this context
it is generally not convenient to treat a plasma as a magnetic medium.

5. UNIFORM ELECTROSTATIC AND MAGNETOSTATIC FIELDS "

5.1 Formal Solution of the Equation of Motion

We consider now the motion of a charged particle in the presence of
both electric and magnetic fields that are constant in time and spatially
uniform. The nonrelativistic equation of motion is

m(z—‘t’ =q(E+v x B) (5.1)

Taking components parallel and perpendicular to B,
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we can resolve (5.1) into two component equations:

m——= = qE, (5.4)

dv 1

S

Eq. (5.4) is similar to (3.1) and represents a motion with constant
acceleration gE; /m along the B field. Hence, according to (3.2) and (3.4),

=q(EL +v. xB) (5.5)

vy (t) = (%)t +v,(0) (5.6)
£ ) = 3(20)2 4,0 +1,00) 5.7)

To solve (5.5) it is convenient to separate v into two components,
vit)=vi(t)+vE (5.8)

where vg is a constant velocity in the plane normal to B. Hence, v/ re-
presents the particle velocity as seen by an observer in a frame of reference
moving with the constant velocity vg. Substituting (5.8) into (5.5), and
writing the component of the electric field perpendicular to B in the form
(see Fig. 9)

E, xB
El:—( LBQ )xB (5.9)
we obtain v E B
V_L _ ’ _ 1 X
m-_= = q(vL +VE — —pg— ) x B (5.10)

This equation shows that in a coordinate system moving with the constant

velocity
E 1 X B

VE =~ (5.11)

the particle motion in the plane normal to B is governed entirely by the
magnetic field, according to

dv’,
Mgt

=q(v/, x B) (5.12)

Thus, in this frame of reference, the electric field component E | is trans-
formed away, whereas the magnetic field is left unchanged. Eq. (5.12) is
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Fig. 9 Vector products appearing in Eq. (5.9) (ﬁ = B/B).

identical to (4.5) and implies that in the reference system moving with
the constant velocity vg, given by (5.11), the particle describes a circular
motion at the cyclotron frequency (2. with radius r.,

v =Q.xr, (5.13)

The results obtained so far indicate that the resulting particle motion
is described by a superposition of a circular motion in the plane normal to
B, with a uniform motion with the constant velocity vg perpendicular to
both B and E |, plus a uniform acceleration ¢E, /m along B. The particle
velocity can be expressed in vector form, independently of a coordinate
system, as
E 1 X B

B2
The first term in the right-hand side of (5.14) represents the cyclotron
circular motion, and the following ones represent, respectively, the drift
velocity of the guiding center (perpendicular to both E; and B), the
constant acceleration of the guiding center along B, and the initial velocity
parallel to B.

Note that the velocity vg is independent of the mass and of the
sign of the charge and therefore is the same for both positive and negative

E
v(t) = Q. x 1. + + qm” t+v,(0) (5.14)
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particles. It is usually called the plasma drift velocity or the electromag-
netic plasma drift. Since E; x B =0, (5.11) can also be written as

ExB
VE = 32

(5.15)

The resulting motion of the particle in the plane normal to B is, in
general, a cycloid, as shown in Fig. 10. The physical explanation for
this cycloidal motion is a follows. The electric force gE , acting simulta-
neously with the magnetic force, accelerates the particle so as to increase
or decrease its velocity, depending on the relative direction of the parti-
cle motion with respect to the direction of E; and on the charge sign.
According to (4.13) the radius of gyration increases with velocity, and
hence the radius of curvature of the particle path varies under the action
of E . This results in a cycloidal trajectory with a net drift in the direc-
tion perpendicular to both E and B. Different trajectories are obtained,
depending on the initial conditions and on the magnitude of the applied
electric and magnetic fields.

The ions are much more massive than the electrons, and therefore
the Larmor radius for ions is correspondingly greater and the Larmor
frequency correspondingly smaller than for electrons. Consequently, the
arcs of cycloid for ions are greater than for electrons, but there is a larger
number of arcs of cycloid per second for electrons, such that the drift
velocity is the same for both species.

In a collisionless plasma the drift velocity does not imply an electric
current, since both positive and negative particles move together. When
collisions between charged and neutral particles are important, this drift
gives rise to an electric current, since the ion-neutral collision frequency is
greater than the electron-neutral collision frequency, causing the ions to
move slower than the electrons. This current is normal to both E and B,
and is in the direction opposite to vg. It is known as the Hall current.

5.2 Solution in Cartesian Coordinates

Let us choose a Cartesian coordinate system with the z axis pointing
in the direction of B, so that

B = B2 (5.16)

E=EX+EYy+E.z (5.17)
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Fig. 10 Cycloidal trajectories described by ions and electrons in
crossed electric and magnetic fields. The electric field E acting
together with the magnetic flux density B gives rise to a drift
velocity in the direction given by E x B.

Using (4.15), the equation of motion (5.1) can be written as

d . S
2%:%W%+%Mmﬂ%—mﬁw+&d (5.18)

As before, we consider, in what follows, a positive charge. The results for
a negative charge can be obtained by changing the sign of €1, in the results
for the positive charge.

The z component of (5.18) can be integrated directly and gives the
same results expressed in (5.6) and (5.7). For the z and y components,
we first take the derivative of dv,/dt with respect to time and substitute
the expression for dv, /dt, which gives

d?v,
dt?
This is the inhomogeneous differential equation for a harmonic oscillator

of frequency €2.. Its solution is given by the sum of the homogeneous

equation solution, given in (4.21), with a particular solution (which is
clearly given by E,/B). Thus,

E
+ Q%y, = 02 gy (5.19)

vz (t) = v/ sin(Qct +6,) + % (5.20)
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where v/, and 6, are integration constants. The solution for vy(t) can be
obtained by substituting (5.20) directly into (5.18). Hence,

1 dv, E, B,
vy (t) = Q_c—dv? -5 = v cos(Qet +6,) — 3 (5.21)

Therefore, the velocity components v(t) and vy(t), in the plane perpen-
dicular to B, oscillate at the cyclotron frequency 2. and with amplitude
v/, . This motion is superposed to a constant drift velocity vg given by

=g = 22
VE=pX— 5V (5.22)
This expression corresponds to (5.11) when B = Bz.
One more integration of (5.20) and (5.21) gives the particle trajectory
in the (z,y) plane

!/
E
z(t) = U cos(Qt +0,) + =t + X, (5.23)
Q. B
IR _Es
y(t) = 9 sin(Qct + 0,) B t+Y, (5.24)

where X, and Y, are defined according to (4.27) and (4.28), but with v
replaced by v/ .

In summary, the motion of a charged particle in uniform electrostatic
and magnetostatic fields consists of three components:

(a) A constant acceleration ¢E,/m along the B field. If E;, = 0, the
particle moves along B with its initial velocity.

(b) A rotation in the plane normal to B at the cyclotron frequency
Q. = |q| B/m and radius . = v/ /Q..

(c) An electromagnetic drift velocity vg = (ExB)/B?, perpendicular
to both B and E.

6. DRIFT DUE TO AN EXTERNAL FORCE AR

If some additional force F (gravitational force or inertial force, if the
motion is considered in a noninertial system, for example) is present, the
equation of motion (1.5) must be modified to include this force,

m(ji—::q(E+v><B)+F (6.1)
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Fig. 11 Drift of a gyrating particle in crossed gravitational
and magnetic fields.

The effect of this force is, in a formal sense, analogous to the effect of
the electric field. We assume here that F is uniform and constant. In
analogy with the electromagnetic drift velocity vg, given in (5.15), the
drift produced by the force F having a component normal to B is given
by

_FxB

In the case of a uniform gravitational field, for example, we have F = mg,
where g is the acceleration due to gravity, and the drift velocity is given
by B
mg X
Vg = E g B2
This drift velocity depends on the ratio m/q and therefore it is in opposite
directions for particles of opposite charge (Fig. 11). We have seen that
in a coordinate system moving with the velocity vg, the electric field
component E is transformed away, leaving the magnetic field unchanged.
The gravitational field, however, cannot, in this context, be transformed
away.
In a collisionless plasma, associated with the gravitational drift ve-
locity there is an electric current density, Jg, in the direction of g x B,
which can be expressed as

(6.3)

1
Jg =5 D GiVai (6.4)
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where the summation is over all charged particles contained in a suitably
chosen small volume element §V. Using (6.3) we obtain

o= g (L) S = o5 65

%

where p,, denotes the total mass density of the charged particles.

A comment on the validity of (6.2) is appropriate here. Since we have
used the nonrelativistic equation of motion, there is a limitation on the
magnitude of the force F in order that (6.2) be applicable. The magnitude
of the transverse drift velocity is given by

'UD—q—BS

(6.6)

Hence, for the nonrelativistic equation of motion to be applicable we must

have P
1

or, if F is due to an electrostatic field E,

% Lc (6.8)

For a magnetic field of 1 tesla, for example, (6.2) may be used as long as
E, is much less than 10® volts/m. If these conditions are not satisfied,
the problem must be treated using the relativistic equation of motion.
Although the relativistic equation of motion can be integrated exactly for
constant B, E, and F, we shall not analyze this problem here. It is left as
an exercise for the reader.

PROBLEMS

2.1 Calculate the cyclotron frequency and the cyclotron radius for:
(a) An electron in the Earth’s ionosphere at 300 km altitude, where the
magnetic flux density B ~ 0.5 x 10~* tesla, considering that the electron
moves at the thermal velocity (kT'/m), with T' = 1000 K, where k is Boltz-
mann’s constant.

(b) A 50 MeV proton in the Earth’s inner Van Allen radiation belt at
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about 1.5 Rg (where Rg = 6370 km is the Earth’s radius) from the cen-
ter of the Earth in the equatorial plane, considering B ~ 107° tesla.

(c) A 1 MeV electron in the Earth’s outer Van Allen radiation belt at
about 4 Rg from the center of the Earth in the equatorial plane, where
B ~ 1077 tesla.

(d) A proton in the solar wind with a streaming velocity of 100 km/s, in
a magnetic flux density B ~ 1072 tesla.

(e) A 1 MeV proton in a sunspot region of the solar photosphere, consi-
dering B ~ 0.1 tesla.

2.2 For an electron and an oxygen ion OT in the Earth’s ionosphere,
at 300 km altitude in the equatorial plane, where B ~ 0.5 x 1074 tesla,
calculate:

(a) The gravitational drift velocity v,.

(b) the gravitational current density J,, considering ne = n; = 1012 m=3.
Assume that g is perpendicular to B.

2.3 Consider a particle of mass m and charge ¢ moving in the presence
of constant and uniform electromagnetic fields given by E = E,y and
B = B,z. Assuming that initially (¢ = 0) the particle is at rest at the
origin of a Cartesian coordinate system, show that it moves on the cycloid

() = % [t - Qi sin(Qct)]
y(t) = 72 -1~ cos()

Plot the trajectory of the particle in the z = 0 plane for ¢ > 0 and for
g < 0, and consider the cases when v, > vg, v, = vg, and v} < vg,
where v denotes the particle cyclotron motion velocity and vg is the
electromagnetic drift velocity.

2.4 In general the trajectory of a charged particle in crossed electric
and magnetic fields is a cycloid. Show that, if v = v,X, B = B,z, and
E = E,y, then for v, = E,/B, the path is a straight line. Explain how
this situation can be exploited to design a mass spectrometer.

2.5 Derive the relativistic equation of motion in the form (1.4), starting
from (1.1) and the relation (1.2).
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2.6 Write down, in vector form, the relativistic equation of motion for a
charged particle in the presence of a uniform magnetostatic field B = B,z,
and show that its Cartesian components are given by

i('yvm) = (%)’Uy

dt
d (9B,
a(’)’vy) = ( m >Uz
d
a('ﬂ)z) =0
where
_ 1
TR

and where § = v/c. Show that the velocity and trajectory of the charged
particle are given by the same formulas as in the nonrelativistic case, but
with Q. replaced by |q| B,/(m~).

2.7 Analyze the motion of a relativistic charged particle in the presence
of crossed electric (E) and magnetic (B) fields that are constant in time
and uniform in space. What coordinate transformation must be made in
order to transform away the transversal electric field? Derive equations
for the velocity and trajectory of the charged particle.



3

CHARGED PARTICLE MOTION
IN NONUNIFORM
MAGNETOSTATIC FIELDS

1. INTRODUCTION TR ]

When the fields are spatially nonuniform, or when they vary with
time, the integration of the equation of motion (2.1.1) (Eq. 1.1 in Chapter
2) can be a mathematical problem of great difficulty. In this case, since
the equation of motion is nonlinear, the theory may become extremely
involved, and rigorous analytic expressions for the charged particle trajec-
tory cannot, in general, be obtained in closed form. Numerical methods of
integration must be used in order to obtain all the details of the motion.

There is one particularly important case, however, in which it becomes
possible to obtain an approximate, but otherwise general, solution without
recourse to numerical integration, if the details of the particle motion
are not of interest. This is the case when the magnetic field is strong
and slowly varying in both space and time, and when the electric field is
weak. In a wide variety of situations of interest the fields are approzimately
constant and uniform, at least on the distance and time scales seen by
the particle during one gyration about the magnetic field. This is the
case for many laboratory plasmas, including those of relevance to the
problem of controlled thermonuclear reactions, and also for a great number
of astrophysical plasmas.

In this chapter we investigate the motion of a charged particle in a
static magnetic field slightly inhomogeneous in space. The word slightly
here means that the spatial variation of the magnetic field inside the par-
ticle orbit is small compared to the magnitude of B. In other words, we
shall consider only magnetostatic fields whose spatial change in a distance
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Fig. 1 The motion of a charged particle in a slightly inhomo-
geneous magnetic field is nearly circular.

of the order of the Larmor radius, r., is much smaller than the magnitude
of the field itself.

To specify more quantitatively this assumption, let § B represent the
spatial change in the magnitude of B in a distance of the order of r,
that is, 0B = r. |VB| , where VB is the gradient of the magnitude of B.
It is assumed therefore that § B < B. Consequently, in what follows we
limit our discussion to problems where the deviations from uniformity are
small and solve for the particle trajectory only in the first-order approxi-
mation. The analysis of charged particle motion in stationary fields based
on this approximation in often referred to as the first-order orbit theory.
This theory was first used systematically by the Swedish scientist Alfvén,
and it is also known as the Alfvén approximation or the guiding center
approzrimation.

The concept of guiding center is of great utility in the development
of this theory. We have seen that in a uniform magnetic field the particle
motion can be regarded as a superposition of a circular motion about the
direction of B, with a motion of the guiding center along B. In the case
of a nonuniform B field, satisfying the condition § B <« B, the value of B
at the particle position differs only slightly from its value at the guiding
center. The component of the particle motion, in a plane normal to the
field line that passes through the guiding center instantaneous position,
will still be nearly circular (Fig. 1). However, due to the spatial variation
of B, we expect in this case a gradual drift of the guiding center across B,
as well as a gradual change of its velocity along B.

The rapid gyrations of the charged particle about the direction of B
are not usually of great interest, and it is convenient to eliminate them
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from the equations of motion, and focus attention on the guiding cen-
ter motion. In the motion of the guiding center, the small oscillations
(of amplitude small compared to the cyclotron radius) occurring during
one gyration period may be averaged out, since they represent the effect
of perturbations due to the spatial variation of the magnetic field. The
problem is thus reduced to the calculation of the average values over one
gyration period (and not the instantaneous values) of the guiding center
transverse drift velocity and parallel acceleration.

2. SPATIAL VARIATION OF THE MAGNETIC FIELD WA Rl

Any of the three components of the magnetic flux density, B = B, X+
B,y + B.z, may vary with respect to the three coordinates z, y, and 2.
Consequently, nine parameters are needed to completely specify the spatial
variation of B. These parameters can be conveniently represented by the
dyad (or tensor) VB, which can be written in matrix form as

0B;/0x 0B,/0x 0B,/0x X
VB=(Xx ¥y z)| 8B;/0y 0B,/0y 0B,/0y y (2.1)
0B;/0z 0B,/0z 0B,/0z Z

Of these nine components only eight are independent, since the following
Maxwell equation

0B, , 0B, , 9B

Oz oy 8z 0 (2:2)

shows that only two of the divergence terms are independent.

If the condition J = 0 is also satisfied, in the region where the parti-
cle is moving, then other restrictions are imposed on the number of inde-
pendent components of B since, under these circumstances, the relation
V x B = 0 holds. This means that, in regions where there are no electric
currents, B can be written as the gradient of a scalar magnetic potential,

B=V¢, (2.3)
where the magnetic potential ¢,, satisfies the Laplace equation
V3¢, =0 (2.4)

In regions where an electric current density exists, we have V x B = poJ
and we cannot define a scalar magnetic potential ¢,, as indicated. The
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number of independent components of VB cannot, in this case, be reduced
without knowing the electric current density J.

Let us consider a Cartesian coordinate system such that at the origin
the magnetic field is in the z direction,

B(0,0,0) = By = Boz (2.5)

The nine components of VB can be conveniently grouped into four cate-
gories:
(a) Divergence terms:

0B,/0x, 0B,/0y, 0B,/0z (2.6a)
(b) Gradient terms:
0B,/0z, 0B,/dy (2.6b)
(c) Curvature terms:
0B, /0z, 0B,/0z (2.6¢)
(d) Shear terms:
0B, /0y, 0B,/0x (2.6d)

2.1 Divergence Terms

We shall initially discuss the magnetic field line geometry correspond-
ing to the divergence terms of VB. The presence of a small variation in the
component B, in the z direction (i.e., 0B,/0z # 0), implies that at least
one of the terms 0B,/0z or 0B, /0y is also present, as can be seen from
(2.2). Tt is of great utility to make use here of the concept of magnetic
fluz lines, which, at any point, are parallel to the B field at that point
and whose density at each point is proportional to the local magnitude of
B. To determine the differential equation of a line of force, let

ds=dzX+dyy+dzz (2.7)

be an element of arc along the magnetic field line. Then, we must have
dsxB=0 (2.8)

since ds is parallel to B, which gives by expansion of the cross product,

dr dy dz
B, By, B, (2:9)
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Fig. 2 The magnetic field components B, and By at the points
(x1,0,0) and (0,y1,0), near the origin.

Since we are focusing attention only on the divergence terms of B, and
since in the region of interest the field is considered to be mainly in the z
direction, we may expand B, and B, in a Taylor series about the origin
(see Fig. 2), as follows,

B (21,0,0) = B,(0,0,0) + (aim)xl - (aali“)xl (2.10)
B,(0,y1,0) = B,(0,0,0) + (%)yl = (%%i)yl (2.11)

where the second and higher order terms were neglected. Note that at
the origin B; = B, = 0. Therefore, the magnetic field line crossing the
z = 0 plane at the point (x1,y1,0), when projected on the (z,z) plane
(y = 0) and on the (y,z) plane (z = 0), satisfies the following differential
equations, respectively,

dr B, _ Biz(aBI)xl

o ~ (y=0) (2.12)
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Fig. 3 Geometry of the magnetic field lines corresponding to
the divergence terms 0B, /0x or 0B, /0y, when they are positive.

dy B, 1 (8B, ~
=B Bz( 5 )y1 (z = 0) (2.13)

These equations show that the field lines converge or diverge in the (z, 2)
plane or in the (y, z) plane, depending on the sine of the divergence terms
of B. Fig. 3 illustrates the field line geometry when 0B, /0z and 0B, /0y
are positive.

2.2 Gradient and Curvature Terms

The following vector field has a gradient in the = direction, as shown
schematically in Fig. 4:

B = B,z = By(l + az)z (2.14)

We must note, however, that in a region where J = 0 this vector field does
not satisfy the Maxwell equation V x B = 0, so that we must add to (2.14)
a term of curvature, given by B,X = BpazX. Therefore, a magnetic field
having gradient and curvature terms, and which satisfies V x B =0, is

B = Bo[azx + (1 + axz)z] (2.15)
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P X

/

Fig. 4 Geometry of the magnetic field lines when B has a
gradient in the z direction, according to Eq. (2.14). This field
geometry does not satisfy V x B = 0.

The geometry of the magnetic field lines corresponding to this expression
is schematically indicated in Fig. 5.

Generally, all terms corresponding to divergence, gradient, and cur-
vature are simultaneously present. Fig. 6 illustrates a B field having
divergence, gradient, and curvature. An example is the Earth’s magnetic
field (refer to Fig. 4 in Chapter 1). Later in this section we will investigate
separately the effects of each one of these terms on the charged particle
motion. Since in the first-order approximation the equations are linear,
the net effect will be the sum of the effects due to each one of them.

2.3 Shear Terms

The shear terms of (2.6) enter into the z component of V x B, that is,
into B - (V x B), and cause twisting of the magnetic field lines about each
other. They do not produce any first-order drifts, although the shape of
the orbit can be slightly changed. They do not give rise to any particu-
larly interesting effects on the motion of charged particles and will not be
considered any further.
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Fig. 5 Geometry of the magnetic field lines corresponding to
(2.15), with gradient and curvature terms.

3. EQUATION OF MOTION IN THE FIRST-ORDER APPROXIMATION "

We consider that the magnetic field Bg that exists at the origin in
the guiding center coordinate system is in the z direction,

B(O, 0, 0) = BO = BO/Z\ (31)

The particle motion in the neighborhood of the origin can be described
by considering only a linear approximation to the magnetic field near the
origin. Let r be the momentary position vector of the particle in the
guiding center coordinate system (see Fig. 1). In the region of interest
(near the origin) the magnetic field can be expressed by a Taylor expansion
about the origin,

B(r)=By+r-(VB)+ --- (3.2)

where the derivatives of B are to be calculated at the origin. Note that
the instantaneous position of the particle guiding center actually moves
slightly during one period of rotation, while the origin is kept fixed during
this time.
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Fig. 6 Schematic representation of a magnetic field having
divergence, gradient, and curvature terms.

Since we are assuming that the spatial variation of B in a distance of
the order of the Larmor radius is much smaller than the magnitude of B
itself, the higher order terms of (3.2) can be neglected. The condition

0B =|r- (VB)| < |By| (3.3)
is clearly met (see section 1). Thus, the magnetic field at the particle

position differs only slightly from that existing at the guiding center. The
first-order term r - (VB) can be written explicitly as

0 0 0
r-(VB)=(r-V)B = (xb—;—l—ya—y+z£)B—
(xBBgc N 0B, N aBm>§( N (waBy N 0B, +zaBy),\ N
or Y Oy “Toz oz 78 8z )Y
0B, 0B, 0B,\.
(x 9z +y 3y +z P )z (3.4)

where the partial derivatives are to be calculated at the origin. Substitut-
ing (3.2) into the equation of motion (2.1.5), with E = 0, gives
dv

m— = qg(vxBg)+gqv x [r- (VB)] (3.5)
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The last term in the right-hand side is of first-order compared to the first
one. The particle velocity can be written as a superposition,

@ _

— v
v=v"W4v 7t (3.6)
where v(V) is a first-order perturbation
v < v (3.7)
and v(© is the solution of the zero-order equation
dv(0)
m——‘;t— = g(v(® x By) (3.8)

which has already been discussed in section 4 of Chapter 2. Neglecting
second-order terms we can write, therefore,

vx[r-(VB)] = v(® x [r(o) - (VB)] (3.9)
The equation of motion (3.5) becomes, under these approximations,

dv

m— = q(v x Bo) + v @ x [r© . (VB)] (3.10)

The second term in the right-hand side constitutes the force term of
(2.6.1) (Eq. 6.1 in Chapter 2). This additional force, however, is not con-
stant since it depends on the instantaneous particle position. Thus, small
oscillations occur during one period of gyration. Since we are interested
in the smoothed motion of the guiding center, we shall eliminate these
small oscillations by averaging this force term over one gyration period.
Therefore, in what follows we will be involved in calculating the average
value over one gyration period of the force term gv(®) x [r(®).(VB)], which
will allow us to determine the parallel acceleration of the guiding center
and its transverse drift velocity using (2.6.2).

4. AVERAGE FORCE OVER ONE GYRATION PERIOD

Consider initially the case when the particle initial velocity along B is
zero, so that the particle path differs but little from a circle. In a uniform
magnetic field this would be equivalent to observing the particle motion in
a coordinate system moving with the guiding center velocity v, . However,
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when the field lines are bent, a coordinate system gliding along B is not
an inertial system. The curvature of the field lines give rise to inertial
forces and therefore to a curvature drift of the particle. This effect will
be investigated later in section 7. For the moment we will assume that
the field lines are not curved and that the coordinate system moves with
velocity v, .

Under the conditions indicated above, the zero-order variables, v(®)
and r(®), are seen to be situated in the (z,y) plane. The force term

F=qv® x [r®.(VB)] (4.1)

can be separated into a component F along By (z axis) and a component
F | normal to By, in the (x,y) plane. Using a local cylindrical coordinate
system (r, 6, z) with the z axis pointing along By at the origin (refer to
Fig. 7), we have

)OB

r

Of the three components of B = B,T + By® + B,z, the §-component
is parallel to v(© and therefore gives no contribution to F, while B,T

contributes to F, and B,z contributes to F,. Hence, from (4.1) and
(4.2),

r® . (vB) =+ (4.2)

. 0B, 0B, .

F, =qv® x7) T(O)W =|q| v(o)r(o)—aTz (4.3)

~ 0B 0B, .
F, =qv©® x3) T(O){?—rz = —|q| U(O)T(O)Eir (4.4)
Note that if ¢ > 0 we have v(9 x T = v(9Z, whereas if ¢ < 0 we have
v® x T = —v@7Z. Now, r(© is the cyclotron radius corresponding to By,

(0) (0)

r®="_ = (4.5)

Qc B Iql BO

and using the expression for the magnitude of the magnetic moment
(2.4.34) (Eq. 4.34 in Chapter 2), we can write (4.3) and (4.4) as

8B,
F, =2 |m| —"2 (4.6)
B, ..
FL=-2|m| =% 4.7)

There results apply to both positively and negatively charged particles.
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Fig. 7 Local cylindrical coordinate system with the z axis
pointing in the direction of the field By at the origin.

The average values of F; and F; over one gyration period are given

by
<F,>=2|m]| a(%j{?‘da) —2m|7 < (85") > (48)
<F.>=-2|m| (51; aa%fd()) = 2 |m| <?(3£Z) > (4.9)

The average force < F, >, given in (4.8), produces the guiding center
parallel acceleration, while < F| >, given in (4.9), is responsible for the
guiding center transverse drift velocity. The first one is the result of the
divergence terms of B, and the second one of the gradient terms. We
proceed now to evaluate each force term separately.

4.1 Parallel Force

Note that from V - B = 0 we have, in cylindrical coordinates,

10 10 0
;E;(TBT) + ;5(5(30) + @(Bz) =0 (4.10)
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The first term can be expanded as

10 0B, B,
-7 T, T 4.1
T‘BT‘(TBT) or t r (411)

Since at 7 = 0 we have B, = 0, and since near the origin B, changes only
very slightly with r, we can take

B, 0B,

=T = 4.12
r or (4.12)
Consequently, from (4.12) and (4.11)
0B, 1/10By OB,
=—|-—= 4.
or 2(7‘ 00 + az) (4.13)
Hence, taking the average over one gyration period,
0B, 1 1/0By 1 0B,
=—< —(—= —— 4.14
<<8r)> 2<r<80)> 2<(0z)> (4.14)
Now, since B is single-valued,
1 /0By 1 1 /0By
— — = — - — d0 - .
(o) > = f ()@ =0 (4.15)

Furthermore, since 0B,/0z is a very slowly varying function inside the
particle orbit, it can be taken outside the integral sign, so that we have
approximately,

2

<(az>> (Gz)de_ﬁz—ﬁz
It is justifiable to replace B, by B in (4.16), since all the spatial variations

of the magnetic field in the region of interest are very small. Therefore,
we have finally from (4.14), (4.15), and (4.16),

(4.16)

0B, 1,0B
< ( or ) > = _§(E> (4.17)
Using this result, the parallel force (4.8) becomes
0B._.
<F;>=—|m| F jm| (VB), (4.18)
or, equivalently,
<F, >=(m-V)Bz = —@[(B -V)B], (4.19)
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Fig. 8 Two-dimensional coordinate system in the perpendicular
plane, used in the evaluation of < F; >.

since m = —|m| z = —|m| B/B, and where the derivatives are evaluated
at the origin.

4.2 Perpendicular Force

It is convenient to consider a two-dimensional Cartesian coordinate
system (z,y) in the perpendicular plane, such that z = r cos(f) and
y = r sin(#), as shown in Fig. 8. Hence,

T = cos(0)X + sin(0)y (4.20)

0 de 0 dyo 0 . 0
5 = ar B2 + Ja—y = COS(G)B_;E + sm(9)a—y (4.21)

Therefore, we obtain

< ?<8£z> > = < [cos()X + sin(6)y] [COS(G)%% + sin(#)

6(;_?/2] S

Z A~

axy

z

ox

= < cos*(0) X > + <sin(f) cos(f) > +
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< cos(6) sin(@)aa%ﬁ > 4+ < sin2(0)a£z§ > (4.22)
Next we approximate (0B,/0z) by (0B/0x), and (0B,/0y) by (0B/dy),
since these terms are slowly varying functions inside the particle orbit, so
that they can be taken outside the integral sign contained in the average
values of (4.22). Noting that < sin(f) cos(d) > =0 and < cos?(f) > =
< sin®(f) > = 1/2, we obtain

0B, 10B_. 10B._.

=g 22 4,
<r8r> 263:x+26y (4.23)
Substituting this result into (4.9), yields
0B.. O0B._.
<F, >=—|m| (%x + a—yy) — _|m| (VB),  (4.24)

4.3 Total Average Force

We proceed now to write down a general expression for the total
average force <F > =< F, > + <F; >. From (4.18) and (4.24) we
have

<F>=—-m|(VB), —|m|(VB), = —|m| VB (4.25)

Alternatively, we can use the vector identity
(VxB)xB=(B-V)B-V(B?) (4.26)

and write (4.25) in the form

<F>:—)—r]§—|[(B-V)B—(V><B)><B] (4.27)
Since m = —|m| B/B, we have
<F>=(m-V)B+mx (VxB) (4.28)

This is the usual expression for the force acting on a small ring current
immersed in a magnetic field with spatial variation. The first term on the
right-hand side of (4.28) alone gives the force acting on a magnetic dipole.
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5. GRADIENT DRIFT

From (2.6.2) and (4.24) we see that < F; > causes the guiding center
to drift with the velocity

_<FL>XB__]m|(VB)><B
- qB2 - q B2

va (5.1)

This gradient drift is perpendicular to B and to the field gradient, and its
direction depends on the charge sign. Thus, positive and negative charges
drift in opposite directions, giving rise to an electric current (see Fig. 9).

The physical reason for this gradient drift can be seen as follows.
Since the Larmor radius of the particle orbit decreases as the magnetic
field increases, the radius of curvature of the orbit is smaller in the regions
of stronger B field. The positive ions gyrate in the clockwise direction
for B pointing towards the observer, while the electrons gyrate in the
counterclockwise direction, as shown in Fig. 9, so that the positive ions
drift to the left and the electrons to the right.

In the case of a collisionless plasma, associated with this gradient drift
across B there is a magnetization current density Jg, given by

1
Jg = Wzi:lhvai (5.2)

where the summation is over all charged particles contained in a suitably
chosen element of volume 6V. From (5.1) and (5.2), we have

6. PARALLEL ACCELERATION OF THE GUIDING CENTER

The expression (4.18) for < F, > shows that, when the magnetic
field has a longitudinal variation (i.e., convergence or divergence of the
field lines along the z direction, as shown in Fig. 3), an axial force along
z accelerates the particle in the direction of decreasing magnetic field,
irrespective of whether the particle is positively or negatively charged.
This is illustrated in Fig. 10. There are several important consequences
of this repulsion of gyrating charges from a region of converging magnetic
field lines, which we proceed to discuss.
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Fig. 9 Charged particle drifts due to a B field gradient per-
pendicular to B.

6.1 Invariance of the Orbital Magnetic Moment
and of the Magnetic Flux

Using (4.18), the component of the equation of motion along B can

be written as
dvy 0B _.
m—z=<F,>=—-\m| —2
0z

If we multiply both sides of this equation by v, = dz/dt, we obtain (re-
placing |m| by W./B),

(6.1)

W, 0B dz

1,2 L

muy— = —(5mv;) = ——— ———- 6.2
" dt (gme}) B 0z dt (6.2)
where W, = mov? /2 denotes the part of the particle kinetic energy as-
sociated with its transverse velocity. Since the total kinetic energy of a

charged particle in a magnetostatic field is constant, that is,

W, + W = constant, (6.3)
it follows that p P
2
E(WL) = _Et_(W”) = *;ﬁ(%mvn) (6.4)
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>0

Fig. 10 Repulsion of gyrating charges from a region of con-
verging magnetic field lines.

Therefore, from (6.2) and (6.4),
d W, 0Bdz W, dB
2w,y = 2t _ W

dt B 0zdt B dt (6:5)

where dB/dt represents the rate of change of B as seen by the particle as
it moves in the spatially varying magnetic field (i.e., in the particle frame
of reference). Comparing this result with the following identity,

d d /\W,B W, dB d /Wy
— = — = — +B—|— .
") dt( B > B dt(B) (6.6)
we conclude that i W
J_ —
dt( B ) =0 (6.7)
or, equivalently,
Wy
|m| = —= = constant. (6.8)

B
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Therefore, as the particle moves into regions of converging or diverging B
its cyclotron radius changes, but the magnetic moment remains constant.
This constancy of the particle magnetic moment holds only within the
approximation used, that is, when the spatial variation of B inside the
particle orbit is small compared to the magnitude of B. Consequently, the
orbital magnetic moment is said to be an adiabatic invariant. It is usually
referred to as the first adiabatic invariant.

The magnetic flux, ®,,, enclosed by one orbit of the particle is given
by

2,2
_ q_ 2p_ _mvl o 2mm Wy
<I>m—/SB dS=mriB=nyB=" (%) 69
Therefore,
d 2mrm d
—(®,,) = ——— = 6.10
(@) = T Zim| =0 (6.10)

in view of the invariance of |m|. Hence, as the charged particle moves in a
region of converging B field, it will orbit with increasingly smaller radius,
so that the magnetic flux enclosed by the orbit remains constant.

6.2 Magnetic Mirror Effect

As a consequence of the adiabatic invariance of |m| and ®,,, as the
particle moves into a region of converging magnetic field lines its transverse
kinetic energy W increases, while its parallel kinetic energy W, decreases,
in order to keep |m| and the total energy constant. Ultimately, if the
B field becomes strong enough, the particle velocity in the direction of
increasing field may eventually come to zero and then be reversed. After
reversion, the particle is speeded up in the direction of decreasing field,
while its transverse velocity diminishes. Thus, the particle is reflected from
the region of converging magnetic field lines. This phenomenon is called
the magnetic mirror effect and is the basis for one of the primary schemes
of plasma confinement.

When two coaxial magnetic mirrors are considered, as illustrated in
Fig. 11, the charged particles may be reflected by the magnetic mirrors and
may travel back and forth in the space between them, becoming trapped.
This trapping region has been called a magnetic bottle and it has been
used in laboratory for plasma confinement.

The trapping in a magnetic mirror system is not perfect, however.
The effectiveness of a coaxial magnetic mirror system in the trapping of
charged particles can be measured by the mirror ratio B,,/By, where B,,
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Fig. 11 Schematic diagram showing the arrangement of coils
to produce two coaxial magnetic mirrors facing each other, for
plasma confinement, and the relative intensity variation of the
magnetic field.

is the intensity of the magnetic field at the point of reflection (where the
pitch angle of the particle is 7/2) and By is the intensity of the magnetic
field at the center of the magnetic bottle.

Consider a charged particle having a pitch angle o at the center of the
magnetic bottle. If v is the particle speed, which in a static magnetic field
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Fig. 12 The loss cone in a coaxial magnetic mirror system.

remains constant, the constancy of the magnetic moment |m| = W, /B
leads to

I1mv?(sin®a)/B = tmv?(sin®ag)/Bo (6.11)

where « is the particle pitch angle at a position where the magnetic field
intensity is B. Thus, at any point inside the magnetic bottle, for this

particle,

2 2

sin“a(z)  sin“ag
B (Z) N B()
Suppose now that this particle is reflected at the throat of the mirror, that
is, « = /2 for B(z) = B,,,. Therefore, from (6.12),

(6.12)

(sin®ag)/By = 1/Bp, (6.13)
This means that a particle having a pitch angle ag given by
ap = sin"Y(Bo/Bm)'/?] = sin "} (v /v)o (6.14)

at the center of the bottle, is reflected at a point where the intensity of
the field is B,,,. Therefore, for a magnetic bottle with a fixed mirror ra-
tio By, /Bo, the plasma particles having a pitch angle at the center greater
than ay, as given by (6.14), will be reflected before the ends of the magnetic
bottle. On the other hand, if the pitch angle of the particle at the center is
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Fig. 13 Magnetic field with toroidal geometry.

less than ay, its pitch angle will never reach the value 7/2, which implies
that at the ends of the bottle the particle has a non-vanishing parallel
velocity and hence escapes through the ends of the mirror system. There
is, therefore, a loss come, a cone of half-angle ag with its vertex at the
center, as shown in Fig. 12, where particles that have velocity vectors
with a pitch angle falling inside it are not trapped. The loss cone is
determined by the mirror ratio B,, /By, according to (6.14).

Devices that have no ends, with geometries such that the magnetic
field lines close on themselves, offer many advantages for plasma confine-
ment. Toroidal geometries (Fig. 13), for example, have no ends, but it
turns out that confinement of a plasma inside a toroidal magnetic field
does not provide a plasma equilibrium situation, because of the radial
inhomogeneity of the field. In this case a poloidal magnetic field is nor-
mally superposed on the toroidal field, resulting in helical field lines (as in
the Tokamak). The major problem in most plasma confinement schemes,
however, is that instabilities and small fluctuations from the desired equi-
librium configuration are always present, which lead to a rapid escape
of the particles from the magnetic bottle. This instability problem is a
fundamental one, and it is likely to occur in any conceivable magnetic
confinement scheme.

A good example of a natural magnetic bottle is the Earth’s mag-
netic field, which traps charged particles of solar and cosmic origin. These
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Fig. 14 Dipole approximation of the Earth’s magnetic field.
The distance of the Van Allen radiation belts from the center of
the Farth, at the equator, is about 1.5 Earth radii for the high-
energy protons and about 3 to 4 Earth radii for the high-energy
electrons.

charged particles trapped in the Earth’s magnetic field constitute the so-
called Van Allen radiation belts. As shown in Fig. 14, the geomagnetic
field near the Earth is approximately that of a dipole, with the field lines
converging towards the north and south magnetic poles.

The electrons and protons that are trapped in the Van Allen radia-
tion belts spiral in almost helical paths along the field lines, and towards
the magnetic poles, where they are eventually reflected. These particles
bounce back and forth between the poles. In addition to this bouncing
motion, these trapped charged particles are also subject to a gradient drift
and a curvature drift in the east-west direction, to be discussed later in
this chapter.

6.3 The Longitudinal Adiabatic Invariant

Consider a particle trapped between two magnetic mirrors and bounc-
ing between them. Suppose that the separation distance between the two
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Fig. 15 Schematic representation of a system of two coaxial
magnetic mirrors approaching each other.

mirrors changes very slowly in time as compared to the bounce period.
With the periodic motion of the particle between the two magnetic mirrors
(whose separation varies slowly in time) there is associated an adiabatic
invariant called the longitudinal adiabatic invariant, defined by the integral

J:%v-dlzfv“ dl (6.15)

taken over one period of oscillation of the particle back and forth between
the mirror points.

For a simple proof of the adiabatic invariance of J, consider the ide-
alized situation illustrated in Fig. 15, where the existing B field in the z
direction is uniform in space, except near the points M; and My, where
the field increases to form the two mirrors separated by a distance L.
Suppose that the mirror M; approaches the other one with velocity

dL
Um == (6.16)
the negative sign being due to the fact that L decreases with time. It is
assumed that this velocity is much smaller than the longitudinal compo-
nent of the particle velocity, that is, v, < v;. Thus, the distance moved
by the mirror M; during one period of oscillation of the particle is small
compared to the distance L between the mirrors.
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Further, since B is assumed to be uniform throughout the space be-
tween the mirrors (except near the ends), the longitudinal particle speed v,

may be taken to be constant in the space between the mirrors. Neglecting
the small end effects at the two mirrors, we can take

2L
0

The time rate of change of J is

dJ dL dv dv
i ZZ 4o — Z )
o 2v, i 2 o 2v, Uy, + 2L o (6.18)
where use was made of (6.16). To calculate dv, /dt, we set
dv, A _ Av, (6.19)

dt At (2L/v,)

where Av; denotes the change in the particle speed v, on reflection from
the moving mirror, and At = (2L/v,) is the period of oscillation between
the mirrors. In order to find Av, it is convenient to transform to a coor-
dinate system moving with the magnetic mirror M7, at the speed v,,. Let
us denote this moving coordinate system by a prime and the incident and
reflected particle speeds by subscripts ¢ and r, respectively. Thus,

/

(vi) = (v))i + vm (6.20)

W)y = (v))r — U (6.21)

which gives for the change in the particle speed, in one reflection,
Avy = (v))r — (v)); = 20m (6.22)

since in the moving coordinate system (v, ); = (v;),. with only their direc-
tions reversed. Therefore, (6.19) becomes

dvn . 2’Um i Umvn

&~ @Ljv) . I (6.23)
On substituting this result into (6.18) we find

dJ d

= = 2 (20, L) =0 (6.24)

dt dt
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which shows that J is an adiabatic invariant. This quantity is also referred
to as the second adiabatic invariant. The parallel kinetic energy of a
charged particle trapped between the two mirrors is (taking J = 2v, L)

o mJ?

MYy = 372

W, = (6.25)

1
2
which increases rapidly as L decreases. The Italian physicist Fermi sug-
gested this process as as mechanism for the acceleration of charged par-
ticles in order to explain the origin of high-energy cosmic rays. Fermi
proposed that two stellar clouds moving towards each other, and having
a magnetic field greater than in the space between them, may trap and
accelerate the cosmic charged particles. There is a limit, however, in the
particle longitudinal speed increase, since the direction of the particle ve-
locity at the center of the mirror system may eventually enter the loss cone
and escape through the ends of the system. It should be noted that a mag-
netic mirror moving towards a stationary one involves in fact time-varying
B fields and, consequently, electric fields, which can lead to a change in
the particle kinetic energy.

7. CURVATURE DRIFT

So far the effects associated with the curvature of the magnetic field
lines have not been considered. As stated previously, a B field with only
curvature terms does not satisfy the equation V x B = 0, so that in
practice the gradient and the curvature drifts will always be present si-
multaneously. In first-order orbit theory the effects corresponding to each
of the components of B are additive.

We investigate now the effect of the curvature terms 0B,/0z and
0B, /0z, referred to in (2.6¢c), on the motion of a charged particle. We will
assume that these terms are so small that the radius of curvature of the
magnetic field lines is very large compared to the particle cyclotron radius.
Let us introduce a local coordinate system gliding along the magnetic field
line with the particle longitudinal velocity v,. Since this is not an inertial
system because of the curvature of the field lines, a centrifugal force will be
present. This local coordinate system can be specified by the orthogonal
set of unit vectors B, n;, and Ny, where B is along the field line, 1 is
along the principal normal to the field line, and n, is along the binormal
to the curved magnetic field line, as indicated in Fig. 16.
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o>

Fig. 16 Curved magnetic field line showing the unit vector B
along the field line, the principal normal n,, and ‘the binormal
Ny, at an arbitrary point. Note that n; x ny = B. The local
radius of curvature is R.

The centrifugal force F. acting on the particle, as seen from this
noninertial system, is given by

T)’I/U2

where R denotes the local radius of curvature of the magnetic field line
and v is the particle instantaneous longitudinal speed. From (2.6.2) the
curvature drift associated with this force is

F.xB = mu}

gB2 ~  RqB?

ve = (n; x B) (7:2)

To express the unit vector N in terms of the unit vector B along the
magnetic field line, we let ds represent an element of arc along the field
line subtending an angle do¢,

ds = Rd¢ (7.3)

If dB denotes the change in B due to the displacement ds (see Fig. 16),
then dB is in the direction of nj; and its magnitude is

dB| = |B| d¢ = d (7.4)
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Consequently, R
dB =n;d¢ (7.5)

Dividing this equation by (7.3) side by side, gives

dB 1
—_—=— 7.
ds R (7.6)
The derivative d/ds along B may be written as (]§ - V), so that (7.6)
becomes .

El_l ~

= =B V)B (7.7)

Incorporating this result into equation (7.1), we obtain

A

F.=- mv}(B-V)B (7.8)
This force is obviously perpendicular to the magnetic field B, since it is in
the —n; direction as indicated in (7.1), and gives rise to a curvature drift
whose velocity is

mu

2
I
- qu [(

B.-V)B]xB (7.9)

Vo =

Since B = BB and writing W, = mv2/2 for the particle longitudinal
kinetic energy, (7.8) and (7.9) can be written, respectively, as

_2Wy

F.=-—L(B V)Bl (7.10)
ve = —%[(B .V)B] x B (7.11)

Thus, at each point, the curvature drift is perpendicular to the osculating
plane of the magnetic field line, as shown in Fig. 17.

An electric current is associated with the curvature drift, since it is
in opposite directions for particles of opposite sign. From (7.11) and from
the definition of the electric current density, we obtain for the curvature
drift current density

Jo = 5_1/_ ;(QiVCi) - _ 2(% XZ:VVHZ) [(B . V;?] x B (7.12)
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Fig. 17 Relative direction of the particle guiding center drift
velocity v, due to the curvature of the magnetic field line.

where the summation extends over all charged particles contained in the
small volume element JV.

8. COMBINED GRADIENT-CURVATURE DRIFT

The curvature drift and the gradient drift always appear together
and both point in the same direction, since the term VB points in the
direction opposite to F. (see Fig. 5). These two drifts, therefore, can be
added up to form the combined gradient-curvature drift. Thus, from (5.1)
and (7.11),

DN

2 2

”;3 (VB)xB—%[(B V)B|xB (8.1

When volume currents are not present (in a vacuum field, for example) so
that V x B = 0, the vector identity (4.26) allows the expression (8.1) to
be written in the compact form

vge =Vg + Ve = —

Voo = — B4(’UH+ 1) (ViB?) x B (8.2)

In the Earth’s magnetosphere, near the equatorial plane, both the
curvature and the gradient drifts (B decreases with altitude) cause the
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Fig. 18 Sketch (not on scale) illustrating the motion of charged
particles in the Earth’s magnetic field. The longitudinal drift
velocity vge, due to the gradient and curvature of B, results in
an east to west current called the ring current.

positively charged particles to slowly drift westward and the negative ones
eastward, resulting in an east to west current, known as the ring current.
Fig. 18 illustrates schematically the motion of a charged particle trapped
in the Earth’s magnetic field. The particle bounces back and forth along
the field line between the mirror points M; and M,, and drifts in lon-
gitude as a result of the gradient and curvature of the field lines. The
trajectory described by the particle is therefore contained in a tire-shaped
shell encircling the Earth (Fig. 19). This tire-shaped shell encircling the
Earth defines a surface on which the particle guiding center drifts slowly
around the Earth.

Connected with the periodic motion of the particle on this drift sur-
face there is an adiabatic invariant, called the third adiabatic invariant,
which is the total magnetic flux enclosed by the drift surface. Clearly, in
a static situation this flux is obviously constant. The significant fact here
is that the total magnetic flux, ®,,, enclosed by the drift surface, remains
invariant when the field varies slowly in time, that is, when the period of
motion of the particle on the drift surface is small compared to the time
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Fig. 19 Schematic representation of the longitudinal drift of
charged particles around the Earth.

scale for the magnetic field to change significantly. This invariant has few
applications because most fluctuations of B occur on a time scale that is
small compared to the drift period.

PROBLEMS T et

3.1 Describe semiquantitatively the motion of an electron under the pres-
ence of a constant electric field in the x direction,

E = EoX
and a space varying magnetic field given by
B = Bya(z + 2)X + Bo[l + oz — 2)|z
where Ey, By, and o are positive constants, |az| < 1 and |az| < 1.
Assume that initially the electron moves with constant velocity in the

z direction, v(t = 0) = wvoz. Verify if this magnetic field satisfies the
Maxwell equation V x B = 0.
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3.2 Verify if there is any drift velocity for a charged particle in a magnetic
field given by
B= By(a:ﬁ + BO/Z\

where By (x) and 0B,,/0z are very small quantities. Does this field satisfy
the Maxwell equation V x B = 07?

3.3 Consider a system of two coaxial magnetic mirrors whose axis coin-
cides with the z axis, being symmetrical about the plane z = 0, as shown
schematically in Fig. 20. Describe semiquantitatively the motion of a
charged particle in this magnetic mirror system considering that at z = 0
the particle has vy = v and v, = v}. What relation must exist between
By = B(z = 0)z, B,, = B(z = +2z,,)z and ag (particle pitch angle at
z = 0) for the particle to be reflected at z, ?

3.4 For the magnetic mirror system of problem 3.3 suppose that the axial
magnetic field changes in time, that is Byziq; = B(z,t)z. Considering that
the magnetic moment

Tmv (z,t)

~ B(z,t)

is an adiabatic invariant (note that its value is the same at z = 0 and at
z = £2p, and that v? = v? + v}), show that the longitudinal adiabatic
invariant can be written in the form

m|

/ " [B(zmt) — B(z,£)]/2dz = constant

Zm

3.5 Consider the magnetic mirror system shown in Fig. 20. Suppose that
the axial magnetic field is given by

B(z) = Bo[l + (2/a0)’]

where By and ag are positive constants, and that the mirroring planes are
given by z = —z,,, and z = z,,.

(a) For a charged particle trapped in this mirror system, show that the z
component of the particle velocity is given by

o= (L5 ") - ()]
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Fig. 20 Magnetic field line geometry for a system of two
coaxial magnetic mirrors whose axis coincides with the z axis,
being symmetrical about the plane z = 0.

(b) The average force acting on the particle guiding center, along the z
axis, is given by

<F, > =—|m| (%—f)a

Show that the particle performs a simple harmonic motion between the
mirroring planes, with a period given by
m ) 1/2

T = 20 (5=
mao 2 |m| BO

(c) If the motion of the particle is to be limited to the region 12| < Zm,
what restriction must be imposed on the total energy and on the magnetic
moment?

3.6 Consider a toroidal magnetic field, as shown in Fig. 21.
(a) Show that the magnetic flux density along the axis of the torus is given
by
B =B, ()&
r

where B, denotes the magnitude of B at the radial distance r = a.

(b) In what direction is the gradient drift associated with the radial vari-
ation of B,? Examine qualitatively the type of charge separation that
occurs. Neglect the effect of the magnetic field line curvature.
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Fig. 21 Magnetic field line with toroidal geometry.

(c) If E denotes the induced electric field due to charge separation, in what
direction is the E x B drift?

(d) Show that it is not possible to confine a plasma in a purely toroidal
magnetic field, because of the gradient drift and the E x B drift.

3.7 Consider a spatially nonuniform magnetostatic field expressed in
terms of a Cartesian coordinate system by

B(z,z) = Bolazx + (1 + az)z]

where By and « are positive constants, |az| < 1 and |az| < 1.

(a) Show that this magnetic field is consistent with Maxwell equations,
so that both gradient and curvature terms are present. Determine the
equation of a magnetic flux line.

(b) Write down the Cartesian components of the equation of motion for
an electron moving in the region near the origin under the action of this
magnetic field.

(c) Consider the following initial conditions for the electron:

I‘(O) = (330 + U_LO/QC)Q

v(0) = v1 0¥ + v20Z

Solve the equation of motion using a perturbation technique, retaining
only terms up to the first order in the small parameter a. Show that
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the leading terms in the velocity components, after eliminating the time
periodic parts, are given by

Ve = v’ t X

Vy = _(Q/Qc)(%vio + ’UEO)S’\
V, = V02

(d) Show that the average position of the electron in the (z, z) plane fol-
lows the magnetic flux line that passes through its initial position.
(e) Show that the gradient and curvature drift velocities are given, respec-
tively, by

vo = —(a/Q)(302)§

vo = —(/Qe)v2oy

so that the total drift velocity is precisely the nonperiodic part of v,.

3.8 The Earth’s magnetic field can be represented, in a first approxi-
mation, by a magnetic dipole placed in the Earth’s center, at least up to
distances of a few Earth radii (Rg).

(a) Using the fact that, at one of the magnetic poles, the field has a mag-
nitude of approximately 0.5 gauss near the surface, calculate the dipole
magnetic moment.

(b) Consider the motion of an electron of energy Ey at a radial distance
ro, where rg > Rp. Calculate its cyclotron frequency and gyroradius.

(c) Assuming that the electron is confined to move in the equatorial plane,
calculate its gradient and curvature drift velocities, and determine the time
it takes to drift once around the Earth, at the radial distance rg.

(d) Calculate the period of the bounce motion of the electron, as it gets
reflected back and forth between the magnetic mirrors near the poles.
What is the altitude of the reflection points? Assume that W, = W, at
the magnetic equatorial plane.

(e) Obtain numerical values for the results of items (b), (c), and (d), con-
sidering Ey = 1 MeV and rg = 4Rg. Examine these results in terms of
typical values for charged particles in the outer Van Allen radiation belt.
(f) Assuming that there is an isotropic population of 1 MeV protons and
100 keV electrons at about 4 Rg, each having a density n, = n; = 10" m—3
in the equatorial plane, calculate the ring current density in ampere/m?.

3.9 Imagine an infinite straight wire carrying a current I and uniformly
charged to a negative electrostatic potential ¢. Analyze the motion of an
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electron in the vicinity of this wire using first-order orbit theory. Sketch
the path described by the electron, indicating the relative directions of the
electromagnetic, gradient, and curvature drift velocities.

3.10 The field of a magnetic monopole can be represented by

r

where A is a constant. Solve the equation of motion to determine the
trajectory of a charged particle in this field. (You may refer to the book
by B. Rossi and S. Olbert, Introduction to the Physics of Space, Chapter
2, McGraw-Hill, 1970).

3.11 Analyze the motion of a charged particle in the field of a magnetic
dipole. Determine the two constants of the motion and analyze their phys-
ical meaning. (For this problem, you may refer to the book by S. Stormer,
The Polar Aurora, University Oxford Press, 1955, or to B. Rossi and S.
Olbert, Introduction to the Physics of Space, Chapter 3, McGraw-Hill,
1970).
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CHARGED PARTICLE MOTION
IN TIME-VARYING
ELECTROMAGNETIC FIELDS

1. INTRODUCTION S B

In this chapter we analyze the motion of charged particles in the
presence of time-varying fields. Initially, in the two following sections, we
consider a time-varying electric field and a constant magnetic field, both
fields being spatially uniform. The assumption of a constant and spatially
uniform B field is well justified if the externally applied magnetostatic field
is much larger than the magnetic field associated with the time-varying
E field. Also, the assumption of an electric field that is spatially uniform
is valid if the charged particle cyclotron radius is much smaller than the
scale length of the spatial variation of E. Both these requirements are
assumed to hold in the analysis presented in sections 2 and 3. In section
4 we consider a time-varying magnetic field and the corresponding space-
varying electric field.

2. SLOWLY TIME-VARYING ELECTRIC FIELD

W
i
&

2.1 Equation of Motion and Polarization Drift

For the moment we shall assume that the characteristic time scale
for variation of the electric field is much larger than the particle cyclotron
period. The component of the charged particle motion along the magnetic
field lines is given by (2.5.4) (Eq. 5.4 in Chapter 2), from which we can
write in general

vy (t) —vy(0) = %/0 E, (t')dt’ (2.1)
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This result, however, does not lead to any new interesting information.

Since the E field is varying slowly in time, the component of the
motion across the magnetic field lines is expected to be not very different
from that for a constant E field. Therefore, it is reasonable to seek the
solution for v in a form similar to (2.5.8). Hence, we take

vi=vV +vg+v, (2.2)

where vy = ExB/B? is the electromagnetic plasma drift velocity (2.5.11).
Note that vg varies slowly in time, since E is slowly time-varying. The
substitution of (2.2) into the perpendicular component equation of motion
(2.5.5) yields

d
ma(vi +VE+Vy) =¢q[EL + (V] +VvE +Vp) x B] (2.3)

From (2.5.11) vg = (E, x B)/B?, so that we can write (2.3) as

m

dV/J_ d EJ_XB de_ ,
o mc—ﬁ( 7 )-}-m—gt——qleB—kqvpr (2.4)

Thus, if we set

m BEJ_
v = 05 () (2:5)
we can write (2.4) in the form
av’ dv
m dtl + m—d-t£ =qv| xB (2.6)

When the second term on the left-hand side can be neglected, this
equation becomes identical to (2.5.12), which describes a circular motion
about the magnetic field lines. Comparing the relative magnitudes of the
second term on the left, with that on the right-hand side of (2.6), we find

Im dv,/dt|  |(m?/qB?)(0*EL/0t?)|
lgv’, x B |qv', B

(EL/B)/v}| (w*m?*)/(¢*B®) = |ve/v) | (w/Qc)? (2.7)

where we have assumed that E; has a harmonic time dependence with
a characteristic angular frequency w. Considering that this characteristic
frequency is much smaller than the cyclotron frequency,

w <L (2.8)
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and, further, if |vg/v) | is also small, then the term m(dv,/dt) can be
neglected in comparison to the other terms of (2.6), and we obtain

v’

T a

which is identical to (2.5.12). Therefore, v/, corresponds to the usual
circular motion of the charged particle about the magnetic field, and is

independent of the variations of the electric field. Superposed upon this
circular motion velocity are the drift velocities

=qv, xB (2.9)

E B
vE = ;Bf;— (2.10)
d
" — ﬂ(a_Ei) (2.11)
Vp = qB2\ ot '

Thus, the effect of a slowly varying electric field is the addition of the drift
velocity v, called the polarization drift velocity.

Since v, is in opposite directions for charges of opposite sign, the
time-dependent electric field produces a net polarization current in a neu-
tral plasma, so that the plasma medium behaves like a dielectric. The
polarization current density J, is the rate of flow of positive and negative
charges across unit area, and is given by

e S () () = (1) ey

where the summation is over all positive and negative charges contained
in the small volume element 6V, and p,, is the mass density of the plasma.

2.2 Plasma Dielectric Constant

The polarization effect in a plasma is due to the time variation of
the electric field. The application of a steady E field does not result in a
polarization field, since the ions and electrons can move around to preserve
quasineutrality. Since the plasma behaves like a dielectric, the polarization
current density J, can be taken into account through the introduction of
the dielectric constant of the plasma.

For this purpose, we can separate the total current density J into the
polarization current density J, and the current density Jo due to other
sources,

I=J,+Jo (2.13)
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Thus, combining J, with the term ¢o0E | /0t, which appears on the right-
hand side of Maxwell V x B equation, we obtain

GEL Pm GEL ( Pm aE_L 8E_|_
o= Pm Ol (1 ) - 2.14
o T T LB e T o (2.14)
where P
€ = €9€r = €9 (1 + 6022) (2.15)

is the effective electric permittivity perpendicular to the magnetic field.
In some cases the relative permittivity €, of a plasma can be very high.
As an example, if we consider a number density of 10%° particles/m3 and
B =1 tesla, we have ¢, = 10%.

The resulting charge density p,, which accumulates as a result of the
polarization current density J,, satisfies the charge continuity equation

Opp _
—87—1-‘7 Jp=0 (2.16)

From (2.16) and (2.12) we have
pp=-"V.E, (2.17)
P B2
The total charge density p can be separated as

p = po-+pp (2.18)

where pg corresponds to Jy. Assuming that the parallel component of the
electric field vanishes, we see that

1 Po Pm
‘E=— = — — -E 2.1
v €0 (pO +pp) €o 60B2V ( 9)

from which we find, using (2.15),

V.E=2 (2.20)
€
Thus, the resulting charge density p, can also be correctly taken into
account by the introduction of an effective electric permittivity e.
We can further verify the correctness of introducing the effective elec-
tric permittivity of the plasma, by calculating the total energy density
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associated with the E field, which for an ordinary dielectric medium of ef-
fective permittivity e is given by eE2?/2. The energy density in the electric
field is given by

WE - %GOEQ (221)

To calculate the additional drift kinetic energy acquired by the particle as
a result of the polarization drift, we note that for a change AE, in the
electric field, in a time interval At, the displacement Ar of the guiding
center, due to this change, is

The corresponding work done by the electric field is, using (2.22),

AW =gE, - (Ar) = E, - (AE,) = A(AmE? /B?) (2.23)

B2
Hence, using (2.10), the change in the particle kinetic energy associated
with the polarization drift is given by

AW = A(3mug) (2.24)

This result shows that the work done by the electric field, during polar-
ization, is equal to the change in the kinetic energy associated with the
particle motion at the electromagnetic drift velocity vg. Note that vg
does not lead to any energy exchange between field and particle, since
the displacement associated with vg is perpendicular to the electric field.
Summing (2.24) over all particles in a unit volume gives the change in the
total kinetic energy density of the system

AWy = A(3pmvd) = A(pmE? /B?) (2:25)

The kinetic energy density associated with the circular motion of the par-
ticles is not affected by changes in the electric field. Thus, the total energy
density (Wr = Wg + Wy) associated with the electric field is

_ 1 2,1 2 _ 1 2 Pm \ _ 1 _p2
Wr = 1eoB? + pmo} = JeoB2(1+ 6032) = LeE (2.26)
assuming that there is no parallel component of the electric field. This
result completes our discussion about the legitimacy of the introduction
of an effective electric permittivity for the plasma.
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3. ELECTRIC FIELD WITH ARBITRARY TIME VARIATION

3.1 Solution of the Equation of Motion

We consider now an arbitrary time variation of the electric field, but,
again, the field is spatially uniform. The applied magnetic field is static
and uniform, as before. Without loss of generality, the time variation of
E can be assumed to be harmonic with angular frequency w,

E(t) = Ege ™" (3.1)

where the complex amplitude Eg is independent of time. According to the
usual convention, only the real part of this expression is to be taken for
the physical interpretation of the results. An arbitrary time variation of E
can be written as a superposition of terms similar to (3.1), corresponding
to all possible values of w, since the equation of motion (2.5.5) is linear.
Using (3.1), the equation of motion becomes

dv

m— = q(Ege™ ™" + v x B) (3.2)

It is natural to expect the forced oscillations of the charged particle
to have the same frequency as that of the forcing electric field. Thus, the
particle velocity vector may be conveniently decomposed into two parts,

V =V, + vee (3.3)

where v,, is the velocity associated with the magnetic field alone and,
thus, contains no time variation at the angular frequency w, while v, is
due to the oscillating electric field. The substitution of (3.3) into (3.2)

gives

d . . .
m% —iwmvee ™ = q(Ege ™" + v, x B+ v, x Be™™®")  (3.4)

The terms containing the periodicity at the angular frequency w are de-
coupled from those that do not, so that (3.4) separates into two equations,

one involving only the velocity v,, associated with the magnetic field ac-

cording to
dvm
m—%— =qvy, X B (3.5)
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and the other involving only the velocity v,
—iwmve = q(Eg + ve X B) (3.6)

Equation (3.5) corresponds to the usual circular motion of the particle
about the magnetic field lines at the cyclotron frequency §2..

To solve (3.6) for v, it is appropriate to separate this equation into
components parallel and perpendicular to B. The parallel velocity compo-
nent is obtained immediately as

e = —E .
Vel = o (3.7)
while the perpendicular velocity component satisfies the equation
(—iw + in)vel ~ 45, (3.8)
m m
Introducing the cyclotron frequency vector, defined by
Q.=-18 (3.9)
m
we can rewrite (3.8) in the form
(1w + Qex)Ver = —%EM (3.10)

In order to solve this equation for v.,, we multiply both sides by the
conjugate operator —(iw — §2.x). First, we note that

(iw — X)) (iw + Qe xX)Ver = (w)* Vel — e X (e X Vi) =

(Qg - w2)VeJ_ (3'11)
Therefore, (3.10) becomes

q (iw — eX)

Combining the results contained in (3.12), (3.7), and (3.5), we obtain
the following expression for the total velocity vector (3.3):
ql1 (iw — Qe Xx)

E —iwt .
mlw + ——(w2 —_ Qg) ol l|€ (3 13)
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3.2 Physical Interpretation

The result contained in (3.13) shows that along the magnetic field
lines the particle oscillates with frequency w and amplitude v, as given
by (3.7), so that the velocity oscillation lags 90° behind the oscillation of
the applied electric field. This result is easily seen by taking the real part
of the vectors v, e and Eg e~ *?,

R{ve et} = w—qn;EO,| sin(wt) (3.14)

%{Eolle—iwt} e E()” COS(wt) (315)

which clearly are 90° out of phase.

In the plane perpendicular to B the particle motion is the super-
position of the circular motion at the cyclotron frequency 2., with an
oscillation at the frequency w and amplitude given by (3.12).

In order to analyze the physical meaning of the motion in the plane
perpendicular to B, it is convenient to decompose the oscillating electric
field vector into two circularly polarized components, with opposite di-
rections of rotation. The advantage of using the two circularly polarized
components is that (3.12), for the perpendicular velocity component v ,
uncouples into two separate equations pertaining to the two circular po-
larizations rotating in opposite directions. Thus, we take

E, =Er+E[ = (Eor + Eor)e ™" (3.16)

with R
Eor = %(1+iBX)EOl (3.17)
Eoz = 1(1-iBx)Eo, (3.18)

where B = B /B is a unit vector pointing in the direction of the magnetic
field. The component Eg represents a circularly polarized field with its
electric vector rotating to the right (clockwise direction), and the com-
ponent Ej represents a circularly polarized field with its electric vector
rotating to the left (counterclockwise direction), as seen by an observer
looking in the direction of the B field.

To understand the physical meaning of this decomposition, let us
consider a Cartesian coordinate system with the z axis pointing along B
and the x axis pointing along E . Then, we have

]§ X E()_L =7z X (iEo_]_) = S’\Eo_]_ (319)
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Fig. 1 The electric field of a plane polarized wave, represented
by the double-headed arrow E | , is equivalent to the vector sum
of left and right circularly polarized waves E;, and Eg.

and from (3.17) and (3.18),
Eg = Eope ™" = 1By, (R +iy)e™™" (3.20)

Ep = Eore ™ = 1Ey, (X — iy)e ™! (3.21)

The components of the actual electric field are obtained by taking the real
part of these two equations,

R{Er} = $Eo. (X cos wt + ¥ sin wt) (3.22)

%{EL} = %EQJ_(% cos wt — ? sin wt) (323)

Thus, the fields Eg and E, are constant in magnitude, but sweep around
in a circle at the frequency w. For Eg the rotation is clockwise looking
in the direction of B, and it is called a right circularly polarized (RCP)
component, while for E;, the rotation is counterclockwise and it is called
a left circularly polarized (LCP) component. This behavior is illustrated
in Fig. 1.
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Proceeding in the analysis of the particle motion in the perpendicular
plane, we must now substitute the decomposed form (3.16) into (3.12).
The operator (iw — Q.x) when applied on the right circularly polarized
component Eggr gives

(iw — Qe x)Eor = L (iw — Qex)(1 +iBx)Eg, =

Liw(EoL +iB x Eo1) + 1(¢B/m)B x Eg — i(¢B/m)Eg, =
Liw(Eo. +iB x Egy ) — Li(gB/m)(Eoy +iB x Egy) =
i(w—¢B/m)Egr (3.24)
In a similar fashion we find for the left circularly polarized component,
(iw — QX)Egr = i(w + gB/m)EqL (3.25)

Therefore, both Eqr and Egr are eigenvectors of the complex operator
appearing in (3.12). Using (3.24) and (3.25), (3.12) becomes

Vel = Z(%) {(w_:iﬁEOR + (WTIQCSEOL (3.26)

In this equation the signs are coupled such that the upper signs apply to
a positively charged particle and the lower signs to a megatively charged
particle, since by definition Q. = |g| B/m is always positive. Thus, v,
also separates into two vectors rotating in opposite directions,

Vel = VR+ V], (327)
where
v :i(i>;E (3.28)
R m/ (w+£ Q) 0 '
_(ay 1
vi = z(m) PRI (3.29)

For a positive ion we see that, as w approaches the ion cyclotron frequency
(2¢;), there is resonance between the ion and the left circularly polarized
component of the electric field. For an electron, as w approaches the elec-
tron cyclotron frequency ({2.), resonance occurs with the right circularly
polarized component.
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3.3 Mobility Dyad

The expression for v, = v, + Vg + v, can be written in a compact
form through the introduction of the mobility dyad M defined by

Ve = M- Eo (330)

Using (3.7), (3.28), and (3.29), we see that the mobility dyad M is diagonal
in the rotating system, so that (3.30) becomes in matrix form,

w
— 0 0
R\ g (w£ Q) . Eor
w | =L 0 ol | B (3.31)
Ue” (w :F QC) EON
0 0 1

If, instead of the rotating system, we use a stationary Cartesian coordinate
system with the z axis pointing along the magnetostatic field, we can write
(3.7) and (3.12) in matrix form as

w? L 1w, 0
Veg Zq (w2 - Qg) (w2 - Qg) EOa:
Vey | = — - iwe w? 0 Ey, (3.32)
Vex o @-m Eo:

0 0

3.4 Plasma Conductivity Dyad

Denoting by ng the number density of electrons (charge —e) and ions
(charge +e) in a plasma, the electric current density can be expressed as

J = —ngev, + ngev; = nge(M; — M,) - E (3.33)

where M, and M; are the mobility dyads for the electrons and ions,
respectively. Introducing the conductivity dyad S by

J=S-E=(S5.+S)-E (3.34)

we obtain from (3.33), for the electron and ion conductivities, respectively,
S, = —ngeM, (3.35)

Si = noeM; (3.36)

With the help of (3.32), these conductivities can be expressed in matrix
form, in a Cartesian coordinate system, as
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w? B WwWee 0
e | @ —2) T @P-02)
Se = O ince w2 0 (337)
Tl Ww-0)  (Ww2-92)
0 0
w? 1we; 0
inge? (w? - ng) (w? — ng)
Si=———| __wly w? 0 (3.38)
e o
0 0

The fact that the conductivity dyad S is imaginary implies that J and E
are 90 degrees out of phase, since the actual physical expressions for J and
E are obtained by taking the real part of (3.34) and (3.1), respectively.

3.5 Cyclotron Resonance

The particle velocities, given in (3.7), (3.28), and (3.29), do not re-
present correctly the motion of the particle when the frequency w of the
applied electric field is equal to the particle cyclotron frequency €2.. For
example, when the forcing electric field rotates in the counterclockwise
direction, looking along B (LCP component), a positive particle is able
to absorb energy from the electric field, so that its speed increases con-
tinuously and indefinitely in time. The same holds for an electron, say,
and the RCP component of the forcing electric field when w = Q.. This
phenomenon is called cyclotron resonance.

To investigate the particle motion under resonance conditions, it is
necessary to go back to the original equation of motion and solve the
problem for the case when w = (2.. For simplicity, let us assume that the
component of the E field along B vanishes, that is, E = E,. Hence, we
take

E = Eg e ¥ (3.39)

where Q. = |q| B/m. In view of this assumption, the particle velocity
along B is constant and is equal to the initial parallel velocity. The com-
ponent of the equation of motion in the plane normal to the magnetic field
becomes
dv 1 (t)
dt

- %[EO Le7 e 4y (¢) x B (3.40)
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Taking the derivative of this equation with respect to time, yields

dvi g . —inet , VL
F = _7;2,—(_ QCE()J_E + 7 X B) (341)

and using (3.40) to eliminate (dv, /dt) in (3.41), we obtain, after rear-
ranging the terms,
d2V 1
dt?

2
+ 02, = —iQ LBy e — L (BxEgi)e % (3.42)
m m

The solution of this inhomogeneous differential equation is given by
the sum of the solution of the homogeneous equation plus a particular
integral of the inhomogeneous equation. The solution of the homogeneous
equation

d2V 1
dt?

is just the cyclotron motion described previously by the velocity v,,. A
particular integral of (3.42) is provided by the function

+02v, =0 (3.43)

vy = At ekt (3.44)

To determine the constant vector A we differentiate (3.44) twice with
respect to time:

DL _ A(1 = iQut)e it (3.45)
dt
d2VJ_ iQ
= —2iQ Ae” "t — 2 :
7 iQ.Ae ‘v, (3.46)

Comparing (3.46) with (3.42) we see that (3.44) satisfies (3.42) provided

we take -y
q q
A=—"Ey -
om Ot 2Q.m?

(B x Eoy) (3.47)

Therefore, the complete solution of (3.42) is

Vi =V + %(EO L FiB x Egy) t et (3.48)

where we have replaced ¢B/m by £()., the upper and lower signs corre-
sponding to positive and negative charges, respectively. Using (3.17) and
(3.18), which define the right and left circularly polarized components of
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the electric field, respectively, we can write (3.48) for a positively charged
particle (g > 0) as

V| =V, + %EoL t e_iﬂct (349)

and for a negatively charged particle (¢ < 0) as
V=V, + %EOR t =it (3.50)

Hence, the particle velocity increases indefinitely with time. Note that the
expressions (g/m)Eqgr and (q/m)Egg represent a constant acceleration.
A positive charge resonates with E; and a negative one with Eg. The
particle moves in circles of ever-increasing radii, with its velocity increasing
continuously during this spiral motion at the expense of the electric field
energy. A typical resonant spiral for an electron is shown in Fig. 2.

This phenomenon can be used as a method of increasing the particle
speed and hence the kinetic temperature of a plasma through particle
collisions. This method is known as radio frequency heating of the plasma
by cyclotron resonance.

4. TIME-VARYING MAGNETIC FIELD AND
SPACE-VARYING ELECTRIC FIELD

From Maxwell equations it is seen that a time-varying magnetic field is
also accompanied by a space-varying electric field. The E field associated
with the time-dependent B field satisfies

0B

VXEZ——a?

(4.1)
We shall assume that the fractional change in the magnetic field, in a time
interval of the order of the cyclotron period, is very small.

4.1 Equation of Motion and Adiabatic Invariants

Consider the magnetic field in the z direction and suppose that it is
spatially uniform and increases with time within the circular orbit of the
particle. From Faraday’s law, an electric field is induced along the path
of the particle orbit (see Fig. 3), which accelerates the particle, with the
result that the orbit is no longer a circle. However, since the time variation
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Fig. 2 Outward spiral motion of an electron, in the plane normal
to the magnetic field, under cyclotron resonance.

of the B field is small, the azimuthal component of the electric field E is
also small, and the orbit will be nearly a circle.

Expressing (4.1) in cylindrical coordinates, taking B = Bz, and con-
sidering E = 8Fy(r), we find

10 0B

——(’I“Eg) = —E

ror (42)

Integrating with respect to r, noting that (0B/0t) can be taken outside
the integral sign since B is a slowly varying function, yields

"o 0B [T
W(T'Eg) dr' = ——E/O v dr' (4.3)

0

from which we obtain the induced electric field as

0B
_ 1
Further, since T x Z = —®, (4.4) can be written in vector form as
Eg =1 r X B—B (4 5)



110 FUNDAMENTALS OF PLASMA PHYSICS

Fig. 3 Azimuthal electric field Eg induced by a time-varying
magnetic field. The magnetic field inside the orbit is uniform,
parallel to the z axis, and increases slowly in time.

Using this result in the Lorentz force equation, we obtain for the equation
of motion, after some rearrangement,

Z—:= %rx%—i—ﬂcxv (4.6)
Instead of solving (4.6) directly, we shall determine a relation between the
radius vector r and the time rate of change of B, by calculating the change
in the particle transverse kinetic energy over one gyration period, which
results from the action of the induced electric field. Since the force acting
on the particle due to the electric field is given by qEg, the increase in the
transverse kinetic energy over one gyration period is given by

5(%mv_21_) = q%Eg -dr (4.7)

where dr denotes an element of path along the particle trajectory, so that
v, = dr/dt. Since the field changes very slowly, we can calculate the line
integral in (4.7) as if the orbit were closed. Using Stokes’s theorem we
replace the line integral by a surface integral over the unperturbed orbit,

0B
§(3mv?) = q/(V x Eg)-dS = —q N - dS (4.8)
S S
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where use was made of (4.1). Here S denotes the surface enclosed by the
cyclotron orbit, its direction being such that B-dS < 0 for ions, and
B-dS > 0 for electrons, in view of the diamagnetic character of a plasma.

Thus (4.8) becomes

0B

§(zmol) = lal 57 e (4.9)

Now, the change in the magnetic field over one gyration period (27 /) is

63)

8= (%),

(4.10)

and using the relations r> = v2 /Q? and . = |¢| B/m, (4.9) can be
rewritten as
§(3mav?) = (Amov? /B) 6B = |m| 6B (4.11)

where the quantity [m| = (1mv? )/B is the orbital magnetic moment of
the charged particle. Now, since the left-hand side of (4.11) is é(|m|B),
we obtain

Sjm| = 0 (4.12)

This result shows that the magnetic moment is invariant in slowly varying
magnetic fields for which (0B/dt)(2n/Q.) < B.
From the constancy of the magnetic moment, we can easily verify
that
Bnr? = constant (4.13)

Therefore, as the magnetic field increases, the radius of gyration decreases,
as shown in Fig. 4. Further, since the magnetic flux ®,,, through a Larmor
orbit is given by

®,, = BS = Brr? (4.14)

it is clear that the magnetic flux through the particle orbit is also an
adiabatic invariant. Hence, as the magnetic field strength increases, the
radius of the orbit decreases in such a way that the particle always encircles
the same number of magnetic flux lines.

When the time variation of the magnetic field is not spatially uniform
within the particle orbit, but if it occurs in an unsymmetrical way, then
the induced electric field acting on the particle can considerably modify
its orbit from the one shown in Fig. 4. In the most general cases the
particle orbit can be extremely complicated. In order to obtain a general
idea of the particle orbit, let us consider the simple case of a magnetic
field varying in time with cylindrical symmetry over a region of radius R,
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which is much larger that the cyclotron radius r., as shown in Fig. 5. The
azimuthal component of the induced electric field Eg, at the point P (see
Fig. 5) is given, from (4.5), by

0B
Eg=1iR x — 4.15
6 2 at ( )
A charged particle located at the point P is now acted upon by crossed
electric and magnetic fields, resulting in a drift velocity given by

~E9XB~1(R 3B) B

VE = B2 =3 X E X ﬁ (416)

Since B is in the z direction (normal to the vector R), (4.16) yields

_ 1(9B\R
Vg = 2( 0t>B (4.17)
Therefore, the particle guiding center drifts radially inward with the drift
velocity vg given in (4.17). As the particle drifts radially inward, its
radius of gyration decreases in such a way that the flux encircled by the
gyrating particle remains constant (see Fig. 5). Since the density of the
magnetic flux lines increases as the magnetic field strength increases, this
radial particle drift can be pictured as a radially inward motion of the
magnetic flux lines at the velocity vg, with the guiding center attached
to a given flux line.

4.2 Magnetic Heating of a Plasma

The adiabatic invariance of the particle orbital magnetic moment
(lm| = Imv? /B = constant) implies that when the magnetic field in-
creases, the particle transverse kinetic energy (W, = %m’ui) increases
linearly with B. Further, since the magnetic flux encircled by the gyrat-
ing particle is also constant, as the magnetic flux density increases, the
magnetic flux tube contracts and the particle guiding center moves radi-
ally inward, accompanying the radial displacement of the magnetic field
lines, as if it were frozen in the field lines. Consequently, the increase
in the magnetic flux density causes the charged particles in a plasma to
approach each other, resulting in a magnetic compression. In the present
case of two-dimensional compression, since the increase in the number

density (n) of the particles is proportional to the cross-sectional area 7rZ,
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q<0

Fig. 4 Motion of an electron in a time-varying magnetic field.
The field is spatially uniform and increases in time.

it follows that under magnetic compression in two dimensions n increases
linearly with B. Similarly, when B decreases, n also decreases, resulting
in a magnetic decompression. Thus, for two-dimensional compression we
have W, «x B x n.

This property is used as a method of plasma heating, known as mag-
netic pumping, which consists in periodic magnetic compressions and de-
compressions of the plasma. The compression and the decompression must
take place in a time interval very large compared to the Larmor period
but, at the same time, very small compared to the relaxation time nec-
essary for the achievement of thermal equilibrium. For the present case
of two-dimensional compression-decompression, obtained by varying the
axial magnetic field, only the velocity and the energy in the two directions
normal to the magnetic field are changed.

In order to be able to heat the plasma in a compression-decompression
cycle, it is necessary to transfer part of the energy increase in W, ob-
tained by compression, to the energy W, which is unaffected by decom-
pression. This energy transfer is brought about by particle collisions,
therefore increasing the particle thermal kinetic energy at the expense of
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Fig. 5 Motion of a negatively charged particle in an increasing
magnetic field (directed out of the page) with cylindrical sym-
metry over a region of radius R much greater than the Larmor
radius r..

the electric field energy. Thus, in a complete cycle consisting of a compres-
sion, a relaxation time, and a decompression, part of the energy increase
in W, achieved during compression is transferred to the degree of freedom
parallel to B, as a result of collisions, causing an increase in W, which
is not affected during the decompression, whereas W is decreased corre-
spondingly. Therefore, by a periodic repetition of these cycles of adiabatic
compression-decompression, the plasma thermal energy and therefore the
temperature are increased.
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5. SUMMARY OF GUIDING CENTER DRIFTS
AND CURRENT DENSITIES ST

5.1 Guiding Center Drifts

Electric field:

ExB
Vg = B (2.5.15)*
Gravitational field: B
mg X
Vg = B (2.6.3)
General force: F B
X
Vp = B2 (2.6.2)
Gradient of B: m| (VB) x B
m X
= - 5.1
va B2 (3.5.1)
Curvature of B:
B mv? [(B-V)B] x B (3.7.9)
Vo = B .
Gradient-curvature of B (in vacuum field):
m(v? + v3)(3VB?) x B
= — 8.2
vac (B (3.8.2)
Polarization: (6B, /31)
m i t
5.2 Current Densities
Magnetization:
Jy=VxM (2.4.40)
Gravitational: B
PmE X

* The first number in these equation numbers is the chapter number.
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Gradient of B:

1 (VB) xB

Jg = _(WZ |m,|>—~ﬁ——— (3.5.3)

Curvature of B:
1 [(B-V)B| xB
Polarization: (OE, /o)
Pm 1
J, = 5 (2.12)

PROBLEMS

4.1 With reference to a magnetic field pointing along the z axis (B =
BoZ), describe the type of polarization of the following electric field:

E = Ey(X cos wt — ¥ sin wt)

Make a drawing that shows the orientation of E for the instants ¢ = 0,
t = n/(2w), and t = w/w. How can you represent this electric field in
complex notation?

4.2 Describe, in a semiquantitative way, the motion of an electron in the
presence of a constant magnetic field B = Bz and a time-varying electric
field given by .

E = LE(X +iy) e™*!
where Ey and By are positive constants and 2. = eBy/m.. What type of
polarization has this electric field?

4.3 Solve the equation of motion to determine the transient response of
a charged particle in the presence of a spatially uniform AC electric field
E(t) = XFE sin(wt), which is switched on at ¢ = 0. Assume that initially,
at t = 0, the particle is at rest at the origin. Make a plot of the particle
trajectory and velocity as a function of time.

4.4 Consider an electron acted upon by a constant and uniform mag-
netic field B = Byz, and a uniform but time-varying electric field E =
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YE,o sin(wt). Assume that the initial conditions are such that the motion
takes place in the (z,y) plane and that at ¢ = 0 the electron is at rest
(vg = 0) at the origin.

(a) Show that the orbit of the electron is given by

ey w Q.
= —-— — -1)—- — —
x(t) ) [Qc(cos Qt—1) > (cos wt 1)]

y(t) = _M—SQ—E__% (Qic sin .t — sin wt)
(b) In the low-frequency limit, w < ., show that the electron orbits at the
angular frequency w around an ellipse that has its major axis perpendicular
to the electric field. Determine the ratio of the minor to the major axis of
the ellipse.
(c) In the high-frequency limit, w > €2, show that the electron moves in
a circle at the cyclotron frequency §2..

4.5 Integrate (3.49) and (3.50) to determine the particle trajectory in the
plane normal to B and sketch the path of the particle for ¢ > 0 and ¢ < 0.

4.6 Consider the motion of an electron in the presence of a uniform
magnetostatic field B = Byz, and an electric field that oscillates in time
at the electron cyclotron frequency (2., according to

E(t) = Ey(X cos Q.t + ¥ sin Qct)

(a) What type of polarization has this electric field?
(b) Obtain the following uncoupled differential equations satisfied by the
velocity components v,(t) and vy (t):

d?v,

E
+ ngx = 26——2(26 sin .t
m

d2’U GE()

dey + ngy = ——2——m—Qc cos §2.t

(c) Assume that, at t = 0, the electron is located at the origin of the
coordinate system, with zero velocity. Neglect the time-varying part of B.

Show that the electron velocity is given by

E
vy (t) = _EnTO t cos €.t
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E
vy(t) = _EWTO t sin Q.t

(d) Show that the electron trajectory is given by

eEy /1 t . 1
= —— (= cos Q.t + — sin Nt — —)
z(t) (Qg cos .t + o sin Q.t o2

Cc

€E0 1 . t
y(t) = - (—{—E sin Q.t — o cos Qct)

4.7 Solve the equation of motion to determine the velocity and the tra-
jectory of an electron in the presence of a uniform magnetostatic field
B = Byz, and an oscillating electric field given by

E(t) = XE, sin wt + ZE, cos wt

Consider the same assumptions and initial conditions as in the previous
problem.

4.8 Consider the motion of an electron in a spatially uniform magnetic
field B = B,z, such that B, has a slow time variation given by

B,(t) = By(1 — at)

where By and « are positive constants, and |at| < 1. Assume the following
initial conditions: r(0) = (r¢,0,0) and v(0) = (0,v,0,0), where 7. is the
Larmor radius, v 9 = Q¢r. and Q. = |g| Bo/m.

(a) Write the equation of motion, considering the Lorentz force, and solve
it by a perturbation technique including only terms up to the first order
in the small parameter o. Show that the particle velocity is given by

Vg (t) = —=Qcre sin Qct + %aQCrct(sin Qct + Qct cos Qt)

vy (t) = Qere cos Qet + %aQCrCt(~cos Qct + Qct sin Q1)
(b) Show that the particle orbit is given by

z(t) =r.(1+ Lat) cos Qct + ;g)a (Q2t? — 1) sin Qct
. 1 . _ e 2,2 _ _7'-0_0_[_
y(t) = re(1+ ;at) sin Qct 20, (%% — 1) cos Ot 20,

Z(t) = ’Uz()t
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(c) Determine the orbital magnetic moment and verify its adiabatic in-
variance, retaining only terms up to the first order in a.

4.9 Consider the motion of a charged particle in a spatially uniform mag-
netic field that varies slowly in time as compared to the particle cyclotron
period.

(a) Show that the equation of motion can be written in vector form as

dv(t)
dt

082:(t)
ot

= Q(t) X v(t) — 3r(t) x

where .(t) = —¢B(t)/m.
(b) Considering that B(t) = zByf(t), where By is constant, obtain the
following equations for the motion of the particle in the plane normal to

B:
d? d d
d*y(t) dz(t) 1 4 (¢)

7 +Q°[f )= +§m(t>7]=0

where Q. = |q| B/m.
(c) Define a complex variable u(t) = z(t) + iy(¢) and a function £(t) by

t
() = u(t) exp [5iQ / F(&) dt']
0
and show that the equation satisfied by &(t) is

dg(t) | Q2
dt? +Tf

(t) &(t) =0

(d) If & (t) and &»(t) are two linearly independent solutions of this equa-
tion, subject to the initial conditions

£(0)=0 (d€1(t)/dt)e=o = 1
£2(0) =1 (d€2(t)/dt)s—0 = 0

show that the solution for u(t) can be written as

u(t) = {uo2(t) + &1 (t)[duo/dt + 3iQef(0)uo]} exp [~3i€ /0 f(t) dt']
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where ug and dug/dt represent the initial position and velocity, respec-
tively.

(e) Considering now that the particle is initially (¢ = 0) at the origin and

moving with velocity vy along the negative y axis, that is, ug = 0 and
dug/dt = —ivg, show that

ult) = —ivo 1(t) exp [~ 1 /0 () dt']

and, consequently,

2(t) = vo &1(¢) sin [10% /0 F() dt']
V(t) = =0 &(6) cos (4% [ F(¢) ]

4.10 (a) Assume that f(t), in problem 4.9, is given by exp (—at). Show
that, in this case, £(t) satisfies the Bessel equation of zero order,

PE(r) | 1dE(r)

dr? T dr

+&(r)=0

where 7 = (Q./20a) exp (—at). Determine the two solutions of this equa-
tion which satisfy the initial conditions stated in problem 4.9 and interpret
them physically.

(b) Considering now that f(t) = (1 — at), solve the equation for £(¢) in
problem 4.9 in a power series in «, and determine the particle trajectory
to order a. Show that the ratio (v2 + vz) /B(t) has no terms of order a,
thus verifying the adiabatic invariance of the magnetic moment. Compare
these results with those of problem 4.8.

4.11 For an electron with initial velocity voX and initial position z¢X,
acted upon by an electric field E = XE cos(kz —wt), show that its velocity
is given by

E t
v(t) = vy — %—/ cos (kz — wt') dt’
e Jo

Using a perturbation approach, in which to lowest order E = 0, show that

el

m{sm [kzo + (kvo — w)t] — sin (kzo)}

v(t) = vg —
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Notice that the velocity perturbation will be large only when vy is close
to the phase velocity w/k.

4.12 Using the Maxwell equation (1.5.3) (Eq. 5.3 in Chapter 1) and
the equation (3.34) which defines the plasma conductivity dyad S, and
considering the time variation indicated in (3.1), show that

VxB=—iwuy £-E

where £ is the plasma electric permittivity dyad given by
i
E=eo(1+—5)
We€p

where 1 denotes the unit dyad, which in Cartesian coordinates can be
written as
1=XX+yy+2zz



ELEMENTS OF
PLASMA KINETIC THEORY

1. INTRODUCTION

A plasma is a system containing a very large number of interacting
charged particles, so that for its analysis it is appropriate and convenient
to use a statistical approach. In this chapter we present the basic elements
of kinetic theory, introducing the concepts of phase space and distribution
function, which are necessary for a statistical description.

All physically interesting information about the system is contained
in the distribution function. From knowledge of the distribution function
the macroscopic variables of physical interest, necessary for a macroscopic
description of the plasma behavior, can be systematically deduced. These
macroscopic variables are functions of position and time and are directly
related to the average values of the various particle physical quantities
of interest, which can be considered as functions of the particle velocities,
with the distribution function used as a weighting function in phase space.

The differential kinetic equation satisfied by the distribution function,
generally known as the Boltzmann equation, is deduced in section 5. At
this point, the effects due to particle collisions are incorporated into this
kinetic equation only through a general, unspecified collision term. In
Chapter 21 we shall deduce explicit expressions for the collision term, in
particular for the Boltzmann collision integral and for the Fokker-Planck
collision term. Only a simple approximate expression for the collision term
is presented at this point, the so-called relaxzation model or Krook collision
term. The Vlasov equation for a plasma is introduced in the last section.
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2. PHASE SPACE

At any instant of time each particle in the plasma can be localized
by a position vector r drawn from the origin of a coordinate system to
the center of mass of the particle. In a Cartesian frame of reference, as
illustrated in Fig. 1, we have

r=zX+yy+ 2z (2.1)

where X, y, and Z denote unit vectors along the axes z, y, and z, respec-
tively. The linear velocity of the center of mass of the particle can be
represented by the vector

V=0,X+ v,y + 0,2 (2.2)

with v, = dz/dt, v, = dy/dt, and v, = dz/dt.

In analogy with the configuration space defined by the position co-
ordinates (z,y, z), it is convenient to introduce the velocity space defined
by the velocity coordinates (vg,vy,v,). In this space the velocity vector
v can be viewed as a position vector drawn from the origin of the coordi-
nate system (vg, vy, v,) to the center of mass of the particle, as indicated
schematically in Fig. 1.

2.1 Single-Particle Phase Space

From the point of view of classical mechanics the instantaneous dy-
namic state of each particle can be specified by its position and velocity
vectors. It is convenient, therefore, to consider the phase space defined by
the six coordinates (z,y, 2, Vz, Uy, V).

In this six-dimensional space the dynamic state of each particle is
appropriately represented by a single point. The coordinates (r,v) of the
representative point give the position and velocity of the particle. When
the particle moves, its representative point describes a trajectory in phase
space. At each instant of time the dynamic state of a system of N particles
is represented by N points in phase space.

2.2 Many-Particle Phase Space

The phase space just defined, often called u-space, is the phase space
for a single particle, in contrast with the many-particle phase space or



124 FUNDAMENTALS OF PLASMA PHYSICS

Fig. 1 Position vectors (a) in configuration space and (b) in
velocity space.

I'-space for the whole system of particles. In the latter, a system consist-
ing of N particles, with no internal degrees of freedom, is represented by
a single point in a 6N-dimensional space defined by the 3N position co-
ordinates (ri,r2,...,ry) and the 3N velocity coordinates (vq,va,...,Vy).
Thus, a point in I'-space corresponds to a single microscopic state for the
whole system of particles. This many-particle phase space is often used
in statistical mechanics and advanced kinetic theory. The single-particle
phase space is the one normally used in elementary kinetic theory and
basic plasma physics, and is the space that will be considered in what
follows.

2.3 Volume Elements

A small element of volume in configuration space is represented by
d3r = dx dy dz. This differential element of volume should not be taken
literally as a mathematically infinitesimal quantity but as a finite element
of volume, sufficiently large to contain a very large number of particles, yet
sufficiently small in comparison with the characteristic lengths associated
with the spatial variation of physical parameters of interest such as, for
example, density and temperature. In a gas containing 10'8 molecules/m?,



5. ELEMENTS OF PLASMA KINETIC THEORY 125

Fig. 2 (a) The element of volume d*r = dz dy dz around the
terminal point of r, in configuration space, and (b) the element of
volume d*v = dv, dv, dv,, in velocity space, around the terminal
point of v.

for example, if we take d3r = 1072 m3, which in a macroscopic scale can
be considered as a point, there are still 106 molecules inside d3r. Plasmas
that do not allow a choice of differential volume elements as indicated,
cannot be analyzed statistically.

When we refer to a particle as being situated inside d3r, at r, it is
meant that the x coordinate of the particle lies between x and z + dz,
the y coordinate lies between y and y + dy, and the z coordinate lies
between z and z+dz, that is, inside the volume element dz dy dz situated
around the terminal point of the position vector r = zX + yy + 2Z. It is
important to note that the particles localized inside d3r, at r, may have
completely arbitrary velocities that would be represented by scattered
points in velocity space.

A small element of volume in velocity space is represented by d3v =
dvg dvy dv, . For a particle to be included in d3v, around the terminal
point of the velocity vector v, its v, velocity component must lie between
vy and vz + dvg, the vy component between v, and vy, + dvy, and the v,
component between v, and v, + dv,. The differential elements of volume
d3r and d3v are schematically represented in Fig. 2.
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Fig. 3 Schematic representation of the element of volume
d3r d3v in the six-dimensional phase space, around the represen-
tative point (r,v).

In phase space (u-space) a differential element of volume may be imag-
ined as a six-dimensional cube, represented by

d*r d*v = dr dy dz dv, dv, dv, (2.3)

as shown schematically in Fig. 3. Note that inside d®r d3v, at the position
(r,v) in phase space, there are only the particles inside d*r around r whose
velocities lie inside d3v about v. The number of representative points
inside the volume element d3r d3v is, in general, a function of time and of
the position of this element in phase space. It is important to note that
the coordinates r and v of phase space are considered to be independent
variables, since they represent the position of individual volume elements
(containing many particles) in phase space.

3. DISTRIBUTION FUNCTION

Let dSN,(r,v,t) denote the number of particles of type « inside the
volume element d3r d3v around the phase space coordinates (r,v), at the
instant ¢t. The distribution function in phase space, fu(r,v,t), is defined
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as the density of representative points of the type a particles in phase
space, that is,

d N, (r,v,t)
d3r d3v

fa(r,v,t) = (3.1)

It is assumed that the density of representative points in phase space
does not vary rapidly from one element of volume to the neighboring el-
ement, so that f,(r,v,t) can be considered as a continuous function of
its arguments. According to its definition f,(r,v,t) is also a positive and
finite function at any instant of time. In a volume element d®r d3v, whose
velocity coordinates (vg,vy,v,) are very large, the number of representa-
tive points is relatively small since, in any macroscopic system, there must
be relatively few particles with very large velocities. Physical considera-
tions require therefore that f,(r,v,t) must tend to zero as the velocity
becomes infinitely large.

The distribution function is, in general, a function of the position
vector r. When this is the case the corresponding plasma is said to be
inhomogeneous. In the absence of external forces, however, a plasma ini-
tially inhomogeneous reaches, in the course of time, an equilibrium state
as a result of the mutual particle interactions. In this homogeneous state
the distribution function does not depend on r.

In velocity space the distribution function can be anisotropic, when
it depends on the orientation of the velocity vector v, or isotropic, when
it does not depend on the orientation of v but only on its magnitude, i.e.,
on the particle speed v = |v|.

The statistical description of different types of plasmas requires the
use of inhomogeneous or homogeneous, as well as anisotropic or isotropic
distribution functions. A plasma in thermal equilibrium, for example, is
characterized by a homogeneous, isotropic, and time-independent distri-
bution function.

In a statistical sense the distribution function provides a complete
description of the system under consideration. Knowing f,(r,v,t) we can
deduce all the macroscopic variables of physical interest for the type «
species. One of the primary problems of kinetic theory consists in de-
termining the distribution function for a given system. The differential
equation that governs the temporal and spatial variation of the distribu-
tion function under given conditions, known generally as the Boltzmann
equation, will be derived in section 5.
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4. NUMBER DENSITY AND AVERAGE VELOCITY

The number density, no(r,t), is a macroscopic variable defined in
configuration space as the number of particles of type «, per unit volume,
irrespective of velocity. It can be obtained by integrating dSN(r,v,t)
over all of velocity space and dividing the result by the volume element
d3r of configuration space,

ne(r,t) = d—;’:/vdﬁ./\/'a(r,v,t) (4.1)
or, using the definition (3.1),
Ne(r,t) = /fa(r,v,t) dv (4.2)

The single integral sign indicated here represents in fact a triple integral
extending over all velocity space, that is, over each one of the variables
Uz, Uy, and v, from — oo to 4+ oo. For convenience and simplification of
notation only a single integral sign will be indicated, being implicit the
fact that the integral extends over all velocity space.

The average velocity u,(r,t) is defined as the macroscopic flow veloc-
ity of the particles of type a in the neighborhood of the position vector
r at the instant ¢. In order to relate u,(r,t) to the distribution function,
consider the particles of type o contained in the volume element d3r d3v
about (r,v) at the instant ¢, which we have denoted by d°A,(r,v,t). The
average velocity of the particles of type a can be obtained as follows. First
we multiply d® NV, (r, v, t) by the particle velocity v, next we integrate over
all possible velocities, and finally we divide the result by the total number
of type a particles contained in dr, irrespective of velocity. Therefore,

1

allyt) = ————=—
Ua(r, ) Ne(r,t) d3r

/ v N (r, v, 1) (4.3)
v

The procedure just described is the usual statistical definition of average
values. Using the definition of f,(r,v,t), given in (3.1), we obtain

o (r, ) = — / v fu(r,v,t) d* (4.4)

B ne(r,t) J,

Note that both ng(r,t) and u,(r,t) are macroscopic variables that depend
only upon the coordinates r and t.
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A systematic method for deducing the macroscopic variables (such as
momentum flux, pressure, temperature, heat flux, and so on), in terms of
the distribution function, is formally presented in Chapter 6.

5. THE BOLTZMANN EQUATION

In order to calculate the average values of the particle physical prop-
erties (the macroscopic variables of interest), it is necessary to know the
distribution function for the system under consideration. The dependence
of the distribution function on the independent variables r, v, and ¢ is
governed by an equation known as the Boltzmann equation. We present
in this section a derivation of the collisionless Boltzmann equation and the
general form it takes when the effects of the particle interactions are taken
into account, without explicity deriving any particular expression for the
collision term.

5.1 Collisionless Boltzmann Equation
Recall that
ANy (r,v,t) = fo(r,v,t) dr dv (5.1)

represents the number of particles of type « that, at the instant ¢, are
situated within the volume element d3r d3v of phase space, about the
coordinates (r,v). Suppose that each particle is subjected to an external
force F. In the absence of particle interactions, a particle of type a with
coordinates about (r,v) in phase space, at the instant ¢, will be found after
a time interval dt about the new coordinates (r’,v’) such that

r'(t+dt) =r(t) +vdt (5.2)

Vit+dt)=v(t)+adt (5.3)

where a = F/my,, is the particle acceleration and m,, its mass. Thus, all
particles of type « inside the volume element d®r d®v of phase space, about
(r,v) at the instant ¢, will occupy a new volume element d*r’ d3v’, about
(r',v') after the interval d¢ (see Fig. 4). Since we are considering the same
particles at ¢ and at t 4 dt, we must have, in the absence of collisions,

fo(', vV t+dt) dr' &' = fo(r,v,t) d®r dv (5.4)
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Fig. 4 In the absence of collisions the particles within the
volume element d3r d3v about (r,v), at an instant t, will occupy

after a time interval dt a new volume element d3r' d3v’, about
(r',v").

The element of volume d®r d3v may become distorted in shape as a
result of the particle motion. The relation between the new element of
volume and the initial one is given by

dr' &' = |J| &®r v (5.5)

where J stands for the Jacobian of the transformation from the initial
coordinates (r,v) to the final ones (r’,v’). It will be shown in the next
subsection that for the transformation defined by (5.2) and (5.3) we have
|J| =1, so that
B3r' 3 = d®r v (5.6)
and (5.4) becomes
[fa(t', V't +dt) = fo(r,v,1)] d°r d®v =0 (5.7)

The first term on the left-hand side of (5.7) can be expanded in a
Taylor series about f(r,v,t) as follows:

falr+vdt,v+adtt+dt) = fu(r,v,t)+ [ % +
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(vz% +vy%€a— +vz%%—> + (axgzj: -l—aygi: +azg£j)] dt (5.8)

neglecting terms of order (dt)? and higher. Using the del operator notation

0 0 0
=X—+y—+7z2— 5.9
v x8x+y8y+z8z (59)
and, in a similar way, defining a del operator in velocity space by
~0 .0 .0
Vy = 5.10
x8v$+y8vy+zavz ( )
we obtain from (5.8)
falr+v dt,v+adtt+dt) = fo(r,v,t) +
(8% b b t
[%(;TV—) +V-Vfa(r,v,t)—i—a-VUfa(r,v,t)] dt (5.11)
Substituting this result into (5.7) gives
Qf—a%;—v’-tl—|—v-Vfa(r,v,t)+a-vaa(r,v,t) =0 (5.12)
which is the Boltzmann equation in the absence of collisions.
This equation can be rewritten as
Dfo(r,v,t)
— =0 1
D (5.13)
where the operator
2——8—-i-v V+a-V (5.14)
Dt ot Y '

represents the total derivative with respect to time, in phase space. Eq.
(5.13) is a statement of the conservation of the density of representative
points in phase space. If we move along with a representative point in
phase space and observe the density of representative points f,(r,v,t) in
its neighborhood, we find that this density remains constant in time. This
result is known as Liouville’s theorem. Note that this result applies only
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to the special case in which collisions, as well as radiation losses, processes
of production, and loss of particles, are unimportant.

5.2 Jacobian of the Transformation in Phase Space

To determine the Jacobian of the transformation defined by (5.2) and
(5.3) recall that, from its definition, we have

o', v 0y, 2 v, vy, 07)

J= d(r,v) - oz, y, 2, Vs, Uy, vy) (5.15)
which corresponds to the determinant of the 6 x 6 matrix
or'/0x 0Oy’ /ox --- O /Ox
g | 9<'/0y dy'/oy .- Ov /Oy (5.16)
o' /Ov, Oy /ov, --- OV, /0v,
We can separate the external force F into two parts,
F =F + go(v x B) (5.17)

where F' represents a velocity-independent force and the second term is
the velocity-dependent force due to an externally applied magnetic field B,
the only velocity-dependent force that may concern us in this treatment.
The partial derivatives appearing in the matrix J are

oz v} 1 OF]
=0 , =— dt
oz 0r;  mg O
oz ov; ¢a O(v x B);
i _ 5 dt g, 4 de AV D) 1
5. = b dt ik R T (5.18)

where (5.2), (5.3), and (5.17) have been used, and where z; ; = z,y, z and
Vi,j = Ug, Uy, V.. The symbol &;; is the Kronecker delta. The matrix (5.16)

can be written in the form

where the (J).s, with ¢ = 1,2, 3,4, represent the following 3 x 3 submatri-
ces:
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1 00
(J)r=10 1 0 (5.20)
0 0 1
it OF, /0x BF?;/E?;B an:/ax
(J)QZ—T’;— oF,/0y OF,/0y OF,/0y (5.21)
* \0F,/0z OF,/0z OF,/0z
d 0 0
(J)s=| 0 dt 0O (5.22)
0 0 dt
1 —aB, aB,
(Ja=| aB, 1 —aB, (5.23)

—aBy aB; 1

where the constant a stands for (g,/ms) dt. Neglecting terms of order
(dt)?, it can be easily verified that |J| = 1. Thus, up to and including
the terms of first order in the infinitesimal dt, we have

d3r' &' = d®r d®v (5.24)

which is the result (5.6) used in the previous subsection.

5.3 Effects of Particle Interactions

When the effects due to the particle interactions are taken into ac-
count, (5.12) needs to be modified. As a result of collisions during the
time interval dt, some of the particles of type a that were initially within
the volume element d3r d3v of phase space may be removed from it, and
particles of type « initially outside this volume element may end up inside
it. This is indicated schematically in Fig. 5. Generally, the number of
particles of type a inside dr d3v about the coordinates (r,v), at an in-
stant ¢, will be different from the number of particles of type « inside this
same volume element about the coordinates (r’,v’) at the instant ¢ + dt.
We shall denote this net gain or loss of particles of type «, as a result of
collisions during the interval dt, in the volume element d3r d3v, by

[6fa(r,v,t)

d3r d3v dt 2
(5t ]coll TdU (5 5)
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Fig. 5 Schematic representation of the motion of the volume
element d®r d3v in phase space, showing particles entering and
leaving this volume element, as a result of collisions during the
time interval dt.

where (4 f,/dt)con represents the rate of change of f,(r,v,t) due to colli-
sions. Thus, when collisions are considered, (5.7) becomes

8fa

fald', Vst + dt) = falr,v,8)] dr do = (=5

) drdudt (5.20)

and the following modified form of Eq. (5.12) results

Ofa 0fa

o . : = (=2 5.27
o TV Viata-Vifa ( 5t )coll (5.27)
Using the total time derivative operator, defined in (5.14), we can rewrite
this equation in compact form as

- (%) coll (5.28)

Dt ot

This equation is obviously incomplete, since the precise form of the
collision term is not known. In the following section we will consider a
very simple expression for the collision term, known as the Krook model
or relazation model. More elaborate expressions, such as the Boltzmann
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collision integral and the Fokker-Planck collision term, will be considered
in Chapter 21.

6. RELAXATION MODEL FOR THE COLLISION TERM

A very simple method for taking into account collision effects is pro-
vided by the relaxation model. In this model it is assumed that the effect
of collisions is to restore a situation of local equilibrium, characterized by a
local equilibrium distribution function f,o(r,v). In the absence of external
forces, it assumes that a situation initially not in equilibrium, described
by a distribution function f,(r,v,t) different from fuo(r,v), reaches a
local equilibrium condition exponentially with time, as a result of colli-
sions, with a relazation time 7. This relaxation time is of the order of the
time between collisions and may also be written as v~ where v represents
a relazation collision frequency. This model was originally developed by
Krook and can be expressed mathematically as

-
According to this expression for the collision term, when f, = fqo0 we
have (0 fq/0t)con = 0, so that in a state of local equilibrium the distribu-
tion function is not altered as a result of collisions.
In order to bring out the physical meaning of the relaxation model,
let us consider the Boltzmann equation with this collision term, in the
absence of external forces and spatial gradients, and when f,o and 7 are

time-independent,
afoz _ (fa — faO)

Ja Yo  Jab) 2
ot T (6.2)
which can be rewritten as
afa fa _ faO
ot + T T (6.3)

This simple inhomogeneous differential equation has Ce~t/" as the homo-

geneous solution, where C' is a constant, and f,o as a particular integral.
Therefore, the complete solution is

Fa(v,t) = fao + [fa(V,0) = fao] €77 (6.4)

Thus, the difference between f, and f,o decreases exponentially in time
at a rate governed by the relaxation collision frequency v = 1/7.
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This collisional model has proved to be useful and, in some cases,
leads to results almost identical to the ones obtained using the Boltzmann
collision integral (deduced in Chapter 21). It is particularly applicable
to a weakly ionized plasma in which only charge-neutral collisions are
important. However, it oversimplifies the entire relaxation phenomena
and does not predict correctly the different relaxation collision frequencies
for the various physical quantities of interest, such as the macroscopic
velocity, momentum, and energy. According to the relaxation model, these
macroscopic physical variables approach equilibrium at the same rate v. A
detailed analysis of the collision process, however, shows that this is not the
case, and the relaxation times for the various macroscopic variables differ
to some extent. For nonrelativistic velocities, while the relaxation times
for the average velocity and the momentum are found to be the same,
approximately 7, that of the average thermal energy is approximately
(mg/2mgq,)7. Hence, for collisions between electrons and neutral particles,
the relaxation time for the kinetic energy of the electrons is longer than
that for the average velocity by a factor that is of the order of the ratio
of the neutral particle mass to the electron mass. The relaxation model is
therefore strictly applicable only to the cases of collisions between particles
of the same mass. In spite of this limitation, the relaxation model is still
useful partly because of its simplicity and partly because it usually gives
a first approximation to the problem under consideration.

7. THE VLASOV EQUATION

A very useful approximate way to describe the dynamics of a plasma
is to consider that the plasma particle motions are governed by the applied
external fields plus the macroscopic average internal fields, smoothed in
space and time, due to the presence and motion of all plasma particles.
The problem of obtaining the macroscopic (smoothed) internal electro-
magnetic fields, however, is still a complex one and requires that a self-
consistent solution be obtained.

The Vlasov equation is a partial differential equation that describes
the time evolution of the distribution function in phase space and that
directly incorporates the smoothed macroscopic internal electromagnetic
fields. It may be obtained from the Boltzmann equation (5.27) with
the collision term (0 f,/dt)con equal to zero, but including the internal
smoothed fields in the force term,

O0fa

1
W+V'vfa+E[Fezt+Qa(Ei+VXBi)]'vvfoz*O (71)
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Here F.,; represents the external force, including the Lorentz force associ-
ated with any externally applied electric and magnetic fields, and E; and
B; are internal smoothed electric and magnetic fields due to the presence
and motion of all charged particles inside the plasma. In order that the
internal macroscopic electromagnetic fields E; and B; be consistent with
the macroscopic charge and current densities existing in the plasma itself,
they must satisfy Maxwell equations

vV.E =% (7.2)
€0
V-B;=0 (7.3)
0B;
V x E; e (7.4)
OE;
V xB; = [lo(J + € En ) (75)

with the plasma charge density p and the plasma current density J given
by the expressions

D=3 tanalt) =Y ga / fatvit) v (76)

J(r,t) = an na(r,t) ug(r,t) an/V fa(r,v,t) d®v (7.7)

the summations being over the different charged particle species in the
plasma. Here u,(r,t) denotes the macroscopic average velocity for the
particles of type «, given in (4.4).

Egs. (7.1) to (7.7) constitute a complete set of self-consistent equa-
tions to be solved simultaneously. For example, in an iterative procedure
assuming starting approximate values for E;(r,t) and B;(r,t), Eq. (7.1)
can be solved to yield f,(r,v,t) for the various different species. Using
the calculated fls in (7.6) and (7.7) leads to values for the charge and
current densities (p and J) in the plasma, which can be substituted into
Maxwell equations and solved for E;(r,t) and B;(r,t). These values are
then plugged back into the Vlasov equation, and so on, in order to obtain
a self-consistent solution for the single particle distribution function.

Although the Vlasov equation does not explicitly include a collision
term in its right-hand side and, hence, does not take into account short-
range collisions, it is not so restrictive as it may appear, since a significant
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part of the effects of the particle interactions has already been included in
the Lorentz force, through the internal self-consistent smoothed electro-
magnetic fields.

PROBLEMS TR

5.1 Consider a system of particles uniformly distributed in space, with
a constant particle number density ng, and characterized by a velocity
distribution function f(v) such that

fw)y =Ko for |v| <wv (i=uz,y,2)

f(v) =0  otherwise,

where K is a nonzero positive constant. Determine the value of Ky in
terms of ng and vy.

5.2 Consider the following two-dimensional Maxwellian distribution func-

tion: (02 4 2)

m m(vz + vy ]

Ug,Uy) =N erp |———
f(vz,vy) 0(27rkT) P [ 2kT

(a) Verify that ng represents correctly the particle number density, that
is, the number of particles per unit area.
(b) Sketch, in a three-dimensionsal perspective view, the surface for this
distribution function, plotting f(vs,vy) in terms of v, and v,. Draw, on
this surface, curves of constant v, curves of constant v,, and curves of
constant f.

5.3 The electrons inside a system of two coaxial magnetic mirrors can be
described by the so-called loss-cone distribution function

1= e (22) e [(22) - ()]

where v, and v, denote the magnitudes of the electron velocities in the
directions parallel and perpendicular to the magnetic bottle axis, respec-
tively, and where o2 = 2kT,/m and o3 = 2kT\ /m.

(a) Verify that the number density of the electrons in the magnetic bottle
is given by ng.
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(b) Justify the applicability of the loss-cone distribution function to a mag-
netic mirror bottle by analyzing its dependence on v, and v, . Sketch, in
a three-dimensionsal perspective view, the surface for f(v) as a function
of vy and v, .

5.4 Consider the motion of charged particles, in one dimension only, in
the presence of an electric potential V(z). Show, by direct substitution,
that a function of the form

f=fGEmv* +4qV)

is a solution of the Boltzmann equation under steady-state conditions.

5.5 (a) Show that the Boltzmann equation, in cylindrical coordinates,
can be written as

of 8f .0f .,0f 2ddf of
ETRAE sl F vaabi v v o

n (P et P5) = ().

where the dot over the symbols stands for the time derivative operator d/dt
and where F, = m(d?r/dt?), Fy = mr(d*¢/dt?), and F, = m(d?z/dt?).
(b) Show, by direct substitution, that in the presence of an azimuthally
symmetric magnetic field (in the z direction) a function of the form

f=fGmo®,mré + qray)

is a solution of the Boltzmann equation under steady conditions, where
the constant canonical momentum is given by py = mr2é + grAg, and
where Ay denotes the ¢ component of the magnetic potential A, defined
such that B =V x A.

5.6 Show that the Vlasov equation for a homogeneous plasma under the
influence of a uniform external magnetostatic field By, in the equilibrium
state, is satisfied by any homogeneous distribution function, f(v,,v.),
which is cylindrically symmetric with respect to the magnetostatic field.

5.7 The entropy of a system can be expressed, in terms of the distribution

function, as
S = —k//fln(f) dr d3v
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Show that, for a system that obeys the collisionless Boltzmann equation,
the total time derivative of the entropy vanishes.

5.8 Consider a one-dimensional harmonic oscillator whose total energy
can be expressed by

E = %(mv2 + cz?)
where ¢ is a constant and z its displacement coordinate. Show that the
trajectory described by the representative point of the oscillator, in phase
space, is an ellipse.



AVERAGE VALUES AND
MACROSCOPIC VARIABLES

1. AVERAGE VALUE OF A PHYSICAL QUANTITY

A systematic method for obtaining the average values of functions of
particle velocities is presented in this chapter. The macroscopic variables,
such as number density, flow velocity, kinetic pressure, thermal energy
flux, and so on, can be considered as average values of physical quantities,
involving the collective behavior of a large number of particles. These
macroscopic variables are related to the the various moments of the dis-
tribution function. A formal definition of the moments of the distribution
function is presented in section 10.

To each particle in the plasma we can associate some molecular pro-
perty, x(r,v,t), which in general may be a function of the position r of
the particle, of its velocity v, and of the time t. This property may be,
for example, the mass, the velocity, the momentum, or the energy of the
particle.

In order to calculate the average value of the property x(r,v,t), recall
that d®N,(r,v,t) represents the number of particles of type « inside the
phase space volume element d3r d3v about (r,v), at the instant ¢. Thus,
the total value of x(r, v,t) for all the particles of type « inside d®r d3v is
given by

The total value of x(r, v, t) for all the particles of type « inside the volume
element d3r of configuration space, irrespective of velocity, is obtained by
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integrating (1.1) over all possible velocities,

d3r/x(r,v,t) fa(r,v,t) d®v (1.2)

The average value of x(r,v,t) can now be obtained by dividing (1.2) by
the number of particles of type « inside d®r about r, at the instant ¢, i.e.,
by ne(r,t) d3r. We define, therefore, the average value of the property
x(r,v,t) for the particles of type a by

<XV >0 = s [ 3@t farv 0 (13

The symbol < >, denotes the average value with respect to velocity
space for the particles of type a. Note that the average value is always
independent of v, being a function of only r and t.

If we take x(r,v,t) = 1 in (1.3), the expression for the number density
ne(r,t), given in (5.4.2), is obtained.

2. AVERAGE VELOCITY AND PECULIAR VELOCITY

Consider now x(r,v,t) as being the velocity v of the type a particles
in the vicinity of the position r, at the instant ¢. Replacing x(r,v,t) in
(1.3) by v gives the macroscopic average velocity or flow velocity u,(r,t)
for the particles of type a,

L /V fa(r,v,t) d®v (2.1)

)= <V > =
U, (r,t) vV >, ned) /.

which is the same expression given in (5.4.4) (Eq. 4.4 in Chapter 5).

Note that r, v, and ¢ are taken as independent variables, whereas
the average velocity u,(r,t) depends on r and t. For the cases in which
x(r,v,t) is independent of the particle velocity, we have

< x(r,t) >0 = Xa(r, ) (2.2)

so that, for example, < u, > = u,. In what follows, the index « after
the average value symbol will be omitted whenever it is redundant, that
is, < Uy > = U,.

The peculiar velocity or random velocity c,, is defined as the velocity
of a type « particle relative to the average velocity u,(r,t),

Co =V — Uy (2.3)
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Consequently, we always have < ¢, > = 0, since < vq > = uq(r,t).
The peculiar velocity c,, is the one associated with the random or thermal
motions of the particles. When u,(r,t) vanishes, we have ¢, =v.

3. FLUX A

From the concept of distribution function many other macroscopic
variables can be defined in terms of average values. Macroscopic variables
such as the particle current density (or particle flux), the pressure dyad or
tensor, and the heat flow vector (or thermal energy fluz), involve the fluz of
some molecular property x(r,v,t). The flux of x(r,v,t) is defined as the
amount of the quantity x(r,v,t) transported across some given surface,
per unit area and per unit time.

Consider a surface element dS inside the plasma. If the distribution
of velocities is isotropic, the flux will be independent of the relative orien-
tation in space of the surface element dS. However, more generally, when
the velocity distribution is anisotropic the flux will depend on the relative
spatial orientation of dS. Suppose, therefore, that the surface element of
magnitude dS is oriented along some direction specified by the unit vector
n,

dS=dS n (3.1)

n being normal to the surface element. In the case of an open surface
there are two possible directions for the normal N, one opposite to the
other. The direction that is taken as positive is related to the positive
sense of traversing the perimeter (bounding curve) of the open surface,
according to the following convention: if the positive sense of traversal of
the perimeter of a horizontal open surface is taken as counterclockwise,
then the positive normal to the open surface is up; if the positive sense
of traversal of the perimeter is clockwise, then the positive normal to the
open surface is down, as shown in Fig. 1. For a closed surface the normal
unit vector is conventionally chosen to point outward.

The particles inside the plasma, due to their velocities, will move
across the surface element dS carrying the property x(r,v,t) with them.
We want to calculate the number of particles of type o that move across
dS during the time interval dt.

The particles with velocity between v and v + dv that will cross dS
in the interval between ¢ and ¢ + dt must lie initially in the volume of the
prism of base dS and side v dt, as indicated in Fig. 2. The volume of this
prism is

dBr=dS-vdt=1-vdS dt (3.2)
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Fig. 1 Direction of the positive normal to the surface element
dS as related to the sense of traversing the perimeter of dS.

From the definition of f,(r,v,t), the number of particles of type « in the
volume of this prism that have velocities between v and v + dv is

fa(r,v,t) d&r d®v = fo(r,v,t) - v dS dt d>v (3.3)

so that the total amount of x(r,v,t) transported across dS, in the interval
dt, is obtained by multiplying this number of particles by x(r,v,t) and
integrating the result over all possible velocities,

/X(r,v,t) fa(r,v,t) - v d®v dS dt (3.4)
v

Note that the contributions corresponding to a rotation of the segment
v dt over all possible directions about dS are taken into account in the
integration over velocity space. Particles that cross dS in a direction such
that n-v is positive give a positive contribution to the flux in the direction
of n, while particles that cross dS in a direction such that n-v is negative
give a negative contribution to the flux in the direction of n, as illustrated
in Fig. 3.

The net amount of the quantity x(r,v,t) transported by the particles
of type a, per unit area and per unit time, is obtained by dividing expres-
sion (3.4) by dS dt. The flux in the direction n, ®4y(X), is therefore given
by

Ban(x) = / X, 1) falt,v,8) v d (3.5)
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Fig. 2 Prism of volume d3r = dS-v dt =1n-v dS dt containing
the particles of type a with velocities between v and v +dv, and
which will cross dS in the time interval dt.

or, using the average value symbol,

q)om(X) = ’I’La(l‘,t) < X(I‘,V,t) n-v >a =Na < XVUn >a (36)
where v, = 1i- v denotes the component of v along the direction specified
by the unit vector n.

When x(r, v,t) is a scalar quantity, ®,,(x) can be considered as the
component, along n, of a vector flux ®,(x), that is,

®un (X) =n- P, (X) (37)

with
(I)a(X) =MNg < XV >¢q (38)

If x(r,v,t) represents a vector quantity, which in this case we shall denote
by X(r,v,t), then we will have a flux dyad (or tensor),

Do(x) =ne < Xv >, (3.9

and if it represents a dyad quantity we will have a fluz triad, and so on.
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Fig. 3 (a) Particles that cross dS from the (-) region to the (+)
region contribute positively to the flux in the direction n, while
(b) particles that cross dS from the (+) region to the (-) region
contribute negatively to the flux in the direction 1.

In many situations of practical interest it is important to separately
consider the contribution to the flux due to the average velocity u,(r,t),
and that due to the random velocity c, of the particles of type a. Substi-
tuting v = ¢, + u, in (3.6), gives

Pon(X) = Na < X Can > + Na < X Uan > (3.10)

where c,np =0 - ¢y and Uy, =10 - U,.

For the cases in which the flow velocity u, is zero or, equivalently, if
we take dS to be in a frame of reference moving with the average velocity
u,, (3.10) becomes

D00 (X) = na < X Can > (3.11)

which is the flux of x(r,v,t) along n due to the random motions of the
particles of type a.

4. PARTICLE CURRENT DENSITY

The particle current density (or particle flur) is defined as the number
of particles passing through a given surface, per unit area and per unit
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time. Taking x(r,v,t) = 1in (3.6), we obtain the flux of particles of type
o in the direction n,

Con(r,t) =ng < vy >q = Ng Uan (4.1)

since < con > = 0. When u,, vanishes, it is of interest to consider only the
flux in the positive direction instead of the resulting net flux. The number
of particles of type a that cross a given surface along the direction n from
the same side, per unit area and time, due to their random motions, is
given by
I(r, 1) = / 8- ca falr,v,t) d (4.2)
v(+)

where the integral in velocity space is over only the velocities for which
n-c, > 0.

The random mass fluz in the positive direction of 1 is consequently
given by maI’gj{L) (r,t), where m, is the mass of the type a particle.

5. MOMENTUM FLOW DYAD OR TENSOR

This quantity is defined as the net momentum transported per unit
area and time through some surface element n dS. If we take, in (3.6),
x(r,v,t) as the component of momentum of the type « particles along
some direction specified by the unit vector j]'\, that is,

~

Xj = MoV j =My Vj (5.1)

we obtain the element Il (r,t) of the momentum flow tensor

A~

Hajn(rat) = Ng < ma(j ) V)(V : ﬁ) >a = Pma < vj Un >a (52)

where ppma = NoMm, denotes the mass density of the type a particles.

Thus, the momentum flow element Il ,(r,t) represents the flux of the

4" component of the momentum of the type o particles through a surface

element whose normal is oriented along n. Since v = ¢, + u,, we obtain
Hojn(r,t) = pma < Caj Can > + Pma Yaj Yan (5.3)
or, in dyadic form,

I, (r,t) = pma < Ca Ca > + Pmala Ug (5.4)
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where we have used the result <u, ¢, > =u, <c, > =0.
In a Cartesian coordinate system (x,y, z) the momentum flow dyad
can be written in the following form, in terms of its components,

Ha = ﬁiHozx:z: + )?S’\Haxy + i/Z\l_[ozx:':
+ S;ﬁnayx + S’\S’\Hayy + S’\/Z\Hayz
+ ,ZV)EHazx + /Z\S’\Hazy + /zvz\Hazz (55)
From the rules of matrix multiplication I1, can be expressed as

Moze Hazy ] P
Ha = (i S’\ /Z\) Hozyx Hayy Hayz
] o Hazy IIyz.

(5.6)

N) <) »)

It is usual, however, to omit the pre- and post-multiplicative dyadic signs,
such as XX, and so on, and denote the dyad only by the 3 x 3 matrix
containing the elements Il,;;. Thus, II,;; corresponds to the element of
the i'" row and the j'* column. From (5.3) it is clear that a;; = Iaj;
and, consequently, the 3 x 3 matrix in (5.6) is symmetric. Therefore, only
six of the components of the momentum flow dyad are independent.

6. PRESSURE DYAD OR TENSOR
6.1 Concept of Pressure

The pressure of a gas is usually defined as the force per unit area
exerted by the gas molecules through collisions with the walls of the con-
taining vessel. This force is equal to the rate of transfer of molecular
momentum to the walls of the container. This definition applies also to
any surface immersed in the gas as, for example, the surface of a material
body.

We may generalize this definition of pressure so that it can be applied
to any point inside the gas. To this end, we will define pressure in terms
of an imaginary surface element dS = n dS, inside the gas, moving with
its average flow velocity. The pressure on dS is then defined as the rate
of transport of molecular momentum per unit area, that is, the flux of
momentum across dS due to the random particle motions.

When different species of particles are present, as in a plasma, it is
useful to define a (partial) pressure due to the particles of type «, as the
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flux of momentum transported by the type « particles as they move back
and forth across the surface element n d.S, which is moving at the average
velocity uq(r,t). In the reference frame of dS (3.11) applies, and taking
x(r,v,t) as the jth component of momentum of the type a particles,
Mq Caj, We obtain the element P,;, of the pressure tensor,

Pajn = Pma < Cqj Can > (61)
The pressure dyad is therefore given by
Po = pma < Ca Co > (6.2)

From (5.4) we find the following relation between the pressure dyad P,
and the momentum flow dyad I,

Po =11, — Pma Ua Uy (63)

They are equal only when the flow velocity u,(r,t) vanishes.

6.2 Force per Unit Area

Consider now a small element of volume inside the plasma, bounded
by the closed surface S, and let dS = n dS be an element of area belonging
to S, with the unit vector n normal to the surface element and pointing
outward (see Fig. 4). The force per unit area, f,, acting on the area
element n dS, as the result of the random particle motions, is given by

fo = —Py = —ppa <Cqu (Cq - N) > (6.4)

The reason for the minus sign can be seen as follows. Suppose, for the
moment, that all type o particles have the same velocity c,. If ¢, forms
an angle of less than 90° with n, then the quantity n,(c, - n) dS is the
number of type a particles leaving, per unit time, the volume enclosed by
the closed surface S, through dS. The corresponding change (decrease) in
the momentum of the plasma enclosed by the surface S is given by the ex-
pression —n,mqCq(Cq 1) dS, since (¢, 1) is positive. On the other hand,
if ¢, forms an angle greater than 90° with n, then —n,(c, - 1) dS repre-
sents the number of particles entering, per unit time, the bounded volume
through dS, and the corresponding change (increase) in the momentum
of the plasma within the closed surface S is again —nomqcq(cq - 1) dS,
since now (c, - 1) is negative.



150 FUNDAMENTALS OF PLASMA PHYSICS

Fig. 4 Element of volume V bounded by a closed surface S,
with the surface element n dS pointing outward.

We conclude, by generalizing this result, that for any arbitrary dis-
tribution of individual velocities, the vector quantity

—NgMg < Co(Cq - N) > dS = —P, -0 dS (6.5)

represents the rate of change of the plasma momentum within the closed
surface S, due to the exchange of type a particles through the surface
element n dS. Therefore, the force per unit area exerted on an element of
area oriented along the unit vector 1 is —P, - n. If we take, for example,
an element of area oriented along the z direction, that is, n = X, we have

~Pao N = —XPoys — YPoyz — ZPozs (6.6)

where P, is normal to the surface and towards it, just like a hydrostatic
pressure, whereas the components P,,, and P,,, are pressures due to
shear forces that are tangential to the surface, as indicated in Fig. 5. All
other components of P, are interpreted in an analogous way. Generally,
the force per unit area P,;, acts along the negative direction of the axis
denoted by the first subscript (j) on a surface whose outward normal is
parallel to the axis indicated by the second subscript (n). Alternatively,
if the outward normal to the surface is in the negative direction of the
axis indicated by the second subscript (n), then the force acts in the same
direction as the axis denoted by the first subscript (j).
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Fig. 5 Components of the pressure tensor P corresponding to
the tangential shear stresses Py, and P,,., and to the normal
stress P, acting on a surface element whose normal is oriented
along the unit vector X.

6.3 Force per Unit Volume

The force per unit volume inside the plasma, due to the random
particle motions, can be obtained by integrating (6.5) over the closed
surface S bounding the volume element V', dividing the result by V', and
then taking the limit as V tends to zero. This procedure is just the
definition of the divergence,

: 1 ~
-V Py =— xl/lino [V f;Pa ‘n dS} (6.7)

and, from the Gauss’s divergence theorem,

—fpa-ﬁdsz—/v-md% (6.8)
S 1%

We conclude, therefore, that the negative divergence of the kinetic
pressure dyad (—V - P,) is the force exerted on a wunit volume of the
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plasma due to the random particle motions, and P, - 1 is the force acting
on a unit area of a surface normal to the unit vector n.

6.4 Scalar Pressure and Absolute Temperature

An important macroscopic variable is the scalar pressure, or mean
hydrostatic pressure, py. It is defined as one-third the trace of the pressure
tensor,

1,3 i

where §;; is the Kronecker delta, defined such that 6;; = 1 for ¢ = j and
0;j = 0 for ¢ # j. The pressure tensor elements P,;;, with i = z,y, 2,
are just the hydrostatic pressures normal to the surfaces described by
i = constant. Using (6.1),

Do = %pma <c + ciy +c2, > (6.10)

2 2

: — 2 2
Since ¢, = ¢y + Coy + Cozy We have

Pa = 3Pma < & > (6.11)

Another important parameter for a macroscopic description of a plas-
ma is its temperature. The absolute temperature T,, for the type a par-
ticles, is a measure of the mean kinetic energy of the random particle
motions. According to the thermodynamic definition of absolute tem-
perature, there is a mean thermal energy of kT,;/2 associated with each
translational degree of freedom (i = z,y, 2), so that

kTo; = ima < 2; > (6.12)

N |

where k is Boltzmann’s constant.

When the distribution of random velocities is isotropic, as is the case
of the Maxwell-Boltzmann distribution function (to be considered in the
next chapter), which characterizes the state of thermal equilibrium of a
gas, we have c2 2 2 = c2/3, and therefore,

ar — cay = Caz

Pa = Pogz = Payy = Pozz = Pma < Cii > (613)
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Combining (6.13) and (6.12), gives
Do = NakTy (6.14)
which is the equation of state of an ideal gas. For the Maxwell-Boltzmann
distribution function the nondiagonal elements of the kinetic pressure dyad
are all zero and it reduces to
P = (RR + 55 +22) po = 1 pa (6.15)

where 1 stands for the unit dyad, which in matrix form can be written as

1 00
1=10 1 0 (6.16)
0 01
In this case the negative divergence of the pressure dyad becomes
.0 .0 0
-V -P,=—(X=— - —Do | = =Vp, 6.17
V-P (xaxpa+y8ypa+zazp ) Vp (6.17)

Thus, for an isotropic velocity distribution, the force per unit volume due
to the random variations of the peculiar velocities is given by the negative
gradient of the scalar pressure.

In some problems a simplification of practical interest for the general
form of the kinetic pressure dyad consists in taking

Pa = ii-Pa.'t.'t + ??Payy + /zvz\Pazz (618)
or, in matrix form,

Paga 0 0
Pa=| 0 Payy O (6.19)
0 0  Pas

where the diagonal elements are different from one another but all nondi-
agonal elements vanish. This expression corresponds to an anisotropy of
the peculiar velocities and the absence of shear forces and viscous drag.
The effects of viscosity and shear stresses are incorporated in the nondi-
agonal elements of the pressure dyad. Usually the effects of viscosity are
relatively unimportant for most plasmas and the nondiagonal elements of
P4 can, in many cases, be neglected.
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In this anisotropic case, different absolute temperatures T,; can be
defined for each direction in space, according to (6.12).

7. HEAT FLOW VECTOR e

The component of the heat flow vector, gun,, is defined as the flux
of random or thermal energy across a surface whose normal points in the
direction of the unit vector n. Taking x(r,v,t), in (3.11), as the kinetic
energy of random motion of the particles of type a, that is, x = mqc? /2,
we obtain for the component of the heat flow vector along n,

qan:qa'ﬁ:%[)ma<ci Cq -1 > (7.1)
The heat flow vector is therefore given by

Qo = 3Pma < C2 Co > (7.2)

8. HEAT FLOW TRIAD S T

It is convenient, at this point, to introduce a triad of thermal energy
flux defined by
Qa = Pma < €CoCaCo > (8.1)

Its components are, explicity,
Qaijk = Pma < CaiCajCak > (82)

Using Cartesian coordinates, the thermal energy flux triad can be written
in the form

Qa = Qoz:cﬁ + Qay? + Qaz/Z\ (83)

where each of the dyads Qun,, with n = x,y, z, can be expressed in matrix

form as
Qom = Qaymn Qayyn Qayzn (84)
Qaza:n Qazyn Qazzn

To obtain a relation between the heat flow vector q, and the thermal
energy flux triad Q,, note that (7.1) can be written as

Joan = 3Pma (< Eptan >+ < Eycan > + < c2,Can >) (8.5)
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and comparing this equation with (8.2), we see that gan can be written as

don = % (anmn + Qayyn + Qazzn) (86)

9. TOTAL ENERGY FLUX TRIAD

In analogy with the definition of the heat flow triad Q, (with com-
ponents denoted by Qaijk), consider now the quantity

Eaijk(t,t) = pma < U Vj Vk >q (9.1)

which represents one of the nine components of the total energy flux triad
Ea(r,t). This quantity can be considered as the sum of three parts. Sub-
stituting v; = uqa; + Cqoi in (9.1) and expanding,

< V; Vg >a = < CaiCajCak + UaiCajCak + UajCakCai
+ UakCaiCaj + UaiUojCak + UajUakCai

+ UakUqiCaj + UailajUak > (9.2)

Noting that < uq; >= ua; and < ¢q; >= 0, and using (8.2) and (6.1), we
obtain

Pma < Vi Vj Uk >a = Pmalailajlak + (Ua, Pa)ijk + Qaijk (9.3)
where the following notation was used
(Ua, Pa)ijk = UaiPajk + Uaj Paki + Uak Paij (9.4)
Therefore, we can write (9.1) in triadic form as
Ea(r,t) = Pma <V V V>4 = pmalaloUy + (Ug,Po) + Qo (9.5)

The total energy flux triad, therefore, can be considered as the sum of the
energy flux transported by the convective particle motions, represented by
the first two terms in the right-hand side of (9.5), and the thermal energy
flux @, due to the random thermal motions of the particles of type a.

The physical interpretation of the heat flow triad Q,, is, in some sense,
analogous to the physical interpretation of the heat flow vector q,. For
this purpose, consider the quantity

LPma < V2V >, (9.6)
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which represents the average energy flur transported by the particles of
type a. This quantity can be written as the sum of three terms. Substi-
tuting v = ¢, + u, in expression (9.6) and expanding,

Tpma < V2V >4 = 2pma < U2 Uy + 2(Uq - Ca)Ug

+ ¢ Uy + U2 o +2(Uq - Co)Cq + CiCy > (9.7)

and since < ¢, >= 0 and < u, >= u,, we obtain
2oma < V2V >q = Lppa(ui+ < ¢ >)u,

+ Prmala’ < €o Co > +1 pma < €2 Cq > (9.8)

If we now use (6.2) and (7.2), which define P, and q,, respectively, we
obtain the identity

%pma < v v o = Waua + Uq - Pa + e (99)

where W, is the mean kinetic energy density of the type a particles,

Wo = 2pmati2 + 2pma < 2 > (9.10)

Eq. (9.9) is written in a form analogous to (9.5). It shows that the
flux (rate of transport per unit area) of the average energy of the type o
particles can be separated into three parts: the first term in the right-hand
side of (9.9) represents the flux of the mean kinetic energy transported
convectively, the second term is the rate of work per unit area done by the
kinetic pressure dyad, and the third term is the random thermal energy
flux transported by the particles due to their random thermal motions. It
is instructive to note that in a frame of reference moving with the average
velocity u,(r,t), the particle velocities become identical to their random
velocities, that is, v = ¢,, so that (9.9) reduces to (7.2), which defines the
thermal energy flux vector qq.

When the thermal velocities c,, are distributed uniformly in all direc-
tions, that is isotropically, it turns out that q, = 0 (since the integrand is
an odd function of c,). Consequently, q, can be considered as a partial
measure of the anisotropies in the distribution of the thermal velocities.
The thermal energy flux triad Q, considerably extends the concept of the
heat flux vector and in this sense can be considered as a complete mea-
sure of the anisotropies in the distribution of the thermal velocities of the
particles.
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10. HIGHER MOMENTS OF THE DISTRIBUTION FUN

The first four moments of the distribution function f,(r,v,t) are re-
lated, respectively, to the number density nq(r,t), to the average velocity
U, (r,t), to the momentum flow dyad II,(r,t), and to the total energy
flow triad &,(r,t). For easy reference and convenience we gather here
their mathematical expressions,

na(r,t) = /fa(r,v,t) dv (10.1)
1

Ui (L, 1) =< v >q = m Uvi fa(r,v,t) d3v (10.2)

Oaij(r,t) = pma <V v >o = ma/vi v falr,v,t) d3v (10.3)

Euijk(r,t) = pma < Vi V5 Vg >q = ma/vi vj Vg fal(r,v,t) d*v (10.4)
v
When the average velocity u,(r,t) vanishes, we have v = ¢,, the momen-
tum flow dyad II, becomes the same as the pressure dyad P,, and the
total energy flux triad £, becomes the same as the thermal energy flux
triad Q..
As a formal extension of these definitions we may, whenever necessary,
consider higher moments of the distribution function. The moment of
order N can be defined by the expression

Mzizz\;) (T, t) = /'Ui Vj ... Uk falr,V,t) d3v (10.5)

where the velocity components v; appear N times in the integrand of
expression (10.5).

PROBLEMS

6.1 Consider a system of particles characterized by the distribution func-
tion given in problem 5.1 (in Chapter 5).
(a) Show that the absolute temperature of the system is given by

mud

T =
3k
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where m is the mass of each particle and k is Boltzmann’s constant.
(b) Obtain the following expression for the pressure dyad

P=1ipnvg 1l

where p,, = nm and 1 is the unit dyad.
(c) Verify that the heat flow vector q = 0.

6.2 Suppose that the peculiar (random) velocities of the electrons in a
given plasma satisfy the following modified Maxwell-Boltzmann distribu-
tion function (considering u = 0),

m m \1/2 m(E+ck 2
f(c)_”"(zwm)(znk:r”) P [_ﬁ( T, +flﬂ

(a) Verify that the electron number density is given by nyg.

(b) Considering a Cartesian coordinate system with the z axis coincident
with the parallel direction, show that the kinetic pressure dyad is given
by

P =nok [TL(XX + YY) + T)zz]

which indicates the presence of an anisotropy in the z direction.
(c) Calculate the heat flow vector q.
(d) Show that

%m < vﬁ >= %kTH

1 2 —
'2‘m<'v_]_ >—kTJ_

6.3 For the loss-cone distribution function of problem 5.3 (in Chapter 5),
show that
1 2 _ 1, .2
M < v >= gma;
im <vi >=ma?
Compare these results with those of problem 6.2(d) and provide physical
arguments to justify the difference in the perpendicular part of the average

thermal energy.

6.4 Verify, by symmetry arguments, that there are only ten independent
elements in the thermal energy flux triad Q. Note that, according to its
definition, Q;jx = nm < ¢; ¢; ¢ > is symmetric under the interchange of
any two of its three indices.
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6.5 A plasma is made up of a mixture of various particle species, the
type a species having mass m,, number density n,, average macroscopic
velocity u,, random velocity ¢, = v — u,, scalar pressure p, = nokTly,
temperature T, = (mq/3k) < ¢ >, pressure dyad P, = ngMma < €aCa >,
and heat flow vector g, = (nama/2) < cicy >. Similar quantities can
be defined for the plasma as a whole, for example, we can define the total

number density by
no =) Ma
-

the average mass by
1
mog=— )Y Ngm
0 no za: all'a

and the average flow velocity by

1
Ug = E NaMaUgy
nomo o

We can also define an alternative random velocity for the type a species,
with reference to ug, as c,g = v — ug, as well as an alternative absolute
temperature by

My < 2o >
TO{O = 3k

a corresponding pressure dyad by
Pao = NaMa < Ca¢Cap >
and heat flow vector by
_1 2
da0 = 5MaMa < CooCa0 >

(a) Show that, for the plasma as a whole, the total pressure dyad is given
by

PO = Z (Pa + namawawa)

a

and the total scalar pressure by

Po = Z (Pa + %namawi)

a
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where w, = u, — ug is the macroscopic diffusion velocity.
(b) If ¢, is isotropic, that is, < ¢2;, >= (1/3) < ¢ >, for i = z,y, z, show
that the total heat flow vector is given by

Qo = Z (qa + gpawa + %namawgwa)
a

(c) If an average temperature Ty, for the plasma as a whole, is defined by
requiring that po = nokTp, show that

Mo W2

Tozniogazna(Ta-i- ka)

(d) Verify that
%Za NgMg < C2y >= %nngg

so that there is an average thermal energy of kTy/2 per degree of freedom.

6.6 (a) Show that the time rate of increase of momentum in an infinite-
simal volume element d3r = dz dy dz inside a gas of number density n,
as a result of particles of mass m entering d®r with average velocity u, is
given by —V - (nmuu) d3r.

(b) If the infinitesimal volume element d3r moves with the average particle
velocity u, show that, because of the work done by the kinetic pressure
dyad P, the particle energy inside d®r increases at a time rate given by
—V - (u-P)dr.

(c) Verify, by expansion, that (P -n)-u = (u-P) -1, where n denotes an
outward unit vector, normal to the surface bounding the volume element.

6.7 Consider (5.6.4), which is the solution of the Boltzmann equation
with the relaxation model for the collision term, in the absence of external
forces and spatial gradients, and when f,, and the relaxation time 7 are
time-independent. Show that, according to this simplified equation, we
have

Go(t) = Gao + [Ga(o) - GaO] €xp (_t/"')
where

Ga(t)szaxd3v=na<x>a
v

GaOZ/faoxdsv:na<X>a0
v

Thus, according to the relaxation model for the collision term, every aver-
age value < x >, approaches equilibrium with the same relaxation time.



THE EQUILIBRIUM STATE

1. THE EQUILIBRIUM STATE DISTRIBUTION FUNCTION = maw

The equilibrium distribution function is the time-independent solu-
tion of the Boltzmann equation in the absence of external forces. In the
equilibrium state the particle interactions do not cause any change in the
distribution function with time and there are no spatial gradients in the
particle number density. We deduce in this section an expression for the
equilibrium distribution function, known as the Mazwell-Boltzmann or
Mazwellian velocity distribution function.

For simplicity we will consider a gas consisting of only one particle
species. The extension to a mixture will be indicated in a subsequent
section of this chapter. We assume that there are no external forces acting
on the system (F.;: = 0) and that the particles are uniformly distributed
in space. Under these conditions the distribution function is homogeneous
(Vf = 0) and, since we are looking for a steady-state solution of the
Boltzmann equation, it is also time-independent (0f/0t = 0). Therefore,
it can be denoted by f(v). According to the Boltzmann equation (5.5.27)
(Eq. 5.27 in Chapter 5), the equilibrium distribution function satisfies the

following condition:
of
(E)coll =0 (11)

Hence, under equilibrium conditions, there are no changes in the distri-
bution function as a result of collisions between the particles. In Chapter
21 we shall derive the expression for the equilibrium distribution function
using the Boltzmann collision integral. For the moment, however, in order
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to simplify matters, it is appropriate to consider a simple derivation based
on the general principle of detailed balance of statistical mechanics.

1.1 The General Principle of Detailed Balance
and Binary Collisions

In general, this principle asserts that, under equilibrium conditions,
the probability of occurrence of any physical process is equal to the proba-
bility of occurrence of the inverse process. Hence, for the case of a system
of interacting particles in the state of equilibrium, the principle of de-
tailed balance asserts that the effect of each type of collision is exactly
compensated by the effect of the corresponding inverse collision.

Consider an elastic collision between two particles having velocities v
and vy before collision, and v’ and v} after collision. The corresponding
inverse collision refers to an elastic collision in which a particle with initial
velocity v’ collides with another particle with velocity v}, the velocities
after collision being v and vj, respectively. Such events are illustrated
schematically in Fig. 1, in a reference frame in which one of the particles
is at rest.

Assuming that the velocities of the particles before collision are un-
correlated, the number of binary collisions occurring per unit time in a
given volume d3r, about the position r in configuration space, between
particles having velocities within the velocity space element d3v, about v,
and particles with velocities within d3v;, about v1, in the same configura-
tion space element d3r (see Fig. 2), is proportional to the product of the
respective number of particles, that is, to (f d®r d3v)(f1 d®r d3v;), where
f1 represents f(v1).

In a similar way, assuming the particle velocities to be uncorrelated,
the number of corresponding inverse binary collisions occurring per unit
time in the same volume element d3r, about r, in configuration space,
between particles having velocities within d3v’, about v/, and particles
with velocities within d3v}, about v}, is proportional to the product
(f d®r d3v')(f] d®r d3v}), where f' = f(v') and f] = f(v}).

According to the principle of detailed balance, in the equilibrium
state the effect of each direct collision is compensated by the effect of the
corresponding inverse collision, so that

f f1 dv vy = f' f] & d®v) (1.2)
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Fig. 1 (a) Direct binary collision and (b) the corresponding

inverse binary collision. Here g =v, —v and g’ =v| — v’ .

Since it can be shown that we have d3v d3v; = d3v’ d3v (see section 2 in
Chapter 21), Eq. (1.2) yields

F(v) f(v1) = f(v') f(v1) (1.3)
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Fig. 2 Schematic representation of the volume elements d°r d3v
and d3r d3v, in phase space.

The assumption that the particle velocities are uncorrelated is known
as the molecular chaos assumption. It is well justified when the density of
the gas is sufficiently small so that the mean free path is larger than the
characteristic range of the interparticle forces. Although this is certainly
not a general situation for a plasma, the validity of the Maxwell-Boltzmann
distribution function is very well justified experimentally.

1.2 Summation Invariants

It is convenient to introduce at this moment the concept of summation
invariants. Consider a collision between two particles and let x(v) be a
physical quantity (scalar or vector) associated with each particle, which in
general may be a function of the particle velocity. If the sum of the quan-
tity x(v) for the two particles is conserved during the collision process,
then x(v) is called a summation invariant. For a collision between two
particles having initial velocities v and v1, and velocities after collision v’
and v/, respectively, we have for a summation invariant quantity

x(v) + x(v1) = x(v') + x(v1) (1.4)
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From the laws of conservation of mass, of momentum, and of energy,
it is clear that these physical quantities are summation invariants in binary
elastic collisions. Denoting the masses of the two colliding particles by m
and mq, we can express the laws of conservation of mass, of momentum,
and of energy as

m+m; =m+m (1.5)
mv +mivy = mv' +mv] (1.6)
tmv? 4+ Imv? = im(v')? + 3ma(v))? (1.7)

Eq. (1.5) is a trivial one and does not lead to any new information.
It only indicates that a numerical constant is a summation invariant. Eq.
(1.6) represents three equations, one for each component of the momen-
tum. The four equations in (1.6) and (1.7), together with the equations
involving the impact parameter b and the angle of the collision plane €
(for more details refer to the analysis of the dynamics of binary collisions,
presented in Chapter 20), constitute six equations to be solved for the
determination of the six unknown quantities, which are the components
of the after-collision velocities v/ and v/, in terms of the initial velocities v
and vi. The binary collision problem, therefore, is uniquely determined by
these summation invariants. Any other summation invariant in the colli-
sion process gives no additional information and cannot be an independent
one and may be expressed as a linear combination of the summation in-
variants defined by (1.5), (1.6), and (1.7).

1.3 Maxwell-Boltzmann Distribution Function

We proceed now to derive the equilibrium velocity distribution func-
tion starting from (1.3) and the concept of summation invariants. Taking
the natural logarithm of both sides of (1.3) gives

Inf+Infi=Inf +1In f; (1.8)
which shows that In f is a summation invariant in the collision process.
Therefore, it can be written as a linear combination of the summation

invariants m, mv, and mv?/2,

In f=m (ap+a;-v— %a2v2) (1.9)
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where ag, a1 = 012X + a14Y + a1,2, and ay are constants. The negative
sign in front of ay is chosen for convenience in the equations that follow.
Completing the squares in the right-hand side of (1.9), using Cartesian
coordinates, gives

In f =m [(10 + (a%x + a%y + a%z)/(2a2)]

~%mag[(v,,j —a1z/a2)* + (vy — a1y/az)?

+ (v: — a12/a2)?]
=m [ao + a}/(2a2)] — 2maz(v — a1/as)? (1.10)

Defining new constants by
In C =m [ag + a?/(2a3)] (1.11)

vo = a1/ay (1.12)

we can write (1.10) in the form
f=C exp [—3maz(v — vq)?] (1.13)

This expression is known as the Mazwell-Boltzmann, or Mazwellian equi-
librium distribution function.

1.4 Determination of the Constant Coefficients

The Maxwellian distribution function (1.13) contains five constant
coeflicients to be determined, namely C, ag, voz, voy, and vp,. Note that
this is exactly the same number of coefficients in the original equation
(1.9). These constants can be expressed in terms of observable physical
properties of the system, such as the number density n, the average velo-
city u, and the kinetic temperature T (or the scalar pressure p, since from
the equation of state we have p = nkT'). To relate the observables n, u,
and T with the constant coefficients C, ag, and vg, we proceed as follows.

From the definition of the number density we must have

n= /f dv (1.14)

Substituting the Maxwellian distribution function (1.13) into (1.14), re-
sults in

n = C/exp [—2maz(v — vo)?] d®v (1.15)
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If we use the notation A = mas/2 and & = (v; — vg;), with @ = z,y, 2,
(1.15) becomes

+00
n=C / / / exp [~A(E + €2 + €0)] dE, dE, dE. (L16)

Performing the integrals over all possible values of &;, &, and &, yields

n= C(%)m = C(%)m (1.17)

From the definition of the average velocity we have

1
u:<v>:ﬁ/fvd3v (1.18)

and substituting the Maxwellian distribution function (1.13),
= %/v exp [—1mas(v — vo)?] d3v (1.19)

Using the same notation as in (1.16), we can write

+o0
= % / / /_ _ EGRAEY+62) exp [FAE &+ £)] dés dby dE

+00
+ v, / / f exp [~A(E2 + €2+ €2)] de, de, de.  (1.20)

The first triple integral in the right-hand side of (1.20), over all possible
values of &, &, and £, vanishes, since the integrand is an odd function of
&. According to (1.16) the second triple integral is equal to n/C. Thus,
we obtain

u=vo (1.21)

which shows that the constant v represents the average (flow) velocity
of the particles. Recall that the particle velocity v can be written as the
sum of the peculiar (random) velocity ¢ and the average velocity u, that
is, v.= c + u. If the system has no translational motion as a whole, then
Vo=u= 0.

Consider now the thermodynamic definition of the kinetic tempera-
ture T',

SnkT =inm <> = %m/f c? d3v (1.22)
v
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where k is Boltzmann’s constant. Substituting the Maxwellian distribu-
tion function (1.13), noting that ¢ = v — u and d3v = d3c, we obtain

SnkT = —é—mC/c2 exp (—Ac?) d3c (1.23)
c
Performing the triple integral over all possible values of ¢, ¢y, and c;,

gives
kT = (—C—> (2—”>3/2 (1.24)

nas/ \masg

We can now solve (1.17) and (1.24) for C and a, to obtain

m \3/2
¢= "(27rkT> (1.25)
1
az = o~ (1.26)

Substituting the results just obtained into (1.13), the Maxwellian dis-
tribution of random velocities becomes

fo=n() e (22) o

This is the equilibrium distribution function for a system of particles uni-
formly distributed in space and free from the action of external forces.
Note that the number density n and the temperature 1' are constants,
independent of r and ¢. This distribution function represents the only
permanent mode for the distribution of the particle velocities in the gas,
for specified values of n and T. Whatever may be the velocity distribution
function of a gas, initially not in equilibrium, it tends to the distribution
function (1.27) in the course of time, if the gas is maintained isolated from
the action of external forces.

When the system has no translational motion as a whole (if it is
maintained inside a container, for example), the average (flow) velocity u
is zero and consequently we have ¢ = v in (1.27). The equilibrium distri-
bution function depends only on the magnitude of the random velocity c
so that, when a perfectly reflecting surface is immersed in the gas, f(c)
remains unchanged since the magnitude of the random velocity does not
change when the particles are reflected at the surface.

For a plasma under equilibrium conditions, in which the various par-
ticle species such as electrons, ions, and neutrals have the same tempera-
ture, the random velocities of each species are separately described by a
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Maxwell-Boltzmann distribution function with the corresponding number
density.

1.5 Local Maxwell-Boltzmann Distribution Function

In many situations of interest we are dealing with a gas that, although
not in equilibrium, is not very far from it. It is then a good approximation
to consider that, in the neighborhood of any point in the gas, there is an
equilibrium situation described by a local Maxwell-Boltzmann distribution
function of the form

fe,v, ) =n(r, )]

o (PR g

where the number density n, the temperature 7', and the average velocity
u are slowly varying functions of r and ¢.

m 3/2
27kT (r,t) ]

s

2. THE MOST PROBABLE DISTRIBUTION e

We have seen that the Maxwell-Boltzmann distribution function is
the solution of the Boltzmann equation representing the equilibrium state
of a gas, in the absence of external forces. One of the important conclu-
sions obtained from the derivation of this distribution function is that it
is independent of the cross section for the particle collisions. This means
that the Maxwell-Boltzmann function is, in a certain way, universal in the
description of the equilibrium state, and it should be possible to derive
it without explicitly considering the particle interactions. A derivation
in these terms is in fact presented in statistical mechanics, where it is
shown that the Maxwell-Boltzmann distribution function represents the
most probable distribution satisfying the macroscopic conditions (or con-
straints) imposed on the system.

In statistical mechanics, to a given macroscopic system there corre-
sponds a very large number of possible microscopic states that lead to
the same macroscopic parameters specifying the system, such as number
density n, average velocity u, and absolute temperature 7. Each micro-
scopic state is considered to be equiprobable. If we choose, at random,
any particular microscopic state for the system, among all the possible
microscopic states consistent with the specified macroscopic parameters
(such as n, u, T'), the probability of choosing a Maxwellian distribution
is overwhelmingly larger than that of any other distribution. It is also
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shown that the entropy is proportional to the probability of having a given
distribution. Consequently, the state having maximum entropy is the most
probable state consistent with the macroscopic constraints imposed on the
system.

The meaning of the Maxwell-Boltzmann distribution function can be
further illustrated by the following example. If a dilute gas is prepared
in an arbitrary nonequilibrium initial state, and if there are interactions
between the particles so as to allow the gas to pass from the initial state
to other states, as time passes the gas will certainly reach the Maxwellian
state, since essentially almost all possible microscopic states, consistent
with the macroscopic constraints, have a Maxwellian distribution.

The statistical mechanics derivation of the most probable distribution
function provides information only on the equilibrium state, and cannot
possibly tell, for example, how long (which depends on the collision cross
section) a given distribution function, initially not the equilibrium one,
takes to become Maxwellian. The Boltzmann equation, on the other hand,
is much more general and provides information also for nonequilibrium
situations.

3. MIXTURE OF VARIOUS PARTICLE SPECIES

For the case of a mixture containing different species of particles,
each species having its own number density n,, average velocity u,, and
temperature T, we can still perform a calculation to determine the most
probable distribution subjected to these macroscopic constraints. This
requires only that we set f, fo1 = f., fL; for each particle species, but
not necessarily fo fa1 = fl, fg for a # B. This condition, therefore,
does not describe an equilibrium situation, unless the temperatures and
mean velocities of all species are the same. To determine the most proba-
ble distribution function for this nonequilibrium gas mixture (each species
having its own number density, mean velocity, and temperature), we in-
dependently apply (1.3) to each species, in order to maximize the entropy
for each species. This also maximizes the entropy for the gas mixture
under the specified macroscopic constraints. The problem is completely
analogous to the one just solved for a one-component gas and leads, in
identical fashion, to

M= (28] e [PT]

Thus, each species has a Maxwellian distribution of velocities, but with
its own density, average velocity, and temperature. Although this is not
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an equilibrium distribution for the system, since the equilibrium condi-
tion fo fs1 = fo f5, for all o and B is not satisfied, it is, nevertheless,
the most probable distribution under the specified constraints. Only if the
temperatures and average velocities of all species are equal will this be
an equilibrium situation. Indeed, if two systems with different species
and at different temperatures are brought together, then, as time passes,
there will be a transfer of energy through collisions between the different
species, until equilibrium is reached with the various species at the same
temperature and mean velocity.

4. PROPERTIES OF THE MAXWELL-BOLTZMANN
DISTRIBUTION FUNCTION

Due to the importance of the equilibrium distribution function, we
present in this section some of its basic properties. We consider a gas in
thermal equilibrium having no average (flow) velocity, u = 0. If, however,
this average velocity is not zero, we suppose that the observer is moving
with the average velocity of the gas. Thus, in either case, v = c. According
to the definition of the distribution function, the number of particles per
unit volume having velocities between v and v + dv is given by

f(v) d®v = n(2:]:T)3/2 exp (—%) d3v (4.1)

4.1 Distribution of a Velocity Component

The distribution function for one component of the velocity, g(v;), is
defined such that g(v;) dv; represents the number of particles per unit
volume that have the ¢ component of the velocity between v; and v; + dv;,
irrespective of the values of the other two velocity components.

For the x component, for example, g(v,) dv, is obtained by inte-
grating f(v) over all possible values of the velocity components v, and
Uz,

o(vs) dug = / y / 7(0)d do o, (4.2)

Substituting the Maxwell-Boltzmann distribution function, yields

m \3/2 muv?2 Foo mu2
o) v =n (7)o (<) o (~3it)
9(vz) dvy =n S kT exp (—5r dv e (g dvy

o0
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/+<>° exp (—-g%) dv, (4.3)

Each integral in (4.3) is equal to (27kT/m)/2. Therefore,

2

g(vg) dvgy = n(zng)l/z exp (—%) dvy (4.4)

Obviously this expression applies to any of the velocity components. It
shows that each of the velocity components has a Gaussian distribution,
which is symmetric about the average value < v; > = 0, for 1 = z,y, 2.
The distribution function given in (4.4) is plotted in Fig. 3. Note that it
is properly normalized so that

+00
jf g(vs) dvg = n (4.5)

—0o0

The fact that the average value < v; > vanishes is physically evident
by symmetry, since each component of the velocity can be equally positive
or negative. Mathematically, we have

1 [T
<y > = ﬁ/ g9(vi) v; du;

= <2:11T)1/2 /_+°° P (—ZZ;) vi dve =0 (4

o0

since the integrand is an odd function of v;. Consequently, if | represents
any odd integer number,

<vl>=0 1=1,3,5,.. (4.7)

On the other hand, < v? > is intrinsically positive and represents the

i
dispersion or variance of v;,

1 [*e kT
<v?>= 5/ g(v;) v2 dv; = — (4.8)

—00

This result is consistent with the theorem of equipartition of energy, ac-
cording to which

sm < v?>=1kT (4.9)
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Fig. 3 The equilibrium Maxwellian distribution function for
each velocity component is a Gaussian distribution having zero

expectation (< vy > = 0) and root-mean-square width given by
<02 >V2 = (kT/m)Y/2.

for i = z,y, z. The root-mean-square width of the Gaussian distribution
g(v;) is therefore given by

(4.10)

<v?>12 = (ET_)W

m

which shows that the higher the temperature, the larger will be the width
of the distribution function g(v;).

The velocity components behave, individually, like statistically inde-
pendent quantities. Since v? = v2 + v2 + vZ, the probability that the
particle velocity lies between v and v + dv is equal to the product of the
probabilities that the velocity components lie between v; and v; + dv;, for
it =ux,vy, 2, that is

f(v) d®v _ 9(vz) dvg  g(vy) dvy  g(v;) dv,
n n ' n ' n

(4.11)



174 FUNDAMENTALS OF PLASMA PHYSICS

Fig. 4 Spherical coordinate system (v,0,®) in velocity space.
4.2 Distribution of Speeds

Since the Maxwell-Boltzmann velocity distribution function is isotro-
pic, it is of interest to define a distribution function of speeds v = |v|.
For this purpose, consider a spherical polar coordinate system in velocity
space (v, 0, $), as shown in Fig. 4. The element of volume d3v, in velocity
space, between the coordinates (v,6,) and (v + dv,0 + db, ¢ + d¢), is
given by

d3v = v? sin 6 db d¢ (4.12)

The distribution function of speeds F'(v) is defined such that F(v) dv
is the number of particles per unit volume having speed between v and
v+dv, irrespective of the direction in space of the velocity vector v. Hence,
to determine F(v) we integrate f(v) over all velocities whose magnitude
lies between v and v + dv, irrespective of the values of 6 and ¢, that is,
whose velocity vector ends in a spherical shell in velocity space of internal
radius v and external radius v + dv, as shown in Fig. 5. Therefore,

F(v) dv= /0 /¢ f(v) v* sin 0 df d¢ dv (4.13)
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Fig. 5 Schematic representation, in two dimensions, of a sphe-
rical shell in velocity space containing all particles with velocity
having magnitude between v and v + dv.

Since f(v) depends only on the magnitude of v, but not on its direc-
tion,

g 27
F(v) dv = f(v) v dv / sin 0 df / dp =4m® f(v) dv  (4.14)
0 0

Note that 47 v? dv is the volume of the spherical shell in velocity space
shown in Fig. 5. Substituting the Maxwell-Boltzmann distribution func-
tion for f(v), we obtain the distribution of speeds,

2

F(v) = 47m(2:]zT>3/2 v? exp (—%) (4.15)

This expression is properly normalized, so that

/00 Fv)dv=mn (4.16)
0

From the expression for F'(v) we see that, as v increases, the exponential
factor decreases faster than v? increases, resulting in a maximum in F(v)
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Fig. 6 Maxwellian distribution of speeds, showing the most
probable speed vp,p.

for a given value of v which is called the most probable speed. The curve
for F(v) is shown in Fig. 6.

4.3 Mean Values Related to the Molecular Speeds

The average value of the speed is given by

400
<v>=%/fvd3v=%// f v dvg dvy dv, (4.17)

or, equivalently, by

<v>:l/ F(v) v dv (4.18)
nJo

It is intrinsically a positive quantity, since v = |v| is always positive. Using
expression (4.15) for F(v), we get

m \3/2 [ , mu?
ot [ ()

=tr(z7) 30w ) (419
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Therefore,
<v> = (8/m) Y2 (kT /m)/? (4.20)

Integrals of the type

I(j) = /000 2! exp (—ax?) dx (4.21)

where j represents a positive integer number, occur frequently in the com-
putation of average values using the Maxwellian distribution of speeds.
For future reference we present here the results for some integrals of the
type (4.21):

1(0) = ix1/2q1/2 I(1) = 1a7?
1(2) = int/2q=3/2 I(3) = 1a™?
I(4) = 3nt/2q75/2 I(5)=a"3 (4.22)

The average of the square of the speed is given by

) 1 oo 4 [
<vE> = - // fv? dvg duy dv, = - vt flv) dv  (4.23)
—00 0

Substituting the Maxwellian distribution function for f(v),

2o _ m )3/2/OO 4 (_mv2)
<ve > 47r(27rkT ; vhexp | ~5rm dv (4.24)

which gives

<v? > =3kT/m (4.25)

This result can also be obtained from (4.8), noting that v? = v2 + v2 + v2
and that < v2 > = < v2 > = < vZ >. The root-mean-square speed s
given by

Upms = < 02 >Y2= (3kT/m)*/? (4.26)

The most probable speed vy, corresponds to the speed for which F(v)
is maximum, and can be obtained by the condition

(8D e, = ()

Differentiating (4.15) with respect to v, yields

de()U) — 9 exp (_%) Hz(_%) exp (_’2%”;_) (4.28)
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which, for the condition of maximum expressed in (4.27), gives
Ump = (2KT/m)/? (4.29)

Note that the mean speeds < v >, Vrps, and vy, are all proportional
to (kT/m)}/? and are such that vy, < (< v >) < Upms. Therefore,
they increase with the temperature and, for a given temperature, particles
having a larger mass will move with a smaller speed. We have also seen
that the average kinetic energy of the random particle motions satisfies
the relation

Im<v?>=3kT (4.30)

4.4 Distribution of Thermal Kinetic Energy

The distribution of thermal kinetic energy G(E), where E = mv?/2,
is defined such that G(E) dE is the number of particles per unit volume

having random Kkinetic energy between E and E + dE. It can be obtained
from (4.15) substituting v by (2E/m)'/? and dv by dE/(2mE)'/2. Hence,

m \3/2/2F FE dFE
G(E) dE = 47m(27rkT> (E) exp (_k_T) (2mE)1/2 (4.31)
Simplifying this expression,
onE1/2 E

The function G(F) is displayed in Fig. 7.

4.5 Random Particle Flux

We have seen in Chapter 6 that the particle flux, in a given direction
specified by the unit vector n, is given by

I‘n:n<vn>:/fv-ﬁd3v (4.33)

Let us consider a surface element inside the gas. We are interested in
determining the number of particles that reach this surface element, per
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Fig. 7 Maxwellian distribution of thermal kinetic energies.
The shadowed area represents the number of particles that have
random kinetic energy between E and E + dE.

unit area and time, due to the random particle motions. Eq. (4.33) takes
into account particles that reach the surface element, oriented along the
direction of n, coming from all possible directions. Since we are assuming
that the average velocity u is zero, the flux given by (4.33) is obviously
zero, since < ¢ > = 0. In this case, it is of interest to consider only the
flux of particles that cross the surface element from the same side (such
that v - 1 is positive, say), due to their random motions.

Let dS be a surface element situated at the origin of a Cartesian
coordinate system (z,y,z) and oriented along the z axis, that is, dS =
z dS, as shown in Fig. 8. Consider the particles that cross z dS coming
from the region z < 0, having velocities between v and v + dv, making an
angle 6 with the z axis, so that v -z = v cos(f). Expressing d®v in terms
of spherical coordinates (v, 6, ¢),

d3v = v? sin 6 df do dv (4.34)

the random particle current density, crossing z dS from the region z < 0,
is given by

00 /2 27 0o
r, =/ f ol dv/ sin 6 cos 6 dd / do = 7r/ fovddv (4.35)
0 0 0 0
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Fig. 8 Prism of base dS = zdS containing the particles that
have velocity between v and v + dv that will cross dS during the
interval dt.

Substituting the Maxwellian distribution for f(v), we find

r,= 71'77,(27:21_,)3/2 /000 exp (—%ﬁ) v3 dv (4.36)

and solving the integral, we obtain

KT \1/2 1
r— n(%> = n<v> (4.37)

In this result we have eliminated the index z from I', since the Maxwellian
distribution function is isotropic, so that (4.37) applies to any direction
inside the gas.

It is important to note that the random particle flux is inversely
proportional to the square root of the particle mass. In a plasma the
particle current density for the electrons is therefore much larger than
that for the ions (the ratio of the electron mass to the proton mass, for
example, is 1/1836). This difference in the thermal particle flux between
electrons and ions plays a very important role in the interaction of a plasma
with a material body immersed in it (see Chapter 11).
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4.6 Kinetic Pressure and Heat Flux

From the definitions of the kinetic pressure dyad
P=pm<cc>=m/ccfd3v (4.38)
and of the heat flux vector
qzépm<c2c>:%m/cchd3v (4.39)

we obtain, using the Maxwellian distribution function,
P=pm (KE>KK+<c>yy +<cl>72)

=nkT (XX + ¥y + 2z) (4.40)

and
q=0 (4.41)

since the integrals having an odd integrand vanish. The scalar pressure,
therefore, is
p =nkT (4.42)

5. EQUILIBRIUM IN THE PRESENCE OF AN EXTERNAL FORCE 1"

A gas under steady-state conditions and immersed in a conservative
force field is characterized by a distribution function that differs from the
Maxwell-Boltzmann distribution by an exponential factor, known as the
Boltzmann factor. The conservative force field can be specified in terms
of a potential energy U(r), such that

F(r) = -VU(r) (5.1)
Since the conservative force field is a function only of the position

vector r, we expect the steady-state solution of the Boltzmann equation
for this case to be of the form

f(r,v) = fo(v) ¥(r) (5.2)
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where fo(v) represents the Maxwell-Boltzmann equilibrium distribution
function and (r) is a scalar function of r only, still to be determined.
The function ¥(r) can be determined by requiring (5.2) to satisfy the
Boltzmann equation under equilibrium conditions in the presence of the

conservative field,

~ LIVUW)]- Vulfolw) w(x)] = 0

v - V{fo(v) ¥(r)]
From the expression for fo(v) it can be easily verified that
v
Vuo(v) =~ folv)
Therefore, (5.3) simplifies to
1
fo(v) v - [Vi(r) + =(r) VU(r)] =0

from which we can write

Vyr) 1
0w~ E W
Since dyp = V4 - dr, (5.6) may also be written as
diy(r) 1
o0 = rr )
The solution of this differential equation is
_ Ulr)
o)~ do oy [-2]

where Ag is a constant that can be determined by requiring that

/vf(r,v) d*v = n(r)

from which we get

n(r) = Ap exp [— Uk(;)] /va(v) d*v

(5.3)

(5.4)

(5.8)

(5.10)
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Denoting by ng the number density in a region where U(r) = 0, under
equilibrium conditions, that is,

ng = /fo(v) d*v (5.11)

we must choose Ag = 1. Therefore, the equilibrium distribution function
(with u = 0), under the presence of a conservative force field, is

F(e,) = folo) exp [~ ]

kT
- ”0(27::T>3/2 xp [_(%—m%?—m] (5.12)

The number density, for a system described by this velocity distribution
function, is therefore given by

U(r)}

o (5.13)

n(r) = ng exp [—

The factor exp [—~U(r)/kT], responsible for the inhomogeneity of f(r,v)
in (5.12), is known as the Boltzmann factor.

An important example is provided by a plasma in the presence of a
conservative force due to an electrostatic field

E = —Vé(r) (5.14)

where ¢(r) is the electrostatic scalar potential. The potential energy, in
this case, is

U(r) = q ¢(r) (5.15)

The number density for particles of charge ¢ in equilibrium under the
action of an electrostatic field is therefore

q ¢(r)} (5.16)

n(r) = ng exp [— T
This expression is very useful for the analysis of electrostatic shielding in
a plasma (see Chapter 11).
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6. DEGREE OF IONIZATION IN EQUILIBRIUM
AND THE SAHA EQUATION

From the methods of statistical mechanics we can determine the de-
gree of ionization in a gas in thermal equilibrium at some temperature 7',
without considering the details of the ionization process. In order to ionize
an atom or molecule, it is necessary to provide a certain amount of energy.
This ionization energy is conveniently expressed in electron volts, and is
normally called the ionization potential. Values for the first ionization po-
tential of some atoms are given in Table 1. Note that to provide a mean
thermal energy kT of 1 eV requires a temperature of 11,600 K. Hence, it
is apparent that only at very high temperatures does the mean thermal
kinetic energy 3kT'/2 of a particle exceed the ionization energy. However,
we will show that a considerable degree of ionization can be achieved even
when the mean thermal energy of the particles is far below the ionization
energy, since some of the particles, the ones with the largest velocities (in
the tail of the Maxwellian distribution function), have enough energy to
produce ionization by collisions. The degree of ionization, under thermal
equilibrium conditions, is then determined by a balance between the rate
of ionization by collisions and the rate of recombination.

To calculate the relative numbers of ionized and neutral atoms in a
plasma, at a given temperature, it is appropriate to use a particle dis-
tribution function similar to that given in (5.13). However, the physical
situation is somewhat different because of the necessary quantum mechan-
ical aspects of the problem. Denoting by n, and n, the number density
of the particles having energies U, and Uy, respectively, the ratio ng/np is
given, from statistical mechanics, by

Mo _ e [___(Ua'Ub)] 6.1
ny - [ &P kT ( ' )
where g, and g, are the statistical weights associated with the energies U,
and Uy, that is, the degeneracy factors giving the number of states having
the energies U, and U,, respectively. For the particular case of a system
having only two energy levels, U, and Uy, the fraction « of all the particles
that are in the higher energy state U, is given by
-1
QZL:E(@H) (6.2)
(ng +mp)  Mp \Mp
or, using (6.1) with U = U, — Uy,
a —-U/kT
(9a/gv) exp (U/ET) +1
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TABLE 1
IONIZATION POTENTIAL ENERGY U
OF SOME ATOMS FOR THE FIRST ELECTRON

Element U(eV)
Helium (He) 24.59
Argon (A) 15.76
Nitrogen (N) 14.53
Oxygen (O) 13.62
Hydrogen (H) 13.60
Mercury (Hg) 10.44
Iron (Fe) 7.87
Sodium (Na) 5.14
Potassium (K) 4.34
Cesium (Cs) 3.89

For the ionization problem, state a is taken as that of the ion-electron
pair, state b is that of the neutral atom, and U = U, — U, is the ionization
energy. The temperature T for which o = 0.5, that is, for which 50% of
all the atoms are in the ionized state (n, = np), can be determined by
taking

Ja exp (— v ) =1 (6.4)
which gives

T = kT (g0/a0) (6.5)

Fig. 9 shows the plot of a as a function of T', according to (6.3).

The fraction of particles in the ionized state changes from nearly
zero to nearly one over a small temperature range. An estimate of this
temperature range can be obtained from the temperature difference AT
that would exist between o = 0 and a = 1, if the curve of a(T) were a
straight line with the slope of the true o(T") curve at T; /5. Hence, we take

(Cw:i_(g)>7’l/2 - ALT (6.6)

From (6.3) we obtain, assuming d(g,/gs)/dT = 0,

(da(T) Ua? ] U

dT >T1/2 - [TZ(ga/gb) exp (—U/kT) ]y, .~ 412,

6.7)
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el
T

Fig. 9 The function o(T), which gives the fraction of particles
in the ionized state as a function of temperature T'.

so that

_ 4Ty _ 4U (6.8)
kln (ga/ge) [k 1n (9a/gv)]?

From this result we can see that, the larger is g,/gp, the smaller is AT.

Since the ionized state is much more degenerate than the neutral state
(ga > gb), the curve of a(T) presents a very steep inclination near 77,
with most of the transitions from the neutral state to the ionized state
occurring near T} /2, given by (6.5). Thus, for g, > gy, the curve of a(T)
will look approximately like a step function with the ionization occurring
near 77 /o.

The degeneracy factors g, and gp can be obtained from a quantum me-
chanical calculation. If we neglect the small interaction potential between
the ion and the free electron, and also the internal degrees of freedom of
all the particles, it turns out that

AT

9a (27rmekT)3/2i

6.
gb h2 ( 9)

n;
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where h is Planck’s constant and n; is the ion number density. For T

expressed in degrees Kelvin and n; in m™3,
1
Ja _ 9405 x 102 T%/2 ~ (6.10)
Gb N

Using this result in (6.1), we obtain the following equation

i 1
M _ 9.405 x 1021 T2 = exp (———) (6.11)
Ny, n;
which is known as the Saha equation. Since 1 eV = kT for T = 11,600 K,
we can also write the Saha equation as
i 1
T~ 3.00 x 107 T9% = exp (-%) (6.12)

Ny n;

with T in eV and n; in m™3. Thus, when the total number density

nt = n; + n, is sufficiently low, a considerable degree of ionization can
be achieved for temperatures that are well below the ionization energy.
This point is illustrated in Fig. 10, which shows the degree of ionization
of hydrogen as a function of temperature, for values of the total number
density of 1016, 10'°, 1022, and 102® m~3. It is clear that, as the number
density decreases, the values of AT and T7/, decrease significantly, and a
significant degree of ionization can be obtained at temperatures far below
the ionization energy of atomic hydrogen (13.60 eV). In a gas like cesium,
whose ionization energy is only 3.89 eV, a high degree of ionization can
be obtained even at relatively low temperatures of the order of 1000 K.

PROBLEMS I AOEESE

7.1 A two-dimensional gas, consisting of only one species and whose par-
ticles are restricted to move in a plane (the z = 0 plane), is characterized
by a homogeneous, isotropic, two-dimensional Maxwell-Boltzmann distri-
bution function (with u = 0),

m m(v? +22)
) =no(grz) exe [ ]

where ng represents the number of particles per unit area.
(a) Show that the most probable speed of the particles is

Ump = (KT/m)"/*
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Fig. 10 Degree of ionization o = n;/(n; +n,) as a function of
temperature for atomic hydrogen (U = 13.60 eV). The various
curves refer to different number densities n; = n; + n, in m=3.

(b) Show that the fraction of the number of particles per unit area, which
have speeds greater than the most probable speed, is given by (1/ e)l/ 2
where e is the base of natural logarithms.

(c) Show that the number of particles crossing a unit length per unit time
(flux), from one side only, is given by

no kT \1/2
P:—<’U>—7’Lo( >
T 2mm

(d) Show that the kinetic pressure dyad is given by
P= ’I’LokT(ﬁﬁ + S’\S’\)

7.2 Consider a gas of particles consisting of only one species and charac-
terized by the Maxwell-Boltzmann equilibrium distribution function (with

u=0)
2

10 =n(5r)" oo (-5)
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(a) Show that the total number of particles crossing a unit area per unit
time, lying within an element df) of solid angle, is given by

% (%) i cos 6 d2

where 6 denotes the angle between the solid angle orientation and the di-
rection of the normal to the area considered.
(b) Show that the fraction of particles that cross a unit area perpendic-
ular to the x axis per unit time, from the same side, having the velocity
components in the range d3v = dv, dvy dv,, about v, is given by

1 /m\2 mv? e

5 () oo (~57)

(c) Calculate the thermal energy flux triad for the Maxwellian gas.

7.3 The distribution of thermal kinetic energies E, for a gas in the
Maxwellian state, is given by

2nE1/2 E
CE) = gy P (_E’f)

Calculate the most probable energy and show that the velocity of the par-
ticles, which have this energy, is equal to (KT/m)/2.

7.4 The entropy of a system can be expressed in terms of the distribution

function as
S:—k//flnfd3vd3r

Prove that, for a Maxwellian distribution function, the entropy satisfies
the following thermodynamic relations:

oS
(58 )= 7
(57)ew =7

where N is the total number of particles in the system, V is the total
volume, and E = 3NkT/2 is the total energy.
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7.5 Derive an expression for the Doppler intensity profile (thermal broad-
ening) of a spectral line emitted near the central frequency vy, assuming
that the emitting atoms have a Maxwellian velocity distribution. Ignore
all other factors that contribute to the shape of the line.

Hints: (1) The change in frequency due to the Doppler effect associated
with the relative (nonrelativistic) motion of the emitting atoms, with re-
spect to the direction of observation (e.g., z direction), is given by

Uy
V—1yg=—1g—
c

where in this expression ¢ denotes the speed of light in vacuum. (2) The
observed intensity in the frequency range between v and v + dv, that is,
I(v) dv, is proportional to the number of emitting atoms per unit vol-
ume, which have velocities along the direction of observation (z direction)
between v, and v; + dv,.

7.6 Consider a gas mixture containing n. electrons and n; oxygen ions
per unit volume, all in thermal equilibrium at a temperature 7" and having
no drift velocity.

(a) Resolve the motion of the particle species into the motion in space of
the center of mass plus the relative motion of one species with respect to
the other, but using the reduced mass. Calculate the Jacobian J of this
velocity transformation and show that |J| = 1.

(b) Show that the center of mass velocities have a Maxwellian distribution
and that the relative velocities also have a Maxwellian distribution, but
with the reduced mass.

(c) What must be the magnitude of T such that 1/5 of the electrons have
a relative kinetic energy greater than 2 eV? The following integral will be
useful:

zo exp (—azxd) N /2
20 4a3/2

erfc (a'/?x)

/ 2% exp (—ax?) dz =

Zo

where erfc (al/ 220) denotes the complementary error function.

7.7 A gas of Oy molecules is in the equilibrium state with number den-
sity n and absolute temperature 7. Calculate the average value of the
reciprocal of the particle velocity, that is, < 1/v >.
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7.8 A plasma is in equilibrium under the action of an external electrostatic
field E and a gravitational field g. Consider that the plasma as a whole is
moving with constant velocity u, with respect to the observer’s frame of
reference. Write down the distribution function for the species of type «
for this plasma.

7.9 Consider the particles in the Earth’s atmosphere under equilibrium
conditions in the presence of the Earth’s gravitationl field. Assume a
horizontally stratified (x,y plane) atmosphere with constant temperature
T and consider a constant value g = —gz for the acceleration due to
gravity. Derive an expression for the number density n,(z) as a function
of height z, for the type a species, in terms of the number density n(2o)
at a base level 2y and of the scale height H, = kT /m.g. How is the
expression for n,(z) modified, when T and g vary with height?

7.10 The temperature of a plasma, in thermal equilibrium with a neutral
gas, can be determined experimentally by measuring the electron den-
sity n. with a microwave transmission experiment, for example, and the
neutrals number density in a particular excited state through the rate
of transitions to a lower state. Determine the temperature of a plasma
that has only one type of ions, with the electron number density equal to
10%° m~3, and that is in equilibrium with a state of ionization potential

equal to 2 eV whose population is 10*® m~3,

7.11 Consider two large chambers that communicate with each other
only through a small aperture of area A in a very thin wall, as indicated
in Fig. 11. The chambers contain an ideal gas at a very low pressure, such
that the particle mean free path is much larger than the dimensions of
A. The temperatures of the chambers are 17 and T5. Determine the ratio
p1/p2 of pressure in the two chambers assuming that, under equilibrium
conditions, the flux of particles through the aperture A from one chamber
must equal that from the other. What would be the result in the case of
normal conditions of pressure? Give a physical explanation for the two
different results.

7.12 Use the laws of conservation of momentum and of energy in a colli-
sion to show that the Maxwell-Boltzmann distribution function
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Fig. 11 Two chambers connected through a small aperture of
area A, at very low pressure, as illustration for problem 7.11.

2

m /2 m(v—u
fv) :"(%kT)S exp [_%}

satisfies the following equation of detailed balance

fffi=1h

7.13 Show that the average thermal energy per particle, for a gas in
thermodynamic equilibrium, is equal to 1.292 x 10~* eV /K.



MACROSCOPIC
TRANSPORT EQUATIONS

1. MOMENTS OF THE BOLTZMANN EQUATION = =

In the previous chapters we have seen that the macroscopic variables
of physical interest for a plasma, such as number density n,, mean ve-
locity u,, temperature T,, and so on, can be calculated if we know the
distribution function for the system under consideration. For the case of
a system in thermal equilibrium we have calculated, in Chapter 7, several
of these macroscopic parameters using the Maxwell-Boltzmann distribu-
tion function. In principle, the distribution function for a system not in
equilibrium can be obtained by solving the Boltzmann equation. However,
the solution of the Boltzmann equation is generally a matter of great dif-
ficulty. We will see, in this chapter, that it is not necessary to solve the
Boltzmann equation for the distribution function in order to determine the
macroscopic variables of physical interest. The differential equations gov-
erning the temporal and spatial variations of these macroscopic variables
can be derived directly from the Boltzmann equation without solving it.
These differential equations are known as the macroscopic transport equa-
tions, and their solutions, under certain assumptions, give us directly the
macroscopic variables.

The macroscopic variables are related to the moments of the distri-
bution function and the transport equations satisfied by these variables
can be obtained by taking the various moments of the Boltzmann equa-
tion. The first three moments of the Boltzmann equation, obtained by
multiplying it by mg, mqv, and mqv?/2, respectively, and integrating
over all of velocity space, give us the equation of conservation of mass,
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the equation of conservation of momentum, and the equation of conser-
vation of energy. However, at each step of the hierarchy of moments of
the Boltzmann equation, the resulting set of transport equations is not
complete in the sense that the number of equations is not sufficient to
determine all the macroscopic variables that appear in them. Each time a
higher moment of the Boltzmann equation is calculated in an attempt to
obtain a complete set of transport equations, a new macroscopic variable
appears. It is necessary, therefore, to truncate the system of transport
equations at some point of the hierarchy and to introduce a simplifying
assumption concerning the highest moment of the distribution function
that appears in the system. Thus, with such simplifying approximation,
we can obtain a complete set of transport equations sufficient to determine
all the macroscopic variables appearing in the system. Since a plasma is
composed of more than one particle species (electrons, ions, and neutral
particles), there is, consequently, a system of transport equations for each
species.

There are several different complete sets of transport equations (or
hydrodynamic equations) that can be formed, depending on the assump-
tions considered. Among the possible complete systems of macroscopic
equations, there are two that are widely used and that characterize the
so-called cold and warm plasma models. The equations that describe these
two simple models and the corresponding approximations are discussed in
sections 6 and 7 of this chapter.

2. GENERAL TRANSPORT EQUATION AN

We derive now a general partial differential equation that describes
the temporal and spatial variation of the physically relevant macroscopic
parameters. Let x(v) represent some physical property of the particles in
the plasma, which may be, in general, a function of the particle velocity.
Since the average value of x(v) is obtained by multiplying the distribu-
tion function by the property x(v), integrating the product over all of
velocity space and dividing the result by the particle number density, the
differential equation governing the temporal and spatial variation of the
average value of x(v) can be obtained in a similar way by multiplying the
Boltzmann equation by the function x(v) and integrating the resulting
equation over all of velocity space.

Consider the Boltzmann equation for the type « particles in the
general form
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0fa _ (]a
e v Viita Vofa=(32) (2.1)

As indicated, we now multiply each term by x(v) and integrate the re-
sulting equation over all of velocity space to obtain

/X Ofa d3v+/xv-Vfa d%-{-/xa-VUfa d3v

ot
- /UX (%)mz a* (22)

We proceed next to evaluate separately each of the terms in (2.2).
The first term of (2.2) may be rewritten as

8fa 3 0 3 X 3
ot 1Y at(/Xf‘*d _/Uf‘* at v (2:3)

since the limits of integration do not depend upon the space and time
variables, and therefore the partial time derivative can be taken inside or
outside the integral sign. The last integral in (2.3) vanishes since x(v) does
not depend upon t. Using the definition of average values, as presented in
Chapter 6, we obtain

v

Ofa 5. _ O
/vX Bt d°v = 8t(na<X>a) (2.4)

Similarly, for the second term of (2.2) we can write

/xv-Vfadgv:V-(/vxfad?’v)—/vfav~de3v

v v

_/faXV'Vdg'U (2.5)

The term involving V-v is zero, since r, v, and t are independent variables,
as well as the term involving Vy, since x(v) does not depend upon the
space variables. Thus, the second term in (2.2) becomes

/Xv-Vfad3v:V-(na<xv>a) (2.6)

v
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For the third term of (2.2) we have, in a similar way,

/Xa'vvfa d3U=/Vv'(aXfa) d3v_/faa‘vvxd3v_

/fa X Vy-adv (2.7)

The last integral in (2.7) vanishes if we assume that

1
Vy-a=—V,-F=0 (2.8)

«

that is, if the force component F; is independent of the corresponding
velocity component v;, for ¢ = x,y, 2. Note that this restriction does not
exclude the force due to a magnetic field, F = q, v x B, since in this case
F; is still independent of v;. For the z component, for example, we have

Fy =qq (vyB, —v,By) (2.9)

which is independent of v, and the same holds true for the other two
components. The first integral in the right-hand side of (2.7) consists of a
sum of three triple integrals,

/UVU (ax fa) d3v = Z///_:O %(ai X fa) dvg dvy dv, (2.10)

For each one of these triple integrals (i = z,y, z) we have the result

+oo P
/‘//—OO 8_’Ux(am X fa) d’l)m dvy d’UZ =

/] " oy dva(as x fa [F2) =0 (2.11)

since f,(r,v,t) must be zero when v; becomes infinitely large, as there are
no particles with infinite velocity. Consequently, the first integral in the
right-hand side of (2.7) vanishes. Therefore,

/X a-Vyfa d®v=—-n4 <a Vyx>a (2.12)

v
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Combining the results contained in Egs. (2.4), (2.6), and (2.12), we
obtain the general transport equation,

%(na<X>a)+V-(na<Xv>a)—na<a-va>a=

o<, s

where the term in the right denotes the time rate of change of the quantity
X per unit volume, for the particles of type «, due to collisions,

[%(na <X >°‘)] coll /,(,X(%>cou d* (2.14)

The equations to be derived in the subsequent sections of this chapter
are very general and are not specifically dependent on any particular form
of the collision term. A derivation of the general transport equation for
the case when the property x is a function of r, v, and ¢ is included in
problem 8.6.

3. CONSERVATION OF MASS
3.1 Derivation of the Continuity Equation

The transport equation (2.13) is a general expression and it applies to
any arbitrary function x(v). The equation of continuity, or of conservation
of mass, can be obtained by taking x = m, in (2.13). Hence, consider

<X >a= Me (3.1a)
< XV >0= Mg <V >o¢= Myl (3.10)
Vox=Vymg =0 (3.1¢)

The substitution of these results into the general transport equation gives
the continuity equation,

Opma _
——‘"(.% +V. (pmaua) - Sa (3'2)

where pma = NaMm, represents the mass density and where the collision
term S, defined by

Soc = e /v(%>coll d*v = (5'0(;:a>coll (3:3)

represents the rate per unit volume at which particles of type a (with
mass my,) are produced or lost as a result of collisions. Contributions to
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this term are due to processes of type « particle production or destruction
such as ionization, recombination, attachment, charge transfer, and so on.
In the absence of interactions leading to production or loss of particles of
type «, the collision term (3.3) is equal to zero, since in this case the mass
is conserved in the collision process. When S, = 0 the continuity equation

reduces to
0Ppma

ot

Dividing each term in (3.4) by m,, the continuity equation can be written
in terms of the number density n,, as

+V: (Pmata) =0 (3.4)

Ong

% + V- (nquy) =0 (3.5)
The equation of conservation of electric charge follows from (3.5) by mul-
tiplying it by the particle charge q,,

0pa

P J. =0 3.

5tV da (3.6)
where p, = n.qs is the charge density and J, = p,u, is the charge
current density.

3.2 Derivation by the Method of Fluid Dynamics

The continuity equation can also be derived using the method of fluid
dynamics, since n,(r,t) and u,(r,t) are macroscopic variables. Consider
a volume V in the fluid, limited by the closed surface S, and let dS = n dS
be an element of area on this surface, such that the unit normal vector n
points outward, as shown in Fig. 1. The average number of particles of
type a that leave the volume V through the element of area dS per unit
time is given by

NeUg - dS (3.7)

Therefore, the number of particles of type a that leave the volume V
through the whole closed surface S per unit time is obtained by integrating
expression (3.7) over the whole surface,

7{ Rty - dS (3.8)
S
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Fig. 1 Closed surface S surrounding the arbitrary volume V
inside the fluid, and the element of area dS = n dS pointing
outwards.

On the other hand, the total number of particles of type a contained in
V, at any time, is given by

/ ne d°r (3.9)

1%

If we consider that there are no production or loss of particles inside the
volume V/, then the number of type « particles leaving V' must equal the
time rate of decrease of the number of type « particles inside V. We must
have, therefore,

0
NgUg - dS = —— [ ng d°r 3.10
Using Gauss’s divergence theorem we can write
%naua -dS = / V- (ngugy) d*r (3.11)
S \%
and (3.10) becomes
/ [%_ +V- (naua)] d37‘ =0 (312)
yvL ot

This result must be valid for any arbitrary volume V', which implies that
the integrand of (3.12) vanishes identically. Hence, we obtain the expres-
sion (3.5) for the continuity equation.
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3.3 The Collision Term

Let us consider now the form of the collision term S, for some mecha-
nisms of production and loss of particles in plasmas. The processes leading
to production and loss of particles are usually related to inelastic collisions,
such as those involving ionization, recombination, or electron attachment,
for example.

The effect of ionization can be included in the continuity equation
through a rate coefficient for ionization, k;, defined such that the number
of electrons produced per unit time is given by k; n..

An important process leading to the loss of electrons and ions in a
plasma is ion-electron recombination. Let k. denote the recombination
coefficient, which can be determined experimentally. The rate of electron
recombination is proportional to the product of the electron and ion num-
ber densities. Assuming that there is only one ion species present, we have
n; = ne, and the electron loss term, due to recombination, can be written
as k, n?.

Another important mechanism for electron loss is the process of elec-
tron attachment. In this case, the electron loss rate is proportional to the
product of the electron number density and the neutral particle number
density. In a weakly ionized plasma the neutral particle number density
can be considered to be approximately constant, and the loss term for
the electrons due to attachment can be written as k, n., where k, is the
attachment collision frequency, which can be determined experimentally.

For these inelastic collision mechanisms just described, the collision
term S, for the electrons can be expressed as

Se = me(kine — k,«nz — kqone) (3.13)

4. CONSERVATION OF MOMENTUM
4.1 Derivation of the Equation of Motion

In order to derive the momentum transport equation, we replace x(v)
by mqVv in the general transport equation (2.13). Taking v = c, + ug
and noting that < c, >= 0, the terms of the general transport equation
(2.13) become

Ou, Opma

2( <V >q) = — +u

(4.1a)
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Vo (Pma <VV>4) =V [pma(Ugts +uy <cq >+ < Cq > upt

< €aCq >)] =V (Pmalala + Pma < CaCo >) (4.1b)
0 0 0
7" F. v a — TNy (Fx_" F,— Fz—) >a
Ng < Vv > Ng < ava’ y@vy+ c%zv
=N <X+ F,y+ F,2>4 = —nq <F >, (4.1¢)

Substituting these expressions into (2.13), results in the momentum con-
servation equation

ou 0ma
Pma ata +u, pa'r:, +V. (pmauaua) +V. (pma < CuCy >) _

ne <F >, =A, (4.2)

where A, denotes the collision term

Aa =ma /v V(%Lm du = [‘g%}@}cou (4:3)

The expression pp,q < €4Cq > is the kinetic pressure dyad P, defined
in (6.6.2) (Eq. 6.2 in Chapter 6). Therefore,

V  (pma < €aCa >) =V - Py, (4.4)
The third term in the left-hand side of (4.2) can be expanded as follows:

0 0 0
v : (pmauaua) = %(ﬂmauaxua) + a—y(pmauayua) + éz(pmauazua)

( ou,, o ou,, n 8ua) +
= Pma | Uazx «a Uaz
P Oz Y oy 0z

6(pmauaw) 8(pmauay) 8(pmaua2)

= Pma(Ua - V)uy + u, [V : (Pmaua)] (4-5)

Substituting (4.4) and (4.5) into (4.2), and using the continuity equation
(3.2), we obtain

pma[%llf + (ug - v)ua] +V Poa—ng <F>3=Aq—USa (46)
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For the terms within brackets in this last equation we can use the total
(or substantial) time derivative operator

D 0
—=—+4u,'V 4.7
Dt ot T e (4.7)
which corresponds to the time variation observed in a reference frame
moving with the mean velocity u,. If the electromagnetic Lorentz force
and the gravitational force are considered, the last term in the left-hand

side of (4.6) becomes
g <F >4 = nuqa(E+uy X B) —ngmeg (4.8)

where the fields E and B, in this equation, represent smoothed macro-
scopic fields. The equation of motion, therefore, can be written as

pma% = naqa(E + Uy X B) + Pmal — V : Pa + Aa - uaSa (49)
Physically, this equation states that the time rate of change of the mean
momentum, in each fluid element, is due to the external forces applied in
the fluid, plus the shear (viscosity) and pressure forces of the fluid itself,
plus the internal forces associated with the collisional interactions. Thus,
the equation of motion establishes the condition necessary to guarantee
conservation of momentum, just as the continuity equation establishes
the condition necessary to guarantee conservation of mass (or number of
particles).

In Chapter 6 we have seen that the term —V - P, represents the force
exerted in a unit volume of the plasma, due to the random variations in
the particle peculiar velocities. This force per unit volume includes forces
associated with the scalar pressure and tangential shear forces (viscous
forces). In many cases, the effect of viscosity is relatively unimportant in
plasmas, and the nondiagonal terms of P, can be neglected. Furthermore,
in the special case when the distribution of peculiar velocities is isotropic,
the diagonal terms of P, are all equal and correspond to a scalar kinetic
pressure p,. Thus, neglecting viscosity effects and considering an isotropic
velocity distribution, we have P, = p,1, and the force per unit volume
becomes —V - P, = —Vp,, according to (6.6.18) (Eq. 6.18 in Chapter 6).

With these simplifying approximations, and neglecting collisions lead-
ing to production or loss of particles (S, = 0), the momentum equation
becomes

Du,
pmaTut =Noqa(E + Uy X B) + pmag — Vo + Aq (4.10)
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The momentum conservation equation can also be derived using a
fluid-dynamics approach, in a way similar to the derivation of the mass
conservation equation presented in section 3.2, which we shall not discuss
here.

4.2 The Collision Term

The symbol A, denotes the rate of change of the mean momentum
per unit volume, due to collisions. As a consequence of conservation of the
total momentum in an elastic collision, the change in the momentum of one
of the particles must be equal and opposite to the change in momentum of
the other particle participating in the collision event. This means that, for
collisions involving particles of the same species, there is no variation in
the total momentum per unit volume and therefore, in this case, A, = 0.
However, for a fluid composed of particles of different species, as in a
plasma, the collision term A, is not zero in general. For collisions between
electrons and neutral particles there is a net momentum transfer from the
electron gas to the neutral gas. Collisions between electrons and ions also
modify the total momentum of the electron gas. Therefore, for the case
of collisions between particles of different species, a collision term must be
included in the equation of momentum conservation.

An expression often used for the term of momentum transfer by col-
lisions is

Ao =—pma Y _ Vap(Ua — up) (4.11)
B

which assumes that the force per unit volume exerted on the particles of
type o due to collisions with particles of some other type (3) is propor-
tional to the difference between the mean velocities of these particles. The
proportionality constant v,s (which has dimensions of sec™!) is called the
collision frequency for momentum transfer between the particles of type o
and those of type 3. Since the total momentum must be conserved during
a collision, we must have

PmaVas(Ua — Ug) + PmpVpa(Us — Ug) =0 (4.12)

The collision frequencies v,g and v, satisfy, therefore, the following im-
portant relation:

PmaVaB = PmpBYBa (4.13)

The collision term A, defined in (4.3), will be considered in more de-
tail in Chapter 21. We will see, then, that the expression (4.11) is not
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generally valid, although this result is obtained when the difference be-
tween the mean velocities of the various particle species in the plasma is
relatively small and when each particle species has a Maxwellian velocity
distribution.

5. CONSERVATION OF ENERGY R TR
5.1 Derivation of the Energy Transport Equation
To derive the energy transport equation, we substitute x(v) by the

particle kinetic energy m,v?/2 in the general transport equation (2.13).
In this case, we have

Mo <X >a = 2pma < €2 > +2pmatil, =
1 (3pa + pmatd) (5.1)
Vox = %mavv(v V) =me (V- Vy)v=mev (5.2)

Therefore, the terms in the left-hand side of the general transport equation
(2.13) become

0 _30pa 01 o

5 (Mo < X >a) = 5 5 + at(zpmaua) (5.3a)
V' (na <XV >a) =V [3pma < (V- V)V >,] (5.3b)
N < (F/Mmy) - Vyx >0 = —ng <F-v>, (5.3¢)

Adding these terms, results in the following energy conservation equation:

30p, O
2 0t + a(%Pmaui) +V [%pma < (vev)v>o] -

ng <F-v>, =M, (5.4)

where M, represents the rate of energy density change due to collisions,

Ma=gma [2(5),,, o= [P e

The energy conservation equation (5.4) can be written in an alterna-
tive form as follows. Consider, initially, the third term in the left-hand
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side of (5.4). Taking v = ¢, + u,, the quantity < (v -v)v >, can be
expanded as

< (g +ca) - (U 4 €o)](Ug + €o) >=< (U2 +2uq - Cq +c2) (U +co) >

= ulugt < 2 >uy +2 < caCy > - Upt < ey > (5.6)

The term ppe < €qCo > represents the kinetic pressure dyad P, and
%pma < c2c, > is the heat flur vector qq, defined in Chapter 6. We have
also seen that %pma < Ci >=3p,/2 . Therefore,

V- [%pma < (V ’ V)V >Oz] =V: [%pmanua + %(3pa)uo‘ +Po U + qa] -

V- (2pmariun) + 3(3pa)(V - ua) +
L(ua - V)(3pa) + V- (Pa o) + V- qa (5.7)

Substituting this result into (5.4) and using the notation D/Dt for the
total time derivative (4.7), we obtain

2 (22) 4 ()T et 2 (bpmatid) + V- (Rpmatidu) +

V- Py uy)+V-Qa—noa<F-v>,=M, (5.8)
The third and fourth terms in the left-hand side can be written as
0

E(%pmaua ' ua) +V- [%pma(ua ) ua)ua] =

O0Pma ou,,
%ui [g: + Pmalaq - —Bt_ +

%Uiv *(Pmalla) + Pmalle - [(Ua - V)ua] =

1 U2 [apma -D Ugq
27l ot Dt
Using the continuity equation (3.2) and the equation of motion (4.6), this
last equation becomes

+ V- (pmaua)] + PmoUa * (59)

%ugSa + Uy <F >4 —uy - (V-Py) +uy - Ag —u2S, (5.10)

[

Taking this result back into (5.8) we obtain

D (3pa> 3pa
2

ﬁ +—Q—V-ua+v-(Pa~ua)—ua-(V-Pa)—
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My —ug- Ay + 2u2S, (5.11)

The third and fourth terms in the left-hand side of this equation can be
combined into one single term,

V. (Pa-up) —uy - (V-Py)=(Po-V) u, (5.12)
as well as the fifth and the sixth terms, which give
Ng <F-v>,+nuy <F>,=-n,<F-c, > (5.13)
since
<F-v>,=<F - (up+cy)>=<F>, uy+<F-co,> (514)
For a velocity-independent force (5.13) vanishes, since, in this case,
<F.c,>=F<ca>=0 (5.15)

For the force due to a magnetic field B, the only velocity-dependent force
that we are interested here, (5.13) also vanishes,

<Fca>=¢a<(vxB)-cy>=

do(Ug X B)- < ¢y > +¢a < (ca XB)-cu > =0 (5.16)

where both terms vanish since < ¢, > = 0 and (¢, X B) is normal to
Co. We obtain, finally, the following alternative form for the equation of
conservation of energy:

D (3pa 3Pa i
Dt( : )+ PEV U+ (Pat V) Ua + Vo =

My —uq - Ag + 2u2S, (5.17)
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5.2 Physical Interpretation

The physical interpretation of this equation is as follows. The first
term in the left-hand side represents the total rate of change of the particle
thermal energy density in a volume element moving with the mean fluid
velocity u,. Note that the thermal energy density is given by 3p,/2 =
Pma < ¢2 > /2. The other terms of (5.17) contribute to some extent to
this total rate of change of the thermal energy density. The second term
in the left-hand side of (5.17) can be interpreted as the change in the
thermal energy density due to particles entering the volume element with
the mean velocity u,. The third term is related to the work done on the
unit volume by the kinetic pressure dyad acting on its surface, whereas the
fourth term represents the change in the thermal energy density due to the
heat flux. Finally, the terms in the right-hand side of (5.17) represent the
rate of change in the thermal energy density as a consequence of collisions.
In the case of a fluid containing only one type of particles, the collision
terms vanish, as indicated previously.

The first two terms in the energy equation may also be combined,
making use of the continuity equation (3.2). Expanding V - (pmaua),
(3.2) becomes

0
(a +u, - V)pma + pmaV - Ug = S, (5.18)
which gives
1 (Dpma
Vo= ( Do Sa> (5.19)

Substituting this result into (5.17), taking pme = NaMq and p, = nekTy,
yields the following alternative form for the energy equation in terms of
the temperature T:

3 DT, 1, 3kT,
ok 55+ (PaV) U +V-Ga = Ma~ua'Aa+(§ua—§m—Q)Sa (5.20)

5.3 Simplifying Approximations

Several simplifying approximations can be considered for the energy
equation, depending on the situation of interest.
(a) When the collision terms vanish, or are negligible, and when the mean
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fluid velocity u, is equal to zero, (5.20) reduces to a diffusion equation
for T, if we take the heat flux vector as

4o = —KVT, (5.21)

where K denotes the thermal conductivity. Thus, in this case, (5.20)

reduces to 5 DT
—ngk—= =V - (KVT, 5.22

The thermal conductivity coefficient K is related to the fluid viscosity co-

efficient.

(b) Consider now a nonviscous fluid, in which the pressure dyad reduces

to a scalar pressure without thermal conductivity (q, = 0). If we con-

sider also that the collision terms vanish, the energy conservation equation

(5.17) becomes

D(?’Pj

3Pa _
Di\ 2 ) + T(V . ua) +Pa(V uoc) =0 (5'23)

Substituting (5.19) for (V - uy), with S, = 0, yields

D 5po D
—(3pa>— Pa ZPma _ (5.24)
Dt\ 2 2pma Dt
from which results D =D
Pa 22 Pma (5.25)
Pa 3 Pma
Integrating this equation gives
5/3
Pa _ (p ”‘a) (5.26)
Po Pmo
where pg and p,,0 are constants, that is,
Papr/® = constant (5.27)

This is the adiabatic energy equation for a gas in which the ratio of the
specific heats at constant pressure and at constant volume, 7, is equal
to 5/3. We emphasize here that the energy equation reduces to this adi-
abatic equation only when the effects of viscosity, thermal conductivity,
and energy transfer due to collisions are neglected.
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The parameter 7 is related to the number of degrees of freedom, N,
of a gas by the condition

v=(2+N)/N (5.28)

For particles that have no internal degrees of freedom, as for example in a
monoatomic gas, where the only degrees of freedom are those associated
with the three possible directions of translational motion, we have N = 3
and therefore v = 5/3. Other degrees of freedom exist in the case of
diatomic or poliatomic molecules. The adiabatic energy equation often
used in thermodynamics is

pp,,) = constant (5.29)

Differentiating this equation, yields

o dp = ypp Y dpp =0 (5.30)
or, equivalently,
_ (0P )
dp = <Pm) dpm =V dpm (5.31)

where we have defined

Vs = (vp/pm)"/? = (yKT/m)*/? (5.32)
which is the adiabatic speed of sound for the fluid.
(c) An equation that is also used in thermodynamics when the temperature
is constant inside the fluid, is the isothermal energy equation. It can be

easily obtained from the equation of state for an ideal gas, p = nkT. For
an isothermal process (T' = constant), we have

dp = kT dn = (p/pm) dpm = Vi dpm, (5.33)
where the isothermal speed of sound is

Vo = (p/pm)"/* = (kT /m)*/? (5.34)
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6. THE COLD PLASMA MODEL i |

In the previous sections we have seen that the differential equations
governing the temporal and spatial variation of the macroscopic variables
can be obtained by taking the various moments of the Boltzmann equa-
tion. The macroscopic parameters are all related to the moments of the
distribution function fo(r,v,t). The first four moments of the distribu-
tion function give us the number density n,, the mean velocity u,, the
momentum flow dyad I, and the energy flow triad &,.

The first moment of the Boltzmann equation gives us the continuity
equation, which relates the number density n, (or the mass density pmq)
with the mean velocity u,, for the particles of type a. In order to determine
these two macroscopic variables we need two independent macroscopic
transport equations. Thus, we need to consider the second moment of the
Boltzmann equation, which gives us the equation of motion (or momentum
conservation equation), and which relates the mean velocity u, with the
number density n, and the kinetic pressure dyad P,. This gives us now
two transport equations involving three independent variables. We find,
therefore, that the set of transport equations derived from the moments of
the Boltzmann equation always includes more variables than independent
equations. This situation is clearly evident in the three transport equations
derived in this chapter. The energy equation, besides the variables n,,
U,, and P,, also includes the heat flow vector q,. A more general energy
conservation equation would include the energy flow triad &,.

Any finite set of transport equations, therefore, is insufficient to form
a closed system of equations. Consequently, it is necessary to introduce a
scheme of approximation to eliminate some of the independent variables,
or to express some of these variables in terms of the others. It is common,
therefore, to arbitrarily truncate the system of transport equations at
some point in the hierarchy of moments of the Boltzmann equation, and
consider some simplifying approximation for the highest moment of the
distribution function appearing in the system.

The simplest closed system of macroscopic transport equations that
can be formed is known as the cold plasma model. This simple model
encompasses only the equations of conservation of mass and of momen-
tum. The highest moment of the distribution function, appearing in the
momentum equation, is the kinetic pressure dyad, which, in this model, is
taken equal to zero. This means that the effects due to the thermal motion
of the particles and the force due to the divergence of the kinetic pressure
dyad are neglected. For convenience, we collect here the two transport
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equations pertinent to the cold plasma model,

0pma
ot

+ V (Pmala) = Sa (6.1)

Du, ‘
pmaTt = naqa(E + Uy X B) + Pmag + As —uaSa (62)

In the absence of processes leading to production and loss of particles of
type a (such as ionization and recombination), we have S, = 0. The
expression normally used for the collision term for momentum transfer
A, is the one indicated in (4.11). The cold plasma model assumes, in
fact, a zero plasma temperature, so that the corresponding distribution
function is a Dirac delta function centered at the macroscopic flow velocity,
fa(r,v,t) = d0[v — u(r,?)].

This model has been successfully applied, e.g., in the investigation
of the properties of small-amplitude electromagnetic waves propagating
in plasmas, with phase velocities much larger than the thermal velocity
of the particles. The theory of high-frequency waves propagating in cold
magnetized plasmas is commonly known as the magnetoionic theory.

7. THE WARM PLASMA MODEL N v

In this closed system of transport equations, the simplifying approxi-
mation is introduced in the equation of conservation of energy, in which we
neglect the term involving the heat flux vector. Thus, the approximation
consists in taking V - q, = 0, which means that the processes occurring
in the plasma are such that there is no thermal energy flux. This ap-
proximation is also called the adiabatic approzimation. Since the thermal
conductivity is zero in this case, it follows that the plasma is nonviscous
and, consequently, the nondiagonal terms of the kinetic pressure dyad are
all equal to zero. Further, the diagonal terms of P, are assumed to be
equal and the kinetic pressure dyad is replaced by a scalar pressure p,.
Thus, the term V - P, in the momentum equation degenerates to Vp,.

The three macroscopic variables appearing in this case are the number
density nq, the mean velocity u,, and the scalar pressure p,. The three
transport equations pertaining to the warm plasma model are, therefore,

O0pma

2+ V- (Pmala) = S (7.1)

Du,,
pma5r = Nada(E + Ua X B) + prnag = Vpa + Aa —UaSa  (7.2)
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D /3p op
() + 22V ua) = Mo — g Aa+ JulSe  (73)

Considering the additional approximation that the change in energy,
as a result of collisions, is negligible, the energy equation (7.3) reduces to
the following adiabatic equation (as shown in section 5),

PaPmy, = constant (7.4)

Generally, the warm plasma model gives a more precise description of the
behavior of plasma phenomena as compared to the cold plasma model.

In the most general cases, in which the plasma is not in a state of
local equilibrium, and when heat flow and viscosity need to be taken into
account, it is more convenient and simple to work directly with the phase
space distribution function. In this case, the plasma is usually said to be
hot. After determining the distribution function f, by solving the differ-
ential kinetic equation that governs the evolution of f, in phase space,
for the specific problem under consideration, the macroscopic variables
can be obtained from f, according to the systematic method presented in
Chapter 6.

PROBLEMS

8.1 Consider the following simplified steady-state equation of motion, for
each species in a fluid plasma,

ngE4+uxB)-Vp=0

where the electric (E) and magnetic (B) fields are uniform, but the number
density (n) and the kinetic pressure (p) have a spatial gradient. Taking
the cross-product of this equation with B show that, besides the E x B
drift, there is also a diamagnetic drift given by

Vp = (Vp) xB

" ngB?2

Provide physical arguments to justify the physical reason for this fluid
drift. Explain if there is any motion of the particle guiding centers asso-
ciated with this fluid drift, and why it does not appear in single particle
orbit theory.
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8.2 (a) From Maxwell equations,

V-H=0
OH

E = —pjpor
v x Ho~5

VXH=J+€088—]?

where E and H denote the electric and magnetic fields in a plasma, p
denotes the electric charge density ng, and J the electric current density
nqu, show that

Eguo-(%(EXH)ZV'T—nq(E-I-uXB)

where eouo(E x H) is the electromagnetic momentum density, and 7 is
the electromagnetic stress dyad whose components are given by

Tij = eoEiE; + poH; Hj — (0 E? + poH?)d;,

where d;; is the Kronecker delta.
(b) From this equation, which expresses conservation of the electromag-
netic momentum density, and the continuity equation

on

show that the momentum transport equation

D
nmfltlznq(E-l—uxB)—V“P

can be written in the form

0G
= I =
T +V 0

where G denotes the total momentum density

G = nmu + ¢ouo(E x H)
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and IT is the total momentum flux dyad (rate of transport of momentum
through unit area)
II=nmuu+P-T

(c) Using Maxwell curl equations, show that the energy transport equation

=@Fnm<c®>)+ —(Enmu?) = -V -(Inm < >u) -

ot "2 ot "2
V- (3nmu*u) - V-q-V:(P-u)+nqu-E
can be written in the form [note that u- (u x B) = 0]

ow
— S =
5 +V. 0

where W denotes the total energy density
W = 2(e0E? + poH? + nmu? + nm < ¢® >)
and S is the total energy flux (power per unit area)

S=E><H—+—’P-u+%7zmu(uz+<c2 >)+q

8.3 In order to investigate the effect of the collision term (4.11) in the
macroscopic fluid motion, consider a uniform mixture of different fluids (all
spatial derivatives vanish), with no external forces, so that the equation
of motion for the a species reduces to

"—“ﬁ:-zm « 1)

Solve this equation to determine u(t), for a two-fluid mixture and for a
three-fluid mixture (in the case of the three-fluid mixture it is convenient to
use Laplace transforms). Notice that, at equilibrium (when du,/dt = 0),
the velocities of all species must be the same.

8.4 Consider a uniform mixture of different fluids (all spatial derivatives
vanish), with no external forces, such that the equation of motion for the

a species becomes
dua
— == E Vap(Ua — ug)
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(a) Show that the time rate of change of the total fluid kinetic energy
density, Wy, is given by

dW
—k Z 2pmaVaﬂ - uﬂ)z

where

1 2
We=) 3pmatid
«

(b) Consider now the total fluid thermal energy density,

WT - Z gnakTa

[

If the energy equation for a homogeneous fluid mixture, with no external
forces, is

2maVag m

dTa_ 3 9
W——%m[(r—r —Tp) - 3k( — ug)

then show that the time rate of change of Wr is given by
dW
—= Z 3Pmavap(Ua — Ug )2

Thus, the total thermal energy density Wt increases at exactly the same
rate as the total kinetic energy density Wy decreases. As a hint for this
problem, notice that for any function that is summed over two indices,
the result is unchanged if we interchange the indices, so that

Y fas = fsa
a,B a,B

or

Zfa,@—z faﬁ‘i‘fﬂa)
a,B
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8.5 Explain the reason why there is no term containing the magnetic flux
density B in the energy equation (5.17).

8.6 Derive the following general transport equation, similar to (2.13), for
the case when the quantity x depends on r, v, and t,

0 ox
a(na<x>a)—na<a>a+V-(na<xv>a)-

d(na < x >a)}
coll

8.7 Consider the general transport equation of the previous problem and
let the property x(r,v,t) be the random flux of thermal kinetic energy,
that is, 1mqac2cq, where ¢, = v — u,(r,t) . Show that (considering the
Lorentz force for F)

%(na <X >a) = ('98%
na< Koo = (B2 (py 1 2pa1)

V' (na <XxV>a) =V (3pma < c2caCo > +Hu0q0)

Nag < (V- V)x >0 =—(Qa V) Uy — (Ao - VIu, —

(ta - V)ua] - (Pa+ Spal)

Na < (2 Vy)X >a = Pma < a-(CaCq + %cil) > =

3
q—a[(E+ua x B) - (Pa+ —pal) + Qa X BJ
Mg 2
Using these results in the general transport equation, derive the following
equation, known as the heat flow equation,

0. 1

ot Pma

(V- Pa) - (Pat gpa1)+

V- (3Pma < CaCa > +Uaq) + (Do - V) - Ua+

(da " V)ta — 2 (ga x B) = (%)coll

My
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8.8 In the general transport equation of problem 8.6, consider that the
property x(r, v, t) is the random momentum flux, that is, mqcajcqar. Show
that, in this case,

0Py

(e < X >a) = ey

ot

ox

§>a:0

na<

0
a—xi(Qaijk + Uai Pajik)

No < Vi=te >0 = —Poii— — Pif ——2
«a 28551' o aij 8:01 aik 8331

ox
Ng < aia— >0 = Pma < QjCak T axCoj >
Ui
where the summation convention on repeated indices is being used. Plug
these results in the general transport equation to derive the following

equation, known as the viscous stress equation:

OPyjk 0 (’?uak OUg;
- iy P . P J _
at 83:1 (Qal]k + uonPOka) + aij 8 + Pazk 81’2
Pma jCak kCayj = S5t coll

8.9 Verify that the energy conservation equation, for the random kinetic
energy %maci, can be obtained from the viscous stress equation (see prob-

lem 8.8) by letting j = k, and summing over k.

8.10 From the heat flow equation, derived in problem 8.7, obtain the
following simplified equation for heat flow in a stationary (u = 0) electron

gas:
5 9Pe

> + Qee(qe x B) = (6;e)coll

Pme

State all the assumptions necessary to obtain this result.
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8.11 Using the relaxation model (or Krook collision model) for the colli-
sion term,

(%}%ﬁ)coll = ~¥(fa ~ fao)

and the ideal gas law p. = n.kT,, show that the heat flow equation of
problem 8.10 becomes

QCG
Qe +— (qe x B) = —K(VT,

where
okpe

2mev

K

is the thermal conductivity.



MACROSCOPIC EQUATIONS
FOR A CONDUCTING FLUID

1. MACROSCOPIC VARIABLES FOR A PLASMA
AS A CONDUCTING FLUID

A plasma can also be considered as a conducting fluid, without speci-
fying its various individual species. The macroscopic transport equations,
derived in the previous chapter, describe the macroscopic behavior of each
individual plasma species (electrons, ions, and neutral particles). We will
determine now the set of transport equations that describe the macro-
scopic behavior of the plasma as a whole, without considering the individ-
ual species present. Each macroscopic variable is combined, by adding the
contributions of the various particle species in the plasma. This procedure
yields the total macroscopic parameters of interest, such as the total mass
and charge densities, the total mass and charge current densities (or flux),
the total kinetic pressure dyad, and the total heat flux vector.

The mass density is the mass per unit volume of fluid and can be

expressed as
Pm = mea = Znama (1.1)
(6% o

The electric charge density is the electric charge per unit volume of
fluid,

pP= Znaqa (1.2)

The mean fluid velocity, u, is defined such that the total momentum
density is the same as the sum of the momentum density of each species,
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according to
Pmlu = Z Pmala (1.3)
(o7

The mean velocity of the plasma, u, therefore, is a weighted mean value,
where the velocity of each species is weighted proportionally to its mass
density.

The mean velocity of each particle species, when considered in a ref-
erence frame moving with the global mean velocity u of the plasma, is
called the diffusion velocity w,

1
Wa:ua—u:ua——meaua (1.4)
Pm

The mass current density or mass fluz is given by

J, = Znamaua = ppu (1.5)

and the electric current density or charge fluzr is expressed as

J= Z NaQaly = pU + Z NaGaWa (1.6)

Note that in (1.5) we have ), pmaWo = 0, in virtue of (1.4), which defines
the diffusion velocity w,,.
The kinetic pressure dyad for each particle species in the plasma is
defined in (6.6.2) as
Po = pma < CaCq > (1.7)

where ¢, = v—u,, is the peculiar or random velocity of the type a particles.
Note that the pressure is defined as the time rate in which momentum is
transported by the particles through a surface element moving with the
particle mean velocity. For the plasma as a whole it is necessary to define
an alternative peculiar velocity c,g, for the particles of type «, relative to
the global plasma mean velocity u,

Cao=V-—1u (1.8)

Thus, the total pressure is defined as the rate of momentum transfer due
to all particles in the plasma, through a surface element moving with the
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global mean velocity u. The total kinetic pressure dyad P is therefore
given by

P= Z Pme < €a0Ca0 > (1.9)

To relate P, given in (1.9), with P,, given in (1.7), we substitute u by
u, — W, and v by ¢, + u, in (1.8), to obtain

Ca0 = Co + Wq (1.10)

Consequently,

P =) pma < (Ca+Wa)(Ca+Wa) > (1.11)

and expanding this expression,

P=) pma(< CaCa >+ < CaWa > + < WaCa > + < WoWq >)
(07
(1.12)
From the definition of w, we see that < w, > = w,, since it is a macro-
scopic variable and therefore < c,wo > = < ¢q > W, = 0. Thus, (1.12)

becomes
P = Z’Pa + Z PmaWaWa (1.13)

Note that P, is a pressure relative to u,, whereas P is relative to the
global mean velocity u.
The total scalar pressure p is defined as one-third the trace of P,

1 1 1
b= g E Py = g E E Pma < Ca0iCali >= g E Pma < ciO > (1'14)
1 i [

o

Using (1.13) we can write

1
p= Zpa+ gzpmawi (1.15)
(03 (03
Finally, we define the total heat flur vector q as

q= %mea < Ciocao > (1.16)

a
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and the thermal energy density of the plasma as a whole as

3
'gp = %mea < C?XO > (117)

It is useful to relate q, defined in (1.16), with the heat flux vector q, for
the particles of type «,

Qo = 3pma < C2Cq > (1.18)

For this purpose, we substitute c,o by ¢, + W, in (1.16) and expand the
resulting expression, obtaining

q= %mea[< cica > +w§ <Ca>+2< (Wa 'C"‘)ca >+

(0%
<> WotWiW, +2(< Co > Wo )W, (1.19)

The second and sixth terms in the right-hand side of this equation are
equal to zero, since < ¢, >= 0. Therefore,

a4=1Y pmal< o > +2Wa: < Caa > + < & > Wotwiw,] (1.20)

[0

Using (1.18), (1.7), and the relation p, = pma < c2 > /3, we can write
(1.20) as

3
q= Z(Qa + Wo P+ 5 PaWa + %pmawiwa) (1.21)
(67

In particular, for the isotropic case in which P, = p,1, we have
Wo - Po = WoPa, so that (1.21) becomes

)
q= Z(qa + é‘pawa + %pma'wiwa> (122)

2. CONTINUITY EQUATION

To obtain the continuity equation for the plasma as a whole, we add
(8.3.2) (Eq. 3.2 in Chapter 8) over all particle species in the plasma,

> 3‘;’;" +Y V- (pmatla) = ¥ _ Sa (2.1)

83
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E” + ’ (} ’”’u) 0 ( )

with p,, and u given by (1.1) and (1.3), respectively. The collision term
Sa, when summed over all particle species, must certainly vanish, as a
consequence of conservation of the total mass of the system. It is of interest
to note that, using the total time derivative operator D/Dt = §/0t+u-V,
(2.2) can also be written in the form

Do, _
’—‘52— + pmV u=20 (23)

3. EQUATION OF MOTION o e R

Similarly, adding the equation of conservation of momentum (8.4.9)
over all particle species in the plasma, yields

mea [88% + (ua : V)ua} = Znaan + Znaqa(ua X B) +

D rma8 =Y V-Paty Au—) UaSa (3.1)

Since the total momentum of the particles in the plasma is conserved,
the collision term for momentum transfer vanishes when summed over
all species. Using the definitions (1.1), (1.2), and (1.6), and the relation
(1.13), we can write (3.1) as

mea[%+(ua'v)ua] =pE+JIxB+p,g6—-V -P+

Z V  (pmaWaWea) — Z u, S, (3.2)

a

The term involving S, can be eliminated using the equation of continuity,
_ Opma
ZuaSa = Zua 5 + V (pmala) (3.3)
(e [0

Combining this expression with the terms in the left-hand side of (3.2),
results in the expression
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Z[W FV - (pmottaua)] (3.4)

(%

We can now substitute the mean velocity u, by w, + u and expand the
result. Noting that

meawa = mea(ua —u) = ppu—pru=0 (3.5)
we can express (3.4) as

E[ﬁﬂ%ﬂ +V- (pmauaua)] = 5(_[:97%1) +V: (pmuu) +

[

Xa:v (PmaWaWa) = pm [%l‘ti + (u- V)u] + u[%-tnl + V- (Pmu)] +

Du
Z V- (pmaWaWa) = Pmﬁ + Z V (PmaWaWa) (3.6)

where we have used the continuity equation (2.2) and the total time deriva-
tive operator D/Dt. Taking this result back into the equation of motion
(3.2), we obtain the following momentum equation for the plasma as a
whole,

Du
pmﬁsz+JxB+pmg—V-P (3.7)
This equation is an expression of Newton’s second law of motion.

4. ENERGY EQUATION

To obtain the equation of conservation of energy for the plasma as a
conducting fluid, we start from the energy equation (8.5.4) for the particles
of type «, and add this equation over all plasma species,

Z %(%pma <v?>,)+ ZV- (%pma <viv >a) —

Y ng <F-v>a=0 (4.1)

where the collision term M, vanishes when summed over all species of
particles. We substitute now v by c,o + u and expand each term of (4.1).
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For the first term we have

%(Z TPma < V'V >a> = %[Z —;—pma(< 2o > +u? 4 2w, - u)]
= %(Z %pma <y >> + %(%pmuz)

- 5(2)+ 5 im) w

where we have used the definition (1.17) and the fact that ), pmaWa = 0.
For the second term we note initially that

< ’U2V >a =< (Cio + 'U/2 + 2Ca0 : u)(cao + U) >

=< ciocao > +u2Wa +2<CaoCa0 > U+
<2y > u+uPu42(w, - u)u (4.3)

since Coo = Co + W, and < ¢, > = 0. Therefore,

V- (Z %pma < Vv >a> =V (Z %Pma < CiOCaO >> +
(o7 0%
AV (mea<ca0cao>.u)+v- (Z%pma<cio>u> +
o

V- (Z %pmau2u> (4.4)

Using the definitions of the total heat flux vector q and of the total kinetic
pressure dyad P, we can write (4.4) as

V'(Z%Pma<v2v>a>=V-q+V~(P-u)+

V. (%u) +V. (%pmu2u> (4.5)

For the third term of (4.1) we have

Zna<F-v>a:Zna[qa<E-v>a +go < (VvXB)-v>, +
o (87
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Mo < &V >4 (4.6)

where we have considered external forces due to electromagnetic and gra-
vitational fields. Since < v >, = u, and since, for any vector v, we have
(v x B) - v =0, we obtain

Zna<F-v>a=J-E+Jm-g (4.7)

where we have used the definitions (1.5) and (1.6), and where E and g are
smoothed macroscopic fields.

Combining the results contained in (4.2), (4.5), and (4.7), the energy
equation becomes

i (3) 7 () g (o) 9 (o) +

V- q+V-(P-u)-J-E-J,-g=0 (4.8)

This equation can be further simplified as follows. The third and fourth
terms of (4.8) can be combined as

0 0pm

E(%pmﬂf) +V- (%pmzﬁu) = 1? [W +V- (pmu)} +
Du
) (49)
and using the continuity equation (2.2) and the equation of motion (3.7),
we can express (4.9) as

w (om

pu-E+u-(JxB)+J,-g—u-(V-P) (4.10)
Taking this result back into the energy equation (4.8), yields
D /3p 3p _
=(F)+FV u+V-q+(P-V)-u=
J-E-u-(JxB)—pu-E (4.11)

The first term in the left-hand side of (4.11) represents the time rate of
change of the total thermal energy density of the plasma (3p/2) in a frame
of reference moving with the global mean velocity u. The second term
contributes to this rate of change through the thermal energy transferred
to this volume element, as a consequence of the particle motions. The
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third term represents the heat flux and the fourth one the work done
on the volume element by the pressure forces (normal and tangential).
The terms in the right-hand side of (4.11) represent the work done on
the volume element by the electric field existing in the frame of reference
moving with the global mean velocity u. These last terms can be combined
as follows. We note, initially, that the charge current density consists of
two parts

J= Znaqaua = Znaqawa + Znaqau =J'+pu (4.12)
64 [ [0

where pu is the convection charge current density, which represents the
flux of the space charge with velocity u, and J’ is the conduction charge
current density, which represents the charge current density in the frame
of reference moving with the global mean velocity u. On the other hand,
we can write

u-IJxB)=-J-(uxB)=-J"(uxB) (4.13)
Substituting (4.13) and (4.12) into the energy equation (4.11), we obtain
D (3p 3p TRy
(2)+ 2V utVoq+(P-V)u=T-F (414

where E/ = E 4+ u x B is the electric field existing in the reference frame
moving with the global mean velocity u. The term J’ - E' represents,
therefore, the rate of change in the energy density due to joule heating.

5. ELECTRODYNAMIC EQUATIONS FOR A CONDUCTING FLUID ™

In the previous sections we have derived the macroscopic transport
equations for conservation of mass, of momentum, and of energy in a
conducting fluid. As mentioned before, this set of equations does not con-
stitute a complete system, and it is necessary to truncate the hierarchy of
macroscopic equations at some stage and make some simplifying assump-
tions. The continuity equation relates the mass density p,, with the global
mean velocity u. The equation of motion, which specifies the variation of
u, involves also the total kinetic pressure dyad P. The energy equation,
specifying the rate of change of the total thermal energy density (3p/2),
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includes also the heat flux vector q. A more general energy equation would
give us the variation of the total kinetic pressure dyad P, which would in-
clude also the total heat flow triad Q. We can continue taking higher order
moments of the Boltzmann equation and obtain, for example, the trans-
port equation governing the variation of the heat flow triad @. To obtain
a complete system it is essential, therefore, to truncate the hierarchy of
transport equations at some point. However, even after this truncation,
the remaining equations include also the following electrodynamic vari-
ables: electric field E, magnetic induction B, charge current density J,
and charge density p. Besides the hydrodynamic transport equations, we
need, therefore, ten electrodynamic equations that must relate the varia-
tions of E, B, J, and p. These equations are considered next.

5.1 Maxwell Curl Equations

The following Maxwell equations

0B
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