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PREFACE 

This text is intended as a general introduction to plasma physics 
and was designed with the main purpose of presenting a comprehensive, 
logical, and unified treatment of the fundamentals of plasma physics based 
on statistical kinetic theory. It should be useful primarily for advanced 
undergraduate and first-year graduate students meeting the subject of 
plasma physics for the first time and presupposes only a basic elementary 
knowledge of vector analysis, differential equations, and complex vari­
ables, as well as courses on classical mechanics and electromagnetic theory 
beyond sophomore level. Some effort has been made to make the book 
self-contained by including in the text developments of fluid mechanics 
and kinetic theory that are needed. 

Throughout the text the emphasis is on clarity, rather than formality. 
The various derivations are explained in detail and, wherever possible, 
the physical interpretations are emphasized. The equations are presented 
in such a way that they connect together, without requiring the reader 
to do extensive algebra to bridge the gap. The features of clarity and 
completeness make the book suitable for self-learning and for self-paced 
courses. 

The structure of this book is as follows. Chapter 1 consists of a 
basic introduction to plasma physics, at a descriptive level, intended to 
give the reader an overall view of the subject. The motion of charged 
particles under the influence of specified electric and magnetic fields is 
treated in detail in Chapters 2, 3, and 4. In the next five chapters the 
fundamental equations necessary for an elementary description of plasma 
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phenomena are developed. Chapter 5 introduces the concepts of phase 
space and distribution function, and derives the basic differential kinetic 
equation that governs the evolution of the distribution function in phase 
space. The definitions of the macroscopic variables in terms of the phase 
space distribution function are presented in Chapter 6 and their phys­
ical interpretations are discussed. The Maxwell-Boltzmann equilibrium 
distribution function is introduced in Chapter 7, as the equilibrium solu­
tion of the Boltzmann equation, and its kinetic properties are analyzed 
in some detail. In Chapter 8 the macroscopic transport equations for a 
plasma considered as a mixture of various interpenetrating fluids are de­
rived, whereas the macroscopic transport equations for the whole plasma 
as a single conducting fluid are developed in Chapter 9. 

The remainder of the book is devoted to applications of these basic 
equations in the description of a variety of important phenomena in plas­
mas. The problems of electrical conductivity and diffusion in plasmas are 
analyzed in Chapter 10, and other basic plasma phenomena, such as elec­
tron plasma oscillations and Debye shielding, are treated in Chapter 11. 
Simple applications of the magnetohydrodynamic equations, such as in 
plasma confinement by magnetic fields and the pinch effect, are presented 
in Chapters 12 and 13. The subject of wave phenomena in plasmas is 
organized in the next six chapters. A review of the basic concepts related 
to electromagnetic wave propagation in free space is given in Chapter 14. 
The propagation of very low frequency waves in a highly conducting fluid 
is analyzed in Chapter 15, under the title of magnetohydrodynamic waves. 
The various modes of wave propagation in cold and warm plasmas are con­
sidered in Chapters 16 and 17, respectively. In Chapters 18 and 19 the 
various properties of wave propagation in hot nonmagnetized plasmas and 
in hot magnetized plasmas, respectively, are analyzed. Collisional phe­
nomena in plasmas are treated in Chapter 20, and the derivations of the 
Boltzmann collision integral and of the Fokker-Planck collision term are 
presented in Chapter 21. Finally, in Chapter 22 some applications of the 
Boltzmann equation to the analysis of transport phenomena in plasmas 
are presented. 

Problems are provided at the end of each chapter, which illustrate ad­
ditional applications of the theory and supplement the textual material. 
Most of the problems are designed in such a way as to provide a guideline 
for the student, including intermediate steps and answers in their state­
ments. 

The numbering of the equations, within each chapter, starts over 
again at each section. When reference is made to an equation using three 
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numbers, the first number indicates the chapter and the last two num­
bers indicate the section and the equation, respectively. Within the same 
chapter the first number is omitted. Vector quantities are represented by 
boldface type letters (such as r) and unit vectors by a circumflex above 
the corresponding letter (such as r). Dyadic and triadic quantities are 
represented by calligraphic type letters (such as Q). 

The system of units used in this text is the rationalized MKSA. This 
system is based on four primary quantities: length, mass, time, and cur­
rent. Its name derives from the units meter (m), kilogram (kg), second 
(s), and ampere (A). 

The book contains more material than what can normally be covered 
in one semester. This permits some freedom in the selection of topics 
depending on the level and desired emphasis of the course, and on the 
interests of the students. The whole text can also be adequately covered 
within two semesters. 

In this, as in any introductory book, the topics included clearly do 
not cover all areas of plasma physics. No attempt was made to present the 
experimental aspects of the subject. Moreover, there are some important 
theoretical topics that are covered only very briefly and some that have 
been left for more advanced courses on plasma physics, such as plasma 
instabilities, plasma radiation, nonlinear plasma theory, and plasma tur­
bulE:mce. 

I am grateful to the many people who contributed to this book, both 
directly and indirectly, and especially to the many students to whom I had 
the opportunity to test my ideas in the various courses I taught over the 
last twenty-five years. The amount of digitalized information in a book 
such as this is truly enormous, and some errors may be bound to occur. 
FUrther feedback from readers will be appreciated. I wish to thank the 
many professors, students, and researchers who have used the first two 
editions of this book, all over the world, and contributed to its improve­
ment. 

J. A. Bittencourt 
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INTRODUCTION 

1. GENERAL PROPERTIES OF PLASMAS 

1.1 Definition of a Plasma 

The word plasma is used to describe a wide variety of macroscopically 
neutral substances containing many interacting free electrons and ionized 
atoms or molecules, which exhibit collective behavior due to the long-range 
coulomb forces. Not all media containing charged particles, however, can 
be classified as plasmas. For a collection of interacting charged and neutral 
particles to exhibit plasma behavior it must satisfy certain conditions, or 
criteria, for plasma existence. These criteria will be discussed in some 
detail in the next section. 

The word plasma comes from the Greek and means something molded. 
It was applied for the first time by Tonks and Langmuir, in 1929, to 
describe the inner region, remote from the boundaries, of a glowing 
ionized gas produced by electric discharge in a tube, the ionized gas as 
a whole remaining electrically neutral. 

1.2 Plasma as the Fourth State of Matter 

From a scientific point of view, matter in the known universe is 
often classified in terms of four states: solid, liquid, gaseous, and plasma. 
The basic distinction among solids, liquids, and gases lies in the difference 
between the strength of the bonds that hold their constituent particles 
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together. These binding forces are relatively strong in a solid, weak in a 
liquid, and essentially almost absent in the gaseous state. Whether a given 
substance is found in one of these states depends on the random kinetic 
energy (thermal energy) of its atoms or molecules, i.e., on its temperature. 
The equilibrium between this particle thermal energy and the interparticle 
binding forces determines the state. 

By heating a solid or liquid substance, the atoms or molecules acquire 
more thermal kinetic energy until they are able to overcome the binding 
potential energy. This leads to phase transitions, which occur at a constant 
temperature for a given pressure. The amount of energy required for the 
phase transition is called the latent heat. 

If sufficient energy is provided, a molecular gas will gradually dis­
sociate into an atomic gas as a result of collisions between those parti­
cles whose thermal kinetic energy exceeds the molecular binding energy. 
At sufficiently elevated temperatures an increasing fraction of the atoms 
will possess enough kinetic energy to overcome, by collisions, the binding 
energy of the outermost orbital electrons, and an ionized gas or plasma 
results. However, this transition from a gas to a plasma is not a phase 
transition in the thermodynamic sense, since it occurs gradually with in­
creasing temperature. 

1.3 Plasma Production 

A plasma can be produced by raising the temperature of a substance 
until a reasonably high fractional ionization is obtained. Under thermo­
dynamic equilibrium conditions, the degree of ionization and the electron 
temperature are closely related. This relation is given by the Saha equation 
(see Chapter 7). Although plasmas in local thermodynamic equilibrium 
are found in many places in nature, as is the case for many astrophysical 
plasmas, they are not very common in the laboratory. 

Plasmas can also be generated by ionization processes that raise the 
degree of ionization much above its thermal equilibrium value. There 
are many different methods of creating plasmas in the laboratory and, 
depending on the method, the plasma may have a high or low density, 
high or low temperature, it may be steady or transient, stable or unstable, 
and so on. In what follows, a brief description is presented of the most 
commonly known processes of photoionization and electric discharge in 
gases. 

In the photoionization process, ionization occurs by absorption of 
incident photons whose energy is equal to, or greater than, the ionization 
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potential of the absorbing atom. The excess energy of the photon is trans­
formed into kinetic energy of the electron-ion pair formed. For example, 
the ionization potential energy for the outermost electron of atomic oxy­
gen is 13.6 eV, which can be supplied by radiation of wavelength smaller 
than about 91 nm, i.e., in the far ultraviolet. Ionization can also be pro­
duced by x-rays or gamma rays, which have much smaller wavelengths. 
The Earth's ionosphere, for example, is a natural photoionized plasma 
(see section 3). 

In a gas discharge, an electric field is applied across the ionized gas, 
which accelerates the free electrons to energies sufficiently high to ionize 
other atoms by collisions. One characteristic of this process is that the 
applied electric field transfers energy much more efficiently to the light 
electrons than to the relatively heavy ions. The electron temperature in 
gas discharges is therefore usually higher than the ion temperature, since 
the transfer of thermal energy from the electrons to the heavier particles 
is very slow. 

When the ionizing source is turned off, the ionization decreases 
gradually because of recombination until it reaches an equilibrium value 
consistent with the temperature of the medium. In the laboratory the re­
combination usually occurs so fast that the plasma completely disappears 
in a small fraction of a second. 

1.4 Particle Interactions and Collective Effects 

The properties of a plasma are markedly dependent upon the particle 
interactions. One of the basic features that distinguish the behavior 
of plasmas from that of ordinary fluids and solids is the existence of 
collective effects. Due to the long range of electromagnetic forces, each 
charged particle in the plasma interacts simultaneously with a consider­
able number of other charged particles, resulting in important collective 
effects that are responsible for the wealth of physical phenomena that take 
place in a plasma. 

The particle dynamics in a plasma is governed by the internal fields 
due to the nature and motion of the particles themselves, and by exter­
nally applied fields. The basic particle interactions are electromagnetic in 
character. Quantum effects are negligible, except for some cases of close 
collisions. 

In a plasma we must distinguish between charge-charge and charge­
neutral interactions. A charged particle is surrounded by an electric field 
and interacts with the other charged particles according to the coulomb 
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force law, with its dependence on the inverse of the square of the separa­
tion distance. Furthermore, a magnetic field is associated with a moving 
charged particle, which also produces a force on other moving charges. The 
charged and neutral particles interact through electric polarization fields 
produced by distortion of the neutral particle's electronic cloud during 
a close passage of the charged particle. The field associated with neutral 
particles involves short-range forces, such that their interaction is effective 
only for interatomic distances sufficiently small to perturb the orbital elec­
trons. It is appreciable when the distance between the centers of the in­
teracting particles is of the order of their diameter, but nearly zero when 
they are farther apart. Its characteristics can be adequately described 
only by quantum-mechanical considerations. In many cases this interac­
tion involves permanent or induced electric dipole moments. 

A distinction can be made between weakly ionized and strongly ionized 
plasmas in terms of the nature of the particle interactions. In a weakly 
ionized plasma the charge-neutral interactions dominate over the multi­
ple coulomb interactions. When the degree of ionization is such that the 
multiple coulomb interactions become dominant, the plasma is considered 
strongly ionized. As the degree of ionization increases, the coulomb inter­
actions become increasingly important so that in a fully ionized plasma 
all particles are subjected to the multiple coulomb interactions. 

1.5 Some Basic Plasma Phenomena 

The fact that some or all of the particles in a plasma are electrically 
charged and therefore capable of interacting with electromagnetic fields, 
as well as of creating them, gives rise to many novel phenomena that are 
not present in ordinary fluids and solids. The presence of the magnetic 
field used, for example, in the heating and confinement of plasmas in con­
trolled thermonuclear research greatly accentuates the novelty of plasma 
phenomena. To explore all features of plasma phenomena, the plasma 
behavior is usually studied in the presence of both electric and magnetic 
fields. 

Because of the high electron mobility, plasmas are generally very good 
electrical conductors, as well as good thermal conductors. As a conse­
quence of their high electrical conductivity they do not support electro­
static fields except, to a certain extent, in a direction normal to any mag­
netic field present, which inhibits the flow of charged particles in this 
direction. 

The presence of density gradients in a plasma causes the particles to 
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diffuse from dense regions to regions of lower density. Although the diffu­
sion problem in nonmagnetized plasmas is somewhat similar to that which 
occurs in ordinary fluids, there is nevertheless a fundamental difference. 
Because of their lower mass, the electrons tend to diffuse faster than the 
ions, generating a polarization electric field as a result of charge separa­
tion. This field enhances the diffusion of the ions and decreases that of the 
electrons, in such a way as to make ions and electrons diffuse at approxi­
mately the same rate. This type of diffusion is called ambipolar diffusion. 
When there is an externally applied magnetic field, the diffusion of charged 
particles across the field lines is reduced, which indicates that strong 
magnetic fields are helpful in plasma confinement. The diffusion of charged 
particles across magnetic field lines when the diffusion coefficient is pro­
portional to 1/ B 2 , where B denotes the magnetic induction magnitude, 
is called classical diffusion, in contrast to the so-called Bohm diffusion in 
which the diffusion coefficient is proportional to 1/ B (see Chapter 10). 

An important characteristic of plasmas is their ability to sustain a 
great variety of wave phenomena. Examples include longitudinal electro­
static plasma waves and high-frequency transverse electromagnetic waves. 
In the low-frequency regime important wave modes in a magnetized plas­
ma are the so-called Alfven waves and magnetosonic waves. Each of the 
various possible modes of wave propagation can be characterized by a dis­
persion relation, which is a functional relation between the wave frequency 
wand the wave number k, and by its polarization. The study of waves in 
plasmas provides significant information on plasma properties and is very 
useful for plasma diagnostics. 

Dissipative processes, such as collisions, produce damping of the wave 
amplitude. This means that energy is transferred from the wave field to 
the plasma particles. An essentially noncollisional mechanism of wave 
attenuation also exists in a plasma, which is known as Landau damping. 
The mechanism responsible for Landau damping is the trapping of some 
plasma particles (the ones that are moving with velocities close to the 
wave phase velocity) in the energy potential well of the wave, the net 
result being the transfer of energy from the wave to the particles. 

It is also possible to have modes with growing amplitudes, as a 
result of instabilities, which transfer energy from the plasma particles to 
the wave field. Instability phenomena are important in a wide variety of 
physical situations involving dynamic processes in plasmas. The existence 
of many different types of instabilities in a plasma greatly complicates 
the confinement of a hot plasma in the laboratory. The study of these 
instabilities is of essential importance for controlled thermonuclear fusion 
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research. 
Another important aspect of plasma behavior is the em1ss1on of 

radiation. The main interest in plasma radiation lies in the fact that 
it can be used to infer plasma properties. The mechanisms that cause 
plasmas to emit or absorb radiation can be grouped into two categories: 
radiation from emitting atoms or molecules, and radiation from acceler­
ated charges. At the same time that ionization is produced in a plasma, 
the opposite process, recombination of the ions and electrons to form neu­
tral particles, is normally also occurring. As a result of the recombination 
process, radiation is often emitted as the excited particles formed dur­
ing recombination decay to the ground state. This radiation constitutes 
the line spectra of plasmas. On the other hand, any accelerated charged 
particle emits radiation. The radiation emitted whenever a charged par­
ticle is decelerated by making some kind of collisional interaction is called 
bremsstrahlung. If the charged particle remains unbound, both before and 
after the encounter, the process is called free-free bremsstrahlung. Radia­
tion of any wavelength can be emitted or absorbed in bremsstrahlung. 
If the originally unbound charged particle is captured by another parti­
cle, as it emits the radiation, the process is called free-bound radiation. 
Cyclotron radiation, which occurs in magnetized plasmas, is due to the 
magnetic centripetal acceleration of the charged particles as they spiral 
about the magnetic field lines. Blackbody radiation emitted from plasmas 
in thermodynamic equilibrium is important only in astrophysical plasmas, 
in view of the large size needed for a plasma to radiate as a blackbody. 

2.1 Macroscopic Neutrality 

In the absence of external disturbances a plasma is macroscopically 
neutral. This means that under equilibrium conditions with no external 
forces present, in a volume of the plasma sufficiently large to contain a 
large number of particles and yet sufficiently small compared to the char­
acteristic lengths for variation of macroscopic parameters such as density 
and temperature, the net resulting electric charge is zero. In the interior 
of the plasma the microscopic space charge fields cancel each other and 
no net space charge exists over a macroscopic region. 

If this macroscopic neutrality was not maintained, the potential en­
ergy associated with the resulting coulomb forces could be enormous com­
pared to the thermal particle kinetic energy. Consider, for example, a 
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plasma with a charged particle number density of 1020 m-3 and suppose 
that the electron number density (ne) in a spherical volume of w-3 m 
radius ( r) were to differ by 1% from the positive ion number density ( ni). 
Denoting the ion charge by e and the electron charge by -e, the total net 
charge ( q) inside the sphere would be 

4 3 
q = -1fr (ni- ne)e 

3 

and the electric potential ( ¢) at the surface of the sphere would be 

(2.1) 

(2.2) 

where Eo is the permittivity of free space. Plugging numerical values into 
(2.2) yields ¢ = 6 X 103 volts. Recalling that 1 eV = 1.602 X w-19 joule, 
we find that kT = 1 eV when T =-11, 600 K, where k is Boltzmann's 
constant (1.380 X w-23 joule/K). Therefore, a plasma temperature of 
several millions of degrees Kelvin would be required to balance the electric 
potential energy with the average thermal particle energy. 

Departures from macroscopic electrical neutrality can naturally occur 
only over distances in which a balance is obtained between the thermal 
particle energy, which tends to disturb the electrical neutrality, and the 
electrostatic potential energy resulting from any charge separation, which 
tends to restore the electrical neutrality. This distance is of the order of a 
characteristic length parameter of the plasma, called the Debye length. In 
the absence of external forces, the plasma cannot support departures from 
macroscopic neutrality over larger distances than this, since the charged 
particles are able to move freely to neutralize any regions of excess space 
charge in response to the large coulomb forces that appear. 

2.2 Debye Shielding 

The Debye length is an important physical parameter for the descrip­
tion of a plasma. It provides a measure of the distance over which the 
influence of the electric field of an individual charged particle (or of a sur­
face at some nonzero potential) is felt by the other charged particles inside 
the plasma. The charged particles arrange themselves in such a way as to 
effectively shield any electrostatic fields within a distance of the order of 
the Debye length. This shielding of electrostatic fields is a consequence of 
the collective effects of the plasma particles. A calculation of the shielding 
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distance was first performed by Debye, for an electrolyte. In Chapter 11 
it will be shown that the Debye length (.AD) is directly proportional to 
the square root of the temperature (T) and inversely proportional to the 
square root of the electron number density ( ne) according to 

AD= (EokT)1/2 
nee2 

(2.3) 

As mentioned before, the Debye length can also be regarded as a measure 
of the distance over which fluctuating electric potentials may appear in 
a plasma, corresponding to a conversion of the thermal particle kinetic 
energy into electrostatic potential energy. 

When a boundary surface is introduced in a plasma, the perturbation 
produced extends only up to a distance of the order of AD from the surface. 
In the neighborhood of any surface inside the plasma there is a layer of 
width of the order of AD, known as the plasma sheath, inside which the 
condition of macroscopic electrical neutrality may not be satisfied. Beyond 
the plasma sheath region there is the plasma region, where macroscopic 
neutrality is maintained. 

Generally, AD is very small. For example, in a gas discharge, where 
typical values forT and ne are around 104 K and 1016 m-3 , respectively, 
we have AD = w-4 m. For the Earth's ionosphere, typical values can be 
taken as ne = 1012 m-3 and T = 103 K, yielding AD = w-3 m. In the 
interstellar plasma, on the other hand, the Debye length can be several 
meters long. 

It is convenient to define a Debye sphere as a sphere inside the plasma 
of radius equal to AD. Any electrostatic fields originated outside a De­
bye sphere are effectively screened by the charged particles and do not 
contribute significantly to the electric field existing at its center. Con­
sequently, each charge in the plasma interacts collectively only with the 
charges that lie inside its Debye sphere, its effect on the other charges 
being effectively negligible. The number of electrons N D, inside a De bye 
sphere, is given by 

4 3 4 ( E0 kT ) 3/2 
ND = -1fAD ne = -31r 113 2 3 ne e 

(2.4) 

The Debye shielding effect is a characteristic of all plasmas, although 
it does not occur in every medium that contains charged particles. A 
necessary and obvious requirement for the existence of a plasma is that 
the physical dimensions of the system be large compared to AD. Other­
wise there is just not sufficient space for the collective shielding effect to 
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take place, and the collection of charged particles will not exhibit plasma 
behavior. If L is a characteristic dimension of the plasma, a first criterion 
for the definition of a plasma is therefore 

L »An (2.5) 

Since the shielding effect is the result of the collective particle behavior 
inside a Debye sphere, it is also necessary that the number of electrons 
inside a Debye sphere be very large. A second criterion for the definition 
of a plasma is therefore 

(2.6) 

This means that the average distance between electrons, which is roughly 

given by n-; 113 , must be very small compared to An. The quantity defined 
by 

1 
g = 3 (2.7) 

neAn 
is known as the plasma parameter and the condition g « 1 is called the 
plasma approximation. This parameter is also a measure of the ratio of 
the mean interparticle potential energy to the mean plasma kinetic energy. 

Note that the requirement (2.5) already implies in macroscopic charge 
neutrality if it is realized that deviations from neutrality can naturally 
occur only over distances of the order of An. Nevertheless, macroscopic 
neutrality is sometimes considered as a third criterion for the existence of 
a plasma, although it is not an independent one, and can be expressed as 

(2.8) 

2.3 The Plasma Frequency 

An important plasma property is the stability of its macroscopic space 
charge neutrality. When a plasma is instantaneously disturbed from the 
equilibrium condition, the resulting internal space charge fields give rise 
to collective particle motions that tend to restore the original charge neu­
trality. These collective motions are characterized by a natural frequency 
of oscillation known as the plasma frequency. Since these collective oscilla­
tions are high-frequency oscillations, the ions, because of their heavy mass, 
are to a certain extent unable to follow the motion of the electrons. The 
electrons oscillate collectively about the heavy ions, the necessary collec­
tive restoring force being provided by the ion-electron coulomb attraction. 
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The period of this natural oscillation constitutes a meaningful time scale 
against which can be compared the dissipative mechanisms tending to 
destroy the collective electron motions. 

Consider a plasma initially uniform and at rest, and suppose that by 
some external means a small charge separation is produced inside it (see 
Fig. 1). When the external disturbing force is removed instantaneously, 
the internal electric field resulting from charge separation collectively ac­
celerates the electrons in an attempt to restore the charge neutrality. How­
ever, because of their inertia, the electrons move beyond the equilibrium 
position, and an electric field is produced in the opposite direction. This 
sequence of movements repeats itself periodically, with a continuous trans­
formation of kinetic energy into potential energy, and vice versa, resulting 
in fast collective oscillations of the electrons about the more massive ions. 
On the average the plasma maintains its macroscopic charge neutrality. It 
will be shown in Chapter 11 that the angular frequency of this collective 
electron oscillations, called the (electron) plasma frequency, is given by 

- ( nee2) 1/2 
Wpe-

me Eo 
(2.9) 

Collisions between electrons and neutral particles tend to damp these 
collective oscillations and gradually diminish their amplitude. If the oscil­
lations are to be only slightly damped, it is necessary that the electron­
neutral collision frequency (ven) be smaller than the electron plasma fre­
quency, 

(2.10) 

where Vpe = Wpe/27r. Otherwise, the electrons will not be able to behave 
in an independent way, but will be forced by collisions to be in complete 
equilibrium with the neutrals, and the medium can be treated as a neutral 
gas. Eq. (2.10) constitutes, therefore, the fourth criterion for the existence 
of a plasma. This criterion can be alternatively written as 

WT > 1 (2.11) 

where T = 1/ven represents the average time an electron travels between 
collisions with neutrals, and w stands for the angular frequency of typical 
plasma oscillations. It implies that the average time between electron­
neutral collisions must be large compared to the characteristic time during 
which the plasma physical parameters are changing. 
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Fig. 1 The electric field resulting from charge separation pro­
vides the force that generates the electron plasma oscillations. 
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Consider, for example, a gas with an electron number density equal to 
1010 m - 3 at a temperature of 103 K, which satisfies both criteria L » .>..v 
and ne>-.1 » 1. If the neutral particle number density (nn) is relatively 
small, as in the interstellar gas for example, T is relatively large and the 
electrons will behave independently, so that the medium can then be 
treated as a plasma. On the other hand, if nn is many orders of mag­
nitude greater than ne, then the motion of the electrons will be coupled 
to that of the neutrals and their effect will be negligible. 

The basic characteristics of various laboratory and cosmic plasmas 
are given in Fig. 2 in terms of their temperature T and electron number 
density ne, as well as of parameters that depend upon T and ne, such as 
the Debye shielding distance .>..v, the electron plasma frequency Wpe, and 
the number of electrons N v inside a De bye sphere. 

With the progress made in astrophysics and in theoretical physics 
during the last century, it was realized that most of the matter in the 
known universe, with a few exceptions such as the surface of cold planets 
(the Earth, for example) exists as a plasma. 
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3.1 The Sun and Its Atmosphere 

The sun, which is our nearest star and upon which the existence of 
life on Earth fundamentally depends, is a plasma phenomenon. Its energy 
output is derived from thermonuclear fusion reactions of protons forming 
helium ions deep in its interior, where temperatures exceed 1.2 x 107 K. 
The high temperature of its interior and the consequent thermonuclear 
reactions keep the entire sun gaseous. Due to its large mass (2 x 1030 kg), 
the sun's gravitational force is sufficient to prevent the escape of all 
but the most energetic particles and, of course, radiation from the hot 
solar plasma. 

There is no sharp boundary surface to the sun. Its visible part is 
known as the solar atmosphere, which is divided into three general re­
gions or layers. The photosphere, with a temperature of about 6,000 K, 
comprises the visible disk, the layer in which the gases become opaque, 
and is a few hundred kilometers thick. Surrounding the photosphere there 
is a reddish ring called the chromosphere, approximately 10,000 km thick, 
above which flame-like prominences rise with temperatures of the order of 
100,000 K. Surrounding the chromosphere there is a tenuous hot plasma, 
extending millions of kilometers into space, known as the corona. A steep 
temperature gradient extends from the chromosphere to the hotter corona, 
where the temperature exceeds 106 K. 

The sun possesses a variable magnetic field, which at its surface 
is typically of the order of w-4 tesla, but in the regions of sunspots 
(regions of relatively cooler gases) the solar magnetic field rises to 
about 0.1 tesla. 

3.2 The Solar Wind 

A highly conducting tenuous plasma called the solar wind, composed 
mainly of protons and electrons, is continuously emitted by the sun at 
very high speeds into interplanetary space, as a result of the supersonic 
expansion of the hot solar corona. The solar magnetic field tends to remain 
frozen in the streaming plasma due to its very high conductivity. Because 
of solar rotation, the field lines are carried into Archimedean spirals by 
the radial motion of the solar wind (see Fig. 3). Typical values of the 
parameters in the solar wind are: electron density ne ~ 5 x 106 m-3 , 

electron and ion temperatures Te ~ 5 x 104 K, Ti ~ 104 K, magnetic field 
B ~ 5 X w-9 tesla, and drift velocity Ue ~ 3 X 105 m/s. 
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Fig. 3 Schematic representation of the Archimedes spiral struc­
ture of the interplanetary magnetic field in the ecliptic plane. 

3.3 The Magnetosphere and the Van Allen Radiation Belts 

As the highly conducting solar wind impinges on the Earth's magnetic 
field, it compresses the field on the sunward side and flows around it at 
supersonic speeds. This creates a boundary, called the magnetopause, 
which is roughly spherical on the sunward side and roughly cylindrical in 
the anti-sun direction (see Fig. 4). The inner region, from which the solar 
wind is excluded and which contains the compressed Earth's magnetic 
field, is called the magnetosphere. 

Inside the magnetosphere we find the Van Allen radiation belts, in 
which energetic charged particles (mainly electrons and protons) are 
trapped into regions where they execute complicated trajectories that spi­
ral along the geomagnetic field lines and, at the same t ime, drift slowly 
around the Earth. The origin of the inner belt is ascribed to cosmic rays, 
which penetrate into the atmosphere and form proton-electron pairs that 
are then trapped by the Earth's magnetic field. The outer belt is consi­
dered to be due to and maintained by streams of plasma consisting mainly 
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Fig. 4 Schematic conB.guration of the magnetosphere in the 
noon-midnight plane. The dark crescents represent the regions 
of trapped energetic particles (Van Allen radiation belts). The 
turbulent region between the shock wave (bow shock) and the 
magnetopause is known as the magnetosheath. Geocentric dis­
tances are indicated in units of Earth radii. 

of protons and electrons that are ejected from time to time by the sun. 
Depending on solar activity, particularly violent solar eruptions may occur 
with the projection of hot streams of plasma material into space. The 
separation into inner and outer belts reflects only an altitude-dependent 
energy spectrum, rather than two separate trapping regions. 
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Fig. 5 Height distribution of the electrons and of the principal 
positive ions, typical of the daytime ionosphere, for average solar 
conditions. 

3.4 The Ionosphere 

The large natural blanket of plasma in the atmosphere, which en­
velopes the Earth from an altitude of approximately 60 km to several 
thousands of kilometers, is called the ionosphere. The ionized particles 
in the ionosphere are produced during the daytime through absorption of 
solar extreme ultraviolet and x-ray radiation by the atmospheric species. 
As the ionizing radiation from the sun penetrates deeper and deeper into 
the Earth's atmosphere, it encounters a larger and larger density of gas 
particles, producing more and more electrons per unit volume. However, 
since radiation is absorbed in this process, there is a height where the rate 
of electron production reaches a maximum. Below this height the rate 
of electron production decreases, in spite of the increase in atmospheric 
density, since most of the ionizing radiation was already absorbed at the 
higher altitudes. 
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Fig. 5 provides some information on the relative concentration and 
altitude distribution of the electrons and of the principal positive ions, 
typical of the daytime ionosphere, for average solar conditions. The 
Earth's magnetic field exerts a great influence on the dynamic behav­
ior of the ionospheric plasma. An interesting phenomenon that occurs in 
the ionospheric polar regions is the aurora. It consists of electromagnetic 
radiation emitted by the atmospheric species and induced by energetic 
particles of solar and cosmic origin that penetrate into the atmosphere 
along the geomagnetic field lines near the poles. 

3.5 Plasmas Beyond the Solar System 

Beyond the solar system we find a great variety of natural plasmas 
in stars, interstellar space, galaxies, intergalactic space, and far beyond to 
systems quite unknown before the start of astronomy from space vehicles. 
There we find a variety of phenomena of great cosmological and astrophy­
sical significance, including interstellar shock waves from remote supernova 
explosions, rapid variations of x-ray fluxes from neutron stars with densi­
ties like that of atomic nuclei, pulsating radio stars or pulsars (which are 
theoretically pictured as rapidly rotating neutron stars with plasmas emit­
ting synchrotron radiation from the surface), and the plasma phenomena 
around the remarkable black holes (which are considered to be singular 
regions of space into which matter has collapsed, possessing such a power­
ful gravitational field that nothing, whether material objects or even light 
itself, can escape from them). 

The behavior of plasmas in the universe involves the interaction 
between plasmas and magnetic fields. The crab nebula, for example, is a 
rich source of plasma phenomena because it contains a magnetic field. 
The widespread existence of magnetic fields in the universe has been 
demonstrated by independent measurements, and a wide range of field 
magnitudes has been found, varying from 10-9 tesla in interstellar space 
to 1 tesla on the surface of magnetic variable stars. 

A wide variety of plasma experiments have been perfomed in the 
laboratory to aid in the understanding of plasmas, as well as to test and 
help expand plasma theory. The progress in plasma research has led to a 
wide range of plasma applications. A brief description of some important 
practical applications of plasma physics is presented in this section. 
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4.1 Controlled Thermonuclear Fusion 

The most important application of man-made plasmas is in the 
control of thermonuclear fusion reactions, which holds a vast potential for 
the generation of power. Nuclear fusion is the process whereby two light 
nuclei combine to form a heavier one, the total final mass being slightly 
less than the total initial mass. The mass difference (~m) appears as en­
ergy (E) according to Einstein's famous law E = (~m)c2 , where c denotes 
the speed of light. The nuclear fusion reaction is the source of energy in 
the stars, including the sun. The confinement of the hot plasma in this 
case is provided by the self-gravity of the stars. 

In the nuclear fusion of hydrogen the principal reactions involve the 
deuterium (2 H) and tritium (3 H) isotopes of hydrogen, as follows: 

2H + 2H ~ 3He+ 1n+3.27 MeV 

2 H + 2 H ~ 3 H + 1 H + 4.03 MeV 

2 H + 3 H ~ 4 He+ 1n + 17.58 MeV 

2H + 3He ~ 4He + 1H + 18.34 MeV 

(4.1a) 

(4.1b) 

( 4.1c) 

(4.1d) 

where 1n represents a neutron. The basic problem in achieving controlled 
fusion is to generate a plasma at very high temperatures (with thermal 
energies at least in the 10 ke V range) and hold its particles together long 
enough for a substantial number of fusion reactions to take place. The 
need for high temperatures comes from the fact that, in order to undergo 
fusion, the positively charged nuclei must come very close together (within 
a distance of the order of 10-14 m), which requires sufficient kinetic energy 
to overcome the electrostatic coulomb repulsion. 

Fig. 6 presents the cross sections, as a function of the incident particle 
energy, for the nuclear fusion reactions of hydrogen given in ( 4.1). They 
are appreciable only for incident particles with energies above at least 10 
keV. This means that the plasma must have temperatures of the order of 
108 K. Other fusion reactions involving nuclei with larger values of the 
atomic number Z require even higher energies to overcome the coulomb 
repulsion. 

Many confinement schemes have been suggested and built that use 
some type of magnetic field configuration. The main experimental ef­
forts for achieving plasma conditions for fusion can be grouped into four 
approaches: (1) open systems (magnetic mirrors); (2) closed systems 
(toruses); (3) theta pinch devices; and (4) laser-pellet fusion. 
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a function of energy, in ke V, for the hydrogen reactions given in 
(4.1). 

19 

The mirror machines are linear devices with an axial magnetic field to 
keep the particles away from the wall, and with magnetic mirrors (regions 
of converging magnetic field lines) at the ends to reduce the number of 
particles escaping at each end (see Fig. 7). 

The four principal toroidal systems differ in the way they twist the 
magnetic field lines. They are the stellarators (in which the twisting of the 
field lines is produced by external helical conductors), the tokamaks (in 
which a poloidal field produced by an internal plasma current is superposed 
on the toroidal field), the multipoles (which have their magnetic field lines 
primarily in the poloidal direction and produced by internal conductors), 
and the Astron (in which internal relativistic particle beams modify a 
mirror field into a form having stable confinement regions with closed 
lines of force). 
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Fig. 7 Schematic illustration showing the magnetic field con­
figurations of some basic schemes for plasma confinement. 
(a) Magnetic mirror system. (b) Tokamak. (c) Linear() pinch. 
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In the theta pinch devices, a plasma current in the azimuthal direction 
and a longitudinal magnetic field produce a force that compresses the 
cross-sectional area of the plasma. 

Finally, the scheme to ignite a fusion reaction using pulsed lasers 
consists in focusing converging laser beams on a small pellet of solid 
deuterium-tritium material producing a rapid symmetrical heating of the 
plasma, followed by an expansion of the heated surrounding shell and 
compression of the pellet core by the recoil (see Fig. 8). 

In addition to the plasma heating and confinement problems, atten­
tion must be given to the energy loss by radiation (predominantly electron­
ion bremsstrahlung and electron cyclotron radiation). These radiation 
losses constitute a serious problem in maintaining a self-sustaining fusion 
device. To generate more energy by fusion than is required to heat and 
confine the plasma, and to supply the radiation losses, a condition is im­
posed on the plasma density ( n) and the confinement time ( T), as well 
as on the temperature. It turns out that the product nr must be higher 
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Fig. 9 Schematic diagram illustrating the basic principle of 
the magnetohydrodynamic energy generator. 

than a minimum value, which, for example, is estimated to be about 
1020 m-3s for deuterium-tritium (with T > 107 K) and about 1022 m-3s 
for deuterium-deuterium (with T > 108 K). This condition is known as the 
Lawson criterion. Consequently, controlled fusion can be achieved either 
by having a large number density of hot plasma particles confined for a 
short period of time, or by having a smaller number density of particles 
confined for a longer period of time. For this reason some fusion exper­
iments operate in the regime of high density and short confinement time 
utilizing a pulsed mode of operation. 

Since controlled nuclear fusion can provide an almost limitless source 
of energy, it is certainly one of the most important scientific challenges 
man faces today, and its achievement will cause an enormous impact on 
our civilization. 

4.2 The Magnetohydrodynamic Generator 

The magnetohydrodynamic (MHD) energy generator converts the 
kinetic energy of a dense plasma flowing across a magnetic field into 
electrical energy. While a rigorous discussion of this device becomes quite 
involved, its basic principle is quite simple. 
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Suppose that a plasma flows with velocity u (along the x direction) 
across an applied magnetic field B (in they direction), as shown schemat­
ically in Fig. 9. The Lorentz force q(u x B) causes the ions to drift 
upward (in the z direction) and the electrons downward, so that if elec­
trodes are placed in the walls of the channel and connected to an external 
circuit, then a current density J = uEind = uu x B (where u denotes the 
plasma conductivity and Eind is the induced electric field) flows across the 
plasma stream in the z direction. This current density, in turn, produces 
a force density J x B (in the x direction), which decelerates the flowing 
plasma. The net result is the conversion of some of the plasma kinetic 
energy entering the generator into electrical energy that can be applied to 
an external load. This process has the advantage that it operates without 
the inefficiency of a heat cycle. 

4.3 Plasma Propulsion 

Plasma propulsion systems for rocket engines are based on a process 
that converts electrical energy into plasma kinetic energy, that is, the 
reverse of the MHD generator process. 

The plasma rocket engine is accomplished by having both electric 
and magnetic fields applied perpendicular to each other, across a plasma 
(see Fig. 10). The resulting current density J flowing in the direction of 
the applied E field gives rise to a J x B force, per unit volume, which 
accelerates the plasma out of the rocket. The associated reaction force, 
due to conservation of momentum, accelerates the rocket in the direction 
opposite to the plasma flow. The ejected plasma must always be neutral, 
otherwise the rocket will become charged to a large electric potential. 

An important characteristic of plasma propulsion systems is that they 
are capable of generating a certain amount of thrust (although small) over 
a very long time period, contrarily to chemical propulsion systems. Since 
the force the plasma rocket engine provides is too modest to overcome the 
Earth's gravitational field, chemical rockets must still be used as the first 
stage of any plasma propulsion system in order to produce the extremely 
high values of thrust required to leave the Earth's gravity. The plasma 
rocket engine is appropriate for long interplanetary and interstellar space 
travel. 

4.4 Other Plasma Devices 

A number of other practical applications of plasma physics should be 
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Fig. 10 Schematic diagram illustrating the basic principle of 
the plasma rocket engine. 

mentioned in addition to controlled fusion, MHD energy conversion, and 
plasma propulsion. 

The thermionic energy converter is a device that utilizes a cesium 
plasma between two electrodes to convert thermal energy into electrical 
energy. The cathode is heated, so that electrons are emitted from the sur­
face, and the anode is cooled. Due to the presence of the cesium plasma, 
very large electrical currents can be produced at the expense of a signifi­
cant fraction of the thermal energy applied to the cathode. 

Examples of applications involving gas discharges include the ordi­
nary fluorescent tubes and neon lights used for illumination and for signs, 
mercury rectifiers, spark gaps, a number of specialized tubes like the hy­
drogen thyratrons and the ignitrons, which are used for switching, and 
the arc discharges or plasma jets, which are the source of temperatures 
two or more times as high as the hottest gas flames and which are used in 
metallurgy for cutting, melting, and welding metals. 

Two major applications in the area of communications are the long­
distance radio wave propagation by reflection in the ionospheric plasma 
and the communication with a space vehicle through the plasma layer that 
forms around it during the reentry period into the Earth's atmosphere. 

Finally, there is the realm of solid state plasmas. If the usual lattice 
temperature is considered, it can be easily verified that solids do not satisfy 
the plasma shielding criterion N D » 1. Nevertheless, quantum mechani­
cal effects, associated with the uncertainty principle, give some solids an 
effective electron temperature high enough to make N D sufficiently large, 
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so that plasma behavior can be observed. It has been demonstrated that 
the free electrons and holes in appropriate solid materials, particularly 
semiconductors, exhibit the same sort of oscillations and instabilities as 
gaseous plasmas. The most likely application of solid state plasmas is in 
electronic circuitry. 

The dynamic behavior of a plasma is governed by the interaction 
between the plasma particles and the internal fields produced by the par­
ticle themselves, and the externally applied fields. As the charged particles 
in a plasma move around, they can generate local concentrations of posi­
tive or negative charges, which give rise to electric fields. Their motion can 
also generate electric currents and therefore magnetic fields. The particle 
dynamics in a plasma is adequately described by the laws of classical (non­
quantum) mechanics. Generally, the momentum of the plasma particles 
is high and the density low enough to keep their De Broglie wavelengths 
much smaller than the interparticle distance. Quantum effects turn out 
to be important only at very high densities and very low temperatures. 

5.1 General Considerations on a Self-Consistent Formulation 

The interaction of charged particles with electromagnetic fields is 
governed by the Lorentz force. For a typical particle of charge q and mass 
m, moving with velocity v, in the presence of electric (E) and magnetic 
induction (B) fields, the equation of motion is 

dp 
dt = q(E+v x B) (5.1) 

where p = mv denotes the particle momentum. It is conceivable, at least 
in principle, to describe the dynamics of a plasma by solving the equations 
of motion for each particle in the plasma under the combined influence of 
the externally applied fields and the internal fields generated by all the 
other plasma particles. 

If the total number of particles is N, we will have N nonlinear coupled 
differential equations of motion to solve simultaneously. A self-consistent 
formulation must be used since the fields and the particle trajectories are 
intrinsically coupled, that is, the internal fields associated with the 
presence and motion of the plasma particles influence their motions, 
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which, in turn, modify the internal fields. The electromagnetic fields obey 
Maxwell equations 

aB 
\7 X E = -­at 

\7 X B = /Io ( J + Eo~~) 
\7·E=p_ 

Eo 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

where p, J, E0 , and /Io denote, respectively, the total charge density, the 
total electric current density, the electric permittivity, and the magnetic 
permeability of free space. The plasma charge and current densities can 
be expressed, respectively, as 

(5.6) 

(5.7) 

where the summation is over all charged particles contained inside a suit­
ably chosen small volume element <5V. Note that since we are dealing with 
a discrete distribution of charges and therefore also of current densities, 
pp and J P should actually be expressed in terms of Dirac delta functions. 
If point charges are considered, the problem gets even more complicated 
because the fields become singular at the particle positions. However, 
if <5V is chosen big enough to contain a fairly large number of particles, 
then (5.6) and (5.7) should give smooth functions for pp and Jp which are 
suitable for analytical calculations. 

Although this self-consistent approach is conceivable in principle, it 
cannot be carried out in practice without introducing some averaging 
scheme, in view of the extremely large number of variables involved. Ac­
cording to the laws of classical mechanics, in order to determine the posi­
tion and velocity of each particle in the plasma as a function of time under 
the action of known forces, it is necessary to know the initial position and 
velocity of each particle. For a system consisting of a very large num­
ber of interacting particles these initial conditions are obviously unknown. 
Furthermore, in order to explain and predict the macroscopic phenomena 
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observed in nature and in the laboratory, it is not of interest to know the 
detailed individual motion of each particle, since the observable macro­
scopic properties of a plasma are due to the average collective behavior 
of a large number of particles. We must discard, therefore, the possibility 
of analytically solving the set of simultaneous equations of motion for a 
large number of interacting particles. 

With the advent of large and fast computers, it is nowadays possi­
ble to numerically follow the nonlinear motion of many particles in their 
own internal self-consistent and externally applied fields and, using some 
averaging or smoothing scheme for the internal fields, to determine the 
macroscopic variables from the individual particle motion properties. This 
method, known as plasma computer simulation via particles, provides a 
profound view of plasma phenomena in the microscopic and macroscopic 
levels, and complements the analytical theoretical models and experimen­
tal observations. 

5.2 Theoretical Approaches 

For the theoretical description of plasma phenomena, there are basi­
cally four principal approaches with several different choices of approxi­
mations, each of which applies to different circumstances. 

One useful approximation, known as particle orbit theory, consists in 
studying the motion of each charged particle in the presence of specified 
electric and magnetic fields. This approach is not really plasma theory, but 
rather the dynamics of a charged particle in given fields. Nevertheless it is 
important, since it provides some physical insight for a better understand­
ing of the dynamic processes in plasmas. It has proven to be useful for 
predicting the behavior of very low density plasmas, which is determined 
primarily by the interaction of the particles with external fields. This 
is the case, for example, of the highly rarefied plasmas of the Van Allen 
radiation belts and the solar corona, as well as of cosmic rays, high energy 
accelerators, and cathode ray tubes. 

Since a plasma consists of a very large number of interacting parti­
cles, in order to provide a macroscopic description of plasma phenomena 
it is appropriate to adopt a statistical approach. This implies a great 
reduction in the amount of information to be handled. In the kinetic 
theory statistical description it is necessary to know only the distribution 
function for the system of particles under consideration. The problem con­
sists in solving the appropriate kinetic equations that govern the evolution 
of the distribution function in phase space. One example of differential 
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kinetic equation is the Vlasov equation, in which the interaction between 
the charged particles is described by smeared out internal electromagnetic 
fields consistent with the distributions of electric charge density and cur­
rent density inside the plasma, and the effects of short-range correlations 
(close collisions) are neglected. 

When collisions between the plasma particles are very frequent, so 
that each species is able to maintain a local equilibrium distribution func­
tion, then each species can be treated as a fluid described by a local density, 
local macroscopic velocity and local temperature. In this case the plasma 
is treated as a mixture of two or more interpenetrating fluids. This theory 
is called two-fluid or many-fluid theory, depending on the number of differ­
ent species considered. In addition to the usual electrodynamic equations, 
there is a set of hydrodynamic equations expressing conservation of mass, 
of momentum, and of energy for each particle species in the plasma. 

Another approach consists in treating the whole plasma as a single 
conducting fluid using lumped macroscopic variables and their correspond­
ing hydrodynamic conservation equations. This theory is usually referred 
to as the one-fluid theory. An appropriately simplified form of this the­
ory, applicable to the study of very low frequency phenomena in highly 
conducting fluids immersed in magnetic fields, is usually referred to as the 
magnetohydrodynamic (MHD) approximation. 

1.1 The interatomic or intermolecular forces are usually represented in 
terms of a potential energy function V(r) such that F(r) = -dV(r)/dr. 
For neutral particles, at large internuclear distances, there is a slight at­
tractive potential between the particles called the van der Waals potential 
(which is the long-range part of the Lennard-Jones potential). For like 
atoms or molecules in like states the van der Waals interaction potential 
can be represented by 

V(r) = -C(a0 /r) 6 Ry 

where C is a constant (which depends on the type of particle), a0 is 
the Bohr radius (0.0529 nm), and Ry denotes the Rydberg energy unit 
(13.605 eV). Calculate the van der Waals force of attraction between two 
hydrogen molecules (for which C = 24.0), and compare with the coulomb 
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force between a proton and an electron at a distance r 
N »1. 

Na0 , where 

1.2 Consider an initially uniform plasma in which the electron and ion 
number densities are each equal ton. By some external means, let a one­
dimensional perturbation occur such that the electrons in an infinite plane 
(the (y, z ) plane) are displaced by a small amount x, as indicated in Fig. 
11. 
(a) Using Gauss's law, show that the electric field that appears across 
the perturbed plane is given by 

E = (:: )x 
(b) Show that the equation of motion (Newton's second law) for each 
electron, under the action of this electric field, is 

d2x ( ne2 ) -+ - x= O 
dt2 m E0 

Verify that this is the equation of a harmonic oscillator of frequency 

- (ne2 )1/2 
Wpe-

ffiE0 
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1.3 (a) Calculate the amount of energy released by the fusion of 1 g of 
deuterium according to the nuclear reactions indicated in ( 4.1), consider­
ing as end products 4 He, 1 H, and 1n. Assume that the two possible results 
shown in (4.1), for the reaction 2 H + 2 H, occur with equal probabilities. 
(b) How much energy can be released from the fusion of all the deuterium 
that exists in one liter of ordinary water? Compare this much energy with 
the energy obtained from the combustion of one liter of gasoline. 

1.4 Calculate the coulomb repulsion force and the associated electric 
potential energy due to the coulomb interaction of two deuterium nuclei 
when brought together at a distance of 10-14 m. What temperature must 
have the nuclei in a deuterium plasma, if their average thermal kinetic 
energy is to be equal to this electric potential energy? 

1.5 In a MHD generator a plasma of conductivity a is driven with velocity 
u (in the x direction) across a magnetic field B (in the y direction). Two 
electrode plates, each of area A and separated by a distanced, are placed 
oriented parallel to the (x, y) plane, as shown in Fig. 9 of Chapter 1. 
(a) Show that the open-circuit electric potential difference between the 
two electrode plates is given by 

¢=Bud 

(b) If an external load of resistance RL is connected between the electrodes, 
show that the current that flows is given by 

where Rp denotes the internal plasma resistance. 
(c) Show that the power delivered to the load is 

B2u2d2RL 
PL = 2 

(RL + Rp) 

Verify that this power has a maximum (dPL/dRL = 0) when RL = Rp 
and show that the maximum power that can be delivered to the load is 
given by 

1 2 2 
PL max= -B U dAa 

' 4 

(d) Determine numerical results for items (a), (b), and (c) when B = 1 
tesla, u = 100 m/s, a= 100 mho/m, d = 0.1 m, and A= 1m2 . 
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1.6 Consider a rocket once it is beyond the Earth's gravitational field. 
Let: 

v = constant velocity of the exhaust gas relative to the rocket. 
u(t) = instantaneous velocity of the rocket. 
M(t) = instantaneous total mass of the rocket. 
-dM/dt =constant time rate of decrease of M(t), that is, the mass 
expelled per unit time. 

(a) Verify that the equation of motion (Newton's second law) for the rocket 
IS 

d dM 
dt [M(t)u(t)] = dt[v- u(t)] 

and show that the instantaneous acceleration of the rocket is 

du 
dt 

v dM 
-----

M(t) dt 

(b) Integrate the equation of motion to show that 

u(t) = u(t0 ) + v ln [M(to)/M(t)] 

(c) If the rocket burns for a time interval 8t = t- t0 and if M ( t) « M ( t0 ), 

show that the initial acceleration of the rocket is 

( du) v M(t0 )- M(t) v 
dt to - M(to) 8t C:::: 8t 

(d) Calculate numerically (dujdt)to and u(t) for a chemical rocket with 
v = 103 m/s and 8t = 10 s; and also for a plasma propulsion system 
with v = 104 m/s and 8t = 100 days. For the calculation of u(t) consider 
u(to) = 0 and M(t0 ) = 10 M(t). 

1. 7 Using Maxwell equations (5.3) and (5.4) derive the charge conserva­
tion equation 

Bp + v .J = 0 
8t 

This result shows that conservation of electric charge is already implied 
by Maxwell equations. 

1.8 From Maxwell curl equation (5.2) derive the equation 

V · B = constant 



32 FUNDAMENTALS OF PLASMA PHYSICS 

Therefore, (5.5) can be considered as an initial condition for (5.2) since, 
if \7 · B = 0 at a given initial time, then (5.2) implies that this condition 
will remain satisfied for all subsequent times. 

1.9 Using Maxwell equations derive the following energy conservation law 
for electromagnetic fields, known as Poynting's theorem, 

for a linear isotropic medium, for which D = cE and B = J-LH. Give 
the physical interpretation for each term in this equation. What are the 
physical dimensions of these terms? 

1.10 Consider the following Maxwell equations: 

8D 
\7xH=J+ 8t 

\7. E = Pt 
Eo 

\7·D=p 

For a general medium for which 

D = E0 E+P 

B = J-Lo(H + M) 

where P is the polarization vector and M is the magnetization vector, 
show that the total electric charge density (Pt) and current density (Jt) 
are given by 

Pt = P- \7 · P 

8P 
Jt = J + 8t + \7 X M 

Explain why E and B are considered as fundamental fields, whereas D 
and H are partial fields. 



CHARGED PARTICLE MOTION 

IN CONSTANT AND UNIFORM 

ELECTROMAGNETIC FIELDS 

1. INTRODUCTION -------------------' 

In this and in the following two chapters we investigate the motion of 
charged particles in the presence of electric and magnetic fields known as 
functions of position and time. Thus, the electric and magnetic fields are 
assumed to be prescribed and are not affected by the charged particles. 
This chapter, in particular, considers the fields to be constant in time and 
spatially uniform. This subject is considered in some detail, since many 
of the more complex situations, considered in Chapters 3 and 4, can be 
treated as perturbations to this problem. 

The study of the motion of charged particles in specified fields is 
important, since it provides a good physical insight for understanding 
some of the dynamic processes in plasmas. It also facilitates obtaining in­
formation on some macroscopic phenomena that are due to the collective 
behavior of a large number of particles. Not all of the components of the 
detailed microscopic particle motion contribute to macroscopic effects, but 
it is possible to isolate the components of the individual motion that con­
tribute to the collective plasma behavior. Nevertheless, the macroscopic 
parameters can be obtained much more easily and conveniently from the 
macroscopic transport equations presented in Chapters 8 and 9. 

The equation of motion for a particle of charge q, under the action of 
the Lorentz force F due to electric (E) and magnetic induction (B) fields, 
can be written as 
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dp 
dt = F = q(E + v x B) (1.1) 

where p represents the momentum of the particle and v its velocity. 
This equation is relativistically correct if we take 

p = "(ffiV (1.2) 

where m is the rest mass of the particle and 'Y is the so-called Lorentz 
factor defined by 

(1.3) 

where cis the speed of light in vacuum. In the relativistic case, (1.1) can 
also be written in the form 

dv (v) "(m dt + q c2 (v ·E)= q(E + v x B) (1.4) 

noting that the time rate of change of the total relativistic energy 
(U = "(mc2 ) is given by dUidt = q(v·E) and that dpldt = d(Uvlc2 )1dt. 

In many situations of practical interest, however, the term v2 I c2 is 
negligible compared to unity. For v2 I c2 « 1 we have 'Y ::: 1 and m can 
be considered constant (independent of v), so that (1.4) reduces to the 
following nonrelativistic expression 

dv 
m dt = q(E + v x B) (1.5) 

If the velocity obtained from (1.5) does not satisfy the condition v2 « c2 , 

then the corresponding result is not valid and the relativistic expression 
(1.4) must be used instead of (1.5). Relativistic effects become important 
only for highly energetic particles (a 1 MeV proton, for instance, has a 
velocity of 1.4 x 107mls, with v2 lc2 ::: 0.002). For the situations to be 
considered here it is assumed that the restriction v2 « c2 , implicit in 
(1.5), is not violated. Also, all radiation effects are neglected. 

In the absence of an electric field (E = 0), the equation of motion 

(1.5) reduces to 
dv 

m dt = q(v x B) (2.1) 

Since the magnetic force is perpendicular to v, it does no work on the 
particle. Taking the dot product of (2.1) with v and noting that for any 
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vector v, we have (v x B)· v = 0, we obtain 

m ~: · v = :t Gmv2) = 0 (2.2) 

which shows that the particle kinetic energy (mv2 /2) and the magnitude of 
its velocity (speed v) are both constants . Therefore, a static magnetic field 
does not change the particle kinetic energy. This result is valid whatever 
the spatial dependence of the magnetic flux density B. However, if B 
varies with time, then, according to Maxwell equations, an electric field 
such that \7 x E = -aB / 8t is also present that does work on the particle 
changing its kinetic energy. 

When both magnetostatic and electrostatic fields are present, we 
obtain from (1.5) 

(2.3) 

Since \7 x E = 0, we can express the electrostatic field in terms of the 
electrostatic potential according to E = -\7¢, so that 

!!_ (lmv2) = -q(\7 ¢) . v = -q(\7 ¢) . dr = -q d¢ 
dt 2 dt dt 

(2.4) 

This result can be rearranged in the following conservation form: 

d 
dt Gmv2 + q¢) = 0 (2.5) 

which shows that the sum of the particle kinetic and electric potential 
energies remains constant in the presence of static electromagnetic fields. 
Note that the electric potential ¢ can be considered as the potential energy 
per unit charge. 

When the fields are time-dependent we have \7 x E # 0 and E is not 
the gradient of a scalar function. But, since \7 · B = 0, we can define a 
magnetic vector potential A by B = \7 x A and write (1.5.2) (Eq. 5.2 in 
Chapter 1) as 

aB a ( aA) \7 x E + 8t = \7 x E +at (\7 x A)= \7 x E + 8t = o 

Hence, we can express the electric field in the form 

a A 
E=-\7¢-Bt 

(2.6) 

(2.7) 

In this case the system is not conservative in the usual sense and there is 
no energy integral, but the analysis may be performed using a Lagrangian 
function L for a charged particle in electromagnetic fields, defined by 
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L = !mv2 - U (2.8) 

where U is a velocity-dependent potential energy given by 

U=q(¢-v·A) (2.9) 

The energy considerations presented in this section assume that the 
particle energy changes only as a result of the work done by the fields. 
This assumption is not strictly correct since every charged particle when 
accelerated irradiates energy in the form of electromagnetic waves. For 
the situations to be considered here this effect is usually small and can be 
neglected. 

According to (1.1) the motion of a charged particle in an electric field 
obeys the following differential equation: 

dp- E 
dt - q 

For a constant E field, (3.1) can be integrated directly giving 

p(t) = qEt +Po 

(3.1) 

(3.2) 

where Po = p(O) denotes the initial particle momentum. Using the non­
relativistic expression 

dr 
p=mv=m-

dt 
(3.3) 

and performing a second integration in (3.2), we obtain the following 
expression for the particle position as a function of time: 

(3.4) 

where r 0 denotes the particle initial position and v 0 its initial velocity. 
Therefore, the particle moves with a constant acceleration, qEjm, in the 
direction of E if q > 0, and in the opposite direction if q < 0. In a direction 
perpendicular to the electric field there is no acceleration and the particle 
state of motion remains unchanged. 
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4.1 Formal Solution of the Equation of Motion 

For a particle of charge q and mass m, moving with velocity v in a 
region of space where there is only a magnetic induction B (no electric 
field E), the equation of motion is 

dv 
m dt = q(v x B) (4.1) 

It is convenient to separate v in components parallel (v 11 ) and perpendic­
ular ( v ..l) to the magnetic field, 

V = v 11 +v..l (4.2) 

as indicated in Fig. 1. Substituting (4.2) into (4.1) and noting that 
(v 11 x B = 0) we obtain 

dv II + dv ..l = i_ ( v ..l X B) 
dt dt m 

(4.3) 

Since the term (v ..l x B) is perpendicular to B, the parallel component 
equation can be written as 

dvll = 0 
dt 

and the perpendicular component equation as 

dv..l q - = -(v..i x B) 
dt m 

(4.4) 

(4.5) 

Eq. (4.4) shows that the particle velocity along B does not change 
and is equal to the particle initial velocity. For motion in the plane per­
pendicular to B, we can write ( 4.5) in the form 

(4.6) 

where nc is a vector defined by 

(4.7) 
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Fig. 1 Decomposition of the velocity vector into components 
parallel (v 11 ) and perpendicular (v 1_) to the magnetic field. 

~ 

Thus, Slc points in the direction of B for a negatively charged particle 
(q < 0) and in the opposite direction for a positively charged particle 
(q > 0);._ Its magnitude !lc is always positive (!lc = fqf B / m). The unit 
vector Slc points along Slc. 

Since Slc is constant and, from conservation of kinetic energy, v 1_ (the 
magnitude of v 1_) is also constant, (4.6) shows that the particle acceler­
ation is constant in magnitude and its direction is perpendicular to both 
v 1_ and B . Thus, this acceleration corresponds to a rotation of the veloc­
ity vector v 1_ in the plane perpendicular to B with the constant angular 
velocity Slc. We can integrate (4.6) directly, noting that Slc is constant 
and taking v 1_ = dr c/ dt , to obtain 

(4.8) 

where the vector r c is interpreted as the particle position vector with re­
spect to a point G (the center of gyration) in the plane perpendicular to 
B which contains the particle. Since the particle speed Vj_ is constant, 
the magnitude r c of the position vector is also constant. Therefore, ( 4.8) 
shows that the velocity v 1_ corresponds to a rotation of the position vector 
r c about the point G in the plane perpendicular to B with constant angu­
lar velocity Slc. The component of the motion in the plane perpendicular 
to B is therefore a circle of radius rc. The instantaneous center of gyration 
of the particle (the point G at the distance r c from the particle) is called the 
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Fig. 2 Circular motion of a charged particle about the guiding 
center in a uniform magnetostatic field. 

guiding center. This circular motion about the guiding center is illustrated 
in Fig. 2. 

Note that according to the definition of !lc, given in (4.7), fie 
always points in the same direction as the particle angular momentum 
vector (rc x p), irrespective of its charge. 

The resulting trajectory of the particle is given by the superposition 
of a uniform motion along B (with the constant velocity v 11 ) and a circular 
motion in the plane normal to B (with the constant speed v_1_). Hence, 
the particle describes a helix (see Fig. 3). The angle between B and the 
direction of motion of the particle is called the pitch angle and is given by 

(4.9) 

where v is the total speed of the particle ( v2 = v~ + v_i ). When v11 = 0 
but v _1_ =I 0, we have a = 7!' / 2 and the particle trajectory is a circle in the 
plane normal to B. On the other hand, when V_1_ = 0 but v11 =I 0, we have 
a= 0 and the particle moves along B with the velocity v 11 • 

The magnitude of the angular velocity, 

(4.10) 
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is known as the angular frequency of gyration, and is also called the gyro­
frequency, or cyclotron frequency or Larmor frequency. For an electron 
lql = 1.602 x 10-19 coulomb and m = 9.109 x 10-31 kg, so that 

flc(electron) = 1.76 x 1011 B (rad/s) (4.11) 

with B in tesla (or, equivalently, weber/m2 ). Similarly, for a proton 
m = 1.673 x 10-27 kg, so that 

flc(proton) = 9.58 x 107 B (rad/s) (4.12) 

The radius of the circular orbit, given by 

(4.13) 

is called the radius of gyration, or gyroradius, or cyclotron radius, or 
Larmor radius. It is important to note that flc is directly proportional 
to B. Consequently, as B increases, the gyrofrequency increases and the 
radius decreases. Also, the smaller the particle mass, the larger will be 
its gyrofrequency and the smaller its gyroradius. Multiplying (4.13) by B 
gives 

( 4.14) 

which shows that the magnitude of B times the particle gyroradius is equal 
to the particle momentum per unit charge. This quantity is often called 
the magnetic rigidity. 

4.2 Solution in Cartesian Coordinates 

The treatment presented so far in this section was not related to any 
particular frame of reference. Consider now a Cartesian coordinate system 
(x, y, z) such that B = Bz. In this case, the cross product between v and 
B can be written as 

--- --- ---X y Z 

vxB=det Vx Vy Vz =B(vyX-VxY) 

0 0 B 

and the equation of motion ( 4.1) becomes 

dv q B ( --. --.) ( --. --.) -d = - VyX - VxY = ±flc VyX - VxY 
t m 

(4.15) 

(4.16) 
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Fig. 3 Helicoidal trajectory of a positively charged particle in 
a uniform magnetostatic field. 

The ( +) sign in front of De applies to a positively charged particle (q > 0) 
and the (-) sign to a negatively charged particle ( q < 0), since De is 
always positive, according to its definition given in ( 4.10). In what follows 
we shall consider a positively charged particle. The results for a negative 
charge can be obtained by changing the sign of De in the results for the 
positive charge. 

The Cartesian components of (4.16) are (for q > 0) 

dvx 
dt = Devy ( 4.17) 

dvy 
dt = -DeVx (4.18) 

dvz = O 
dt 

(4.19) 

The last of these equations gives vz(t) = vz(O) = v11 , which is the initial 
value of the velocity component parallel to B. To obtain the solution of 
(4.17) and (4.18), we take the derivative of (4.17) with respect to time and 
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substitute this result into (4.18), getting 

(4.20) 

This is the homogeneous differential equation for a harmonic oscillator of 
frequency nc, whose solution is 

(4.21) 

where v j_ is the constant speed of the particle in the ( x, y) plane (normal 
to B) and 00 is a constant of integration that depends on the relation 
between the initial velocities vx(O) and vy(O), according to 

(4.22) 

To determine vy(t) we substitute (4.21) in the left-hand side of (4.17), 
obtaining 

( 4.23) 

Note that v; + v~ = vl_. The equations for the components of v can be 
further integrated with respect to time, yielding 

Vj_ . 
y(t) = Oc sm(Oct + Ba) +Yo 

z(t) = v 11 t + Zo 

where we have defined 

Yo =Yo- ~~ sin(Bo) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

The vector r = X 0 X + YaY + Z 0 Z gives the initial particle position. From 
(4.24) and (4.25) we see that 

(4.29) 
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Fig. 4 Circular trajectory of a charged particle in a uniform and 
constant B field (directed out of the paper), and the direction of 
the associated electric current. 

The particle trajectory in the plane normal to B is therefore a circle with 
center at (X0 , Yo) and radius equal to (vl_/Oc)· The motion of the point 
[Xo, Y0 , z(t)], at the instantaneous center of gyration, corresponds to the 
trajectory of the guiding center. Thus, the guiding center moves with 
constant velocity v11 along B. 

In the (x, y) plane, the argument ¢(t), defined by 

( ) -1 (y- Yo) (n () ) A. () 
¢ t =tan (x _ Xo) = - Hct + 0 ; 'Yo = - o (4.30) 

decreases with time for a positively charged particle. For a magnetic field 
pointing towards the observer, a positive charge describes a circle in the 
clockwise direction. For a negatively charged particle Oc must be replaced 
by -Oc in the results of this subsection. Hence, (4.30) shows that for a 
negative charge ¢(t) increases with time and the particle moves in a circle 
in the counterclockwise direction, as shown in Fig. 4. The resulting parti­
cle motion is a cylindrical helix of constant pitch angle. Fig. 5 shows the 
parameters of the helix with reference to a Cartesian coordinate system. 
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Fig. 5 Parameters of the helicoidal trajectory of a positively 
charged particle with reference to a Cartesian coordinate system. 

4.3 Magnetic Moment 

To the circular motion of a charged particle in a magnetic field there 
is associated a circulating electric current I. This current flows in the 
clockwise direction for a B field pointing towards the observer (Fig. 4). 
From Ampere's law, the direction of the magnetic field associated with 
this circulating current is given by the right-hand rule, i.e. , with the right 
thumb pointing in the direction of t he current I, the right fingers curl in t he 
direction of the associated magnetic field. Therefore, the B field produced 
by the circular motion of a charged particle is opposite to the externally 
applied B field inside the particle orbit, but in the same direction outside 
the orbit. The magnetic field generated by the ring current I , at distances 
much larger than rc, is similar to that of a dipole (Fig. 6) . 
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Fig. 6 The magnetic field generated by a small ring current is 
that of a magnetic dipole. 

Since a plasma is a collection of charged particles, it possesses therefore 
diamagnetic properties. 

The magnetic moment m associated with the circulating current is 
normal to the area A bounded by the particle orbit and points in the 
direction opposite to the externally applied B field, as shown in Fig. 7. 
Its magnitude is given by 

lml =(current)· (orbital area)= IA (4.31) 

This circulating current corresponds to a flow of charge and is given 
by 

(4.32) 

where Tc = 27r /O.c is the period of the particle orbit, known as the cy­
clotron period or Larmor period. The magnitude of m is therefore 

lml = lql f!c 7rr2 = ! lql 0, r2 ( 4.33) 27r c 2 c c 

Using the relations nc = lql B / m and rc = Vj_ / Slc, (4.33) becomes 

~mvi wj_ lml = (4.34) 
B B 
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Fig. 7 Magnetic moment m associated with a circulating 
current due to the circular motion of a charged particle in an 
external B field. 

where W 1_ denotes the part of the particle kinetic energy associated with 
the transverse velocity v 1_. Thus, in vector form, 

w_l_ 
m=-- B B2 

4.4 Magnetization Current 

(4.35) 

Consider now a collection of charged particles, positive and negative 
in equal numbers (in order to have no internal macroscopic electrostatic 
fields), instead of just one single particle. For instance, consider the case 
of a low-density plasma in which the particle collisions can be neglected 
( collisionless plasma). The condition for this is that the average time 
between collisions be much greater than the cyclotron period. This con­
dition is fulfilled for many space plasmas, for example. For a collisionless 

plasma in an external magnetic field , the magnetic moments due to the 
orbital motion of the charged particles act together, giving rise to a re­
sultant magnetic field that may be strong enough to appreciably change 
the externally applied B field. The magnetic field produced by the orbital 
motion of the charged particles can be determined from the net electric 
current density associated with their motion. 
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Fig. 8 (a) Electric current orbits crossing the surface element 
S bounded by the curve C, in a macroscopic volume containing 
a large number of particles. (b) Positive direction of the vector 
area A. 

To calculate the resultant electric current density, let us consider a 
macroscopic volume containing a large number of particles. Let S be 
an element of area in this volume, bounded by the curve C, as shown 
in Fig. 8(a). Orbits such as (1), which encircle the bounded surface only 
once, contribute to the resultant current, whereas orbits such as (2) , 
which cross the surface twice, do not contribute to the net current. If 
dl is an element of arc along the curve C, the number of orbits encir­
cling dl is given by nA · dl, where n is the number of orbits of cur­
rent I, per unit volume, and A is the vector area bounded by each or­
bit. The direction of A is that of the normal to the orbital area A, the 
positive sense being related to the sense of circulation in the way the 
linear motion of a right-hand screw is related to its rotary motion. Thus, 
A points in the direction of the observer when I flows counterclockwise, 
as shown in Fig. 8 (b). The net resultant current crossing Sis therefore 
given by the current encircling dl integrated along the curve C, 

In= f InA· dl (4.36) 

Since m = I A, the magnetic moment, per unit volume, M (also called 
the magnetization vector) , is given by 

M=nm=niA (4.37) 
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Hence, ( 4.36) can be written as 

In = f M · dl = is ('\1 x M) · dS (4.38) 

where we have applied Stokes's theorem. We may define an average mag­
netization current density, J M, crossing the surface S, by 

(4.39) 

Consequently, from (4.38) and (4.39) we obtain the magnetization current 
density as 

JM = \1 X M 

where, from (4.37) and (4.35), 

(nW.l) M=nm=- ----g2 B 

(4.40) 

( 4.41) 

and n W 1_ denotes the kinetic energy, per unit volume, associated with the 
transverse particle velocity. 

The charge density p M associated with the magnetization current 
density J M can be deduced from the equation of continuity, 

( 4.42) 

Since J M = \1 x M and since for any vector a, we have \1 · (\7 x a) = 0, 
it follows that the charge density p M is constant. 

In the following Maxwell equation, 

\1 X B = J1 0 ( J + Eo~~) ( 4.43) 

we can separate the total current density J into two parts: a magnetization 
current density J M and a current density J' due to other sources, 

J = JM + J' ( 4.44) 

Expressing JM in terms of M, through (4.40), and substituting in (4.43), 
we obtain 

( , 8E) 
\1 X B = J1o \1 X M + J + Eo at ( 4.45) 
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which can be rearranged as 

( 1 ) I 8E \7 X -B- M = J + E0 -

J.,£o 8t 
(4.46) 

Defining an effective magnetic field H by the relation 

B = J.-La(H+M) (4.47) 

we can write (4.46) as 

(4.48) 

Thus, the effective magnetic field His related to the current due to other 
sources J', in the way B is related to the total current J. Eqs. (4.40) and 
( 4.4 7) constitute the basic relations for the classical treatment of magnetic 
materials. 

A simple linear relation between B and H exists when M is propor­
tional to B or H, 

M=xmH (4.49) 

where the constant Xm is called the magnetic susceptibility of the medium. 
However, for a plasma we have seen that M ex 1/B [see (4.41)], so that 
the relation between H and B (or M) is not linear. Within this context 
it is generally not convenient to treat a plasma as a magnetic medium. 

5.1 Formal Solution of the Equation of Motion 

We consider now the motion of a charged particle in the presence of 
both electric and magnetic fields that are constant in time and spatially 
uniform. The nonrelativistic equation of motion is 

dv 
m dt = q(E + v x B) 

Taking components parallel and perpendicular to B, 

v = v 11 +v..l 

(5.1) 

(5.2) 

(5.3) 
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we can resolve (5.1) into two component equations: 

(5.4) 

dv 1_ 
mdt = q(E1_ +v1_ x B) (5.5) 

Eq. (5.4) is similar to (3.1) and represents a motion with constant 
acceleration qEufm along the B field. Hence, according to (3.2) and (3.4), 

v 11 (t) = (q!11 )t+v11 (0) (5.6) 

r 11 (t) = ~ ( q!ll )t2 + v 11 (O)t + r 11 (0) (5.7) 

To solve (5.5) it is convenient to separate v 1_ into two components, 

(5.8) 

where v E is a constant velocity in the plane normal to B. Hence, v~ re­
presents the particle velocity as seen by an observer in a frame of reference 
moving with the constant velocity VE. Substituting (5.8) into (5.5), and 
writing the component of the electric field perpendicular to B in the form 
(see Fig. 9) 

(5.9) 

we obtain 
dv~ ( 1 E1_ x B) 

mdt = q v 1_ + VE- B 2 x B (5.10) 

This equation shows that in a coordinate system moving with the constant 
velocity 

(5.11) 

the particle motion in the plane normal to B is governed entirely by the 
magnetic field, according to 

dv' 
m dtl_ = q(v~ x B) (5.12) 

Thus, in this frame of reference, the electric field component E1_ is trans­
formed away, whereas the magnetic field is left unchanged. Eq. (5.12) is 
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Fig. 9 Vector products appearing in Eq. (5.9) (i3 = B/ B). 

identical to ( 4.5) and implies that in the reference system moving with 
the constant velocity v E, given by ( 5.11), the particle describes a circular 
motion at the cyclotron frequency nc with radius rc , 

(5.13) 

The results obtained so far indicate that the resulting particle motion 
is described by a superposition of a circular motion in the plane normal to 
B, with a uniform motion with the constant velocity v E perpendicular to 
both Band E 1_ , plus a uniform acceleration qE 11 /m along B. The particle 
velocity can be expressed in vector form, independently of a coordinate 
system, as 

Ej_ X B qEII 
v(t) = nc X rc + B2 + -:;;::t +VII (0) (5.14) 

The first t erm in the right-hand side of (5.14) represents the cyclotron 
circular motion, and the following ones represent, respectively, the drift 
velocity of the guiding center (perpendicular to both E..l and B), the 
constant acceleration of the guiding center along B, and the initial velocity 
parallel to B. 

Note that the velocity v E is independent of the mass and of the 
sign of the charge and therefore is the same for both positive and negative 
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particles. It is usually called the plasma drift velocity or the electromag­
netic plasma drift. Since E 11 x B = 0, (5.11) can also be written as 

ExB 
VE = --,--

B2 (5.15) 

The resulting motion of the particle in the plane normal to B is, in 
general, a cycloid, as shown in Fig. 10. The physical explanation for 
this cycloidal motion is a follows. The electric force qE..l, acting simulta­
neously with the magnetic force, accelerates the particle so as to increase 
or decrease its velocity, depending on the relative direction of the parti­
cle motion with respect to the direction of E..l and on the charge sign. 
According to ( 4.13) the radius of gyration increases with velocity, and 
hence the radius of curvature of the particle path varies under the action 
of E..l. This results in a cycloidal trajectory with a net drift in the direc­
tion perpendicular to both E and B. Different trajectories are obtained, 
depending on the initial conditions and on the magnitude of the applied 
electric and magnetic fields. 

The ions are much more massive than the electrons, and therefore 
the Larmor radius for ions is correspondingly greater and the Larmor 
frequency correspondingly smaller than for electrons. Consequently, the 
arcs of cycloid for ions are greater than for electrons, but there is a larger 
number of arcs of cycloid per second for electrons, such that the drift 
velocity is the same for both species. 

In a collisionless plasma the drift velocity does not imply an electric 
current, since both positive and negative particles move together. When 
collisions between charged and neutral particles are important, this drift 
gives rise to an electric current, since the ion-neutral collision frequency is 
greater than the electron-neutral collision frequency, causing the ions to 
move slower than the electrons. This current is normal to both E and B, 
and is in the direction opposite to VE. It is known as the Hall current. 

5.2 Solution in Cartesian Coordinates 

Let us choose a Cartesian coordinate system with the z axis pointing 
in the direction of B, so that 

B=Bz (5.16) 

(5.17) 
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Fig. 10 Cycloidal trajectories described by ions and electrons in 
crossed electric and magnetic fields. The electric field E acting 
together with the magnetic flux density B gives rise to a drift 
velocity in the direction given byE x B. 

Using (4.15), the equation of motion (5.1) can be written as 

ddv = i_[(Ex + vyB)x + (Ey- vxB)y + Ezz] 
t m 

(5.18) 

As before, we consider, in what follows, a positive charge. The results for 
a negative charge can be obtained by changing the sign of Oc in the results 
for the positive charge. 

The z component of (5.18) can be integrated directly and gives the 
same results expressed in (5.6) and (5.7). For the x and y components, 
we first take the derivative of dvx j dt with respect to time and substitute 
the expression for dvyjdt, which gives 

d2vx 2 2 Ey 
dt2 + Ocvx = Oc]j (5.19) 

This is the inhomogeneous differential equation for a harmonic oscillator 
of frequency Oc. Its solution is given by the sum of the homogeneous 
equation solution, given in (4.21), with a particular solution (which is 
clearly given by Ey/ B). Thus, 

Vx(t) = v~ sin(Oct + 00 ) + i (5.20) 
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where v~ and 00 are integration constants. The solution for vy(t) can be 
obtained by substituting (5.20) directly into (5.18). Hence, 

(5.21) 

Therefore, the velocity components vx(t) and vy(t), in the plane perpen­
dicular to B, oscillate at the cyclotron frequency Oc and with amplitude 
v~. This motion is superposed to a constant drift velocity VE given by 

Ey ...._ Ex...._ 
VE=-x--y 

B B 
(5.22) 

This expression corresponds to (5.11) when B = Bz. 
One more integration of (5.20) and (5.21) gives the particle trajectory 

in the (x, y) plane 

(5.23) 

(5.24) 

where Xa and Yo are defined according to (4.27) and (4.28), but with V..L 

replaced by v~. 
In summary, the motion of a charged particle in uniform electrostatic 

and magnetostatic fields consists of three components: 
(a) A constant acceleration qEufm along the B field. If E 11 = 0, the 

particle moves along B with its initial velocity. 
(b) A rotation in the plane normal to B at the cyclotron frequency 

Oc = lql B/m and radius rc = v~/Oc. 
(c) An electromagnetic drift velocity v E = (Ex B)/ B 2 , perpendicular 

to both Band E. 

~~;c,r. --------------· 
If some additional force F (gravitational force or inertial force, if the 

motion is considered in a noninertial system, for example) is present, the 
equation of motion (1.5) must be modified to include this force, 

dv 
m- = q(E + v x B)+ F 

dt 
(6.1) 
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Fig. 11 Drift of a gyrating particle in crossed gravitational 
and magnetic fields. 

The effect of this force is, in a formal sense, analogous to the effect of 
the electric field. We assume here that F is uniform and constant. In 
analogy with the electromagnetic drift velocity VE, given in (5.15), the 
drift produced by the force F having a component normal to B is given 
by 

FxB 
Vp = qB2 (6.2) 

In the case of a uniform gravitational field, for example, we have F = mg, 
where g is the acceleration due to gravity, and the drift velocity is given 
by 

mgxB 
Vg = q B2 (6.3) 

This drift velocity depends on the ratio mfq and therefore it is in opposite 
directions for particles of opposite charge (Fig. 11). We have seen that 
in a coordinate system moving with the velocity VE, the electric field 
component E..L is transformed away, leaving the magnetic field unchanged. 
The gravitational field, however, cannot, in this context, be transformed 
away. 

In a collisionless plasma, associated with the gravitational drift ve­
locity there is an electric current density, J9 , in the direction of g x B, 
which can be expressed as 

(6.4) 
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where the summation is over all charged particles contained in a suitably 
chosen small volume element b'V. Using (6.3) we obtain 

1 ("' ) g X B g X B 
J g = <5V ~ mi B2 = Pm B2 (6.5) 

~ 

where Pm denotes the total mass density of the charged particles. 
A comment on the validity of (6.2) is appropriate here. Since we have 

used the nonrelativistic equation of motion, there is a limitation on the 
magnitude of the force Fin order that (6.2) be applicable. The magnitude 
of the transverse drift velocity is given by 

Fj_ 
VD=-

qB 
(6.6) 

Hence, for the nonrelativistic equation of motion to be applicable we must 
have 

Fj_ - «c 
qB 

or, ifF is due to an electrostatic field E, 

(6.7) 

(6.8) 

For a magnetic field of 1 tesla, for example, (6.2) may be used as long as 
E1_ is much less than 108 voltsjm. If these conditions are not satisfied, 
the problem must be treated using the relativistic equation of motion. 
Although the relativistic equation of motion can be integrated exactly for 
constant B, E, and F, we shall not analyze this problem here. It is left as 
an exercise for the reader. 

2.1 Calculate the cyclotron frequency and the cyclotron radius for: 
(a) An electron in the Earth's ionosphere at 300 km altitude, where the 
magnetic flux density B '::::' 0.5 X 10-4 tesla, considering that the electron 
moves at the thermal velocity (kT/m), with T = 1000 K, where k is Boltz­
mann's constant. 
(b) A 50 MeV proton in the Earth's inner Van Allen radiation belt at 
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about 1.5 RE (where RE = 6370 km is the Earth's radius) from the cen­
ter of the Earth in the equatorial plane, considering B ~ 10-5 tesla. 
(c) A 1 MeV electron in the Earth's outer Van Allen radiation belt at 
about 4 RE from the center of the Earth in the equatorial plane, where 
B ~ 10-7 tesla. 
(d) A proton in the solar wind with a streaming velocity of 100 km/s, in 
a magnetic flux density B ~ 10-9 tesla. 
(e) A 1 MeV proton in a sunspot region of the solar photosphere, consi­
dering B ~ 0.1 tesla. 

2.2 For an electron and an oxygen ion o+ in the Earth's ionosphere, 
at 300 km altitude in the equatorial plane, where B ~ 0.5 x 10-4 tesla, 
calculate: 
(a) The gravitational drift velocity v 9 . 

(b) the gravitational current density J9 , considering ne = ni = 1012 m-3 . 

Assume that g is perpendicular to B. 

2.3 Consider a particle of mass m and charge q moving in the presence 
of constant and uniform electromagnetic fields given by E = E0 y and 
B = B0 z. Assuming that initially (t = 0) the particle is at rest at the 
origin of a Cartesian coordinate system, show that it moves on the cycloid 

Eo [ 1 ] x(t) = Bo t- nc sin(!lct) 

Plot the trajectory of the particle in the z = 0 plane for q > 0 and for 
q < 0, and consider the cases when Vj_ > VE, Vj_ = VE, and Vj_ < VE, 

where v ..l denotes the particle cyclotron motion velocity and v E is the 
electromagnetic drift velocity. 

2.4 In general the trajectory of a charged particle in crossed electric 
and magnetic fields is a cycloid. Show that, if v = v0 x, B = B 0 z, and 
E = E0 y, then for V 0 = Eo/ Eo the path is a straight line. Explain how 
this situation can be exploited to design a mass spectrometer. 

2.5 Derive the relativistic equation of motion in the form (1.4), starting 
from (1.1) and the relation (1.2). 
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2.6 Write down, in vector form, the relativistic equation of motion for a 
charged particle in the presence of a uniform magnetostatic field B = B 0 z, 
and show that its Cartesian components are given by 

where 
1 

I= (1 _ (32)1/2 

and where (3 = v /c. Show that the velocity and trajectory of the charged 
particle are given by the same formulas as in the nonrelativistic case, but 
with nc replaced by lql Ba/(m!). 

2. 7 Analyze the motion of a relativistic charged particle in the presence 
of crossed electric (E) and magnetic (B) fields that are constant in time 
and uniform in space. What coordinate transformation must be made in 
order to transform away the transversal electric field? Derive equations 
for the velocity and trajectory of the charged particle. 



CHARGED PARTICLE MOTION 

IN NONUNIFORM 

MAGNETOSTATIC FIELDS 

1. INTRODUCT~~----------------------------~~ 

When the fields are spatially nonuniform, or when they vary with 
time, the integration of the equation of motion (2.1.1) (Eq. 1.1 in Chapter 
2) can be a mathematical problem of great difficulty. In this case, since 
the equation of motion is nonlinear, the theory may become extremely 
involved, and rigorous analytic expressions for the charged particle trajec­
tory cannot, in general, be obtained in closed form. Numerical methods of 
integration must be used in order to obtain all the details of the motion. 

There is one particularly important case, however, in which it becomes 
possible to obtain an approximate, but otherwise general, solution without 
recourse to numerical integration, if the details of the particle motion 
are not of interest. This is the case when the magnetic field is strong 
and slowly varying in both space and time, and when the electric field is 
weak. In a wide variety of situations of interest the fields are approximately 

constant and uniform, at least on the distance and time scales seen by 
the particle during one gyration about the magnetic field. This is the 
case for many laboratory plasmas, including those of relevance to the 
problem of controlled thermonuclear reactions, and also for a great number 
of astrophysical plasmas. 

In this chapter we investigate the motion of a charged particle in a 
static magnetic field slightly inhomogeneous in space. The word slightly 
here means that the spatial variation of the magnetic field inside the par­
ticle orbit is small compared to the magnitude of B. In other words, we 
shall consider only magnetostatic fields whose spatial change in a distance 
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Fig. 1 The motion of a charged particle in a slightly inhomo­
geneous magnetic field is nearly circular. 

of the order of the Larmor radius, rc, is much smaller than the magnitude 
of the field itself. 

To specify more quantitatively this assumption, let 6B represent the 
spatial change in the magnitude of B in a distance of the order of rc, 
that is, 6B = rc l\7 Bl , where \7 B is the gradient of the magnitude of B. 
It is assumed therefore that 6B « B. Consequently, in what follows we 
limit our discussion to problems where the deviations from uniformity are 
small and solve for the particle trajectory only in the first-order approxi­
mation. The analysis of charged particle motion in stationary fields based 
on this approximation in often referred to as the first-order orbit theory. 
This theory was first used systematically by the Swedish scientist Alfv{m, 
and it is also known as the Alfven approximation or the guiding center 
approximation. 

The concept of guiding center is of great utility in the development 
of this theory. We have seen that in a uniform magnetic field the particle 
motion can be regarded as a superposition of a circular motion about the 
direction of B, with a motion of the guiding center along B. In the case 
of a nonuniform B field, satisfying the condition 6B « B, the value of B 
at the particle position differs only slightly from its value at the guiding 
center. The component of the particle motion, in a plane normal to the 
field line that passes through the guiding center instantaneous position, 
will still be nearly circular (Fig. 1). However, due to the spatial variation 
of B, we expect in this case a gradual drift of the guiding center across B, 
as well as a gradual change of its velocity along B. 

The rapid gyrations of the charged particle about the direction of B 
are not usually of great interest, and it is convenient to eliminate them 
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from the equations of motion, and focus attention on the guiding cen­
ter motion. In the motion of the guiding center, the small oscillations 
(of amplitude small compared to the cyclotron radius) occurring during 
one gyration period may be averaged out, since they represent the effect 
of perturbations due to the spatial variation of the magnetic field. The 
problem is thus reduced to the calculation of the average values over one 
gyration period (and not the instantaneous values) of the guiding center 
transverse drift velocity and parallel acceleration. 

Any of the three components of the magnetic flux density, B = Bxx + 
Byy + Bzz, may vary with respect to the three coordinates x, y, and z. 
Consequently, nine parameters are needed to completely specify the spatial 
variation of B. These parameters can be conveniently represented by the 
dyad (or tensor) V'B, which can be written in matrix form as 

(2.1) 

Of these nine components only eight are independent, since the following 
Maxwell equation 

(2.2) 

shows that only two of the divergence terms are independent. 
If the condition J = 0 is also satisfied, in the region where the parti­

cle is moving, then other restrictions are imposed on the number of inde­
pendent components of B since, under these circumstances, the relation 
V' x B = 0 holds. This means that, in regions where there are no electric 
currents, B can be written as the gradient of a scalar magnetic potential, 

B = Y'¢m (2.3) 

where the magnetic potential ¢m satisfies the Laplace equation 

(2.4) 

In regions where an electric current density exists, we have V' x B = J-LoJ 
and we cannot define a scalar magnetic potential ¢m as indicated. The 
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number of independent components of VB cannot, in this case, be reduced 
without knowing the electric current density J. 

Let us consider a Cartesian coordinate system such that at the origin 
the magnetic field is in the z direction, 

B(O, 0, 0) = Bo = Boz (2.5) 

The nine components of VB can be conveniently grouped into four cate­
gories: 

(a) Divergence terms: 

8Bx/8x, 8Byj8y, 8Bz/8z 

(b) Gradient terms: 

(c) Curvature terms: 

(d) Shear terms: 

2.1 Divergence Terms 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

We shall initially discuss the magnetic field line geometry correspond­
ing to the divergence terms of VB. The presence of a small variation in the 
component Bz in the z direction (i.e., 8Bz/8z =F 0), implies that at least 
one of the terms 8Bx/8x or 8Byj8y is also present, as can be seen from 
(2.2). It is of great utility to make use here of the concept of magnetic 
flux lines, which, at any point, are parallel to the B field at that point 
and whose density at each point is proportional to the local magnitude of 
B. To determine the differential equation of a line of force, let 

ds = dx x + dy y + dz z (2.7) 

be an element of arc along the magnetic field line. Then, we must have 

dsxB=O (2.8) 

since ds is parallel to B, which gives by expansion of the cross product, 

dx 

Bx 

dy 

By 
(2.9) 
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z 

X 

Fig. 2 The magnetic field components Bx and By at the points 
(x1 ,0,0) and (O, y1 ,0), near the origin. 

Since we are focusing attention only on t he divergence terms of B , and 
since in the region of interest the field is considered to be mainly in t he z 
direction, we may expand Bx and By in a Taylor series about the origin 
(see Fig. 2), as follows, 

Bx(xl, 0, 0) = Bx(O, 0, 0) + C7ffxx )xl = c~!x )xl (2.10) 

By(O, Y1, 0) = By(O, 0, 0) + ( 8~Y )Y1 = ( 8~Y )Y1 (2.11) 

where the second and higher order t erms were neglected. Note t hat at 
the origin Bx = By = 0. Therefore, the magnetic field line crossing the 
z = 0 plane at t he point (x1 , Yl , 0) , when projected on the (x, z) plane 
(y = 0) and on the (y, z) plane ( x = 0) , satisfies the following different ial 
equations, respectively, 

(y = 0) (2.12) 
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z 

B 

Fig. 3 Geometry of the magnetic field lines corresponding to 
the divergence terms 8 Bx I ox or 8 By I 8y, when they are positive. 

(x = 0) (2.13) 

These equations show that the field lines converge or diverge in the (x, z) 
plane or in the (y, z) plane, depending on the sine of the divergence terms 
of B. Fig. 3 illustrates the field line geometry when 8Bxl8x and 8Byl8y 
are positive. 

2.2 Gradient and Curvature Terms 

The following vector field has a gradient in the x direction, as shown 
schematically in Fig. 4: 

(2.14) 

We must note, however, that in a region where J = 0 this vector field does 
not satisfy the Maxwell equation 'V x B = 0, so that we must add to (2.14) 
a term of curvature, given by Bx'}{. = B0 o:zx. Therefore, a magnetic field 
having gradient and curvature terms, and which satisfies 'V x B = 0, is 

B = Bo[o:zx + (1 + o:x)z] (2.15) 
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Fig. 4 Geometry of the magnetic field lines when B has a 
gradient in the x direction, according to Eq. (2.14). This field 
geometry does not satisfy V' x B = 0. 
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The geometry of the magnetic field lines corresponding to this expression 
is schematically indicated in Fig. 5. 

Generally, all terms corresponding to divergence, gradient, and cur­
vature are simultaneously present. Fig. 6 illustrates a B field having 
divergence, gradient, and curvature. An example is the Earth's magnetic 
field (refer to Fig. 4 in Chapter 1). Later in this section we will investigate 
separately the effects of each one of these terms on the charged particle 
motion. Since in the first-order approximation the equations are linear, 
the net effect will be the sum of the effects due to each one of them. 

2.3 Shear Terms 

The shear terms of (2.6) enter into the z component of V' x B, that is, 
into B · (V' x B), and cause twisting of the magnetic field lines about each 
other. They do not produce any first-order drifts, although the shape of 
the orbit can be slightly changed. They do not give rise to any particu­
larly interesting effects on the motion of charged particles and will not be 
considered any further. 
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Fig. 5 Geometry of the magnetic E.eld lines corresponding to 
(2.15), with gradient and curvature terms. 

We consider that the magnetic field B0 that exists at the origin in 
the guiding center coordinate system is in the z direction, 

B(O, 0, 0)- Bo = Boz (3.1) 

The particle motion in the neighborhood of the origin can be described 
by considering only a linear approximation to the magnetic field near the 
origin. Let r be the momentary position vector of the particle in the 
guiding center coordinate system (see Fig. 1). In the region of interest 
(near the origin) the magnetic field can be expressed by a Taylor expansion 
about the origin, 

B(r) = B0 + r. (VB)+ ... (3.2) 

where the derivatives of B are to be calculated at the origin. Note that 
the instantaneous position of the particle guiding center actually moves 
slightly during one period of rotation, while the origin is kept fixed during 
this time. 



3. NONUNIFORM MAGNETOSTATIC FIELDS 

' ' ..... ......... 

Fig. 6 Schematic representation of a magnetic Eeld having 
divergence, gradient, and curvature terms. 
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Since we are assuming that the spatial variation of B in a distance of 
the order of the Larmor radius is much smaller than the magnitude of B 
itself, the higher order terms of (3.2) can be neglected. The condition 

t5B = lr · (V'B)I « IBol (3.3) 

is clearly met (see section 1). Thus, the magnetic field at the particle 
position differs only slightly from that existing at the guiding center. The 
first-order term r · (V'B) can be written explicitly as 

r · (V'B) = (r · V')B = (x~ + y~ + z~)B = 
ox oy oz 

( oBx oBx oBx)~ ( oBy oBy oBy)~ x-+y-+z- x + x-+y-+z- y+ & ~ fu & ~ fu 

( OBz OBz OBz)~ x--+y--+z-- z 
ox oy oz 

(3.4) 

where the partial derivatives are to be calculated at the origin. Substitut­
ing (3.2) into the equation of motion (2.1.5), with E = 0, gives 

dv 
mdt = q(v x Bo) + qv x [r · (V'B)] (3.5) 
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The last term in the right-hand side is of first-order compared to the first 
one. The particle velocity can be written as a superposition, 

v = vCO) + v(l) = dr(o) + dr(l) 
dt dt 

where vCl) is a first-order perturbation 

and vC0) is the solution of the zero-order equation 

dv(o) 
m-- = q(v(o) x Bo) 

dt 

(3.6) 

(3.7) 

(3.8) 

which has already been discussed in section 4 of Chapter 2. Neglecting 
second-order terms we can write, therefore, 

v x [r · (\7B)] = vC0) x [rC0) . (VB)] (3.9) 

The equation of motion (3.5) becomes, under these approximations, 

m dv = q(v x Bo) + qv<o) x [r(o) · (\7B)] 
dt 

(3.10) 

The second term in the right-hand side constitutes the force term of 
(2.6.1) (Eq. 6.1 in Chapter 2). This additional force, however, is not con­
stant since it depends on the instantaneous particle position. Thus, small 
oscillations occur during one period of gyration. Since we are interested 
in the smoothed motion of the guiding center, we shall eliminate these 
small oscillations by averaging this force term over one gyration period. 
Therefore, in what follows we will be involved in calculating the average 
value over one gyration period of the force term qvC0) x [rC0) · (\7B)], which 
will allow us to determine the parallel acceleration of the guiding center 
and its transverse drift velocity using (2.6.2). 

Consider initially the case when the particle initial velocity along B is 
zero, so that the particle path differs but little from a circle. In a uniform 
magnetic field this would be equivalent to observing the particle motion in 
a coordinate system moving with the guiding center velocity v 11 • However, 
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when the field lines are bent, a coordinate system gliding along B is not 
an inertial system. The curvature of the field lines give rise to inertial 
forces and therefore to a curvature drift of the particle. This effect will 
be investigated later in section 7. For the moment we will assume that 
the field lines are not curved and that the coordinate system moves with 
velocity v 11 • 

Under the conditions indicated above, the zero-order variables, vC0) 

and rC0), are seen to be situated in the (x, y) plane. The force term 

F = qv(o) x [r(o) ·(VB)] (4.1) 

can be separated into a component F 11 along Bo (z axis) and a component 
F ..L normal to B0 , in the (x, y) plane. Using a local cylindrical coordinate 
system (r, (}, z) with the z axis pointing along B0 at the origin (refer to 
Fig. 7), we have 

r(o) . (VB) = r(o) 8B 
8r 

(4.2) 

Of the three components of B = Brr +Bee+ Bzz, the 0-component 
is parallel to vC0) and therefore gives no contribution to F, while Brr 
contributes to F 11 and Bzz contributes to F ..L· Hence, from (4.1) and 
(4.2), 

Fll = q(v(O) X r) r(O) a!r = lql v(O)r(O) 8!r-z (4.3) 

F j_ = q(v(O) X z) r(O) {)Bz = -lql vCO)r(O) {)Bzr (4.4) 
or 8r 

Note that if q > 0 we have y(O) X r = v<0)z, whereas if q < 0 we have 
y(O) X r = -v<0)z. Now, r<0) is the cyclotron radius corresponding to Bo, 

lql Bo 
(4.5) 

and using the expression for the magnitude of the magnetic moment 
(2.4.34) (Eq. 4.34 in Chapter 2), we can write (4.3) and (4.4) as 

F I I 8Br.-.. 
11 = 2 m -a;z 

I I {)Bz_.._ 
F..L = -2 m --r 

8r 

(4.6) 

(4.7) 

There results apply to both positively and negatively charged particles. 
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v 

(q > 0) (q < 0) 

Fig. 7 Local cylindrical coordinate system with the z axis 
pointing in the direction of the field B 0 at the origin. 

v 

The average values of F 11 and F ..L over one gyration period are given 

< F11 > = 2Jml z( 2~ f B!r dO)= 2Jml z < ( 8!r) > (4.8) 

< F ..L > = -2 Jml ( 2~ f a:zrdO) = -2 Jml < r(8!z) > (4.9) 

The average force < F 11 >, given in (4.8), produces the guiding center 
parallel acceleration, while < F ..L >, given in (4.9), is responsible for the 
guiding center transverse drift velocity. The first one is the result of the 
divergence terms of B, and the second one of the gradient terms. We 
proceed now to evaluate each force term separately. 

4.1 Parallel Force 

Note that from V' · B = 0 we have, in cylindrical coordinates, 

(4.10) 



3. NONUNIFORM MAGNETOSTATIC FIELDS 71 

The first term can be expanded as 

~~(rBr) = aBr + Br 
r ar ar r (4.11) 

Since at r = 0 we have Br = 0, and since near the origin Br changes only 
very slightly with r, we can take 

Br aBr 
r ar (4.12) 

Consequently, from (4.12) and (4.11) 

aBr = -~(~aBo + aBz) 
ar 2 r ae az (4.13) 

Hence, taking the average over one gyration period, 

< (aBr) >=-~<~(aBo)>-~< (aBz) > (4.14) ar 2 r ae 2 az 
Now, since B is single-valued, 

<~(aBo)>= __!__f~(aBo)dB=O r ae 21r r ae (4.15) 

Furthermore, since aBzfaz is a very slowly varying function inside the 
particle orbit, it can be taken outside the integral sign, so that we have 
approximately, 

< (8Bz) > = __!__ j(8Bz)d() = 8Bz = 8B (4.16) az 271" az az az 
It is justifiable to replace B z by B in ( 4.16), since all the spatial variations 
of the magnetic field in the region of interest are very small. Therefore, 
we have finally from (4.14), (4.15), and (4.16), 

< (aBr) > = -~ (aB) ar 2 az ( 4.17) 

Using this result, the parallel force (4.8) becomes 

< Fll > = -lml ~~z=- lml (\7B)II (4.18) 

or, equivalently, 

< F 11 > = (m · \7)Bz = _1;1 [(B · \7)B]u (4.19) 
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y 

X 

Fig. 8 Two-dimensional coordinate system in the perpendicular 
plane, used in the evaluation of < F 1_ >. 

since m = -lml z = -lml B / B, and where the derivatives are evaluated 
at the origin. 

4.2 Perpendicular Force 

It is convenient to consider a two-dimensional Cartesian coordinate 
system (x, y) in the perpendicular plane, such that x = r cos( B) and 
y = r sin( 0), as shown in Fig. 8. Hence, 

r = cos( O)x + sin( O)y ( 4.20) 

a dx a dy a a . a - = -- + -- = cos(O)- + sm(O)- (4.21) 
ar dr ax dr ay ax ay 

Therefore, we obtain 

< r(a!z) > = < [cos(O)x + sin(O)y] [cos( B) affxz +sin( B) a~z ] > 

= < cos2 (0)a!zx > + < sin(O) cos(O)a!zy > + 
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() . ( ){)Bz_,._ . 2(()){)Bz_,._ ( ) <COS () Slll () {)y X> + < Slll {)y y > 4.22 

Next we approximate (oBz/ox) by (oBjox), and (oBz/oy) by (oBjoy), 
since these terms are slowly varying functions inside the particle orbit, so 
that they can be taken outside the integral sign contained in the average 
values of (4.22). Noting that <sin(()) cos(()) > = 0 and < cos2 (()) > = 
< sin2 (B) > = 1/2, we obtain 

_,._oBz 1 8B _,._ 1 8B _,._ 
<r->=--x+--y 

or 2 ox 2 {)y 
(4.23) 

Substituting this result into ( 4.9), yields 

< F j_ > = -lml (~!x. + ~!sr) = -lml (VBh (4.24) 

4.3 Total Average Force 

We proceed now to write down a general expression for the total 
average force< F > = < F 11 > + < F j_ >. From (4.18) and (4.24) we 
have 

< F > = -lml (VB) 11 -lml (VB)_i = -lml VB (4.25) 

Alternatively, we can use the vector identity 

(V X B) X B =(B. V)B- V(~B2 ) (4.26) 

and write ( 4.25) in the form 

< F > = _1;1 [(B. V)B- (V x B) x B] (4.27) 

Since m = -lml B/ B, we have 

< F > = (m · V)B + m x (V x B) (4.28) 

This is the usual expression for the force acting on a small ring current 
immersed in a magnetic field with spatial variation. The first term on the 
right-hand side of ( 4.28) alone gives the force acting on a magnetic dipole. 
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From (2.6.2) and (4.24) we see that< F _1_ >causes the guiding center 
to drift with the velocity 

vc= 
<Fj_>xB lml (VB) x B 

q B2 (5.1) 

This gradient drift is perpendicular to B and to the field gradient, and its 
direction depends on the charge sign. Thus, positive and negative charges 
drift in opposite directions, giving rise to an electric current (see Fig. 9). 

The physical reason for this gradient drift can be seen as follows. 
Since the Larmor radius of the particle orbit decreases as the magnetic 
field increases, the radius of curvature of the orbit is smaller in the regions 
of stronger B field. The positive ions gyrate in the clockwise direction 
for B pointing towards the observer, while the electrons gyrate in the 
counterclockwise direction, as shown in Fig. 9, so that the positive ions 
drift to the left and the electrons to the right. 

In the case of a collisionless plasma, associated with this gradient drift 
across B there is a magnetization current density J c, given by 

(5.2) 

where the summation is over all charged particles contained in a suitably 
chosen element of volume 8V. From (5.1) and (5.2), we have 

J = -(2_ ~~ ·I) (VB) x B 
c 8V~ mt B2 

i 

(5.3) 

The expression (4.18) for < F 11 > shows that, when the magnetic 
field has a longitudinal variation (i.e., convergence or divergence of the 
field lines along the z direction, as shown in Fig. 3), an axial force along 
z accelerates the particle in the direction of decreasing magnetic field, 
irrespective of whether the particle is positively or negatively charged. 
This is illustrated in Fig. 10. There are several important consequences 
of this repulsion of gyrating charges from a region of converging magnetic 
field lines, which we proceed to discuss. 
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Fig. 9 Charged particle drifts due to a B field gradient per­
pendicular to B. 

6.1 Invariance of the Orbital Magnetic Moment 
and of the Magnetic Flux 
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Using (4.18), the component of the equation of motion along B can 
be written as 

dvu.-... F I I 8B ...... m-z = < 11 > = - m -z 
dt 8z 

(6.1) 

If we multiply both sides of this equation by v 11 = dzfdt, we obtain (re­
placing lml by W _1_/ B), 

dv 11 d 1 2 W _1_ 8B dz 
mvu dt = dt(2mv 11 ) = -B 8z dt (6.2) 

where W _1_ = mv~/2 denotes the part of the particle kinetic energy as­
sociated with its transverse velocity. Since the total kinetic energy of a 
charged particle in a magnetostatic field is constant, that is, 

W11 + W_1_ =constant, (6.3) 

it follows that 

(6.4) 
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Fig. 10 Repulsion of gyrating charges from a region of con­
verging magnetic field lines. 

Therefore, from (6.2) and (6.4), 

(6.5) 

where dB/ dt represents the rate of change of B as seen by the particle as 
it moves in the spatially varying magnetic field (i.e., in the particle frame 
of reference). Comparing this result with the following identity, 

(6.6) 

we conclude that 
!!_(W..l)=o 
dt B 

(6.7) 

or, equivalently, 
w..l lml = B = constant. (6.8) 
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Therefore, as the particle moves into regions of converging or diverging B 
its cyclotron radius changes, but the magnetic moment remains constant. 
This constancy of the particle magnetic moment holds only within the 
approximation used, that is, when the spatial variation of B inside the 
particle orbit is small compared to the magnitude of B. Consequently, the 
orbital magnetic moment is said to be an adiabatic invariant. It is usually 
referred to as the first adiabatic invariant. 

The magnetic flux, <Pm, enclosed by one orbit of the particle is given 
by 

(6.9) 

Therefore, 
d 2rrm d 
-d (<Pm) = -2 -d lml = 0 t q t 

(6.10) 

in view of the invariance of lml. Hence, as the charged particle moves in a 
region of converging B field, it will orbit with increasingly smaller radius, 
so that the magnetic flux enclosed by the orbit remains constant. 

6.2 Magnetic Mirror Effect 

As a consequence of the adiabatic invariance of lml and <Pm, as the 
particle moves into a region of converging magnetic field lines its transverse 
kinetic energy W ..l increases, while its parallel kinetic energy W11 decreases, 
in order to keep lml and the total energy constant. Ultimately, if the 
B field becomes strong enough, the particle velocity in the direction of 
increasing field may eventually come to zero and then be reversed. After 
reversion, the particle is speeded up in the direction of decreasing field, 
while its transverse velocity diminishes. Thus, the particle is reflected from 
the region of converging magnetic field lines. This phenomenon is called 
the magnetic mirror effect and is the basis for one of the primary schemes 
of plasma confinement. 

When two coaxial magnetic mirrors are considered, as illustrated in 
Fig. 11, the charged particles may be reflected by the magnetic mirrors and 
may travel back and forth in the space between them, becoming trapped. 
This trapping region has been called a magnetic bottle and it has been 
used in laboratory for plasma confinement. 

The trapping in a magnetic mirror system is not perfect, however. 
The effectiveness of a coaxial magnetic mirror system in the trapping of 
charged particles can be measured by the mirror ratio Bm/ B0 , where Bm 
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Fig. 11 Schematic diagram showing the arrangement of coils 
to produce two coaxial magnetic mirrors facing each other, for 
plasma conflnement, and the relative intensity variation of the 
magnetic B.eld. 

is the intensity of the magnetic field at the point of reflection (where the 
pitch angle of the particle is 1r / 2) and B 0 is the intensity of the magnetic 
field at the center of the magnetic bottle. 

Consider a charged particle having a pitch angle ao at the center of the 
magnetic bottle. If v is the particle speed, which in a static magnetic field 
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Fig. 12 The loss cone in a coaxial magnetic mirror system. 

remains constant, the constancy of the magnetic moment lml = W ..1. / B 
leads to 

(6.11) 

where ex is the particle pitch angle at a position where the magnetic field 
intensity is B. Thus, at any point inside the magnetic bottle, for this 
particle, 

(6.12) 

Suppose now that this particle is reflected at the throat of the mirror, that 
is, ex= 1rj2 for B(z) = Bm. Therefore, from (6.12), 

(6.13) 

This means that a particle having a pitch angle exo given by 

(6.14) 

at the center of the bottle, is reflected at a point where the intensity of 
the field is Bm· Therefore, for a magnetic bottle with a fixed mirror ra­
tio Bm/ Bo , the plasma particles having a pitch angle at the center greater 
than exo, as given by (6.14) , will be reflected before the ends of the magnetic 
bottle. On the other hand, if the pitch angle of the particle at the center is 
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Fig. 13 Magnetic field with toroidal geometry. 

less than ao, its pitch angle will never reach the value rr / 2, which implies 
that at the ends of the bottle the particle has a non-vanishing parallel 
velocity and hence escapes through the ends of the mirror system. There 
is, therefore, a loss cone, a cone of half-angle ao with its vertex at the 
center, as shown in Fig. 12, where particles that have velocity vectors 
with a pitch angle falling inside it are not trapped. The loss cone is 
determined by the mirror ratio Bm/ B0 , according to (6.14). 

Devices that have no ends, with geometries such that the magnetic 
field lines close on themselves, offer many advantages for plasma confine­
ment. Toroidal geometries (Fig. 13), for example, have no ends, but it 
turns out that confinement of a plasma inside a toroidal magnetic field 
does not provide a plasma equilibrium situation, because of the radial 
inhomogeneity of the field. In this case a poloidal magnetic field is nor­
mally superposed on the toroidal field , resulting in helical field lines (as in 
the Tokamak). The major problem in most plasma confinement schemes, 
however, is that instabilities and small fluctuations from the desired equi­
librium configuration are always present, which lead to a rapid escape 
of the particles from the magnetic bottle. This instability problem is a 
fundamental one, and it is likely to occur in any conceivable magnetic 
confinement scheme. 

A good example of a natural magnetic bottle is the Earth's mag­
netic field, which traps charged particles of solar and cosmic origin. These 
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Fig. 14 Dipole approximation of the Earth's magnetic field. 
The distance of the Van Allen radiation belts from the center of 
the Earth, at the equator, is about 1.5 Earth radii for the high­
energy protons and about 3 to 4 Earth radii for the high-energy 
electrons. 

charged particles trapped in the Earth's magnetic field constitute the so­
called Van Allen radiation belts. As shown in Fig. 14, the geomagnetic 
field near the Earth is approximately that of a dipole, with the field lines 
converging towards the north and south magnetic poles. 

The electrons and protons that are t rapped in the Van Allen radia­
tion belts spiral in almost helical paths along the field lines, and towards 
the magnetic poles, where they are eventually reflected. These particles 
bounce back and forth between the poles. In addition to this bouncing 
motion, these trapped charged particles are also subject to a gradient drift 
and a curvature drift in the east-west direction, to be discussed later in 
this chapter. 

6.3 The Longitudinal Adiabatic Invariant 

Consider a particle trapped between two magnetic mirrors and bounc­
ing between them. Suppose that the separation distance between the two 
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Fig. 15 Schematic representation of a system of two coaxial 
magnetic mirrors approaching each other. 

mirrors changes very slowly in time as compared to the bounce period. 
With the periodic motion of the particle between the two magnetic mirrors 
(whose separation varies slowly in time) there is associated an adiabatic 
invariant called the longitudinal adiabatic invariant, defined by the integral 

J = f V · dl = f VII dl (6.15) 

taken over one period of oscillation of the particle back and forth between 
the mirror points. 

For a simple proof of the adiabatic in variance of J , consider the ide­
alized situation illustrated in Fig. 15, where the existing B field in the z 
direction is uniform in space, except near the points M1 and M 2 , where 
the field increases to form the two mirrors separated by a distance L. 
Suppose that the mirror M1 approaches the other one with velocity 

dL 
v - - -

m - dt (6.16) 

the negative sign being due to the fact that L decreases with time. It is 
assumed that this velocity is much smaller than the longitudinal compo­
nent of the particle velocity, that is, Vm « v 11 • Thus, t he distance moved 
by the mirror M1 during one period of oscillation of the particle is small 
compared to the distance L between the mirrors. 
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Further, since B is assumed to be uniform throughout the space be­
tween the mirrors (except near the ends), the longitudinal particle speed v11 

may be taken to be constant in the space between the mirrors. Neglecting 
the small end effects at the two mirrors, we can take 

r2L 
J = Jo v11 dl = 2v 11 L (6.17) 

The time rate of change of J is 

(6.18) 

where use was made of (6.16). To calculate dv 11 jdt, we set 

(6.19) 

where ~v11 denotes the change in the particle speed v11 on reflection from 
the moving mirror, and ~t = (2L/v 11 ) is the period of oscillation between 
the mirrors. In order to find ~v 11 it is convenient to transform to a coor­
dinate system moving with the magnetic mirror M1 , at the speed Vm. Let 
us denote this moving coordinate system by a prime and the incident and 
reflected particle speeds by subscripts i and r, respectively. Thus, 

' (vll)i = (vll)i + Vm 

' (vll)r = (vll)r- Vm 

which gives for the change in the particle speed, in one reflection, 

(6.20) 

(6.21) 

(6.22) 

since in the moving coordinate system ( v11 )~ = ( v11 )~ with only their direc­
tions reversed. Therefore, (6.19) becomes 

dv 11 2vm 
dt (2Ljv 11 ) 

(6.23) 

On substituting this result into (6.18) we find 

dJ d 
dt = dt (2vll L) = 0 (6.24) 
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which shows that J is an adiabatic invariant. This quantity is also referred 
to as the second adiabatic invariant. The parallel kinetic energy of a 
charged particle trapped between the two mirrors is (taking J = 2v 11 L) 

1 2 mJ2 
Wu = 2mv11 = S£2 (6.25) 

which increases rapidly as L decreases. The Italian physicist Fermi sug­
gested this process as as mechanism for the acceleration of charged par­
ticles in order to explain the origin of high-energy cosmic rays. Fermi 
proposed that two stellar clouds moving towards each other, and having 
a magnetic field greater than in the space between them, may trap and 
accelerate the cosmic charged particles. There is a limit, however, in the 
particle longitudinal speed increase, since the direction of the particle ve­
locity at the center of the mirror system may eventually enter the loss cone 
and escape through the ends of the system. It should be noted that a mag­
netic mirror moving towards a stationary one involves in fact time-varying 
B fields and, consequently, electric fields, which can lead to a change in 
the particle kinetic energy. 

So far the effects associated with the curvature of the magnetic field 
lines have not been considered. As stated previously, a B field with only 
curvature terms does not satisfy the equation \7 x B = 0, so that in 
practice the gradient and the curvature drifts will always be present si­
multaneously. In first-order orbit theory the effects corresponding to each 
of the components of B are additive. 

We investigate now the effect of the curvature terms 8Bxf8z and 
8By/8z, referred to in (2.6c), on the motion of a charged particle. We will 
assume that these terms are so small that the radius of curvature of the 
magnetic field lines is very large compared to the particle cyclotron radius. 
Let us introduce a local coordinate system gliding along the magnetic field 
line with the particle longitudinal velocity v 11 • Since this is not an inertial 
system because of the curvature of the field lines, a centrifugal force will be 
present. This local coordinate system can be specified by the orthogonal 
set of unit vectors :8, ih, and n2, where :8 is along the field line, n1 is 
along the principal normal to the field line, and n2 is along the binormal 
to the curved magnetic field line, as indicated in Fig. 16. 
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Fig. 16 Curved magnetic field line showing the unit vector B 
along the field line, the principal normal nl, and the binormal 
n2, at an arbitrary point. Note that lll X ll2 = B. The local 
radius of curvature is R. 
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The centrifugal force F c acting on the particle, as seen from this 
noninertial system, is given by 

(7.1) 

where R denotes the local radius of curvature of the magnetic field line 
and v11 is the particle instantaneous longitudinal speed. From (2.6.2) the 
curvature drift associated with this force is 

Fe X B mv~ ....... 
vc = qB2 = - RqB2 (n1 x B) (7.2) 

To express the unit vector n1 in terms of the unit vector B along the 
magnetic field line, we let ds represent an element of arc along the field 
line subtending an angled¢, 

ds = Rd¢ (7.3) 

If dB denotes the change in B due to the displacement ds (see Fig. 16), 
then dB is in the direction of n1 and its magnitude is 

(7.4) 
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Consequently, 
(7.5) 

Dividing this equation by (7.3) side by side, gives 

""' dB 
ds 

(7.6) 

The derivative d/ds along B may be written as (B · \7), so that (7.6) 
becomes 

(7.7) 

Incorporating this result into equation (7.1), we obtain 

2 ""' ""' Fe=- mv 11 (B · V')B (7.8) 

This force is obviously perpendicular to the magnetic field B, since it is in 
the -n1 direction as indicated in (7.1), and gives rise to a curvature drift 
whose velocity is 

2 
mv 11 ""' ""' 

vc = --[(B · Y')B] x B 
qB2 

(7.9) 

Since B = BB and writing wll = mv~ /2 for the particle longitudinal 
kinetic energy, (7.8) and (7.9) can be written, respectively, as 

Fe=- 2; 11 [(B · V')B]J_ 

vc = - 2W11 [(B · Y')B] x B 
qB4 

(7.10) 

(7.11) 

Thus, at each point, the curvature drift is perpendicular to the osculating 
plane of the magnetic field line, as shown in Fig. 17. 

An electric current is associated with the curvature drift, since it is 
in opposite directions for particles of opposite sign. From (7.11) and from 
the definition of the electric current density, we obtain for the curvature 
drift current density 

(7.12) 
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Fig. 17 Relative direction of the particle guiding center drift 
velocity v c, due to the curvature of the magnetic field line. 
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where the summation extends over all charged particles contained in the 
small volume element bV. 

The curvature drift and the gradient drift always appear together 
and both point in the same direction, since the term \7 B points in the 
direction opposite to F c (see Fig. 5). These two drifts, therefore, can be 
added up to form the combined gradient-curvature drift. Thus, from (5.1) 
and (7.11), 

1 2 2 
2 mv_1_ mv 11 

vee= vc + vc =- qB3 (\7 B) x B- qB4 [(B · V)B] x B (8.1) 

When volume currents are not present (in a vacuum field, for example) so 
that \7 x B = 0, the vector identity (4.26) allows the expression (8.1) to 
be written in the compact form 

(8.2) 

In the Earth's magnetosphere, near the equatorial plane, both the 
curvature and the gradient drifts (B decreases with altitude) cause the 
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ELECTRONS 

Fig. 18 Sketch (not on scale) illustrating the motion of charged 
particles in the Earth's magnetic field. The longitudinal drift 
velocity v GC, due to the gradient and curvature of B, results in 
an east to west current called the ring current. 

positively charged particles to slowly drift westward and the negative ones 
eastward, resulting in an east to west current, known as the ring current. 
Fig. 18 illustrates schematically the motion of a charged particle trapped 
in the Earth's magnetic field. The particle bounces back and forth along 
the field line between the mirror points M 1 and M2 , and drifts in lon­
gitude as a result of the gradient and curvature of the field lines. The 
trajectory described by the particle is therefore contained in a tire-shaped 
shell encircling the Earth (Fig. 19). This t ire-shaped shell encircling the 
Earth defines a surface on which the particle guiding center drifts slowly 
around the Earth. 

Connected with the periodic motion of the particle on this drift sur­
face there is an adiabatic inva riant, called the third adiabatic invariant, 
which is the total magnetic flux enclosed by the drift surface. Clearly, in 
a static situation this flux is obviously constant. The significant fact here 
is that the total magnetic flux, ~m, enclosed by the drift surface, remains 
invariant when the field varies slowly in time, that is, when the period of 
motion of the particle on the drift surface is small compared to the t ime 
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Fig. 19 Schematic representation of the longitudinal drift of 
charged particles around the Earth. 
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scale for the magnetic field to change significantly. This invariant has few 
applications because most fluctuations of B occur on a time scale that is 
small compared to the drift period. 

PROBLEMS 

3.1 Describe semiquantitatively the motion of an electron under the pres­
ence of a constant electric field in the x direction, 

E =Eox 

and a space varying magnetic field given by 

B = B0 a(x + z)x + B0 [1 + a(x - z)]z 

where Eo, Bo , and a are positive constants, lo:xl « 1 and lo:zl « 1. 
Assume that initially the electron moves with constant velocity in the 
z direction, v(t = 0) = v0z. Verify if this magnetic field satisfies the 
Maxwell equation \7 x B = 0. 
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3.2 Verify if there is any drift velocity for a charged particle in a magnetic 
field given by 

B = By(x)y + Boz 

where By(x) and 8By/8x are very small quantities. Does this field satisfy 
the Maxwell equation V' x B = 0? 

3.3 Consider a system of two coaxial magnetic mirrors whose axis coin­
cides with the z axis, being symmetrical about the plane z = 0, as shown 
schematically in Fig. 20. Describe semiquantitatively the motion of a 
charged particle in this magnetic mirror system considering that at z = 0 
the particle has v 11 = v~ and v _1_ = vi. What relation must exist between 
Bo = B(z = O)z, Bm = B(z = ±zm)z and a0 (particle pitch angle at 
z = 0) for the particle to be reflected at Zm ? 

3.4 For the magnetic mirror system of problem 3.3 suppose that the axial 
magnetic field changes in time, that is Baxial = B(z, t)z. Considering that 
the magnetic moment 

lml = ~mv}_ (z, t) 
B(z, t) 

is an adiabatic invariant (note that its value is the same at z = 0 and at 
z = ±zm, and that v2 = v; + v}_), show that the longitudinal adiabatic 
invariant can be written in the form 

3.5 Consider the magnetic mirror system shown in Fig. 20. Suppose that 
the axial magnetic field is given by 

B(z) = Bo[l + (z/ao)2] 

where B0 and a0 are positive constants, and that the mirroring planes are 
given by z = -Zrn and z = Zrn· 

(a) For a charged particle trapped in this mirror system, show that the z 
component of the particle velocity is given by 

_ (2lml B0)1/2[(Zm)2 ( z )2]1/2 v11 (z)- - - -
m a0 a0 



3. NONUNIFORM MAGNETOSTATIC FIELDS 

Bo 

z 

·Zm 

Fig. 20 Magnetic field line geometry for a system of two 
coaxial magnetic mirrors whose axis coincides with the z axis, 
being symmetrical about the plane z = 0. 
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(b) The average force acting on the particle guiding center, along the z 
axis, is given by 

< F11 > = -lml (~~)z 
Show that the particle performs a simple harmonic motion between the 
mirroring planes, with a period given by 

( m ) 1/2 

T = 2nao 2 lml Eo 

(c) If the motion of the particle is to be limited to the region I z I < Zm, 

what restriction must be imposed on the total energy and on the magnetic 
moment? 

3.6 Consider a toroidal magnetic field, as shown in Fig. 21. 
(a) Show that the magnetic flux density along the axis of the torus is given 
by 

where Ba denotes the magnitude of B at the radial distance r = a. 
(b) In what direction is the gradient drift associated with the radial vari­
ation of B¢? Examine qualitatively the type of charge separation that 
occurs. Neglect the effect of the magnetic field line curvature. 
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Fig. 21 Magnetic field line with toroidal geometry. 

(c) If E denotes the induced electric field due to charge separation, in what 
direction is the E x B drift? 
(d) Show that it is not possible to confine a plasma in a purely toroidal 
magnetic field, because of the gradient drift and the E x B drift. 

3.7 Consider a spatially nonuniform magnetostatic field expressed in 
terms of a Cartesian coordinate system by 

B(x, z) = B0 [azx + (1 + ax)z] 

where Bo and a are positive constants, laxl « 1 and lazl « 1. 
(a) Show that this magnetic field is consistent with Maxwell equations, 
so that both gradient and curvature terms are present. Determine the 
equation of a magnetic flux line. 
(b) Write down the Cartesian components of the equation of motion for 
an electron moving in the region near the origin under the action of this 
magnetic field. 
(c) Consider the following initial conditions for the electron: 

r(O) = (xo + V..Lo/Dc)x 

v(O) = V..LoY + VzoZ 

Solve the equation of motion using a perturbation technique, retaining 
only terms up to the first order in the small parameter a. Show that 
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the leading terms in the velocity components, after eliminating the time 
periodic parts, are given by 

" Vz = VzoZ 

(d) Show that the average position of the electron in the (x, z) plane fol­
lows the magnetic flux line that passes through its initial position. 
(e) Show that the gradient and curvature drift velocities are given, respec­
tively, by 

vc = -(a/Dc)(~vi)Y 

vc = -(a/Dc)v;oY 

so that the total drift velocity is precisely the nonperiodic part of vy. 

3.8 The Earth's magnetic field can be represented, in a first approxi­
mation, by a magnetic dipole placed in the Earth's center, at least up to 
distances of a few Earth radii (RE)· 
(a) Using the fact that, at one of the magnetic poles, the field has a mag­
nitude of approximately 0.5 gauss near the surface, calculate the dipole 
magnetic moment. 
(b) Consider the motion of an electron of energy E0 at a radial distance 
ro, where ro > RE. Calculate its cyclotron frequency and gyroradius. 
(c) Assuming that the electron is confined to move in the equatorial plane, 
calculate its gradient and curvature drift velocities, and determine the time 
it takes to drift once around the Earth, at the radial distance r 0 . 

(d) Calculate the period of the bounce motion of the electron, as it gets 
reflected back and forth between the magnetic mirrors near the poles. 
What is the altitude of the reflection points? Assume that W11 = W ..i at 
the magnetic equatorial plane. 
(e) Obtain numerical values for the results of items (b), (c), and (d), con­
sidering Eo = 1 MeV and r0 = 4RE. Examine these results in terms of 
typical values for charged particles in the outer Van Allen radiation belt. 
(f) Assuming that there is an isotropic population of 1 MeV protons and 
100 keV electrons at about 4 RE, each having a density ne = ni = 107 m-3 

in the equatorial plane, calculate the ring current density in ampere/m2 . 

3.9 Imagine an infinite straight wire carrying a current I and uniformly 
charged to a negative electrostatic potential ¢. Analyze the motion of an 
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electron in the vicinity of this wire using first-order orbit theory. Sketch 
the path described by the electron, indicating the relative directions of the 
electromagnetic, gradient, and curvature drift velocities. 

3.10 The field of a magnetic monopole can be represented by 

r 
B(r) = >. 3 r 

where ). is a constant. Solve the equation of motion to determine the 
trajectory of a charged particle in this field. (You may refer to the book 
by B. Rossi and S. Olbert, Introduction to the Physics of Space, Chapter 
2, McGraw-Hill, 1970). 

3.11 Analyze the motion of a charged particle in the field of a magnetic 
dipole. Determine the two constants of the motion and analyze their phys­
ical meaning. (For this problem, you may refer to the book by S. Stormer, 
The Polar Aurora, University Oxford Press, 1955, or to B. Rossi and S. 
Olbert, Introduction to the Physics of Space, Chapter 3, McGraw-Hill, 
1970). 



CHARGED PARTICLE MOTION 

IN TIME-VARYING 

ELECTROMAGNETIC FIELDS 

1. INTRODUCTION -------------------' 

In this chapter we analyze the motion of charged particles in the 
presence of time-varying fields. Initially, in the two following sections, we 
consider a time-varying electric field and a constant magnetic field, both 
fields being spatially uniform. The assumption of a constant and spatially 
uniform B field is well justified if the externally applied magnetostatic field 
is much larger than the magnetic field associated with the time-varying 
E field. Also, the assumption of an electric field that is spatially uniform 
is valid if the charged particle cyclotron radius is much smaller than the 
scale length of the spatial variation of E. Both these requirements are 
assumed to hold in the analysis presented in sections 2 and 3. In section 
4 we consider a time-varying magnetic field and the corresponding space­
varying electric field. 

TRIC FIELD 

2.1 Equation of Motion and Polarization Drift 

For the moment we shall assume that the characteristic time scale 
for variation of the electric field is much larger than the particle cyclotron 
period. The component of the charged particle motion along the magnetic 
field lines is given by (2.5.4) (Eq. 5.4 in Chapter 2), from which we can 
write in general 

V II (t) - VII (0) = !l_ tEll (t')dt' 
m Jo (2.1) 
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This result, however, does not lead to any new interesting information. 
Since the E field is varying slowly in time, the component of the 

motion across the magnetic field lines is expected to be not very different 
from that for a constant E field. Therefore, it is reasonable to seek the 
solution for v .l in a form similar to (2.5.8). Hence, we take 

I Vj_=V_l+vE+Vp (2.2) 

where VE = ExBj B 2 is the electromagnetic plasma drift velocity (2.5.11). 
Note that VE varies slowly in time, since E is slowly time-varying. The 
substitution of (2.2) into the perpendicular component equation of motion 
(2.5.5) yields 

m! (v~ + VE + Vp) = q[E.l + (v~ + VE + Vp) X Bj (2.3) 

From (2.5.11) VE = (E.l x B)/B2 , so that we can write (2.3) as 

(2.4) 

Thus, if we set 
m (8E_1_) 

Vp = qB2 8t (2.5) 

we can write (2.4) in the form 

dv~ dvp 1 

mdt + m dt = qv .l x B (2.6) 

When the second term on the left-hand side can be neglected, this 
equation becomes identical to (2.5.12), which describes a circular motion 
about the magnetic field lines. Comparing the relative magnitudes of the 
second term on the left, with that on the right-hand side of (2.6), we find 

lm dvpjdtl _ l(m2 jqB2)(82 E1_j8t2)l _ 
lqv~ x Bl lqv~ Bl 

I(E_i/ B)/v~l (w2m2)/(q2 B2) = lvE/v~l (w/f2c)2 (2.7) 

where we have assumed that E_1_ has a harmonic time dependence with 
a characteristic angular frequency w. Considering that this characteristic 
frequency is much smaller than the cyclotron frequency, 

(2.8) 
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and, further, if lvE/v~l is also small, then the term m(dvpjdt) can be 
neglected in comparison to the other terms of (2.6), and we obtain 

dv~ , mdt =qv..L x B (2.9) 

which is identical to (2.5.12). Therefore, v~ corresponds to the usual 
circular motion of the charged particle about the magnetic field, and is 
independent of the variations of the electric field. Superposed upon this 
circular motion velocity are the drift velocities 

Ej_ X B 
VE = --=-=-B2 (2.10) 

and 

(2.11) 

Thus, the effect of a slowly varying electric field is the addition of the drift 
velocity v P called the polarization drift velocity. 

Since v P is in opposite directions for charges of opposite sign, the 
time-dependent electric field produces a net polarization current in a neu­
tral plasma, so that the plasma medium behaves like a dielectric. The 
polarization current density J P is the rate of flow of positive and negative 
charges across unit area, and is given by 

(2.12) 

where the summation is over all positive and negative charges contained 
in the small volume element b"V, and Pm is the mass density of the plasma. 

2.2 Plasma Dielectric Constant 

The polarization effect in a plasma is due to the time variation of 
the electric field. The application of a steady E field does not result in a 
polarization field, since the ions and electrons can move around to preserve 
quasineutrality. Since the plasma behaves like a dielectric, the polarization 
current density Jp can be taken into account through the introduction of 
the dielectric constant of the plasma. 

For this purpose, we can separate the total current density J into the 
polarization current density Jp and the current density J0 due to other 
sources, 

(2.13) 
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Thus, combining Jp with the term c08E1_j8t, which appears on the right­
hand side of Maxwell \7 x B equation, we obtain 

E 8E1_ Pm 8E1_ = E ( 1 Pm ) 8E1_ = E 8E1_ 
0 8t + B2 8t 0 + c0 B2 8t 8t 

(2.14) 

where 

E =coEr =Eo ( 1 + E:~2 ) (2.15) 

is the effective electric permittivity perpendicular to the magnetic field. 
In some cases the relative permittivity Er of a plasma can be very high. 
As an example, if we consider a number density of 1020 particlesjm3 and 
B = 1 tesla, we have Er = 104 . 

The resulting charge density pp, which accumulates as a result of the 
polarization current density JP, satisfies the charge continuity equation 

8pp + \7. J = 0 
8t p 

(2.16) 

From (2.16) and (2.12) we have 

P = _ Pm \7 . E1_ 
P B2 (2.17) 

The total charge density p can be separated as 

P =Po+ Pp (2.18) 

where p0 corresponds to J 0 . Assuming that the parallel component of the 
electric field vanishes, we see that 

1 ( ) Po Pm \7 · E = - Po + PP = - - --\7 · E 
Eo Eo EoB2 

(2.19) 

from which we find, using (2.15), 

(2.20) 

Thus, the resulting charge density pp can also be correctly taken into 
account by the introduction of an effective electric permittivity E. 

We can further verify the correctness of introducing the effective elec­
tric permittivity of the plasma, by calculating the total energy density 
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associated with the E field, which for an ordinary dielectric medium of ef­
fective permittivity E is given by EE2 /2. The energy density in the electric 
field is given by 

(2.21) 

To calculate the additional drift kinetic energy acquired by the particle as 
a result of the polarization drift, we note that for a change ~E_1_ in the 
electric field, in a time interval ~t, the displacement ~r of the guiding 
center, due to this change, is 

(2.22) 

The corresponding work done by the electric field is, using (2.22), 

(2.23) 

Hence, using (2.10), the change in the particle kinetic energy associated 
with the polarization drift is given by 

(2.24) 

This result shows that the work done by the electric field, during polar­
ization, is equal to the change in the kinetic energy associated with the 
particle motion at the electromagnetic drift velocity VE. Note that VE 

does not lead to any energy exchange between field and particle, since 
the displacement associated with v E is perpendicular to the electric field. 
Summing (2.24) over all particles in a unit volume gives the change in the 
total kinetic energy density of the system 

(2.25) 

The kinetic energy density associated with the circular motion of the par­
ticles is not affected by changes in the electric field. Thus, the total energy 
density (Wr =WE+ Wv) associated with the electric field is 

(2.26) 

assuming that there is no parallel component of the electric field. This 
result completes our discussion about the legitimacy of the introduction 
of an effective electric permittivity for the plasma. 
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at•" -------------• 
3.1 Solution of the Equation of Motion 

We consider now an arbitrary time variation of the electric field, but, 
again, the field is spatially uniform. The applied magnetic field is static 
and uniform, as before. Without loss of generality, the time variation of 
E can be assumed to be harmonic with angular frequency w, 

E(t) = Eoe-iwt (3.1) 

where the complex amplitude Eo is independent of time. According to the 
usual convention, only the real part of this expression is to be taken for 
the physical interpretation of the results. An arbitrary time variation of E 
can be written as a superposition of terms similar to (3.1), corresponding 
to all possible values of w, since the equation of motion (2.5.5) is linear. 
Using (3.1), the equation of motion becomes 

dv " t 
mdt = q(Eoe-2w + v x B) (3.2) 

It is natural to expect the forced oscillations of the charged particle 
to have the same frequency as that of the forcing electric field. Thus, the 
particle velocity vector may be conveniently decomposed into two parts, 

(3.3) 

where v m is the velocity associated with the magnetic field alone and, 
thus, contains no time variation at the angular frequency w, while Ve is 
due to the oscillating electric field. The substitution of (3.3) into (3.2) 
gives 

dvm c t " t c t m-- - iwmv e-2w = q(E e-2w + v x B + v x Be-2w ) dt e 0 m e (3.4) 

The terms containing the periodicity at the angular frequency w are de­
coupled from those that do not, so that (3.4) separates into two equations, 
one involving only the velocity v m associated with the magnetic field ac­
cording to 

dvm mill= QVm X B (3.5) 
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and the other involving only the velocity Ve, 

-iwmve = q(Eo +VeX B) (3.6) 

Equation (3.5) corresponds to the usual circular motion of the particle 
about the magnetic field lines at the cyclotron frequency nc. 

To solve (3.6) for Ve it is appropriate to separate this equation into 
components parallel and perpendicular to B. The parallel velocity compo­
nent is obtained immediately as 

2q 
Veil= -Eoll 

wm 

while the perpendicular velocity component satisfies the equation 

( -iw +! Bx )vd =! Eo_1_ 

Introducing the cyclotron frequency vector, defined by 

q 
flc = --B 

m 

we can rewrite (3.8) in the form 

(iw + flcx)vd = _!f._Eo_1_ 
m 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

In order to solve this equation for v d, we multiply both sides by the 
conjugate operator - ( iw - nc X). First, we note that 

(3.11) 

Therefore, (3.10) becomes 

q (iw- flex) 
v d = m (w2 - D~) Eoj_ (3.12) 

Combining the results contained in (3.12), (3.7), and (3.5), we obtain 
the following expression for the total velocity vector (3.3): 

q [ i ( iw - flc X) l -iwt 
v = Vm + m w Eo 11 + (w2 _ D~) Eo_1_ e (3.13) 
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3.2 Physical Interpretation 

The result contained in (3.13) shows that along the magnetic field 
lines the particle oscillates with frequency w and amplitude v ell, as given 
by (3.7), so that the velocity oscillation lags goo behind the oscillation of 
the applied electric field. This result is easily seen by taking the real part 

f th t -iwt d E -iwt o e vee ors ve 11 e an o11 e , 

(3.14) 

(3.15) 

which clearly are goo out of phase. 
In the plane perpendicular to B the particle motion is the super­

position of the circular motion at the cyclotron frequency nc, with an 
oscillation at the frequency w and amplitude given by (3.12). 

In order to analyze the physical meaning of the motion in the plane 
perpendicular to B, it is convenient to decompose the oscillating electric 
field vector into two circularly polarized components, with opposite di­
rections of rotation. The advantage of using the two circularly polarized 
components is that (3.12), for the perpendicular velocity component Ve..L, 

uncouples into two separate equations pertaining to the two circular po­
larizations rotating in opposite directions. Thus, we take 

with 

(3.16) 

(3.17) 

(3.18) 

where B = B / B is a unit vector pointing in the direction of the magnetic 
field. The component En represents a circularly polarized field with its 
electric vector rotating to the right (clockwise direction), and the com­
ponent EL represents a circularly polarized field with its electric vector 
rotating to the left (counterclockwise direction), as seen by an observer 
looking in the direction of the B field. 

To understand the physical meaning of this decomposition, let us 
consider a Cartesian coordinate system with the z axis pointing along B 
and the x axis pointing along E..L. Then, we have 

(3.1g) 
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t= 0 

E..L 

7t 
t=2ro 

t = 0 

7t t=­
(J) 

+ 

t = 0 

7t 
t=ro 

7t 
t=2ro 

Fig. 1 The electric field of a plane polarized wave, represented 
by the double-headed arrow E..l, is equivalent to the vector sum 
of left and right circularly polarized waves EL and ER. 

and from (3.17) and (3.18), 

E E -iwt 1 E (~ .~) -iwt R = oRe = 2 O..L X + ~y e (3.20) 

EL = EoLe-iwt = ~Eo..i(x- iy)e-iwt (3.21) 

The components of the actual electric field are obtained by taking the real 
part of these two equations, 

R{ER} = ~Eo..L(x cos wt + y sin wt) 

R{EL} = ~Eo..L(x cos wt- y sin wt) 

(3.22) 

(3.23) 

Thus, the fields ER and EL are constant in magnitude, but sweep around 
in a circle at the frequency w. For ER the rotation is clockwise looking 
in the direction of B, and it is called a right circularly polarized (RCP) 
component, while for EL the rotation is counterclockwise and it is called 
a left circularly polarized (LCP) component. This behavior is illustrated 
in Fig. 1. 
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Proceeding in the analysis of the particle motion in the perpendicular 
plane, we must now substitute the decomposed form (3.16) into (3.12). 
The operator ( iw - nc X) when applied on the right circularly polarized 
component EoR gives 

~iw(Eo_L + ii3 x Eo_1_) + ~(qBjm)B x Eo_1_- ~i(qBjm)Eoj_ = 

~iw(Eoj_ + iB x Eo_1_) - ~i(qB jm)(E0_1_ + iB x E0_1_) = 

i(w- qB/m)EoR (3.24) 

In a similar fashion we find for the left circularly polarized component, 

(iw- f!cx)EoL = i(w + qBjm)EoL (3.25) 

Therefore, both EoR and EoL are eigenvectors of the complex operator 
appearing in (3.12). Using (3.24) and (3.25), (3.12) becomes 

(3.26) 

In this equation the signs are coupled such that the upper signs apply to 
a positively charged particle and the lower signs to a negatively charged 
particle, since by definition nc = lql B /m is always positive. Thus, v e_1_ 

also separates into two vectors rotating in opposite directions, 

Ve_L = VR + V£ (3.27) 

where 

(3.28) 

(3.29) 

For a positive ion we see that, as w approaches the ion cyclotron frequency 
( nci), there is resonance between the ion and the left circularly polarized 
component of the electric field. For an electron, as w approaches the elec­
tron cyclotron frequency (nee), resonance occurs with the right circularly 
polarized component. 
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3.3 Mobility Dyad 

The expression for Ve = Verr + VR + V£ can be written in a compact 
form through the introduction of the mobility dyad M defined by 

Ve = M ·Eo (3.30) 

Using (3.7), (3.28), and (3.29), we see that the mobility dyad M is diagonal 
in the rotating system, so that (3.30) becomes in matrix form, 

( VR) _ iq ((w:nc) 
V£ - - 0 

wm 
Ve[[ 

0 

0 

(3.31) w 

If, instead of the rotating system, we use a stationary Cartesian coordinate 
system with the z axis pointing along the magnetostatic field, we can write 
(3.7) and (3.12) in matrix form as 

w2 iwDc 
(w2 - n~) ±(w2 -D~) 0 

("'") zq 
Vey iwDc w2 

0 wm 
=t= (w2 - n~) (w2 - n~) Vez 

(
Eox) Eoy 
Eoz 

(3.32) 

0 0 1 

3.4 Plasma Conductivity Dyad 

Denoting by n0 the number density of electrons (charge -e) and ions 
(charge +e) in a plasma, the electric current density can be expressed as 

(3.33) 

where Me and Mi are the mobility dyads for the electrons and ions, 
respectively. Introducing the conductivity dyad S by 

(3.34) 

we obtain from (3.33), for the electron and ion conductivities, respectively, 

(3.35) 

(3.36) 

With the help of (3.32), these conductivities can be expressed in matrix 
form, in a Cartesian coordinate system, as 
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. 2 
S _ ~noe 
e-

Wme 

w2 iwf!ce 
(w2- n~e) (w2 - n~e) 

0 

iwf!ce w2 
0 

(w2- n~e) (w2- n~e) 

(3.37) 

0 0 1 

. 2 
S . _ ~noe 
~-

wmi 

w2 iwO.ci 
0 

(w2- n~i) (w2- n~i) 
iwO.ci w2 

0 
(w2- n~i) (w2- n~i) 

(3.38) 

0 0 1 

The fact that the conductivity dyad S is imaginary implies that J and E 
are 90 degrees out of phase, since the actual physical expressions for J and 
E are obtained by taking the real part of (3.34) and (3.1), respectively. 

3.5 Cyclotron Resonance 

The particle velocities, given in (3.7), (3.28), and (3.29), do not re­
present correctly the motion of the particle when the frequency w of the 
applied electric field is equal to the particle cyclotron frequency f!c. For 
example, when the forcing electric field rotates in the counterclockwise 
direction, looking along B (LCP component), a positive particle is able 
to absorb energy from the electric field, so that its speed increases con­
tinuously and indefinitely in time. The same holds for an electron, say, 
and the RCP component of the forcing electric field when w = f!ce. This 
phenomenon is called cyclotron resonance. 

To investigate the particle motion under resonance conditions, it is 
necessary to go back to the original equation of motion and solve the 
problem for the case when w = f!c. For simplicity, let us assume that the 
component of the E field along B vanishes, that is, E = E1.. Hence, we 
take 

(3.39) 

where f!c = lql B jm. In view of this assumption, the particle velocity 
along B is constant and is equal to the initial parallel velocity. The com­
ponent of the equation of motion in the plane normal to the magnetic field 
becomes 

dvl.(t) = .!l__[E e-ifU +v (t) x B] 
dt m o1. l. (3.40) 
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Taking the derivative of this equation with respect to time, yields 

(3.41) 

and using (3.40) to eliminate (dv 1_jdt) in (3.41), we obtain, after rear­
ranging the terms, 

d2 2 
v j_ n2 ·n q E -in t q (B E ) -in t -- +u Vj_ = -Zuc- Ql_e c -- X Ql_ e c 

dt2 c m m2 
(3.42) 

The solution of this inhomogeneous differential equation is given by 
the sum of the solution of the homogeneous equation plus a particular 
integral of the inhomogeneous equation. The solution of the homogeneous 
equation 

(3.43) 

is just the cyclotron motion described previously by the velocity Vm. A 
particular integral of (3.42) is provided by the function 

(3.44) 

To determine the constant vector A we differentiate (3.44) twice with 
respect to time: 

(3.45) 

d:~l_ = -2iOcAe-inct- O~v 1_ (3.46) 

Comparing (3.46) with (3.42) we see that (3.44) satisfies (3.42) provided 
we take 

q iq2 
A = 2m Eol_ - 20cm2 (B x Eol_) (3.47) 

Therefore, the complete solution of (3.42) is 

q (E 'B..... E ) t -in t v 1_ = v m + 2m Ql_ =F z X Ol_ e c (3.48) 

where we have replaced qB/m by ±Oc, the upper and lower signs corre­
sponding to positive and negative charges, respectively. Using (3.17) and 
(3.18), which define the right and left circularly polarized components of 
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the electric field, respectively, we can write (3.48) for a positively charged 
particle ( q > 0) as 

q E t -in t V ..L = V m + - OL e c 
m 

(3.49) 

and for a negatively charged particle ( q < 0) as 

q E t -m t 
V ..L = Vm +- OR e c 

m 
(3.50) 

Hence, the particle velocity increases indefinitely with time. Note that the 
expressions (q/m)EoL and (q/m)EoR represent a constant acceleration. 
A positive charge resonates with EL and a negative one with ER. The 
particle moves in circles of ever-increasing radii, with its velocity increasing 
continuously during this spiral motion at the expense of the electric field 
energy. A typical resonant spiral for an electron is shown in Fig. 2. 

This phenomenon can be used as a method of increasing the particle 
speed and hence the kinetic temperature of a plasma through particle 
collisions. This method is known as radio frequency heating of the plasma 
by cyclotron resonance. 

4. TIME-VARYING MAGNETIC IEL 
SPACE-VARYING ELECTRIC FIELD 

From Maxwell equations it is seen that a time-varying magnetic field is 
also accompanied by a space-varying electric field. TheE field associated 
with the time-dependent B field satisfies 

aB 
V' X E = - ­at ( 4.1) 

We shall assume that the fractional change in the magnetic field, in a time 
interval of the order of the cyclotron period, is very small. 

4.1 Equation of Motion and Adiabatic Invariants 

Consider the magnetic field in the z direction and suppose that it is 
spatially uniform and increases with time within the circular orbit of the 
particle. From Faraday's law, an electric field is induced along the path 
of the particle orbit (see Fig. 3), which accelerates the particle, with the 
result that the orbit is no longer a circle. However, since the time variation 
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Fig. 2 Outward spiral motion of an electron, in the plane normal 
to the magnetic field, under cyclotron resonance. 

of the B field is small, the azimuthal component of the electric field E is 
also small, and the orbit will be nearly a circle. 

Expressing ( 4.1) in cylindrical coordinates, taking B = BZ, and con­
sidering E = eEo(r), we find 

1 a aB 
-:;. ar (rEo) = - at (4.2) 

Integrating with respect tor, noting that (aBjat) can be taken outside 
the integral sign since B is a slowly varying function, yields 

1
r a aB1r 
-, (r' Eo) dr' = -- r' dr' 

0 ar at 0 

from which we obtain the induced electric field as 

1 aB 
Eo=-- r-

2 at 

Further, since r X Z = -e, ( 4.4) can be written in vector form as 

1 aB 
Eo=- r x-

2 at 

(4.3) 

(4.4) 

(4.5) 
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z 

y 

X 
Ee 

Fig. 3 Azimuthal electric field Eo induced by a time-varying 
magnetic field. The magnetic field inside the orbit is uniform, 
parallel to the z axis, and increases slowly in time. 

Using this result in the Lorentz force equation, we obtain for the equation 
of motion, after some rearrangement, 

dv 1 anc ( ) - = - - r X - + {1 X V 4.6 
dt 2 8t c 

Instead of solving ( 4.6) directly, we shall determine a relation between the 
radius vector rand the time rate of change of B, by calculating the change 
in the particle transverse kinetic energy over one gyration period, which 
results from the action of the induced electric field. Since the force acting 
on the particle due to the electric field is given by qEo , the increase in the 
transverse kinetic energy over one gyration period is given by 

b(~mv}_) = q f Eo · dr (4.7) 

where dr denotes an element of path along the particle trajectory, so that 
v 1. = dr / dt. Since the field changes very slowly, we can calculate the line 
integral in (4.7) as if the orbit were closed. Using Stokes's theorem we 
replace the line integral by a surface integral over the unperturbed orbit, 

1 2 { { 8B 
b(2mv..L) = q ls (\7 X Ee) . dS = -q l s at . dS (4.8) 
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where use was made of ( 4.1). Here S denotes the surface enclosed by the 
cyclotron orbit, its direction being such that B · dS < 0 for ions, and 
B · dS > 0 for electrons, in view of the diamagnetic character of a plasma. 
Thus (4.8) becomes 

( 4.9) 

Now, the change in the magnetic field over one gyration period (2n /Oc) is 

(4.10) 

and using the relations r~ = vJ._jn~ and n-; = lql B /m, ( 4.9) can be 
rewritten as 

8( !mv1_) = ( !mvi/ B) 8B = lml 8B (4.11) 

where the quantity lml = (~mvJ._)jB is the orbital magnetic moment of 
the charged particle. Now, since the left-hand side of (4.11) is 8(lmiB), 
we obtain 

8lml =0 (4.12) 

This result shows that the magnetic moment is invariant in slowly varying 
magnetic fields for which (8B/8t)(2n/Oc) «B. 

From the constancy of the magnetic moment, we can easily verify 
that 

Bnr~ = constant (4.13) 

Therefore, as the magnetic field increases, the radius of gyration decreases, 
as shown in Fig. 4. Further, since the magnetic flux <I>m through a Larmor 
orbit is given by 

<I>m = BS = Bnr~ (4.14) 

it is clear that the magnetic flux through the particle orbit is also an 
adiabatic invariant. Hence, as the magnetic field strength increases, the 
radius of the orbit decreases in such a way that the particle always encircles 
the same number of magnetic flux lines. 

When the time variation of the magnetic field is not spatially uniform 
within the particle orbit, but if it occurs in an unsymmetrical way, then 
the induced electric field acting on the particle can considerably modify 
its orbit from the one shown in Fig. 4. In the most general cases the 
particle orbit can be extremely complicated. In order to obtain a general 
idea of the particle orbit, let us consider the simple case of a magnetic 
field varying in time with cylindrical symmetry over a region of radius R, 
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which is much larger that the cyclotron radius rc, as shown in Fig. 5. The 
azimuthal component of the induced electric field Eo, at the point P (see 
Fig. 5) is given, from (4.5), by 

1 8B 
Eo= -R x-

2 8t 
(4.15) 

A charged particle located at the point P is now acted upon by crossed 
electric and magnetic fields, resulting in a drift velocity given by 

_ Eo x B _ 1 (R 8B) ~ 
v E - B2 - 2 X 8t X B2 (4.16) 

Since B is in the z direction (normal to the vector R), (4.16) yields 

VE = _.!.(8B)R 
2 8t B 

( 4.17) 

Therefore, the particle guiding center drifts radially inward with the drift 
velocity v E given in ( 4.17). As the particle drifts radially inward, its 
radius of gyration decreases in such a way that the flux encircled by the 
gyrating particle remains constant (see Fig. 5). Since the density of the 
magnetic flux lines increases as the magnetic field strength increases, this 
radial particle drift can be pictured as a radially inward motion of the 
magnetic flux lines at the velocity VE, with the guiding center attached 
to a given flux line. 

4.2 Magnetic Heating of a Plasma 

The adiabatic invariance of the particle orbital magnetic moment 
(lml = ~mv}_j B = constant) implies that when the magnetic field in­
creases, the particle transverse kinetic energy (W ..l = ~mvi) increases 
linearly with B. Further, since the magnetic flux encircled by the gyrat­
ing particle is also constant, as the magnetic flux density increases, the 
magnetic flux tube contracts and the particle guiding center moves radi­
ally inward, accompanying the radial displacement of the magnetic field 
lines, as if it were frozen in the field lines. Consequently, the increase 
in the magnetic flux density causes the charged particles in a plasma to 
approach each other, resulting in a magnetic compression. In the present 
case of two-dimensional compression, since the increase in the number 
density ( n) of the particles is proportional to the cross-sectional area 11-r~, 
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q<O 

Fig. 4 Motion of an electron in a time-varying magnetic field. 
The field is spatially uniform and increases in time. 

it follows that under magnetic compression in two dimensions n increases 
linearly with B. Similarly, when B decreases, n also decreases, resulting 
in a magnetic decompression. Thus, for two-dimensional compression we 
have W ..l ex B ex n. 

This property is used as a method of plasma heating, known as mag­
netic pumping, which consists in periodic magnetic compressions and de­
compressions of the plasma. The compression and the decompression must 
take place in a time interval very large compared to the Larmor period 
but, at the same time, very small compared to the relaxation time nec­
essary for the achievement of thermal equilibrium. For the present case 
of two-dimensional compression-decompression, obtained by varying the 
axial magnetic field, only the velocity and the energy in the two directions 
normal to the magnetic field are changed. 

In order to be able to heat the plasma in a compression-decompression 
cycle, it is necessary to transfer part of the energy increase in W ..l, ob­
tained by compression, to the energy W11 , which is unaffected by decom­
pression. This energy transfer is brought about by particle collisions, 
therefore increasing the particle thermal kinetic energy at the expense of 
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Fig. 5 Motion of a negatively charged particle in an increasing 
magnetic field (directed out of the page) with cylindrical sym­
metry over a region of radius R much greater than the Larmor 
radius rc. 

the electric field energy. Thus, in a complete cycle consisting of a compres­
sion, a relaxation time, and a decompression, part of the energy increase 
in W ..l achieved during compression is transferred to the degree of freedom 
parallel to B, as a result of collisions, causing an increase in W11 , which 
is not affected during the decompression, whereas W ..l is decreased corre­
spondingly. Therefore, by a periodic repetition of these cycles of adiabatic 
compression-decompression, the plasma thermal energy and therefore the 
temperature are increased. 
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5. SUMMARY OF GUIDING CENTER DRIFTS 
AND CURRENT--~~~------------------------~ 

5.1 Guiding Center Drifts 

Electric field: 

Gravitational field: 

General force: 

Gradient of B: 

Curvature of B: 

ExB 
VE = --­B2 

mgxB 
Vg = qB2 

FxB 
VF = qB2 

lml (\7B) x B 
VQ =- qB2 

mv~ [(B · \7)B] x B 
vc =- qB4 

Gradient-curvature of B (in vacuum field): 

m(v2 + lv2 )( ! \7 B 2 ) x B 
V _ _ II 2 _l 2 
GC- qB4 

Polarization: 

5.2 Current Densities 

Magnetization: 

Gravitational: 
J _ Pmg X B 

g - B2 

(2.5.15)* 

(2.6.3) 

(2.6.2) 

(3.5.1) 

(3.7.9) 

(3.8.2) 

(2.11) 

(2.4.40) 

(2.6.5) 

* The firs t number in these e quatio n numbers is the c hapter number . 
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Gradient of B: 
J =-(__!__'"'I ·1) (VB) X B 

G 8V 6 mt B2 
i 

(3.5.3) 

Curvature of B: 

J = _2 (__!__ '"'W· ) [(B · V)B] x B 
c 8V 6 til B4 

i 

(3.7.12) 

Polarization: 
J _ Pm(8Ej_18t) 
P- B2 (2.12) 

4.1 With reference to a magnetic field pointing along the z axis (B = 
B0z), describe the type of polarization of the following electric field: 

E = E 0 (x cos wt- y sin wt) 

Make a drawing that shows the orientation of E for the instants t = 0, 
t = 1r I ( 2w), and t = 1r I w. How can you represent this electric field in 
complex notation? 

4.2 Describe, in a semiquantitative way, the motion of an electron in the 
presence of a constant magnetic field B = B0z and a time-varying electric 
field given by 

E = ~E0 (x + iy) e-inct 

where Eo and B 0 are positive constants and Oc = eB0 Ime. What type of 
polarization has this electric field? 

4.3 Solve the equation of motion to determine the transient response of 
a charged particle in the presence of a spatially uniform AC electric field 
E(t) = xE sin(wt), which is switched on at t = 0. Assume that initially, 
at t = 0, the particle is at rest at the origin. Make a plot of the particle 
trajectory and velocity as a function of time. 

4.4 Consider an electron acted upon by a constant and uniform mag­
netic field B = B0z, and a uniform but time-varying electric field E = 
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yEyo sin(wt). Assume that the initial conditions are such that the motion 
takes place in the (x, y) plane and that at t = 0 the electron is at rest 
(v0 = 0) at the origin. 
(a) Show that the orbit of the electron is given by 

x(t) =- m(~~~on~) [;e (cos net -1)- ~e(cos wt -1)] 

( ) eEyo ( w . 0 • ) 

Y t = - m(w2 _ n~) ne Sill Het- Sill Wt 

(b) In the low-frequency limit, w « ne, show that the electron orbits at the 
angular frequency w around an ellipse that has its major axis perpendicular 
to the electric field. Determine the ratio of the minor to the major axis of 
the ellipse. 
(c) In the high-frequency limit, w » ne, show that the electron moves in 
a circle at the cyclotron frequency ne. 

4.5 Integrate (3.49) and (3.50) to determine the particle trajectory in the 
plane normal to Band sketch the path of the particle for q > 0 and q < 0. 

4.6 Consider the motion of an electron in the presence of a uniform 
magnetostatic field B = B0z, and an electric field that oscillates in time 
at the electron cyclotron frequency ne, according to 

(a) What type of polarization has this electric field? 
(b) Obtain the following uncoupled differential equations satisfied by the 
velocity components vx(t) and vy(t): 

d2vy 2 eEo 
dt2 + nevY = -2~ne COS net 

(c) Assume that, at t = 0, the electron is located at the origin of the 
coordinate system, with zero velocity. Neglect the time-varying part of B. 
Show that the electron velocity is given by 

eEo 
Vx(t) = -- t COS net 

m 



118 FUNDAMENTALS OF PLASMA PHYSICS 

eEo . 
vy(t) = -- t sm Oct 

m 

(d) Show that the electron trajectory is given by 

eEo ( 1 t . 1 ) x(t) = -- n 2 cos Oct+ n- sm Oct- n 2 m He He He 

eEo ( 1 . t ) 
y(t) =- m O~ sm Oct- Oc cos Oct 

4. 7 Solve the equation of motion to determine the velocity and the tra­
jectory of an electron in the presence of a uniform magnetostatic field 
B = B0z, and an oscillating electric field given by 

E(t) = xEx sin wt + zEz cos wt 

Consider the same assumptions and initial conditions as in the previous 
problem. 

4.8 Consider the motion of an electron in a spatially uniform magnetic 
field B = Bzz, such that Bz has a slow time variation given by 

Bz(t) = Bo(l- at) 

where B0 and a are positive constants, and I at I « 1. Assume the following 
initial conditions: r(O) = (rc, 0, 0) and v(O) = (0, Vj_o, 0), where rc is the 
Larmor radius, Vj_Q = Ocrc and Oc = lql Bo/m. 
(a) Write the equation of motion, considering the Lorentz force, and solve 
it by a perturbation technique including only terms up to the first order 
in the small parameter a. Show that the particle velocity is given by 

Vx(t) = -Ocrc sin Oct+ ~aOcrct(sin Oct+ Oct cos Oct) 

vy(t) = Ocrc cos Oct+ ~aOcrct( -cos Oct+ Oct sin Oct) 

(b) Show that the particle orbit is given by 

x(t) = rc(1 +~at) cos Oct+ r~a (O~t2 - 1) sin Oct 
2Hc 

1 ) . rca ( 2 2 ) rca y(t) = rc(1 + 2at sm Oct- 20c Oct - 1 cos Oct- 20c 

z(t) = Vzot 
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(c) Determine the orbital magnetic moment and verify its adiabatic in­
variance, retaining only terms up to the first order in a. 

4.9 Consider the motion of a charged particle in a spatially uniform mag­
netic field that varies slowly in time as compared to the particle cyclotron 
period. 
(a) Show that the equation of motion can be written in vector form as 

d:~t) = {lc(t) X v(t)- ~r(t) X O~~(t) 

where nc(t) = -qB(t)jm. 
(b) Considering that B(t) = zBof(t), where Bo is constant, obtain the 
following equations for the motion of the particle in the plane normal to 
B: 

d2x(t) - n [!(t)dy(t) 1 (t)df(t)] = 0 
dt2 c dt + 2 y dt 

d2 y(t) n [!( ) dx(t) 1 ( ) df(t)] = 0 
dt2 + c t dt + 2 X t dt 

where rlc = lql Bjm. 
(c) Define a complex variable u(t) = x(t) + iy(t) and a function ~(t) by 

~(t) = u(t) exp [!iOc 1t f(t') dt'] 

and show that the equation satisfied by ~(t) is 

(d) If 6(t) and 6(t) are two linearly independent solutions of this equa­
tion, subject to the initial conditions 

6(0) = 0 

6(0) = 1 

(d6(t)/dt)t=0 = 1 

(d6(t)/dt)t=0 = 0 

show that the solution for u(t) can be written as 

u(t) = {uo6(t) + ~l(t)[duo/dt + !irlcf(O)uo]} exp [-~irlc 1t f(t') dt'] 
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where u0 and du0 I dt represent the initial position and velocity, respec­
tively. 
(e) Considering now that the particle is initially ( t = 0) at the origin and 
moving with velocity vo along the negative y axis, that is, u0 = 0 and 
duoldt = -ivo, show that 

u(t) = -ivo 6 (t) exp [- ~ifl, l f(t') dt'] 

and, consequently, 

x(t) = v0 6(t) sin [~n, l f(t') dt'] 

y(t) = -vo 6(t) cos [~n, l f(t') dt'] 

4.10 (a) Assume that f(t), in problem 4.9, is given by exp (-at). Show 
that, in this case, ~(t) satisfies the Bessel equation of zero order, 

d2~(r) _!_ d~(r) t:( ) = 0 
d 2 + d +..,r 

T T T 

where T = (Ocl2a) exp (-at). Determine the two solutions of this equa­
tion which satisfy the initial conditions stated in problem 4.9 and interpret 
them physically. 
(b) Considering now that f ( t) = ( 1 - at), solve the equation for ~ ( t) in 
problem 4.9 in a power series in a, and determine the particle trajectory 
to order a. Show that the ratio ( v; + vz) I B ( t) has no terms of order a, 
thus verifying the adiabatic in variance of the magnetic moment. Compare 
these results with those of problem 4.8. 

4.11 For an electron with initial velocity v0x and initial position x0x, 
acted upon by an electric field E = xE cos( kx- wt), show that its velocity 
is given by 

v(t) = v0 - eE ft cos (kx- wt') dt' 
me Jo 

Using a perturbation approach, in which to lowest order E = 0, show that 

v(t) = vo- (keE ) {sin [kxo + (kvo- w)t]- sin (kxo)} 
me Vo-W 
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Notice that the velocity perturbation will be large only when v0 is close 
to the phase velocity wjk. 

4.12 Using the Maxwell equation (1.5.3) (Eq. 5.3 in Chapter 1) and 
the equation (3.34) which defines the plasma conductivity dyad S, and 
considering the time variation indicated in (3.1), show that 

\/ x B = -iwp,o £ · E 

where£ is the plasma electric permittivity dyad given by 

£ = Eo(1 + _j_s) 
WEQ 

where 1 denotes the unit dyad, which in Cartesian coordinates can be 
written as 



ELEMENTS OF 

PLASMA KINETIC THEORY 

1. INTRODUC~T~IO==N--------------------------------~ 

A plasma is a system containing a very large number of interacting 
charged particles, so that for its analysis it is appropriate and convenient 
to use a statistical approach. In this chapter we present the basic elements 
of kinetic theory, introducing the concepts of phase space and distribution 
function, which are necessary for a stat istical description. 

All physically interesting information about the system is contained 
in the distribution function. From knowledge of the distribution function 
the macroscopic variables of physical interest, necessary for a macroscopic 
description of the plasma behavior, can be systematically deduced. These 
macroscopic variables are functions of position and time and are directly 
related to the average values of the various particle physical quantities 
of interest, which can be considered as functions of the particle velocities, 
with the distribution function used as a weighting function in phase space. 

The differential kinetic equation satisfied by the distribution function, 
generally known as the Boltzmann equation, is deduced in section 5. At 
this point, the effects due to particle collisions are incorporated into this 
kinetic equation only through a general, unspecified collision term. In 
Chapter 21 we shall deduce explicit expressions for the collision term, in 
particular for the Boltzmann collision integral and for the Fokker-Planck 
collision term. Only a simple approximate expression for the collision term 
is presented at this point , the so-called relaxation model or Krook collision 
term. The Vlasov equation for a plasma is introduced in the last section. 
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At any instant of time each particle in the plasma can be localized 
by a position vector r drawn from the origin of a coordinate system to 
the center of mass of the particle. In a Cartesian frame of reference, as 
illustrated in Fig. 1, we have 

r = xx+yy+ zz (2.1) 

where x, y, and z denote unit vectors along the axes x, y, and z, respec­
tively. The linear velocity of the center of mass of the particle can be 
represented by the vector 

(2.2) 

with Vx = dxjdt, Vy = dyjdt, and Vz = dzjdt. 
In analogy with the configuration space defined by the position co­

ordinates ( x, y, z), it is convenient to introduce the velocity space defined 
by the velocity coordinates ( Vx, Vy, vz). In this space the velocity vector 
v can be viewed as a position vector drawn from the origin of the coordi­
nate system ( Vx, Vy, v z) to the center of mass of the particle, as indicated 
schematically in Fig. 1. 

2.1 Single-Particle Phase Space 

From the point of view of classical mechanics the instantaneous dy­
namic state of each particle can be specified by its position and velocity 
vectors. It is convenient, therefore, to consider the phase space defined by 
the six coordinates (x, y, z, Vx, vy, Vz). 

In this six-dimensional space the dynamic state of each particle is 
appropriately represented by a single point. The coordinates (r, v) of the 
representative point give the position and velocity of the particle. When 
the particle moves, its representative point describes a trajectory in phase 
space. At each instant of time the dynamic state of a system of N particles 
is represented by N points in phase space. 

2.2 Many-Particle Phase Space 

The phase space just defined, often called j-t-space, is the phase space 
for a single particle, in contrast with the many-particle phase space or 
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X 

Z Vz 

Vx 

(a) (b) 

Fig. 1 Position vectors (a) in conflguration space and (b) in 
velocity space. 

r -space for the whole system of particles. In the latter, a system consist­
ing of N particles, with no internal degrees of freedom, is represented by 
a single point in a 6N-dimensional space defined by the 3N position co­
ordinates (r1 , r2 , ... , rN) and the 3N velocity coordinates (v1, v2, ... , VN ). 
Thus, a point in r -space corresponds to a single microscopic state for the 
whole system of particles. This many-particle phase space is often used 
in statistical mechanics and advanced kinetic theory. The single-particle 
phase space is the one normally used in elementary kinetic theory and 
basic plasma physics, and is the space that will be considered in what 
follows. 

2.3 Volume Elements 

A small element of volume in configuration space is represented by 
d3r = dx dy dz. This differential element of volume should not be taken 
literally as a mathematically infinitesimal quantity but as a finite element 
of volume, sufficiently large to contain a very large number of particles, yet 
sufficiently small in comparison with the characteristic lengths associated 
with the spatial variation of physical parameters of interest such as, for 
example, density and temperature. In a gas containing 1018 moleculesfm3 , 
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z Vz 

(a) (b) 

Fig. 2 (a) The element of volume d3r = dx dy dz around the 
terminal point of r , in conB.guration space, and (b) the element of 
volume d3v = dvx dvy dvz, in velocity space, around the terminal 
point ofv. 
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for example, if we take d3r = w-12 m3 , which in a macroscopic scale can 
be considered as a point, there are still106 molecules inside d3r. Plasmas 
that do not allow a choice of differential volume elements as indicated, 
cannot be analyzed statistically. 

When we refer to a particle as being situated inside d3r, at r , it is 
meant that the x coordinate of the particle lies between x and x + dx , 
the y coordinate lies between y and y + dy, and the z coordinate lies 
between z and z + dz, that is, inside the volume element dx dy dz situated 
around the terminal point of the position vector r = xx + yy + zz. It is 
important to note that the particles localized inside d3r, at r, may have 
completely arbitrary velocities that would be represented by scattered 
points in velocity space. 

A small element of volume in velocity space is represented by d3v = 

dvx dvy dvz . For a particle to be included in d3v, around the terminal 
point of the velocity vector v, its Vx velocity component must lie between 
Vx and Vx + dvx, the Vy component between Vy and Vy + dvy, and the Vz 
component between Vz and Vz + dvz. The differential elements of volume 
d3r and d3v are schematically represented in Fig. 2. 
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r 

0 
v 

Fig. 3 Schematic representation of the element of volume 
d3r d3v in the six-dimensional phase space, around the represen­
tative point (r,v ). 

In phase space (J.L-space) a differential element of volume may be imag­
ined as a six-dimensional cube, represented by 

(2.3) 

as shown schematically in Fig. 3. Note that inside d3r d3v , at the position 
(r,v) in phase space, there are only the particles inside d3r around r whose 
velocities lie inside d3v about v. The number of representative points 
inside the volume element d3r d3v is, in general, a function of time and of 
the position of this element in phase space. It is important to note that 
the coordinates r and v of phase space are considered to be independent 
variables, since they represent the position of individual volume elements 
(containing many particles) in phase space. 

3. DISTRIBUTION FUNCTIO""'"N'"----------------

Let d6 Na ( r, v, t) denote the number of particles of type a inside the 
volume element d3r d3v around the phase space coordinates (r,v), at the 
instant t. The distribution function in phase space, fa(r , v, t), is defined 
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as the density of representative points of the type a particles in phase 
space, that is, 

(3.1) 

It is assumed that the density of representative points in phase space 
does not vary rapidly from one element of volume to the neighboring el­
ement, so that fa(r, v, t) can be considered as a continuous function of 
its arguments. According to its definition fa(r, v, t) is also a positive and 
finite function at any instant of time. In a volume element d3r d3v, whose 
velocity coordinates (vx, vy, vz) are very large, the number of representa­
tive points is relatively small since, in any macroscopic system, there must 
be relatively few particles with very large velocities. Physical considera­
tions require therefore that fa(r, v, t) must tend to zero as the velocity 
becomes infinitely large. 

The distribution function is, in general, a function of the position 
vector r. When this is the case the corresponding plasma is said to be 
inhomogeneous. In the absence of external forces, however, a plasma ini­
tially inhomogeneous reaches, in the course of time, an equilibrium state 
as a result of the mutual particle interactions. In this homogeneous state 
the distribution function does not depend on r. 

In velocity space the distribution function can be anisotropic, when 
it depends on the orientation of the velocity vector v, or isotropic, when 
it does not depend on the orientation of v but only on its magnitude, i.e., 
on the particle speed v = lvl. 

The statistical description of different types of plasmas requires the 
use of inhomogeneous or homogeneous, as well as anisotropic or isotropic 
distribution functions. A plasma in thermal equilibrium, for example, is 
characterized by a homogeneous, isotropic, and time-independent distri­
bution function. 

In a statistical sense the distribution function provides a complete 
description of the system under consideration. Knowing fa(r, v, t) we can 
deduce all the macroscopic variables of physical interest for the type a 
species. One of the primary problems of kinetic theory consists in de­
termining the distribution function for a given system. The differential 
equation that governs the temporal and spatial variation of the distribu­
tion function under given conditions, known generally as the Boltzmann 
equation, will be derived in section 5. 
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The number density, na(r, t), is a macroscopic variable defined in 
configuration space as the number of particles of type a, per unit volume, 
irrespective of velocity. It can be obtained by integrating d6 Na ( r, v, t) 
over all of velocity space and dividing the result by the volume element 
d3r of configuration space, 

(4.1) 

or, using the definition (3.1), 

(4.2) 

The single integral sign indicated here represents in fact a triple integral 
extending over all velocity space, that is, over each one of the variables 
Vx, vy, and Vz from - oo to + oo. For convenience and simplification of 
notation only a single integral sign will be indicated, being implicit the 
fact that the integral extends over all velocity space. 

The average velocity Ua ( r, t) is defined as the macroscopic flow veloc­
ity of the particles of type a in the neighborhood of the position vector 
r at the instant t. In order to relate Ua ( r, t) to the distribution function, 
consider the particles of type a contained in the volume element d3r d3v 
about (r,v) at the instant t, which we have denoted by d6 Na(r, v, t). The 
average velocity of the particles of type a can be obtained as follows. First 
we multiply d6 Na (r, v, t) by the particle velocity v, next we integrate over 
all possible velocities, and finally we divide the result by the total number 
of type a particles contained in d3r, irrespective of velocity. Therefore, 

1 1 6 Ua(r, t) = ( ) d3 v d Na(r, v, t) 
na r, t r v 

(4.3) 

The procedure just described is the usual statistical definition of average 
values. Using the definition of fa(r, v, t), given in (3.1), we obtain 

1 1 3 ua(r,t)= () vfa(r,v,t)dv 
na r, t v 

(4.4) 

Note that both na(r, t) and ua(r, t) are macroscopic variables that depend 
only upon the coordinates r and t. 
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A systematic method for deducing the macroscopic variables (such as 
momentum flux, pressure, temperature, heat flux, and so on), in terms of 
the distribution function, is formally presented in Chapter 6 . 

.. , 

In order to calculate the average values of the particle physical prop­
erties (the macroscopic variables of interest), it is necessary to know the 
distribution function for the system under consideration. The dependence 
of the distribution function on the independent variables r, v, and t is 
governed by an equation known as the Boltzmann equation. We present 
in this section a derivation of the collisionless Boltzmann equation and the 
general form it takes when the effects of the particle interactions are taken 
into account, without explicity deriving any particular expression for the 
collision term. 

5.1 Collisionless Boltzmann Equation 

Recall that 

(5.1) 

represents the number of particles of type a that, at the instant t, are 
situated within the volume element d3r d3v of phase space, about the 
coordinates (r,v). Suppose that each particle is subjected to an external 
force F. In the absence of particle interactions, a particle of type a with 
coordinates about (r,v) in phase space, at the instant t, will be found after 
a time interval dt about the new coordinates ( r', v') such that 

r'(t + dt) = r(t) + v dt (5.2) 

v'(t + dt) = v(t) +a dt (5.3) 

where a= F /ma is the particle acceleration and ma its mass. Thus, all 
particles of type a inside the volume element d3r d3v of phase space, about 
(r,v) at the instant t, will occupy a new volume element d3r' d3v', about 
(r', v') after the interval dt (see Fig. 4). Since we are considering the same 
particles at t and at t + dt, we must have, in the absence of collisions, 
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r 

t + dt 

0 v 

Fig. 4 In the absence of collisions the particles within the 
volume element d3r d3v about (r,v ) , at an instant t , will occupy 
after a time interval dt a new volume element d3r' d3v', about 
(r', v'). 

The element of volume d3 r d3v may become distorted in shape as a 
result of the particle motion. The relation between the new element of 
volume and the initial one is given by 

(5.5) 

where J stands for the Jacobian of the transformation from the initial 
coordinates ( r, v) to the final ones ( r' , v' ). It will be shown in t he next 
subsection that for the transformation defined by (5.2) and (5.3) we have 
IJI = 1, so that 

(5.6) 

and (5.4) becomes 

[j a ( r' , v' , t + dt) - fa ( r, v, t)] d3 r d3 v = 0 (5.7) 

The first term on the left-hand side of (5. 7) can be expanded in a 
Taylor series about fa(r, v , t) as follows: 

fa(r + v dt, V +a dt, t + dt) = fa(r, v , t) + [ 8fta + 
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(5.8) 

neglecting terms of order (dt) 2 and higher. Using the del operator notation 

" ~8 ~8 ~8 
v =x-+y-+z-

8x 8y 8z 

and, in a similar way, defining a del operator in velocity space by 

~ 8 ~ 8 ~ 8 
Vv=x-8 +y-8 +z-8 

Vx Vy Vz 

we obtain from (5.8) 

fa ( r + v dt, v + a dt, t + dt) = fa ( r, v, t) + 

[8fa(r, v, t) ( ) ( )] 
8t + v · V fa r, v, t + a · V v fa r, v, t dt 

Substituting this result into (5.7) gives 

8fa(r,v,t) ( ) ( ) 
8t +v·Vfa r,v,t +a·Vvfa r,v,t =0 

which is the Boltzmann equation in the absence of collisions. 
This equation can be rewritten as 

where the operator 

Vfa(r, v, t) = O 
Vt 

v 8 
- = -+v·V+a·V Vt 8t v 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

represents the total derivative with respect to time, in phase space. Eq. 
(5.13) is a statement of the conservation of the density of representative 
points in phase space. If we move along with a representative point in 
phase space and observe the density of representative points fa(r, v, t) in 
its neighborhood, we find that this density remains constant in time. This 
result is known as Liouville's theorem. Note that this result applies only 
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to the special case in which collisions, as well as radiation losses, processes 
of production, and loss of particles, are unimportant. 

5.2 Jacobian of the Transformation in Phase Space 

To determine the Jacobian of the transformation defined by (5.2) and 
(5.3) recall that, from its definition, we have 

8( I I) 8( I I I I I I) J _ r , v _ _ x_, y_, _z_, _vx_,_v_::_Y_' v_z_ 
- 8(r, v) - 8(x, y, z, Vx, Vy, Vz) 

which corresponds to the determinant of the 6 x 6 matrix 

( 
8x1 j8x 

J = 8x1 j8y 

8x1 j8vz 

8y1 j8x 
8y1 j8y 

8y1 /8vz 

8v~j8x) 
8v~j8y 

8v~j8vz 

We can separate the external force F into two parts, 

F = F 1 + q0 (v X B) 

(5.15) 

(5.16) 

(5.17) 

where F1 represents a velocity-independent force and the second term is 
the velocity-dependent force due to an externally applied magnetic field B, 
the only velocity-dependent force that may concern us in this treatment. 
The partial derivatives appearing in the matrix J are 

8x~ 

8 2 = 6ij dt ' 
v· J 

(5.18) 

where (5.2), (5.3), and (5.17) have been used, and where Xi,j = x, y, z and 
vi,j = Vx, vy, Vz. The symbol 6ij is the Kronecker delta. The matrix (5.16) 
can be written in the form 

J = ( (Jh 
(Jh 

(Jh) 
(J)4 

(5.19) 

where the (J)~s, with i = 1,2,3,4, represent the following 3 x 3 submatri­
ces: 
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G 
0 

D (J)l = 1 (5.20) 
0 

cF~/&x aF;;ax &F;j&x) 
(J)2 = .!!!:__ 8F~j8y aF;fay 8F~j8y (5.21) 

ma 8F~/8z aF;;az 8FU8z 

ct 0 0) 
(J)3 = ~ dt 0 (5.22) 

0 dt 

( a1, -aBz aBy) 
(J)4 = 1 -aBx (5.23) 

-aBy aBx 1 

where the constant a stands for (qa/ma) dt. Neglecting terms of order 
(dt) 2 , it can be easily verified that IJI = 1. Thus, up to and including 
the terms of first order in the infinitesimal dt, we have 

(5.24) 

which is the result (5.6) used in the previous subsection. 

5.3 Effects of Particle Interactions 

When the effects due to the particle interactions are taken into ac­
count, (5.12) needs to be modified. As a result of collisions during the 
time interval dt, some of the particles of type a that were initially within 
the volume element d3r d3v of phase space may be removed from it, and 
particles of type a initially outside this volume element may end up inside 
it. This is indicated schematically in Fig. 5. Generally, the number of 
particles of type a inside d3r d3v about the coordinates (r,v), at an in­
stant t, will be different from the number of particles of type a inside this 
same volume element about the coordinates (r', v') at the instant t + dt. 
We shall denote this net gain or loss of particles of type a, as a result of 
collisions during the interval dt, in the volume element d3r d3v, by 

(5.25) 
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r 

t + dt 

0 v 

Fig. 5 Schematic representation of the motion of the volume 
element d3r d3v in phase space, showing particles entering and 
leaving this volume element, as a result of collisions during the 
time interval dt. 

where (bfa / bt)coll represents the rate of change of fa(r , v , t) due to colli­
sions. Thus, when collisions are considered, (5.7) becomes 

and the following modified form of Eq. (5.12) results 

8Ja (bfa) -8 +v·"Vfa +a · "Vvfa= ~ 
t ut coll 

(5.27) 

Using the total time derivative operator, defined in (5.14), we can rewrite 
this equation in compact form as 

Vfa (bfa) 
1Jt = Tt coll 

(5.28) 

This equation is obviously incomplete, since the precise form of the 
collision term is not known. In the following section we will consider a 
very simple expression for the collision term, known as the K rook model 
or relaxation model. More elaborate expressions, such as the Boltzmann 
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collision integral and the Fokker-Planck collision term, will be considered 
in Chapter 21. 

A very simple method for taking into account collision effects is pro­
vided by the relaxation model. In this model it is assumed that the effect 
of collisions is to restore a situation of local equilibrium, characterized by a 
local equilibrium distribution function fao(r, v). In the absence of external 
forces, it assumes that a situation initially not in equilibrium, described 
by a distribution function fa(r, v, t) different from fao(r, v), reaches a 
local equilibrium condition exponentially with time, as a result of colli­
sions, with a relaxation timeT. This relaxation time is of the order of the 
time between collisions and may also be written as v-1 where v represents 
a relaxation collision frequency. This model was originally developed by 
K rook and can be expressed mathematically as 

( bfa) = _ Ua- fao) 
bt call T 

(6.1) 

According to this expression for the collision term, when fa = f ao we 
have (bfa/bt)coll = 0, so that in a state of local equilibrium the distribu­
tion function is not altered as a result of collisions. 

In order to bring out the physical meaning of the relaxation model, 
let us consider the Boltzmann equation with this collision term, in the 
absence of external forces and spatial gradients, and when f ao and T are 
time-independent, 

T 
(6.2) 

which can be rewritten as 

(6.3) 

This simple inhomogeneous differential equation has Ce-tfr as the homo­
geneous solution, where Cis a constant, and fao as a particular integral. 
Therefore, the complete solution is 

(6.4) 

Thus, the difference between fa and fao decreases exponentially in time 
at a rate governed by the relaxation collision frequency v = 1/ T. 
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This collisional model has proved to be useful and, in some cases, 
leads to results almost identical to the ones obtained using the Boltzmann 
collision integral (deduced in Chapter 21). It is particularly applicable 
to a weakly ionized plasma in which only charge-neutral collisions are 
important. However, it oversimplifies the entire relaxation phenomena 
and does not predict correctly the different relaxation collision frequencies 
for the various physical quantities of interest, such as the macroscopic 
velocity, momentum, and energy. According to the relaxation model, these 
macroscopic physical variables approach equilibrium at the same rate v. A 
detailed analysis of the collision process, however, shows that this is not the 
case, and the relaxation times for the various macroscopic variables differ 
to some extent. For nonrelativistic velocities, while the relaxation times 
for the average velocity and the momentum are found to be the same, 
approximately 7, that of the average thermal energy is approximately 
(m(3/2ma)T. Hence, for collisions between electrons and neutral particles, 
the relaxation time for the kinetic energy of the electrons is longer than 
that for the average velocity by a factor that is of the order of the ratio 
of the neutral particle mass to the electron mass. The relaxation model is 
therefore strictly applicable only to the cases of collisions between particles 
of the same mass. In spite of this limitation, the relaxation model is still 
useful partly because of its simplicity and partly because it usually gives 
a first approximation to the problem under consideration. 

A very useful approximate way to describe the dynamics of a plasma 
is to consider that the plasma particle motions are governed by the applied 
external fields plus the macroscopic average internal fields, smoothed in 
space and time, due to the presence and motion of all plasma particles. 
The problem of obtaining the macroscopic (smoothed) internal electro­
magnetic fields, however, is still a complex one and requires that a self­
consistent solution be obtained. 

The Vlasov equation is a partial differential equation that describes 
the time evolution of the distribution function in phase space and that 
directly incorporates the smoothed macroscopic internal electromagnetic 
fields. It may be obtained from the Boltzmann equation (5.27) with 
the collision term (t5fa/M)coll equal to zero, but including the internal 
smoothed fields in the force term, 

(7.1) 
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Here F ext represents the external force, including the Lorentz force associ­
ated with any externally applied electric and magnetic fields, and Ei and 
Bi are internal smoothed electric and magnetic fields due to the presence 
and motion of all charged particles inside the plasma. In order that the 
internal macroscopic electromagnetic fields Ei and Bi be consistent with 
the macroscopic charge and current densities existing in the plasma itself, 
they must satisfy Maxwell equations 

\7 · Bi = 0 

8Bi 
\7 X E· = --

t 8t 

( 8E·) \7 x Bi = J1o J + Eo Bt 2 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

with the plasma charge density p and the plasma current density J given 
by the expressions 

p(r, t) = L qa na(r, t) = L qa 1 fa(r, v, t) d3v (7.6) 
a a v 

J(r, t) = L qa na(r, t) Ua(r, t) = L qa 1 v fa(r, v, t) d3 v (7.7) 
a a v 

the summations being over the different charged particle species in the 
plasma. Here ua(r, t) denotes the macroscopic average velocity for the 
particles of type a, given in (4.4). 

Eqs. (7.1) to (7.7) constitute a complete set of self-consistent equa­
tions to be solved simultaneously. For example, in an iterative procedure 
assuming starting approximate values for Ei(r, t) and Bi(r, t), Eq. (7.1) 
can be solved to yield fa ( r, v, t) for the various different species. Using 
the calculated f~s in (7.6) and (7.7) leads to values for the charge and 
current densities (p and J) in the plasma, which can be substituted into 
Maxwell equations and solved for Ei(r, t) and Bi(r, t). These values are 
then plugged back into the Vlasov equation, and so on, in order to obtain 
a self-consistent solution for the single particle distribution function. 

Although the Vlasov equation does not explicitly include a collision 
term in its right-hand side and, hence, does not take into account short­
range collisions, it is not so restrictive as it may appear, since a significant 
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part of the effects of the particle interactions has already been included in 
the Lorentz force, through the internal self-consistent smoothed electro­
magnetic fields. 

5.1 Consider a system of particles uniformly distributed in space, with 
a constant particle number density n0 , and characterized by a velocity 
distribution function f( v) such that 

f(v) = Ko for lvil ~ vo (i = x, y, z) 

f(v) = 0 otherwise, 

where Ko is a nonzero positive constant. Determine the value of K 0 in 
terms of n0 and vo. 

5.2 Consider the following two-dimensional Maxwellian distribution func­
tion: 

( m m(v; + v~) 
f(vx, vy) =no 27rkT) exp [- 2kT J 

(a) Verify that n0 represents correctly the particle number density, that 
is, the number of particles per unit area. 
(b) Sketch, in a three-dimensionsal perspective view, the surface for this 
distribution function, plotting f( Vx, vy) in terms of Vx and vy. Draw, on 
this surface, curves of constant Vx, curves of constant Vy, and curves of 
constant f. 

5.3 The electrons inside a system of two coaxial magnetic mirrors can be 
described by the so-called loss-cone distribution function 

n 0 (v..l)2 [ (v..l)2 (v 11 )2] f(v) = - exp - - - -
7r3/2a3_ all a..l a..l all 

where v11 and v ..l denote the magnitudes of the electron velocities in the 
directions parallel and perpendicular to the magnetic bottle axis, respec­
tively, and where a~ = 2kTHfm and a3_ = 2kT..l/m. 
(a) Verify that the number density of the electrons in the magnetic bottle 
is given by no. 
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(b) Justify the applicability of the loss-cone distribution function to a mag­
netic mirror bottle by analyzing its dependence on v11 and v j_. Sketch, in 
a three-dimensionsal perspective view, the surface for f ( v) as a function 
of v11 and Vj_. 

5.4 Consider the motion of charged particles, in one dimension only, in 
the presence of an electric potential V ( x). Show, by direct substitution, 
that a function of the form 

is a solution of the Boltzmann equation under steady-state conditions. 

5.5 (a) Show that the Boltzmann equation, in cylindrical coordinates, 
can be written as 

~ (F a f + Fcp a! + F a f) = ( 5 f) 
m r or r 8¢ z 8z 6t call 

where the dot over the symbols stands for the time derivative operator d/ dt 
and where Fr = m(d2rjdt2 ), F¢ = mr(d2¢jdt2 ), and Fz = m(d2zjdt2 ). 

(b) Show, by direct substitution, that in the presence of an azimuthally 
symmetric magnetic field (in the z direction) a function of the form 

is a solution of the Boltzmann equation under steady conditions, where 
the constant canonical momentum is given by P¢ = mr2 ¢ + qr A¢, and 
where A¢ denotes the ¢ component of the magnetic potential A, defined 
such that B = \7 x A. 

5.6 Show that the Vlasov equation for a homogeneous plasma under the 
influence of a uniform external magnetostatic field B 0 , in the equilibrium 
state, is satisfied by any homogeneous distribution function, f ( v11 , v j_), 
which is cylindrically symmetric with respect to the magnetostatic field. 

5. 7 The entropy of a system can be expressed, in terms of the distribution 
function, as 
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Show that, for a system that obeys the collisionless Boltzmann equation, 
the total time derivative of the entropy vanishes. 

5.8 Consider a one-dimensional harmonic oscillator whose total energy 
can be expressed by 

E = ~(mv2 + cx2 ) 

where c is a constant and x its displacement coordinate. Show that the 
trajectory described by the representative point of the oscillator, in phase 
space, is an ellipse. 



AVERAGE VALUES AND 

MACROSCOPIC VARIABLES 

A systematic method for obtaining the average values of functions of 
particle velocities is presented in this chapter. The macroscopic variables, 
such as number density, flow velocity, kinetic pressure, thermal energy 
flux, and so on, can be considered as average values of physical quantities, 
involving the collective behavior of a large number of particles. These 
macroscopic variables are related to the the various moments of the dis­
tribution function. A formal definition of the moments of the distribution 
function is presented in section 10. 

To each particle in the plasma we can associate some molecular pro­
perty, x(r, v, t), which in general may be a function of the position r of 
the particle, of its velocity v, and of the time t. This property may be, 
for example, the mass, the velocity, the momentum, or the energy of the 
particle. 

In order to calculate the average value of the property x(r, v, t), recall 
that d6 Na ( r, v, t) represents the number of particles of type a inside the 
phase space volume element d3r d3v about (r,v), at the instant t. Thus, 
the total value of x ( r, v , t) for all the particles of type a inside d3 r d3 v is 
given by 

x(r, v, t) d6N a(r, v, t) = x(r, v, t) !a(r, v , t) d3r d3 v (1.1) 

The total value of x ( r , v , t) for all the part icles of type a inside the volume 
element d3r of configuration space, irrespective of velocity, is obtained by 
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integrating (1.1) over all possible velocities, 

(1.2) 

The average value of x(r, v, t) can now be obtained by dividing (1.2) by 
the number of particles of type a inside d3r about r, at the instant t, i.e., 
by na(r, t) d3r. We define, therefore, the average value of the property 
x ( r, v, t) for the particles of type a by 

1 1 3 < x(r, v, t) >a = ( ) x(r, v, t) !a(r, v, t) d v 
na r, t v 

(1.3) 

The symbol < >a denotes the average value with respect to velocity 
space for the particles of type a. Note that the average value is always 
independent of v, being a function of only rand t. 

If we take x(r, v, t) = 1 in (1.3), the expression for the number density 
na(r, t), given in (5.4.2), is obtained. 

Consider now x(r, v, t) as being the velocity v of the type a particles 
in the vicinity of the position r, at the instant t. Replacing x(r, v, t) in 
(1.3) by v gives the macroscopic average velocity or fiow velocity ua(r, t) 
for the particles of type a, 

1 1 3 Ua ( r, t) = < v >a = ( ) v fa ( r, v, t) d v 
na r, t v 

(2.1) 

which is the same expression given in (5.4.4) (Eq. 4.4 in Chapter 5). 
Note that r, v, and t are taken as independent variables, whereas 

the average velocity ua(r, t) depends on r and t. For the cases in which 
x(r, v, t) is independent of the particle velocity, we have 

< x(r, t) >a = Xa(r, t) (2.2) 

so that, for example, < Ua > = Ua. In what follows, the index a after 
the average value symbol will be omitted whenever it is redundant, that 
is, < Ua >a - Ua. 

The peculiar velocity or random velocity Ca is defined as the velocity 
of a type a particle relative to the average velocity ua(r, t), 

(2.3) 
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Consequently, we always have < Co: > = 0, since < Vo: > = ua(r, t). 
The peculiar velocity Co: is the one associated with the random or thermal 
motions of the particles. When ua(r, t) vanishes, we have Co: = v. 

From the concept of distribution function many other macroscopic 
variables can be defined in terms of average values. Macroscopic variables 
such as the particle current density (or particle flux), the pressure dyad or 
tensor, and the heat flow vector (or thermal energy flux), involve the flux of 
some molecular property x(r, v, t). The flux of x(r, v, t) is defined as the 
amount of the quantity x(r, v, t) transported across some given surface, 
per unit area and per unit time. 

Consider a surface element dS inside the plasma. If the distribution 
of velocities is isotropic, the flux will be independent of the relative orien­
tation in space of the surface element dS. However, more generally, when 
the velocity distribution is anisotropic the flux will depend on the relative 
spatial orientation of dS. Suppose, therefore, that the surface element of 
magnitude dS is oriented along some direction specified by the unit vector --n, 

dS = dS n (3.1) 

n being normal to the surface element. In the case of an open surface 
there are two possible directions for the normal n, one opposite to the 
other. The direction that is taken as positive is related to the positive 
sense of traversing the perimeter (bounding curve) of the open surface, 
according to the following convention: if the positive sense of traversal of 
the perimeter of a horizontal open surface is taken as counterclockwise, 
then the positive normal to the open surface is up; if the positive sense 
of traversal of the perimeter is clockwise, then the positive normal to the 
open surface is down, as shown in Fig. 1. For a closed surface the normal 
unit vector is conventionally chosen to point outward. 

The particles inside the plasma, due to their velocities, will move 
across the surface element dS carrying the property x(r, v, t) with them. 
We want to calculate the number of particles of type a that move across 
dS during the time interval dt. 

The particles with velocity between v and v + dv that will cross dS 
in the interval between t and t + dt must lie initially in the volume of the 
prism of base dS and side v dt, as indicated in Fig. 2. The volume of this 
prism is 

d3r = dS · v dt = n · v dS dt (3.2) 
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dS 

dS 

Fig. 1 Direction of the positive normal to the surface element 
dS as related to the sense of traversing the perimeter of dS. 

From the definition of fa(r, v, t), the number of particles of type a in the 
volume of this prism that have velocities between v and v + dv is 

!a(r, v, t) d3r d3v = !a(r, v, t) n · v dS dt d3v (3.3) 

so that the total amount of x(r, v, t) transported across dS , in the interval 
dt, is obtained by multiplying this number of particles by x(r, v , t) and 
integrating the result over all possible velocities, 

1 x(r, v, t) !a(r, v, t) n · v d3v dS dt (3.4) 

Note that the contributions corresponding to a rotation of the segment 
v dt over all possible directions about dS are taken into account in the 
integration over velocity space. Particles that cross dS in a direction such 
that n. v is positive give a positive contribution to the flux in the direction 
of n, while particles that cross dS in a direction such that n · v is negative 
give a negative contribution to the flux in the direction of n, as illustrated 
in Fig. 3. 

The net amount of the quantity x(r, v , t) transported by the particles 
of type a, per unit area and per unit time, is obtain€d by dividing expres­
sion (3.4) by dS dt. The flux in the direction n, <Pan(x ), is therefore given 
by 

<Pan (x) = 1 x(r, v , t) ! a(r, v, t) n. v d3v (3.5) 
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dS 
" n tlv 
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T 
" (n.v) dt 

1 
Fig. 2 Prism of volume d3r = dS · v dt = ii · v dS dt containing 
the particles of type a with velocities between v and v + dv, and 
which will cross dS in the time interval dt. 

or, using the average value symbol, 

<I>an(x) = na(r, t) < x(r, v, t) ii . v >a = na < XVn >a (3.6) 

where Vn = ii · v denotes the component of v along the direction specified 
by the unit vector ii. 

When x(r, v, t) is a scalar quantity, <I>an(X) can be considered as the 
component, along ii, of a vector flux ~a(X), that is, 

(3.7) 

with 

(3.8) 

If x(r, v, t) represents a vector quantity, which in this case we shall denote 
by X(r, v, t), then we will have a flux dyad (or tensor), 

(3.9) 

and if it represents a dyad quantity we will have a flux triad, and so on. 
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v 

(a) (b) 

Fig. 3 (a) Particles that cross dS from the (-) region to the ( +) 
region contribute positively to the flux in the direction n, while 
(b) particles that cross dS from the ( +) region to the (-) region 
contribute negatively to the flux in the direction n. 

... 
n 

In many situations of practical interest it is important to separately 
consider the contribution to the flux due to the average velocity Ua ( r , t) , 
and that due to the random velocity Ca of the particles of type a . Substi­
tuting v = Ca + U a in (3.6), gives 

<I> an (X) = na < X Can > + na < X Uan > (3.10) 

where Can= ll · Ca and Uan = ll · U a . 

For the cases in which the flow velocity U a is zero or, equivalently, if 
we take dS to be in a frame of reference moving with the average velocity 
U a, (3.10) becomes 

<I>an(X) = na < X Can > (3.11) 

which is the flux of x(r , v , t) along n due to the random motions of the 
particles of type a . 

4. PARTICLE CURRENT DENSITY 

The particle current density (or particle flux) is defined as the number 
of particles passing through a given surface, per unit area and per unit 
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time. Taking x(r, v, t) = 1 in (3.6), we obtain the flux of particles of type 
a in the direction n, 

f em ( r' t) = na < Vn >a = na Uan (4.1) 

since < Can > = 0. When Ua vanishes, it is of interest to consider only the 
flux in the positive direction instead of the resulting net flux. The number 
of particles of type a that cross a given surface along the direction n from 
the same side, per unit area and time, due to their random motions, is 
given by 

f~~(r, t) = 1 ll · Ca fa(r, V, t) d3v 
v(+) 

(4.2) 

where the integral in velocity space is over only the velocities for which 
ll · Ca > 0. 

The random mass flux in the positive direction of n is consequently 

given by mar~~ (r, t), where ma is the mass of the type a particle. 

This quantity is defined as the net momentum transported per unit 
area and time through some surface element n dS. If we take, in (3.6), 
x(r, v, t) as the component of momentum __.?f the type a particles along 
some direction specified by the unit vector j, that is, 

(5.1) 

we obtain the element IIajn(r, t) of the momentum flow tensor 

IIajn(r, t) = na < ma(f. v)(v. n) >a = Pma < Vj Vn >a (5.2) 

where Pma = nama denotes the mass density of the type a particles. 
Thus, the momentum flow element IIajn(r, t) represents the flux of the 
lh component of the momentum of the type a particles through a surface 
element whose normal is oriented along n. Since v = Ca + Ua' we obtain 

IIajn(r, t) = Pma < Caj Can > + Pma Uaj Uan (5.3) 

or, in dyadic form, 

IIa(r, t) = Pma < Ca Ca > + PmaUa Ua (5.4) 



148 FUNDAMENTALS OF PLASMA PHYSICS 

where we have used the result < Ua Ca > = Ua < Ca > = 0. 
In a Cartesian coordinate system (x, y, z) the momentum flow dyad 

can be written in the following form, in terms of its components, 

(5.5) 

From the rules of matrix multiplication IIa can be expressed as 

(
Ilaxx 

IIa = (x y z) IIayx 
IIazx 

IIaxz) (~) IIayz Y 
IIazz Z 

(5.6) 

It is usual, however, to omit the pre- and post-multiplicative dyadic signs, 
such as xx, and so on, and denote the dyad only by the 3 x 3 matrix 
containing the elements IIaij. Thus, IIaij corresponds to the element of 
the ith row and the jth column. From (5.3) it is clear that IIaij = IIaji 

and, consequently, the 3 x 3 matrix in (5.6) is symmetric. Therefore, only 
six of the components of the momentum flow dyad are independent. 

l,/11" --------------
6.1 Concept of Pressure 

The pressure of a gas is usually defined as the force per unit area 
exerted by the gas molecules through collisions with the walls of the con­
taining vessel. This force is equal to the rate of transfer of molecular 
momentum to the walls of the container. This definition applies also to 
any surface immersed in the gas as, for example, the surface of a material 
body. 

We may generalize this definition of pressure so that it can be applied 
to any point inside the gas. To this end, we will define pressure in terms 
of an imaginary surface element dS = n dS, inside the gas, moving with 
its average flow velocity. The pressure on dS is then defined as the rate 
of transport of molecular momentum per unit area, that is, the flux of 
momentum across dS due to the random particle motions. 

When different species of particles are present, as in a plasma, it is 
useful to define a (partial) pressure due to the particles of type a, as the 
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flux of momentum transported by the type a particles as they move back 
and forth across the surface element n dS, which is moving at the average 
velocity ua(r, t). In the reference frame of dS (3.11) applies, and taking 
x(r, v, t) as the lh component of momentum of the type a particles, 
ma Caj, we obtain the element Pajn of the pressure tensor, 

Pajn = Pma < Caj Can> (6.1) 

The pressure dyad is therefore given by 

(6.2) 

From (5.4) we find the following relation between the pressure dyad P a 

and the momentum flow dyad II a, 

(6.3) 

They are equal only when the flow velocity ua(r, t) vanishes. 

6.2 Force per Unit Area 

Consider now a small element of volume inside the plasma, bounded 
by the closed surface S, and let dS = n dS be an element of area belonging 
to S, with the unit vector n normal to the surface element and pointing 
outward (see Fig. 4). The force per unit area, fa, acting on the area 
element n dS, as the result of the random particle motions, is given by 

(6.4) 

The reason for the minus sign can be seen as follows. Suppose, for the 
moment, that all type a particles have the same velocity Ca. If Ca forms 
an angle of less than goo with n, then the quantity na ( Ca . n) dS is the 
number of type a particles leaving, per unit time, the volume enclosed by 
the closed surfaceS, through dS. The corresponding change (decrease) in 
the momentum of the plasma enclosed by the surface S is given by the ex­
pression -namaca(ca ·n) dS, since (ca ·n) is positive. On the other hand, 
if Ca forms an angle greater than goo with n, then -na(Ca · n) dS repre­
sents the number of particles entering, per unit time, the bounded volume 
through dS, and the corresponding change (increase) in the momentum 
of the plasma within the closed surface Sis again -namaca(ca · n) dS, 
since now ( Ca · n) is negative. 
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" n dS 

Volume V 

Fig. 4 Element of volume V bounded by a closed surfaceS, 
with the surface element ii dS pointing outward. 

We conclude, by generalizing this result, that for any arbitrary dis­
tribution of individual velocities, the vector quantity 

(6.5) 

represents the rate of change of the plasma momentum within the closed 
surface S, due to the exchange of type a particles through the surface 
element ii dS. Therefore, the force per unit area exerted on an element of 
area oriented along the unit vector ii is - P 0'. • ii. If we take, for example, 
an element of area oriented along the x direction, that is, ii = x, we have 

(6.6) 

where PO'.xx is normal to the surface and towards it, just like a hydrostatic 
pressure, whereas the components P O'.yx and PO'.zx are pressures due to 
shear forces that are tangential to the surface, as indicated in Fig. 5. All 
other components of P 0'. are interpreted in an analogous way. Generally, 
the force per unit area PO'.jn acts along the negative direction of the axis 
denoted by the first subscript (j) on a surface whose outward normal is 
parallel to the axis indicated by the second subscript ( n). Alternatively, 
if the outward normal to the surface is in the negative direction of the 
axis indicated by the second subscript (n) , then the force acts in the same 
direction as the axis denoted by the first subscript (j). 
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z 

Pazx 

y 
Payx 

X 

Fig. 5 Components of the pressure tensor P corresponding to 
the tangential shear stresses Payx and Pazx, and to the normal 
stress Paxx, acting on a surface element whose normal is oriented 
along the unit vector x. 

6.3 Force per Unit Volume 

The force per unit volume inside the plasma, due to the random 
particle motions, can be obtained by integrating (6.5) over the closed 
surface S bounding the volume element V, dividing the result by V, and 
then taking the limit as V tends to zero. This procedure is just the 
definition of the divergence, 

(6.7) 

and, from the Gauss's divergence theorem, 

(6.8) 

We conclude, therefore, that the negative divergence of the kinetic 
pressure dyad (-\7 · P a) is the force exerted on a unit volume of the 
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plasma due to the random particle motions, and p a . n is the force acting 
on a unit area of a surface normal to the unit vector n. 

6.4 Scalar Pressure and Absolute Temperature 

An important macroscopic variable is the scalar pressure, or mean 
hydrostatic pressure, Pa. It is defined as one-third the trace of the pressure 
tensor, 

Pa = ! L Paij bij = ! L Paii = !(Paxx + Payy + Pazz) (6.9) 
i,j 

where bij is the Kronecker delta, defined such that bij = 1 for i = j and 
bij = 0 for i -=/= j. The pressure tensor elements Paii, with i = x, y, z, 
are just the hydrostatic pressures normal to the surfaces described by 
i =constant. Using (6.1), 

(6.10) 

S. 2 - 2 + 2 + 2 h 1nce ca - cax Cay caz, we ave 

1 2 
Pa = 3 Pma < Ca > (6.11) 

Another important parameter for a macroscopic description of a plas­
ma is its temperature. The absolute temperature Ta, for the type a par­
ticles, is a measure of the mean kinetic energy of the random particle 
motions. According to the thermodynamic definition of absolute tem­
perature, there is a mean thermal energy of kTai/2 associated with each 
translational degree of freedom ( i = x, y, z), so that 

(6.12) 

where k is Boltzmann's constant. 
When the distribution of random velocities is isotropic, as is the case 

of the Maxwell-Boltzmann distribution function (to be considered in the 
next chapter), which characterizes the state of thermal equilibrium of a 
gas, we have c;x = c;Y = c;z = c;/3, and therefore, 

Pa = Paxx = Payy = Pazz = Pma < c;i > (6.13) 



6. AVERAGE VALUES AND MACROSCOPIC VARIABLES 153 

Combining (6.13) and (6.12), gives 

(6.14) 

which is the equation of state of an ideal gas. For the Maxwell-Boltzmann 
distribution function the nondiagonal elements of the kinetic pressure dyad 
are all zero and it reduces to 

P a = (xx + yy + zz) Pa = 1 Pa (6.15) 

where 1 stands for the unit dyad, which in matrix form can be written as 

(6.16) 

In this case the negative divergence of the pressure dyad becomes 

(6.17) 

Thus, for an isotropic velocity distribution, the force per unit volume due 
to the random variations of the peculiar velocities is given by the negative 
gradient of the scalar pressure. 

In some problems a simplification of practical interest for the general 
form of the kinetic pressure dyad consists in taking 

or, in matrix form, 

(
Paxx 

Pa = 0 
0 

0 
Payy 

0 

(6.18) 

p~J (6.19) 

where the diagonal elements are different from one another but all nondi­
agonal elements vanish. This expression corresponds to an anisotropy of 
the peculiar velocities and the absence of shear forces and viscous drag. 
The effects of viscosity and shear stresses are incorporated in the nondi­
agonal elements of the pressure dyad. Usually the effects of viscosity are 
relatively unimportant for most plasmas and the nondiagonal elements of 
P a can, in many cases, be neglected. 
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In this anisotropic case, different absolute temperatures Tai can be 
defined for each direction in space, according to (6.12). 

The component of the heat flow vector, Qan, is defined as the flux 
of random or thermal energy across a surface whose normal points in the 
direction of the unit vector n. Taking x(r, v, t), in (3.11), as the kinetic 
energy of random motion of the particles of type a, that is, X= mac~/2, 
we obtain for the component of the heat flow vector along n, 

(7.1) 

The heat flow vector is therefore given by 

- 1 2 
qa - 2 Pma < Ca Ca > (7.2) 

It is convenient, at this point, to introduce a triad of thermal energy 
flux defined by 

(8.1) 

Its components are, explicity, 

(8.2) 

Using Cartesian coordinates, the thermal energy flux triad can be written 
in the form 

(8.3) 

where each of the dyads Qan, with n = x, y, z, can be expressed in matrix 
form as 

(
Qaxxn 

Qan = Qayxn 

Qazxn 

Qaxyn 

Qayyn 

Qazyn 

Qaxzn) 
Qayzn 

Qazzn 

(8.4) 

To obtain a relation between the heat flow vector qa and the thermal 
energy flux triad Qa, note that (7.1) can be written as 

(8.5) 
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and comparing this equation with (8.2), we see that Qo.n can be written as 

(8.6) 

In analogy with the definition of the heat flow triad Qo. (with com­
ponents denoted by Qo.ijk), consider now the quantity 

(9.1) 

which represents one of the nine components of the total energy flux triad 
t'o.(r, t). This quantity can be considered as the sum of three parts. Sub­
stituting Vi = Uo.i + Co.i in (9.1) and expanding, 

(9.2) 

Noting that < Uo.i >= Uo.i and < Co.i >= 0, and using (8.2) and (6.1), we 
obtain 

where the following notation was used 

(9.4) 

Therefore, we can write (9.1) in triadic form as 

The total energy flux triad, therefore, can be considered as the sum of the 
energy flux transported by the convective particle motions, represented by 
the first two terms in the right-hand side of (9.5), and the thermal energy 
flux Qo. due to the random thermal motions of the particles of type a. 

The physical interpretation of the heat flow triad Qo. is, in some sense, 
analogous to the physical interpretation of the heat flow vector qo.. For 
this purpose, consider the quantity 

1 2 
2,Pmo. < V V >o. (9.6) 
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which represents the average energy flux transported by the particles of 
type a. This quantity can be written as the sum of three terms. Substi­
tuting v = Ca + Ua in expression (9.6) and expanding, 

1 2 1 2 2( ) 2Pma < V V >a = 2Pma < Ua Ua + Ua · Ca Ua 

and since < Ca >= 0 and< Ua >= Ua, we obtain 

+ PmaUa· < Ca Ca > +~ Pma < c; Ca > (9.8) 

If we now use (6.2) and (7.2), which define Pa and Qa, respectively, we 
obtain the identity 

(9.9) 

where Wa is the mean kinetic energy density of the type a particles, 

W _l 2 1 2 
a- 2PmaUa + 2Pma < ca > (9.10) 

Eq. (9.9) is written in a form analogous to (9.5). It shows that the 
flux (rate of transport per unit area) of the average energy of the type a 
particles can be separated into three parts: the first term in the right-hand 
side of (9.9) represents the flux of the mean kinetic energy transported 
convectively, the second term is the rate of work per unit area done by the 
kinetic pressure dyad, and the third term is the random thermal energy 
flux transported by the particles due to their random thermal motions. It 
is instructive to note that in a frame of reference moving with the average 
velocity Ua ( r, t), the particle velocities become identical to their random 
velocities, that is, v = Ca, so that (9.9) reduces to (7.2), which defines the 
thermal energy flux vector Qa· 

When the thermal velocities Ca are distributed uniformly in all direc­
tions, that is isotropically, it turns out that Qa = 0 (since the integrand is 
an odd function of ca)· Consequently, Qa can be considered as a partial 
measure of the anisotropies in the distribution of the thermal velocities. 
The thermal energy flux triad Qa considerably extends the concept of the 
heat flux vector and in this sense can be considered as a complete mea­
sure of the anisotropies in the distribution of the thermal velocities of the 
particles. 
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The first four moments of the distribution function fa ( r, v, t) are re­
lated, respectively, to the number density na(r, t), to the average velocity 
ua(r, t), to the momentum flow dyad IIa(r, t), and to the total energy 
flow triad t'a(r, t). For easy reference and convenience we gather here 
their mathematical expressions, 

(10.1) 

1 1 3 Uai(r, t) =<Vi >a = ( ) Vi fa(r, v, t) d V 
na r, t v 

(10.2) 

(10.3) 

Eaijk(r, t) = Pma <Vi Vj Vk >a = ma 1 Vi Vj Vk fa(r, v, t) d3v (10.4) 

When the average velocity Ua ( r, t) vanishes, we have v = Ca, the momen­
tum flow dyad II a becomes the same as the pressure dyad P a, and the 
total energy flux triad Ea becomes the same as the thermal energy flux 
triad Qa· 

As a formal extension of these definitions we may, whenever necessary, 
consider higher moments of the distribution function. The moment of 
order N can be defined by the expression 

M~Z) ... k(r, t) = 1 Vi Vj ... Vk fa(r, v, t) d3v (10.5) 

where the velocity components Vi appear N times in the integrand of 
expression (10.5). 

6.1 Consider a system of particles characterized by the distribution func­
tion given in problem 5.1 (in Chapter 5). 
(a) Show that the absolute temperature of the system is given by 

2 
T= mvo 

3k 
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where m is the mass of each particle and k is Boltzmann's constant. 
(b) Obtain the following expression for the pressure dyad 

where Pm = nm and 1 is the unit dyad. 
(c) Verify that the heat flow vector q = 0. 

6.2 Suppose that the peculiar (random) velocities of the electrons in a 
given plasma satisfy the following modified Maxwell-Boltzmann distribu­
tion function (considering u = 0), 

( m ) ( m ) 1/2 [ m ( c 2 + c 2 
c2 ) J 

f(c) =no 21rkT1. 21rkT
11 

exp - 2k xT1. Y + ~ 

(a) Verify that the electron number density is given by no. 
(b) Considering a Cartesian coordinate system with the z axis coincident 
with the parallel direction, show that the kinetic pressure dyad is given 
by 

which indicates the presence of an anisotropy in the z direction. 
(c) Calculate the heat flow vector q. 
(d) Show that 

1 2 1 krf"T 2m < VII >= 2 1 II 

~m < v]_ >= kT1. 

6.3 For the loss-cone distribution function of problem 5.3 (in Chapter 5), 
show that 

1 2 1 2 
2m< vii >= 4ma11 

lm < v2 >- ma2 
2 l. - l. 

Compare these results with those of problem 6.2(d) and provide physical 
arguments to justify the difference in the perpendicular part of the average 
thermal energy. 

6.4 Verify, by symmetry arguments, that there are only ten independent 
elements in the thermal energy flux triad Q. Note that, according to its 
definition, Qijk = nm < Ci Cj Ck > is symmetric under the interchange of 
any two of its three indices. 
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6.5 A plasma is made up of a mixture of various particle species, the 
type a species having mass ma, number density na, average macroscopic 
velocity Ua, random velocity Ca = v- Ua, scalar pressure Pa = nakTa, 
temperature Ta = (ma/3k) < c; >,pressure dyad Pa =nama < CaCa >, 
and heat flow vector Qa = (nama/2) < c;ca >. Similar quantities can 
be defined for the plasma as a whole, for example, we can define the total 
number density by 

the average mass by 
1 

mo =- Lnama 
no a 

and the average flow velocity by 

We can also define an alternative random velocity for the type a species, 
with reference to uo, as Cao = v- uo, as well as an alternative absolute 
temperature by 

2 T. _ ma < Cao > 
aO- 3k 

a corresponding pressure dyad by 

and heat flow vector by 

(a) Show that, for the plasma as a whole, the total pressure dyad is given 
by 

Po= L (Pa + namaWaWa) 
a 

and the total scalar pressure by 

Po= L (Pa + ~namaw~J 
a 
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where w a = u 0 - uo is the macroscopic diffusion velocity. 
(b) If C0 is isotropic, that is, < c~i >= (1/3) < c~ >,fori= x, y, z, show 
that the total heat flow vector is given by 

Qo = L (qa + ~PaWa + ~namaw~wa) 
Oi 

(c) If an average temperature To, for the plasma as a whole, is defined by 
requiring that Po= nokTo, show that 

(d) Verify that 
~ L:a nama < c~0 >= ~nokTo 

so that there is an average thermal energy of kT0/2 per degree of freedom. 

6.6 (a) Show that the time rate of increase of momentum in an infinite­
simal volume element d3r = dx dy dz inside a gas of number density n, 
as a result of particles of mass m entering d3r with average velocity u, is 
given by-\/· (nmuu) d3r. 
(b) If the infinitesimal volume element d3r moves with the average particle 
velocity u, show that, because of the work done by the kinetic pressure 
dyad P, the particle energy inside d3r increases at a time rate given by 
-\1· (u · P)d3r. 
(c) Verify, by expansion, that (P · n) · u = ( u · P) · n, where n denotes an 
outward unit vector, normal to the surface bounding the volume element. 

6. 7 Consider (5.6.4), which is the solution of the Boltzmann equation 
with the relaxation model for the collision term, in the absence of external 
forces and spatial gradients, and when fao and the relaxation timeT are 
time-independent. Show that, according to this simplified equation, we 
have 

where 

Ga (t) = Gao+ [Ga(O) -Gao] exp ( -t/T) 

Ga(t) = 1 fa X d3v =no <X >a 

Gao = 1 fao X d3v = na <X >ao 

Thus, according to the relaxation model for the collision term, every aver­
age value < x >a approaches equilibrium with the same relaxation time. 



THE EQUILIBRIUM STATE 

The equilibrium distribution function is the time-independent solu­
tion of the Boltzmann equation in the absence of external forces. In the 
equilibrium state the particle interactions do not cause any change in the 
distribution function with time and there are no spatial gradients in the 
particle number density. We deduce in this section an expression for the 
equilibrium distribution function, known as the Maxwell-Boltzmann or 
Maxwellian velocity distribution function. 

For simplicity we will consider a gas consisting of only one particle 
species. The extension to a mixture will be indicated in a subsequent 
section of this chapter. We assume that there are no external forces acting 
on the system (F ext = 0) and that the particles are uniformly distributed 
in space. Under these conditions the distribution function is homogeneous 
(\7 f = 0) and, since we are looking for a steady-state solution of the 
Boltzmann equation, it is also time-independent (of jot= 0). Therefore, 
it can be denoted by f(v). According to the Boltzmann equation (5.5.27) 
(Eq. 5.27 in Chapter 5), the equilibrium distribution function satisfies the 
following condition: 

(of) _ 0 ot coll -
(1.1) 

Hence, under equilibrium conditions, there are no changes in the distri­
bution function as a result of collisions between the particles. In Chapter 
21 we shall derive the expression for the equilibrium distribution function 
using the Boltzmann collision integral. For the moment, however, in order 
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to simplify matters, it is appropriate to consider a simple derivation based 
on the general principle of detailed balance of statistical mechanics. 

1.1 The General Principle of Detailed Balance 
and Binary Collisions 

In general, this principle asserts that, under equilibrium conditions, 
the probability of occurrence of any physical process is equal to the proba­
bility of occurrence of the inverse process. Hence, for the case of a system 
of interacting particles in the state of equilibrium, the principle of de­
tailed balance asserts that the effect of each type of collision is exactly 
compensated by the effect of the corresponding inverse collision. 

Consider an elastic collision between two particles having velocities v 
and VI before collision, and v' and vi after collision. The corresponding 
inverse collision refers to an elastic collision in which a particle with initial 
velocity v' collides with another particle with velocity vi, the velocities 
after collision being v and vi, respectively. Such events are illustrated 
schematically in Fig. 1, in a reference frame in which one of the particles 
is at rest. 

Assuming that the velocities of the particles before collision are un­
correlated, the number of binary collisions occurring per unit time in a 
given volume d3r, about the position r in configuration space, between 
particles having velocities within the velocity space element d3v, about v, 
and particles with velocities within d3vi, about VI, in the same configura­
tion space element d3r (see Fig. 2), is proportional to the product of the 
respective number of particles, that is, to (! d3r d3v)(!I d3r d3vi), where 
!I represents f(vi)· 

In a similar way, assuming the particle velocities to be uncorrelated, 
the number of corresponding inverse binary collisions occurring per unit 
time in the same volume element d3r, about r, in configuration space, 
between particles having velocities within d3v', about v', and particles 
with velocities within d3vi, about vi, is proportional to the product 
(!' d3r d3v')(f{ d3r d3vi), where f' = f(v') and f{ = f(vi). 

According to the principle of detailed balance, in the equilibrium 
state the effect of each direct collision is compensated by the effect of the 
corresponding inverse collision, so that 

(1.2) 
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(b) 

Fig. 1 (a) Direct binary collision and (b) the corresponding 
inverse binary collision. Here g = v1 - v and g' = v~- v' . 
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Since it can be shown that we have d3v d3v1 = d3v' d3v~ (see section 2 in 
Chapter 21) , Eq. (1.2) yields 

f(v) f(vl) = f(v') f(vD (1.3) 
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r 

0 
v 

Fig. 2 Schematic representation of the volume elements d3r d3v 
and d3r d3v1 in phase space. 

The assumption that the particle velocities are uncorrelated is known 
as the molecular chaos assumption. It is well justified when the density of 
the gas is sufficiently small so that the mean free pat h is larger than the 
characteristic range of the interparticle forces. Although this is certainly 
not a general situation for a plasma, the validity of the Maxwell-Boltzmann 
distribution function is very well justified experimentally. 

1.2 Summation Invariants 

It is convenient to introduce at this moment the concept of summation 
invariants. Consider a collision between two particles and let x(v) be a 
physical quantity (scalar or vector) associated with each particle, which in 
general may be a function of the particle velocity. If the sum of the quan­
tity x(v) for the two particles is conserved during the collision process, 
then x(v) is called a summation invariant. For a collision between two 
particles having initial velocities v and v1, and velocities after collision v' 
and v~ , respectively, we have for a summation invariant quantity 

x(v) + x(vl) = x(v') + x(v~) (1.4) 
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From the laws of conservation of mass, of momentum, and of energy, 
it is clear that these physical quantities are summation invariants in binary 
elastic collisions. Denoting the masses of the two colliding particles by m 
and m 1 , we can express the laws of conservation of mass, of momentum, 
and of energy as 

1mv2 + 1m v2 = 1m(v')2 + 1m (v' )2 
2 211 2 211 

(1.5) 

(1.6) 

(1.7) 

Eq. (1.5) is a trivial one and does not lead to any new information. 
It only indicates that a numerical constant is a summation invariant. Eq. 
(1.6) represents three equations, one for each component of the momen­
tum. The four equations in (1.6) and (1.7), together with the equations 
involving the impact parameter b and the angle of the collision plane E 

(for more details refer to the analysis of the dynamics of binary collisions, 
presented in Chapter 20), constitute six equations to be solved for the 
determination of the six unknown quantities, which are the components 
of the after-collision velocities v' and v~, in terms of the initial velocities v 
and v 1 . The binary collision problem, therefore, is uniquely determined by 
these summation invariants. Any other summation invariant in the colli­
sion process gives no additional information and cannot be an independent 
one and may be expressed as a linear combination of the summation in­
variants defined by (1.5), (1.6), and (1.7). 

1.3 Maxwell-Boltzmann Distribution Function 

We proceed now to derive the equilibrium velocity distribution func­
tion starting from (1.3) and the concept of summation invariants. Taking 
the natural logarithm of both sides of (1.3) gives 

ln f + ln !I = ln f' + ln f{ (1.8) 

which shows that ln f is a summation invariant in the collision process. 
Therefore, it can be written as a linear combination of the summation 
invariants m, mv, and mv2 /2, 

(1.9) 
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where ao, a1 = a1xX + a1yY + a1zz, and a2 are constants. The negative 
sign in front of a2 is chosen for convenience in the equations that follow. 
Completing the squares in the right-hand side of (1.9), using Cartesian 
coordinates, gives 

ln f = m [ao + (aix + aiy + aiz)/(2a2)] 

-~ma2[(vx- a1x/a2)2 + (vy- a1y/a2)2 

+ (vz- a1z/a2)2] 

= m [ao + ai/(2a2)]- ~ma2(v- al/a2)2 (1.10) 

Defining new constants by 

ln C = m [ao + ai/(2a2)] 

vo = al/a2 

we can write (1.10) in the form 

f = C exp [-~ma2(v- vo)2) 

(1.11) 

(1.12) 

(1.13) 

This expression is known as the Maxwell-Boltzmann, or Maxwellian equi­
librium distribution function. 

1.4 Determination of the Constant Coefficients 

The Maxwellian distribution function (1.13) contains five constant 
coefficients to be determined, namely C, a2, Vox, Voy, and Voz· Note that 
this is exactly the same number of coefficients in the original equation 
(1.9). These constants can be expressed in terms of observable physical 
properties of the system, such as the number density n, the average velo­
city u, and the kinetic temperature T (or the scalar pressure p, since from 
the equation of state we have p = nkT). To relate the observables n, u, 
and T with the constant coefficients C, a2 , and v0 , we proceed as follows. 

From the definition of the number density we must have 

n = 1 f d3v (1.14) 

Substituting the Maxwellian distribution function (1.13) into (1.14), re­
sults in 

(1.15) 



7. THE EQUILIBRIUM STATE 167 

If we use the notation A = ma2/2 and 'i = (vi- voi), with i = x, y, z, 
( 1.15) becomes 

n = C J J 1:00 
exp [-A({~ + {! + {~)[ d,{, d{y d{, (1.16) 

Performing the integrals over all possible values of ,x, ,y, and ,z, yields 

n = c(:)3/2 = c(~:2)3/2 

From the definition of the average velocity we have 

and substituting the Maxwellian distribution function (1.13), 

u = C 1v exp [-~ma2(v- vo)2] d3v 
n v 

Using the same notation as in (1.16), we can write 

(1.17) 

(1.18) 

(1.19) 

U =~I I I:oo ('xX + 'yY + 'zz) exp [-A(,;+,;+,;)] d'x d'y ~z 

+ ~ Vo I I I:oo exp [-A(,;+~;+~;)] d~x d~y d~z (1.20) 

The first triple integral in the right-hand side of (1.20), over all possible 
values of ~x, ~y, and ~z, vanishes, since the integrand is an odd function of 
~i· According to (1.16) the second triple integral is equal to njC. Thus, 
we obtain 

U=Vo (1.21) 

which shows that the constant vo represents the average (flow) velocity 
of the particles. Recall that the particle velocity v can be written as the 
sum of the peculiar (random) velocity c and the average velocity u, that 
is, v = c + u. If the system has no translational motion as a whole, then 
v0 = u = 0. 

Consider now the thermodynamic definition of the kinetic tempera­
ture T, 

(1.22) 



168 FUNDAMENTALS OF PLASMA PHYSICS 

where k is Boltzmann's constant. Substituting the Maxwellian distribu­
tion function (1.13), noting that c = v- u and d3v = d3c, we obtain 

~nkT = ~mC 1 c2 exp ( -Ac2) d3c (1.23) 

Performing the triple integral over all possible values of Cx, cy, and Cz, 

gives 

kT = (_£) (~) 3/2 
na2 ma2 

We can now solve (1.17) and (1.24) for C and a2 , to obtain 

- (~)3/2 
C- n 21rkT 

1 
a2 = kT 

(1.24) 

(1.25) 

(1.26) 

Substituting the results just obtained into (1.13), the Maxwellian dis­
tribution of random velocities becomes 

( m )3/2 ( mc2) 
f(c) = n 21rkT exp - 2kT (1.27) 

This is the equilibrium distribution function for a system of particles uni­
formly distributed in space and free from the action of external forces. 
Note that the number density n and the temperature T are constants, 
independent of r and t. This distribution function represents the only 
permanent mode for the distribution of the particle velocities in the gas, 
for specified values of n and T. Whatever may be the velocity distribution 
function of a gas, initially not in equilibrium, it tends to the distribution 
function (1.27) in the course of time, if the gas is maintained isolated from 
the action of external forces. 

When the system has no translational motion as a whole (if it is 
maintained inside a container, for example), the average (flow) velocity u 
is zero and consequently we have c = v in (1.27). The equilibrium distri­
bution function depends only on the magnitude of the random velocity c 
so that, when a perfectly reflecting surface is immersed in the gas, f(c) 
remains unchanged since the magnitude of the random velocity does not 
change when the particles are reflected at the surface. 

For a plasma under equilibrium conditions, in which the various par­
ticle species such as electrons, ions, and neutrals have the same tempera­
ture, the random velocities of each species are separately described by a 
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Maxwell-Boltzmann distribution function with the corresponding number 
density. 

1.5 Local Maxwell-Boltzmann Distribution Function 

In many situations of interest we are dealing with a gas that, although 
not in equilibrium, is not very far from it. It is then a good approximation 
to consider that, in the neighborhood of any point in the gas, there is an 
equilibrium situation described by a local Maxwell-Boltzmann distribution 
function of the form 

[ m J 3/2 { m[v- u(r, t)j2} 
f(r, v, t) = n(r, t) 27rkT(r, t) exp - 2kT(r, t) (1.28) 

where the number density n, the temperature T, and the average velocity 
u are slowly varying functions of rand t. 

We have seen that the Maxwell-Boltzmann distribution function is 
the solution of the Boltzmann equation representing the equilibrium state 
of a gas, in the absence of external forces. One of the important conclu­
sions obtained from the derivation of this distribution function is that it 
is independent of the cross section for the particle collisions. This means 
that the Maxwell-Boltzmann function is, in a certain way, universal in the 
description of the equilibrium state, and it should be possible to derive 
it without explicitly considering the particle interactions. A derivation 
in these terms is in fact presented in statistical mechanics, where it is 
shown that the Maxwell-Boltzmann distribution function represents the 
most probable distribution satisfying the macroscopic conditions (or con­
straints) imposed on the system. 

In statistical mechanics, to a given macroscopic system there corre­
sponds a very large number of possible microscopic states that lead to 
the same macroscopic parameters specifying the system, such as number 
density n, average velocity u, and absolute temperature T. Each micro­
scopic state is considered to be equiprobable. If we choose, at random, 
any particular microscopic state for the system, among all the possible 
microscopic states consistent with the specified macroscopic parameters 
(such as n, u, T), the probability of choosing a Maxwellian distribution 
is overwhelmingly larger than that of any other distribution. It is also 
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shown that the entropy is proportional to the probability of having a given 
distribution. Consequently, the state having maximum entropy is the most 
probable state consistent with the macroscopic constraints imposed on the 
system. 

The meaning of the Maxwell-Boltzmann distribution function can be 
further illustrated by the following example. If a dilute gas is prepared 
in an arbitrary nonequilibrium initial state, and if there are interactions 
between the particles so as to allow the gas to pass from the initial state 
to other states, as time passes the gas will certainly reach the Maxwellian 
state, since essentially almost all possible microscopic states, consistent 
with the macroscopic constraints, have a Maxwellian distribution. 

The statistical mechanics derivation of the most probable distribution 
function provides information only on the equilibrium state, and cannot 
possibly tell, for example, how long (which depends on the collision cross 
section) a given distribution function, initially not the equilibrium one, 
takes to become Maxwellian. The Boltzmann equation, on the other hand, 
is much more general and provides information also for nonequilibrium 
situations. 

For the case of a mixture containing different species of particles, 
each species having its own number density ncn average velocity Ua, and 
temperature Ta, we can still perform a calculation to determine the most 
probable distribution subjected to these macroscopic constraints. This 
requires only that we set fa fa 1 = f~ f~1 for each particle species, but 
not necessarily fa f (31 = f~ f~1 for a -:/: {3. This condition, therefore, 
does not describe an equilibrium situation, unless the temperatures and 
mean velocities of all species are the same. To determine the most proba­
ble distribution function for this nonequilibrium gas mixture (each species 
having its own number density, mean velocity, and temperature), we in­
dependently apply (1.3) to each species, in order to maximize the entropy 
for each species. This also maximizes the entropy for the gas mixture 
under the specified macroscopic constraints. The problem is completely 
analogous to the one just solved for a one-component gas and leads, in 
identical fashion, to 

( ma ) 3/ 2 [ ma(v- Ua) 2 ] 
fa(v) = na 27rkTa exp - 2kTa (3.1) 

Thus, each species has a Maxwellian distribution of velocities, but with 
its own density, average velocity, and temperature. Although this is not 
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an equilibrium distribution for the system, since the equilibrium condi­
tion fa f (31 = f~ !~1 for all a and j3 is not satisfied, it is, nevertheless, 
the most probable distribution under the specified constraints. Only if the 
temperatures and average velocities of all species are equal will this be 
an equilibrium situation. Indeed, if two systems with different species 
and at different temperatures are brought together, then, as time passes, 
there will be a transfer of energy through collisions between the different 
species, until equilibrium is reached with the various species at the same 
temperature and mean velocity. 

4. PROPERTIES OF THE MAXWELL-SOL TZM" 
DISTRIBUTIONt.J!E~~C~I~~----------------~ 

Due to the importance of the equilibrium distribution function, we 
present in this section some of its basic properties. We consider a gas in 
thermal equilibrium having no average (flow) velocity, u = 0. If, however , 
this average velocity is not zero, we suppose that the observer is moving 
with the average velocity of the gas. Thus, in either case, v = c. According 
to the definition of the distribution function, the number of particles per 
unit volume having velocities between v and v + dv is given by 

(4.1) 

4.1 Distribution of a Velocity Component 

The distribution function for one component of the velocity, g(vi), is 
defined such that g( vi) dvi represents the number of particles per unit 
volume that have the i component of the velocity between vi and vi+ dvi, 
irrespective of the values of the other two velocity components. 

For the x component, for example, g(vx) dvx is obtained by inte­
grating f(v) over all possible values of the velocity components vy and 

(4.2) 

Substituting the Maxwell-Boltzmann distribution function, yields 

( m )3/2 ( mv2) l+oo ( mv2) 
g(vx) dvx = n 21rkT exp - 2k; dvx -oo exp - 2k; dvy 
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/_:
00 

exp (-;~) dvz (4.3) 

Each integral in ( 4.3) is equal to (21rkT jm )112 . Therefore, 

( m ) 1/2 ( mv2) 
g(vx) dvx = n 21rkT exp - 2k; dvx (4.4) 

Obviously this expression applies to any of the velocity components. It 
shows that each of the velocity components has a Gaussian distribution, 
which is symmetric about the average value < vi > = 0, for i = x, y, z. 
The distribution function given in ( 4.4) is plotted in Fig. 3. Note that it 
is properly normalized so that 

j +oo 
-oo g(vx) dvx = n (4.5) 

The fact that the average value <Vi > vanishes is physically evident 
by symmetry, since each component of the velocity can be equally positive 
or negative. Mathematically, we have 

( m ) 1/21+oo ( mv2) 
= 21rkT -oo exp - 2k~ Vi dvi = 0 (4.6) 

since the integrand is an odd function of vi. Consequently, if l represents 
any odd integer number, 

< v! > = 0 l = 1,3,5, ... (4.7) 

On the other hand, < vf > is intrinsically positive and represents the 
dispersion or variance of vi, 

11+oo kT < v? > = - g( vi) v2 dvi = -
z n z m -oo 

(4.8) 

This result is consistent with the theorem of equipartition of energy, ac­
cording to which 

~m < vf > = ~kT (4.9) 
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- {kT/m) 112 0 (kT/m) 112 

Fig. 3 The equilibrium Maxwellian distribution function for 
each velocity component is a Gaussian distribution having zero 
expectation ( < Vx > = 0) and root-mean-square width given by 
< v; >1/2 = (kT /m)l/2. 
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for i = x, y , z. The root-mean-square width of the Gaussian distribution 
g(vi) is therefore given by 

(4.10) 

which shows that the higher the temperature, the larger will be the width 
of the distribution function g (vi). 

The velocity components behave, individually, like statistically inde­
pendent quantities. Since v2 = v; + v~ + v;, the probability that the 
particle velocity lies between v and v + dv is equal to the product of the 
probabilities that the velocity components lie between vi and vi + dvi, for 
i = x,y,z, that is 

f(v) d3 v g(vx) dvx g(vy) dvy g(vz) dvz 
n n n n 

(4.11) 
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Vz 

Vy 

Vx 

Fig. 4 Spherical coordinate system (v, () ,¢)in velocity space. 

4.2 Distribution of Speeds 

Since the Maxwell-Boltzmann velocity distribution function is isotro­
pic, it is of interest to define a distribution function of speeds v = lvl. 
For this purpose, consider a spherical polar coordinate system in velocity 
space (v, (),¢),as shown in Fig. 4. The element of volume d3v, in velocity 
space, between the coordinates ( v, (), ¢) and ( v + dv, () + d() , ¢ + d¢), is 
given by 

(4.12) 

The distribution function of speeds F( v) is defined such that F( v) dv 
is the number of particles per unit volume having speed between v and 
v+dv, irrespective of the direction in space of the velocity vector v. Hence, 
to determine F(v) we integrate f(v) over all velocities whose magnitude 
lies between v and v + dv, irrespective of the values of() and ¢, that is, 
whose velocity vector ends in a spherical shell in velocity space of internal 
radius v and external radius v + dv, as shown in Fig. 5. Therefore, 

F(v) dv = fe f. f(v) v2 sin() d() d¢ dv (4.13) 
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Vy 

Fig. 5 Schematic representation, in two dimensions, of a sphe­
rical shell in velocity space containing all particles with velocity 
having magnitude between v and v + dv. 
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Since f(v) depends only on the magnitude of v, but not on its direc-

rr {21r 
F(v) dv = f(v) v2 dv Jo sin(} dO Jo d¢ = 47rv2 f(v) dv (4.14) 

Note that 47r v2 dv is the volume of the spherical shell in velocity space 
shown in Fig. 5. Substituting the Maxwell-Boltzmann distribution func­
tion for f ( v), we obtain the distribution of speeds, 

( m )3/2 ( mv2 ) 
F(v) = 47rn 21rkT v2 exp - kT (4.15) 

This expression is properly normalized, so that 

loo F(v) dv = n (4.16) 

From the expression for F( v) we see that, as v increases, the exponential 
factor decreases faster than v2 increases, resulting in a maximum in F( v) 
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F(v) 

0 
Vmp v 

Fig. 6 Maxwellian distribution of speeds, showing the most 
probable speed Vmp. 

for a given value of v which is called the most probable speed. The curve 
for F(v) is shown in Fig. 6. 

4.3 Mean Values Related to the Molecular Speeds 

The average value of the speed is given by 

< v > = ~ 1 f v d3v = ~ J J 1:00 f v dvx dvy dvz (4.17) 

or, equivalently, by 

1100 < v > = - F( v) v dv 
n o 

( 4.18) 

It is intrinsically a positive quantity, since v = lvl is always positive. Using 
expression (4.15) for F(v), we get 

( m )3/2 ( 00 
( mv2) 

< v > = 47r 27rkT Jo v3 exp - 2kT dv 

= 47r(___!!!_)3/2 ~ (2kT)2 
21rkT 2 m 

(4.19) 
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Therefore, 
< v > = (8/n) 112 (kT/m) 112 

Integrals of the type 

1(j) = 100 
xj exp ( -o:x2 ) dx 
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(4.20) 

(4.21) 

where j represents a positive integer number, occur frequently in the com­
putation of average values using the Maxwellian distribution of speeds. 
For future reference we present here the results for some integrals of the 
type (4.21): 

1(0) = ~7rl/2a-1/2 

1(2) = inl/20:-3/2 

1(4) = ~'lfl/20:-5/2 

1(1) = ~0:-1 

1(3) = ~o:- 2 

1(5) = o:-3 

The average of the square of the speed is given by 

< v2 > = ~ J J j_:oo f v2 dvx dvy dvz = ~ 100 
v4 f(v) dv 

Substituting the Maxwellian distribution function for f( v ), 

( m ) 3/2 ( 00 
( mv2) 

< v2 > = 4n 2nkT Jo v4 exp - 2kT dv 

which gives 
< v2 > = 3kT/m 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

This result can also be obtained from (4.8), noting that v2 = v; + v; + v; 
and that < v; > = < v; > = < v; >. The root-mean-square speed is 
given by 

(4.26) 

The most probable speed Vmp corresponds to the speed for which F( v) 
is maximum, and can be obtained by the condition 

( dF(v)) =0 
dv v=vmp 

Differentiating (4.15) with respect to v, yields 

dF(v) ( mv2) 2 ( mv) ( mv2) 
~ = 2v exp -2kT +v - kT exp -2kT 

(4.27) 

(4.28) 
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which, for the condition of maximum expressed in ( 4.27), gives 

Vmp = (2kTjm) 112 ( 4.29) 

Note that the mean speeds < v >, Vrms, and Vmp are all proportional 
to (kT/m) 112 and are such that Vmp < (< v >) < Vrms· Therefore, 
they increase with the temperature and, for a given temperature, particles 
having a larger mass will move with a smaller speed. We have also seen 
that the average kinetic energy of the random particle motions satisfies 
the relation 

!m < v2 > = ~kT 2 2 (4.30) 

4.4 Distribution of Thermal Kinetic Energy 

The distribution of thermal kinetic energy G(E), where E = mv2 /2, 
is defined such that G(E) dE is the number of particles per unit volume 
having random kinetic energy between E and E + dE. It can be obtained 
from (4.15) substituting v by (2E/m) 112 and dv by dE/(2mE) 112 . Hence, 

( m )3/2(2E) ( E) dE 
G(E) dE = 47rn 21rkT ~ exp - kT (2mE)112 (4.31) 

Simplifying this expression, 

2nE112 E 
G(E) dE= 7rl/2(kT)3/2 exp (- kT) dE (4.32) 

The function G(E) is displayed in Fig. 7. 

4.5 Random Particle Flux 

We have seen in Chapter 6 that the particle flux, in a given direction 
specified by the unit vector n, is given by 

f n = n < Vn > = 1 j V · ll d3v (4.33) 

Let us consider a surface element inside the gas. We are interested in 
determining the number of particles that reach this surface element, per 
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G(E) 

n/(2kT) 

n/(4kT) 

Fig. 7 Maxwellian distribution of thermal kinetic energies. 
The shadowed area represents the number of particles that have 
random kinetic energy between E and E + dE. 
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unit area and time, due to the random particle motions. Eq. ( 4.33) takes 
into account particles that reach the surface element, oriented along the 
direction of n, coming from all possible directions. Since we are assuming 
that the average velocity u is zero, the flux given by ( 4.33) is obviously 
zero, since < c > = 0. In this case, it is of interest to consider only the 
flux of particles that cross the surface element from the same side (such 
that v. n is positive, say) , due to their random motions. 

Let dS be a surface element situated at the origin of a Cartesian 
coordinate system (x, y , z) and oriented along the z axis, that is, dS = 
z dS, as shown in Fig. 8. Consider the particles that cross z dS coming 
from the region z < 0, having velocities between v and v + dv, making an 
angle () with the z axis, so that v · z = v cos(()). Expressing d3v in terms 
of spherical coordinates ( v, () , ¢), 

(4.34) 

the random particle current density, crossing z dS from the region z < 0, 
is given by 

f z = 100 f v3 dv 1~;z sin 0 cos 0 dO 12~ d¢ = 1r 100 f v3 dv (4.35) 
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z 

dS 

\ 

~--~--------•y 
\ 

/ 
/ 

Fig. 8 Prism of base dS = zdS containing the particles that 
have velocity between v and v + dv that will cross dS during the 
interval dt. 

Substituting the Maxwellian distribution for f(v), we find 

( m )3/2 (00 
( mv2) 

r z = 1rn 27rkT Jo exp - 2kT v3 dv (4.36) 

and solving the integral, we obtain 

r = n ( kT ) 1/ 2 = !n < v > 
21rm 4 

(4.37) 

In this result we have eliminated the index z from r, since the Maxwellian 
distribution function is isotropic, so that ( 4.37) applies to any direction 
inside the gas. 

It is important to note that the random particle flux is inversely 
proportional to the square root of the particle mass. In a plasma the 
particle current density for the electrons is therefore much larger than 
that for the ions (the ratio of the electron mass to the proton mass, for 
example, is 1/1836). This difference in the thermal particle flux between 
electrons and ions plays a very important role in the interaction of a plasma 
with a material body immersed in it (see Chapter 11). 
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4.6 Kinetic Pressure and Heat Flux 

From the definitions of the kinetic pressure dyad 

P = Pm < c c > = m 1 c c f d3v (4.38) 

and of the heat flux vector 

(4.39) 

we obtain, using the Maxwellian distribution function, 

= nkT (xx + yy + zz) (4.40) 

and 
q=O (4.41) 

since the integrals having an odd integrand vanish. The scalar pressure, 
therefore, is 

p=nkT ( 4.42) 

A gas under steady-state conditions and immersed in a conservative 
force field is characterized by a distribution function that differs from the 
Maxwell-Boltzmann distribution by an exponential factor, known as the 
Boltzmann factor. The conservative force field can be specified in terms 
of a potential energy U(r), such that 

F(r) = -\7U(r) (5.1) 

Since the conservative force field is a function only of the position 
vector r, we expect the steady-state solution of the Boltzmann equation 
for this case to be of the form 

f(r,v) = fo(v) 'lf;(r) (5.2) 
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where f 0 (v) represents the Maxwell-Boltzmann equilibrium distribution 
function and '1/J(r) is a scalar function of r only, still to be determined. 
The function '1/J(r) can be determined by requiring (5.2) to satisfy the 
Boltzmann equation under equilibrium conditions in the presence of the 
conservative field, 

1 
v · V'[fo( v) '1/J(r )] - - [V'U(r )] · V' v [fo( v) '1/J(r)] = 0 (5.3) 

m 

From the expression for fo( v) it can be easily verified that 

mv 
Y' vfo(v) =- kT fo(v) (5.4) 

Therefore, (5.3) simplifies to 

1 
fo(v) v · [V''I/J(r) + kT'IjJ(r) V'U(r)] = 0 (5.5) 

from which we can write 

V''I/J(r) = _ __!_Y'U(r) 
'1/J(r) kT 

(5.6) 

Since d'ljJ = V''I/J · dr, (5.6) may also be written as 

d'I/J(r) = _ __!_dU( ) 
'1/J(r) kT r 

(5.7) 

The solution of this differential equation is 

[ U(r)J '1/J(r) = Ao exp - kT (5.8) 

where A0 is a constant that can be determined by requiring that 

1 f(r, v) d3v = n(r) (5.9) 

from which we get 

n( r) = Ao exp [- ~~) J 1 fo ( v) d3 v (5.10) 
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Denoting by no the number density in a region where U(r) = 0, under 
equilibrium conditions, that is, 

(5.11) 

we must choose A0 = 1. Therefore, the equilibrium distribution function 
(with u = 0), under the presence of a conservative force field, is 

[ U(r)J f(r, v) = fo(v) exp - kT 

_ (____!!!_)3/2 [-(~mv2 +U)J 
-no 21rkT exp kT (5.12) 

The number density, for a system described by this velocity distribution 
function, is therefore given by 

[ U(r)J n(r) =no exp - kT (5.13) 

The factor exp [-U(r)/kT], responsible for the inhomogeneity of f(r, v) 
in (5.12), is known as the Boltzmann factor. 

An important example is provided by a plasma in the presence of a 
conservative force due to an electrostatic field 

E = -\7¢(r) (5.14) 

where ¢(r) is the electrostatic scalar potential. The potential energy, in 
this case, is 

U(r) = q ¢(r) (5.15) 

The number density for particles of charge q in equilibrium under the 
action of an electrostatic field is therefore 

(5.16) 

This expression is very useful for the analysis of electrostatic shielding in 
a plasma (see Chapter 11). 
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6. DEGREE OF IONIZATION IN EQUILIBRIUM 
ANDTHESAHAE~U~I~O~N~----------------------~ 

From the methods of statistical mechanics we can determine the de­
gree of ionization in a gas in thermal equilibrium at some temperature T, 
without considering the details of the ionization process. In order to ionize 
an atom or molecule, it is necessary to provide a certain amount of energy. 
This ionization energy is conveniently expressed in electron volts, and is 
normally called the ionization potential. Values for the first ionization po­
tential of some atoms are given in Table 1. Note that to provide a mean 
thermal energy kT of 1 eV requires a temperature of 11,600 K. Hence, it 
is apparent that only at very high temperatures does the mean thermal 
kinetic energy 3kT /2 of a particle exceed the ionization energy. However, 
we will show that a considerable degree of ionization can be achieved even 
when the mean thermal energy of the particles is far below the ionization 
energy, since some of the particles, the ones with the largest velocities (in 
the tail of the Maxwellian distribution function), have enough energy to 
produce ionization by collisions. The degree of ionization, under thermal 
equilibrium conditions, is then determined by a balance between the rate 
of ionization by collisions and the rate of recombination. 

To calculate the relative numbers of ionized and neutral atoms in a 
plasma, at a given temperature, it is appropriate to use a particle dis­
tribution function similar to that given in (5.13). However, the physical 
situation is somewhat different because of the necessary quantum mechan­
ical aspects of the problem. Denoting by na and nb the number density 
of the particles having energies Ua and Ub, respectively, the ratio na/ nb is 
given, from statistical mechanics, by 

na = ga exp [- (Ua- Ub)] 
nb gb kT 

(6.1) 

where ga and gb are the statistical weights associated with the energies Ua 
and ub, that is, the degeneracy factors giving the number of states having 
the energies Ua and Ub, respectively. For the particular case of a system 
having only two energy levels, Ua and Ub , the fraction a of all the particles 
that are in the higher energy state Ua is given by 

a = na = na(na+ 1)-l 
(na + nb) nb nb 

(6.2) 

or, using (6.1) with U = Ua- Ub, 

(ga/gb) exp (- UjkT) 
a= ----~--------~~---

(ga/gb) exp (-UjkT)+1 
(6.3) 



7. THE EQUILIBRIUM STATE 185 

TABLE 1 
IONIZATION POTENTIAL ENERGY U 

OF SOME ATOMS FOR THE FIRST ELECTRON 

Element U(eV) 

Helium (He) 24.59 
Argon (A) 15.76 

Nitrogen (N) 14.53 
Oxygen (0) 13.62 

Hydrogen (H) 13.60 
Mercury (Hg) 10.44 

Iron (Fe) 7.87 
Sodium (Na) 5.14 

Potassium (K) 4.34 
Cesium (Cs) 3.89 

For the ionization problem, state a is taken as that of the ion-electron 
pair, state b is that of the neutral atom, and U = Ua- Ub is the ionization 
energy. The temperature T for which a= 0.5, that is, for which 50% of 
all the atoms are in the ionized state (na = nb), can be determined by 
taking 

9a ( U ) -exp- =1 
9b k T112 

(6.4) 

which gives 
u 

Tl 12 = -k -ln-(-:-ga-/-:-gb-:-) (6.5) 

Fig. 9 shows the plot of a as a function ofT, according to (6.3). 
The fraction of particles in the ionized state changes from nearly 

zero to nearly one over a small temperature range. An estimate of this 
temperature range can be obtained from the temperature difference fl.T 
that would exist between a = 0 and a = 1, if the curve of a(T) were a 
straight line with the slope of the true a(T) curve at T1; 2 . Hence, we take 

( da(T)) 1 (6.6) 
dT Tl/2 fl.T 

From (6.3) we obtain, assuming d(ga/9b)/dT = 0, 

( da(T)) [ Ua2 l 
dT T1 ; 2 - T 2 (ga/9b) exp (-U/kT) T 112 4 T'f;2 

u 
(6.7) 
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Fig. 9 The function a(T), which gives the fraction of particles 
in the ionized state as a function of temperature T. 

so that 
4U 

(6.8) 

From this result we can see that, the larger is 9a/ gb, the smaller is f:j.T. 

Since the ionized state is much more degenerate than the neutral state 
(ga » 9b), the curve of a(T) presents a very steep inclination near T1; 2 , 

with most of the transitions from the neutral state to the ionized state 
occurring near T1; 2 , given by (6.5). Thus, for 9a » gb, the curve of a(T) 
will look approximately like a step function with the ionization occurring 

near T1;2· 

The degeneracy factors 9a and 9b can be obtained from a quantum me­
chanical calculation. If we neglect the small interaction potential between 
the ion and the free electron, and also the internal degrees of freedom of 
all the particles, it turns out that 

(6.9) 



7. THE EQUILIBRIUM STATE 187 

where h is Planck's constant and ni is the ion number density. For T 
expressed in degrees Kelvin and ni in m-3, 

Ya = 2.405 x 1021 T3/2 _.!._ 
Yb ni 

Using this result in (6.1), we obtain the following equation 

ni = 2.405 x 1021 T3/2 _.!._ exp (-!!___) 
nn ~ kT 

(6.10) 

(6.11) 

which is known as the Saha equation. Since 1 eV = kT forT= 11,600 K, 
we can also write the Saha equation as 

(6.12) 

with T in e V and ni in m - 3. Thus, when the total number density 
nt = ni + nn is sufficiently low, a considerable degree of ionization can 
be achieved for temperatures that are well below the ionization energy. 
This point is illustrated in Fig. 10, which shows the degree of ionization 
of hydrogen as a function of temperature, for values of the total number 
density of 1016 , 1019 , 1022 , and 1025 m - 3. It is clear that, as the number 
density decreases, the values of !:l.T and T1; 2 decrease significantly, and a 
significant degree of ionization can be obtained at temperatures far below 
the ionization energy of atomic hydrogen (13.60 eV). In a gas like cesium, 
whose ionization energy is only 3.89 eV, a high degree of ionization can 
be obtained even at relatively low temperatures of the order of 1000 K. 

7.1 A two-dimensional gas, consisting of only one species and whose par­
ticles are restricted to move in a plane (the z = 0 plane), is characterized 
by a homogeneous, isotropic, two-dimensional Maxwell-Boltzmann distri­
bution function (with u = 0), 

( m ) [ m( v; + v~) J 
f(v) =no 27rkT exp - 2kT 

where n0 represents the number of particles per unit area. 
(a) Show that the most probable speed of the particles is 

Vmp = (kTjm) 112 
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25 =log (nt) 
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Fig. 10 Degree of ionization a: = nd ( ni + nn) as a function of 
temperature for atomic hydrogen (U = 13.60 eV). The various 
curves refer to different number densities nt = ni + nn in m - 3 . 

(b) Show that the fraction of the number of particles per unit area, which 
have speeds greater than the most probable speed, is given by (1/e) 112 , 

where e is the base of natural logarithms. 
(c) Show that the number of particles crossing a unit length per unit time 
(flux), from one side only, is given by 

no ( kT )1/2 r = --;:- < v > = no 27rm 

(d) Show that the kinetic pressure dyad is given by 

P = nokT(xx + yy) 

7.2 Consider a gas of particles consisting of only one species and charac­
terized by the Maxwell-Boltzmann equilibrium distribution function (with 
u = 0) 

( m )3/2 ( mv2) 
f(v) =no 27rkT exp - 2kT 
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(a) Show that the total number of particles crossing a unit area per unit 
time, lying within an element drl of solid angle, is given by 

no ( kT )1/2 - -- cos() drl 
1r 21rm 

where () denotes the angle between the solid angle orientation and the di­
rection of the normal to the area considered. 
(b) Show that the fraction of particles that cross a unit area perpendic­
ular to the x axis per unit time, from the same side, having the velocity 
components in the range d3v = dvx dvy dvz, about v, is given by 

(c) Calculate the thermal energy flux triad for the Maxwellian gas. 

7.3 The distribution of thermal kinetic energies E, for a gas in the 
Maxwellian state, is given by 

2nE112 E 
G(E) = 1fl/2(kT)3/2 exp (- kT) 

Calculate the most probable energy and show that the velocity of the par­
ticles, which have this energy, is equal to (kT jm )112 . 

7.4 The entropy of a system can be expressed in terms of the distribution 
function as 

S = - k 11 f ln f d3 v d3 r 

Prove that, for a Maxwellian distribution function, the entropy satisfies 
the following thermodynamic relations: 

(~~)V,N = ~ 

(;~) E,N =; 
where N is the total number of particles in the system, V is the total 
volume, and E = 3NkT /2 is the total energy. 
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7.5 Derive an expression for the Doppler intensity profile (thermal broad­
ening) of a spectral line emitted near the central frequency v0 , assuming 
that the emitting atoms have a Maxwellian velocity distribution. Ignore 
all other factors that contribute to the shape of the line. 
Hints: (1) The change in frequency due to the Doppler effect associated 
with the relative (nonrelativistic) motion of the emitting atoms, with re­
spect to the direction of observation (e.g., x direction), is given by 

Vx 
v- vo = -vo­

c 

where in this expression c denotes the speed of light in vacuum. (2) The 
observed intensity in the frequency range between v and v + dv, that is, 
I(v) dv, is proportional to the number of emitting atoms per unit vol­
ume, which have velocities along the direction of observation (x direction) 
between Vx and Vx + dvx. 

7.6 Consider a gas mixture containing ne electrons and ni oxygen ions 
per unit volume, all in thermal equilibrium at a temperature T and having 
no drift velocity. 
(a) Resolve the motion of the particle species into the motion in space of 
the center of mass plus the relative motion of one species with respect to 
the other, but using the reduced mass. Calculate the Jacobian J of this 
velocity transformation and show that IJI = 1. 
(b) Show that the center of mass velocities have a Maxwellian distribution 
and that the relative velocities also have a Maxwellian distribution, but 
with the reduced mass. 
(c) What must be the magnitude ofT such that 1/5 of the electrons have 
a relative kinetic energy greater than 2 e V? The following integral will be 
useful: 

where erfc ( a 112 x0 ) denotes the complementary error function. 

7. 7 A gas of 0 2 molecules is in the equilibrium state with number den­
sity n and absolute temperature T. Calculate the average value of the 
reciprocal of the particle velocity, that is, < 1/v >. 
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7.8 A plasma is in equilibrium under the action of an external electrostatic 
field E and a gravitational field g. Consider that the plasma as a whole is 
moving with constant velocity u, with respect to the observer's frame of 
reference. Write down the distribution function for the species of type a 
for this plasma. 

7.9 Consider the particles in the Earth's atmosphere under equilibrium 
conditions in the presence of the Earth's gravitation! field. Assume a 
horizontally stratified (x, y plane) atmosphere with constant temperature 
T and consider a constant value g = -gz for the acceleration due to 
gravity. Derive an expression for the number density na ( z) as a function 
of height z, for the type a species, in terms of the number density na(zo) 
at a base level zo and of the scale height Ha = kT /m0 g. How is the 
expression for na(z) modified, when T and g vary with height? 

7.10 The temperature of a plasma, in thermal equilibrium with a neutral 
gas, can be determined experimentally by measuring the electron den­
sity ne with a microwave transmission experiment, for example, and the 
neutrals number density in a particular excited state through the rate 
of transitions to a lower state. Determine the temperature of a plasma 
that has only one type of ions, with the electron number density equal to 
1020 m - 3 , and that is in equilibrium with a state of ionization potential 
equal to 2 eV whose population is 1015 m-3 . 

7.11 Consider two large chambers that communicate with each other 
only through a small aperture of area A in a very thin wall, as indicated 
in Fig. 11. The chambers contain an ideal gas at a very low pressure, such 
that the particle mean free path is much larger than the dimensions of 
A. The temperatures of the chambers are T1 and T2 . Determine the ratio 
pl/p2 of pressure in the two chambers assuming that, under equilibrium 
conditions, the flux of particles through the aperture A from one chamber 
must equal that from the other. What would be the result in the case of 
normal conditions of pressure? Give a physical explanation for the two 
different results. 

7.12 Use the laws of conservation of momentum and of energy in a colli­
sion to show that the Maxwell-Boltzmann distribution function 
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A 

Fig. 11 Two chambers connected through a small aperture of 
area A, at very low pressure, as illustration for problem 7.11. 

( m )3/2 [ m(v-u)2] 
f(v) = n 21rkT exp - 2kT 

satisfies the following equation of detailed balance 

f' f~ = f !I 

7.13 Show that the average thermal energy per particle, for a gas in 
thermodynamic equilibrium, is equal to 1.292 X w-4 e v / K. 



MACROSCOPIC 

TRANSPORT EQUATIONS 

In the previous chapters we have seen that the macroscopic variables 
of physical interest for a plasma, such as number density n0 , mean ve­
locity ua, temperature Teo and so on, can be calculated if we know the 
distribution function for the system under consideration. For the case of 
a system in thermal equilibrium we have calculated, in Chapter 7, several 
of these macroscopic parameters using the Maxwell-Boltzmann distribu­
tion function. In principle, the distribution function for a system not in 
equilibrium can be obtained by solving the Boltzmann equation. However, 
the solution of the Boltzmann equation is generally a matter of great dif­
ficulty. We will see, in this chapter, that it is not necessary to solve the 
Boltzmann equation for the distribution function in order to determine the 
macroscopic variables of physical interest. The differential equations gov­
erning the temporal and spatial variations of these macroscopic variables 
can be derived directly from the Boltzmann equation without solving it. 
These differential equations are known as the macroscopic transport equa­
tions, and their solutions, under certain assumptions, give us directly the 
macroscopic variables. 

The macroscopic variables are related to the moments of the distri­
bution function and the transport equations satisfied by these variables 
can be obtained by taking the various moments of the Boltzmann equa­
tion. The first three moments of the Boltzmann equation, obtained by 
multiplying it by ma, m 0 y, and m 0 v2 /2, respectively, and integrating 
over all of velocity space, give us the equation of conservation of mass, 
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the equation of conservation of momentum, and the equation of conser­
vation of energy. However, at each step of the hierarchy of moments of 
the Boltzmann equation, the resulting set of transport equations is not 
complete in the sense that the number of equations is not sufficient to 
determine all the macroscopic variables that appear in them. Each time a 
higher moment of the Boltzmann equation is calculated in an attempt to 
obtain a complete set of transport equations, a new macroscopic variable 
appears. It is necessary, therefore, to truncate the system of transport 
equations at some point of the hierarchy and to introduce a simplifying 
assumption concerning the highest moment of the distribution function 
that appears in the system. Thus, with such simplifying approximation, 
we can obtain a complete set of transport equations sufficient to determine 
all the macroscopic variables appearing in the system. Since a plasma is 
composed of more than one particle species (electrons, ions, and neutral 
particles), there is, consequently, a system of transport equations for each 
species. 

There are several different complete sets of transport equations (or 
hydrodynamic equations) that can be formed, depending on the assump­
tions considered. Among the possible complete systems of macroscopic 
equations, there are two that are widely used and that characterize the 
so-called cold and warm plasma models. The equations that describe these 
two simple models and the corresponding approximations are discussed in 
sections 6 and 7 of this chapter. 

We derive now a general partial differential equation that describes 
the temporal and spatial variation of the physically relevant macroscopic 
parameters. Let x(v) represent some physical property of the particles in 
the plasma, which may be, in general, a function of the particle velocity. 
Since the average value of x(v) is obtained by multiplying the distribu­
tion function by the property x(v), integrating the product over all of 
velocity space and dividing the result by the particle number density, the 
differential equation governing the temporal and spatial variation of the 
average value of x( v) can be obtained in a similar way by multiplying the 
Boltzmann equation by the function x(v) and integrating the resulting 
equation over all of velocity space. 

Consider the Boltzmann equation for the type a particles in the 
general form 
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ajo: (6fo:) -a +v · Vfo: +a· 'Vvfo: = ~ 
t ut call 

(2.1) 

As indicated, we now multiply each term by x(v) and integrate the re­
sulting equation over all of velocity space to obtain 

(2.2) 

We proceed next to evaluate separately each of the terms in (2.2). 
The first term of (2.2) may be rewritten as 

1 a J o: 3 a (1 3 ) 1 ax 3 v x at d v = at v x fo: d v - v fo: at d v (2.3) 

since the limits of integration do not depend upon the space and time 
variables, and therefore the partial time derivative can be taken inside or 
outside the integral sign. The last integral in (2.3) vanishes since x(v) does 
not depend upon t. Using the definition of average values, as presented in 
Chapter 6, we obtain 

1 aJo: 3 a ( 
v X at d v = at no: <X >o:) (2.4) 

Similarly, for the second term of (2.2) we can write 

(2.5) 

The term involving V · v is zero, since r, v, and t are independent variables, 
as well as the term involving Vx, since x(v) does not depend upon the 
space variables. Thus, the second term in (2.2) becomes 

(2.6) 
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For the third term of (2.2) we have, in a similar way, 

1 fa X V v · a d3v (2.7) 

The last integral in (2. 7) vanishes if we assume that 

(2.8) 

that is, if the force component Fi is independent of the corresponding 
velocity component vi, fori = x, y, z. Note that this restriction does not 
exclude the force due to a magnetic field, F = qa v x B, since in this case 
Fi is still independent of Vi· For the x component, for example, we have 

(2.9) 

which is independent of Vx, and the same holds true for the other two 
components. The first integral in the right-hand side of (2. 7) consists of a 
sum of three triple integrals, 

For each one of these triple integrals ( i = x, y, z) we have the result 

(2.11) 

since fa(r, v, t) must be zero when vi becomes infinitely large, as there are 
no particles with infinite velocity. Consequently, the first integral in the 
right-hand side of (2. 7) vanishes. Therefore, 

(2.12) 
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Combining the results contained in Eqs. (2.4), (2.6), and (2.12), we 
obtain the general transport equation, 

a 
at ( na < X >a) + \7 · ( na < xv >a) - na < a · \7 v X >a = 

[ ~ (na <X >a)] (2.13) 
ut call 

where the term in the right denotes the time rate of change of the quantity 
x per unit volume, for the particles of type a, due to collisions, 

(2.14) 

The equations to be derived in the subsequent sections of this chapter 
are very general and are not specifically dependent on any particular form 
of the collision term. A derivation of the general transport equation for 
the case when the property x is a function of r, v, and t is included in 
problem 8.6. 

3 . •. --------------
3.1 Derivation of the Continuity Equation 

The transport equation (2.13) is a general expression and it applies to 
any arbitrary function x(v). The equation of continuity, or of conservation 
of mass, can be obtained by taking x = ma in (2.13). Hence, consider 

<XV >a= ffia < V >a= ffiaUa 

\7vX = \7vma = 0 

(3.1a) 

(3.1b) 

(3.1c) 

The substitution of these results into the general transport equation gives 
the continuity equation, 

aPma ( ) ~+\7· PmaUa =Sa (3.2) 

where Pma = nama represents the mass density and where the collision 
term Sa, defined by 

S _ 1 ( 8 J a) d3 _ ( 8 Pma ) 
a - ma v M call V - ~ call 

(3.3) 

represents the rate per unit volume at which particles of type a (with 
mass ma) are produced or lost as a result of collisions. Contributions to 
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this term are due to processes of type a particle production or destruction 
such as ionization, recombination, attachment, charge transfer, and so on. 
In the absence of interactions leading to production or loss of particles of 
type a, the collision term (3.3) is equal to zero, since in this case the mass 
is conserved in the collision process. When Sa = 0 the continuity equation 
reduces to 

(3.4) 

Dividing each term in (3.4) by ma, the continuity equation can be written 
in terms of the number density na, as 

(3.5) 

The equation of conservation of electric charge follows from (3.5) by mul­
tiplying it by the particle charge qa, 

8pa + V' . J = O 
8t a 

(3.6) 

where Pa = naqa is the charge density and J a 
current density. 

Pa Ua is the charge 

3.2 Derivation by the Method of Fluid Dynamics 

The continuity equation can also be derived using the method of fluid 
dynamics, since na(r, t) and ua(r, t) are macroscopic variables. Consider 
a volume V in the fluid, limited by the closed surfaceS, and let dS = ii dS 
be an element of area on this surface, such that the unit normal vector ii 
points outward, as shown in Fig. 1. The average number of particles of 
type a that leave the volume V through the element of area dS per unit 
time is given by 

(3.7) 

Therefore, the number of particles of type a that leave the volume V 
through the whole closed surface S per unit time is obtained by integrating 
expression (3. 7) over the whole surface, 

(3.8) 
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dS 

SurfaceS 

Fig. 1 Closed surface S surrounding the arbitrary volume V 
inside the fluid, and the element of area dS = n dS pointing 
outwards. 

On the other hand, the total number of particles of type a contained in 
V, at any time, is given by 

fv na d3r (3.9) 

If we consider that there are no production or loss of particles inside the 
volume V, then the number of type a particles leaving V must equal the 
time rate of decrease of the number of type a particles inside V. We must 
have, therefore, 

i na U a · dS = - :t fv na d3r 

Using Gauss's divergence theorem we can write 

and (3.10) becomes 

(3.10) 

(3.11) 

(3.12) 

This result must be valid for any arbitrary volume V, which implies that 
the integrand of (3.12) vanishes identically. Hence, we obtain the expres­
sion (3.5) for the continuity equation. 
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3.3 The Collision Term 

Let us consider now the form of the collision term Sa for some mecha­
nisms of production and loss of particles in plasmas. The processes leading 
to production and loss of particles are usually related to inelastic collisions, 
such as those involving ionization, recombination, or electron attachment, 
for example. 

The effect of ionization can be included in the continuity equation 
through a rate coefficient for ionization, ki, defined such that the number 
of electrons produced per unit time is given by ki ne. 

An important process leading to the loss of electrons and ions in a 
plasma is ion-electron recombination. Let kr denote the recombination 
coefficient, which can be determined experimentally. The rate of electron 
recombination is proportional to the product of the electron and ion num­
ber densities. Assuming that there is only one ion species present, we have 
ni = ne, and the electron loss term, due to recombination, can be written 
as kr n~. 

Another important mechanism for electron loss is the process of elec­
tron attachment. In this case, the electron loss rate is proportional to the 
product of the electron number density and the neutral particle number 
density. In a weakly ionized plasma the neutral particle number density 
can be considered to be approximately constant, and the loss term for 
the electrons due to attachment can be written as ka ne, where ka is the 
attachment collision frequency, which can be determined experimentally. 

For these inelastic collision mechanisms just described, the collision 
term Sa for the electrons can be expressed as 

(3.13) 

4. 

4.1 Derivation of the Equation of Motion 

In order to derive the momentum transport equation, we replace x(v) 
by mavin the general transport equation (2.13). Taking v = Ca + Ua 
and noting that < Ca >= 0, the terms of the general transport equation 
(2.13) become 

(4.1a) 
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'V · (Pma < VV >a) = 'V · [Pma(UaUa + Ua < Ca > + < Ca > Ua+ 

< CaCa > )] = 'V · (PmaUaUa + Pma < CaCa >) (4.1b) 

( 8 8 8 ) -na < F · 'Vvv >a= -na < Fx-8 + Fy-8 + Fz-8 V >a 
Vx Vy Vz 

= -na < Fxx + Fyy + Fzz >a = -na < F >a (4.lc) 

Substituting these expressions into (2.13), results in the momentum con­
servation equation 

(4.2) 

where Aa denotes the collision term 

The expression Pma < CaCa > is the kinetic pressure dyad P a defined 
in (6.6.2) (Eq. 6.2 in Chapter 6). Therefore, 

(4.4) 

The third term in the left-hand side of ( 4.2) can be expanded as follows: 

[ 8(Pma Uax) 8(Pma Uay) 8(Pma Uaz)] 
Ua 8x + 8y + 8z 

= Pma(Ua · 'V)ua + Ua['V · (Pmalla)] (4.5) 

Substituting ( 4.4) and ( 4.5) into ( 4.2), and using the continuity equation 
(3.2), we obtain 

( 4.6) 
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For the terms within brackets in this last equation we can use the total 
(or substantial) time derivative operator 

D a 
-=-+u ·\7 Dt at a 

(4.7) 

which corresponds to the time variation observed in a reference frame 
moving with the mean velocity Ua. If the electromagnetic Lorentz force 
and the gravitational force are considered, the last term in the left-hand 
side of ( 4.6) becomes 

-na < F >a = -naqa(E + Ua X B)- namag (4.8) 

where the fields E and B, in this equation, represent smoothed macro­
scopic fields. The equation of motion, therefore, can be written as 

Dua 
Pma Dt = naqa(E + Ua X B)+ Pmag- \7. Pa + Aa- UaSa (4.9) 

Physically, this equation states that the time rate of change of the mean 
momentum, in each fluid element, is due to the external forces applied in 
the fluid, plus the shear (viscosity) and pressure forces of the fluid itself, 
plus the internal forces associated with the collisional interactions. Thus, 
the equation of motion establishes the condition necessary to guarantee 
conservation of momentum, just as the continuity equation establishes 
the condition necessary to guarantee conservation of mass (or number of 
particles). 

In Chapter 6 we have seen that the term -\7 · P a represents the force 
exerted in a unit volume of the plasma, due to the random variations in 
the particle peculiar velocities. This force per unit volume includes forces 
associated with the scalar pressure and tangential shear forces (viscous 
forces). In many cases, the effect of viscosity is relatively unimportant in 
plasmas, and the nondiagonal terms of P a can be neglected. Furthermore, 
in the special case when the distribution of peculiar velocities is isotropic, 
the diagonal terms of P a are all equal and correspond to a scalar kinetic 
pressure Pa. Thus, neglecting viscosity effects and considering an isotropic 
velocity distribution, we have Pa =Pal, and the force per unit volume 
becomes -\7 · Pa = -Vpa, according to (6.6.18) (Eq. 6.18 in Chapter 6). 

With these simplifying approximations, and neglecting collisions lead­
ing to production or loss of particles (Sa = 0), the momentum equation 
becomes 

(4.10) 



8. MACROSCOPIC TRANSPORT EQUATIONS 203 

The momentum conservation equation can also be derived using a 
fluid-dynamics approach, in a way similar to the derivation of the mass 
conservation equation presented in section 3.2, which we shall not discuss 
here. 

4.2 The Collision Term 

The symbol Aa denotes the rate of change of the mean momentum 
per unit volume, due to collisions. As a consequence of conservation of the 
total momentum in an elastic collision, the change in the momentum of one 
of the particles must be equal and opposite to the change in momentum of 
the other particle participating in the collision event. This means that, for 
collisions involving particles of the same species, there is no variation in 
the total momentum per unit volume and therefore, in this case, Aa = 0. 
However, for a fluid composed of particles of different species, as in a 
plasma, the collision term Aa is not zero in general. For collisions between 
electrons and neutral particles there is a net momentum transfer from the 
electron gas to the neutral gas. Collisions between electrons and ions also 
modify the total momentum of the electron gas. Therefore, for the case 
of collisions between particles of different species, a collision term must be 
included in the equation of momentum conservation. 

An expression often used for the term of momentum transfer by col­
lisions is 

Aa = -Pma L Vaf3(Ua- ll(3) (4.11) 
{3 

which assumes that the force per unit volume exerted on the particles of 
type a due to collisions with particles of some other type ((3) is propor­
tional to the difference between the mean velocities of these particles. The 
proportionality constant Vaf3 (which has dimensions of sec-1) is called the 
collision frequency for momentum transfer between the particles of type a 
and those of type (3. Since the total momentum must be conserved during 
a collision, we must have 

(4.12) 

The collision frequencies Vaf3 and Vf3a satisfy, therefore, the following im­
portant relation: 

(4.13) 

The collision term Aa, defined in (4.3), will be considered in more de­
tail in Chapter 21. We will see, then, that the expression (4.11) is not 
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generally valid, although this result is obtained when the difference be­
tween the mean velocities of the various particle species in the plasma is 
relatively small and when each particle species has a Maxwellian velocity 
distribution. 

5.1 Derivation of the Energy Transport Equation 

To derive the energy transport equation, we substitute x(v) by the 
particle kinetic energy mav2 /2 in the general transport equation (2.13). 
In this case, we have 

~ (3pa + PmaU~) (5.1) 

\7 vX = ~ma \7 v(v · v) = ma(v · \7 v)v = mav (5.2) 

Therefore, the terms in the left-hand side of the general transport equation 
(2.13) become 

\7 · (na <XV >a)= \7 · [~Pma < (v · v)v >a] 

-na < (F/ma) · \7vX >a= -na < F · V >a 

(5.3a) 

(5.3b) 

(5.3c) 

Adding these terms, results in the following energy conservation equation: 

(5.4) 

where Ma represents the rate of energy density change due to collisions, 

M _ 1 1 2 ( 5 J a) d3 _ [ 5 ( ~ Pma < V
2 >a)] a- 2 ma V V-

v 5t call 5t call 
(5.5) 

The energy conservation equation (5.4) can be written in an alterna­
tive form as follows. Consider, initially, the third term in the left-hand 
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side of (5.4). Taking v = Ca + Ua, the quantity < (v · v)v >a can be 
expanded as 

(5.6) 

The term Pma < CaCa > represents the kinetic pressure dyad P a and 
~Pma < c;ca > is the heat flux vector Qa, defined in Chapter 6. We have 
also seen that ~Pma < c; >= 3pa/2 . Therefore, 

\7 · (~PmaU~Ua) + ~(3pa)(\7 · Ua) + 
~(ua · \7)(3pa) + \7 · (Pa · Ua) + \7 · Qa (5.7) 

Substituting this result into (5.4) and using the notation D / Dt for the 
total time derivative ( 4. 7), we obtain 

\7. (Pa. Ua) + \7. Qa- na <F. v >a = Ma (5.8) 

The third and fourth terms in the left-hand side can be written as 

:t (~PmaUa · Ua) + \7 · [~Pma(Ua · Ua)ua] = 

1 2 OPma OUa 
2UaBt+PmaUa·Bt + 

~u; \7 · (PmaUa) + PmaUa · [(ua · V')ua] = 

1 2 [ 8 Pma ( ] Dua 
2Ua Bt + \7 · PmaUa) + PmaUa · Dt (5.9) 

Using the continuity equation (3.2) and the equation of motion (4.6), this 
last equation becomes 

(5.10) 

Taking this result back into (5.8) we obtain 

D (3Pa) 3pa - -- + -\7 · u + \7 · (P · u ) - u · (\7 · P ) -Dt 2 2 a a a a a 
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(5.11) 

The third and fourth terms in the left-hand side of this equation can be 
combined into one single term, 

Y' · (Pa · Ua)- Ua · (V' · Pa) = (Pa · V') · Ua (5.12) 

as well as the fifth and the sixth terms, which give 

-na < F · V >a + na Ua · < F >a = -na < F · Ca > (5.13) 

smce 

< F · V >a = < F · (ua + Ca) > = < F >a · Ua+ < F · Ca > (5.14) 

For a velocity-independent force (5.13) vanishes, since, in this case, 

< F · Ca > = F · < Ca > = 0 (5.15) 

For the force due to a magnetic field B, the only velocity-dependent force 
that we are interested here, (5.13) also vanishes, 

< F · Ca > = qa < ( V X B) · Ca > = 

(5.16) 

where both terms vanish since < Ca > = 0 and (ca x B) is normal to 
Ca. We obtain, finally, the following alternative form for the equation of 
conservation of energy: 

D (3Pa) 3pa ( ) - -- + -V' . u + p . V' . u + V' . q = Dt 2 2 a a a a 

(5.17) 
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5.2 Physical Interpretation 

The physical interpretation of this equation is as follows. The first 
term in the left-hand side represents the total rate of change of the particle 
thermal energy density in a volume element moving with the mean fluid 
velocity Ua. Note that the thermal energy density is given by 3p0 )2 = 
Pma < c; > /2. The other terms of (5.17) contribute to some extent to 
this total rate of change of the thermal energy density. The second term 
in the left-hand side of ( 5.1 7) can be interpreted as the change in the 
thermal energy density due to particles entering the volume element with 
the mean velocity Ua. The third term is related to the work done on the 
unit volume by the kinetic pressure dyad acting on its surface, whereas the 
fourth term represents the change in the thermal energy density due to the 
heat flux. Finally, the terms in the right-hand side of (5.17) represent the 
rate of change in the thermal energy density as a consequence of collisions. 
In the case of a fluid containing only one type of particles, the collision 
terms vanish, as indicated previously. 

The first two terms in the energy equation may also be combined, 
making use of the continuity equation (3.2). Expanding \7 · (Pmaua), 
(3.2) becomes 

(5.18) 

which gives 

\7. Ua = __ 1 (DPma- sa) 
Pma Dt 

(5.19) 

Substituting this result into (5.17), taking Pma =nama and Pa = nakTa, 
yields the following alternative form for the energy equation in terms of 
the temperature Ta: 

5.3 Simplifying Approximations 

Several simplifying approximations can be considered for the energy 
equation, depending on the situation of interest. 
(a) When the collision terms vanish, or are negligible, and when the mean 
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fluid velocity Ua is equal to zero, (5.20) reduces to a diffusion equation 
for Ta, if we take the heat flux vector as 

(5.21) 

where K denotes the thermal conductivity. Thus, in this case, (5.20) 
reduces to 

(5.22) 

The thermal conductivity coefficient K is related to the fluid viscosity co­
efficient. 
(b) Consider now a nonviscous fluid, in which the pressure dyad reduces 
to a scalar pressure without thermal conductivity ( Qa = 0). If we con­
sider also that the collision terms vanish, the energy conservation equation 
(5.17) becomes 

(5.23) 

Substituting (5.19) for (V' · ua), with Sa = 0, yields 

!}__ (3Pa) _ Spa DPma = O 
Dt 2 2Pma Dt 

(5.24) 

from which results 
Dpa 5 DPma 

Pa 3 Pma 
(5.25) 

Integrating this equation gives 

Pa = (Pma) 5/ 3 

Po Pmo 
(5.26) 

where Po and Pmo are constants, that is, 

P P- 513 =constant a ma (5.27) 

This is the adiabatic energy equation for a gas in which the ratio of the 
specific heats at constant pressure and at constant volume, "(, is equal 
to 5/3. We emphasize here that the energy equation reduces to this adi­
abatic equation only when the effects of viscosity, thermal conductivity, 
and energy transfer due to collisions are neglected. 
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The parameter 1 is related to the number of degrees of freedom, N, 
of a gas by the condition 

1 = (2 + N)/N (5.28) 

For particles that have no internal degrees of freedom, as for example in a 
monoatomic gas, where the only degrees of freedom are those associated 
with the three possible directions of translational motion, we have N = 3 
and therefore 1 = 5/3. Other degrees of freedom exist in the case of 
diatomic or poliatomic molecules. The adiabatic energy equation often 
used in thermodynamics is 

pp:;;? = constant (5.29) 

Differentiating this equation, yields 

(5.30) 

or, equivalently, 

(5.31) 

where we have defined 

(5.32) 

which is the adiabatic speed of sound for the fluid. 
(c) An equation that is also used in thermodynamics when the temperature 
is constant inside the fluid, is the isothermal energy equation. It can be 
easily obtained from the equation of state for an ideal gas, p = nkT. For 
an isothermal process (T = constant), we have 

dp = kT dn = (pj Pm) dpm = V,f dpm (5.33) 

where the isothermal speed of sound is 

(5.34) 
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~., .......................... .. 
In the previous sections we have seen that the differential equations 

governing the temporal and spatial variation of the macroscopic variables 
can be obtained by taking the various moments of the Boltzmann equa­
tion. The macroscopic parameters are all related to the moments of the 
distribution function fa(r, v, t). The first four moments of the distribu­
tion function give us the number density na, the mean velocity ua, the 
momentum flow dyad II a, and the energy flow triad Ea. 

The first moment of the Boltzmann equation gives us the continuity 
equation, which relates the number density na (or the mass density Pma) 
with the mean velocity Ua for the particles of type a. In order to determine 
these two macroscopic variables we need two independent macroscopic 
transport equations. Thus, we need to consider the second moment of the 
Boltzmann equation, which gives us the equation of motion (or momentum 
conservation equation), and which relates the mean velocity Ua with the 
number density na and the kinetic pressure dyad P a. This gives us now 
two transport equations involving three independent variables. We find, 
therefore, that the set of transport equations derived from the moments of 
the Boltzmann equation always includes more variables than independent 
equations. This situation is clearly evident in the three transport equations 
derived in this chapter. The energy equation, besides the variables na, 
Ua, and Pa, also includes the heat flow vector qa. A more general energy 
conservation equation would include the energy flow triad Ea. 

Any finite set of transport equations, therefore, is insufficient to form 
a closed system of equations. Consequently, it is necessary to introduce a 
scheme of approximation to eliminate some of the independent variables, 
or to express some of these variables in terms of the others. It is common, 
therefore, to arbitrarily truncate the system of transport equations at 
some point in the hierarchy of moments of the Boltzmann equation, and 
consider some simplifying approximation for the highest moment of the 
distribution function appearing in the system. 

The simplest closed system of macroscopic transport equations that 
can be formed is known as the cold plasma model. This simple model 
encompasses only the equations of conservation of mass and of momen­
tum. The highest moment of the distribution function, appearing in the 
momentum equation, is the kinetic pressure dyad, which, in this model, is 
taken equal to zero. This means that the effects due to the thermal motion 
of the particles and the force due to the divergence of the kinetic pressure 
dyad are neglected. For convenience, we collect here the two transport 
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equations pertinent to the cold plasma model, 

8Pma ( ) ~+V'· PmaUa =Sa (6.1) 

Pma D;a = naqa(E + Ua X B)+ Pmag + Aa- UaSa (6.2) 

In the absence of processes leading to production and loss of particles of 
type a (such as ionization and recombination), we have Sa = 0. The 
expression normally used for the collision term for momentum transfer 
Aa is the one indicated in ( 4.11). The cold plasma model assumes, in 
fact, a zero plasma temperature, so that the corresponding distribution 
function is a Dirac delta function centered at the macroscopic flow velocity, 
fa(r, v, t) = J[v- u(r, t)]. 

This model has been successfully applied, e.g., in the investigation 
of the properties of small-amplitude electromagnetic waves propagating 
in plasmas, with phase velocities much larger than the thermal velocity 
of the particles. The theory of high-frequency waves propagating in cold 
magnetized plasmas is commonly known as the magnetoionic theory. 

In this closed system of transport equations, the simplifying approxi­
mation is introduced in the equation of conservation of energy, in which we 
neglect the term involving the heat flux vector. Thus, the approximation 
consists in taking V' · Qa = 0, which means that the processes occurring 
in the plasma are such that there is no thermal energy flux. This ap­
proximation is also called the adiabatic approximation. Since the thermal 
conductivity is zero in this case, it follows that the plasma is nonviscous 
and, consequently, the nondiagonal terms of the kinetic pressure dyad are 
all equal to zero. Further, the diagonal terms of P a are assumed to be 
equal and the kinetic pressure dyad is replaced by a scalar pressure Pa. 
Thus, the term V' ·Pain the momentum equation degenerates to V'Pa· 

The three macroscopic variables appearing in this case are the number 
density na, the mean velocity Ua, and the scalar pressure Pa. The three 
transport equations pertaining to the warm plasma model are, therefore, 

(7.1) 

(7.2) 
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(7.3) 

Considering the additional approximation that the change in energy, 
as a result of collisions, is negligible, the energy equation (7.3) reduces to 
the following adiabatic equation (as shown in section 5), 

PaP~"!x = constant (7.4) 

Generally, the warm plasma model gives a more precise description of the 
behavior of plasma phenomena as compared to the cold plasma model. 

In the most general cases, in which the plasma is not in a state of 
local equilibrium, and when heat flow and viscosity need to be taken into 
account, it is more convenient and simple to work directly with the phase 
space distribution function. In this case, the plasma is usually said to be 
hot. After determining the distribution function fa by solving the differ­
ential kinetic equation that governs the evolution of fa in phase space, 
for the specific problem under consideration, the macroscopic variables 
can be obtained from fa according to the systematic method presented in 
Chapter 6. 

8.1 Consider the following simplified steady-state equation of motion, for 
each species in a fluid plasma, 

nq(E + u x B) - \lp = 0 

where the electric (E) and magnetic (B) fields are uniform, but the number 
density (n) and the kinetic pressure (p) have a spatial gradient. Taking 
the cross-product of this equation with B show that, besides the E x B 
drift, there is also a diamagnetic drift given by 

1 
VD = --B2 (\lp) X B 

nq 

Provide physical arguments to justify the physical reason for this fluid 
drift. Explain if there is any motion of the particle guiding centers asso­
ciated with this fluid drift, and why it does not appear in single particle 
orbit theory. 
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8.2 (a) From Maxwell equations, 

'V·E=f!_ 
Eo 

'V·H=O 

8H 
'V X E = - /IO 8t 

8E 
'V X H = J + Eo at 
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where E and H denote the electric and magnetic fields in a plasma, p 
denotes the electric charge density nq, and J the electric current density 
nqu, show that 

a 
Eof.Io ot (E x H) = 'V · T - nq(E + u x B) 

where Eof.Io(E x H) is the electromagnetic momentum density, and T is 
the electromagnetic stress dyad whose components are given by 

where t5ij is the Kronecker delta. 
(b) From this equation, which expresses conservation of the electromag­
netic momentum density, and the continuity equation 

on - + 'V · (nu) = 0 
8t 

show that the momentum transport equation 

Du 
nm Dt = nq(E + u x B)- 'V · P 

can be written in the form 

8G 
-+'V·Il=O 
8t 

where G denotes the total momentum density 

G = nmu + Eof.Io(E x H) 
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and II is the total momentum flux dyad (rate of transport of momentum 
through unit area) 

II = nmuu + P - T 

(c) Using Maxwell curl equations, show that the energy transport equation 

81 2 81 2 1 2 - ( -nm < c >) + - ( -nmu ) = -\7 · ( -nm < c > u) -
8t 2 8t 2 2 

\7 · ( ~nmu2u) - \7 · q- \7 · (P · u) + nqu · E 

can be written in the form [note that u · (u x B) =OJ 

8W 
-+Y'·S=O 
8t 

where W denotes the total energy density 

and S is the total energy flux (power per unit area) 

8.3 In order to investigate the effect of the collision term ( 4.11) in the 
macroscopic fluid motion, consider a uniform mixture of different fluids (all 
spatial derivatives vanish), with no external forces, so that the equation 
of motion for the a species reduces to 

Solve this equation to determine u(t), for a two-fluid mixture and for a 
three-fluid mixture (in the case of the three-fluid mixture it is convenient to 
use Laplace transforms). Notice that, at equilibrium (when dua/dt = 0), 
the velocities of all species must be the same. 

8.4 Consider a uniform mixture of different fluids (all spatial derivatives 
vanish), with no external forces, such that the equation of motion for the 
a species becomes 
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(a) Show that the time rate of change of the total fluid kinetic energy 
density, wk, is given by 

where 

(b) Consider now the total fluid thermal energy density, 

If the energy equation for a homogeneous fluid mixture, with no external 
forces, is 

dTa = _ L 2maVaf3 [(T. _ T ) _ m(3 ( _ )2] 
dt (3 (ma + m(3) a (3 3k Ua Uf3 

then show that the time rate of change of W T is given by 

dWr ~ 1 2 
~ = L......t 2PmaVaf3(Ua- Uf3) 

a,(3 

Thus, the total thermal energy density Wr increases at exactly the same 
rate as the total kinetic energy density Wk decreases. As a hint for this 
problem, notice that for any function that is summed over two indices, 
the result is unchanged if we interchange the indices, so that 

L faf3 = L ff3a 

a,(3 a,(3 

or 

L faf3 = L ~(fa(3 + ff3a) 

a,(3 a,(3 
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8.5 Explain the reason why there is no term containing the magnetic flux 
density B in the energy equation (5.17). 

8.6 Derive the following general transport equation, similar to (2.13), for 
the case when the quantity x depends on r, v, and t, 

( ) ( ) [ 8 ( na < X >a) ] 
na < V · \7 X >a -na < a · \7 v X >a = 8 t call 

8. 7 Consider the general transport equation of the previous problem and 
let the property x(r, v, t) be the random flux of thermal kinetic energy, 
that is, ~mac~ca, where Ca = v- ua(r, t) . Show that (considering the 
Lorentz force for F) 

na < (v · \7)x >a = -(Qa · \7) · Ua- (qa · \7)ua -

[(ua · \7)ua]· (Pa +~Pal) 

na <(a· \7v)X >a= Pma <a· (caCa + ~c;l) > = 

!: [(E+ua x B)· (Pa +~Pal) +qa x B] 

Using these results in the general transport equation, derive the following 
equation, known as the heat flow equation, 

OQa 1 ( 3 ) -- -(\7. p). p + -p 1 + at Pma a a 2 a 
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8.8 In the general transport equation of problem 8.6, consider that the 
property x(r, v, t) is the random momentum flux, that is, maCajCak· Show 
that, in this case, 

a ( ) aPajk at na < X >a = at 

where the summation convention on repeated indices is being used. Plug 
these results in the general transport equation to derive the following 
equation, known as the viscous stress equation: 

8.9 Verify that the energy conservation equation, for the random kinetic 
energy ~mac;, can be obtained from the viscous stress equation (see prob­
lem 8.8) by letting j = k, and summing over k. 

8.10 From the heat flow equation, derived in problem 8.7, obtain the 
following simplified equation for heat flow in a stationary ( u = 0) electron 
gas: 

5Pev(~) + Oce(Qe X B)= (bqe) 
2 Pme bt call 

State all the assumptions necessary to obtain this result. 
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8.11 Using the relaxation model (or Krook collision model) for the colli­
sion term, 

( of 01 ) = -v(fa - fao) 
8t call 

and the ideal gas law Pe = nekTe, show that the heat flow equation of 
problem 8.10 becomes 

where 

is the thermal conductivity. 



MACROSCOPIC EQUATIONS 

FOR A CONDUCTING FLUID 

A plasma can also be considered as a conducting fluid, without speci­
fying its various individual species. The macroscopic transport equations, 
derived in the previous chapter, describe the macroscopic behavior of each 
individual plasma species (electrons, ions, and neutral particles). We will 
determine now the set of transport equations that describe the macro­
scopic behavior of the plasma as a whole, without considering the individ­
ual species present. Each macroscopic variable is combined, by adding the 
contributions of the various particle species in the plasma. This procedure 
yields the total macroscopic parameters of interest, such as the total mass 
and charge densities, the total mass and charge current densities (or flux), 
the total kinetic pressure dyad, and the total heat flux vector. 

The mass density is the mass per unit volume of fluid and can be 
expressed as 

Pm = LPma = Lnama (1.1) 
a a 

The electric charge density is the electric charge per unit volume of 
fluid, 

(1.2) 

The mean fluid velocity, u, is defined such that the total momentum 
density is the same as the sum of the momentum density of each species, 
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according to 
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PmU= LPmaUa 
a 

(1.3) 

The mean velocity of the plasma, u, therefore, is a weighted mean value, 
where the velocity of each species is weighted proportionally to its mass 
density. 

The mean velocity of each particle species, when considered in a ref­
erence frame moving with the global mean velocity u of the plasma, is 
called the diffusion velocity w a, 

1 
W a = Ua - U = Ua - - L Pma Ua 

Pm a 

The mass current density or mass flux is given by 

Jm = L namaUa = PmU 
a 

and the electric current density or charge flux is expressed as 

(1.4) 

(1.5) 

(1.6) 

Note that in (1.5) we have l::a PmaWa = 0, in virtue of (1.4), which defines 
the diffusion velocity w a. 

The kinetic pressure dyad for each particle species in the plasma is 
defined in (6.6.2) as 

(1.7) 

where Ca = v-ua is the peculiar or random velocity of the type a:: particles. 
Note that the pressure is defined as the time rate in which momentum is 
transported by the particles through a surface element moving with the 
particle mean velocity. For the plasma as a whole it is necessary to define 
an alternative peculiar velocity Cao, for the particles of type a::, relative to 
the global plasma mean velocity u, 

Cao = v- u (1.8) 

Thus, the total pressure is defined as the rate of momentum transfer due 
to all particles in the plasma, through a surface element moving with the 
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global mean velocity u. The total kinetic pressure dyad P is therefore 
given by 

P = LPma < CaoCao > (1.9) 
a 

To relate P, given in (1.9), with Pa, given in (1.7), we substitute u by 
Ua- Wa and v by Ca + Ua in (1.8), to obtain 

Cao = Ca +wa (1.10) 

Consequently, 

(1.11) 

and expanding this expression, 

(1.12) 
From the definition of w a we see that < w a > = w a, since it is a macro­
scopic variable and therefore< CaWa > = < Ca > Wa = 0. Thus, (1.12) 
becomes 

P = LPa + LPmaWaWa (1.13) 

Note that Pa is a pressure relative to Ua, whereas P is relative to the 
global mean velocity u. 

The total scalar pressure pis defined as one-third the trace of P, 

P = ~ L Pii = ~ L L Pma < CaoiCaoi >= ~ L Pma < C~o > (1.14) 
i i a a 

Using (1.13) we can write 

P = LPa + ~ LPmaW~ (1.15) 
a a 

Finally, we define the total heat flux vector q as 

q = ~ LPma < C~oCao > (1.16) 
a 
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and the thermal energy density of the plasma as a whole as 

3p 1'"" 2 2 = 2 ~ Pma < Cao > (1.17) 
a 

It is useful to relate q, defined in (1.16), with the heat flux vector Qa for 
the particles of type a, 

(1.18) 

For this purpose, we substitute Cao by Ca + Wa in (1.16) and expand the 
resulting expression, obtaining 

q = ~ LPma[< c;ca > +w; < Ca > +2 < (wa. Ca)Ca > + 
a 

(1.19) 

The second and sixth terms in the right-hand side of this equation are 
equal to zero, since < Ca >= 0. Therefore, 

q = ~ LPma[< c;ca > +2wa· < CaCa > + < c; > Wa+w;wa] (1.20) 
a 

Using (1.18), (1.7), and the relation Pa = Pma < c; > /3, we can write 
(1.20) as 

Q = L( Qa + Wa · Pa +~PaW a+ ~Pmaw;wa) (1.21) 
a 

In particular, for the isotropic case in which P a = Pa 1, we have 
Wa · Pa = WaPa, so that (1.21) becomes 

q = L( Qa + ~PaWa + ~Pmaw;wa) (1.22) 

To obtain the continuity equation for the plasma as a whole, we add 
(8.3.2) (Eq. 3.2 in Chapter 8) over all particle species in the plasma, 

(2.1) 
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which gives 

(2.2) 

with Pm and u given by (1.1) and (1.3), respectively. The collision term 
Sa, when summed over all particle species, must certainly vanish, as a 
consequence of conservation of the total mass of the system. It is of interest 
to note that, using the total time derivative operator D I Dt = a I at+ u. \7' 
(2.2) can also be written in the form 

(2.3) 

3.-. 
Similarly, adding the equation of conservation of momentum (8.4.9) 

over all particle species in the plasma, yields 

L Pma [a~a + (ua · V)ua] = L naqaE + L naqa(Ua X B) + 
a a a 

(3.1) 

Since the total momentum of the particles in the plasma is conserved, 
the collision term for momentum transfer vanishes when summed over 
all species. Using the definitions (1.1), (1.2), and (1.6), and the relation 
(1.13), we can write (3.1) as 

L Pma [ a~a + ( Ua . V)ua] = pE + J X B + Pmg - \7 . p + 
a 

(3.2) 

The term involving Sa can be eliminated using the equation of continuity, 

L UaSa = L Ua [ a~7a + \7 . (Pma Ua)] (3.3) 
a a 

Combining this expression with the terms in the left-hand side of (3.2), 
results in the expression 
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'""" [ 8(Pmcx Ua) ( )] L..J &t + V' · Pmcx Ucx Ucx (3.4) 

We can now substitute the mean velocity Ua by w ex + u and expand the 
result. Noting that 

we can express (3.4) as 

'"""[8(PmcxUcx) ( )] 8(pmu) ( ) 
L..J &t + V' · PmcxUaUcx = &t + V' · PmUU + 

ex 

L Y' · (PmcxWaWa) = Pm [~~ + (u · V')u] + u [ 8;~ + V' · (pmu)J + 
ex 

LV'· (PmcxWaWcx) = Pm ~~+LV'· (PmcxWaWcx) (3.6) 
ex ex 

where we have used the continuity equation (2.2) and the total time deriva­
tive operator D / Dt. Taking this result back into the equation of motion 
(3.2), we obtain the following momentum equation for the plasma as a 
whole, 

Du 
Pm Dt = pE + J x B + Pmg - V' · P (3.7) 

This equation is an expression of Newton's second law of motion. 

To obtain the equation of conservation of energy for the plasma as a 
conducting fluid, we start from the energy equation (8.5.4) for the particles 
of type a, and add this equation over all plasma species, 

L !(!Pmcx < V2 >a)+ LV'· (!Pmcx < v2v >a) 
ex ex 

L ncx < F · V >ex = 0 (4.1) 
ex 

where the collision term Mcx vanishes when summed over all species of 
particles. We substitute now v by Cao + u and expand each term of (4.1). 
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For the first term we have 

:t (L !Pma < V · V >a)= :t [L !Pma(< C~o > +u2 + 2wa · u)] 
a a 

a (""' 1 2 ) a ( 1 2) = at ~ 2 Pma < Cao > + at 2 Pm u 
a 

a(3p) a(1 2) 
= at 2 + at 2 Pm u (4.2) 

where we have used the definition (1.17) and the fact that I:a Pma w a = 0. 
For the second term we note initially that 

= < c~0cao > +u2wa + 2 < CaoCao > · u + 
< c~0 > u + u2 u + 2 ( w a · u) u 

since Cao = Ca + w a and < Ca > = 0. Therefore, 

\7 · (L !Pma < V2V >a)= \7 · (L !Pma < C~oCao >) + 
a a 

\7 · (LPma < CaoCao > · u) + \7 · (L ~Pma < c;o > u) + 
a a 

(4.3) 

(4.4) 

Using the definitions of the total heat flux vector q and of the total kinetic 
pressure dyad P, we can write ( 4.4) as 

\7 · (L !Pma < V2V >a) = \7 · q + \7 · (P · u) + 
a 

V'· ( 3;u) +V'· (!Pmu2u) (4.5) 

For the third term of ( 4.1) we have 

L na < F · V >a = L na[Qa < E · V >a +qa < (v X B)· V >a + 
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ma < g·v >a] (4.6) 

where we have considered external forces due to electromagnetic and gra­
vitational fields. Since < v >a = Ua and since, for any vector v, we have 
(v x B)· v = 0, we obtain 

L na < F . v >a = J . E + Jm . g (4.7) 

where we have used the definitions (1.5) and (1.6), and where E and g are 
smoothed macroscopic fields. 

Combining the results contained in (4.2), (4.5), and (4.7), the energy 
equation becomes 

a (3p) (3p ) a (1 2) (1 2 ) at 2 + \7 . 2 u + at 2 Pm u + \7 . 2 Pm u u + 

\7 · q + \7 · (P · u)- J · E- Jm · g = 0 (4.8) 

This equation can be further simplified as follows. The third and fourth 
terms of ( 4.8) can be combined as 

! (~Pmu2) + \7 · (~PmU2u) = ~u2 [a~~+ \7 · (pmu)J + 

(4.9) 

and using the continuity equation (2.2) and the equation of motion (3.7), 
we can express ( 4.9) as 

pu · E + u · (J X B)+ Jm · g- u · (\7 · P) (4.10) 

Taking this result back into the energy equation (4.8), yields 

!!__ ( 3P) + 3P\7 · u + \7 · q + (P · \7) · u = 
Dt 2 2 

J · E - u · ( J x B) - pu · E (4.11) 

The first term in the left-hand side of ( 4.11) represents the time rate of 
change of the total thermal energy density of the plasma (3p/2) in a frame 
of reference moving with the global mean velocity u. The second term 
contributes to this rate of change through the thermal energy transferred 
to this volume element, as a consequence of the particle motions. The 
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third term represents the heat flux and the fourth one the work done 
on the volume element by the pressure forces (normal and tangential). 
The terms in the right-hand side of (4.11) represent the work done on 
the volume element by the electric field existing in the frame of reference 
moving with the global mean velocity u. These last terms can be combined 
as follows. We note, initially, that the charge current density consists of 
two parts 

( 4.12) 

where pu is the convection charge current density, which represents the 
flux of the space charge with velocity u, and J1 is the conduction charge 
current density, which represents the charge current density in the frame 
of reference moving with the global mean velocity u. On the other hand, 
we can write 

u · (J x B) = -J · (u x B) = -J1 • (u x B) (4.13) 

Substituting (4.13) and (4.12) into the energy equation (4.11), we obtain 

D ( 3p) 3p ( ) I I - - + -\7 · u + \7 · q + P · \7 · u = J · E 
Dt 2 2 

(4.14) 

where E1 = E + u x B is the electric field existing in the reference frame 
moving with the global mean velocity u. The term J1 • E1 represents, 
therefore, the rate of change in the energy density due to joule heating. 

In the previous sections we have derived the macroscopic transport 
equations for conservation of mass, of momentum, and of energy in a 
conducting fluid. As mentioned before, this set of equations does not con­
stitute a complete system, and it is necessary to truncate the hierarchy of 
macroscopic equations at some stage and make some simplifying assump­
tions. The continuity equation relates the mass density Pm with the global 
mean velocity u. The equation of motion, which specifies the variation of 
u, involves also the total kinetic pressure dyad P. The energy equation, 
specifying the rate of change of the total thermal energy density (3p/2), 
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includes also the heat flux vector q. A more general energy equation would 
give us the variation of the total kinetic pressure dyad P, which would in­
clude also the total heat flow triad Q. We can continue taking higher order 
moments of the Boltzmann equation and obtain, for example, the trans­
port equation governing the variation of the heat flow triad Q. To obtain 
a complete system it is essential, therefore, to truncate the hierarchy of 
transport equations at some point. However, even after this truncation, 
the remaining equations include also the following electrodynamic vari­
ables: electric field E, magnetic induction B, charge current density J, 
and charge density p. Besides the hydrodynamic transport equations, we 
need, therefore, ten electrodynamic equations that must relate the varia­
tions of E, B, J, and p. These equations are considered next. 

5.1 Maxwell Curl Equations 

The following Maxwell equations 

8B 
V' X E = --

8t 

\7 X B = /10 ( J + Eo~~) 

(5.1) 

(5.2) 

provide six component equations, which can be considered as the equations 
governing the variations of the electromagnetic fields E and B. 

5.2 Conservation of Electric Charge 

The electric charge conservation equation can be obtained by multi­
plying the mass conservation equation (8.3.2) (Eq. 3.2 in Chapter 8) by 
q0 ) ma, and adding over all species, 

Using the definitions of p and J, and noting that the total electric charge 
does not change as a result of collisions, we obtain 

8p 
-+V'·J=O 
&t 

(5.4) 
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It is worth noting here that (5.4) can also be derived, in an indepen­
dent way, from the Maxwell curl equation (5.2) and the Maxwell divergence 
equation 

p 
Y'·E=-

Eo 

Taking the divergence of (5.2), yields 

a 
Y' · J + Eo-(Y' ·E)= 0 at 

(5.5) 

(5.6) 

since the divergence of the curl of a vector field vanishes identically. This 
last equation, combined with (5.5), yields the charge conservation equation 
(5.4). The equations (5.4) and (5.5), therefore, cannot be considered as 
independent. As we have just shown, the Maxwell equations (5.2) and 
(5.5) already imply conservation of electric charge. 

Another important aspect of Maxwell equations can be seen by taking 
the divergence of (5.1), which gives 

or 

a 
-(V' ·B)= 0 at 

V' · B = constant 

Therefore, the Maxwell equation 

Y'·B=O 

(5.7) 

(5.8) 

(5.9) 

can be considered as an initial condition for (5.1), since if initially we take 
V' · B = 0, (5.1) implies that this condition will remain satisfied for all 
subsequent times. 

5.3 Generalized Ohm's Law 

To obtain a differential equation governing the variation of the charge 
current density, J, we proceed in a way analogous to the derivation of (5.4). 
Thus, we multiply the momentum conservation equation (8.4.9) by qa/ma 
and add over all particle species. This procedure leads to 
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V7 · [L:(!:)Pa] + L:(!:)Aa- L:(!:)uaSa (5.10) 
a a a 

We define now the electrokinetic pressure dyad P! for the particles of type 
a, by 

(5.11) 

Consequently, for the plasma as a conducting fluid, we have the following 
relation analogous to (1.13): 

pE = L:P! + L:naqaWaWa (5.12) 
a a 

The second term in the right-hand side of (5.10), therefore, becomes 

Using the continuity equation (8.3.2) and substituting Ua by Wa + u, the 
last term in the right-hand side of (5.10) can be written as 

(5.14) 

Similarly, the first and second terms in the left-hand side of (5.10) can be 
combined in the form 

L naqa a; a+ L(naqaWa. V7)wa + L(naqau. V7)wa + 
a a a 

au 
p- + (J. V7)u 

8t 
(5.15) 

We can now substitute expressions (5.13), (5.14), and (5.15) into (5.10) 
and simplify the result. Making use of the following identity for two vectors 
a and b, 

V7 · (ab) = b(V7 ·a)+ (a· V7)b 

and the relation (4.12), we obtain 

aJ at + V7. (uJ' + Ju) + V7. pE = 

(5.16) 
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Lna(!:) < F >a+ L(!:)Aa 
a a 

(5.17) 

Equations (5.1), (5.2), (5.4), and (5.17) constitute ten component equa­
tions that complement the equations of conservation of mass, of momen­
tum, and of energy for a conducting fluid. Equation (5.17), however, is 
still in a very general form of little practical value. A very useful and 
simple expression can be obtained for the case of a completely ionized 
plasma consisting of electrons and only one type of ions. In what follows, 
we simplify (5.17) for this case. 

The electric charge current density J and the electric charge density 
p for a completely ionized plasma containing only electrons and one type 
of ions of charge e are given, respectively, by 

J = L naqaUa = e(niui- neue) (5.18) 
a 

(5.19) 

The global mean velocity u , defined in (1.3), becomes 

1 
U = -(PmeUe + PmiUi) (5.20) 

Pm 

where Pm = Pme + Pmi· Combining this last equation with (5.18) gives 

Ui = __!!_ (PmU + :!) (5.21) 
Pmi me e 

(5.22) 

where f.1 = memd(me + mi) denotes the reduced mass. 
We assume now that the mean velocity of the electrons and ions, 

relative to the global mean velocity u, (that is, the diffusion velocities 
We and wi) are small compared to the thermal velocities. This condition 
being satisfied, (5.12) becomes 

pE = Pf + p~ = e(pi - Pe) (5.23) 
mi me 

Considering that the conducting fluid is immersed in an electromag­
netic field, the term containing the external force in (5.17) becomes 

L_na(!:) < F >a= L_na(!:)[qa(E+ua X B)] 
a a 

(5.24) 



232 FUNDAMENTALS OF PLASMA PHYSICS 

Substituting the relations (5.21) and (5.22) in this last equation and sim­
plifying, yields 

2 ( ni ne ) ( 1 1 ) e -+- uxB+e --- JxB 
me mi mi me 

(5.25) 

It is convenient at this moment to simplify this equation by making one 
additional approximation. Since the ion mass mi is much larger than the 
electron mass me (for protons and electrons, for example, mdme ~ 1836) 
and assuming macroscopic charge neutrality, ne = ni = n, we can take 

1 1 1 
---"' --

ni ne n 
-+-~-
mi me me 
ni ne n 
-+-~­
me mi me 

(5.26) 

(5.27) 

(5.28) 

Consequently, from (5.23) we have pE = -(e/me)Pe, and from (5.25) 

~ ( Qa) ne2 e ~na- <F>0 =-(E+uxB)--JxB 
mo. me me 

a 

(5.29) 

For the collision term in (5.17) we make use of expression (8.4.11), 
that is, 

Ae = -PmeVei(Ue- ui) 

Ai = -PmiVie(Ui- Ue) 

From (8.4.13) we have PmiVie = PmeVei, so that 

(5.30) 

(5.31) 

(5.32) 

where we have used (5.18) for J, and the approximations mi »me and 
ne = ni = n. 

We can now substitute the results contained in (5.23), (5.29), and 
(5.32) into (5.17), to obtain 

8J ( , ) e -+V· uJ +Ju --V·Pe= at me 
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ne2 e 
-(E + U X B)- -J X B -l!eiJ 
me me 

(5.33) 

Note that, since we assumed ne = ni, we must have p = 0 and J' = J. In 
some situations in which J and u can be considered as small perturbations, 
the nonlinear terms involving their product may be neglected compared 
to the other terms. With this simplifying approximation and using the 
notation 

ne2 
O"Q = --

mel!ei 
(5.34) 

which represents the longitudinal electrical conductivity, we obtain for 
(5.33) 

me 8J 1 1 1 
-- - -V' · Pe = E + U X B- -J X B - -J 
ne2 8t ne ne O"o 

(5.35) 

This equation is known as the generalized Ohm's law. The terms in the 
right-hand side are the ones normally retained in magnetohydrodynamics, 
while all the others are neglected. However, the omission of the terms in 
the left-hand side of (5.35) is not always justifiable. 

For cases in which J does not vary with time, that is, under steady­
state conditions, we have 8J / 8t = 0. If we consider also that the pressure 
term in (5.35) is negligible, that is, V' · Pe = 0, then (5.35) simplifies to 

O"Q 
J = O"o(E + u x B)- -J x B 

ne 
(5.36) 

The last term in this equation is related to a phenomenon called the Hall 
effect in magnetohydrodynamic flow problems and, for this reason, it is 
normally called the Hall effect term. This term is small when O"oiBI is 
much less than ne, that is, when nee « vei· Thus, when the collision 
frequency is much larger than the magnetic gyrofrequency, the Hall effect 
term can be neglected and (5.36) reduces to 

J = O"o(E + u x B) (5.37) 

In the absence of an external magnetic field, (5.37) reduces further to 

J = O"oE (5.38) 

which is the expression commonly known as Ohm's law. 
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In the last two sections we have shown that the set of macroscopic 
transport equations for each individual species in a plasma can be substi­
tuted by transport equations for the whole plasma as a conducting fluid, 
complemented by the electrodynamic equations. These total macroscopic 
equations for a conducting fluid are usually known as the magnetohydro­
dynamic (MHD) equations. In their most general form they are essentially 
equivalent to the set of equations for each individual particle species, ex­
cept for the loss of information regarding the variables for each individual 
species. 

In practice, however, the MHD equations are seldom used in their 
general form. Several simplifying approximations are normally considered, 
based on physical arguments that allow the elimination of some of the 
terms in the equations. For steady-state situations, or slowly varying 
problems, the MHD equations are very convenient and, in many cases, lead 
to important results that would not be easily obtained from the individual 
equations for each particle species. 

One of the approximations normally used in MHD consists in ne­
glecting the term Eo8Ej8t in the Maxwell equation (5.2). In order to 
investigate the validity of this approximation, it is convenient to use di­
mensional analysis, as follows. We can express, in general, the charge 
current density as J = S · E, where S denotes the conductivity dyad, so 
that, dimensionally, we have 

]rvaE 

Eoi8E/8tl rv EoE/7 

(6.1) 

(6.2) 

where 7 represents a characteristic time for changes in the electric field 
and a represents a characteristic conductivity. The ratio of the two terms 
in the right-hand side of (5.2) becomes, therefore, 

I8E/8tl Eo Eo rv-

J ar 
(6.3) 

For most of the fluids normally considered in MHD problems, a is very 
large, typically greater than 1 mhojm, whereas Eo is of the order of 10-11 

Farad/m. Consequently, 

I8E/8tl 
Eo J 

w-11 
rv--

7 
(6.4) 
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with T in seconds, which shows that this approximation is not valid only 
when we are considering extremely small characteristic times. 

It is also usually assumed that macroscopic electric neutrality is main­
tained with a high degree of accuracy and therefore the electric density p 
is set equal to zero. 

A questionable approximation in the set of MHD equations is the 
generalized Ohm's law, in the form given in (5.36). In this form, the terms 
containing the time derivatives and pressure gradient (or divergence of the 
pressure dyad) are omitted, even though these terms are retained in other 
equations of the set. This approximation, therefore, is not justifiable in a 
direct manner. It is common to simply assume that all time derivatives 
are negligibly small and that the plasma is almost a cold plasma, so that 
the generalized Ohm's law reduces to the form given in (5.36). 

For convenience, we collect here the following set of simplified mag­
netohydrodynamic equations: 

8pm ( ) Bt+\7· Pmll =0 (6.5) 

Du 
(6.6) p - =J xB-Vp m Dt 

Vp = V5
2Vpm (6.7) 

8B 
(6.8) VxE=--

at 

\7 x B = J-toJ (6.9) 

O"Q 
(6.10) J = a 0 (E + u x B) - -J x B 

ne 

In this set of equations, viscosity and thermal conductivity are neglected, 
so that the pressure dyad reduces to a scalar pressure. Note that (6.9) 
implies in 

V·J=O (6.11) 

which is the equation of conservation of electric charge in the absence of 
changes in the total macroscopic charge density p. It is for this reason that 
the equation of conservation of electric charge is not explicity considered 
in this set of MHD equations. Except in some special circumstances, it is 
also common to neglect the Hall effect term (a0 jen)J x B in (6.10). 

In some situations where the fluid electrical conductivity is extremely 
large, it is convenient to consider the idealized approximation of a perfectly 
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conducting fluid, in which the conductivity approaches infinity. In this 
case Ohm's law reduces to 

E = -u x B (6.12) 

and the corresponding set of equations is commonly referred to as the ideal 
MHD equations. 

9.1 Show that the total kinetic energy density of all species in a fluid can 
be written as the sum of the thermal energy density of the whole fluid 
plus the kinetic energy of the mass motion, that is 

where 

""' 1 2 3p ""' 1 2 ~ 2 Pma < V >a = 2 + ~ 2 Pma Ua 
a a 

3p ""' 1 2 ""' 1 2 """ 1 2 2 = 6 2Pma < Cao > = 6 2Pma < Ca > + 6 2PmaWa 
a a a 

9.2 Show that when there is no heat flow ( q = 0), no joule heating 
(J' · E' = 0), and when the pressure tensor is isotropic given by P = pl, 
the energy equation (4.14) reduces to the following adiabatic equation: 

pp~513 = constant 

9.3 From the momentum conservation equation with the MHD approx­
imation [see ( 6.6)], and the generalized Ohm's law in the simplified form 
(6.10), but without considering the Hall effect term, derive the following 
equation: 

Du 
Pm Dt = O"o(E X B)+ O"o(u x B) x B- \lp 

Solve this equation, considering that E = 0 and p = constant, to show 
that the fluid velocity perpendicular to B is given by 

u ..L ( t) = u ..L ( 0) exp (-t / T) 
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where T is a characteristic time for diffusion of the fluid across the magnetic 
field lines, given by 

Pm 
T=--

O'oB2 

9.4 In equations (1.5) and (1.6), explain the reason why the mass flux 
Jm is given by PmU, whereas the electric charge flux J is not given by pu. 

9.5 Obtain an expression for the heat flux triad Q for the plasma as a 
whole, defined as 

Q = LPma < Cao Cao Cao > 
a 

where Cao = Ca + w a, in terms of a summation over the heat flux triad for 
each species Qa and of terms involving the diffusion velocity w a. Then, 
simplify this expression for the isotropic case. 

9.6 Derive an energy equation, of higher order than (4.14), involving the 
total time rate of change of the total pressure dyad, that is, DP / Dt. 

9. 7 For a perfectly conducting fluid characterized by a scalar pressure, 
under steady-state conditions, use the equation of motion (6.6) and the 
generalized Ohm's law (6.10) to derive the following equation for the fluid 
velocity component perpendicular to B: 

U_1_ = __!___ (E- _!__ \7p) x B 
B 2 ne 



PLASMA CONDUCTIVITY 

AND DIFFUSION 

1. INTRODUCTION._,_ ________________ __. 

In the previous chapters we have introduced the fundamental elements 
of kinetic theory and the macroscopic transport equations necessary for 
the study of a variety of important phenomena in plasmas. Many plasma 
phenomena can be analyzed using the macroscopic transport equations, 
either by considering the plasma as a multiconstituent fluid or by treating 
the whole plasma as a single conducting fluid. In some cases, however, a 
satisfactory description can be obtained only through the use of kinetic 
theory. 

In this and in the following chapters we investigate some basic plasma 
phenomena that illustrate the use of the cold and warm plasma models, 
and of the phase space distribution funct ion. Phenomena that can be 
analyzed treating the whole plasma as a single conducting fluid are usually 
studied under the general title of magneto hydrodynamics (MHD) , and will 
be considered in Chapters 12, 13, and 15. 

2. THELANGEVINEQUATI~O~N~------------------------~ 

Before we consider the phenomena of plasma conductivity and diffu­
sion, it is convenient to introduce a very simple form of the equation of 
motion for a weakly ionized cold plasma, known as the Langevin equation. 
In a weakly ionized plasma the number density of the charged part icles is 
much smaller than that of the neutral particles. In this case the charge­
neutral interactions are dominant. The macroscopic equation of motion 
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for the electrons under the action of the Lorentz force and the collisional 
forces, can be written as 

me ~~e = -e(E + Ue X B)+ (F eoll)e (2.1) 

where ue(r, t) is the average electron velocity and (F eoll)e denotes sym­
bolically the rate of change of the average electron momentum due to 
collisions with neutral particles. 

The macroscopic collision term (F eoll)e can be expressed in a phe­
nomenological way as the product of the average electron momentum with 
an effective constant collision frequency lie for momentum transfer between 
the electrons and the heavy (neutral) particles, 

(2.2) 

In this expression we are neglecting the average motion of the neutral 
particles, as they are much more massive than the electrons. Note that 
this does not mean that the velocities of the individual neutral particles 
are zero, but only that they are completely random so that their average 
velocity is zero. Using this expression for the collision term, we obtain the 
following equation, known as the Langevin equation: 

(2.3) 

The physical meaning of this collision term can be seen as follows. In 
the absence of electric and magnetic fields, (2.3) reduces to 

(2.4) 

whose solution is 
Ue(t) = Ue(O) exp (-vet) (2.5) 

Thus, the electron-neutral collisions decrease the average electron velocity 
exponentially, at a rate governed by the collision frequency. 

An equation analogous to (2.3) can be written for the ions, 

Dui 
mi Dt = Ze(E + Ui X B)+ (Feoll)i (2.6) 

where ui denotes the average ion velocity and Ze the ion charge. In many 
cases of interest, as in high-frequency phenomena, we can neglect the ion 
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motion and assume ui = 0, since the ion mass is typically about 103 or 104 

times greater than the electron mass. The type of plasma in which only 
the electron motion is important is usually called a Lorentz gas. When 
dealing with very low frequencies, however, the motion of the ions must 
be considered. 

Despite the approximations implicit in the Langevin equation, it has 
been successfully used to describe a variety of phenomena in plasmas, 
including the propagation of electromagnetic waves in cold magnetoplas­
mas. Particularly, the analysis of the characteristics of electromagnetic 
wave propagation in the Earth's ionosphere has been quite successful. A 
great advantage of this equation is its simplicity. 

In the form presented in (2.3) the Langevin equation contains non­
linear terms that involve the product of two variables. In many situations 
of interest the difficulty inherent in the nonlinear terms can be eliminated 
through a linearization approximation, which is valid for small-amplitude 
variations. 

The total time derivative contains the nonlinear term ( Ue · \i')ue, which 
is called the inertial term in fluid dynamics. The omission of this inertial 
term is justified when the average velocity and its space derivatives are 
small, or when Ue is normal to its gradient (such as in the case of transverse 
waves). 

For the nonlinear term Ue x B, we can separate the magnetic flux 
density B(r, t) into two parts, 

B(r, t) = Bo + B' (r, t) (3.1) 

where B0 is constant and B'(r, t) is the variable component, so that 

q(E + Ue X B)= q(E + Ue X Bo + Ue X B') (3.2) 

For situations in which 
lue X B'l « lEI (3.3) 

the nonlinear term Ue x B' in (3.2) can be neglected. With these lineariza­
tion approximations the Langevin equation becomes 

(3.4) 
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A case of great practical interest is the one in which the variables E, 
B', and Ue vary harmonically in space and time. The treatment in terms 
of plane waves has the advantage of great mathematical simplicity, besides 
the fact that any complex and physically realizable wave motion can be 
synthesized in terms of a superposition of plane waves. Let us consider, 
therefore, plane wave solutions for E, B', and Ue in the form 

E, B', Ue ex exp [i(k · r- wt)] (3.5) 

where w denotes the wave angular frequency, k is the wave propagation 
vector (normal to the wave front), and r is a position vector drawn from 
the origin of a coordinate system to the point considered on the wave front 
(refer to Fig. 1). 

For the space and time dependence given in (3.5), the differential 
operators \7 and a 1 at are transformed into simple algebraic operators, 
according to \7 ---+ ik and a1at---+ -iw. Substituting (3.1) into Maxwell 
equation \7 x E = -aB I at, we obtain 

ik x E = iwB' 

where aBo I at = 0, since B0 is constant. Therefore, 

B' = k X E 
w 

and plugging this result back into (3.3) yields the condition 

lue X (k X E)lwl « lEI 

(3.6) 

(3.7) 

(3.8) 

The magnitude of the nonlinear term Ue x B' may be equal to or smaller 
than l(uekE)Iwl. Hence, the nonlinear term can be neglected if 

(3.9) 

or, equivalently, if 
(3.10) 

The term ( w I k) represents the phase velocity of the plane wave. Since this 
term is usually of the order of the speed of light c, whereas the magnitude 
of the mean velocity of the electrons Ue is much less than c, the nonlinear 
term can generally be neglected. However, in cases of resonance w I k is very 
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z 

X 

Fig. 1 Position vector r drawn from the origin of a coordinate 
system (x, y, z) to a point P on the wave front , whose normal is 
given by the wave propagation vector k. 

small, whereas Ue becomes large. Under these conditions the nonlinear 
terms are important and a nonlinear analysis must be used. 

In this section we apply the steady-state Langevin equation to de­
rive an expression for the DC (direct current) conductivity of a weakly 
ionized homogeneous plasma, for which the Lorentz model (electron gas) 
is applicable. The applied electric field is assumed to be constant and 
uniform. 

4.1 Isotropic Plasma 

In the absence of a magnetic field the steady-state Langevin equation 
for the electrons becomes 

(4.1) 

In this case the action of the applied electric field is balanced dynamically 
by the electron-neutral collisions. The electric current density associated 
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with the electron motion is 

(4.2) 

Combining (4.1) and (4.2), gives 

(4.3) 

From Ohm's law, J = a0E, we identify the following expression for the 
DC conductivity of an isotropic electron gas: 

(4.4) 

The electron mobility Me is defined as the ratio of the mean velocity 
of the electrons to the applied electric field, 

Therefore, from ( 4.1) we obtain 

M _ Ue 
e- E 

4.2 Anisotropic Magnetoplasma 

(4.5) 

( 4.6) 

In the presence of a magnetic field the plasma becomes spatially 
anisotropic. The steady-state Langevin equation can be written as 

-e(E + lle X Bo) - meVcUe = 0 (4.7) 

where B0 is a constant and uniform magnetic field. Using (4.2), 

(4.8) 

which may be written in the form 

J = ao(E + Ue X Bo) (4.9) 
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where a0 is given in (4.4). This last equation is a simplified form of the 
generalized Ohm's law (see Chapter 9). 

At this point it is worth considering a useful result that arises when 
the collisional effects are negligible. When Vc --+ 0 the DC conductivity 
becomes very large (a0 --+ oo) so that we must have, from (4.9), 

E+ue X Bo = 0 (4.10) 

This expression represents, therefore, the simplified form of the generalized 
Ohm's law for a plasma with a very large conductivity. In this case, taking 
the cross-product of (4.10) with B0 and noting that 

(4.11) 

we obtain 

B5 
Ex B0 

Uel_ = (4.12) 

This result shows that, in the absence of collisions, the electrons have 
a drift velocity ue.l. perpendicular to both the electric and the magnetic 
fields. Since this result is independent of the particle mass and charge, 
the same result will be obtained for the ions if their motion is taken into 
account. This can be easily shown considering the Langevin equation for 
the ions. Thus, in the absence of collisions, both electrons and ions move 
together with the drift velocity (4.12), and there is no electric current 
(J = 0) associated with their motion. When the collisional effects are not 
negligible, the motion of the ions suffers a larger retardation than that 
of the electrons as a result of collisions. In this case, there is an electric 
current given by (assuming ne = ni) 

J 1_ = ene ( Ui_i - Ue_i) ( 4.13) 

which is perpendicular to both E and B0 , known as the Hall current. Note 
that, since Ue_i > Ui_i, this current is in the direction of -(Ex Bo), that 
is, opposite to the drift velocity of both types of particles. 

Returning now to the generalized Ohm's law in the simplified form 
(4.9), let us rewrite it in a way that relates the current density directly 
to the applied electric field. We define, therefore, a DC conductivity dyad 
(or tensor ) S by the equation 

J=S·E (4.14) 
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In order to obtain an expression for S, consider a Cartesian coordinate 
system with the z axis parallel to the magnetic field, B 0 = B0z. Replacing 
Ue in (4.9) by -Jj(ene), we get 

aoBo -.. 
J = aoE- --(J x z) 

ene 
(4.15) 

Noting that 
(4.16) 

we obtain the following set of equations for the x, y, and z components of 
(4.15) 

"' nee 
(4.17) x: lx = aoEx- -Jy 

Ve 

"' nee 
(4.18) y: Jy = aoEy + -Jx 

Ve 
"' Jz = aoEz (4.19) z: 

where nee denotes the electron cyclotron frequency. We can combine 
(4.17) and (4.18) to eliminate Jy from the first one and Jx from the second 
one, obtaining 

(4.20) 

(4.21) 

In matrix form we can write, therefore, 

v2 Venee e 0 un =ao 

(v; + n~e) (v; + n~e) 
Venee v2 e 0 

(v; + n~e) (v; + n~e) 
(4.22) 

0 0 1 

which is now in the form given in (4.14). The DC conductivity dyad, 
therefore, is given by 

(

a_i 

S= a~ (4.23) 
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where we have used the notation 

cr ..L = ( 2 S12 ) cro 
Ve + ee 

(4.24) 

Vestee 
(4.25) 

nee2 
cr 11 cro = -- ( 4.26) 

meVe 

To illustrate the physical meaning of the components of S it is con­
venient to separate the applied electric field in a component parallel to 
B0 , E 11 , and a component in the plane normal to B0 , E..L, as shown in 
Fig. 2. The element cr ..L is called the perpendicular or transverse conduc­
tivity (also known as Pedersen conductivity), since it governs the flow of 
electric current in the direction of the electric field component normal to 
the magnetic field (II E..L, _L Bo), while CTH (known as the Hall conductiv­
ity) governs the flow of electric current in the direction perpendicular to 
both the electric and magnetic fields (_L E, _L B0). The element cr0 is the 
longitudinal conductivity, since it governs the electric current flow in the 
direction of the electric field component along the magnetic field (II Err, 
II B0 ). Note that the electric current along B0 is governed by the same 
conductivity ( cr0 ) as in the isotropic plasma. 

The dependence of cr ..L and cr H on the ratio of the cyclotron frequency 
to the collision frequency is shown in Fig. 3. As the ratio (nee/ve) in­
creases, cr ..L and cr H decrease rapidly, the effect being more pronounced for 
cr ..L· Thus, when (nee/ve) is relatively large, very little current is produced 
across the magnetic field lines, as compared to the current produced along 
the field lines, for the same applied electric field. Note that cro increases as 
Ve decreases and it is independent of the magnitude of B and therefore of 
Slee· Thus, in a rarefied plasma immersed in a relatively strong magnetic 
field, the electric current flows essentially along the magnetic field lines. 

Note that in the absence of a magnetic field (nee= 0), (4.24), (4.25), 
and ( 4.26) give cr ..L = cr0 and CTH = 0, so that the plasma becomes isotropic. 

We deduce next an expression for the electron mobility. Due to the 
anisotropy introduced by the magnetic field we have in this case a mobility 
dyad Me· We define the electron mobility dyad by the equation 

Ue =Me ·E 

Since J = -eneue = S · E, we find that 

1 
Me=--S 

nee 

(4.27) 

(4.28) 
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Fig. 2 Relative orientation of the vector E.elds E 11 , E_1_, and 
- E x B0 . The conductivities a 11 , a _1_, and a H govern the mag­
nitude of the electric currents flowing along these directions, re­
spectively. 

Explicit expressions for the components of M e can be easily written down 
considering (4.23), (4.24), (4.25), and (4.26). 

5. 

Consider now the case when the electric field E(r, t) and the mean 
electron velocity ue(r, t) vary harmonically in time, as exp ( -iwt). We 
have seen that for time harmonic disturbances a 1 at is replaced by - iw. 
Therefore, the linearized Langevin equation (3.4) becomes 

(5.1) 

which can be written as 

-e(E + Ue X Bo)- me(Vc- iw)ue = 0 (5.2) 

This equation is identical to ( 4. 7), except for the change in the collision 
frequency Vc to (vc - iw). We obtain, therefore, solutions similar to the ones 
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2 4 

Fig. 3 Dependence of the Hall conductivity O"H and of the 
perpendicular conductivity a ..l on the ratio of the cyclotron fre­
quency nee to the collision frequency l/e. 

obtained for the DC conductivity dyad in the previous section, except that 
now we must replace Ve by (ve-iw) in each element of the dyad. Therefore, 
the expressions for the frequency-dependent perpendicular conductivity, 
Hall conductivity, and longitudinal conductivity are, respectively, 

(ve - iw )2 

a ..l = ( · )2 n2 O"Q Ve-'lW +Hee 
(5.3) 

(ve - iw )flee 
O"H = ( . )2 n2 ao Ve- 'lW + Hee 

(5.4) 

(5.5) 

When the electron-neutral collisions can be neglected (ve = 0), the ex­
pressions for the components of the AC (alternating current) conductivity 
dyad become 

(}" ..l = (w2 - n~e) O"Q 

iwflee 

(5.6) 

(5.7) 
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n e2 
cro = i-e- (5.8) 

meW 

A complex conductivity means that there is a phase difference between 
the current density and the applied electric field. 

The electron mobility, in any of the cases considered in this section, 
can be easily written down considering the relation ( 4.28). 

The evaluation of the conductivity dyad, when the contribution due 
to the motion of the ions is included, can be performed in a straightforward 
way. For this purpose, consider the linearized Langevin equation for the 
type a species, 

(6.1) 

where Vea is an effective collision frequency or damping term for the 
type a species resulting from collisions with neutral particles. Note that 
the Langevin equations, for each charged particle species, are uncoupled. 
Therefore, the net current density is given by 

(6.2) 
Q Q Q 

and the total conductivity dyad is simply 

(6.3) 
Q 

For a plasma with electrons and several types of ions (index j) we obtain, 
using (5.3), (5.4), and (5.5), in terms of the plasma frequency Wpa and Eo, 

_ [ W~e(l!ee- iw) ~ W~j(l!ej- iw) ] 
cr j_ - Eo ( · )2 2 + L.., ( · )2 2 

Vee - 2W + f2ee j l!ej - 2W + f2ej 
(6.4) 

(6.5) 
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[ 
w2 w2. 

(J = E pe + PJ 
11 0 (lice- iw) ~ (llcj- iw)] 

J 

(6.6) 

The plasma can also be treated as a dielectric medium characterized 
by a dielectric dyad, in which the internal particle behavior is not consid­
ered. So far, we have treated the plasma as a collection of charged and 
neutral particles moving about in their own internal fields. Thus, as far 
as the constitutive relations are concerned, we have taken 

D =EoE 

B = J.LoH 

(7.1) 

(7.2) 

which are applicable for free space, and the plasma effects show up through 
the motion and interaction of the charged particles inside the plasma. 

A different approach is provided by the use of a dielectric dyad, in 
which we are concerned only with the gross macroscopic properties of the 
plasma and not with the elementary particle motions. Thus, instead of 
the Langevin equation, let us consider the following Maxwell equation, 

\7 X B = J.Lo ( J + Eo~~) (7.3) 

and incorporate the effects of the plasma in the conductivity dyad S, 
defined by the equation 

J=S·E (7.4) 

Substituting (7.4) into (7.3), and assuming time-harmonic variations of 
the form exp ( -iwt), we obtain 

\7 x B = J.LoS · E - iwJ.LoEoE 

If we let 1 denote the unit dyad, we can write 

or, equivalently, as 

·s 
\7 x B = -iWJ.LoEo(l + _z_) · E 

WEQ 

\7 x B = -iWJ.Lo£ · E 

(7.5) 

(7.6) 

(7.7) 



10. PLASMA CONDUCTIVITY AND DIFFUSION 251 

where ·s 
£ = Eo(l + _t_) 

WEo 
(7.8) 

is called the dielectric dyad for the plasma. The use of the dielectric dyad 
represents, therefore, a different approach for the treatment of a plasma, 
as compared to the one we have used so far. Adopting this approach, (7.1) 
must be replaced by 

D=£·E (7.9) 

and the plasma is considered as a dielectric medium, without bringing 
into the picture its internal particle behavior. Note that £ depends on the 
frequency w. 

The dielectric dyad can be written in matrix form as 

!) 
where the following notation was introduced: 

i 
fl = 1 + -O'.i 

WEQ 

i 
E3 = 1 + -ao 

WEQ 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

For the case of a multispecies plasma the total conductivity must be 
used in (7.8), so that the expressions to be substituted for a.1, aH, and 
ao are those given in (6.4), (6.5), and (6.6). 

a.,,-

The presence of a pressure gradient term in the momentum transport 
equation provides a force that tends to smooth out any inhomogeneities in 
the plasma density. The diffusion of particles in a plasma results from this 
pressure gradient force. To deduce the expression for the electron diffusion 
coefficient for a warm weakly ionized plasma we will use the momentum 
transport equation for the electrons, with a constant electron-neutral colli­
sion frequency. We assume that the deviations from the equilibrium state 
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caused by the inhomogeneities in the density are very small, so that they 
may be considered as first-order quantities. This means that the mean 
velocity of the electrons Ue is also a first-order quantity, and considering 
that the velocity distribution is approximately isotropic, we can replace 
the pressure dyad Pe by a scalar pressure Pe· 

Consider the case in which E and B are zero and the electron temper­
ature Te is constant. For a slightly nonuniform electron number density, 
we can write 

ne(r, t) =no+ n~(r, t) 

Pe(r, t) = ne(r, t)kTe = (no+ n~)kTe 

(8.1) 

(8.2) 

where In~ I « no is a first-order quantity and no is constant. Since Ue 
is also a first-order quantity, the continuity equation for the electron gas 
becomes 

an' 
_e +noY'·u =0 at e 

(8.3) 

where the second-order term n~ Ue has been neglected. Similarly, for the 
momentum transport equation, 

(8.4) 

we obtain, after linearization, 

aue kTe 1 no-= --\i'n -nov u at me e c e (8.5) 

Taking the divergence of this equation, we obtain 

(8.6) 

Using (8.3) to substitute for no \7 · Ue, yields 

(8.7) 

This equation may also be written in the form 

(8.8) 
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where we have defined 

(8.9) 

which is called the electron free-diffusion coefficient. 
To obtain a rough estimate of the order of magnitude of the various 

terms in (8.8), let T and L represent, respectively, a characteristic time 
and a characteristic length over which n~ varies significantly. Thus, any 
spatial derivative is of the order of L - 1 and any time derivative is of the 
order T-1, so that the order of magnitude of the terms in (8.8) are 

8n' n' e e 
-rv-

8t T 
(8.10) 

(8.11) 

(8.12) 

Comparing (8.10) and (8.12) we see that if VeT» 1, that is, if the average 
number of electron-neutral collisions is large during the time interval T, 

then the last term in (8.8) can be neglected and it reduces to the following 
diffusion equation: 

8n~- D ~2 ' 8t - e v ne (8.13) 

Therefore, when the rate of change in the number density is slow compared 
to the collision frequency, the number density of the electrons is governed 
by a diffusion equation with a free-diffusion coefficient as given by (8.9). 

The condition VeT » 1 implies in the omission of the acceleration 
term in the momentum transport equation, that is, 8uef8t is neglected. 
From the linearized equation (8.5), when there are no time variations in 
Ue, we obtain 

(8.14) 

which can be written as 
(8.15) 

where r e =nolle denotes the linearized electron flux. 
Expression (8.15) is analogous to the simple Ohm's law J = a0E, 

replacing J by re, ao by De, and E by -\7n~. Thus, we see that the 
electron flux r e is caused by a density gradient, in a way analogous to the 
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electric current caused by an electric field, under steady-state conditions 
for Ue. 

Consider now the problem of electron diffusion in the presence of a 
constant and uniform magnetic field B0 . We shall make the same assump­
tions as in the previous section and neglect the acceleration term 8ue/ 8t 
in the equation of motion. In the linearized momentum transport equa­
tion (8.5), with the time derivative set equal to zero, we include now a 
magnetic force term, which results in 

(9.1) 

Choosing a Cartesian coordinate system with the z axis pointing in the 
direction of the constant B 0 field, that is, B 0 = B0z, we have 

r e = -De \l n~ - flee (r e X z) 
Vc 

(9.2) 

This equation is analogous to (4.15), with re replacing J, De replacing 
ao, and -\ln~ replacing E. Note that flce/vc = aoBo/(ene)· Therefore, 
in analogy with the expression J = S · E, we can write 

(9.3) 

where 'D is the dyad coefficient for free-diffusion given in matrix form by 

(9.4) 

where the following notation is used: 

(9.5) 

(9.6) 

(9.7) 
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A diffusion equation for n~, when there is a constant and uniform 
magnetic field present, can also be derived in the same way as in the 
previous section. First, we write the continuity equation (8.3) in the form 

on~ \7. r = 0 at + e 

Substituting (9.3) for r e, yields 

on~ = \7 . (V . \7 n' ) at e 

Using (9.4) we find, by direct calculation in Cartesian coordinates, 

, ...... ( on~ on~) v. \7ne =X Dl_ ox + DH oy + 

...... ( D on~ D on~) ...... D on~ Y - H- + J_- + Z e-
OX oy f}z 

Substituting this result into (9.9), yields 

on' (82n' 82n') 82n' 
f)te = D l_ 8x2e + f)y2e + De f)z2e 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

Since D 1_ < De and since D 1_ decreases with increasing values of nee/Ve 
(similarly to O"j_, as shown in Fig. 3) the diffusion of particles in a direction 
perpendicular to B is always less than that in the direction parallel to B. 
For values of nee much larger than Ve, the diffusion of particles across the 
magnetic field lines is greatly reduced. Note that, from (9.5) and (9.6), it 
can be seen that for nee » Ve we have, approximately, D j_ ex 1/ B 2 and 
DH ex 1/B. 

As a final point in this section we note that the momentum transport 
equation for an electron gas, neglecting the acceleration term but including 
the electromagnetic force, and when the temperature is constant, can be 
written in the general form 

(9.12) 

From this equation we can see that the electron flux is produced by either 
electromagnetic fields or density gradients, or both. The ratio of the scalar 
mobility Me to the diffusion coefficient is known as the Einstein relation 
and is given by 

(9.13) 
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We have seen in section 8 that the steady-state momentum equa­
tion, in the absence of electromagnetic forces and when the temperature 
is constant, gives the following diffusion equation for the electrons: 

(10.1) 

where the electron free-diffusion coefficient is given by 

D _ kTe 
e-

meVce 
(10.2) 

The subscript e has been added here to Vc to indicate that the effective 
collision frequency Vee refers to electron-neutral collisions. 

If we consider similar equations for the ions in a weakly ionized 
plasma, under the same assumptions, we obtain the following ion diffusion 
equation: 

(10.3) 

where 

(10.4) 

denotes the ion free-diffusion coefficient and Vci is the effective ion-neutral 
collision frequency. 

In deriving the results given by (10.1) and (10.3), the interaction 
between the electrons and the ions were not taken into account. Since 
the diffusion coefficient is inversely proportional to the particle mass, the 
electrons tend to diffuse faster than the ions, leaving an excess of positive 
charge behind them. This gives rise to a space charge electric field, which 
points in the same direction as the particle diffusion, and which accelerates 
the diffusion of the ions and slows down that of the electrons. The diffusion 
in which the effect of this space charge electric field is not included is known 
as free-diffusion. 

For most problems of plasma diffusion, however, the space charge 
electric field cannot be neglected. According to Maxwell equation 

\7. E = !!__ = e(ni- ne) 
Eo Eo 

(10.5) 

it is clear that an electric field is present whenever the electron density 
differs from the ion density. To estimate the importance of the space 



10. PLASMA CONDUCTIVITY AND DIFFUSION 257 

charge electric field in diffusion problems, let us use dimensional analysis 
and let L represent a characteristic length over which the number density 
changes significantly. Thus, from (10.5) we may write 

E rv enL 
Eo 

so that the electric force per unit mass f E is of the order 

fE = eE rv e2nL 
m mt:o 

(10.6) 

(10.7) 

The diffusion force per unit mass JD, obtained from (10.1), is of the order 

fD = kT l\lnl rv kTn 
mno mnoL 

(10.8) 

Therefore, the space charge electric field can be neglected only if f E ~ f D, 

or equivalently, if 
L2 t:okT , 2 
~--=AD 

noe2 
(10.9) 

where AD is the Debye length. Since the Debye length is generally very 
small (see Fig. 2, Chapter 1), the condition L ~ AD is rarely satisfied and 
for most plasma diffusion problems we cannot neglect the space charge 
electric field. In what follows we will reexamine, therefore, the problem of 
plasma diffusion, taking into account the motion of both ions and electrons 
and including the space charge electric field E. The combined diffusion of 
the electrons and the ions, forced by the space chargeE field, is known as 
ambipolar diffusion. Since the electric field is such that the electrons are 
decelerated and the ions are accelerated, the two kinds of charged particles 
tend to reach a diffusion rate that is intermediate in value to their free 
diffusion rates. 

To investigate the characteristics of ambipolar diffusion, we assume 
that the variations for both electrons and ions are small first-order quan­
tities, so that (for a = e, i) 

na(r, t) =no+ n~(r, t) (10.10) 

with In~ I ~ no, and that the mean velocities Ua are of very small ampli­
tude. We obtain, under these assumptions, the following linearized mass 
conservation equations (for a = e, i), 

8n' at +no\l·Ua =0 (10.11) 
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The linearized momentum equations, assuming that the temperatures are 
constant, and without a magnetic field, become (with a= e, i) 

(10.12) 

where the space charge E field satisfies Maxwell equation (10.5). We are 
assuming that the neutral mean velocity is zero and we are neglecting 
electron-ion collisions, since the plasma is weakly ionized. Taking the 
divergence of (10.12) and using (10.11), we obtain 

(10.13) 

If we replace V' · E from (10.5), we obtain the following set of coupled 
equations for the two variables n~ and n~, 

o2n~ 2 ( 1 1 ) kTi 2 1 On~ 
-{) 2 = -Wpi ni-ne + -V' ni- Vci-{j 

t mi t 

(10.14) 

(10.15) 

These equations, however, are still too complicated for a detailed analyti­
cal treatment, and to go further we will make some additional simplifying 
assumptions. 

Recall that, if VeT » 1, that is, if the average electron or ion has 
many collisions with neutral particles during the characteristic time for 
diffusion T, the term o2n~j{)t2 (originated from the acceleration term in 
the momentum equation) can be neglected. With this assumption we 
neglect the term in the left-hand side of (10.14) and (10.15). Combining 
these equations, we obtain 

(10.16) 

As a second approximation we will set n~ = n~ = n1 in (10.16) to obtain 
the following diffusion equation, 

(10.17) 
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which can be written in the form 

an' - D 'r72 I 
- aV n at (10.18) 

where 
Da = k(Te + Ti) 

mellce + millci 
(10.19) 

is the ambipolar diffusion coefficient. Note that the coupling of the two 
equations (10.14) and (10.15) is a consequence of the electric field term, 
and that the simplifying approximation n~ = n~ was introduced only after 
the two equations were combined into (10.16). This approximation implies 
that the space charge electric field becomes a negligible perturbation with 
the result that both ions and electrons diffuse together. This situation is 
known as perfect ambipolar diffusion, since the coupling between the two 
types of charged particles is complete. 

Instead of taking n~ = n~, a less restrictive simplifying approximation 
would be to assume 

n' = Cn' 
~ e (10.20) 

where Cis a constant. Using this approximation in (10.16) we obtain 

or 
an~ - D 'r72 I at - a v ne 

where the ambipolar diffusion coefficient is now given by 

Da = k(Te + CTi) 
mevce + Cmivci 

The space charge density is now 

p = e(n~- n~) = en~(C- 1) 

and the electric field can be obtained from Maxwell equation 

\7 . E = en~ ( C - 1) 
Eo 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

The effect of this electric field is to accelerate the diffusion of the ions and 
to retard the diffusion of the electrons, as compared to their individual 
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free-diffusion rates, so that to a good approximation both species diffuse 
together. 

Whenever there is a significant deviation from charge neutrality, the 
electric field force becomes very strong, as can be seen from the following 
dimensional argument. A comparison of the magnitude of the electric 
force per unit mass, fE = Qa.E/ma., and the diffusion force per unit mass, 
fv = -(kTa./ma.no)"Vn~, which are of the order 

shows that 

Le2n~(C- 1) f E "" ---'---­
mEo 

f kTn~ 
D"' 

mnoL 

fE L 2(C- 1) 
-"" 
fv A~ 

(10.26) 

(10.27) 

(10.28) 

Since in most cases L2 is much larger than A~, we see that if n~ differs 
significantly from n~, then the electric field force (which tends to equalize 
n~ and n~) becomes very strong. 

Consider now the problem of diffusion in a fully ionized plasma. For 
simplicity, we shall describe the plasma as a single conducting fluid for 
which the equation of motion, under steady-state conditions, in the pres­
ence of magnetic and pressure gradient forces, is 

J X B = "Vp (11.1) 

where J denotes the total electric current density, B is the magnetic in­
duction, and p represents the total scalar pressure of the conducting fluid. 
Note that the electric force is zero, since the plasma, as a whole, is macro­
scopically neutral (p = 0). This equation is complemented by the gener­
alized Ohm's law in the following simplified form, 

J = a-o(E + u x B) (11.2) 

where a-0 is the longitudinal electric conductivity and u is the total macro­
scopic fluid velocity. 

Taking the cross-product of (11.2) with B, yields 

(11.3) 
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where u..l is the component of u in a direction normal to the external field 
B. Using (11.1) and rearranging, (11.3) gives 

ExB 
Uj_ = ------

B2 uoB2 
\lp 

(11.4) 

This result shows that the total fluid velocity across the magnetic field is 
given by the E x B drift of the whole plasma plus a diffusion velocity in 
the direction of - \l p. 

The flux associated with the diffusion velocity only, is given by 

n\lp 
I' ..l = nu..l = --­

uoB2 
(11.5) 

where n denotes the electron (or total ion) number density. Considering 
a two-fluid plasma (electrons and one type of ions), we have 

P = Pe +Pi = nk(Te + Ti) (11.6) 

so that (11.5) becomes, assuming the temperatures to be constant, 

(11.7) 

The quantity 

(11.8) 

is known as the classical diffusion coefficient for a fully ionized plasma. 
This diffusion coefficient is proportional to 1/ B2 , just as in the case 

of a weakly ionized plasma. Nevertheless, there are some fundamental dif­
ferences between D..l, as given by (11.8), and the corresponding coefficient 
for a partially ionized plasma. Initially note that in a fully ionized plasma 
D ..l is not constant, but depends on the number density n. Further, since 
it can be shown that u0 is proportional to T 312 for a Maxwellian distri­
bution of velocities, D ..l decreases with increasing temperature in a fully 
ionized plasma, while the opposite situation holds for a weakly ionized 
plasma. Finally, the diffusion coefficient D ..l in (11.8) was derived for the 
whole plasma as a conducting fluid and, since both ions and electrons 
diffuse together, there is no ambipolar electric field. 

In some experiments a dependence of D ..l on the magnetic field as 
B-1 , rather than B-2 , has been observed, and the decay of the plasma was 
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found to be exponential, rather than reciprocal, with time. Furthermore, 
the absolute value of D ..L was found to be much larger than that given in 
(11.8). This anomalously poor magnetic confinement was first noted in 
laboratory by Bohm, in 1946, who arrived at the following semiempirical 
formula: 

D = D = kTe 
..L- B 16 eB (11.9) 

Since this diffusion coefficient does not depend on the density, the decay 
of the plasma density is exponential with time. This type of diffusion in 
plasmas is known as Bohm diffusion. 

10.1 Consider a solid-state plasma with the same number of electrons (e) 
and holes (h). Using the linearized Langevin equation (with a= e, h) 

taking me= mh, lice = Zlch, assuming a time dependence for both E and 
Ua of the form exp ( -iwt), and choosing a Cartesian coordinate system 
with the z axis pointing along the constant and uniform magnetic field 
B 0 , show that the conductivity dyad is given by 

( 
(} ..L 

s = 2 ~ 
0 

O"j_ 

0 

with a ..L and a0 given by (5.3) and (5.5), respectively. Explain, in physical 
terms, why we have O"H = 0 in this case. 

10.2 Assume that the average velocities of the electrons and ions in a 
completely ionized plasma, in the presence of constant and uniform electric 
(E) and magnetic (B0 ) fields, satisfy, respectively, the following equations 
of motion: 
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(a) Determine expressions for the steady-state DC conductivities (]' H, (]' ..l, 

and (J'o. 
(b) For ue, ui, and E all proportional to exp ( -iwt) and Bo constant, 
calculate the AC conductivity dyad for the plasma. 

10.3 Consider the equation J = S · E, with S as given in (4.23). If 
we choose a Cartesian coordinate system such that Ex = E..1, Ey = 0, 
Ez = E 11 , and B 0 = B 0z (refer to Fig. 2), verify that in this coordinate 
system we have 

ly = (J'HE..l 

Jz = (J'IIEII 

Interpret physically this result with reference to Fig. 2. 

10.4 What is the physical meaning of a complex conductivity, as given 
in (5.7) and (5.8)? Consider, for example, that E(r, t) = E(r) exp ( -iwt), 
and calculate the real parts of E(r, t) and of J(r, t) = S · E(r, t). Interpret 
physically the results considering the phase differences between J and E. 

10.5 Write expressions for the components of the dielectric dyad E of a 
multiconstituent magnetized plasma. 

10.6 Consider the electrons in a plasma acted upon by a small, constant, 
and uniform external electric field E. Under steady-state conditions with 
no spatial gradients, obtain an expression for the nonequilibrium distribu­
tion function f for the electrons, by applying a perturbation technique to 
the Boltzmann equation (take f = fo +!I with Iii I« fo and neglect all 
second-order terms), using the relaxation model for the collision term 

( lif) = -v(f- fo) 
lit call 

where v is a relaxation collision frequency and fo is the equilibrium Max­
wellian distribution function. Assuming that v is independent of velocity, 
obtain an expression for the electric conductivity (J'o of the plasma, by 
taking J = (JoE. 

10.7 Same as problem 10.6, but including also a constant and uniform 
magnetic field B0 . 
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10.8 Imagine a horizontally stratified ionosphere in the absence of a 
magnetic field, constituted only of electrons (density n, temperature T, 
charge -e, mass me) and one type of ions (density n, temperature T, 
charge +e, mass mi), subjected to the gravitational field (g), vertical 
pressure gradient ('Vp), and the internal electric field (E) due to the charge 
separation associated with ambipolar diffusion. Neglect the gravitational 
force for the electrons and consider the system in equilibrium. Using the 
collisionless equations of motion for the electrons and the ions, show that 
the internal electric field acts downward on the electrons with a force 
mig/2, and upward on the ions with the same force. Consequently, the 
net effect is the same as if both ions and electrons had mass mi/2. 

10.9 (a) In order to solve the diffusion equation 

8n(r, t) = D"2 ( ) at v n r, t 

by the method of separation of variables, let 

and show that 

n(r, t) = S(r) T(t) 

Tk(t) =To exp ( -Dk2 t) 

(\72 + k2 )S(r) = 0 

where k2 is the separation constant and To is a constant. 
(b) Assuming that S depends only on the x coordinate, show that 

S(x) = c(k) exp (ikx) 

where k can be either positive or negative, and that 

J+oo 
n(x, t) = -oo c(k) exp (ikx- Dk2t) dk 

no(x) = 1:= c(k) exp (ikx) dk 

where n0 (x) = n(x, 0) is the known initial density distribution. 
(c) Using Fourier transform theory, show that 

1 l+oo c(k) = - n0 (x) exp ( -ikx) dx 
27r -()() 
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and, consequently, that 

1 l+oo , [ (x- x') 2 ] 
n(x, t) = 2(nDt)l/2 -oo no(x) exp - 4Dt dx' 

(d) Taking as initial condition 

show that 

( TD )1/2 [ x2 ( TD )] 
n(x, t) = TD + 4t exp - x5 TD + 4t 

where TD = x5/ D is a characteristic time for diffusion to smooth out the 
density n. 
(e) Generalize the problem for the three-dimensional case in Cartesian 
coordinates, when S = S(r). 

10.10 Consider the solution of the diffusion equation by separation of 
variables in the linear geometry of the plasma slab indicated in Fig. 4. 
Show that the solutions of the equation 

that satisfy the boundary condition S = 0 at x = ±L, are 

S(x) =Lam cos [(m + 1/2)nx/ L] 
m 

and 
S(x) = L bm sin (mnx/ L) 

m 

Explain why the solution as a sine series is not a physically acceptable 
solution for this case. Consequently, from n(x, t) = S(x) T(t), show that 
the number density can be expressed as 

m 
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-L 0 L 

Fig. 4 Geometry of the plasma slab for the solution of the 
diffusion equation considered in problem 10.10. 

Therefore, the decay time constant for t he m th mode is 

[ L ] 2 1 
Tm = 1r(m + 1/ 2) D 

This result shows that the higher modes decay faster than the lower ones. 
How are the coefficients am determined in terms of n 0 ( x )? 

10.11 Show that the solution of the diffusion equation in the case of 
cylindrical geometry (see Fig. 5), 

can be written in terms of Bessel's functions Jm(kr) . Explain how k must 
be determined so that n(r, t ) satisfies t he boundary condit ion n = 0 at 
r = R0 . 

10.12 Verify that plane wave solutions to the diffusion equation 

8n(r, t) = Dt~2 ( ) 
at v n r, t 
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Fig. 5 Cylindrical geometry of the plasma column for the 
solution of the diffusion equation considered in problem 10.11. 

yields the following dispersion relation between k and w, 

Then show that for free electron diffusion we obtain 

k2v2 . se = 'tWVce 

where Vse = (ksTe/me) 112 = (Pel Pme)112 is the isothermal speed of sound 
in the electron gas and ks is Boltzmann's constant. Next show that for 
ambipolar diffusion we obtain 

k2v2 . sp = 'tWVci 

where 

is the isothermal plasma sound speed. Calculate the phase velocity and 
the damping factor for these waves and verify if they are longitudinal or 
transverse waves. 

10.13 Consider a weakly ionized plasma immersed in a uniform magneto­
static field B 0 oriented along the z axis of a Cartesian coordinate system. 
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(a) Show that the diffusion equation for the electrons (with Due/ Dt = 0) 
in the presence of the space charge electric field is given by 

re = -V' · (Vene) + neMe · E 

where 

JJ 
with Del.., DeH, and De 11 given by (9.5), (9.6), and (9.7), respectively, and 
where 

e 
Me= -kTe De 

(b) Deduce the corresponding equation for the ions in the presence of the 
space charge electric field E. Combine the equations for the electrons and 
for the ions in order to eliminate the space charge electric field. Then, 
assuming that the electron and ion fluxes are equal, r e = ri, and that 
their number densities are also equal, ne = ni, determine the ambipolar 
diffusion coefficient. Verify that it is not affected by the presence of the 
magnetostatic field. 

10.14 Consider the following heat flow equation, derived in problem 8.11 
(in Chapter 8), for a stationary electron gas immersed in a magnetic field, 

nee ( ) Qe +- Qe X B = -KoY'Te 
ll 

Show that this equation can be written in the form 

Qe = -K · Y'Te 

where K denotes the dyadic thermal conductivity coefficient, given by 

where 



SoME BASIC 

PLASMA PHENOMENA 

One of the fundamental properties of a plasma is its tendency to main­
tain electric charge neutrality on a macroscopic scale under equilibrium 
conditions. When this macroscopic charge neutrality is disturbed, such as 
to temporarily produce a significant imbalance of charge, large coulomb 
forces come into play, which tend to restore the macroscopic charge neu­
trality. Since these coulomb forces cannot be naturally sustained in the 
plasma, it breaks into high-frequency electron plasma oscillations, which 
enable the plasma to maintain on the average its electrical neutrality. 

As a simple example, consider a small spherical region inside a plasma 
and suppose that a perturbation in the form of an excess of negative charge 
is introduced in this small region. Because of spherical symmetry, the cor­
responding electric field is radial and points towards the center (see Fig. 
1), forcing the electrons to move radially outward. After a small t ime 
interval, since the electrons gain kinetic energy in the course of their mo­
tion, more electrons leave the spherical plasma region (due to their inertia) 
than is necessary to resume the state of electrical neutrality. An excess 
of positive charge results, therefore, inside this region and the reversed 
(outward, now) electric field causes the electrons to move inward. This se­
quence of outward and inward electron movement in the spherical plasma 
region continues periodically, resulting in electron plasma oscillations. In 
this way the plasma maintains its macroscopic neutrality on the average, 
since the total charge inside the spherical region, averaged over one period 
of these oscillations, is zero. The frequency of these oscillations is usually 
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E 

(a) (b) 

Fig. 1 The radial electric field E produced by a spherical distri­
bution of negative charge (a) forces the electrons to move radially 
outwards, whereas the field produced by a spherical distribution 
of positive charge (b) forces the electrons to m ove radially in­
wards. 

very high, and since the ions (in view of their much higher mass) are 
unable to follow the rapidity of the electron oscillations, their motion is 
often neglected. 

To study the characteristics of the electron plasma oscillations we can 
use the cold plasma model, in which the particle thermal motion and the 
pressure gradient force are not taken into account. We shall neglect ion 
motion and assume a very small electron density perturbation such that 

ne (r, t) = n0 + n~ (r, t) (1.1) 

where no is a constant number density and ln~l « no. Similarly, we 
assume that the electric field produced, E(r, t), and the average electron 
velocity, U e ( r, t), are first-order perturbations, so that the linearized equa­
tions can be used. The linearized continuity and momentum equations 
become, respectively, 

8n~ (r, t) ( ) 
ot +no \7 · U e r, t = 0 (1.2) 

8ue(r, t) _ e E( ) - - r t 
8t - m e ' 

(1.3) 
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In the momentum equation we have assumed that the rate of momentum 
loss from the electron gas due to collisions is negligible. Considering singly 
charged ions, the charge density is given by 

p(r, t) = -e[no + n~(r, t)] + eno = -en~(r, t) (1.4) 

where the ion density was considered to be constant and uniform, and 
equal to no (neglecting ion motion). Therefore, 

( ) p(r, t) e 1 ( ) \7 · E r,t = -- = --ne r,t 
Eo Eo 

(1.5) 

Eqs. (1.2), (1.3), and (1.5) constitute a complete set of equations to be 
solved for the variables n~(r, t), ue(r, t), and E(r, t). Taking the divergence 
of (1.3) and using (1.2) to substitute for \7 · Ue, we obtain 

(1.6) 

Combining (1.5) and (1.6) to eliminate \7 · E, yields 

(1.7) 

where 

(1.8) 

is called the electron plasma frequency. Equation ( 1. 7) shows that n~ ( r, t) 
varies harmonically in time at the electron plasma frequency, 

(1.9) 

In fact, all first-order perturbations have a harmonic time variation 
at the plasma frequency Wpe· To justify this statement it is convenient to 
start with the assumption that all first-order quantities vary harmonically 
in time, as exp ( -iwt). Eqs. (1.2) and (1.3) become, in this case, 

I ~ 
n = --no \7 · Ue 

e W 

~e 
Ue = ---E 

wme 

(1.10) 

(1.11) 
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which can be combined into 

(1.12) 

Substituting this expression for n~ into (1.5), yields 

( W~e) 1- w2 V' · E = 0 (1.13) 

which shows that a nontrivial solution requires w = Wpe· Therefore, all the 
perturbations vary harmonically in time at the electron plasma frequency. 
Further, for all variables there is no change in phase from point to point, 
implying the absence of wave propagation. The oscillations are therefore 
stationary. Also, (1.11) shows that the electron velocity is in the same 
direction as the electric field, so that these oscillations are longitudinal. 

The electron plasma oscillations are also electrostatic in character. 
In order to show this aspect of the oscillations, consider Maxwell curl 
equations with a harmonic time variation, 

V' x E = iwB 

V' x B = J.Lo(J- iwEoE) 

The electric current density is given by 

inoe2 
J = -enoue = --E 

wme 

where we have used (1.11) for Ue. Therefore, 

where we have defined a relative permittivity by 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

For the electron plasma oscillations we have w = Wpe, so that Er = 0, and 
(1.17) reduces to 

V'xB=O (1.19) 

Since the curl of the gradient of any scalar function vanishes identically, 
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we may write 
(1.20) 

where '1/J is a magnetic scalar potential. Substituting (1.20) into (1.14) and 
taking the divergence of both sides, we obtain the Laplace equation 

(1.21) 

since the divergence of the curl of any vector function vanishes identically. 
The only solution of this equation, which is not singular and finite at 
infinity, is '1/J =constant, so that B = 0. Hence, there is no magnetic field 
associated with these space charge oscillations. 

In summary, the electron plasma oscillations are stationary, longitu­
dinal, and electrostatic. They are also referred to as Langmuir oscillations. 
When the effect of the pressure gradient force is included in the equation 
of motion (1.3), complemented by an adiabatic energy equation, these 
oscillations become propagating disturbances, commonly known as space 
charge waves or Langmuir waves. Characteristic values of the electron 
plasma frequency for various laboratory and cosmic plasmas are given in 
Fig. 2 of Chapter 1. 

To examine the mechanism by which the plasma strives to shield its 
interior from a disturbing electric field, consider a plasma whose equilib­
rium state is perturbed by an electric field due to an external charged par­
ticle. For that matter, this electric field may also be considered to be due 
to one of the charged particles inside the plasma, isolated for observation. 
For definiteness, we assume this test particle to have a positive charge +Q, 
and choose a spherical coordinate system whose origin coincides with the 
position of the test particle. We are interested in determining the electro­
static potential ¢(r) that is established near the test charge Q, due to the 
combined effects of the test charge and the distribution of charged particles 
surrounding it. Since the positive test charge Q attracts the negatively 
charged particles and repels the positively charged ones, the number den­
sities of the electrons ne ( r) and of the ions ni ( r) will be slightly different 
near the origin (test particle), whereas at large distances from the origin 
the electrostatic potential vanishes, so that ne ( oo) = ni ( oo) = n0 . Since 
this is a steady-state problem under the action of a conservative electric 
field, we have 

E(r) = -'V¢(r) (2.1) 
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and from (7.5.16) it follows that 

[e¢(r) J 
ne(r) =no exp kT (2.2) 

[ e¢(r)J 
ni(r) =no exp - kT (2.3) 

where we have assumed that the electrons and ions (of charge e) have the 
same temperature T. 

The total electric charge density p(r), including the test charge Q, 
can be expressed as 

p(r) = -e[ne(r)- ni(r)] + Q 8(r) (2.4) 

where 8(r) denotes the Dirac delta function. Using (2.2) and (2.3), 

p(r) = -eno{ exp [e:~)J - exp [- e:~)J} + Q 8(r) (2.5) 

Substituting (2.1) and (2.5) into the following Maxwell equation, 

V · E(r) = p(r) 
Eo 

(2.6) 

gives the differential equation 

V2¢(r)- eno { exp [e¢(r) J - exp [- e¢(r) J} = - Q 8(r) 
Eo kT kT Eo 

(2.7) 

which allows the evaluation of the electrostatic potential ¢(r). 
In order to proceed analytically, we assume now that the perturbing 

electrostatic potential is weak so that the electrostatic potential energy is 
much less than the mean thermal energy, that is, 

e¢(r) « kT (2.8) 

Under this condition we can use the approximation (making a series ex­
pansion) 

[± e¢(r) J ~ 1 ± e¢(r) 
exp kT kT (2.9) 

Therefore, (2. 7) simplifies to 

2 Q 
V2¢(r) - - 2 ¢(r) = -- 8(r) 

Av Eo 
(2.10) 
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where AD denotes the Debye length 

AD= (Eok~)l/2 = _1_(kTe)l/2 
noe Wpe me 

(2.11) 

Since the problem has spherical symmetry, the electrostatic potential 
depends only on the radial distance r measured from the position of the 
test particle, being independent of the spatial orientation of r. Thus, using 
spherical coordinates, (2.10) can be written (for r =J 0) as 

1d[2d ] 2 -- r -¢(r) - -¢(r) = 0 
r 2 dr dr A2 

D 
(r =J 0) (2.12) 

In order to solve this equation we note initially that for an isolated particle 
of charge +Q, in free space, the electric field is directed radially outward 
and is given by 

E(r) = - 1- Qr 
47rEo r 2 

(2.13) 

so that the electrostatic coulomb potential c/Jc(r) due to this isolated 
charged particle in free space is 

1 Q 
c/Jc(r) = --

47rEo r 
(2.14) 

In the very close proximity of the test particle the electrostatic potential 
should be the same as that for an isolated particle in free space. Hence, 
it is appropriate to seek the solution of (2.12) in the form 

Q F(r) 
cp(r) = c/Jc(r)F(r) = --

47rEo r 
(2.15) 

where the function F(r) must be such that F(r) ---+ 1 when r---+ 0. Fur­
thermore, the electrostatic potential ¢( r) is required to vanish at infinity, 
that is, ¢ ---+ 0 when r ---+ oo. Substituting (2.15) into (2.12) yields the 
following differential equation for F ( r): 

(2.16) 

This simple differential equation for F ( r) has the solution 

( y'2 r) ( v'2 r) F(r) =A exp >:;; + B exp ->:;; (2.17) 
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The condition that ¢(r) vanishes for large values of r requires A= 0. Also, 
the condition that F(r) tends to one when r tends to zero requires B = 1. 
Therefore, the solution of (2.12) is 

( J2 r) 1 Q ( J2 r) ¢(r) = ¢c(r) exp -- = -- exp --
AD 47rEo r AD 

(2.18) 

This result is commonly known as the Debye potential, since this nonrig­
orous derivation was first presented by Debye and Ruckel in their theory 
of electrolytes. It shows that ¢(r) becomes much less than the ordinary 
coulomb potential once r exceeds the distance AD, called the De bye length 
(see Fig. 2). Hence, we can say in a crude way that a charged particle in 
a plasma interacts effectively only with particles situated at distances less 
than one Debye length away, and it has a negligible influence on particles 
lying at distances greater than one Debye length. 

The charge Q of the test particle is neutralized by the charge distri­
bution surrounding the test particle. From (2.5) and (2.9) we obtain for 
the charge density 

p(r) = -2noe::(r) + Q 6(r) 

Substituting ¢(r) by the Debye potential (2.18), we obtain 

p(r) =- QA2 exp (- V: r) + Q 6(r) 
27rr D AD 

To obtain the total charge qt we integrate (2.20) over all space, 

(2.19) 

(2.20) 

!!! 3 Q { 00 1 ( J2r) 2 
qt = p(r) d r =- 27rAt Jo -:;: exp -----;:;; 47rr dr + 

(2.21) 

Since the first integral gives -Q, whereas the second one is equal to +Q, 
we find qt = 0. The principal contribution to the first integral in (2.21) 
comes from the plasma particles lying in the very close neighborhood of 
the test particle, since the integrand falls off exponentially with increas­
ing values of r. Thus, the neutralization of the test particle takes place 
effectively on account of the charged particles inside the Debye sphere. 
From (2.2) and (2.3) we see that in the neighborhood of the test particle 
the electron number density is larger than the ion number density, on ac­
count of the fact that the positive test particle attracts the electrons and 
repels the ions. Therefore, in the close proximity of the test particle there 
is an imbalance of charge and, consequently, an electric field. We have seen 
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0 1 2 (2)112 r/A.o 

Fig. 2 Electrostatic coulomb potential <Pc(r) and Debye poten­
tial ¢( r) as a function of distance r from the test charge Q. Here 
we have <Po= J2 Q/(4m:oAn). 
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that the shielding of this electric field is effectively completed over a dis­
tance of the order of An. Thus, for macroscopic neutrality, it is necessary 
that the plasma typical characteristic dimension L be much greater than 
An. This quantitative criterion for the definition of a plasma has been 
previously discussed in Chapter 1. 

An important point to be noted in the result (2.18) is that, for r--+ 0, 
the Debye potential becomes very large and the assumption e¢(r) « kT 
is unlikely to be fulfilled. To verify the validity of this approximation, and 
consequently of (2.18), note that using (2.18) with Q =ewe have 

e¢ e2 exp ( -J2 r/An) 
kT 47rEorkT 

An exp (-J2 r/An) 
3Nn r 

(2.22) 

where N D is the number of electrons inside a De bye sphere. Since N n is 
very large for virtually all plasmas, it is evident that the ratio given in 
(2.22) is much less than one, except when r is less than An/Nn. Therefore, 
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the Debye potential (2.18) is consistent with the approximation e¢ « kT 
used to derive it, if we restrict attention to distances from the test particle 
greater than A.n / N n. 

As a final point, we note that in the derivation of the Debye potential 
that appears extensively in the literature, it is usual to ignore ion motion 
and to assume a constant ion number density equal to the unperturbed 
electron number density. In this case the factor of 2 disappears from 
(2.10), and the expression for the Debye potential becomes 

1 Q 
cfJ(r) = -4 -- exp (-r/A.n) 

7rEo r 
(2.23) 

In this section we analyze the Debye potential problem from the point 
of view of kinetic theory. As before, we suppose that a test charge +Q is 
placed at the origin of a spherical coordinate system inside the plasma. In 
order to determine the steady-state electron and ion distribution functions, 
fe and /i, and the electrostatic potential ¢(r) near the test charge, let us 
consider the steady-state Vlasov equations for the electrons and the ions, 
with only the electric field E(r) = -V'¢(r) in the Lorentz force term, 

(3.1) 

(3.2) 

Since 

na(r) = 1 fa(r, v) d3v (3.3) 

the total charge density (including the test particle) can be expressed as 

p(r) = -e 1 Ue -/i) d3v + Q 8(r) (3.4) 

and the Poisson equation for this case becomes 

2 e 1 3 Q '1 ¢ - - Ue - fi) d v = -- 8 ( r) 
Eo v Eo 

(3.5) 
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Equations (3.1), (3.2), and (3.5) constitute three equations to be solved 
simultaneously to determine fe, fi, and¢. 

The solution of the Vlasov equations (3.1) and (3.2) can be expressed 
in terms of the Maxwellian distribution function and the Boltzmann factor 
(see section 5, Chapter 7), as 

[ Qa</>(r)J fa(r, v) = foa(v) exp - kT (3.6) 

When the electrostatic potential vanishes, this distribution function goes 
into the Maxwellian distribution foa ( v), with zero drift velocity. Substi­
tuting (3.6), with a = e, i, into (3.5), yields 

2 e [ ( e¢) 1 3 V' ¢ - - exp - foe d v -
Eo kT v 

exp (- e¢) 1 foi d3v] = - Q o(r) 
kT v Eo 

(3.7) 

Denoting the electron and ion number densities under equilibrium condi­
tions (when ¢ vanishes) by no, 

a=e,z (3.8) 

equation (3.7) becomes 

2 eno [ ( e¢ ) ( e¢ ) J Q V' ¢-- exp - -exp -- = -- o(r) 
Eo kT kT Eo 

(3.9) 

This equation is identical to (2.7), yielding the same result as before for 
the Debye potential. 

When a material body is immersed in a plasma, the body acquires 
a net negative charge and therefore a negative potential with respect to 
the plasma potential. In the region near the wall of the body there is a 
boundary layer, known as the plasma sheath, in which the electron and the 
ion number densities are different. Inside the plasma sheath the potential 
increases monotonically from a negative value on the wall to the value 
corresponding to the unperturbed plasma. The thickness of the plasma 
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sheath, where departures from macroscopic electric neutrality occur, is 
found to be of the order of a Debye length. 

A satisfactory mathematical treatment of this phenomenon is quite 
involved and cannot be presented here. However, the basic physical factors 
responsible for the formation of the plasma sheath are fairly simple to 
understand. In this section we will set up the problem mathematically 
and obtain some approximate results. The problem is strongly dependent 
on the particular geometry under consideration. For simplicity, we shall 
assume that the wall bounding the plasma is an infinite plane surface 
at x = 0, with the plasma in the region x > 0, and that there are no 
variations with respect to the coordinates y and z. 

4.1 Physical Mechanism 

We begin with a descriptive account of the physical mechanism re­
sponsible for the formation of the plasma sheath. The charged particles in 
the plasma that strike the wall in virtue of their random thermal motions 
are for the most part lost to the plasma. The ions generally recombine 
at the wall and return to the plasma as neutral particles, whereas the 
electrons may either recombine there or enter the conduction band if the 
surface is a metal. We have seen in section 4 of Chapter 7 that the random 
particle flux, that is, the number of particles that hit the surface per unit 
area and per unit time, from one side only, for the case of an isotropic 
velocity distribution function, is given by [see Eqs. (7.4.35) and (7.4.18)] 

r a:= no:< v >a /4 (4.1) 

where < v >a: is the average particle speed for the a species. For the 
Maxwell-Boltzmann velocity distribution function we have found that [see 
Eq. (7.4.20)] 

_ (8)1/2(kTa:)l/2 < V >a- - --
1T ma: 

so that a typical value for the random particle flux in this case is 

_ ( kTa )1/2 r a:- no: -2--
7Tffia: 

(4.2) 

(4.3) 

It is evident from this result that if initially the electron and the ion num­
ber densities are equal, then the random particle flux for the electrons 
(re) greatly exceeds that for the ions (ri), since in general (Te/me)112 

is much larger than (Ti/mi)112 . For the least heavy ion, hydrogen, for 
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example, mi/me = 1836. Therefore, the wall in contact with the plasma 
rapidly accumulates a negative charge, since initially more electrons reach 
the wall than positive ions. This negative potential repels the electrons 
and attracts the ions so that the electron flux diminishes and the ion flux 
increases. Eventually, the negative potential at the wall becomes large 
enough in magnitude to equalize the rate at which electrons and ions hit 
the surface. At this floating negative potential the wall and the plasma 
reach a dynamical equilibrium such that the net current at the wall is 
zero. 

4.2 Electric Potential on the Wall 

To estimate the value of the potential on the wall after the plasma 
sheath has been established, consider a steady-state situation and let the 
electric potential ¢( x) at the wall ( x = 0) be given by 

¢(0) = c/Jw (4.4) 

Let us choose the reference potential inside the plasma, at a very large 
distance from the wall, equal to zero, 

¢(oo) = 0 (4.5) 

The electrons and the ions are assumed to be in thermodynamic equi­
librium at the same temperature T, under the action of the conservative 
electric field associated with the negative potential on the wall. At x ---+ oo 
the plasma is unperturbed and the electron and ion number densities are 
each equal to n 0 . According to the results of section 5, Chapter 7, the 
electron and ion number densities can be expressed as 

[e¢(r)J 
ne ( r) = no exp ---yzr- (4.6) 

[ e¢(r)J ni ( r) = no exp - ---yzr- (4.7) 

It is important to note at this point that ( 4.6) and ( 4. 7) do not take into 
account the particle drift velocity towards the wall. Since the electrons 
and the ions impinging on the wall surface are for the most part lost 
to the plasma, there must be a steady flux of both species towards the 
wall to replenish this charged particle loss. Despite this inadequacy, ( 4.6) 
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and ( 4. 7) will still be used to obtain an approximate expression for the 
potential on the wall. Afterwards, in order to study the inner structure 
of the plasma sheath, we will take into account the particle drift in an 
approximate manner using the hydrodynamic equations. 

One of the boundary conditions of the problem is that under equilib­
rium conditions there must be no charge buildup at the wall (x = 0), so 
that 

(4.8) 

Using (4.3), (4.6), and (4.7), considering singly charged ions, 

( 1 )1/2 (e¢w) _ ( 1 )1/2 ( e¢w) - exp---- exp---
me kT mi kT 

(4.9) 

which may be written as 

( 2e¢w) _ ( mi ) 1/2 exp --- - -
kT me 

(4.10) 

Taking the natural logarithm of both sides, and solving for the wall po­
tential, we obtain 

¢w = - ( ~~) ln ( :: ) (4.11) 

Other more accurate methods of calculating the wall potential yield results 
which, forTe= Ti, agree qualitatively with the one given in (4.11), despite 
the inadequacy of (4.6) and (4.7), which neglect the particle drift velocity 
towards the wall. 

Note from (4.11) that the magnitude of the potential energy near the 
wall le¢w I is of the same order as the average thermal energy kT of the 
particles in the plasma, since 

I e¢w I = ~ ln ( mi ) 
kT 4 me 

(4.12) 

For a hydrogen ion, for example, le¢wl/(kT) is approximately equal to 2, 
whereas for heavier ions it may be close to 3. 

4.3 Inner Structure of the Plasma Sheath 

To investigate the inner structure of the plasma sheath, consider the 
equations of conservation of particles and momentum for the electrons 
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and ions, under steady-state conditions, with spatial dependence only on 
the x direction. The equation of conservation of particles becomes (with 
a= e,i) 

d(naua) _ dua dna _ O 
dx - na dx + Ua dx - (4.13) 

In the momentum conservation equation we neglect viscosity effects and 
approximate the kinetic pressure dyad by a scalar pressure. The ideal gas 
equation of state, Pa = nakTa, can be used to introduce the tempera­
ture, which is assumed to be constant. Collisions are neglected, since the 
thickness of the plasma sheath is much less than the mean free path for 
the plasma particles. With these assumptions and in the absence of a 
magnetic field, the equation of motion becomes [taking E(r) = -V¢(r), 
and DjDt = 8j8t + Ua · V = Uad/dx] 

(4.14) 

In order to simplify the analysis we shall make two approximations. From 
(4.13), we can write 

dna 
dx 

(4.15) 

and the ratio of the magnitude of the term in the left-hand side of (4.14) 
to the first term in the right-hand side can be expressed as 

lmaua(dua/dx)l 

I (kTa/na)( dna/ dx) I 
2 maua 

(4.16) 

The two approximations consist in neglecting the left-hand side term of 
( 4.14) for the electrons, whereas for the ions we neglect the first term in the 
right-hand side of (4.14). Explicitly, we take for the electrons (neglecting 
electron inertia) 

kTe dne _ e d¢ = O 
ne dx dx 

(4.17) 

and for the ions (assuming cold ions) 

(4.18) 

These two approximations are justified only if the thermal energy of the 
electrons is much larger than their kinetic energy, and if the thermal energy 
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of the ions is much smaller than their kinetic energy. Thus, we require 
from (4.15) that 

(4.19) 

in order to justify the approximations in (4.17) and (4.18). We shall 
assume that the condition (4.19) is satisfied in the plasma sheath but it 
remains to be justified later in this section. 

If we integrate ( 4.17), we obtain 

ecp(x) = kT ln ne(x) +(constant) ( 4.20) 

and using the condition that ne =no when¢= 0, we find 

[ecp(x) J ne ( x) = no exp --;zy- (4.21) 

This result is identical to (4.6), which is not surprising, since the con­
dition meu; « kT implies neglecting the electron inertia (me = 0) and 
consequently their kinetic energy. 

For the ions, we first integrate ( 4.13) to find 

(4.22) 

and then integrate (4.18) to obtain 

( 4.23) 

where C1 and C2 are constants. The boundary conditions require that at 
x ~ oo we must have ¢(oo) = 0, ni(oo) =no, and ui(oo) = uoi· Thus, 

and using these results in (4.22) and (4.23), we find 

(4.24) 

(4.25) 

(4.26) 

These two equations can be combined to eliminate ui(x) and solved for 
ni(x), giving 

(4.27) 



11. SOME BASIC PLASMA PHENOMENA 285 

This expression for ni ( x) is substantially different from the one given in 
( 4. 7), and this difference is due to the importance of the ion drift ve­
locity. We now find that, since cp(x) < 0 in the sheath, ni(x) decreases 
slowly towards the wall rather than increasing as predicted by ( 4. 7). Phys­
ically, this behavior is due to the fact that the negative potential on the 
wall causes Ui ( x) to increase as the ions approach the wall and since the 
ion flux ni(x) ui(x) must stay constant, in virtue of (4.25), it turns out 
that ni ( x) must decrease according to ( 4.27). This behavior is illustrated 
schematically in Fig. 3. 

To obtain the differential equation satisfied by the electrostatic po­
tential ¢( x), we substitute ( 4.21) and ( 4.27) into the Poisson equation 

(4.28) 

to obtain 
d2¢ = n0 e [ exp (e¢) _ ( 1 - 2e~ )-1/2] 
dx2 Eo kT mi u0i 

(4.29) 

In this equation, the drift velocity uoi, far away from the wall, still needs 
to be determined. This equation is nonlinear, and in order to facilitate its 
analytical solution we need to make one more approximation. Since we 
have seen that le¢1 ranges from zero in the plasma to a value of the order 
of kT on the wall and since we have also assumed that miu6i is larger 
than kT, we will restrict our attention to the region near the plasma edge 
of the sheath and assume further that le¢1 is small compared to both kT 
and miu6i· Thus, in the region near the edge of the sheath adjacent to 
the plasma, we can expand the terms in the right-hand side of (4.29), for 
e¢/(kT) « 1 and e¢/(miu6i) « 1, as 

exp ( ~:) ~ 1 + ~: (4.30) 

( 2e¢ ) -1/2 e¢ 
1---2- ~1+--2-

miUoi miuoi 
(4.31) 

with the result that (4.29) reduces to 

(4.32) 

where 

(4.33) 
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Fig. 3 Diagram showing the variation of the electrostatic 
potential ¢(x) and the number densities ne(x) and ni(x) inside 
the plasma sheath near an infinite plane wall. 

The solution of (4.32), with the boundary condition ¢(oo) = 0, is 

X 

¢ (x) =A exp ( - x/ X) (4.34) 

where A is a constant. Since we have assumed that kT « miu6i, it follows 
from ( 4.33) that X is real and approximately equal to AD· 

Therefore, we find that the absolute value of ¢(x) decreases exponen­
tially (note that A must be negative, so that ¢( x) actually increases) as 
we move from inside the sheath into the plasma and goes asymptotically 
to zero at very large distances from the wall. Since X c:::: AD, this variation 
effectively takes place within a distance of the order of a Debye length. 
This solution for ¢( x) is strictly valid only near the plasma edge of the 
sheath, but if it is continued to apply throughout the plasma sheath, we 
can impose the boundary condition on the wall, that is, ¢(0) = ¢w, which 
requires that A = ¢w. 
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If kT were greater than miu6i, then X would be imaginary and the 
electric potential would be an oscillating function of distance near the wall. 
The condition 

(4.35) 

therefore must be satisfied for the formation of a plasma sheath. It is 
known as the Bohm criterion. 

It is not a trivial matter to determine the potential on the wall using 
the hydrodynamic equations. All the approximate methods that have 
been suggested give results that, for Te = Ti, agree reasonably well with 
the approximate value for <Pw given in (4.11). Furthermore, there is no 
consistent way to determine the ion drift velocity uoi at x = oo, but an 
approximate estimate can be obtained as follows. Since the ion flux must 
be constant, from ( 4.25) we can equate the ion flux n0uoi at x = oo to its 
value ri(O) at the wall. Using (4.3) with ni as given by (4.7) evaluated at 
the wall, we find 

Uoi = (_!i!___) 112 exp (- e¢w) 
27rmi kT 

(4.36) 

Similarly, for the electrons we can equate the electron flux n0uoe at x = oo 
to its value fe(O) at the wall. From (4.3), with ne given by (4.6) evaluated 
at the wall, we find 

( kT )1/2 (e¢w) 
Uoe = 27rme exp kT (4.37) 

and using (4.9) we see that 
Uoe = Uoi (4.38) 

To verify the validity of the approximations indicated in (4.19), we 
note first that from the mass conservation equation the particle flux, given 
by na(x) ua(x), must be constant for all x and equal to the value n0 Uoa· 
From (4.21) we see that the minimum value of ne(x) is n0 exp (e¢w/(kT) 
since <Pw is negative. Therefore, 

Ue = (~: )uoe < Uoe exp (- e:;) (4.39) 

and using (4.37), we get 

(4.40) 
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or 
kT 

( 4.41) 

in agreement with the assumption (4.19). Similarly, from (4.27) the max­
imum value of ni(x) is n0 , so that 

ui = (~~ )uoi > uoi (4.42) 

and using (4.36), we obtain 

U· > t - ( _£_)1/2 exp (- e¢w) 
2nmi kT 

( 4.43) 

or 
kT 

( 2e¢w) 
~ 2n exp kT c:::: 0.1 ( 4.44) 

where the result on the right has been obtained substituting ¢w by the 
value given in (4.11). Therefore, in view of (4.41) and (4.44), the thermal 
energy of the electrons is seen to be greater than their kinetic energy, 
whereas for the ions the opposite situation is verified. From ( 4.44) we can 
also see that the Bohm criterion, for the formation of the plasma sheath, 
is satisfied. 

Although the quantitative aspects of the discussion presented here are 
very approximate, it provides, however, a satisfactory qualitative picture 
of the plasma sheath. 

The plasma probe is a device that has been widely used to measure 
the temperature and density of a plasma, both in the laboratory and 
in space. The electrostatic probe was originally developed by Langmuir 
and Mott-Smith, and the physical mechanism of its operation can be well 
explained using the theory of plasma sheaths presented in the previous 
section. 

A conducting probe, or electrode, is immersed in a plasma and the 
current that flows through it is measured for various potentials applied to 
the probe. The temperature and number density of the electrons can be 
obtained from the characteristics of the resulting current-potential curve. 
When the surface of the probe is a plane, the current-potential curve has 
a shape like that illustrated in Fig. 4. 
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Fig. 4 Characteristics of the current-potential curve of an elec­
trostatic plane probe immersed in a plasma. The probe floating 
potential, with reference to the plasma potential, is denoted by 
¢w· 
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The probe, when inserted in the plasma, is surrounded by a plasma 
sheath that shields the major portion of the plasma from the disturbing 
probe field. The thickness of the sheath is of the order of a Debye length. 
When no current flows through the electrode, it stays at the negative 
floating potential ¢w, which is the wall potential discussed in the previ­
ous section. Under these equilibrium conditions, the number of electrons 
reaching the probe per unit time is equal to the number of positive ions 
reaching the probe per unit time. We assume the current to be positive 
when it flows in the direction away from the probe. The current associ­
ated with the electron flow is directed away from the probe and therefore it 
is considered positive. Consequently, the electric current associated with 
the flow of ions is negative. Under equilibrium conditions there is no net 
current flowing through the probe and its potential is the floating poten­
tial ¢w· When the probe potential is made more negative than ¢w, the 
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electron current is reduced due to the increased repulsive force imposed 
by the probe electric field on the electrons. As the potential is made 
more negative, the contribution to the electric current arising from the 
electrons will eventually become negligible and the total electric current 
asymptotically approaches a constant negative value, corresponding to the 
electric current density li associated with the flow of ions only. The ions 
that reach the edge of the plasma sheath fall into the potential well and 
their current is practically unaffected if the potential is made even more 
negative. On the other hand, when the probe potential is increased from 
the negative value ¢w, more electrons reach the probe than ions per unit 
time due to the decrease in the repulsion force on the electrons, and the 
net electric current becomes positive. When the electric potential is zero, 
that is, when the probe is at the same potential as the plasma, there is no 
electric field near the electrode and, since the average thermal velocity of 
the electrons is much greater than that of the ions, the electron current 
density leo (for ¢ = 0) is much greater than the ion current density. If 
the potential is made sufficiently positive, a situation arises in which the 
current associated with the ions becomes negligible, but all the electrons 
that reach the edge of the sheath are collected by the probe. The electron 
current density reaches a fairly constant value for sufficiently high positive 
values of ¢. This plateau region in the probe current-potential curve is 
called the region of saturation of the electron current. For higher positive 
values of¢ there are complications in the current-potential characteristic 
of the electrode due to the occurrence of another phenomenon. 

An approximate expression for the magnitude of the electron current 
density, away from the region of saturation, can be obtained from ( 4.6) as 

le =leo exp (::e) (5.1) 

where leo is the electron current density when the electric potential is 
zero. Since for ¢ = 0 we have r e = ne < v >e I 4, and using ( 4.2) for the 
average electron speed, we obtain 

( kTe ) 1/2 
leo= ene --

27rme 
(5.2) 

where ne is the electron number density in the unperturbed plasma region. 
Note that when ¢ is negative the ions reaching the edge of the sheath 
continue to fall into the negative potential of the probe and hence the ion 
current density is a constant ( li) in the negative potential region. Thus, 
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we can express the probe current density, in the region where ¢ < 0, as 

(for¢< 0) (5.3) 

From this equation we can deduce the result 

(5.4) 

This expression can be used to determine the electron temperature as 
follows. First, the electrode is made sufficiently negative with reference to 
the plasma potential, so that the current that flows through the probe is 
due to the ions only. The measurement of this current gives directly the 
value Ji· Then, the current-potential characteristic curve of the probe is 
measured and a plot of ln (Jp + Ji) as a function of¢ is made. This curve 
has a straight-line section corresponding to the probe potential less than 
the plasma potential, and the slope of this straight line gives the value of 
(d/d¢)[ ln (Jp + Ji)] which, when substituted in (5.4), gives the electron 
temperature in the plasma. 

After the electron temperature Te has been determined, we can eval­
uate the electron number density from (5.2), which can be written as 

_ Jeo ( 27T'me) 112 

ne- e kTe (5.5) 

The value of Jeo is determined by measuring the probe current correspond­
ing to the plateau (electron saturation) region of the current-potential 
characteristic of the probe. 

11.1 Consider a stationary plasma (electrons and one type of ions) under 
steady-state conditions at a uniform temperature T0 , when perturbed by 
a point charge +Q placed at the origin of a coordinate system. Using the 
collisionless hydrodynamic equation for the electrons and ions (a: = e, i) 
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with the ideal gas law Pa = nakTo, and the Poisson equation 

obtain the following differential equation 

2 2 Q 
V' ¢(r) - --y¢(r) = -- o(r) 

.Xv Eo 

for the Debye potential ¢(r). Assume that the number density of each 
species can be expressed as na = n0 + n~, where n0 is constant and 
In~ I« no. What are the approximations necessary to obtain this result? 

11.2 Analyze the Debye potential problem considering only the motion 
of the electrons (ions stay immobile) and show that in this case the differ­
ential equation for the electric potential ¢(r) is 

2 1 Q 
V' ¢(r)- -2 ¢(r) = -- o(r) 

Av Eo 

11.3 When the macroscopic neutrality of a plasma is instantaneously per­
turbed by external means, the electrons react in a such a way as to give rise 
to oscillations at the electron plasma frequency Wpe = [n0e2 /(meEo)Jll2 . 

Consider these oscillations, but including the motion of the ions. Show 
that in this case the natural frequency of oscillation of the net charge 
density is given by 

w = (w2 + w2.)1/2 
pe pt 

where Wpi = [noe2 /(miEo)Jll2 . Use the linearized equations of continuity 
and of momentum for each species, and Poisson equation, considering only 
the electric force due to the internal charge separation. 

11.4 Evaluate the negative electrostatic potential ¢w that appears on an 
infinite plane wall immersed in a plasma consisting of electrons of charge 
-e and ions of charge Z e, under steady-state conditions. Denote the 
electron and ion temperatures by Te and Ti, respectively. 

11.5 Deduce an expression for the Debye potential for a test particle of 
charge +Q immersed in a plasma consisting of electrons (charge -e) and 
ions of charge Ze, the temperature of the electrons and the ions being 
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Te and Ti, respectively. Show that, if Te » Ti, then the Debye length is 
governed by the ion temperature Ti. 

11.6 Using the following expressions for the electron and ion number 
densities 

ni ( r) = no exp [- e~~) J 

in the plasma sheath region formed between an infinite plane and a semi­
infinite plasma, deduce the differential equation satisfied by the electric 
potential ¢( x) in the plasma sheath. Show that this differential equation 
can be written in the form 

d2F 

de2 
sinh (F) 

where F = e¢/kT and e = v'2 xj Av. Assuming that at X= 00 we have 
ne = ni =no, F = 0, and dF/de = 0, show that 

F(e) = 4 tanh- 1 { exp [-(e- eo)]} 

where eo is a constant. Denoting the potential at the wall by ¢w and 
assuming that e¢/kT « 1, show that 

( v'2 X) cp(x) = ¢w exp ~ 

with 
4kT 

¢w =- exp (eo) 
e 

11.7 For the plasma sheath region formed in the vicinity of a plane wall 
immersed in a plasma, assume that the ions at the plasma edge of the 
sheath can be described by a shifted Maxwellian distribution function 

. _ (__!!2__)3/2 [- mi(v- u0 ) 2 ] 
!t(v)- no 27rkT exp 2kT 

with drift velocity Uo = UoX. Prove that the ion flux r ix' at the edge of 
the sheath, is given by 

( kT )112 
fix =no 27rmi { exp ( -y2 ) + yvfii [1 + erf (y)]} 
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where y = uo[mi/(2kT)] 112 and erf (y) is the error function, defined by 

2 {y 
erf (y) = ft Jo exp ( -s2 ) ds 

Calculate dfix/dy. Note that the error function vanishes for y = 0, in­
creases monotonically as y increases, and tends asymptotically to unity as 
y--+ oo. Also note that 

11.8 From an experimental current-potential curve of a Langmuir probe 
of area A immersed in a plasma, such as shown in Fig. 5, where the 
electric potentials are measured with respect to a fixed reference potential, 
explain how you can determine Ji, Je0 , the space potential ¢8 , the floating 
potential ¢J with respect to <l>s (note that ¢J- <l>s = ¢w), Te, and ne. 

11.9 The Langmuir plasma probe has been widely used in satellites to 
measure space plasma properties. In one valuable technique, circuits are 
arranged that measure directly dlpjd¢ and d2 Ipjd¢2 , where Ip = JpA and 
A is the probe's area. Use (5.3) to show that 

(dlpjd¢) kTe 
(d2 Ip/d¢2 ) e 

which gives directly the electron temperature Te. Next show that Jeo can 
be calculated from Te and dlpjd¢ at a known value of¢, according to 

kTe ( e¢) dip 
Jeo = Ae exp - kTe d¢ 

The electron density ne can then be calculated from (5.5). 

11.10 An electron gas (Lorentz gas), in a background of stationary ions, 
is acted upon by a weak, externally applied electric field E, under steady­
state conditions. Using the Boltzmann equation for the electrons, with the 
relaxation model for the collision term (considering a constant collision 
frequency v), 

(of) = -v(f- fo) ot coll 
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Fig. 5 Typical current-potential curve of a plane Langmuir 
probe immersed in a plasma. 

and considering the adiabatic case for which 

n(r)[T(r)]-312 =constant 

show that the electron distribution function is given by 

{ 1 [mv2 ( 'VT) e J} f=fo 1--- v·- +-(v·E) 
v 2kT T kT 
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Assume that f = fo + JI, where lhl « fo and where fo is the following 
modified Maxwellian distribution 

[ m J 3/2 [ mv2 J 
fo(r, v) = n(r) 27rk T(r) exp - 2k T(r) 

and neglect all second-order terms in the Boltzmann equation. Consider 
the term involving 'V h as a second-order quantity. 
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11.11 Using the distribution function of the previous problem, evaluate 
the electric current density J to show that the presence of a temperature 
gradient gives rise to an electric current associated with thermoelectric 
effects. 

11.12 Consider problem 11.10, but taking E = 0 and, instead of the 
adiabatic case, consider a constant kinetic pressure 

p = n(r) k T(r) =constant 

(a) Show that the electron distribution function is given by 

(b) Evaluate the heat flux vector q and show that it can be written as 

q = -K\lT(r) 

where the thermal conductivity K is equal to 5kp/(2mv). 
(c) What is the value of the electric current density J in this case? 

11.13 In the previous problem, consider that n = constant and that fo 
is the following modified Maxwell-Boltzmann distribution function: 

[ m J 3/2 [ mv2 J 
fo(r, v) = n 21rk T(r) exp - 2k T(r) 

Calculate the electron distribution function f(r, v) and show that the heat 
flux vector is given by 

q = -K\lT(r) 

Determine the expression for the thermal conductivity K. 

11.14 In problem 11.12, include the presence of an external magnetostatic 
field B in the z direction and deduce the following expression for the 
nonequilibrium distribution function: 

vOce (~ V ~) ~] \lT } 
( 2 02 ) Vy X+ nY + VzZ . T 
V + Hce ce 
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Show that the heat flux vector q can be expressed as 

q = -JC · \7T(r) 

where }( is the dyadic thermal conductivity, which in matrix form can be 
written as 

with 

(
Kj_ 

IC= ~H 

v2 

K1_ = ( 2 n2 ) Ko 
V + Hce 

vOce 
KH = ( 2 n 2 ) Ko 

V + Hce 

5kp 
Kll = -2- =Ko mv 

Note: The solution of the differential equation 

dfi v 1 
-+-!I= --v· \lfo 
d¢ flee flee 

is given by 

( V ) 1 1</J 1 ( V ') fi =- exp --¢ - d¢ exp -¢ v · \l fo 
flu flu -oo flu 

11.15 The coefficient of viscosity rJ is defined as the shear stress produced 
by unit velocity gradient. For the Pxz component of the kinetic pressure 
dyad, for example, we have 

Assume the following form for the equilibrium velocity distribution func­
tion of the electrons 

( m ) 3/2 [ m 2 2 2 J fo(r, v) = n 21rkT exp - 2kT {[vx- ux(z)] + vy + vz} 

which indicates the presence of an average velocity Ux ( z) in the x direction 
having a gradient in the z direction. In the absence of external forces and 
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using the relaxation model for the collision term with a constant collision 
frequency v, let f = fo +!I with I!II « fo in the Boltzmann equation, 
under steady-state conditions, to show that 

m a 
fi(r, v) =- kTv fo(r, v) Vz[Vx- Ux(z)] Bz Ux(z) 

Next, calculate Pxz and show that the coefficient of viscosity is given by 

nkT 
rJ=­

ll 



SIMPLE APPLICATIONS OF 

MAGNETOHYDRODYNAMICS 

The basic equations governing the behavior of a conducting fluid have 
been presented and discussed in Chapter 9. For convenience, we reproduce 
here the simplified form of the magnetohydrodynamic (MHD) equations. 
They include the equation of continuity for the whole conducting fluid 

8pm ( ) Bt + \7 · Pm U = 0 

the equation of motion in the form 

Du 
P -=JxB-\7p 

m Dt 

and the adiabatic equation of conservation of energy 

\7p = Vs2\7 Pm 

(1.1) 

(1.2) 

(1.3) 

where Pm denotes the total mass density, u is the average fluid velocity, J 
is the electric current density, B is the magnetic flux density, pis the total 
scalar pressure, and Vs is the adiabatic sound speed, which is equal to 
(rp/ Pm) 112 , where 1 is the ratio of the specific heats at constant pressure 
and at constant volume. To these equations we must add Maxwell curl 
equations, in the following reduced form, 

\7 x B = f..toJ (1.4) 
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8B 
\7 X E= -­at 

and the generalized Ohm's law, in the simplified form, 

J = ao(E+u x B) 

(1.5) 

(1.6) 

where a0 denotes the electric conductivity of the fluid, and E is the electric 
field. 

In this closed set of simplified MHD equations it has been assumed 
that macroscopic electrical neutrality is maintained to a high degree of 
approximation, so that the electric charge density p vanishes. As discussed 
in section 6 of Chapter 9, the term 8Ej8t, in Maxwell equation (1.4), 
can be neglected for the case of very low frequency phenomena and highly 
conducting fluids. As far as the generalized Ohm's law (1.6) is concerned, it 
is assumed that the time derivatives and pressure gradients are negligible, 
even though these terms are retained in some of the other MHD equations. 
Also, viscosity and thermal conductivity are neglected and the pressure 
dyad reduces to a scalar pressure. 

The advantage of this approximate set of equations is that they reduce 
substantially the mathematical complexity of the more general equations 
for a conducting fluid and therefore facilitate the understanding of the 
physical processes that take place in highly conducting fluids at very low 
frequencies. 

1.1 Parker Modified Momentum Equation 

In the presence of a strong magnetic field the pressure tensor of an 
inviscid conducting fluid is anisotropic. When the cyclotron frequency is 
much larger than the collision frequency, a charged particle gyrates many 
times around a magnetic force line during the time between collisions, so 
that there is equipartition between the particle kinetic energies in the two 
independent directions normal to B but not, in general, in the direction 
along B. If we denote by p 1_ and p 11 the scalar pressures in the plane normal 
to B and along B, respectively, and consider a local coordinate system in 
which the third axis is in the direction of B, we can write the pressure 
tensor of an inviscid fluid as 

(1.7) 
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Note that the parallel and perpendicular indexes used here do not refer 
to vector components but only indicate the part of the scalar pressures 
associated with the kinetic energy densities of the particle motions along 
B and in the plane perpendicular to B, respectively. 

When the magnetic field is not constant, the orientation of the axes of 
the local coordinate system changes from point to point and this change in 
direction must be taken into account when evaluating the divergence of the 
pressure tensor. We can express P, in (1.7), as the sum of a hydrostatic 
scalar pressure p j_ and another tensor referred to the local coordinate 
system, as 

P = pj_1 + (p 11 - pj_)BB (1.8) 

where 1 is the unit dyad 

(1.9) 

and BB = BB/ B2 is the dyad formed from the unit vector B, 

(1.10) 

The momentum equation, in the form (1.2), must be modified to 
include the anisotropy of the pressure dyad. Thus, we write 

Du 
P -=JxB-\7·P 

m Dt 

To evaluate \7 · P, with Pas given by (1.8), we note that 

and using the following identity, 

(1.11) 

(1.12) 

(1.13) 
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where the second term in the right-hand side vanishes in virtue of V' · B = 0, 
we obtain 

(1.14) 

Furthermore, using Maxwell equation (1.4) we can write the magnetic 
force per unit volume as 

1 
J X B = - (V' X B) X B 

flo 
(1.15) 

The term in the right-hand side can be expanded, using a vector identity, 
with the result 

J x B = _!_[(B · V')B- V'(1-B2)) 
Jlo 2 

(1.16) 

Substituting expressions (1.14) and (1.16) into the momentum equation 
(1.11), we obtain, finally, 

Du_ ~( B 2
) (B ~)[B (p 11 -p_L)B] 

Pm_D_t -- v Pl.+ -2/l-o + . v -flo - ...:........:.:_B-=-2---'-- (1.17) 

This equation differs from the usual momentum equation (1.2), for a 
highly conducting in viscid fluid, only through the term (p11 - p 1.) / B 2 . It 
was derived, although in a quite different way, by E.N. Parker in 1957 and, 
for this reason, it is usually referred to as the Parker modified momentum 
equation. 

1.2 The Double Adiabatic Equations of 
Chew, Goldberger, and Low (CGL) 

To complement the momentum equation (1.17), we need equations 
for the time rate of change of p 11 and p 1.. These equations will take the 
place of the familiar adiabatic energy equation (1.3), which applies for 
the isotropic case. From the general energy equation (9.4.14) (Eq. 4.14 
in Chapter 9) for a conducting fluid, if we do not take into account heat 
conduction and joule heating, we have 

D (3p) (3p) Dt 2 + 2 (V' . u) + (P . V') . u = 0 (1.18) 

with the pressure dyad Pas given by (1.8) and where the scalar pressure 
pis one-third the trace of P, that is, 

(1.19) 
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Note that 3p/2 represents the total thermal energy density. By direct 
expansion, using (1.8) for P, we find that 

(P · \7) · u = [pj_ \7 + (p 11 - pj_)(BB · \7)]· u (1.20) 

and taking this expression, together with (1.19), into (1.18), we obtain 

D ~~ 
Dt (2pj_ + P11) + (Pii + 4pj_)\7 · u + 2(pll - pj_)(BB · \7) · u = 0 (1.21) 

A strong magnetic field constrains the charged particle motion only in 
the direction transverse to B, but the particles are still free to move large 
distances along B. Thus, it is reasonable to suppose that the contribution 
to the total thermal energy, arising from the particle motion parallel to B, 
also satisfies an energy conservation equation similar to (1.18). This leads 
to the following equation for the part of the total thermal energy due to 
the random particle motions along B: 

Dp11 ~~ 
Dt + p 11 \7 · u + 2p 11 (BB · \7) · u = 0 (1.22) 

Therefore, decoupling the parallel and perpendicular motions, the equa­
tion for p j_ becomes 

(1.23) 

Equations (1.21) and (1.22) can also be obtained from an energy 
equation of higher order than (9.4.14), involving the total time rate of 
change of the pressure dyad P. When this equation, involving DP / Dt, is 
contracted with the unit dyad 1 we obtain (1.21), and when contracted 
with the dyad BB results in (1.22). 

Equations (1.22) and (1.23) enable p 11 and pj_ to be calculated. They 
can be written in a more succinct form, as follows. First we note that 
using Maxwell curl equation 

aB 
\7 X E = -­at 

and considering a perfectly conducting fluid for which 

E+uxB=O 

we have aB at = \7 x (u x B) 

(1.24) 

(1.25) 

(1.26) 
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Expanding the right-hand side using the vector identity \7 x (u x B) = 

(B · V')u- B(\7 · u)- (u · V')B + u(\7 ·B), and noting that \7 · B = 0, we 
obtain 

DB 
Dt = (B · V')u- B(\7 · u) 

If we now take the scalar product of (1.27) with B/ B2 , we obtain 

1 D(B2 ) "' "' 
- = B · (B · V')u - \7 · u 
2B2 Dt 

which may be written as 

1 DB "'"' 
-- = (BB · \7) · u- V' · u 
B Dt 

Furthermore, from the equation of continuity (1.1), we get 

1 Dpm 
V'·u=---­

Pm Dt 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

and using (1.29) and (1.30), to eliminate (i3:8 · \7) · u and \7 · u in (1.22) 
and (1.23), we obtain 

_!_ Dp 11 _ ~ Dpm + _3._ DB = O 
Pu Dt Pm Dt B Dt 

_.!_ Dp_1_ _ _l_ Dpm _ _!_DB = O 
p _1_ Dt Pm Dt B Dt 

These two equations can be written in compact form as 

!!__ (PuB2
) = O 

Dt p~ 

!!__ ( _f:l:_) - 0 
Dt PmB 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

They are known as the double adiabatic equations for a conducting fluid 
in a strong magnetic field and are due to G.F. Chew, M.L. Goldberger, 
and F.E. Low (1956). They are also known as the CGL equations. They 
take the place of the adiabatic energy equation for isotropic plasmas: 

(1.35) 
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1.3 Special Cases of the Double Adiabatic Equations 

As a simple application of the double adiabatic equations, consider 
initially the case in which the only variations are parallel to the mag­
netic field as, for example, in sound waves traveling along the field lines. 
This situation is usually referred to as linear compression parallel to the 
magnetic field or one-dimensional compression. The magnetic field is as­
sumed to be straight and uniform, and directed along the z axis. Thus, 
Bx =By= 0 and B = Bzz, as well as 8j8x = 8j8y = 0. In this case, we 
find 

~~ 8uz 
(BB · \7) · u = - = \7 · u 

8z 
(1.36) 

and from (1.29), we see that B stays constant. Equations (1.31) and 
(1.32), with DB/ Dt = 0, then yield 

!!__(ElL) = 0 
Dt p~ 

(1.37) 

!!_(Pl..)=o 
Dt Pm 

(1.38) 

If we compare these results with (1.35), we find that "f may be assigned 
the value 3 along the field lines (one-dimensional compression), and the 
value 1 across the field lines. 

It is useful to introduce a parallel and a perpendicular temperature 
through the relations 

p 11 = nkT11 

Pl..= nkT1.. 

(1.39) 

(1.40) 

Therefore, for the case of one-dimensional compression parallel to B, we 
have 

T11 IX n2 

T 1.. = constant 

(1.41) 

(1.42) 

which shows that this type of compression is isothermal with respect to the 
perpendicular temperature T 1... The changes in p 1.., therefore, are entirely 
due to the changes in the number density n, whereas those of p 11 are due 
to changes in both n and 7! 1 • 

Another special case of interest is the two-dimensional compression 
perpendicular to the magnetic field, in which all motion is transverse to the 
field lines. This situation can be pictured as the motion of magnetic flux 
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tubes, identified by the particles contained in them. Assuming straight 
field lines along the z axis (Bx =By = 0, B = Bzz) and variations only 
in the transverse direction (8/oz = 0), we find 

"""" ( a) (BB · V') · u = z oz · u = 0 (1.43) 

and (1.22) and (1.23) yield 

(1.44) 

Dp1_ _ 2pj_ Dpm _ O 
Dt Pm Dt 

(1.45) 

Therefore, in the case of cylindrical compression perpendicular to B the 
adiabatic equations reduce to 

!}__ (EL) = o 
Dt Pm 

(1.46) 

!}__ (pj_) = 0 
Dt P?'n 

(1.47) 

Comparing with (1.35), we see that"( takes the value 1 parallel to the mag­
netic field and 2 transverse to it. From (1.39) and (1.40) we find that for 
a two-dimensional (cylindrically symmetric) compression perpendicular to 
B, 

T11 = constant 

T1_ ex: n 

(1.48) 

(1.49) 

so that this type of compression is isothermal with respect to the parallel 
temperature. The changes in p 11 are due entirely to variations in the num­
ber density n, whereas those of p 1_ result from variations in n as well as 
in T1_. 

In the case of three-dimensional spherically symmetric compression, 
we have 

p1_ = P11 = P (1.50) 

and (1.21) reduces to 

3 Dp _ 5p D Pm = O 
Dt Pm Dt 

(1.51) 
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Thus, we obtain 

gt ( ~/3) = 0 
Pm 

(1.52) 

which is the familiar adiabatic equation (1.35) of gas dynamics, with 
"! = 5/3. In any of the cases of adiabatic compression, the fluid has 
to be subjected to a certain system of forces in order to achieve the de­
sired type of adiabatic compression. The required system of forces has 
to be determined from the momentum equation in conjunction with the 
conditions appropriate to the particular problem under analysis. 

1.4 Energy Integral 

As a final consideration in this section, we will show that the system 
of hydromagnetic equations (1.1) to (1.6) possesses an energy integral. 
Using Maxwell equation (1.4), to substitute J in the equation of motion 
(1.2), yields 

Du 1 
Pm- = - (\7 X B) X B - \7 p 

Dt J.1o 
(1.53) 

Now we take the dot product of this equation with u, 

Du 1 
PmU ·- = -u · (\7 X B) X B- u · \7p 

Dt J.1o 
(1.54) 

The term on the left-hand side can be expanded as 

Du [au J 1 [au2 2] Pm u · Dt = Pm u · at + ( u · \7)u = 2 Pm at + ( u · \7)u 

~ ( lp u2) _ 1u2 apm + lp (u . \7)u2 
at2m 2 at 2m 

(1.55) 

Using the continuity equation (1.1) to eliminate apm/Ot, yields 

Du a 1 2 1 2 1 2 
PmU · Dt = at (2PmU ) + 2u \7 · (pmu) + 2Pm(u · \7)u 

:t (~pmu2 ) + \7 · (~pmu2 u) (1.56) 

In order to transform the term ( u · \7)p, let us write the adiabatic energy 
equation (1.35) as 

(1.57) 
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and use the continuity equation in the form 

Dpm ( ) Dt = -Pm V·u (1.58) 

Combining these two equations, we obtain 

ap 
at+ (u · V)P+!'p(V · u) = 0 (1.59) 

which may also be written as 

ap 
at + (1 -7)(u · V)p + 7V · (pu) = 0 (1.60) 

from which we get 

1 ap I' 
(u · V)p = (!' _ 1) at + (!' _ 1) V · (pu) (1.61) 

Finally, for the u · (V x B) x B term in (1.54), considering a perfectly 
conducting fluid for which E = -u x B, and using a vector identity, we 
can write 

u · (V x B) x B = -(u x B)· (V x B) = E · (V x B) 

B. (V X E)- v. (EX B) 

Using Maxwell equation (1.5) we arrive at 

_!_u · (V x B) x B = -~ ( B 2
)- _!_V ·(Ex B) 

J.lo at 2 J.lo J.lo 

(1.62) 

(1.63) 

Substituting (1.56), (1.61), and (1.63), into (1.54) yields the following 
energy conservation equation: 

a (1 2 P B2) 
at 2PmU + /'- 1 + 2J.lo + 

V · (~PmU2u + - 7 -pu +EX H) = 0 (1.64) 
!'-1 

The first three terms in this equation represent the kinetic energy 
density associated with the macroscopic motion of the fluid, the thermal 
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energy density, and the energy density stored in the magnetic field, respec­
tively, whereas the last three terms denote the flux of macroscopic kinetic 
energy, the flux of thermal energy transported at the macroscopic mean 
velocity u, and the flux of electromagnetic energy (given by the Poynting 
vector E x H), respectively. 

If we integrate (1.64) over the entire fluid-plus-vacuum volume and 
use Gauss's divergence theorem to transform the divergence term into a 
surface integral, we find that the first two terms in the surface integral 
vanish, since Pm, p, and u are zero outside the fluid. The remaining 
surface term is the surface integral of the Poynting vector, which, for an 
isolated system, also vanishes. Therefore, we obtain the following energy 
conservation integral: 

{ (~Pmu2 + _P_ + 2B
2

) d3r =constant 
lv 1- 1 Mo 

(1.65) 

The first integral represents the macroscopic kinetic energy of the fluid, 
the second term is the thermal free energy, and the last term represents 
the total energy of the magnetic field. It is usually useful to separate 
( 1. 65) into a kinetic energy part 

K = i ~PmU2 d3r (1.66) 

and a potential energy part 

1 ( P B 2 ) 3 U= --+- dr 
v ~-1 2p,o 

(1.67) 

with the energy conservation law K + U = constant. In these equations 
the integration extends over the entire fluid-plus-vacuum volume. 

The behavior of the magnetic field is of great importance in many 
MHD problems. To obtain a simple equation for the variations of B, let 
us start by taking the curl of the generalized Ohm's law (1.6), 

\7 X J = 0' 0 [\7 X E + \7 X ( u X B) l (2.1) 

Replacing J and \7 x E, using Maxwell curl equations (1.4) and (1.5), 

\7 x (\7 x B)= p,ocro[- ~~ + \7 x (u x B)] (2.2) 
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Making use of the following identity (with V' · B = 0), 

equation (2.2) reduces to 

where 7Jm is called the magnetic viscosity, 

1 
'fJm = -­

f.-£00'0 

(2.3) 

(2.4) 

(2.5) 

The first term in the right-hand side of (2.4) is called the flow term, 
while the second term is called the diffusion term. To compare the relative 
magnitude of these two terms, we can use dimensional analysis and take, 
approximately, 

uB 
IV x (u x B)l ~ L 

2 B 
7JmiY' Bl ~ 'f/m £2 

(2.6) 

(2.7) 

where L denotes some characteristic length for variation of the parameters. 
The ratio of the flow term to the diffusion term is called the magnetic 
Reynolds number and is given by 

R _ uL 
m-

'fJm 
(2.8) 

In most MHD problems one or the other of these two terms is of predom­
inant importance and Rm is either very large or very small compared to 
unity. 

It is instructive to compare the magnetic viscosity ('fJm) and the mag­
netic Reynolds number (Rm) with the ordinary hydrodynamic viscosity 
( 'f]k) and hydrodynamic Reynolds number ( R). For this purpose, consider 
the Navier-Stokes equation of hydrodynamics, 

Du 1 2 1 
- = f- -V'p + TJk[V' u + -V'(V' · u)] 
Dt Pm 3 

(2.9) 

where f denotes the average force per unit mass of the fluid, and 'f/k is 
the kinematic viscosity (viscosity divided by density). Comparing this 
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equation with (2.4) we see that the role played by T/m, in the rate of 
change of B, is completely analogous to the role played by T/k, in the rate 
of change of the mean fluid velocity u. The ordinary Reynolds number 
is defined as the ratio of the inertia term ( u · 'V)u to the viscosity term 
T/k 'V2u. Using dimensional analysis, we have 

u2 
l(u · 'V)ul ~ L (2.10) 

(2.11) 

which gives the following expression (completely analogous to Rm) for the 
ordinary Reynolds number: 

When Rm « 1, that is when the diffusion term dominates, 
becomes approximately, 

8B- 'V2B at - 'lm (Rm « 1) 

(2.12) 

(2.4) 

(3.1) 

This is the equation of diffusion of a magnetic field in a stationary con­
ductor, resulting in the decay of the magnetic field. It is analogous to 
the particle diffusion equation studied in Chapter 10. The characteristic 
decay time of the magnetic field can be obtained by dimensional analysis, 
taking 

(3.2) 

(3.3) 

where Tn represents a characteristic time for variation of the plasma pa­
rameters. Thus, according to (3.1), the magnetic field diffuses away with 
a characteristic decay time of the order of 

L2 
rn = - = L2 J-loao (3.4) 

'lm 
For ordinary conductors the time of decay is very small. If we con­

sider, for example, a copper sphere of radius 1 m, we find that TD is 
less than 10 seconds. For a celestial body, however, because of the large 
dimensions, the time of decay can be very large. For the Earth's core, 
considering it to be molten iron, the time of free decay is approximately 
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104 years, while for the general magnetic field of the sun it is found to be 
of the order of 1010 years. 

A completely different type of behavior appears when Rm » 1. In 
this case, the flow term dominates over the diffusion term and (2.4) reduces 
to 

8B 8t = \7 x (u x B) (Rm » 1) (4.1) 

This equation implies that in a highly conducting fluid the magnetic field 
lines move along exactly with the fluid, rather than simply diffusing out. 
Alfven has expressed this type of behavior by saying that the magnetic 
field lines are frozen in the conducting fluid. In effect, the fluid can flow 
freely along the magnetic field lines, but any motion of the conducting 
fluid, perpendicular to the field lines, carries them with the fluid. 

In order to show this implication of ( 4.1), it is convenient to consider 
initially the concept of magnetic tubes of force that are used to visually 
describe the direction and magnitude of B at various points in space. One 
can think of the space pervaded by a magnetic field as divided into a large 
number of elementary magnetic tubes of force, all of them enclosing the 
same magnetic flux D. <I> B· If D.S is the local cross-sectional area of an 
elementary magnetic tube of force (see Fig. 1), then the magnitude of B, 
at the local point P, is equal to D. <I> B / D.S. According to this definition, the 
magnitude of B is everywhere inversely proportional to the cross-sectional 
area of the elementary tube of force. 

Let us now consider a closed line whose points move with velocity u 
in a space pervaded by a magnetic field. Assume, for the moment, that u 
is an arbitrary function of position and time (not necessarily equal to the 
fluid velocity), with the result that the closed curve may change in shape, 
as well as undergo translational and rotational motion. Let 0 1 denote this 
closed line at timet, bounding the open surface S(t) = 8 1 . At a time Dot 
later, let C2 and S(t +Dot) = 82 denote the corresponding closed line and 
open surface (refer to Fig. 2). The flux of the magnetic field through an 
open surface S, at timet, is given by 

<I> B (t) = is B(r, t) · dS (4.2) 
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/ 

Fig. 1 Elementary magnetic tube of force. The magnitude of 
B at the point P is equal to ,6. ip B / ,6.S. 

The rate of change of the magnetic flux through an open surface S 
can be written as 

! [fs B ( r, t) · dS] = 

lim : [ f B(r, t + ,6.t) · dS- f B(r, t) · dS] (4.3) 
~t-+0 ut } 5 2 } 5 1 

If we expand B(r, t + ,6.t) in a Taylor series about B(r, t) , we obtain 

8B(r t) 
B(r, t + ,6.t) = B(r, t) + at' ,6.t + (4.4) 

so that, in the limit as ,6.t -t 0, ( 4.3) reduces to 

!!_ [ f B ( r , t) · ds] = lim { f oB ( r ' t) . dS + 
dt J s ~t-+o J s2 at 

~ [ f B ( r, t) . dS - f B ( r , t) · dS] } 
t }52 J s1 

(4.5) 

To evaluate the term within brackets in the right-hand side of this equa­
tion, we can use the fact that for any closed surface at time t we have, 
from Gauss's divergence theorem, 

(4.6) 
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MAGNETIC FLUX 

t) X d/ 

Fig. 2 A closed line bounding an open surface moving in 
a magnetic B.eld with velocity u(r,t), viewed at the instants of 
time t and t + !:l.t. The shaded area is the part of the cylindrical 
surface described by an element df of the contour curve. 

since \l · B = 0. Thus, if we apply this result to the closed surface 
consisting of 8 1, 82 , and the sides of the cylindrical surface of length u!:l.t 
shown in Fig. 2, we obtain 

- { B(r, t) · dS + { B(r, t) · dS- j B(r, t) · [(u!:l.t) x dlj = 0 (4.7) 
lsl ls2 Jrc1 

where the minus sign in the first term on the left-hand side is due to 
the fact that the outwardly drawn unit normal to the surface S1 is in a 
direction opposite to that of the surface S2 , and - ( uf:l.t) X dl is the element 
of area (pointing outwards) covered by the vector element dl of the closed 
line in the t ime interval !:l.t. If ( 4. 7) is substituted into ( 4.5) and the limit 
!:l.t---+ 0 is evaluated, noting that in this limit S2 = S1 = S(t), we obtain 

! [fs B(r, t) · dS] =is oB~:' t) · dS + i B(r, t) · (u x dl) (4.8) 
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The last term in the right-hand side of this equation can be transformed 
using the vector identity 

B(r, t) · (u x dl) = -[u x B(r, t)] · dl (4.9) 

and from Stokes's theorem we can write 

fc[u x B(r, t)] · dl =Is \7 x [u x B(r, t)] · dS (4.10) 

Thus, using this expression in (4.8), we obtain the general result 

! [fs B(r, t) · dS] =Is { BB~:, t) - \7 x [u x B(r, t)]} · dS (4.11) 

Suppose now that the space is filled with a highly conducting fluid so 
that (4.1), which is valid for Rm » 1, applies. If the velocity u in (4.11) 
is taken as the fluid velocity, we conclude, from (4.1) and (4.11), that 

:t [fs B(r, t) · dS] = 0 (4.12) 

which is a mathematical statement of the fact that the magnetic flux 
linked by a closed line (bounding the open surface S) moving with the 
fluid velocity u is constant. Note that this conclusion requires that only 
the velocity component of the closed line perpendicular to B be the same 
as the fluid velocity component perpendicular to B, since the velocity 
component parallel to B gives no contribution to the term u x B. Thus, 
( 4.1) implies that the lines of magnetic flux are frozen into the highly 
conducting fluid and are carried by any motion of the fluid perpendicular 
to the field lines. There is no restriction, however, on the motion along 
the field lines so that the conducting fluid can flow freely in the direction 
parallel to B. 

This result is expected on physical grounds since, as the conducting 
fluid moves across the magnetic field, it induces an electric field that is 
proportional to the fluid velocity component perpendicular to B. However, 
if the fluid conductivity is infinite, this perpendicular velocity component 
must be infinitesimally small if the flow of electric current is to remain 
finite. 

In a fluid of finite conductivity the result (4.12) is no longer true. 
Using (2.4) in the general result (4.11), yields 

d<I>n = _1_ { V'2B. dS 
dt J-touo } 8 

(4.13) 

where the right-hand side of this equation gives rise to a slipping of mag­
netic flux through a closed material line. 
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The concept of magnetic pressure is very useful in the study of high­
temperature plasma confinement. Under steady-state conditions the MHD 
equations reduce to the following closed set of magnetohydrostatic equa­
tions: 

\i'p = J X B 

V' x B = J.LoJ 

V'·B=O 

(5.1) 

(5.2) 

(5.3) 

If we eliminate J from these equations, we obtain the following equivalent 
set of magnetohydrostatic equations involving only p and B: 

1 
\i'p = -(V' X B) X B 

J.lo 
(5.4) 

V'·B=O (5.5) 

The term in the right-hand side of (5.4) can be written as the diver­
gence of the magnetic part of the electromagnetic stress dyad. Using the 
vector identity 

(V' x B) x B = (B · V')B- ~V'(B2 ) = V' · (BB)- V' · (~1B2 ) (5.6) 

where 1 is the unit dyad, and using the following definition of the magnetic 
stress dyad, 

(5.7) 

which written out in matrix form (in a Cartesian coordinate system) is 

(5.8) 

we can write (5.4) as 
\i'p = \7. y(m) (5.9) 

or, equivalently, 
(5.10) 
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B 

Fig. 3 Local magnetic coordinate system with the z axis 
pointing along the local direction of B. 

The stress is considered to be positive if it is tensile, and negative if it is 
compressive. Thus, we see that - y(m) may be defined as the magnetic 
pressure dyad, playing the same role as the fluid pressure dyad. Note that 
(5.10) is equivalent to equations (5.1) and (5.2). 

It is instructive to consider a local magnetic coordinate system in 
which the third axis points along the local direction of B, as shown in 
Fig. 3. For this local coordinate system, the off-diagonal elements of the 
magnetic stress dyad vanish, since B = Bz, so that 

(5.11) 

Therefore, the principal stresses are equivalent to a tension B2 /2t-to along 
the magnetic field lines, and a pressure B2 /2t-to perpendicular to the mag­
netic field lines, similar to a mutual repulsion of the field lines. Alterna­
tively, we can express (5.11) in the form 

(
0 0 
0 0 
0 0 _)/21'o) 

(5.12) 
so that the stress caused by the magnetic flux can also be thought of as 
an isotropic magnetic pressure B2 /2t-to and a tension B2 / t-to along the 
magnetic flux lines as if they were elastic cords (see Fig. 4). This lat­
ter representation is very useful, since the isotropic pressure B 2 /2t-to can 
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Fig. 4 The stress caused by the magnetic flux can be decom­
posed into an isotropic magnetic pressure B 2 /2!-Lo and a magnetic 
tension B 2 /f-Lo along the field lines. 

always be superposed on the fluid pressure, resulting in a decrease in the 
pressure exerted by the fluid. 

6. ISOBARIC~SU""'R'"""F ...... A.....,C"""E...,.._ _____________ ......:....;;.. 

It is convenient to consider in the plasma hypothetical surfaces over 
which the kinetic pressure is constant, called isobaric surfaces. At any 
point, the vector '\lp is normal to the isobaric surface passing through 
the point considered. From (5.1) we see that '\lp is normal to the plane 
containing J and B, that is 

J. '\lp = 0 

B · '\lp = 0 

(6.1) 

(6.2) 

Therefore, both J and B lie on isobaric surfaces. To illustrate this point, 
consider the particular case in which the isobaric surfaces are closed con­
centric cylindrical surfaces, with the kinetic pressure increasing in the 
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direction towards the central axis of the concentric cylindrical surfaces. 
Thus, 'lp is along a radial line directed towards the axis. From (6.1) and 
(6.2) we see that neither B nor J passes through the isobaric surfaces 
and therefore it follows that the cylindrical isobaric surfaces are formed 
by a network of magnetic field lines and electric currents. Further, in 
view of (5.1), the magnetic field lines and electric currents, lying on the 
isobaric surfaces, must cross each other in such a way that J x B is equal 
to 'lp. This situation is shown in Fig. 5. The maximum kinetic pressure 
occurs along the central axis, which also coincides with a magnetic field 
line. For this reason, this axis is usually called the magnetic axis of the 
magnetoplasma configuration. 

The subject of plasma confinement by magnetic fields is of consider­
able interest in the theory of controlled thermonuclear fusion. Consider, 
for simplicity, the special case in which the magnetic field is along the z 
axis, that is B = Bz, so that (5.10) simplifies to 

( 
(p + B2 /2~-to) 

'l· 0 
0 

from which we obtain 

0 
(p + B2 /2~-to) 

0 

a ( B 2
) ax p + 2p,o = 0 

a ( B 2
) ay p + 2 /-tO = O 

a ( B 2
) az p - 2p,o = 0 

Also, from '7 · B = 0, we have 

aB =O 
az 

0 (7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

since, in the local coordinate system, B is along the z axis. This last 
equation, together with (7.4), implies that both p and B do not vary in 
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Vp 

ISOBARIC 
SURFACES 

Fig. 5 Isobaric concentric cylindrical surfaces, with \1 p along 
a radial directed towards the magnetic axis. The lines of B and 
J lie on the isobaric surfaces and cross each other in a such a 
manner that J x B is equal to \lp. 

the z direction. The solutions of (7.2) and (7.3), combined with this result, 
g1ve 

(p + B 2 
) = constant 

2J.Lo 
(7.6) 

Therefore, in the presence of an externally applied magnetic field, if the 
plasma is bounded, the plasma kinetic pressure decreases from the axis 
radially outwards, whereas the magnetic pressure increases in the same 
direction in such a manner that their sum remains constant at each point, 
according to (7.6). The plasma kinetic pressure can be forced to vanish 
on an outer surface if the applied magnetic field is sufficiently strong, with 
the result that the plasma is confined within this outer surface by the 
magnetic field. 

Let Bo be the value of the magnetic induction at the plasma bound­
ary. Since the kinetic pressure at the plasma boundary is zero (ideally), we 
can evaluate the constant in (7.6) from the pressure equilibrium condition 
at t he plasma boundary. Therefore, 

(7.7) 
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The maximum fluid pressure that can be confined for a given applied field 
Bo is, consequently, 

B2 
0 

Pmax = 2110 (7.8) 

A device that can be used to confine a magnetoplasma by straight 
parallel field lines is shown in Fig. 6, called a theta (B) pinch, since the 
effect responsible for the confinement is due to electric currents flowing in 
the plasma in the azimuthal (B) direction. The plasma is initially confined 
inside a hollow cylindrical metal tube, whose side is split in the longitudi­
nal direction in such a way as to form a capacitor. When a high voltage 
is discharged through the capacitor, the large azimuthal current produced 
in the metal tube generates a magnetic field in the longitudinal direction 
inside the plasma. The electric current induced in the plasma is also in 
the azimuthal direction, but in a sense opposite to that on the metal tube. 
The resulting J x B force acting on the plasma pushes it inwards, towards 
the axis, until a balance is reached between the kinetic pressure due to 
the random particle thermal motions and the magnetic pressure that acts 
to constrict or pinch the plasma. 

A parameter f3, defined as the ratio of the kinetic pressure at a point 
inside the plasma, to the confining magnetic pressure at the plasma bound­
ary, is usually introduced as a measure of the relative magnitudes of the 
kinetic and magnetic pressures. It is given by 

f3- p 
- B5/2J.1o 

(7.9) 

Note that f3 ranges between 0 and 1, since the field inside the plasma is 
less than B0 . From (7.7) we can also express the parameter f3 as 

(7.10) 

Two special cases of plasma confinement schemes are the so-called low-{3 
and high-{3 devices. In the low-/3 devices, the kinetic pressure is small in 
comparison to the magnetic pressure at the plasma boundary, whereas in 
the high-/3 devices they are of an equal order of magnitude (/3 ~ 1). 

An important property of a plasma is its diamagnetic character. 
Equation (7.7) implies that the magnetic field inside the plasma is less 
than its value at the plasma boundary. As the kinetic pressure increases 
inside the plasma, the magnetic field decreases. Under the action of the 
externally applied B field, the particle motions give rise to internal electric 



322 FUNDAMENTALS OF PLASMA PHYSICS 

METAL TUBE 

PLASMA 

• • • • • 

••••• 

ENERGY 
STORAGE 

JCAPACITOR 

SWITCH 

B 

Fig. 6 Magnetoplasma confined by straight parallel field lines 
in a theta-pinch device. 

currents that induce a magnetic field opposite to the externally applied 
field. Consequently, the resultant magnetic field inside the plasma is re­
duced to a value less than that at the plasma boundary. The electric 
current, induced in the plasma, depends on the number density of t he 
charged particles and on their velocity. Therefore, as the plasma kinetic 
pressure increases, the induced electric current and the induced magnetic 
field also increase, thus enhancing the diamagnetic effect. 

PROBLEMS 

12.1 Consider the energy equation involving the time rate of change of 
the total pressure dyad P, derived in problem 9.6 in Chapter 9. Show that 
when this equation is contracted with the unit dyad 1 results in (1.21) , 
whereas when contracted with the dyad BB yields (1.22). 
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12.2 Derive an energy conservation equation, similar to (1.64), but con­
sidering the Parker modified momentum equation and the CGL energy 
equations, instead of (1.2) and (1.3). 

12.3 Calculate the minimum intensity of the magnetic induction (Bo) 
necessary to confine a plasma at 
(a) an internal pressure of 100 atm; 
(b) a temperature of 10 keV and density of 8 x 1021 m-3 . 

12.4 A plasma is confined by a unidirectional magnetic induction B of 
magnitude 5 weber/m2 . Considering that the plasma temperature is 10 
ke V and f3 = 0.4, calculate the particle number density. If the temperature 
increases to 50 keV, what is the value of the B field necessary to confine 
the plasma, assuming that f3 stays the same? 

12.5 Calculate the diffusion time ( TD) and the magnetic Reynolds number 
(Rm) for a typical MHD generator, with L = 0.1 m, u = 103 m/s, and 
a0 = 100 mho/m. Verify that in this case TD is very short, so that 
inhomogeneities in the magnetic field are smoothed out rapidly. 

12.6 Consider a plasma in the form of a straight circular cylinder with a 
helical magnetic field given by 

B = B9(r)a + Bz(r)z 

Show that the force per unit volume, associated with the inward magnetic 
pressure for this configuration, is 

-v..l(B2
) = -r~[B2 (r)J 

2J.Lo ar 2J.Lo 

and the force per unit volume, associated with the magnetic tension due 
to the curvature of the magnetic field lines, is 

( B2)(B. 'V)B = -rB~(r) 
J.Lo J.Lor 

12.7 Use (4.1), foraperfectlyconductingfluid, and the nonlinear equation 
of continuity (1.1), to show that the change of B with time in a fluid 
element is related to changes of density according to 

D (B) 1 -- =-(B·'V)u 
Dt Pm Pm 
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Use this relation to establish that, in a perfectly conducting fluid, the fluid 
elements that lie initially on a magnetic flux line continue to lie on a flux 
line. 

12.8 The boundary of the Earth's magnetosphere, in the direction of the 
Earth-sun line, occurs at a distance where the kinetic pressure of the solar 
wind particles is equal to the (modified) Earth's magnetic field pressure. 
Show that the distance of the magnetopause from the center of the Earth, 
along the Earth-sun line, is given approximately by 

where RE is the Earth's radius, Pm is the mass density of the solar wind, 
U 8 is its undisturbed speed, and Bo is the surface value of the undisturbed 
Earth's magnetic field. 

12.9 Consider a cylindrically symmetric plasma column (8j8z = 0, 
8/ [)() = 0) under equilibrium conditions, confined by a magnetic field. 
Verify that in cylindrical coordinates the radial component of (5.1) be-
comes 

dp(r) 
~ = Je(r) Bz(r)- Jz(r) Be(r) 

Using Maxwell equation (5.2), show that 

l 1 dBz (} = ----
P,o dr 

]z = _1_ d(r Be) 
p,or dr 

From these results, obtain the following basic equation for the equilibrium 
of a plasma column with cylindrical symmetry 

Give a physical interpretion for the various terms in this equation. 



THE PINCH EFFECT 

In view of the importance of plasma confinement by a magnetic field 
in controlled thermonuclear research, as well as in other applications, we 
present in this chapter a detailed treatment of plasma confinement for the 
special case in which the confinement is produced by an azimuthal (B) 
self-magnetic field, due to an axial current in the plasma generated by an 
appropriately applied electric field. 

Consider an infinite cylindrical column of conducting fluid with an 
axial current density J = lz(r) z and a resulting azimuthal magnetic 
induction B = Be(r) e, as depicted in Fig. 1. The J x B force, acting on 
the plasma, forces the column to contract radially. This radial constriction 
of the plasma column is known as the pinch effect. In this case the isobaric 
surfaces, for which p = constant, are concentric cylinders. 

As the plasma is compressed radially, the plasma number density 
and the temperature increase. The plasma kinetic pressure counteracts 
to hinder the constriction of the plasma column, whereas the magnetic 
force acts to confine the plasma. When these counteracting forces are 
balanced, a steady-state condition results in which the plasma is mainly 
confined within a certain radius R, which remains constant in time. This 
situation is commonly referred to as the equilibrium pinch. When the self­
magnetic pressure exceeds the plasma kinetic pressure, the column radius 
changes with time, resulting in a situation known as the dynamic pinch. 
In what follows we investigate first the equilibrium pinch and afterwards 
the dynamic pinch. 
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B 

Fig. 1 Pinch configuration in which a magnetoplasma is con­
fined by azimuthal magnetic fields generated by axial currents 
flowing along the plasma column. 

For simplicity, the current density, the magnetic field, and the plasma 
kinetic pressure are assumed to depend only on the distance from the cylin­
der axis. For steady-state conditions, none of the variables changes with 
time. The various parameters of the equilibrium pinch are schematically 
shown in Fig. 2. Since the system is cylindrically symmetric, only the 
radial component of (12.5.1) (Eq. 5.1 in Chapter 12) must be considered 
and we have 

dp(r) = -Jz(r) Bo(r) 
dr 

(2.1) 

Inside a cylinder of general radius r, the total enclosed current I z ( r) is 

(2.2) 

Note that the variable r inside the integrand is a dummy variable. From 
(2.2) we obtain 

di z( r) _ 2 J ( ) 
dr - n-r z r (2.3) 

Ampere's law in integral form relates Bo(r) to the total enclosed current 
giving for the magnetic induction 

(2.4) 
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Fig. 2 Schematic diagram illustrating the various parame­
ters relevant to the study of the equilibrium longitudinal pinch 
configuration. 
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A number of results can be obtained even without specifying the 
precise form of Jz(r). If the conducting fluid lies almost entirely inside 
r = R, then the magnetic induction Be(r) outside the plasma is 

where 

Be(r) = f.Lolo 
21rr 

(r ~ R) 

Io =foR J, (r) 2,-r dr = I,(R) 

(2.5) 

(2.6) 

which is the total current flowing inside the cylindrical plasma column. 
The substitution of Be(r) and Jz(r), from (2.4) and (2.3) , respectively, 
into (2.1), gives 

(2.7) 
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which can be written as 

(2.8) 

If we now integrate this equation from r = 0 to r = R, and simplify the 
left-hand side by an integration by parts, we obtain 

where ! 0 = Iz(R) is the total current flowing through the entire cross 
section of the plasma column and, obviously, Iz(O) = 0. Considering the 
plasma column to be confined to the range 0 :S r < R, it follows that p( r) 
is zero for r 2: R and finite for 0 :S r < R, so that the first term in the 
left-hand side of (2.9) vanishes. Therefore, we find that 

87r 1R I6 = - 2nr p(r) dr 
/-10 0 

(2.10) 

If the partial pressures of the electrons and ions are governed by the ideal 
gas law, 

Pe(r) = n(r) k Te 

Pi(r) = n(r) k Ti 

(2.11) 

(2.12) 

assuming that the electron and ion temperatures, Te and Ti, respectively, 
are constants throughout the plasma column, we have 

p(r) = Pe(r) + Pi(r) = n(r) k (Te + Ti) (2.13) 

Therefore, (2.10) becomes 

2 87r ) {R 
10 = J-lo k (Te + Ti Jo 2nr n(r) dr (2.14) 

which can be rewritten as 

(2.15) 

where 

Nc =foR 2nr n(r) dr (2.16) 



13. THE PINCH EFFECT 329 

is the number of particles per unit length of the plasma column. 
Equation (2.15) is known as the Bennett relation. It gives the total 

current that must be discharged through the plasma column in order to 
confine a plasma at a specified temperature and a given number of particles 
(Ng) per unit length. The current required for the confinement of hot 
plasmas is usually very large. As an example, suppose that Ng = 1019 m-1 

and that the plasma temperature is such that (Te + Ti) = 108 K. Since 
f-Lo = 47r X 10-7 H/m and k = 1.38 X 10-23 J /K, it follows that the required 
current 10 is of the order of one million amperes. 

To obtain the radial distribution of p( r) in terms of Be ( r), it is conve­
nient to start from (2.1) and proceed in a different way. First, we note that 
from Maxwell equation \7 x B = p,0J we have, in cylindrical coordinates, 
with only radial dependence, 

1 d 
--d [rBe(r)] = P,olz(r) 
r r 

(2.17) 

from which we get 

lz(r) = __!_ dBe(r) + __!_ Be(r) 
f-Lo dr f-Lo r 

(2.18) 

Substitution of this result for lz(r) into (2.1), yields 

(2.19) 

We now integrate this equation from r = 0 to a general radius r, 

1 1r 1 d 2 2 p(r) = p(O)-- 2 -d [r B8 (r)] dr 
2p,o 0 r r 

(2.20) 

In particular, since for r = R we have p(R) = 0, 

1 1R 1 d 2 2 p(O) = -2 2 -d [r B8 (r)] dr 
P,o 0 r r 

(2.21) 

and substituting this result into (2.20), 

1 1R 1 d 2 2 p(r) = -2 2 -d [r B8 (r)] dr 
P,o r r r 

(2.22) 
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The average pressure p inside the cylinder can be related to the total 
current Io and the column radius R without knowing the detailed radial 
dependence. The average of the kinetic pressure inside the column is 
defined by 

p = "~2 J.R 21lT p(r) dr 

Simplifying this expression by an integration by parts, yields 

p = -~ {R r2 dp(r) dr 
R2 } 0 dr 

(2.23) 

(2.24) 

since the integrated term is zero, because p(R) = 0. Replacing dp(r)/dr, 
using (2.19), we get 

(2.25) 

This result shows that the average kinetic pressure in the equilibrium 
plasma column is balanced by the magnetic pressure at the boundary. 

From (2.2), (2.4), and (2.22) we can deduce the radial distribution for 
Iz(r), Be(r), and p(r) if we know the radial dependence of Jz(r). So far, 
the radial dependence of Jz(r) has not been discussed. In what follows, 
we will consider two simple possibilities, in order to illustrate the use of 
the equations just derived. 

As a simple example consider the case in which the current density 
Jz(r) is constant for r < R. Taking Jz = I0 /'rrR2 in (2.4), we obtain for 
r<R, 

~-tolo 1r ~-tolo Be(r) = -R2 r dr = -R2 r 
1r r 0 27r 

(r < R) (2.26) 

Substituting this result into (2.22) we obtain a parabolic dependence for 
the pressure versus radius, 

(2.27) 

Note that, in this case, the axial pressure p(O) is twice the average pressure 
p given in (2.25). The radial dependence of the various quantities for this 
example is shown in Fig. 3. 

Another radial distribution of Jz(r) that is also of interest in the 
investigation of the equilibrium pinch is the one in which the current den­
sity is confined to a very thin layer on the surface of the column. This 
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f(r) 

0 R r 

Fig. 3 Radial dependence of the azimuthal magnetic induction 
Be ( r) and plasma pressure p( r) in a cylindrical plasma column 
with a constant current density Jz(r ). The radius of the column 
is R. 
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model is appropriate for a highly conducting fluid. In a perfectly con­
ducting plasma, the current cannot penetrate the plasma and exists only 
on the column surface. This surface current density can be conveniently 
represented by a Dirac delta function at r = R. In this case there is no 
magnetic field inside the plasma and Bo(r) exists only for r > R. From 
(2.5) the magnetic induction is given by 

Bo(r) = f-tolo 
27TT 

(r > R) 

where 10 is the total axial current. Therefore, from (2.20) we have 

p(r) =p(O) (0 < r < R) 

(2.28) 

(2.29) 

so that the plasma kinetic pressure is constant inside the cylindrical col­
umn and equal to the average value given in (2.25). The radial dependence 
of the various quantities for this model is sketched in Fig. 4. Thus, for 
a perfectly conducting plasma column, the magnetic induction vanishes 
inside the column and falls off as 1/r outside the column. The plasma 
kinetic pressure is constant inside the column and vanishes outside it. The 
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Fig. 4 Radial dependence of the azimuthal magnetic induction 
Be ( r) and plasma pressure p( r) in a cylindrical plasma column 
with a surface current density Jz(r). The radius of the column 
is R. 

pinch effect, in this special case, can be thought of as due to an abrupt 
buildup of the magnetic pressure B~ /2/-lo in the region external to the 
plasma column. 

3. 

W. H. Bennett, the discoverer of the pinch effect, investigated a spe­
cial model of the equilibrium longitudinal pinch in which the radial dis­
tribution of the various quantities are such that the drift velocity of the 
plasma particles is constant throughout the column cross section. As an 
instructive application of the previous equations for the equilibrium pinch 
configuration, we investigate this particular model in what follows. In 
view of the fact that the ion mass is much larger than the electron mass, 
the drift velocity of the ions is much smaller than that of the electrons and 
therefore can be neglected on a first approximation. Thus, we consider the 
current density to be given by 

J(r) = -e n(r) Ue (3.1) 
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Since the applied electric field is in the z direction, we have J(r) = Jz(r)z 
and Ue = -UezZ, where Uez is positive and constant, independent of r. 
Therefore, 

Jz(r) = e n(r) Uez (3.2) 

Substitution of this equation for Jz(r), and (2.13) for p(r), into the hy­
drostatic equation of motion (2.1), yields 

dn(r) 
k (Te + Ti) ~ = -e n(r) Uez Be(r) (3.3) 

Ifwe multiply this equation by r/[n(r) k(Te+Ti)] and differentiate it with 
respect tor, we obtain 

d [ r dn(r) J e Uez d 
dr n(r) ~ =- k(Te + Ti) dr [r Be(r)] (3.4) 

From (2.17) and (3.2), we have 

d 
dr [r Be(r)] = Jko e Uez r n(r) (3.5) 

and using this result in (3.4), 

d [ r dn(r)] [ f.koe2 u~z J 
dr n(r) ~ + k(Te + Ti) r n(r) = 0 (3.6) 

The solution of this nonlinear differential equation gives the radial depen­
dence of the number density n(r). Bennett obtained the solution of this 
nonlinear equation subjected to the boundary condition that n(r) is sym­
metric about the z axis, where r = 0, and is a smoothly varying function 
of r, so that 

[dn(r)] =O 
dr r=O 

(3.7) 

The solution of (3.6), subjected to the boundary condition (3.7), is known 
as the Bennett distribution and is given by 

no 
n(r) = (1 +no b r2)2 (3.8) 

where n0 = n(O), which is the number density on the axis, and 

(3.9) 
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0 r 

Fig. 5 The Bennett distribution for the particle number density 
n(r) in an equilibrium pinched plasma column. 

which has dimensions of length. This radial dependence of the number 
density is sketched in Fig. 5. From (3.2) and (2.13) we see that the radial 
dependence of Jz(r) and p(r) is the same as that of n(r). It can be used 
to determine Be(r) according to (2.4). 

The Bennett distribution (3.8) shows that particles are present up to 
infinity but, since n(r) falls off very rapidly with increasing values of r, we 
can consider, for all practical purposes, that the plasma is essentially con­
fined symmetrically in a small cylindrical region about the z axis. Using 
(3.8) we obtain the number of particles Nt(R) per unit length contained 
in a cylindrical column of radius R, 

{R {R r 
Nt(R) = Jo n(r) 27rr dr = 27rno Jo (1 +no b r2 )2 dr (3.10) 

Evaluating the integral yields 

(3.11) 

Since particles are present up to infinity, the total number of particles per 
unit length can be obtained from (3.11) by taking the limit as R ---+ oo, 
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which gives 
7T' 

Np_(oo) = b (3.12) 

If we let a denote the fraction of the number of particles per unit length 
that is contained in a cylinder of radius R, that is, 

a= Np_(R) = !!_Np_(R) 
Np_( oo) 7r 

(3.13) 

and use (3.11), we obtain, after some rearrangement, 

(3.14) 

Therefore, if 90% of the plasma particles are confined within the cylindrical 
plasma column of radius R, that is a = 0.9, we must have 

(nob) 112 R = 3 (3.15) 

Thus, even though the particles extend up to infinity, the major portion 
of them lies in a small neighborhood around the z axis. Note that, since 
(n0 b) 112 has dimensions of an inverse length, we can think of (nob) 112 R 
as a normalized radius of the cylindrical plasma column. If we assume 
arbitrarily that a plasma is confined within a cylindrical surface of radius 
R if 90% of the particles are within this cylindrical column, then this 
radius must satisfy (3.15). 

ca~ ............................. .. 
The simple theory of the equilibrium pinch, considered previously, 

is valid when the plasma column radius is constant in time or when it is 
varying very slowly compared to the time required for the plasma to attain 
a constant temperature. In actual practice, however, static or quasi-static 
situations do not arise and it is necessary to consider the dynamic behavior 
of the pinch effect. Initially, when the current starts flowing down the 
plasma column, the kinetic pressure is generally too small to resist the 
force due to the external magnetic pressure, so that the radius of the 
plasma cylinder is forced inwards and the plasma column is pinched. 

The essential dynamic features of the time-varying pinch are illus­
trated by the following simple model. Suppose that a fully ionized plasma 
fills the interior region (0 < r < R0 ) of a hollow dielectric cylinder of 
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radius Ro and length L. A voltage difference V is applied between the 
ends of the cylinder, so that a current I flows in the plasma. This current 
produces an azimuthal magnetic induction Be(r) that causes the plasma 
to pinch inwards. The plasma is assumed to be perfectly conducting, so 
that all the current flows on the surface and there is no magnetic flux in­
side the plasma. Also, the plasma kinetic pressure is neglected. Let R( t) 
be the plasma column radius at time t (see Fig. 6). The magnitude of 
the azimuthal magnetic induction just adjacent to the current sheath at 
radius R(t) is given by 

B (R) = Jl-ol(t) 
9 21rR 

(4.1) 

where J(t) is the total axial current at the instant t. In particular for 
t = 0 we haveR= Ro and this equation gives the initial value Be(Ro) of 
the magnetic induction. The magnetic pressure Pm(R) produced by this 
magnetic induction, acting on the current sheath radially inwards, is given 
by 

Pm(R) = B~(R) = J1-ol2 (t) 
2f.J-o 87r2R2 

(4.2) 

The force per unit length of the current sheath, acting radially inwards, 
in obtained from (4.2) as 

To set up the equation of motion, relating J(t) to the instantaneous 
radius R( t) of the pinch discharge, we must make some assumption about 
the plasma. We shall consider the so-called snowplow model, in which the 
current sheath is imagined to carry along with it all the material that it 
hits as it moves inward. If Pm is the original mass density of the plasma, 
then the mass per unit length carried by the interface as it moves in, at 
time t, when the radius of the current sheath is R, is given by 

(4.4) 

Fig. 7 illustrates the cross-sectional area swept by the current sheath as 
it moves inward. From Newton's second law, the magnetic pressure force 
and the rate of change of momentum are related by 

!!_ [M(R) dR] = F(R) 
dt dt 

(4.5) 
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Fig. 6 Plasma column of infinite conductivity, inside a hollow 
cylindrical dielectric, with a current sheath on its surface. 

or, using (4.3) and (4.4), 

!!__ [1r (R2- R2)dR] = _J.-Lof2(t) 
dt Pm 0 dt 41rR (4.6) 

If the functional dependence of the pinch current I(t) is known, (4.6) 
permits the evaluation of the pinch discharge radius as a function of time. 

A standard inductive relation between the applied voltage, the cur­
rent, and the dimensions (inductance) of the plasma column can be ob­
tained using Faraday's law of induction. For this purpose consider the 
closed loop shown in Fig. 8, in which the inner arm lies on the interface 
and moves inward with it. Applying Faraday's law to this dotted loop, 

f E · dl = - !!__ ( { B . dS) 
dt }8 

(4.7) 

and noting that the only contribution to the line integral of E comes from 
the side of the loop lying in the conducting wall, we obtain 

V d 1Ro 
- - =- - B(J(r) dr 

L dt R(t) 
(4.8) 

Using (4.1) , and performing the integral, yields 

V J.-Lod{ [Ro]} 
L = 27r dt I(t) In R(t) ( 4.9) 
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Fig. 7 Area swept by the current sheath as it moves inward 
from the radius Ro to R(t). 

If we denote the applied electric field Vj L by Eo f(t), where the function 
f ( t) is assumed known and is normalized so that the peak value of the 
applied electric field is Eo , ( 4. 9) becomes 

I(t) ln [R~)] = 2::0 l f(t') dt' (4.10) 

This equation can be used to eliminate I ( t) from the equation of motion 
(4.6), resulting in the following equation for the rate of change of R(t): 

!!_ [(R2 _ R2 ) dR] = _ E5[f~ j(t') dt']2 (4.ll) 
dt 0 dt J-loPmR [ ln (Ro/ R)J2 

It is convenient to introduce the following dimensionless variables 

R 
X=-

Ro 
(4.12) 

( E5 ) 1/ 4 
T = 4 t 

J-toPmRo 
(4.13) 

and recast ( 4.11) in normalized form as 

This equation cannot be solved without knowing the function f ( t). 
However, some idea of the results can be obtained, without solving this 
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Fig. 8 Schematic representation of a closed loop for application 
of Faraday's law, with the inner side lying on the interface and 
moving inwards with it. 

equation, by noting that x changes significantly for time periods such that 
T = 1. Thus, from ( 4.13) , the scaling law for the radial velocity of the 
pinch is, approximately, 

( E2 ) 1/4 
ldRjdtl ""vo = - 0-

ftoPm 
(4.15) 

The typical experimental conditions involved in a small-scale pinch column 
of hydrogen or deuterium plasma are initial mass densities of the order of 
10-8 gjcm3 and applied electric fields of the order of 103 volts/em, which 
give a velocity v0 of the order of 107 cmj s. For these conditions, in a 
tube of 10 em radius, the current measured is of the order of 105 or 106 

amperes. 
It is instructive to consider a particular case in which the pinch current 

varies in time according to 

I(t) = Io sin (wt) ~ 10 wt (4.16) 

Then, from ( 4.6) we obtain directly 

d [ 2 dx] T 2 
- (1- x ) - = - -
dT dT X 

( 4.17) 
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1 

X 

0 1 

Fig. 9 Normalized radius x = R/ Ro of the dynamic pinch col­
umn as a function of the normalized time T, according to ( 4.17). 

with x as given by ( 4.12), and 

- ( J.Lol6w2 ) 1/4 
T- 4 2 R4 t 

7r Pm 0 
(4.18) 

Equation ( 4.17) has to be solved numerically to determine x( T). The 
resulting relation between the normalized radius of the dynamic pinch 
and the normalized time is sketched in Fig. 9. This simplified model 
indicates that the plasma column radius goes to zero in a time slightly 
greater than T. This is a consequence of neglecting the kinetic pressure of 
the plasma. The above discussion, therefore, is valid only for very short 
time periods after the onset of the current flow. 

An important phenomenon that usually occurs in the dynamic pinch 
has not been considered in this analysis. As the current sheath moves 
radially inwards, compressing the plasma, the behavior just discussed is 
modified. A radial wave motion is usually set up by the pinch, and this 
wave travels faster than the current sheath. These waves, traveling in­
wards, get reflected off the axis and move outwards, striking the interface 
and retarding the inward motion of the current sheath or even reversing 
it. This phenomenon is known as bouncing. This sequence of events takes 
place periodically and the amplitude of each succeeding bounce becomes 
smaller. The plasma column radius presumably reaches an equilibrium 
state at some radius less than Ro. Fig. 10 illustrates the general behavior 
expected for the column radius Rasa function of time. 
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Fig. 10 Normalized radius of the plasma column as a function 
of the normalized time, illustrating the phenomenon of bouncing. 
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Although it is possible to achieve an equilibrium state for plasma 
confinement with the pinch effect, this equilibrium state is not stable. A 
small departure from the cylindrical geometry of the equilibrium state 
results in the growth of the original perturbations with time and in the 
disintegration of the plasma column. The growth of instabilities is the 
reason why it is difficult to sustain reasonably long-lived pinched plasmas 
in the laboratory. 

A detailed mathematical treatment of these instabilities is beyond the 
scope of this text. For simplicity, in the following discussion of instabilities 
we shall consider a perfectly diamagnetic plasma column confined by a 
static magnetic field. Since the plasma is perfectly diamagnetic, there 
is no magnetic field, and consequently no magnetic pressure, inside the 
plasma column. The plasma kinetic pressure is assumed to be uniform 
inside the plama and vanishes outside it. In the equilibrium state, the 
magnetic pressure at the plasma surface Pmo must be equal to the kinetic 
pressure p of the plasma, 

B2 
0 P=Pmo=-

2p,o 
(5.1) 

where Bo is the magnitude of the magnetic flux density at the plasma sur­
face. This situation of a sharp plasma boundary is an idealized one and 
is difficult to create in the laboratory, since the plasma particles diffuse 
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Fig. 11 Unstable equilibrium conB.guration of a cylindrical 
plasma column. The azimuthal B B.eld decreases radially out­
wards. 

J 

through the magnetic field lines in a diffusion time of the order of f.loCJoL2 , 

in view of the finite plasma conductivity CJo, as discussed in section 3 of 
Chapter 12. 

In the cylindrical pinch column, the confining magnetic field lines have 
a curvature such that they are concave towards the plasma and the field 
strength decreases with increasing distance from the center of curvature 
of the field lines (see Fig. 11). According to Ampere's law, this azimuthal 
magnetic field is inversely proportional to the radial distance r from the 
column axis. 

Suppose that the equilibrium state of the pinched plasma column, 
shown in Fig. 11, is disturbed by a wave-like perturbation, with the 
crests and troughs on the surface of the plasma column and cylindrically 
symmetric about the column axis, as indicated schematically in Fig. 12. 
We shall consider that the plasma is constricted in some locations and 
expanded at others, in such a way that its volume does not change. Con­
sequently, the uniform kinetic pressure of the plasma is left unchanged. 
However, in view of the 1/ r radial dependence of the azimuthal magnetic 
field, the magnitude of this field at the surface of the disturbed plasma 
column will vary from place to place on the surface. At the locations 
where the radius has decreased, in relation to the equilibrium value, t he 
magnetic pressure at the constricted plasma surface will be larger than 
the plasma kinetic pressure, and will force the plasma surface radially in­
wards, thus enhancing the constriction. At the locations where the radius 
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B<Bo 
I 

Fig. 12 The sausage instability. 

has become larger than the equilibrium value, the plasma kinetic pressure 
will be larger than the magnetic pressure at the expanded plasma surface 
and will force the surface radially outwards, increasing the local expansion 
of the plasma. Therefore, the troughs will become deeper and the crests 
higher. The initial perturbation gives rise to forces that tend to further 
increase the initial disturbance, so that the initial equilibrium state is 
unstable. When the constrictions reach the axis, the column appears like 
a string of sausages and, for this reason, this type of instability has become 
known as the sausage instability. 

The sausage instability can be inhibited by a longitudinal magnetic 
field applied inside the plasma column. This longitudinal magnetic field 
can be produced by passing a current through a solenoidal coil wound 
around the column. Because of the plasma high electric conductivity, the 
longitudinal field lines are frozen in the plasma. When the sausage distor­
tion starts to grow, the longitudinal magnetic field lines are compressed 
at the constrictions, causing an increase in the total pressure inside the 
plasma that opposes the increased magnetic pressure of the azimuthal field 
at the constricted surface, and forces the constriction to expand. At the 
locations where the column radius has increased, the longitudinal field 
lines move apart with the plasma expansion, thus decreasing the total in­
ternal pressure, with the result that the net pressure forces the plasma 
surface radially inwards. This situation is illustrated schematically in Fig. 
13. 

We shall next determine what must be the magnitude Bz of the lon­
gitudinal magnetic flux density, as compared to the magnitude of the 
azimuthal Be field, in order that the longitudinal field be able to stabilize 
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Be 

Fig. 13 A longitudinal magnetic flux density Bz can be used 
to inhibit the sausage instability . 

the plasma column against the setting of the sausage instability. If the 
radius r of the column, at the constriction, is decreased by an amount 
dr, and considering that the magnetic flux (<I>m = B z1rr2 ) through the 
cross-sectional area of the column remains constant during compression, 
then we have 

(6.1) 

Hence, the longitudinal magnetic flux density is increased by the amount 

dr 
dBz = -2Bz­

r 
(6.2) 

Consequently, the corresponding internal magnetic pressure increases by 

d _ (Bz + dBz) 2 _ B; _I_ B dB 
Pz- - z z 

2~o 2~o ~o 
(6.3) 

or, using (6.2), 

(6.4) 

Considering now the azimuthal magnetic flux density Be , it is easily 
seen from Ampere's law that external to the column we have 

r Be ( r) = constant (6.5) 

so that the azimuthal magnetic flux density, at the constricted surface, 
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Fig. 14 The kink instability. 

increases by the amount 
dr 

dBo = -Bo­
r 
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J 

(6.6) 

Hence, the corresponding increase in the external magnetic pressure is 

Bo B~ dr 
dpo =- dBo = ---

/1-o P,o r 
(6.7) 

Therefore, in order that the plasma column be stable against the sausage 
distortion, we must have dpz > dpo, or, using (6.4) and (6.7), 

(6.8) 

7. THE KINK INSTABILITY!...!------~--------__.. 

Another type of instability of the pinched plasma column is t he so­
called kink instability. The kink distortion consists of a perturbation in 
the form of a bend or kink in the column, but with the disturbed column 
maintaining its uniform circular cross section, as shown in Fig. 14. Usually 
there may be several kinks along the column length. In the neighborhood 
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Fig. 15 The increased tension of a longitudinal magnetic field, 
applied inside the column, inhibits the kink instability. 

of the column, where the kink has developed, the magnetic field lines are 
brought closer together on the concave side, and separated on the convex 
side, so that the external magnetic pressure is increased on the concave side 
and decreased on the convex side. Therefore, the changes in the external 
magnetic pressure are in such a way as to accentuate the distortion still 
further. This type of distortion is therefore unstable. 

The kink instability can be hindered by the application of a longi­
tudinal magnetic field within the plasma column, as in the case of the 
sausage instability. In the kink distortion, the longitudinal magnetic field 
lines frozen inside the plasma column are stretched and the increased ten­
sion acting along the longitudinal magnetic field lines opposes the external 
forces. The net result is the stabilization of the column (see Fig. 15). 

In actual practice, however, the plasma is not perfectly diamagnetic 
and other fields may also be present. The calculation of the stability of 
the pinched plasma column is not, in general, a simple task. 

In the linear pinch configuration, the azimuthal magnetic field confin­
ing the plasma column is produced by a longitudinal current flowing along 
the column. The configuration of this field is such that the magnetic flux 
lines are concave towards the plasma. Configurations of this type are 
unstable, as we have seen with the sausage and the kink instabilities. 
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Fig. 16 Plasma conflnement by a cusped magnetic Held, pro­
duced by four current-carrying wires. 
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Configurations for which the field lines are convex towards the plasma 
lead to a stable equilibrium, since the magnetic field strength increases in 
a direction away from the plasma. If the plasma surface is perturbed by 
a wave-like disturbance, the magnetic pressure at the crests will be larger 
than the internal kinetic pressure and the plasma is forced to return to 
its equilibrium configuration (assuming that the kinetic pressure is not af­
fected by the perturbations). At the troughs, the internal kinetic pressure 
will be larger than the magnetic pressure acting on the plasma surface 
and will force the plasma to expand. Therefore, for plasma confinement, 
it is desirable to use a magnetic field configuration in which the magnetic 
flux lines are everywhere convex towards the plasma. An example of this 
type of configuration is the cusp field, which can be produced by an ar­
ray of four current-carrying wires, as shown in Fig. 16. The presence 
of sharp edges and cusps at the plasma boundary, however, can lead to 
escape of the plasma particles. Although edges and cusps are character­
istics of these configurations, modifications of the cusp field geometry are 
commonly employed for confinement of high-temperature plasmas. 

Higher order cusp fields can be produced by lining up several pairs of 
current-carrying wires as, for example, in the picket-fence field geometry 
illustrated in Fig. 17. 
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Fig. 17 Picket-fence field configuration for magnetic confine­
ment of a plasma. 

PROBLEMS 

13.1 The minimum intensity of the magnetic induction (B0 ) necessary to 
confine a plasma at an internal pressure of 100 atm is 5 weber/m2 (refer to 
problem 12.3 in Chapter 12). Assuming that this field is produced by an 
axial current flowing in a cylindrical plasma column (as in the longitudinal 
pinch effect) of radius 10 em, show (applying Ampere's law) that the total 
current necessary to produce this magnetic field at the column surface is 
2.5 x 106 ampere (1 atm = 105 newton/m2 and J..Lo = 4 x 10-7 henry/ m). 

13.2 For the equilibrium Bennett pinch with cylindrical geometry, calcu­
late Be(r) using (2.4) and the expression for n(r) given in (3.8). Make a 
plot showing the radial distributions of p(r), Jz(r), and Be(r). 

13.3 For the equilibrium theta pinch produced by an azimuthal current in 
the theta direction (Je), as illustrated in Fig. 6 of Chapter 12, determine 
expressions for the radial distributions of Je(r) and p(r) in terms of Bz(r). 
Draw a diagram illustrating these radial distributions for the special case 
when Bz is constant. 

13.4 Use the equation for the fluid velocity component (u..i ) normal to B, 
derived in problem 9. 7 in Chapter 9, to determine the relative orientations 
of u, B, E, J, and V'p in a theta-pinch device. 

13.5 In the longitudinal equilibrium pinch shown schematically in Fig. 
1, assume that the radial dependence of the current density Jz(r) is such 
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that 
lz = 0 for 0 < r <a 

Jz = Jo =constant, for a< r < b 

lz = 0 for r > b 

Calculate p( r) and Be ( r) and make a plot showing their radial dependence. 
Show that, as a ---+ b, the magnetic pressure B~ /2J.-Lo at r = b becomes equal 
to p at r = 0, while as a ---+ 0, BU J.-Lo at r = b becomes equal to p at 
r = 0. 

13.6 (a) Show that a force-free magnetic field satisfies the relation 

(\7 X B) X B = 0 

(b) Let \7 x B = a(r) Band show that 

B·\7a=O 

(c) Verify that the surfaces a = constant are made up of magnetic field 
lines. 
(d) Show that a(r), as defined in part (b), for the force-free field, can be 
expressed as 

(e) Prove that for the force-free field \7 B lies on the osculating plane, that 
is, the plane containing B and the principal normal to the field line. 

13.7 Consider the following basic equation for the equilibrium of a plasma 
column with cylindrical geometry (see problem 12.9 in Chapter 12) 

(a) Verify that, for the theta pinch, this equation reduces to 

B2 
p + -2 z = constant 

J.-Lo 

whereas, for the longitudinal pinch, it becomes 
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(b) For the cylindrical screw pinch, in which both Be and Bz are nonzero, 
assume that the longitudinal current density and the kinetic pressure are 
given, respectively, by 

Verify that 

p(r) =Po =constant 

Be(r) = ~JLoJo(l- ;:2 ) r 

Be(r) = JLoJoa2 
4r 

(r ~a) 

(r <a) 

(r ~ a) 

(r ~a) 

Show that B z ( r) satisfies the equation 

B; _ B~ 1 1 B~ ( r) d ------ --- r 
2jLo 2jLo JLo r r 

From this equation determine Bz(r) and make a plot showing p(r), Jz(r), 
Be(r), and Bz(r) as a function of r. 



ELECTROMAGNETIC WAVES 

IN FREE SPACE 

Plasmas are able to sustain a great variety of wave phenomena. Before 
we initiate the study of wave phenomena in plasmas, we present in this 
chapter a review of some of the basic features of electromagnetic waves 
propagating in free space. The starting point for deriving the partial 
differential equation for electromagnetic waves in free space is Maxwell 
equations, which for free space (p = 0 and J = 0) may be written as 

\7·E=0 

\7·B=O 

8B 
\7 X E = --at 
\7 X B = 2_ 8E 

c2 at 
Taking the time derivative of both sides of (1.4), yields 

\7 X 8B = 2_ 82E 
at c2 at2 

Substituting (8B/8t) from (1.3), gives 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
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Using the vector operator identity 

V' X (Y' X E) = V'(V'. E) - V'2E (1.7) 

and noting that V' · E = 0 in free space, we obtain 

(1.8) 

In a similar way we can perform the same operations on (1.3) to obtain 

(1.9) 

Equations (1.8) and (1.9) are the vector wave equations satisfied by the 
electromagnetic field vectors E and B in free space. The velocity of prop­
agation of such waves is c = 1/ y1iOEO. Since these equations are satisfied 
by each component of the field vectors E and B, we may as well write a 
scalar wave equation 

(1.10) 

where '1/J(r, t) is used to denote any one of the components of E and B. 

We are interested in transverse plane wave solutions of the partial 
differential wave equation (1.10), since these are the simplest and most 
fundamental electromagnetic waves. For transverse plane waves, the field 
vectors E and B lie on a plane perpendicular to the propagation direction 
and are functions only of the perpendicular distance from the origin to this 
plane and, of course, of time also. This plane, normal to the propagation 
direction, is called the wave front. Let ( denote t_E.e perpendicular distance 
from the origin to the wave front plane and let k be a unit vector normal 
to this plane (refer to Fig. 1). Any point P on the wave front can be 
represented by a position vector r drawn from the origin of the ...... coordinate 
system. Thus, for any point on a given wave front we have k · r = ( = 
constant, which is the equation sp~cifying this wave front plane. The 
direction cosines of the unit vector k, in a Cartesian coordinate system, 
are given by the scalar products k · x, k · y, and k · z. 
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Fig. 1 In a transverse plane wave the Eeld vectors do not 
vary along a given wave front plane, normal to the direction of 
propagation ( . They vary only along the ( direction and with 
time. 

y 

Since the field vectors E and B are spatially constant along the wave 
front (normal to k), but vary only in the (direction (and with time), the 
del operator can be written as 

_,__ a _,__ a _,__ a "' a 
'V = x- + y- + z- = k­ax ay az a( 

(2.1) 

Hence, the wave equation is actually one-dimensional in form for the space 
variable(, 

(2.2) 

The general solution of this one-dimensional wave equation is a linear 
combination of arbitrary functions of the variables ((- ct) and (( + ct) , 

'1/J((, t) = f((- ct) + g(( + ct) (2.3) 
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The function f ( (-ct) represents a plane waveform propagating in the pos­
itive (direction, whereas g(( +ct) corresponds to a waveform propagating 
in the negative (direction, the velocity of propagation being c = 1/ VJiOEO· 

A particularly important type of plane waveform is the harmonic 
wave, which can be written in the form (for propagation in the positive 
direction) 

'1/J((, t) =A cos [k((- ct)] =A cos (k(- wt) (3.1) 

where w = kc is the angular frequency of the oscillation and k is the 
wave number or propagation constant. Fig. 2 shows the space and time 
dependence of the harmonic wave '1/J((, t) given by (3.1). The wavelength 
.A and the period T of the wave motion are given, respectively, by 

(3.2) 

where v is the frequency in cycles per second. 
If we define a propagation vector k, whose direction is that of the 

normal to the wave front (k) and whose magnitude is the wave number 
(I k I = k), then, since ( is the perpendicular distance from the origin to 
the wave front, we have 

k·r=(k/k)·r=( (3.3) 

Hence, for a harmonic plan~ wave traveling at some arbitrary direction 
specified by the unit vector k, 

'1/J(r, t) =A cos (k · r- wt) (3.4) 

In view of the argument of the cosine function ( 3.4), the planes of constant 
phase are defined by the condition 

k · r - wt = k( - wt = constant (3.5) 

The phase velocity is defined as the velocity of propagation of these planes 
of constant phase (d(jdt) and is found by differentiating (3.5) with respect 
to time, 

w 
Vph =-

k 
(3.6) 
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Fig. 2 Amplitude of a harmonic plane wave as a function of 
space and time. 

t 

The phase velocity is positive for a wave moving in the positive ( direction, 
that is, ( increases as t increases in order to keep (k(- wt) constant. If 
we had taken 

'lj;(r, t) =A cos (k · r + wt) (3.7) 

which represents a harmonic plane wave moving in the negative ( direction, 
then the phase velocity would be negative. 

It is generally convenient and extremely useful, as we shall see, to 
write (3.4) in complex form 

'lj;(r, t) =A exp [i(k · r- wt)] (3.8) 

where implicit in this notation is the understanding that the field quanti­
ties are obtained by taking the real part of the complex expressions. The 
true physical quantity involved (the one we would measure in an exper­
iment) is represented by the real part of the complex form. The use of 
complex expressions, however, greatly simplifies the mathematical calcu­
lations for the case of linear differential equations, as they are transformed 
into simple algebraic equations. 

Using the complex notation (3.8) for the harmonic plane wave solu­
tions for the field vectors E and B, the operators V' and 8/ 8t become 

V'=ik ; 
{) . 
-=-'lW 
8t 

(3.9) 
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Fig. 3 The propagation vector k and the two wave B.eld vectors 
E and B are orthogonal to each other. 

so that Maxwell equations (1.1) to (1.4) in free space reduce to the follow­
ing simple (linear, homogeneous) algebraic set of equations: 

k·E=O (3.10) 

k·B=O (3.11) 

k x E = wB (3.12) 

k x B=-(~)E (3.13) 

Thus, from (3.10) and (3.11) we see that E and B are both perpendicular 
to k and, for this reason, these waves are called transverse waves. In 
addition, from (3.12) or (3.13) we see that E and B are also perpendicular 
to each other. This situation is illustrated in Fig. 3. The set of vectors 
(E, B, k) , taken in this order, constitute a right-handed orthogonal set. 
Fig. 4 illustrates the relation between the E and B vectors of a plane 
electromagnetic wave propagating in free space. 
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Fig. 4 Illustrating the field vectors E and B of a plane elec­
tromagnetic wave in free space. The dots and crosses represent 
magnetic lines of force coming out of the paper and into the pa­
per, respectively, and the vertical lines represent the electric field. 
The direction of propagation is given by k, which, in free space, 
is along the direction of E x B. 
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·~~ill: --------------· 
From (3.8) it is seen that the field vectors E(r, t) and B(r, t), which 

are solutions of the wave equation in the form of harmonic plane waves 
propagating in the positive ( direction, can be written as 

E(r, t) =Eo exp [i(k · r- wt)] =Eo exp [i(k(- wt)] (4.1) 

B(r, t) = Bo exp [i(k · r- wt)] = Bo exp [i(k(- wt)] (4.2) 

where Eo and Bo are constant vector amplitudes, which may also be com­
plex quantities. The phenomenon of polarization can be discussed entirely 
from the point of view of the electric field vector, since the magnetic in­
duction vector may always be obtained from E using (3.12) for the case 
of plane waves. 

According to ( 4.1), the direction of the electric field vector E is always 
the same, and the wave is said to be linearly polarized. This is the simplest 
type of polarization state. 

In general, in order to describe an arbitrary state of polarization, we 
must consider the electric field vector in a given plane as the superposition 
of two linearly independent, linearly polarized waves. Two such linearly 
independent waves can be represented by 

E1 (r, t) = e1E1 exp [i(k · r- wt)] 

E2(r, t) = e2E2 exp [i(k · r- wt)] 

(4.3) 

(4.4) 

with the associated magnetic induction vectors given, respectively, by 

1 
B1(r, t) =- k x E 1(r, t) 

w 
(4.5) 

(4.6) 

The unit vectors e1 and e2, called the polarization vectors, are perpendic­
ular to each other and lie in the plane normal to the propagation vector 
k, and are such that (el, e2, k), taken in this order, form a right-handed 
orthogonal set of unit vectors (see Fig. 5). The amplitudes E 1 and E 2 may 
be complex numbers, in order to allow for the possibility of any phase dif­
ference between the two waves E 1 ( r, t) and E 2 ( r, t). Therefore, <;._general 
solution for a harmonic plane wave propagating in the direction k can be 
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Fig. 5 The orthogonal polarization vectors e 1 and e2, and the 
propagation vector k. 

written as a linear combination of the two linearly independent solutions 
E1 and E2, 

(4.7) 

Since any complex quantity can be expressed as the product of a real 
quantity and a complex phase factor, we way write 

E1 = E~ exp (iai) 

E2 = Eg exp (ia2) 

(4.8) 

(4.9) 

where the amplitudes E~ and Eg are real numbers, and a1 and a2 repre­
sent the phase of the complex amplitudes E1 and E2 , respectively. Note 
that it is only the phase difference that is physically significant and not 
the absolute magnitudes of a 1 and a 2. Hence, (4.7) becomes 

E(r, t) = [e1E~ exp (ia1 ) + e2Eg exp (ia2)] exp [i (k · r- wt )] (4.10) 

If E 1 and E2 have the same phase (a1 = a 2 ), then (4.10) represents a 
linearly polarized wave. The magnitude of E is 

(4.11) 
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E(r,t) 

0 

Fig. 6 Electric field vector of a linearly polarized wave, repre­
sented by the superposition of two independent, linearly polar­
ized waves E1 and E2, having the same phase. 

and its polarization vector makes an angle 

(4.12) 

with the direction of e1 . The electric field of this linearly polarized wave 
is represented in Fig. 6. 

If E 1 and E 2 have different phases ( a 1 =/= a 2 ), then ( 4.10) represents, 
in general, an elliptically polarized wave. The simplest case is the one in 
which the amplitudes of the components are equal, E~ = Eg = E 0 , but 
the phases differ by 1r /2, that is, a 1 = 0 and a 2 = 1r /2. Then, since 
exp (±i7r/2) = ±i, the wave (4.10) becomes 

E(r, t) = E 0(e1 ± i e2) exp [i(k · r- wt)] (4.13) 

This wave is said to be circularly polarized. In order to illustrate this point, 
consider a Cartesian coordinate system such that the wave is propagating 
in the z direction, k = z, with e1 = x and e2 = y. Thus, taking the real 
part of (4.13) we obtain for the x andy components of the actual electric 
field, 

Ex(z, t) = E 0x cos (kz- wt) 

Ey(z, t) = :r:E0y sin (kz- wt) 

(4.14) 

(4.15) 

At a fixed plane z = constant, the fields are such that the E vector has 
a constant magnitude E 0 , but rotates around in a circle at the frequency w. 
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X X 

RCP LCP 

(a) (b) 

Fig. 7 Electric Held vector of a right circularly polarized wave 
(a) and of a left circularly polarized wave (b). The propagation 
vector k points into the paper. 

For the upper sign (that is, e1 + ie2) the direction of rotation is clockwise 
if the wave is observed by looking at the outgoing wave front (i.e., looking 
along the positive z direction), as shown in Fig. 7 (a). Such a wave is said 
to be right circularly polarized. For the lower sign (e1 - w2 ) the rotation 
is in the counterclockwise direction as shown in Fig. 7 (b), and the wave 
is said to be left circularly polarized. 

In the most general cases the amplitudes are different (E~ =/=- E~) 
and the fields E1 and E2 have an arbitrary phase difference (a1 =/=- a 2 ). 

Considering (e1 , e2 , k) = (x, y, z) we have, from (4.10), 

Ex(z, t) = xE~ exp (ia1) exp [i(kz- wt)] (4.16) 

Ey(z, t) = yE~ exp (ia2) exp [i(kz- wt)] (4.17) 

Taking the real part of these expressions we obtain 

Ex(z, t) = E~ cos (kz- wt + a1) 

Ey(z, t) = E~ cos (kz- wt + a2) 

Squaring and adding (4.18) and (4.19), yields 

(4.18) 

(4.19) 

(~~ r + (~~ r = cos2(kz- wt + al) + cos2 (kz- wt + a2) (4.20) 
X y 
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X 

Fig. 8 Electric field vector of a right-hand elliptically polarized 
wave (a1 = 0, a 2 = 1r /2), rotating in the clockwise direction 
for an observer looking at the outgoing wave. The propagation 
vector k points into the paper. 

This result shows that at a fixed plane z = constant the electric field 
vector E performs, in general, an elliptical motion as a function of time. 

For the case when a 1 = 0 and a 2 = 1rj2, (4.20) becomes, at the plane 
z = 0, 

(4.21) 

since for any angle¢ we have cos(¢+ 7r/2) =-sin(¢). In this case, the 
x and y components of the electric field are given by 

Ex(O, t) = E~ cos (wt) 

Ey(O, t) = E~ sin (wt) 

(4.22) 

(4.23) 

Therefore, the tip of the electric field vector traces an ellipse in the (x, y) 
plane rotating in the clockwise direction (right-hand polarization) when 
the wave is propagating away from the observer, as illustrated in Fig. 8. 

For the case when a 1 = 0 and a 2 = -1r /2, the electric field vec­
tor rotates in the counterclockwise direction when the wave is propagating 
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X 

Fig. 9 Electric field vector of a left-hand elliptically polarized 
wave (a1 = 0, a 2 = -Jr/2), rotating in the counterclockwise 
direction for an observer looking at the outgoing wave (k points 
into the paper). 

away from the observer, so that this wave is said to be left-hand elliptically 
polarized, as shown in Fig. 9. 

The ellipticity of the ellipse traced and the orientation of the major 
axis, with respect to the x axis, depend on the relative magnitude of the 
amplitudes Eg and E~, and on the phase difference (a2 - a 1). Fig. 10 
illustrates various wave polarizations, obtained from (4.18) and (4.19) at 
the plane z = 0, for the case when Eg = E~. The angle ¢ indicates the 
phase difference,¢= (a2 -a1). In the figures shown, the sense ofrotation 
of the E vector in the ( x, y) plane depends on whether ¢ lies between 0 
and 1r, or between 7r and 27r. 

Associated with the electric and magnetic field vectors E and H of 
an electromagnetic wave, there is a flow of energy (energy per unit area 
and per unit time) in the direction perpendicular to both E and H. This 
energy flow is given by the Poynting vector 

S=ExH (5.1) 
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~=0 0<~< rc/2 ~=rc/2 
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~ = 3rc/2 3rc/2 < ~ < 2rc ~ = 2rc 

Fig. 10 Various wave polarizations for the case when Eg = E2 
obtained from (4.18) and from (4.19) at the plane z = 0. The 
angle ¢ denotes the phase difference ( ¢ = a2 - a1). 

In free space, H and B are related by B = ~t0H. Also, in free space, 
the field vectors E and H, and the propagation vector k, form a mutually 
orthogonal set of vectors, although this may not be the case in a conducting 
medium as, for example, in a plasma. In such a medium, because of the 
presence of polarization charges, Maxwell equation \7 · E = p/Eo requires 
that k · E =I= 0. Nevertheless, the direction of energy flow, given by the 
Poynting vector, is always perpendicular to E and H. 

When the field vectors E and H are expressed in terms of complex 
quantities, the energy flow vector given by (5.1) is called the complex 
Poynting vector. In this case, however, in order to obtain real physical 
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quantities from the complex notation expressions, some caution must be 
taken since (5.1) involves the product of two complex quantities. The real 
energy flow in the wave is obtained by using the real part of both E and 
H in (5.1). 

For the harmonic waves, the quantity of interest is the average energy 
flow (over one cycle) given by 

< s > = < R{E} X R{H} > (5.2) 

where the time average is obtained by integrating the quantity over one 
period of the harmonic wave and dividing by the period, and where R 
means "the real part of". It must be stressed that the average energy flow 
< S >is not given by< R{E x H} >,nor by R{ <Ex H > }. 

In what follows we show that the time-averaged energy flow < S >, 
given by (5.2), can also be computed directly from the complex field vec­
tors without performing an average over one cycle of the oscillation. For 
this purpose let us write 

E =Eo exp ( -iwt) = (E1 + iE2) exp ( -iwt) (5.3) 

H = Ho exp ( -iwt) = (H1 + iH2) exp ( -iwt) (5.4) 

where E1, E2, H 1, and H 2 are real amplitudes, and w is the wave fre­
quency. Taking the real part of (5.3) and (5.4), yields 

R{E} = E1 cos (wt) + E2 sin (wt) 

R{H} = H1 cos (wt) + H2 sin (wt) 

Consequently, (5.2) becomes 

(5.5) 

(5.6) 

< S > = (E1 x H1) < cos2(wt) > + (E2 x H2) < sin2(wt) > + 

(E1 x H2 + E2 x H1) < sin (wt) cos (wt) > (5.7) 

Using the following results for the integrals appearing in the average values 
contained in (5.7), 

< cos2(wt) > = ~ iT cos2 (wt) dt = ~ 

< sin2(wt) > = ~ 1T sin2(wt) dt = ~ 

(5.8) 

(5.9) 
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< sin (wt) cos (wt) > = ~ 1T sin (wt) cos (wt) dt = 0 

we obtain 
< s > = ~(El X Hl + E2 X H2) 

Let us consider now the following quantity: 

'R{E x H*} = 'R{(E1 + iE2)[ cos (wt) - i sin (wt)] x 

x (H1 - iH2)[ cos (wt) + i sin (wt)]} 

= El X Hl + E2 X H2 

(5.10) 

(5.11) 

(5.12) 

Comparing this result with (5.11) we obtain the following alternative ex­
pression for the time-averaged energy flow (5.2): 

< S > = ~'R{E x H*} (5.13) 

In a general medium (not free space) the time-averaged energy flow 
is given by 

< S > = ~ (E · D* + B · H*) e3 
where e3 is a unit vector in the direction of E X H . 

•• 

(5.14) 

So far we have considered simple waves having one specific value for 
k and w. In practice, however, real disturbances consist of waves having 
some finite spread in the wave number k and in the frequency w. A 
wave packet is a superposition of waves with different values of k and 
w. This is equivalent to the statement that any wave-like disturbance 
can be decomposed by Fourier analysis into a superposition of simple 
harmonic oscillations with different frequencies w and wave numbers k, 
with appropriate amplitudes. 

A wave packet, consisting of a superposition of plane harmonic waves 
propagating in the ( direction, can be represented by 

l +oo 
V;((, t) = -oo A(k) exp [i(k(- wt)] dk (6.1) 

The wave packet concept is particularly useful when there is only a small 
spread in wave numbers about a central wave number ko. This is equiv­
alent to a small spread in frequencies about a central frequency w0 , since 
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for any wave motion there is a functional relationship between k and w, 
which depends on the medium, and which is called the dispersion relation. 
Thus, the amplitude function A(k) is usually assumed to be peaked about 
some central wave number k0 . In (6.1) the wave number k has been taken 
as the independent variable and w is considered to be a function of k, 
determined by the dispersion relation w = w(k). 

The amplitude function A(k) can be determined from the Fourier 
transform of 'lj;((, 0). For this purpose, we multiply (6.1) (with t = 0) by 
exp ( -ik() and integrate the resultant equation over all possible values of 
(. Thus, 

;_:
00 ,P((,O) exp (-ik() d( = ;_:00 A(k') dk' ;_:00 

exp [i(k'- k)(] d( 

(6.2) 
Using the following representation for the Dirac delta function 

1 l+oo 8(k'- k) = - exp [i(k'- k)(] d( 
27r -oo 

(6.3) 

and the property 

l +oo 
-oo A(k') 8(k'- k) dk' = A(k) (6.4) 

we obtain, from (6.2), 

1 l+oo A(k) = - 'lj;((, 0) exp ( -ik() d( 
27T' -oo 

(6.5) 

The field quantity 'lj;((, t) can also be synthesized in terms of time 
periodic functions of all possible frequencies, using the relation 

l +oo 
'1/J((, t) = -oo A(w) exp [i(k(- wt)] dw (6.6) 

where the amplitude function A(w) gives the frequency spectrum. In this 
case, w is taken as the independent variable and the dispersion relation 
gives k = k(w). The amplitude function A(w) is usually peaked about 
some central frequency w0 and it can be determined from the Fourier 
transform of 'l/;(0, t), 

1 l+oo A(w) = - 'l/;(0, t) exp (iwt) dt 
27r -oo 

(6.7) 



368 FUNDAMENTALS OF PLASMA PHYSICS 

Consider now that we have a wave packet represented by (6.1), in 
which the range of values of k is small and is centered about some specific 
wave number ko, 

ko - t5 k :::; k :::; ko + t5 k (6.8) 

If w(k) is a slowly varying function of k, then w(k) deviates only slightly 
from its value wo = w(ko), and we can expand w(k) in a Taylor series 
about ko retaining only the first two terms, 

w ( k) = Wo + ( k - ko) ( ~~ ) ko (6.9) 

The phase factor in (6.1) can thus be written as 

[k(- w(k) t] = k0(- w0t + (k- ko) [c- (~~) ko t] (6.10) 

This allows the wave packet 'lj;((, t) of (6.1) to be recast in the form 

'lj;((, t) = 1/Jm(C t) exp [i(ko(- wot)] (6.11) 

where 

1(ko+8k) 8w 
~m((,t) = A(k) exp {i(k-ko)[(- ( 8k) t]} dk 

(k0 -8k) ko 
(6.12) 

Therefore, the wave packet ~((, t) corresponds in this case to a carrier 
wave at the frequency w0 , modulated by the amplitude function ~m(C t). 
A typical form for a wave packet is shown in Fig. 11, at a fixed instant of 
time. 

The phases of constant packet amplitude are given by 

(- (8w) t = 0 
8k k0 

(6.13) 

and the velocity of propagation of these planes of constant phase, d(jdt, 
called the group velocity, is obtained by differentiating (6.13) with respect 
to time, 

(6.14) 

The group velocity can be written in terms of the phase velocity ( Vph = 
wjk) as 

( 8w) [8(vphk)J (8vph) 
Vg = 8k ko = 8k k0 = Vpho + ko Bk ko (6.15) 
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Fig. 11 Amplitude function '1/J((, t) of a typical wave packet. 
The dotted curve is the amplitude modulation function '1/Jm((, t). 

If the medium is such that the phase velocity is not a function of k 
[i.e., w(k) ex: k], then the group velocity is equal to the phase velocity and 
the medium is known as a nondispersive medium. This is the case for free 
space, for which w = ck. If the phase velocity decreases with increasing 
k (i.e., 8vphj8k < 0), then Vg is less than Vph and the medium is said to 
be normally dispersive. If the phase velocity increases with increasing k 
(i.e., 8Vphj8k > 0), then Vg is larger than Vph and the medium is said to 
be anomalously dispersive. 

It should be pointed out that, in many cases, the phase velocity of a 
wave in a plasma exceeds the velocity of light c. This fact is not in conflict 
with the relativity theory, because an infinitely long wave train of constant 
amplitude does not carry information. This information, however, is con­
tained in the modulation of the carrier wave and this modulation travels 
at the group velocity, which is always less than the velocity of light. 

In the derivation of (6.11) and (6.12) the Taylor expansion of w(k) 
was carried out only up to a term linear in ( k- k0 ). In this case the spatial 
variation of the amplitude function '1/Jm((, t), which gives the shape of the 
wave packet, remains the same at any time. If the higher order terms in 
(k- k0 ) are included in (6.10), then the wave packet shape will change 
with time and the packet will spread out as it moves. Hence, the group 
velocity concept is useful only for wave packets with a very small spread 
in wave numbers and frequencies. 
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14.1 Derive the vector wave equations, analogous to (1.8) and (1.9) for 
the electric and magnetic fields, considering a medium in which there is 
a space charge density distribution p(r, t) and a charge current density 
distribution J(r, t). 

14.2 Consider a plane electromagnetic harmonic wave traveling to­
wards the positive x direction in free space, having the frequency 
v = 5 x 1015 hertz. 
(a) What is the associated wavelength? 
(b) Calculate the corresponding values of w and k. 
(c) Considering that 

E =yEo exp (ikx- iwt) 

calculate (V' x E) and -(8B/8t), and compare the results. Calculate also 
(V' x B) and - ( 8B / 8t), and compare the results. 
(d) Calculate the Poynting vector S and the average Poynting vector 
< s >. 

14.3 Consider a plane electromagnetic harmonic wave propagating along 
the positive x direction in free space, which can be decomposed into the 
sum of two waves, 

E = yE1 exp (ikx- iwt) + zE2 exp (ikx- iwt + ia) 

Show that 

(Eo) 1/2 
S = Jlo [Ei cos2 (kx- wt) + E~ cos2 (kx- wt +a)] x 

14.4 The electric field vector of an elliptically polarized plane wave, prop­
agating in free space, can be expressed as 
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(a) Show that the associated magnetic induction vector is 

(b) Show that the time average of the energy density in this wave is 

where 
E2 = (E~)2 + (Eg)2 = c2 B2 

(c) Show that the time-averaged energy flow < S > is equal to the phase 
velocity (w/k =c) times the average energy density of the wave, that is, 

where e3 denotes a unit vector in the direction of E X H. 

14.5 Show that in a general medium (not free space), the time average of 
the energy density (over one cycle) for harmonic plane waves is given by 

1 ( * *) <W>=- E·D +B·H 
4 

Consequently, show that the average Poynting vector (energy flux) is given 
by 

< S > = ~ (E · D* + B · H*) e3 

14.6 Consider the superposition (E = E1 + E2) of the following waves: 

E1 = e1E~ exp (ia1) exp [i(k · r- wt)] 

E2 = e2Eg exp (ia2) exp [i(k · r- wt)] 

Analyze the resultant polarization for the following cases: 

(a) a2 = a1 and Eg =1- E~. 
(b) a2 = a1 ± 1rj2 and Eg = E~ = E 0 . 

(c) a2 = a1 ± 7r/2 and Eg > E~. 
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(d) a2 = a1 +¢and E~ = Er, with a 1 = 0 and¢ varying from 0 to 21r. 
(e) Same as in (d), but withE~> Er and a 1 = 1rj2. 

14.7 Generalize equations (6.1) through (6.5) for the three-dimensional 
case in Cartesian coordinates. 

14.8 Show that the time evolution of a wave packet 'lj;(r, t) can be ex­
pressed in terms of the initial form of the wave packet 'lj;(r, t0 ) as 

l +oo 
'1/J(r, t) = -oo G(r, t; r', to) 'lj;(r', t0 ) d3r' 

where G ( r, t; r', to) denotes the Green function or kernel of the integral 
and which depends on the dispersion relation w(k), 

1 31+oo 
G(r, t; r', to)= ( -2 ) exp [ik · (r- r')- iw(t- t0 )] d3k 

7r -oo 

14.9 Analyze the meaning of the Green function of problem 14.8 for the 
case when 'lj;(r, to) is given by the Dirac delta function 

'lj;(r, to) = 8(r- ro) 

14.10 Calculate the Green function of problem 14.8 for the case of free 
space, for which w = ck, where cis the speed of light in free space. Show 
that, in this case, the initial wave packet 'lj;(r, t0 ) maintains its original 
shape and there is no dispersion. 

14.11 Consider a one-dimensional wave packet at the instant t = 0, whose 
amplitude function A(k) is given by 

A(k) = 1 for 

A(k) = 0 otherwise 

Show that 
'1/J(x, O) = 2 sin (ax) 

X 
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Make a plot of both A(k) and ~(x, 0) and verify that the uncertainties in 
x and k satisfy the following uncertainty relation: 

(Llx) (Llk) 2 47r 

14.12 Consider a one-dimensional wave packet at the instant t = 0, whose 
amplitude function A(k) is given by the Gaussian function 

where a and ko are constants. 
(a) Show that ~(x, 0) is also a Gaussian function given by 

Vii ( x 2
) ~(x, 0) = -;; exp (ikox) exp - 4a2 

Make a plot of both A(k) and R{~(x, 0)}, considering that k0 » (1/a). 
(b) The average extension of the wave packet Llx can be defined in terms 
of the root mean square deviation, 

where the dispersion is given by 

J+oo 1~1 2 (x- < x > )2 dx < (Llx)2 > = < (x- <X >)2 > = _-_oo:....:.___+-,-oo _____ _ 
J_00 1~1 2 dx 

Similarly, we have 

where the dispersion in k is 

J+oo IAI 2 (k- < k > )2 dk 
< ( Llk )2 > = < ( k- < k > )2 > = ----=-00-=-------,-------

r~: IAI2 dk 

Show that for this Gaussian wave packet we have 

b.x =a 
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Consequently, in this case, 

-- 1 
~X ~k = 2 

It can be shown that the Gaussian wave packet is the minimum uncertainty 
packet and that, in general, we have the uncertainty principle 

14.13 Calculate '1./J(x, 0) for a one-dimensional wave packet, when the 
amplitude function A(k) is given by 

A(k) = exp ( -ikxo) 

and when it is given by 
A(k) = o(k- ko) 

For both cases, verify the validity of the uncertainty principle for wave 
packets, stated in the previous problem. 

14.14 Consider an evanescent plane electromagnetic wave (for which 
k = iax, with a real), with the wave field vectors E and H proportional 
to exp [i(k · r- wt)]. Show that the average value of the Poynting vector 
< S > is zero for an evanescent wave. 



MAGNETOHYDRODYNAMIC 

WAVES 

1. INTRODUCTION --------------------' 

The most fundamental type of wave motion that propagates in a 
compressible, nonconducting fluid is that of longitudinal sound waves. For 
these waves the variations in pressure (p) and in density (Pm), associated 
with the fluid compressions and rarefactions, obey the adiabatic energy 
equation commonly used in thermodynamics, 

pp-;;,_"'~ = constant (1.1) 

where "( denotes the ratio of the specific heats at constant pressure and at 
constant volume. Differentiating (1.1) we obtain 

(1.2) 

where 

Vs = (;:r/2 = ( "(~Tr/2 (1.3) 

is the wave propagation speed, known as the adiabatic sound speed. Fig. 1 
illustrates the regions of fluid compression and rarefaction associated with 
the longitudinal motion of sound waves. 
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k 

Fig. 1 Schematic representation of longitudinal sound waves 
that propagate in a compressible, nonconducting fluid, showing 
the regions of compression and rarefaction associated with the 
longitudinal wave motion. 

1.1 Alfven Waves 

In the case of a compressible, conducting fluid immersed in a magnetic 
field, other types of wave motion are possible. 

We have seen that, in a magnetic field of intensity B0 , the magnetic 
stresses are equivalent to a tension B5 /f-lo along the field lines and an 
isotropic hydrostatic pressure B5/2f1o (see section 5, Chapter 12). Since 
the latter can always be combined with the kinetic fluid pressure, the mag­
netic field lines behave effectively as elastic cords under a tension B5/ /10· 
Further, in a perfectly conducting fluid the plasma part icles behave as if 
they were t ied to the magnetic field lines (see section 4, Chapter 12), so 
that the lines of force act as if they were mass-loaded strings under ten­
sion. Thus, by analogy with the transverse vibrations of elastic strings, 
we expect that, whenever the conducting fluid is slightly disturbed from 
the equilibrium conditions, the magnetic field lines will perform transverse 
vibrations. 
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t 

Fig. 2 Transverse Alfven waves in a compressible, conducting 
magnetofluid. The velocity of propagation is along the magnetic 
field lines, whereas the fluid motion and magnetic field line per­
turbations are perpendicular to the field lines. 
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The speed of propagation of these transverse vibrations is expected 
to be given by 

VA = (tensi~n) 1/2 = ( B5 ) 1/2 

dens~ty t-toPm 
(1.4) 

which is known as the Alfven speed, since the existence of this type of low­
frequency wave motion in a conducting magnetized fluid was first pointed 
out by Alfven, in 1942. An important property of these waves, as will be 
shown later, is the absence of any fluctuations in the fluid density (Pm) or 
pressure (p). Fig. 2 illustrates the transverse motions of the fluid (and of 
the frozen in field lines) for the Alfven wave. 

1.2 Magnetosonic Waves 

Longitudinal oscillations are also expected to occur in a compress­
ible, conducting fluid in a magnetic field. For motion of the particles (and 
propagation of the wave) along the magnetic field lines there will be no 
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Fig. 3 Longitudinal sound waves propagating along the mag­
netic B.eld lines in a compressible, conducting magnetofluid. 

magnetic field perturbations, since the particles are free to move in this 
direction. Thus, in this case, the waves will be ordinary longitudinal sound 
waves propagating at the sound speed Vs along the field lines (see Fig. 3). 

On the other hand, for motion of the particles (and propagation of 
the wave) in a direction perpendicular to the magnetic field, a new type of 
longitudinal wave motion is possible since now, in addition to the kinetic 
fluid pressure p, there is also the magnetic pressure B5/ 2f.lo· Hence, the 
total pressure is p + B5 / 2f.lo and, consequently, the speed (Vm) of propa­
gation of these so-called magneto sonic or magnetoacoustic waves (see Fig. 
4) satisfies the following relation, analogous to (1.2), 

V7(p+ ~:) = v~ V7pm (1.5) 

Therefore, we can write 

v.2 = __!:.__ (P + B5 ) = v2 + __!:.__ ( B5 ) (1.6) 
m dpm 2flo Pmo 8 dpm 2flo Pm o 

where the suffix zero, in Pm , refers to the undisturbed state, and Vs is the 
adiabatic sound speed. Since the lines of force are frozen in the conducting 



15. MAGNETOHYDRODYNAMIC WAVES 

----4~k 

Fig. 4 Tbe longitudinal magnetosonic wave propagates per­
pendicularly to tbe magnetic field lines, causing compressions 
and rarefactions of botb tbe lines of force and tbe conducting 
fluid. 
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B 

fluid, the magnetic flux B dS across an element of surface dS (whose 
normal is oriented along the magnetic field) and the mass Pm dS of a unit 
length of column having dS as base are both conserved during the wave 
motion, in such a way that (B / Pm) = (Eo/ Pmo). Consequently, (1.6) 
becomes 

V? =V2 +~(B5p~) =V2+V2 (1.7) 
m s d 2 2 sA Pm f..LOPmo Prno 

where VA is the Alfven speed defined in (1.4) . 
For propagation in a direction inclined with respect to the magnetic 

field the wave motion behavior is more complex. This subject will be 
considered in some detail in section 5. 

2. MHO EQUATIONS FOR A COMPRESSIBL 
NONVISCOUSCO~N~D~C~I~~E~~------------------~~ 

2.1 Basic Equations 

To investigate the propagation of waves in a conducting magnetofluid, 
let us consider a compressible, nonviscous, perfectly conducting fluid im­
mersed in a magnetic field. The appropriate system of equations, which 



380 FUNDAMENTALS OF PLASMA PHYSICS 

governs the behavior of this type of fluid, with the assumptions involved, 
were summarized in section 1 of Chapter 12. These equations are 

8u 
Pm &t + Pm(u · \7)u = -\7p + J X B 

\7p = Vs2 \7 Pm 

\7 x B = J-toJ 

8B 
\7xE=--

8t 

E+uxB=O 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

To reduce this system of equations we combine equations (2.2) to (2.4) in 
the form 

8u 2 1 
Pm-8 + Pm(u · \7)u = -V8 \7pm +- (\7 x B) x B (2.7) 

t J-to 

as well as (2.5) and (2.6) in the form 

8B 
\7 x (u x B) = 8t (2.8) 

Under equilibrium conditions, the fluid is assumed to be spatially uniform 
with constant density Pmo, the equilibrium velocity is considered zero, and 
throughout the fluid the magnetic induction B 0 is uniform and constant. 

In order to deduce the dispersion relation for small-amplitude waves, 
consider small-amplitude departures from the equilibrium values, so that 

B(r, t) = Bo + B1(r, t) 

Pm(r, t) = Pmo + Pml (r, t) 

(2.9) 

(2.10) 

u(r, t) = u1 (r, t) (2.11) 

Substituting (2.9) to (2.11) into (2.1), (2.7), and (2.8), and neglecting 
second-order terms, we obtain the following linearized equations in the 
small first-order quantities: 

(2.12) 
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8u1 2 1 
Pmo-8 + Vs \7 Pm1 +- Bo X (\7 X B1) = 0 (2.13) 

t ~0 

8B1 8t - \7 x (u1 x Bo) = 0 (2.14) 

2.2 Development of an Equation for the Fluid Velocity 

Equations (2.12) to (2.14) can be combined to yield an equation for 
u 1 alone. For this purpose, we first differentiate (2.13) with respect to 
time, obtaining 

(2.15) 

Next, using (2.12) and (2.14), we can write (2.15) as 

where we have introduced the vector Alfven velocity 

VA= Bo 
(~oPmo) 1 /2 

(2.17) 

Without loss of generality, we can consider plane wave solutions for (2.16) 
in the form 

u 1 ( r, t) = u 1 exp ( ik · r - iwt) (2.18) 

In what follows, u 1 can stand for either the amplitude or the entire ex­
pression (2.18). Thus, in (2.16) we can replace the operator \7 by ik and 
the partial time derivative by -iw, so that 

-w2u1 + V1(k · U1)k- VA X {k X [k X (u1 XV A)]} = 0 (2.19) 

Since for any three vectors A, B, and C we have the vector identity 

A X (B X C) = (A. C)B- (A. B)C (2.20) 

we can rearrange (2.19) to read 
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(k · V A)[(k · V A)lll -(VA· u1)k- (k · u1)V A] = 0 (2.21) 

Although this expression appears to be somewhat involved, it leads tore­
markably simple solutions for waves propagating in the directions parallel 
or perpendicular to the magnetic field. 

3. 

When the wave vector k is perpendicular to the magnetic induction 
Bo, we have k ·VA= 0, and (2.21) simplifies to 

(3.1) 

from which we obtain 

(3.2) 

Therefore, u1 is parallel to k, so that k · u1 = k u1, and the solution for 
u1 is a longitudinal wave with the phase velocity 

w = (V2 + V2)1/2 
k s A (3.3) 

The magnetic field associated with this longitudinal wave can be ob­
tained from (2.14). Taking 

B1(r, t) = B1 exp (ik · r- iwt) (3.4) 

we obtain 
-wB1- k x (u1 x Bo) = 0 (3.5) 

Using the vector identity (2.20) and noting that k · B0 = 0, we find 

(3.6) 

The electric field associated with this wave is seen, from (2.6), to be 
given by 

E = -u1 x Bo (3.7) 

This wave is somewhat similar to an electromagnetic wave, since the 
time-varying magnetic field is perpendicular to the direction of propa­
gation, but parallel to the magnetostatic field, whereas the time-varying 
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electric field is perpendicular to both the direction of propagation and the 
magnetostatic field. It is a longitudinal wave, however, since the velocity 
of mass flow and the fluctuating mass density associated with the wave 
motion are both in the wave propagation direction. For these reasons, this 
wave is called the magnetosonic wave. The phase velocity (3.3) is inde­
pendent of frequency, so that it is a nondispersive wave. As illustrated in 
Fig. 4, the magnetosonic wave produces compressions and rarefactions in 
the magnetic field lines without changing their direction. Since the fluid 
is perfectly conducting, the lines of force and the fluid move together. 

The restoring forces operating in the magnetosonic wave are the fluid 
pressure gradient and the gradient of the compressional stresses between 
the magnetic field lines. When the fluid pressure is much greater than the 
magnetic pressure, the effect of the magnetic field is negligible, so that 
( w / k) = Vs and the wave becomes essentially an acoustic wave. On the 
other hand, when the magnetic field is very strong so that the magnetic 
pressure is much larger than the fluid pressure, then the phase velocity of 
the magnetosonic wave becomes equal to the Alfv€m wave velocity VA. 

The magnetosonic wave mode is also known variously as the compres­
sional Alfven wave or the fast Alfven wave. 

For waves propagating along the magnetic field (k II B 0), we have 
k ·VA = k VA, and (2.21) simplifies to 

(k2V1- w2)ul + (V8
2 /Vl- 1) k2 (ul · V A)V A= 0 (4.1) 

In this case, there are two types of wave motion possible. 
For u1 parallel to Bo and k, we find from (4.1) that a longitudinal 

mode is possible, with the phase velocity 

w 
- = V8 (4.2) 
k 

This is an ordinary longitudinal sound wave, in which the velocity of mass 
flow is in the propagation direction (refer to Fig. 3). There is no electric 
field, electric current density, or magnetic field associated with this wave. 

A transverse wave, with u1 perpendicular to B 0 and k, is the other 
possibility. In this case u 1 ·VA= 0 and (4.1) gives for the phase velocity 
of this transverse wave, known as the Alfven wave, 

w 
-=VA 
k 

(4.3) 
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Since the phase velocity is independent of frequency, there is no dispersion. 
The magnetic field associated with the Alfven wave is found, from 

(2.14) and (3.5), to be given by 

(4.4) 

Hence, the magnetic field disturbance is normal to the original magneto­
static induction Bo. The small component B1, when added to Bo, gives 
the lines of force a sinusoidal ripple, shown in Fig. 5. The associated 
electric field is given by (3.7). 

The Alfven wave involves no fluctuations in the fluid density or pres­
sure, although both the fluid and the magnetic field lines oscillate back 
and forth laterally, in the plane normal to Bo. The magnetic energy den­
sity of this wave motion (Brf2J.to) is equal to the kinetic energy density of 
the fluid motion (Pmoui/2). This equipartition of energy is easily verified 
from (4.4), 

Br B3ui 
2J.to 2J.to(w/k)2 

(4.5) 

where we have used (4.3) and (2.17). 
The Alfven wave mode is also known variously as the shear Alfven 

wave or the slow Alfven wave. 

Let us now investigate the case of wave propagation in an arbitrary 
direction with respect to the magnetic induction Bo. With no loss of 
generality, we introduce a Cartesian coordinate system such that the y 
axis is normal to the plane defined by the direction of propagation k and 
the magnetic induction B0 , and choose z to be along Bo, as shown in Fig. 
6. Denoting the angle between k and Bo by B, we have 

k = k (x sin B + z cos B) 

k . v A = k VA cos B 

k · u1 = k (ulx sin B + U!z cos B) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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Fig. 5 Schematic illustration for Alfven waves propagating 
along the magnetic field, showing the relations between the os­
cillating parameters. 
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(5.6) 

Substituting these expressions into (2.21), performing the required alge-
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z 

r··v· 

X 

Fig. 6 Cartesian coordinate system showing the relative orien­
tation of the vectors k and B0 . 

bra, and rearranging the terms, we obtain for the x component equation, 

for the y component equation, 

(5.8) 

and for the z component equation, 

5.1 Pure Alfv{m Wave 

From (5.8) we see that (for u 1y =/= 0) there is a linearly polarized wave 
involving oscillations in the direction perpendicular to both k and B0 , 

with a phase velocity given by 

w k =VA cos() (5.10) 
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The field components associated with this wave can be seen to be B1y, 

u1y, E1x, and J1x, so that it is a transverse Alfven wave. For this reason, 
this wave is generally referred to as the pure Alfven wave. Note that for 
propagation along the magnetostatic field (0 = 0) equation (5.10) gives 
(w/k) =VA, while for propagation across the magnetostatic field (0 = 90°) 
this wave does not exist, since (w/k) = 0. This wave mode is also known 
as the oblique Alfven wave. 

5.2 Fast and Slow MHD Waves 

Equations (5.7) and (5.9) constitute a system of two coupled equations 
for the amplitudes of u1x and U1z. To have a solution in which u1x and u1z 
are nonzero, the determinant of the matrix formed with the coefficients 
of this system must vanish. Therefore, setting to zero the determinant of 
the following matrix, 

(k2~2 sin 0 cos 0) ) 
( -w2 + k2~2 cos20) 

(5.11) 
we obtain the following dispersion relation, expressed in terms of the phase 
velocity (w/k), 

(w) 4 2 2 (W) 2 2 2 2 k - (Vs +VA) k + Vs VA COS 0 = 0 (5.12) 

Solving this equation for ( w / k )2 , we obtain two real solutions: 

(5.13) 

The solutions with the plus and minus signs are called, respectively, the 
fast and the slow MHD wave modes. Note that taking the square root of 
(w/k) 2 does not give two different modes, but only waves with opposite 
directions of propagation. 

5.3 Phase Velocities 

All three MHD wave modes have constant phase velocities, given by 
(5.10) and (5.13), for all frequencies, and hence there is no wave dis­
persion. Fig. 7 displays the phase velocity, for each of these waves, as a 



388 FUNDAMENTALS OF PLASMA PHYSICS 

function of the angle () between k and Bo, for both cases when VA > Vs 
and when VA < Vs. 

The phase velocity of the fast MHD wave increases from VA (or Vs 
if Vs > VA), when()= 0, to (V8

2 + V1) 112 when()= goo, while that of 
the slow MHD wave mode decreases from Vs (or VA if Vs > VA), when 
() = 0, to zero when () = goo. 

Therefore, if VA > V8 , the fast MHD wave becomes the Alfv{m wave 
for () = 0, and the magnetosonic wave for () = goo, while the slow MHD 
wave becomes the sound wave for () = 0, and does not exist for () = goo. 
On the other hand, if Vs > VA, the fast MHD wave becomes the sound 
wave for () = 0, and the magnetosonic wave for () = goo, while the slow 
MHD wave becomes the Alfv{m wave for () = 0, and does not exist for 
()=goo. 

5.4 Wave Normal Surfaces 

The dependence of the phase velocity on the angle between k and 
B 0 , for these waves, can be conveniently represented by means of dia­
grams called phase velocity surfaces or wave normal surfaces, which give 
the variations of the magnitude of the phase velocity with respect to the 
magnetic field direction. Fig. 8 shows the wave normal diagram for the 
pure Alfven wave, constructed from (5.10). In this diagram the magnitude 
of a vector drawn from the origin to a point P on the curve represents the 
phase velocity of a plane wave for a given direction ( ()) of the wave normal 
with respect to B0 . The actual state of affairs, in three dimensions, is 
obtained by rotating the curves shown in Fig. 8 about the axis oriented 
along B0 . The three-dimensional surface, thus obtained, is called the wave 
normal surface. 

Fig. g shows the wave normal diagrams for propagation of the pure 
Alfven, the fast and the slow MHD waves, for the two cases VA > Vs 
and VA < V8 • The three-dimensional wave normal surfaces are obtained 
by rotating the curves of shown in Fig. g about the axis oriented along 
B 0 . The wave normal surface corresponding to the fast MHD wave is a 
smooth, closed surface enclosing the two spheres passing through the origin 
0 corresponding to the pure Alfven wave. Within each of these spheres, 
there is another smooth, closed wave normal surface corresponding to the 
slow MHD wave. 



15. MAGNETOHYDRODYNAMIC WAVES 

ro/k 

ALFVEN 

Vs 

0 

t 
k II Bo 

ro/k 

SOUND 
(VA2 + Vs2)1/2 

Vs IL---~· 

i 
k II Bo 

MAGNETOSONIC I 

(a) 

I 
I 
I 

i 
k.l. Bo 

MAGNETOSONIC 1 

FAST MHO 
\l 

t 
k.l. Bo 

(b) 

e 

e 

Fig. 7 Phase velocities (independent of frequency) as a function 
of the angle between k and B0 for the pure Alfven, the fast and 
the slow MHD waves, for (a) VA> Vs and (b) VA< Vs . 
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Fig. 8 Wave normal diagram for the pure Alfven wave illustrat­
ing the variations of the phase velocity for a given direction (0) 
of the wave normal with respect to the magnetic field direction. 

In magnetohydrodynamics the displacement current term (Eo8E/8t), 
which appears in Maxwell V' x B equation, is usually neglected. This 
approximation is valid only for highly conducting fluids at relatively low 
frequencies (well below the ion cyclotron frequency), as discussed in sec­
tion 6 of Chapter 9. The inclusion of the displacement current in the 
basic equations modify the propagation characteristics of the Alfven and 
magnetosonic waves. The results obtained, however, are valid only at fre­
quencies where charge separation effects are unimportant (otherwise we 
must consider p =/= 0). 
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Fig. 9 Wave normal diagrams for the pure Alfven, the fast and 
the slow MHD waves for the cases (a) VA> Vs and (b) VA< V8 • 
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6.1 Basic Equations 

To investigate the effect of the displacement current on the propa­
gation of MHD waves in a compressible, nonviscous, perfectly conducting 
fluid, (2.4) must be modified to read 

1 8E 
V' X B = J.LoJ + -­

c2 8t 
(6.1) 

Consequently, the current density to be inserted into the J x B term, in 
the equation of motion (2.2), is now 

J = 2_ [Y' x B + 1
2 8

8 (u x B)] 
J.Lo c t 

(6.2) 

where use was made of (2.6). Using expressions (2.9) to (2.11) for small­
amplitude waves, the set of linearized equations (2.12) to (2.14) for the 
small quantities Pml, U1, and B1 become now 

(6.3) 

8u1 2 1 ( 1 8u1 ) 
Pmo -8 + Vs Y' Pml + - Bo X Y' X B1 + 2-8 X Bo = 0 

t J.Lo c t 
(6.4) 

8B1 8t - V' x ( u 1 x Bo) = 0 (6.5) 

6.2 Equation for the Fluid Velocity 

To obtain an equation involving only the variable u 1 , let us take the 
time derivative of (6.4), and use (6.3) and (6.5), which gives 

8;~l - V8
2 \i'(\i' · u1) +VA X {\7 X [\7 X (ul XV A)]} + 

(6.6) 

where VA is the Alfven velocity, defined in (2.17). From the vector inden­
tity (2.20), we have 

( 82u ) 82 
VA X ot2

1 XV A = 8t2 [Vlul- (VA· ui)V A] (6.7) 
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so that (6.6) can be rearranged in the form 

VA X {\7 X [\7 X (ul XV A)]}= 0 (6.8) 

It is clear that this equation reduces to (2.16) when (VA/c) 2 « 1. 
Plane wave solutions of (6.8), in the form (2.18), give 

(k ·VA) [(k · V A)ul - (VA· u1)k- (k · u1)V A] = 0 (6.9) 

6.3 Propagation Across the Magnetostatic Field 

Fork _l_ Bo we have k ·VA = 0, so that (6.9) gives (VA· u1) = 0 and 

This equation is similar to (3.1), except that the square of the frequency 
is multiplied by the factor (1 + V]jc2 ). Thus, the phase velocity of the 
longitudinal magnetosonic wave propagating across B 0 now becomes 

(6.11) 

6.4 Propagation Along the Magnetostatic Field 

Fork II Bo, inspection of (6.9) shows that for u1 parallel to VA (i.e., 
B0 ) it becomes identical to (2.21). Thus, for the longitudinal sound wave 
propagating along the magnetic field there is no change from the results 
obtained before. 

However, for the transverse Alfven wave considering (u1 j_ k) we have 
(VA · u1) = 0 and (6.9) reduces to 

(6.12) 
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Consequently, the modification introduced in the Alfven wave by the 
displacement current is that the square of the frequency must be multiplied 
by the factor (1 + V]jc2 ). Thus, the phase velocity of the Alfven wave 
becomes 

k 
(6.13) 

w 

In the usual limit of (VA/c) 2 « 1, (6.13) reduces to (4.3) and the effect 
of the displacement current is unimportant. When using these results, 
however, it must be kept in mind that they are valid only for frequencies 
such that charge separation effects are negligible, since the electric force 
term has been neglected in the equation of motion (2.13). 

D ............................ .. 

In this section it is shown that when the fluid is not perfectly con­
ducting, but has a finite conductivity, or if viscous effects are present, the 
MHD waves will be damped. Denoting the kinematic viscosity (fluid vis­
cosity divided by mass density) by T/k and the magnetic viscosity by Tfm, as 
defined in (12.2.5) (Eq. 2.5 in Chapter 12), the linearized set of equations 
(2.12) to (2.14) are modified to include additional terms as follows: 

(7.1) 

(7.2) 

(7.3) 

Although for a compressible fluid the use of the simple viscous force term 
Pmo T/k V'2u 1 is not really adequate, it is, nevertheless, expected to give 
the correct order of magnitude behavior. The displacement current is not 
included in the treatment presented in this section in order to simplify 
matters. 

For plane wave solutions, the differential operators gt and \7 are re­
placed by -iw and ik, respectively, so that the set of differential equations 
(7.1) to (7.3) are replaced by a corresponding set of algebraic equations. 
Thus, we obtain 

(k. lli) 
Pml = Pmo --­

w 
(7.4) 
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w ul = Pml Vs2k + 1 Bo X (k X Bl)- i'r]kk2ul (7.5) 
Pmo ftoPmo 

1 
B1 = - ( . k2) k x (u1 x B0) (7.6) 

w+~'f]m 

Substituting (7.4) and (7.6) into (7.5), and rearranging, we get 

-w2 ( 1 + i'r]:k2) ( 1 + i'r]:k2) ul + ( 1 + i'r]:k2) Vs2 (k . ul)k -

VA X {k X [k X (ul XV A)]} = 0 (7.7) 

Comparing this equation for u1 with (2.19), we see that we obtain the 
same results as before, except that w2 must be multiplied by the factor 
(1 + i'r]kk2 /w)(1 + i'r]mk2 jw), and Vs2 must be multiplied by the factor 
(1 + i'f]mk2 /w). 

7.1 Alfven Waves 

For the case of transverse Alfven waves propagating along B 0 , the 
relation ( 4.3) between w and k becomes 

k2V] = w2 ( 1 + i'r]:k2) ( 1 + i'f}:k2) 

= w2 [1 + i('f]k + "7m)k2 - 'f]kTJmk4 ] 

w w2 
(7.8) 

In order to simplify this result we shall assume that the correction terms 
corresponding to the kinematic and magnetic viscosities are small, so that 
the term in the right-hand side of (7.8) can be neglected. Thus, 

k2V] ~ w2 [ 1 + i(TJk +wTJm)k2 J 

~ w2 [ 1 + i('f]k ~l'fJm)w] (7.9) 

where we have replaced w / k, in the right-hand side, by the first-order result 
(VA)· Using the binomial expansion approximation (1 + x) 112 ~ 1 + x/2, 
valid for x « 1, (7.9) can be further simplified to 

k rv .!:!____ i(TJk + 77m)w2 

-VA+ 2V1 
(7.10) 
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The positive imaginary part in this expression for k(w) implies in 
wave damping. This is easily seen by writing k = kr + i ki, with kr and 
ki real numbers, and noting that 

exp (ikz) = exp ( -kiz) exp (ikrz) (7.11) 

which represents a wave propagating along the z axis with wave number 
kr, but having an exponentially decreasing amplitude, which falls to 1/e 
of its original intensity in a distance of 1/ ki. 

Expression (7.10) shows that the attenuation of Alfven waves in­
creases rapidly with frequency (or wave number), but decreases rapidly 
with increasing magnetic field intensity. Also, the attenuation increases 
with the fluid viscosity and with the magnetic viscosity. The latter in­
creases as the fluid conductivity decreases. 

7.2 Sound Waves 

For longitudinal sound waves propagating along B0 , (4.2) is modified 
to read 

(7.12) 

Considering that the resistive and viscous correction terms are small, we 
find 

k rv ~ i'f]kW2 
- V. + 2V3 

s s 
(7.13) 

This result shows that the attenuation of sound waves also increases 
rapidly with frequency, but decreases with increasing sound velocity. It 
also increases with increasing fluid viscosity, as expected. 

7.3 Magnetosonic Waves 

For longitudinal magnetosonic waves propagating across B0 , the dis­
persion relation becomes [see (3.3)] 

(7.14) 

To simplify this expression we consider that the kinematic and mag­
netic viscosities are small and neglect the term involving the product 
"lm'fJkk4 fw 2 • Hence, (7.14) becomes, after some rearrangement, 

k2 (V8
2 + Vl) ~ w2 { 1 + i : [ 'fJk + "lm ( 1- k:~82 )]} (7.15) 
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In the terms in the right-hand side of (7.15) we can replace (w2 jk2 ) by 
the approximate result (Vs2 + V1), so that (7.15) can be further simplified 
to give the following dispersion relation: 

(7.16) 

Thus, the attenuation of magnetosonic waves also increases with frequency 
and with kinematic and magnetic viscosities, but decreases with increasing 
magnetic field strength. 

15.1 Calculate the speed of an Alfven wave for the following cases: 
(a) In the Earth's ionosphere, considering that ne = 105 cm-3 , B = 0.5 
gauss, and that the positive charge carriers are atomic oxygen ions. 
(b) In the solar corona, assuming ne = 106 cm-3 , B = 10 gauss, and that 
the positive charge carriers are protons. 
(c) In the interstellar space, considering ne = 107 m-3 and B = 10-7 

tesla, the positive charge carriers being protons. 

15.2 Show that the Alfven wave propagating along the magnetic field is 
circularly polarized. 

15.3 For the pure Alfven wave propagating at an angle() with respect to 
the magnetostatic field B0 , with phase velocity given by (5.10), determine 
relations between the associated field components B1y, u1y, E1x, and J1x· 

15.4 Include the effect of finite conductivity in the derivation of the 
equations for the plane Alfven wave propagating along the magnetic field. 
Show that the linearized equations are satisfied by solutions of the form 
exp (az- iwt) and determine the coefficient a. 

15.5 A plane electromagnetic wave is incident normally on the surface 
of a conducting fluid of large but finite conductivity (a), immersed in a 
uniform magnetic field B 0 such that k j_ B 0 . Assume that the magnetic 
field (B) of the incoming wave is parallel to B0 . Show that there are two 
wave modes that penetrate the fluid. One of them is an unattenuated 
magnetosonic wave and the other one is a mode that has an effective skin 
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depth 0 = (V8 /Vm) Ore, where Vs and Vm are the sound and magnetosonic 
velocities, respectively, and Ore is the skin depth in a rigid conductor. 

15.6 For the fast and slow MHD waves, let ug and Ut denote the com­
ponents of the mass flow velocity that are longitudinal and transverse, 
respectively, to the direction of propagation. Show that ug and Ut are in 
phase for the fast wave and 180° out of phase for the slow wave. Also, 
show that the perturbations in the kinetic and magnetic pressures are in 
phase for the fast wave and 180° out of phase for the slow wave. 

15.7 Consider the following closed set of MHD equations in the so-called 
Chew, Goldberger, and Low approximation, 

8pm ( ) Bt + \7 · Pm U = 0 

Pm Du=pE-\7(pJ..+ B2)+(B·\7)[(_!__p11-Pl..) B] 
Dt 2J1o Jlo B 2 

£_(piiB2) = 0 
Dt p'fn 

£_(~) -0 
Dt PmB 

\7 x B = JloJ 

8B \7 X E = --
8t 

\7·E=!!_ 
Eo 

E+uxB=O 

In the equations of this set, involving the pressure tensor P, it is considered 
that 

(
Pl.. 0 0) 

P = 0 Pl.. 0 
0 0 Pii 

(a) Taking the equilibrium mean velocity equal to zero, show that the 
dispersion relation for the magnetohydrodynamic waves can be written as 
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2 ( B5) 2 • 2 ( B5 ) Pmo w +cos (} p 11 - pj_ - f-Lo - k sm (} 2pj_ + f-Lo 

Pmo w2 - 3p 11 k2 cos2B 

where() is the angle between k and Bo, and where p 11 , pj_, and Bo stand 
for the unperturbed quantities. 
(b) Show that these waves are unstable for all values of () less than a 
critical angle Oc, which satisfies the equation 

B2 2 
0 (1 . 2() ) p j_ • 2() 2 2() - + p j_ + sm c = - sm c + p 11 cos c . 

f-Lo 3P11 



WAVES IN COLD PLASMAS 

In this chapter we analyze the problem of wave propagation in cold 
plasmas. In the cold plasma model the thermal kinetic energy of the 
particles is ignored and the corresponding velocity distribution function 
is a Dirac delta function centered at the macroscopic fluid velocity. The 
study of waves in plasmas is very useful for plasma diagnostics, since 
it provides information on the plasma properties. The theory of wave 
propagation in a cold homogeneous plasma, immersed in a magnetic field, 
is commonly known as magnetoionic theory. 

There are two main different methods of approach that are normally 
used in analyzing the problem of wave propagation in plasmas. In one of 
them, the plasma is characterized as a medium having either a conduc­
tivity or a dielectric constant and the wave equation for this medium is 
derived from Maxwell equations. In the presence of an externally applied 
magnetostatic field, the plasma is equivalent to an anisotropic dielectric 
characterized by a dielectric tensor or dyad. In another approach, Maxwell 
equations are solved simultaneously with the fluid equations describing the 
particle motions. In this case we do not explicity derive a wave equation, 
and expressions for the dielectric or conductivity dyad are not obtained 
directly. Instead, we obtain a dispersion relation, which relates the wave 
number k to the wave frequency w. All the information about the prop­
agation of a given wave mode is contained in the appropriate dispersion 
relation. This method of approach is often straightforward and simpler 
than the other one and is the method we shall adopt in this treatment. 
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The pressure gradient term in the momentum equation can be ne­
glected if the particle thermal velocity is small, when compared to the 
wave phase velocity. For this reason, the cold plasma model gives a satis­
factory description except for waves with extremely small phase velocities. 
For waves with such small phase velocities, the pressure term becomes im­
portant and must be considered for a correct description. The propagation 
of waves in warm plasmas (which includes the pressure gradient term) is 
the subject of the next chapter. 

The study presented here is restricted to small amplitude waves, so 
that the analysis will be based on a linear perturbation theory under the 
assumption that the variations in the plasma parameters (due to the pres­
ence of waves) are small (to the first order), as compared to the undis­
turbed parameters. The plasma is assumed to be homogeneous and infinite 
(no boundary effects), and the externally applied magnetic field is assumed 
to be constant and uniform. This medium is usually called a magnetoionic 
medium. For mathematical simplicity, the analysis will be made in terms 
of plane waves. This does not imply in loss of generality, since any physi­
cally realizable wave motion can, in principle, be synthesized in terms of 
plane waves. 

In the usual magnetoionic theory only the electron motion is consid­
ered. This approximation is adequate for high-frequency waves, i.e., for 
frequencies that are large compared to the ion cyclotron frequency. The 
theory of high-frequency, small-amplitude plane waves propagating in an 
arbitrary direction with respect to the magnetostatic field, in a magne­
toionic medium, is known as the Appleton-Hartree theory, in honor of E. 
V. Appleton and D. R. Hartree, who developed this theory when studying 
the problem of wave propagation in the Earth's ionosphere. At frequen­
cies of the order of the ion cyclotron frequency and smaller, ion motion 
must be considered. The theory of wave propagation in a cold multicom­
ponent plasma is commonly referred to as the hydromagnetic extension of 
magnetoionic theory. 

In a cold electron gas the two hydrodynamic variables involved are the 
electron number density n(r, t) and the average electron velocity u(r, t). 
They satisfy the continuity equation 

&n - + \7 · (nu) = 0 
&t 

(2.1) 
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and the Langevin equation of motion for the electrons 

Du 
m Dt = q(E + u x B)- mvu 

These two equations are complemented by Maxwell equations: 

p 
Y'·E=-

Eo 

Y'·B=O 

aB 
V' X E = -­at 

\7 X B = {Lo ( J + Eo~~) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Considering one type of positive ions of charge qi and number density ni, 
the total electric charge density is given by 

(2.7) 

Since ion motion is not considered (ui = 0), the electric current density is 

J = -enu (2.8) 

As previously discussed, equation (2.4) is actually considered as an initial 
condition for (2.5). Furthermore, (2.3) and (2.6) can be combined to yield 
the electric charge conservation equation. 

~ ............................... . 
Let us separate the total magnetic induction and the electron number 

density into two parts, 

B(r, t) = Bo + B1 (r, t) 

n(r, t) =no+ n1 (r, t) 

(3.1) 

(3.2) 
where B0 is a constant and uniform field, and n 0 is the undisturbed elec­
tron number density in the absence of waves. Denoting by '1/Jj any one 
of the components of the quantities E, B 1, u, and n 1 , we can write, for 
harmonic plane wave solutions, 

'1/Jj(r, t) = '1/Jj exp (ik · r- iwt) (3.3) 
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where k is the wave propagation vector and w is the wave frequency. The 
use of the same symbol to denote the complex amplitude as well as the 
entire expession in (3.3) should lead to no confusion, because in linear 
wave theory the same exponential factor will occur on both sides of any 
equation and can be canceled out. 

Equation (2.2) is not yet quite tractable because of the nonlinear 
terms (u · 'V)u and u x B. This difficulty can be eliminated considering 
u and B 1 as first-order quantities and neglecting second-order terms. As 
discussed in section 3 of Chapter 10, when dealing with wave phenomena in 
plasmas the second-order nonlinear term u x B1 can be neglected provided 
the average electron velocity is much less than the wave phase velocity 
(u « wjk). 

For harmonic plane wave solutions, the differential operators \7 and 
a 1 at are replaced, respectively, by ik and -iw, so that the differen­
tial equations become simple algebraic equations. Therefore, neglecting 
second-order terms, (2.2), (2.5), and (2.6) become, respectively, 

-iwmu = -e(E + u x Bo)- mvu 

k x E = wB1 

ik x B1 = J-1o( -enou- iwEoE) 

(3.4) 

(3.5) 

(3.6) 

where use was made of (2.8) linearized. These three equations involving 
the dependent variables u, E, and B 1 can be used to derive a dispersion 
relation for wave propagation in a cold electron gas. In order to keep 
matters as simple as possible, we investigate initially the characteristics 
of wave propagation in a cold isotropic plasma with B0 = 0 .. 

4.1 Derivation of the Dispersion Relation 

In the absence of an externally applied magnetic field (Bo = 0) the 
Langevin equation (3.4) yields 

e 
U=- E 

m(v-iw) 
(4.1) 

Combining (3.5), (3.6), and (4.1), we obtain 

· 2 w2 
k x (k x E) = - ~Wf1oe no E - - E 

m(v- iw) c2 
(4.2) 
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__ ___. ... k 

Fig. 1 Longitudinal and transverse components of the electric 
B.eld vector with respect to the wave propagation vector k. 

It is convenient to separate the electric field vector in a longitudinal 
component E£ (parallel to k) and a transverse component Et (perpendic­
ular to k), 

(4.3) 

as shown in Fig. 1. Note that the indices € and t refer to the direction of 
the wave vector k, whereas the indices 11 and .l, when used, refer to the di­
rection of the externally applied magnetic induction vector B 0 . Therefore, 
we have 

k X E £ = 0 

k X (k X Et) = -k2Et 

and (4.2) becomes 
. 2 2 

- k2Et = - [ ~WJ.toe no + ~] (E£ + E t) 
m(v - iw) c2 

This equation can be separated into a longitudinal component, 

[ w~e - w2 J E£ = 0 
c2 (1 + ivjw) c2 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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and a transverse component, 

2 2 
2 [ wpe w ] -k Et = -- Et 

c2(1 + ivjw) c2 
(4.8) 

Equation ( 4. 7) yields the following dispersion relation for a longitudinal 
mode (Ec =J 0): 

(4.9) 

For a transverse mode (Et =J 0) the dispersion relation is, from (4.8), 

(4.10) 

4.2 Collisionless Plasma 

For simplicity, we consider first the case in which the collision fre­
quency is much less than the wave frequency ( v « w), so that the effect 
of collisions can be ignored. In subsection 4.4 we shall take into consider­
ation the effect of collisions. Thus, for ( v / w) « 1 the dispersion relation 
(4.9) for the longitudinal mode becomes 

(4.11) 

while, for the transverse mode, (4.10) becomes 

(4.12) 

Equation ( 4.11) shows that longitudinal oscillations (Ec =J 0) can 
occur just at the plasma frequency Wpe. These longitudinal oscillations 
are the same plasma oscillations discussed in section 1 of Chapter 11. It 
is seen from ( 4.1) that the electrons oscillate with a velocity given by 

ie 
u= -- Ec 

mw 
(4.13) 

From (4.4) and (3.5) it is clear that B 1 = 0, so that there is no magnetic 
field associated with these longitudinal oscillations. Further, there is no 
wave propagation, since there is no relative phase variation from point 
to point. These oscillations are therefore longitudinal, electrostatic, and 
stationary. ·In the next chapter we shall consider wave propagation in a 
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warm plasma, where it will be shown that these electron plasma oscilla­
tions correspond to the zero-temperature limit of the longitudinal mode 
of propagation called the electron plasma wave. 

Considering now the dispersion relation (4.12) for transverse waves 
(Et =f. 0), it is seen that k2 is positive for w > Wpe and negative for w < Wpe· 
Hence, for traveling waves (with w real) k becomes imaginary for w < Wpe· 
Writing k = (3 + ia, where (3 and a are real quantities, it is seen from 
(4.12) that for w > Wpe (k = (3; a= 0) the transverse wave propagates 
with a phase velocity ( w divided by the real part of k) given by 

w c 
Vph = k = (1- w~efw2)1/2 (w > Wpe) (4.14) 

Also, for w > Wpe, the group velocity of the transverse wave can be obtained 
differentiating ( 4.12) with respect to k, 

aw c2 
Vg=-=-

8k Vph 
(w > Wpe) (4.15) 

For w < Wpe, k is imaginary ( k = ia) and the transverse wave is 
exponentially damped, since 

Et <X exp (ik(- iwt) = exp (-a() exp ( -iwt) (4.16) 

so that the wave dies out with increasing values of (. Such exponentially 
damped fields are called evanescent waves and do not transport any time­
averaged power. Since (3 = 0, it is easily seen that in this case 

Vph = 00 

Vg = 0 

Also, from (4.12) we find (for w < Wpe) 

where I denotes the imaginary part of. 

(w < Wpe) 

(w < Wpe) 

(4.17) 

(4.18) 

(4.19) 

A plot of phase velocity and group velocity as a function of the wave 
frequency is shown in Fig. 2(a) and the dependence of the attenuation 
factor on the wave frequency is shown in Fig. 2(b). Note that the phase 
velocity is always greater than the speed of light c, but the group velocity, 
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which is the velocity at which a signal propagates, is always less than c, 
in agreement with the requirements of the relativity theory. For w » Wpe 

we find, from (4.14) and (4.15), 

Vph = Vg = C (4.20) 

which shows that for very high frequencies the plane wave characteristics 
of a plasma degenerate to those of free space. This behavior is expected 
on a physical basis, since in the limiting case of infinite frequency even the 
electrons are unable to respond to the oscillating electric field. 

The dispersion relation (4.12) is shown in Fig. 3, where it is plotted 
w as a function of the real part of k. In this text we shall adopt the usual 
graphic representation of dispersion relations, plotting w versus k, rather 
than k versus w. Note that in the frequency region where w < Wpe the 
transverse wave is evanescent. 

From the definition Vg = ow I ok it is clear that at a given point in 
the w(k) curve the group velocity is given by the slope of the tangent to 
the curve at that point, whereas the phase velocity wjk is equal to the 
slope of the line drawn from the origin to this point. This geometrical 
representation is illustrated in Fig. 3. 

4.3 Time-Averaged Poynting Vector 

We evaluate next the time-averaged Poynting vector < S >, which 
gives the time-averaged power flow for the transverse wave. From (3.5), 
taking B1 = J.LoHb we have 

1 
Hl = -(k X E) 

J.LoW 
( 4.21) 

and the expression for < S >,given in (14.5.13) (Eq. 5.13 in Chapter 14), 
becomes 

1 
< s > = ~R{E X Hi}= -R{E X (k* X E*)} 

2J.LoW 

= - 1- R{k* E(r, t) E*(r, t)} n 
2J.LoW 

(4.22) 

where n is a unit vector in the direction of E X Hl. Using (3.3) and 
considering k to be a complex quantity, ( 4.22) becomes 

< S > = n (2::w) R{k* exp [i(k- k*)(]} (4.23) 
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Fig. 2 Frequency dependence of the phase velocity, group 
velocity, and the attenuation factor a, for transverse waves in a 
collisionless isotropic cold electron gas. 
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Fig. 3 Dispersion relation w(k) for the transverse wave mode 
propagating in an isotropic cold electron plasma. Note the geo­
metrical representations for the phase velocity and for the group 
velocity at the point P on the curve. 

409 

Therefore, since k is either real or imaginary according to whether w > Wpe 

or w < Wpe, respectively, it follows from (4.23) that 

< s > =0 for (w < Wpe) 

for (w > Wpe) 

(4.24) 

(4.25) 

where, in (4.25), we have used the relation c2kjw = v9 given in (4.15). 
Thus, for w > Wpe the fields transport power in the direction of Ex H 1, 
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whereas for w < Wpe there is no power flow and the wave is evanescent. 
For this reason, the region w > Wpe is called the propagation region. 

Since the wave is totally reflected for w < Wpe, the frequency w = Wpe 

is often called a reflection point (where k is zero and Vph is infinite). It can 
be shown that the power transmitted into a semi-infinite slab of plasma is 
zero if {3 is zero, so that in a more general sense any frequency for which 
{3 = 0 (i.e., Vph = oo) is referred to as a reflection point. However, if the 
plasma medium is finite, some energy can be transmitted through a finite 
plasma slab even if {3 = 0. Details are provided in problem 16.2. This 
effect is known as the tunneling effect. 

4.4 The Effect of Collisions 

The principal effect of collisons is to produce damping of the waves. 
Before analyzing the dispersion relations (4.9) and (4.10), it is useful to 
discuss some general results concerning dispersion relations of the form 

(4.26) 

where A and B are real quantities. If we separate k into its real and 
imaginary parts, 

k = {3 + ia (4.27) 

where {3 and a are both real, then it is a simple matter to verify that 

A= R{k2 } = {32 - a 2 

B = I{k2 } = 2{3a 

(4.28) 

(4.29) 

On the other hand, since the waves are proportional to exp ( ik( - iwt), 
we have 

exp (ik(- iwt) = exp (-a() exp (if3(- iwt) (4.30) 

Thus, the sign of {3 determines the direction of wave propagation, i.e., 
{3 > 0 implies propagation in the positive direction, whereas {3 < 0 implies 
propagation in the negative direction. The sign of a is related to growing 
or damping of the wave amplitude as the wave propagates. If both a and 
{3 are positive, then the wave travels in the positive ( direction and is 
exponentially damped. If both a and {3 are negative, then the wave trav­
els in the negative ( direction and is also exponentially damped. On the 
other hand, if a and {3 have opposite signs, then the wave is exponentially 
growing (see Fig. 4). In any case, the sign of B determines whether the 



Q. 
>< 
Q) 

-V' 
ij 
I 

Q. 
>< 
Q) 

0 

0 

16. WAVES IN COLD PLASMAS 

k (~ < 0) 

--·· k(~ >0) 
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Fig. 4 (a) For a > 0 the wave amplitude is exponentially 
damped if it propagates in the positive ( direction ({3 > 0), or 
exponentially growing if it propagates in the negative ( direction 
({3 < 0), whereas (b) for a< 0 the opposite situation holds. 
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traveling wave is growing or decaying. For B > 0, the wave amplitude 
is damped with distance, whereas, for B < 0, the wave amplitude grows. 
Similarly, for a dispersion relation having the form 

w2 = C+iD (4.31) 

it can be easily verified that, for standing waves, if D > 0, the wave 
amplitude grows in time, whereas if D < 0, the wave amplitude is damped. 
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Fig. 5 Attenuation factor a as a function of collision frequency, 
considering a given frequency such that w » Wpe, for the trans­
verse wave mode. 

Let us consider now the dispersion relation ( 4.9) for longitudinal os­
cillations, 

(4.32) 

or 
(4.33) 

This equation shows that for any value of v the imaginary part of w is 
negative, so that the oscillation is damped, since it is proportional to 
exp ( -iwt). 

For the transverse mode the dispersion relation ( 4.10) gives 

(4.34) 

Consequently, in the propagation band B = I { k2 } is negative and the 
traveling waves are damped for all frequencies. A plot of the attenuation 
factor a = I { k}, as a function of the normalized collision frequency ( v / w), 
is shown in Fig. 5, calculated from ( 4.34) for a given frequency w much 
larger than the plasma frequency Wpe. Fig. 6 shows the dispersion relation 
w(k) for the transverse mode of propagation, considering several values of 
v, such that v3 > v2 > v1 > 0. 
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Fig. 6 Plot of the dispersion relation w(k) for the transverse 
wave mode in an isotropic cold electron plasma, considering the 
effect of collisions ( v3 > v2 > v1 > 0). 

413 

Consider now the problem of wave propagation in a cold electron 
plasma, when there is a uniform magnetostatic field externally applied. 
The presence of the magnetostatic field B0 introduces a space anisotropy 
in the plasma. 
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5.1 Derivation of the Dispersion Relation 

To derive the dispersion relation for this case, we shall start from the 
coupled set of equations (3.4), (3.5), and (3.6). Combining (3.5) and (3.6), 
and rearranging, this set reduces to 

2 . 
k x (k x E) + ~ E = 1,weno u 

c2 Eoc2 
(5.1) 

( v) ie ie 1 + i- u + - ( u x B0 ) = -- E 
w mw mw 

(5.2) 

If we denote the angle between B0 and k by 0 and choose a Cartesian co­
ordinate system in which z is in the direction of B0 , andy is perpendicular 
to the plane formed by B0 and k (see Fig. 7), then we have 

Bo = Bo z (5.3) 

k = k_L x + k 11 z = k sin (0) x + k cos (0) z (5.4) 

Note that the index symbols 11 and _l are used to denote components 
parallel and perpendicular to the direction of the magnetostatic field B0 , 

whereas the index symbols £and t (used in the previous section) refer to 
vector components longitudinal and transverse with respect to the wave 
vector k, respectively. 

With this choice of coordinate system, we obtain 

k X (k X E) = k2 cos () ( sin 0 Ez- cos 0 Ex) X -

k2 Ey y + k2 sin 0 ( cos 0 Ex -sin 0 Ez) z (5.5) 

Using this result in (5.1), we find the following relations for the x, y, and 
z components of this equation, respectively, 

(5.6) 

(5.7) 

(5.8) 
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z 

X 

Fig. 7 Cartesian coordinate system (x, y , z ), chosen such that 
z is along B0 and y is perpendicular to the plane formed by Bo 
and k. 

which can be written, in matrix form, as 

_ ieno (Ux) - Uy 
EoW 

U z 

415 

(5.9) 

The quantity TJ = ( kc/ w) represents the index of refraction of the medium. 
Next, in order to write (5.2) also in matrix form, we first note that 

(refer to Fig. 7) 
u X Bo = Bo ( Uy X - Ux y) (5.10) 
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Using this result in (5.2) and after some algebraic manipulations, we obtain 
for the x, y, and z components of this equation, respectively, 

( 
. l/ ) . nee ie 

1+z- ux+z-u =--Ex 
w w Y mw 

(5.11) 

. nee ( . l/ ) ie -z-ux+ 1+z- u =--E 
w w Y mw Y 

(5.12) 

( . v) ze 1+z- Uz = -- Ez 
w mw 

(5.13) 

where nee denotes the electron cyclotron frequency. Introducing now the 
notation 

,l/ 
U = 1 +z­

w 

y =nee 
w 
2 

X= wpe 
w2 

we can write (5.11) to (5.13) in matrix form as 

( 
U iY 

-iY U 
0 0 

0 ) ( Ux) __ ~ (Ex) 0 Uy - Ey 
mw U Uz Ez 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

Inverting the 3 x 3 matrix of (5.17), and multiplying this equation by the 
inverted matrix, we find 

___ ze___ iUY U2 ( 
U2 -iUY 

mwU(U2 - Y2 ) O O 
(5.18) 

Equations (5.9) and (5.18) can now be combined to eliminate the velocity 
components Ux, uy, and Uz, yielding the following component equations 
involving only the electric field: 

( XU 2 2 ) iXY 
1 - U2 - y2 - 'TJ cos () Ex + U2 - Y2 Ey + 
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( rJ2 sin (} cos (}) Ez = 0 

iXY ( XU 2 ) 
- U2 - y2 Ex + 1 - U2 - Y2 - TJ Ey = 0 

(TJ2 sin (}cos (}) Ex+ ( 1- ~ - T}2sin2(}) Ez = 0 
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(5.19) 

(5.20) 

(5.21) 

For reasons to become apparent later, it is appropriate to define the fol­
lowing quantities: 

xu 
S = 1- U2- y2 

XY 
D = -U2- Y2 

X 
P=1--

U 

(5.22) 

(5.23) 

(5.24) 

With this notation, (5.19) to (5.21) can be written in matrix form as 

(5.25) 

In order to have a nontrivial solution (E =/= 0), the determinant of 
the 3 x 3 matrix in (5.25) must vanish. This condition gives the following 
dispersion relation, by direct calculation of the determinant, 

+ PRL = 0 (5.26) 

where we have introduced the notation 

R=S+D L=S-D (5.27) 

or 
S=~(R+L) (5.28) 

As will become clear later, in this notation the symbols R and L stand for 
right and left, whereas S and D stand for sum and difference, respectively. 
Since (5.26) is a quadratic equation in TJ2 , there will be in general two 
solutions. Thus, at each frequency there can be two types of waves that 
propagate or two modes of propagation. Note, however, that if we take the 
square root of TJ2 we have two values for TJ, which correspond to opposite 
directions of propagation and not to different wave modes. 
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5.2 The Appleton-Hartree Equation 

This well-known equation has been used with considerable success in 
the analysis of radio wave propagation in the ionospheric plasma, taking 
account of the Earth's magnetic field. It is just the dispersion relation 
given in (5.26), but written in a different form. In order to obtain the 
Appleton-Hartree equation, we first write (5.26) as 

where 
A= S sin20 + P cos20 

B = RL sin20 + SP(1 + cos20) 

C=PRL 

Solving (5.29) for T/2 , we find 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Now we add the quantity ATJ2 to both sides of (5.29) and rearrange, to 
obtain 

2 ATJ2- C 
TJ = ATJ2 + A - B 

(5.34) 

Next, we substitute T/2 , from (5.33), into the right-hand side of (5.34) and 
manipulate, obtaining 

2 _ 1 _ 2(A- B +C) 
TJ - 2A - B ± y' B2 - 4AC 

(5.35) 

Finally, we substitute the appropriate expressions that define the quanti­
ties A, B, C and S, D, P, R, L, to obtain 

where 

2 X 
TJ =1-­

Q 

_ _ Y2 sin2 0 [ Y 4 sin40 2 2 J l/2 
Q - U 2(U - X) ± 4(U - X)2 + y cos 0 

(5.36) 

(5.37) 



16. WAVES IN COLD PLASMAS 419 

This expression is the well-known Appleton-Hartree equation. It is valid 
for high wave frequencies as compared to the ion cyclotron frequency, since 
ion motion was neglected in its derivation. 

Because of the complexity of either (5.36) or (5.26), in order to sim­
plify matters we shall first analyze the cold electron gas dispersion relation 
when k is either parallel or perpendicular to Bo. Afterwards, we shall 
investigate some important aspects of wave propagation at an arbitrary 
angle () with respect to B0 using the dispersion relation (5.36) or (5.26). 

For wave propagation along the magnetic field we have () = 0 and 
(5.25) simplifies to 

(6.1) 

In order to have a nontrivial solution (E f. 0), the determinant of the 
3 x 3 matrix in ( 6.1) must vanish. Thus, by direct calculation of this 
determinant we find three independent conditions: 

rl=B+D=R 

172 = S- D = L 

(E 11 = Et f. 0) 

(E1.- Et # 0) 

(E1. = Et f. 0) 

(6.2) 

(6.3) 

(6.4) 

Using equations (5.22) to (5.24), and (5.14) to (5.16), which defineS, 
D, P and U, Y, X, respectively, we obtain from (6.2), neglecting collisions 
(v = 0), 

(6.5) 

which corresponds to the longitudinal electron plasma oscillations dis­
cussed previously in section 4. Thus, these oscillations along B 0 are not 
affected by the presence of the magnetic field. Since there is no wave 
propagation in this case, these plasma oscillations do not constitute a 
propagation mode. 

Equation (6.3) corresponds to transverse right-hand circularly polar­
ized waves (RCP), with the dispersion relation 

2 X 
17R = 1 - (U - Y) = R (6.6) 
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or, neglecting collisions ( v = 0), 

(6.7) 

Equation (6.4) corresponds to transverse left-hand circularly polarized 
waves (LCP), with the dispersion relation 

2 X 
TIL = 1 - (U + Y) = L (6.8) 

or, neglecting collisions ( v = 0), 

2 
2 wpe 

T/ L = 1 - -----''---
w(w +nee) 

(6.9) 

The polarization of these two transverse modes of propagation can be 
obtained from the x component of (6.1), which gives 

Thus, for the RCP wave mode, substituting rt2 = R, 

Ex . 
-=-Z 
Ey 

whereas for the LCP wave mode, substituting rt2 = L, 

Ex . 
-=z 
Ey 

(6.10) 

(6.11) 

(6.12) 

Since the time dependence of E is of the form exp ( -iwt), if we take 
Ex ex: cos(wt), then, for the RCP wave, we have Ey ex: sin(wt), whereas for 
the LCP wave, we have Ey ex: -sin(wt). Therefore, for an observer looking 
at the outgoing wave (along the positive z direction), as time passes, the 
transverse electric field vector Et rotates in the clockwise direction, for 
the RCP wave, and in the counterclockwise direction, for the LCP wave, 
as illustrated in Fig. 8. Note that the RCP wave rotates in the same di­
rection as the electrons about the magnetic field. This means that, when 
w =nee, the RCP wave is in resonance with the electron cyclotron motion 
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looking at the outgoing wave. 
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and, therefore, energy is transferred from the wave field to the electrons. 
This absorption of energy by the electrons, from the RCP electromagnetic 
wave at the electron cyclotron frequency, is used as a means of heating 
the plasma electrons. When the motion of the ions is taken into account, 
these dispersion equations are slightly modified so that a resonance exists 
between the ion cyclotron motion and the LCP wave when w = flci, since 
the ions gyrate in the same direction as the Et vector of the LCP wave. 

The resonance phenomenon occurs when the wave phase velocity goes 
to zero, Vph = 0 (or 17 ----+ oo), whereas the phenomenon of wave reflection 
occurs when Vph ----+ oo (or 17 = 0). Thus, it is clear from ( 6. 7) and from the 
physical argument just given that the RCP wave has a resonance when 
w = flee, whereas (6.9) indicates no resonance for the LCP wave (when 
ion motion is included, the LCP wave shows a resonance when w = nci). 
Also, from (6.9) it is easily verified that the LCP wave has a reflection 
point (L = 0) at the frequency 

(6.13) 
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and, from (6.7), the RCP wave has a reflection point (R = 0) at the 
frequency 

(6.14) 

The phase velocity of the LCP wave is obtained, from (6.9), as 

(6.15) 

which holds for w > w01 . For w < w01 the wave number k is imaginary 
and the LCP wave is evanescent. Thus, the LCP wave propagates only 
for w > Wol· 

Similarly, the phase velocity of the RCP wave is obtained, from (6.7), 
as 

(6.16) 

which holds for w < flee and for w > Wo2. Thus, the RCP wave propagates 
only in these two frequency ranges and is evanescent for flee < w < wo2 . 

The group velocity for the LCP and RCP waves in their propagation 
bands are given, respectively, by 

(6.17) 

(6.18) 

A plot of phase velocity and group velocity as a function of frequency 
for these two transverse modes is shown in Fig. 9. The same dispersion 
relations (6.7) and (6.9) are plotted, in a different form, in Figs. 10 and 
11, respectively, where the frequency w as a function of the real part of 
the wave number k is shown. The frequency bands for which there is no 
wave propagation are indicated in the plots. 

The RCP wave mode, in the lower branch that has w < flee, is also 
known as the electron cyclotron wave. Similarly, when ion motion is taken 
into account, the LCP mode has also a lower branch of propagation for 
w < flei, with a resonance at flei. The LCP waves having w < flei are 
also known as ion cyclotron waves. 
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'1---------------· 
We consider now wave propagation in the direction perpendicular to 

the magnetostatic field (k .l B0 ). For()= 90°, (5.25) simplifies to 

( S -iD 0 ) (Ex) iD ( S - ry2 ) 0 Ey = 0 
0 0 (P- ry2 ) Ez 

(7.1) 

Again, for a nontrivial solution (E =/:- 0) the determinant of the 3 x 3 
matrix in (7.1) must vanish. Direct calculation of this determinant yields 
the following two independent modes of propagation: 
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Fig. 10 Dispersion plot for the RCP wave mode propagating 
along the magnetostatic field (k 11 Bo). 

2_p 
'f/o-

2 RL 
'f/x=-8 

(E 11 =1- 0) 

(Ej_ =I- 0) 

(7.2) 

(7.3) 

The indices 0 and X refer to ordinary and extraordinary modes, respec­
tively, as will be explained shortly. 

From (7.2) and using (5.24), we obtain the dispersion relation 

2 X 
'flo = 1 - U (7.4) 

or, using (5.14) and (5.16), neglecting collisions (v = 0), 
2 

2 wpe 
'f/o=1-­

w2 
(7.5) 
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This relation is identical to (4.12) for transverse waves in an isotropic cold 
plasma. Hence, this mode of propagation is not affected by the presence 
of the magnetic field B0 and, for this reason, it is called an ordinary wave 
mode. For this mode propagating perpendicular to Bo the wave electric 
field (E 11 =/= 0) is parallel to Bo, so that it involves electron velocities solely 
in the direction of B0 . Consequently, there is no magnetic force acting 
on the electron motion ( u x B0 = 0) and the wave propagates as if Bo 
were zero. The ordinary mode is also commonly called a TEM (transverse 
electric magnetic) mode, since both the electric and magnetic fields are 
transverse to the direction of propagation (E 11 .l k; B .l k). The wave 
electric field is linearly polarized along B 0 . Fig. 12 illustrates the relative 
orientation of these vector fields. 
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Fig. 12 Vector diagram for the ordinary wave propagating 
perpendicular to the magnetic field(()= 1rj2). 

The other mode of propagation (E.1. =I 0) is called the extraordinary 
mode, since it depends on the B 0 field, with the dispersion relation given 
by (7.3), 

or, using (5.14), (5.15), and (5.16), after neglecting collisions (v = 0), 

(w2 - w51) (w2 - w52) 
w2(w2- w~h) 

(7.7) 

where w01 and w02 are given by (6.13) and (6.14), respectively, and where 
Wuh denotes the upper hybrid frequency, defined by 

_ ( 2 n2 )1/2 
Wuh- Wpe+ 3 'ce (7.8) 
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For the extraordinary mode, the wave electric field Et has in general a 
longitudinal component (along k) and a transverse component (normal to 
k), as shown in Fig. 13. Hence, these waves are partially longitudinal 
and partially transverse. From (7.1), the polarization of the extraordinary 
mode is determined by 

Ex iD 
Ey S 

(7.9) 

so that this mode is in general elliptically polarized. The extraordinary 
mode is also commonly called a TM (transverse magnetic) mode, since 
the wave magnetic field is transverse to the direction of propagation. 

From (7.5) it is clear that the ordinary wave has a reflection point 
( Vph ----+ oo or TJ = 0) at w = Wpe and no resonances ( Vph = 0 or TJ ----+ oo). 
For the extraordinary wave, (7.7) indicates a resonance at the upper hybrid 
frequency Wuh and reflection points at wo1 and wo2 (when ion motion is 
included it turns out that the extraordinary wave has also a resonance 
approximately at the lower hybrid frequency, given by w;h = ncenci)· 

The dispersion plot for the ordinary wave is the same as that pre­
sented in Fig. 3 for the transverse wave mode in an isotropic plasma. This 
mode propagates only for w > Wpe. For the extraordinary wave mode, the 
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Fig. 14 Dispersion relation for the extraordinary wave mode 
(rl = RL/S) propagating perpendicular to the magnetic field 
(() = 7r /2). 

dispersion plot shown in Fig. 14 indicates that this mode propagates only 
for w > wo2 and for w in a band of frequencies between w 01 and Wuh· For 
other frequencies k is imaginary and the phase velocity is infinite. 

The phase velocities of the ordinary and extraordinary waves in their 
respective propagation bands are obtained from (7.5) and (7.7), respec­
tively, as 

(7.10) 

(7.11) 

Expressions for the group velocities of these two modes can be derived 
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with the help of (7.5) and (7.7), valid in their respective propagation 
bands, 

( w2 ) 1/2 
(v9 )o = c 1- : 2e (7.12) 

c (w2 - w~h)3/2(w2- w51)1/2(w2 - w52)1/2 
(vg)x = [ 4 2 2(f22 2 ) [24 302 2 4 ] w w - w ce + wpe + ce + cewpe + wpe 

(7.13) 

The dependence of the phase velocity and group velocity on the wave 
frequency, for the extraordinary (TM) mode, is shown in Fig. 15. A 
similar plot for the ordinary (TEM) mode has already been presented in 
Fig. 2 (the same one for the transverse wave in an isotropic plasma). 
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8.1 Resonances and Reflection Points 

Going back now to (5.26), we shall first determine the resonances and 
the reflection points for arbitrary angles of propagation with respect to 
Bo. From (5.33) and (5.30) it is seen that resonance occurs when 

(8.1) 

or 
2 p 

tan (} = - - (8.2) s 
Using (5.22) and (5.24), and neglecting collisions (v = 0), (8.2) yields 

1- X= Y2 (1- X cos20) (8.3) 

or, using (5.15) and (5.16), 

4 2 ( 2 n2 ) 2 n2 2() 0 
W - W Wpe + Hee + WpeHee COS = (8.4) 

Thus, the resonance frequencies are given in terms of the angle (} by 

2 _ 1( 2 n2 ) ± [1( 2 n2 )2 _ 2 n2 2(}]1/2 
Wo± - 2 Wpe + ~Gee 4 Wpe + ~Gee Wpe~ Gee COS (8.5) 

These two resonance frequencies are plotted against (} in Fig. 16. From 
(8.5) it is clear that the sum of the square of these two frequencies (w5+ + 
wL) is always equal to (w~e + n~e) for any angle(} . From Fig. 16 we see 
that the high-frequency resonance increases with increasing (), from the 
larger of Wpe and nee, at (} = 0°, to the Upper hybrid resonance frequency, 
( w~e + n~e) 112 , at (} = goo. The low-frequency resonance decreases cor­
respondingly from the frequency that is the smaller of Wpe and nee, at 
(} = 0°, to zero, at (} = goo. The resonances for (} = 0° and for (} = goo 
are called the principal resonances. At (} = 0° the principal resonances 
are given by S ---+ oo and P = 0, whereas at () = goo there is a principal 
resonance given by S = 0. 

The reflection points are seen, from (5.26), to be given by 

PRL=O (8.6) 

This equation is satisfied whenever P = 0, orR= 0, or L = 0. However, 
for (} = 0°, (5.26) simplifies to 

ry2 - 2Sry + RL = 0 (8.7) 
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so that P = 0 is no longer a reflection point for () = 0°. Thus, for 
propagation exactly along the B0 field the reflection points are given by 
R = 0 and L = 0. But for () =I 0°, irrespective of how small () is, P = 0 
also corresponds to a reflection point. Note that these cut-off frequencies 
are, otherwise, independent of (). The cut-off frequencies and the principal 
resonances are summarized in Table 1. 
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TABLE 1 

CUT-OFFS AND PRINCIPAL RESONANCES 
FOR WAVES IN A COLD ELECTRON PLASMA 

Cut-offs Principal Resonances 
() = oo ()=goo 

P=O ( () -1- oo) P=O S=O 
R=O R=oo 
L=O L=oo 

Expressions for the phase velocity and group velocity for arbitrary 
angles of propagation can be obtained from the dispersion relation (5.26) 
or (5.36). Since this involves considerable algebra, it will not be presented 
here. For this case the curves of k, Vph, and vg, as functions of w, must 
lie somewhere between the corresponding curves for () = 0° (see Figs. g, 
10, and 11) and for () = goo (see Figs. 2, 3, 14, and 15). If the angle () 
is continuously changed from 0° to goo, the corresponding curves for 0° 
must change continuously into those for goo. 

Fig. 17 shows w as a function of the real part of k, while Fig. 18 
shows Vph and Vg as functions of w for the two modes of propagation at an 
angle()= 45° with respect to B0 . It is important to note that the branch 
of mode 2 (that propagates for w01 < w < w0+) and the branch of mode 
1 (that propagates for w > Wpe) are transformed, as () goes to zero, into 
the LCP waves and the electron plasma oscillations at Wpe· This fact is 
indicated schematically in Fig. 1g. 

Fig. 20 is a plot showing the phase velocity versus frequency, illus­
trating how the two modes of wave propagation for () = 0° (LCP and 
RCP waves) evolve into the two modes of wave propagation for () = goo 
(ordinary and extraordinary waves). 

8.2 Wave Normal Surfaces 

The wave normal surface, also known as the normalized phase ve­
locity surface, is a polar plot of the normalized phase velocity Vph/ c as a 
function of(). Because of the symmetry in the azimuthal angle (), it is a sur­
face of revolution about B0 . For any direction of propagation, the length 
(properly normalized) of the line drawn from the origin to intersect this 
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surface corresponds to Vph/ c. The shape of the wave normal surface is 
generally not the same as the shape of a wave front. A typical wave normal 
surface is presented in Fig. 21, in which the velocity of light is shown as 
a dashed circle. The two solutions for ry2 , from (5.26), are superimposed 
on the same coordinate axes as slow and fast waves. The denomination 
slow wave refers to the mode with the largest value of ry2 , whereas the 
fast wave refers to the mode with the smallest value of ry2 . With some 
exceptions, the fast wave has generally a phase velocity greater than c, 
while the phase velocity of the slow wave is generally less than c. 
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Fig. 18 Phase velocity and group velocity as a function of 
frequency for the two modes of propagation at an angle of 45° 
with respect to the magnetostatic field in a cold electron plasma. 

8.3 The CMA Diagram 

The CMA (Clemmow-Mullaly-Allis) diagram is a very compact al­
ternative way for presenting the solutions of the dispersion relation. This 
diagram is constructed in a two-dimensional parameter space having X = 
w;efw2 as the horizontal axis and Y 2 = O~e/w2 as the vertical axis, and 
displays all the resonances and reflection points as a function of both X 
and Y 2 • Thus, in this diagram, the magnetic field increases in the vertical 
direction, the plasma electron density increases in the horizontal direction, 
and the electromagnetic wave frequency decreases in the radial direction 
(in each case, considering all other parameters fixed). Furthermore, the 
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CMA diagram divides the (X, Y2 ) plane into a number of regions such 
that, within each of these regions, the characteristic topological forms of 
the phase velocity surfaces remain unchanged. 

From (8.3), which gives the resonance frequencies, we see that for 
B = 0° the loci of the resonances are given in the CMA diagram by the 
straight line Y2 = 1, and for 0 = 90° by the straight line Y2 = 1 - X. The 
loci of the reflection points, as determined from (8.6), can be shown to be 
the curves Y2 = (1- X) 2 for any angle B, and X= 1 for any angle except 
B = 0°. The two reflection point curves and the two principal resonance 
curves divide the (X, Y2 ) plane into eight regions. In each of these regions, 
a polar plot of the normalized phase velocity ( Vph /c) as a function of B 
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Fig. 20 Phase velocity versus frequency for waves in a cold 
electron plasma, illustrating how the two modes of propagation 
for () = 0° (LCP and RCP) evolve into the two modes for () = 90° 
(0 and X). 

(wave normal surface) is presented for each mode of propagation. 
Fig. 22 shows the CMA diagram for wave propagation in a cold elec­

tron plasma. The dashed lines are the loci of the reflection points and 
the solid lines are the loci of the principal resonances (the dotted line 
indicates the loci of the resonances when (} = 30°). The dashed circles 
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represent the wave normal surface corresponding to the speed of light. The 
slow and fast wave notation, used in Fig. 21, becomes now apparent. The 
labels R (right-hand polarization) and L (left-hand polarization) appear 
on the phase velocity surface only along the magnetic axis (up in the 
diagram). The labels 0 (ordinary) and X (extraordinary) appear only at 
90° with respect to the magnetic field axis. 

In some regions of the CMA diagram certain modes are present and 
others are not. As the boundaries of these regions are crossed, the wave 
normal surfaces for the modes change their shape so that a given mode 
may appear or disappear. For instance, in region I both modes are present, 
but when we move to region II the fast wave disappears. Similarly, if 
the parameters are changed along a path that goes from region VIII to 
VII (decreasing electron density), the fast wave appears as the boundary 
L = 0 is crossed and so on. Note that the same frequency may appear 
in the modes of different regions, depending upon the values of electron 
density and magnetic field. Note also that, although the characteristic 
shapes of the wave normal surfaces remain the same inside each bounded 
region, their magnitudes may change. A detailed examination of the CMA 
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diagram shows that it provides a very broad picture of the nature of the 
waves that propagate in a cold electron plasma. 
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9.1 Atmospheric Whistlers 

The propagation of whistlers is a naturally occurring phenomenon, 
which can be originated by a lightning flash in the atmosphere. During 
thunderstorms and lightning, a pulse of electromagnetic radiation energy 
is produced that is rich in very low frequency components. This pulse, or 
wave packet, propagates through the ionosphere, being guided by ducts 
along the Earth's magnetic field to a distant point at the Earth's surface 
(the magnetic conjugate point). When the whistler is detected at this 
point (see Fig. 23) it is called a short whistler. However, this electromag­
netic signal can be reflected at the Earth's surface and guided back along 
the Earth's magnetic field to a point close to where it originated. If the 
whistler is detected at this point it is called a long whistler. 

As the wave packet, rich in low frequencies, propagates through the 
ionosphere along the Earth's magnetic field, it gets dispersed in such a way 
that the higher frequencies move faster than the lower ones. The frequen­
cies in a whistler are in the audio range, usually between about 100 Hz 
and 10 kHz. Thus, at the point of detection, the higher frequencies arrive 
at the receiver sooner than the lower ones, and if the receiver is attached 
to a loudspeaker we hear a discending pitch whistle. These frequencies are 
usually much smaller than the electron cyclotron frequency in the Earth's 
ionosphere. 

At various locations on the Earth there are stations that continu­
ously record sonograms of whistler activity. A sonogram is a spectrun 
of the wave frequency versus time of arrival, as illustrated in Fig. 24. 
These sonograms are used as an effective diagnostic tool for studying the 
ionospheric conditions. 

The phenomenon of atmospheric whistler propagation can be ex­
plained in terms of the very low frequency ( w < nee) region of prop­
agation of the right circularly polarized wave (refer to Fig. 20). For 
a simplified analysis of this phenomenon, consider the Appleton-Hartree 
equation (5.36), neglecting collisions (U = 1). For propagation nearly 
along the magnetic field lines, and for W « nee and W « Wpe, we have 
Y cos () » Y2 sin2B/[2(1 -X)], so that (5.36), using the minus sign, 
simplifies to 

'f/2 = 1- X 
1- y cos() 

(9.1) 



440 

SHORT 
WHISTLER 

FUNDAMENTALS OF PLASMA PHYSICS 

REFLECTION 

SOURCE 

LONG 
WHISTLER 

Fig. 23 Atmospheric whistler propagation, illustrating the 
detection of a short whistler and a long whistler. 

This equation is often referred to as the dispersion relation for the quasi­
longitudinal mode. For Y cos () » 1 (i.e., w « Dee cos 0) , equation (9.1) 
becomes 

2 X 
T] =1+y () cos 

and considering further that X » Y (i.e. , w~e » wDce), we obtain 

( X ) 112 
T] = y cos() 

The phase velocity is found directly from (9.3), 

- w- (y cos ())1/2 
Vph--- C 

k X 

or, substituting Y = Dce/w and X= w~e/w2 , 

(9.2) 

(9.3) 

(9.4) 

(9.5) 
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Fig. 24 Typical sonogram of a whistler. 

Also, from (9.3) we obtain the group velocity as 

Vg = ow = 2c (wf2ce cos 0) 112 

Ok Wpe 
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(9.6) 

Thus, both the phase velocity and the group velocity are proportional 
to the square root of the wave frequency and consequently the higher 
frequencies arrive at the receiver slightly ahead of the lower frequencies, 
producing a descending pitch whistle when received with a simple antenna 
and loudspeaker. 

The characteristics of atmospheric whistler propagation are such that 
they are situated in region VIII of the CMA diagram. In this region, 
the wave normal diagram for the RCP wave is a lemniscate, as shown 
in Fig. 25. This wave normal surface has a resonant cone, which gives 
the maximum value that the angle (} may have. The angle between the 
direction of propagation of the wave packet and the magnetic field also has 
a maximum value, which specifies the maximum angular deviation (from 
the magnetic field) of the direction in which a wave packet can propagate. 
It can be shown that the maximum value of this angle is about 19.5°. 
Therefore, the wave packet is confined to a beam of less than 20° about 
the magnetic field lines. 
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Fig. 25 Wave normal surface for whistlers and helicons. 

Experiments carried out on whistlers have verified the results pre­
sented here. In addition, when the frequency is near (but smaller than) 
the electron cyclotron frequency, it is possible to have the frequency in­
creasing with the time of arrival. These types of whistlers have been called 
ascending frequency whistlers. In the frequency regime where the whistlers 
change from the ascending to the descending tone they are known as nose 
whistlers. These types of whistlers have also been observed experimentally. 

9.2 Helicons 

The experimentally observed helicon waves, in a solid-state plasma, is 
also a phenomenon related with the right circularly polarized wave prop­
agation in the very low frequency regime. The term helicons comes from 
the fact that the tip of the wave B vector traces a helix. 

Consider a solid-state plasma slab of thickness d, the other two dimen­
sions being very large, oriented perpendicularly to an externally applied 
B field, as indicated in Fig. 26. Suppose that a low-frequency (w «nee) 
RCP wave is launched in the direction of the B field. From the dispersion 
relation (6.7) for the RCP wave, in the low-frequency regime, we obtain 

k = Wpe 

c 
(9.7) 
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Fig. 26 Geometrical arrangement for the detection of helicon 
waves in a solid-state plasma slab. 
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Denoting the propagation coefficient of the electromagnetic wave in the 
medium external to the plasma slab by kv, the magnitude of the reflection 
coefficient at the plasma boundary is given by (kv - k)/(kv + k) = 1, 
since w « nee. Consequently, the reflection of the waves at the plasma 
boundary is nearly complete. Therefore, the wave will be successively 
reflected at the boundaries of the plasma slab and will form a standing 
wave, whose resonances are given approximately by 

n>. = 2d (9.8) 

where >. is the wavelength inside the plasma slab of thickness d and n is 
an integer. Since >.k = 21r, we can combine (9.7) and (9.8) to obtain 

n1rc (nee ) 1/ 2 = d 
Wpe W 

(9.9) 

This is the condition for standing wave resonance. It is appropriate to add 
the subscript n to w, in order to identify the resonance frequency with 
the corresponding value of n, which gives the number of the standing­
wave pattern in the slab. Thus, (9.9) can be rearranged in the following 
convenient form: 

(9.10) 



444 FUNDAMENTALS OF PLASMA PHYSICS 

In some experiments carried out on helicons, the frequency of the wave 
excited along B is continuously varied, maintaining constant the values 
of Wpe, nee, and d. At the frequencies where w = Wn, given by (9.10), 
there are standing-wave resonances inside the plasma slab, resulting in 
large wave amplitudes, which can be measured. A plot of wave amplitude 
inside the plasma slab, versus frequency, permits the identification of the 
resonant frequencies Wn. 

In sodium, which contains about 1028 electrons/m3 , the first (n = 1) 
standing-wave resonant frequency is of the order of 102 Hz in a typical 
magnetic field of about 1 tesla. Note that Wn is proportional to n 2 . 

In some other experimental investigations, the parameters d, Wpe, 

and w are kept fixed and the B field is varied. Then, the standing-wave 
resonant frequencies occur for those values of the B field for which 

(9.11) 

9.3 Faraday Rotation 

Let us consider now a phenomenon, known as Faraday rotation, which 
occurs in the range of frequencies where both the RCP and LCP waves 
propagate. When a plane polarized wave is sent along the magnetic field 
in a plasma, the plane of polarization of the wave gets rotated as it prop­
agates in the plasma. Since a plane polarized wave can be considered as 
a superposition of RCP and LCP waves (as illustrated in Fig. 27) which 
propagate independently, this phenomenon can be understood in terms of 
the difference in phase velocity of the RCP and LCP waves. 

If we take a look at Fig. 9 we see that the RCP wave (for frequencies 
greater than w02 ) propagates faster than the LCP wave. After traveling 
a given distance, in which the RCP wave has undergone N cycles, the 
LCP wave (which travels more slowly) will have undergone N + E (with 
E > 0) cycles. Obviously, both waves are considered to be at the same 
frequency. Therefore, the plane of polarization of the plane wave is rotated 
counterclockwise (looking along B), as indicated in Fig. 28. 

In order to obtain an expression for the angle of rotation ()p, let us 
consider a Cartesian coordinate system with the propagation vector along 
the z axis (also the direction of B0 ) and such that, at z = 0, the electric 
field has only the x component, as indicated in Fig. 27. Therefore, without 
loss of generality, we take 

E(z = 0, t) = X.Eo exp ( -iwt) (9.12) 
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Fig. 27 A plane polarized wave as a superposition of left and 
right circularly polarized waves E = EL + ER. 
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This equation can be rewritten as 

E(O, t) = ~Eo[(x + iy) + (x- iy)] exp ( -iwt) (9.13) 

where the first and the second terms within brackets in the right-hand side 
correspond, respectively, to the RCP and the LCP components. These two 
components propagate independently, so that, for any z > 0, the electric 
field vector is given by 

E(z, t) = ~E0 (x + iy) exp (ikRz- iwt) + 

~E0(x- iy) exp (ikLz- iwt) (9.14) 

where kR and kL denote the wave number vectors for the RCP and LCP 
waves, respectively. Equation (9.14) can be rearranged as follows: 

E(z, t) =~Eo exp [~i(kR + kL)z- iwt] {(x + iy) exp [~i(kR- kL)z] + 

(x- iy) exp [-!i(kR- kL)z]} = 

Eo exp [!i(kR + kL)z- iwt] {x cos [!(kR- kL)z] -

y sin [!(kR- kL)z]} (9.15) 
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Fig. 28 After traveling a given distance in the plasma, the 
plane of polarization of the plane wave gets rotated since the 
LCP wave moves slower than the RCP wave. 

Equation (9.12) represents a linearly polarized wave in the x direction 
at z = 0, while (9.15) is also a linearly polarized wave, but with the 
polarization direction rotated in the counterclockwise direction (looking 
along Bo) by the angle 

(9.16) 

Therefore, the angle of rotation per unit distance ( () F / z) depends on the 
difference between the propagation coefficients of the RCP and LCP waves. 
Expressions for kR and kL are given in (6.6) and (6.8), respectively. 

The measurement of Faraday rotation is a useful tool in plasma di­
agnostic and it has been widely used in the investigation of ionospheric 
properties. A linearly polarized wave, emitted by an orbiting satellite, has 
its plane of polarization rotated as it traverses the ionospheric plasma. A 
measurement of the rotation angle () F, after the wave has traversed the 
plasma, provides information on the total electron content (i.e., the column 
integrated electron density) along the wave path. 
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16.1 Consider a plane electromagnetic wave incident normally on a semi­
infinite plasma occupying the semi-space x > 0, with vacuum for x < 0, 
as illustrated in Fig. 29. Denote the incident, reflected, and transmitted 
waves, respectively, by 

Ei = y exp (ikox- iwt) 

Er = y Er exp ( -ikox- iwt) 

Et =yEt exp (ik1x- iwt) 

(a) Show that the associated magnetic fields are given by 

k 
Hi= z - 0 exp (ikox- iwt) 

Wf.Lo 

...... koEr ( . . ) Hr =- z -- exp -zkox- zwt 
Wf.Lo 

...... k1Et . . 
Ht = z -- exp (zk1x- zwt) 

Wf.Lo 

(b) From the continuity of Ey and Hz at the boundary x = 0, show that 

Er = ko- k1 
ko + k1 

E _ 2ko 
t- ko + k1 

(c) Prove that the ratio of the transmitted average power to the incident 
average power, at the boundary x = 0, is 

where ko is real and {3 = R{ k1}. Show that T = 0 both at a reflection 
point and a resonance. 

16.2 Consider a plane electromagnetic wave incident normally on an in­
finite plane plasma slab occupying the space 0 :S x :S L, with vacuum for 
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y 

kr .... ~1----

0 

Fig. 29 Wave vectors of an electromagnetic wave incident on 
a semi-inBnite plasma occupying the space x > 0. 

X 

x < 0 and x > L, as indicated in Fig. 30. Use the following representation 
for the wave electric field vector: 

Ei = y exp ( ikox- iwt) 

Er = y Er exp ( -ikox - iwt) 

Et =yEt exp (ik1x- iwt) 

Eb = y Eb exp ( -ik1x- iwt ) 

Et = yEt exp [iko(x - L) - iwt)] 

(incident wave) 

(reflected wave) 

(! orward wave) 

(backward wave) 

(transmitted wave) 

(a) Calculate the corresponding expressions for the associated magnetic 
fields. 
(b) Calculate the amplitudes Er, Ef, Eb, and Et by applying the condition 
of continuity of Ey and Hz at the boundaries x = 0 and x = L . 
(c) Show that the ratio of the average power transmitted out of the plasma 
slab to the incident average power is given by 
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y 

Fig. 30 Wave vectors associated with an electromagnetic wave 
incident normally on a plasma slab. 

where 
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[( ko k1) . ( k0 k1) . J -1 Et = 4 2 + k1 + ko exp ( -2k1 L) + 2 - k1 - ko exp ( 2k1 L) 

(d) For w < Wpe, where k1 = icx, with ex real, show that 

Et = 4 [ 4 cosh ( cxL) + 2i ( ~ - ~ ) sinh ( cxL) J - 1 

T = [ cosh2 (aL) + ~ (~ - ~ r sinh2 (aL)] - 1 

This result shows that some power is transmitted through the plasma slab, 
even with f3 = R{ k1} = 0. This effect is known as the tunneling effect. 

16.3 Derive expressions for the phase velocity and group velocity from 
the dispersion relation (5.26), for wave propagation at arbitrary angles in 
a cold magnetoplasma. 

16.4 Use the dispersion relation (4.10), for the transverse mode of prop­
agation in a cold isotropic electron gas (with B0 = 0), to calculate the 
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damping factor a= .I{k}. Show that, when w ~ Wpe, the damping factor 
is given approximately by 

2w c w~e(vjw) 
a = __ --:=----,-----:--=--

1+(v/w)2 

16.5 Consider the propagation of high-frequency waves in a solid-state 
plasma with equal number of electrons and holes (considering me = mh 
and Ve = vh), immersed in a magnetostatic field B0 . Let k = kx and 
Bo = Eo ( cos 0 X. + sin 0 y). Use the Langevin equation for the electrons 
and for the holes, together with Maxwell equations, to show that 

where 

( -2U X- Y2sin20 + U2) Ux + (Y2sin 0 cos 0) Uy = 0 

(Y2sin 0 cos 0) Ux + ( -2U ¢- Y2cos20 + U2) Uy = 0 

( -2U ¢- Y2 + U2) Uz = 0 

U = Ue- Uh 

1/ u = 1 +i­
w 

2 
X= wpe 

w2 

y =flee 

w 

X 
¢ = 1 2 -'Tl 

From these component equations derive the following dispersion relations: 

U Y2cos20 Y4sin20 cos20 
¢ = 2 - 2U - 2U( -2U X- Y2sin20 + U2) 

u y2 
¢ = 2- 2U 

Obtain expressions for the reflection points and the resonances. In par­
ticular, for the collisionless case (U = 1) show that the conditions for 
resonance are 
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and the reflection points are given by 

2 n2 2 2 
W = Hce + Wpe 

16.6 Use (6.17) and (6.18) for the group velocities of the left and right 
circularly polarized waves, respectively, to show that the group velocity 
vanishes at the resonances and reflection points. 

16.7 Consider the problem of wave propagation at an arbitrary direction 
in a cold magnetoplasma, but including the motion of the ions (one type 
only). 
(a) Show that the dispersion relation is obtained from an equation identical 
to (5.25), except that now we have (neglecting collisions) 

where (with a = e, i) 

S = 1- Xe 
1- Y 2 

e 

2 
wpa 

Xa=-w2 

y; _flea 
a-

W 

(b) Obtain the dispersion relation and show that it can be written in the 
form 

2 P('fJ2- R)('TJ2- L) 
tan () =- (S'fJ2- RL)('TJ2- P) 

where() is the angle between k and B0 , R = S + D, and L = S- D. 
(c) Determine and plot the resonances and reflection points as a function 
of B. 

16.8 Using the results of the previous problem, analyze the various modes 
of propagation for the particular cases when () = 0 and () = 1r /2. Compare 
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the results with those for a cold electron gas. Make a plot analogous to 
the one presented in Fig. 20. 

16.9 From the dispersion relations obtained in problem 16.8 show that, 
in the limit of w « nci, we obtain the dispersion relation for the (shear) 
Alfven wave (cold plasma limit of the magnetosonic wave) when k is par­
allel to Bo. Furthermore, for w:::; Oci and k parallel to Bo, determine the 
following approximate dispersion relation for ion cyclotron waves (assume 
1 + c2 /Vl « "72), 

16.10 From (5.25) show that the polarization of the waves propagating 
at an angle () with respect to Bo (considering the perpendicular electric 
field vector component) is determined by 

. Ex 1]2 - S 
'tE= D 

y 

From this result verify that for () = 0 the waves are left and right circularly 
polarized, whereas for () = 1r /2 the polarization of the extraordinary mode 
is given by 

. Ex D 
't-=--

Ey S 

so that this mode is in general elliptically polarized. 

16.11 For a helicon wave, or a circularly polarized wave, show that the 
tip of the wave magnetic field vector traces out a helix. 

16.12 Make a plot analogous to Fig. 20 for wave propagation in a cold 
magnetoplasma, but in terms of w as a function of the real part of k. 

16.13 Consider a plasma slab of thickness L and number density speci­
fied by n(x), where the x axis is normal to the slab. A plane polarized 
monochromatic electromagnetic wave is normally incident on the slab (as­
sume w sufficiently large that 1]2 > 0). Neglecting reflection from the slab 
surfaces, determine an expression for the Faraday rotation angle as the 
wave traverses the plasma slab. Then, simplify this expression consider­
ing the cases n(x) =constant and n(x) = x, for 0 < x < L. 



WAVES IN WARM PLASMAS 

1. INTRODUCTION ________________ ____, 

In the previous chapter we analyzed the characteristics of wave propa­
gation in a cold plasma. Now we will extend the theory already developed 
to include the pressure gradient term in the momentum equation. We 
shall consider wave propagation in a warm electron gas (neglecting ion 
motion) and, also, in a fully ionized warm plasma (considering electrons 
and only one type of ions), in the absence as well as in the presence of an 
externally applied magnetic field. 

2. WAVES IN A FULLY I IZED ISOTROPIC WAR 

2.1 Derivation of the Equations for the 
Electron and Ion Velocities 

Consider now a fully ionized warm plasma, composed of electrons 
and only one ion species, with no externally applied magnetic field. The 
equations of conservation of mass and of momentum, for the electrons and 
for the ions, can be written as 

On a 
Bt + \7 · (naua) = 0 (2.1) 

(2.2) 
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where for the electrons a = e and j3 = i while for the ions a = i and 
j3 = e. These equations are complemented by the following adiabatic 
energy equation for each species, 

Pa n;;_'Y = constant (2.3) 

where 'Y = 1 + 2/ N is the adiabatic constant and N denotes the number of 
degrees of freedom. Applying the V' operator to (2.3) and using the ideal 
gas law Pa = nakTa, we can rewrite (2.3) in the form 

(2.4) 

We restrict our attention to small amplitude waves in order to linearize 
the equations and assume that 

na(r, t) =no+ n~ exp (ik · r- iwt) In~ I« no (2.5) 

ua(r, t) = Ua exp (ik · r- iwt) ; Ua « lw/ki (2.6) 

E(r, t) = E exp (ik · r- iwt) 

B(r, t) = B exp (ik · r- iwt) 

(2.7) 

(2.8) 

Using these expressions in (2.1) and neglecting second-order terms, we 
find 

n' 1 
~ =- (k · Ua) 
n0 w 

(2.9) 

Similarly, we obtain for (2.2) after the substitution of V'pa from (2.4) and 
linearizing, 

I 

· qa E y2 .k na ( ) -'/,WU = - - 'l - - l/ (3 U - Uf3 a sa a a 
ma no 

(2.10) 

where Vsa = ('YkBTa/ma) 112 is the adiabatic sound speed for the type a 
particles. Substituting (2.9) into (2.10) and multiplying by iw, we obtain 
the following equation involving the variables ua, Uf3, and E, 

(2.11) 

A relationship between the electric field and the electron and ion 
velocities can be obtained from Maxwell curl equations with harmonic 
variations of E and B, according to (2.7) and (2.8), 

k x E =wB (2.12) 
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ik x B = J..LoJ - i~ E 
c 

and from the linearized expression for the plasma current density, 

Combining (2.12), (2.13), and (2.14), we find 

ieno 
Et = -- (uel- uu) 

Wfo 
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(2.13) 

(2.14) 

(2.15) 

(2.16) 

where the subscripts £ and t indicate components longitudinal and trans­
verse, respectively, with respect to the wave propagation vector k (refer 
to Fig. 1, Chapter 16) and 'fJ denotes the index of refraction kcjw. 

Substituting (2.15) and (2.16) into (2.11), and writing this equation 
for each type of particles (electrons and ions), we obtain the following set 
of coupled equations for the longitudinal components of the electron and 
ion velocities, 

(2.17) 

(2.18) 

and for the transverse components, 

( 2 W~e . ) ( W~e . ) 
llet W - 1 _ 'f/2 + 'LWVei + Uit 1 _ 'f/2 - 'LWVei = 0 (2.19) 

(2.20) 

Note that the effect of the pressure gradient term appears only on the 
longitudinal component of the motion and consequently the transverse 
modes of propagation are the same ones as in the cold plasma model, but 
with the motion of the ions included. 
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2.2 Longitudinal Waves 

In what follows, in order to simplify the algebra, we shall neglect 
collisions (vei = Vie = 0). For longitudinal waves the determinant of the 
coefficients in the system of equations (2.17) and (2.18) must vanish. This 
condition gives 

( 2 2 k2 v2 ) ( 2 2 k2 v2) 2 2 0 w - wpe - se w - wpi - si - wpewpi = (2.21) 

Multiplying the terms within parenthesis, this equation can be recast into 
the form 

(2.22) 

Note that in the case of the cold plasma model, in which the pressure 
gradient terms are ignored (i.e., Vse = Vsi = 0), equation (2.22) gives 
w2 = ( w~e +w~i), which corresponds to the longitudinal plasma oscillations 
when the motion of both electrons and ions are taken into account. 

Equation (2.22) has two roots for k2 , so that there are two longitudi­
nal modes of propagation. One of these is termed the longitudinal electron 
plasma wave and the other one is the longitudinal ion plasma wave. These 
plasma modes are electrostatic in character and contain all the charge ac­
cumulation and no magnetic field, whereas the transverse electromagnetic 
mode contains the entire magnetic field and has no charge accumulation 
(as we will see in section 2.3). Although it is not difficult to obtain the 
two exact solutions for k2 from (2.22), it is more convenient to analyze it 
for some special cases that emphasize the role played by the inclusion of 
ion motion and the pressure gradient term. 

For this purpose, let us first rewrite (2.22) for the case when ion 
motion is not taken into account, which becomes 

(2.23) 

or 
w2 = w2 + V2 k 2 (2.24) pe se 

Now V8~ = '"'(kBTe/me and since for plane waves the compression is one­
dimensional, we have '"'( = 3, so that 

(2.25) 
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This equation is known as the Bohm-Gross dispersion relation for the 
longitudinal electron plasma wave. This relation shows a reflection point 
for w = Wpe· For very high frequencies (w » Wpe) the phase velocity 
becomes w / k = Vse, which represents an electron acoustic wave. 

Next, let us include the motion of the ions but under the assumption 
that their temperature is such that Vsi = 0 (cold ions). Then, (2.22) 
simplifies to 

(2.26) 

At very high frequencies (w » Wpe) we still have wjk = Vse, but now 
(2.26) shows a reflection point at w = (w~e + w~i) 1 12 . 

Finally, let us analyze (2.22) in the limits of high and low frequencies. 
From the definitions of Wpe and Vsi, we have 

(2.27) 

Therefore, (2.22) can be rewritten as 

Vs~ Vs~ k4 + [w;i Vs~(l + Ti/Te) - w2 (Vs~ + Vs~)] k2 + 

w2 (w2 - w;e - w;i) = 0 (2.28) 

For high frequencies, such that w2 » w;i(l + TdTe), (2.28) becomes 

(2.29) 

Further, considering vs~w2 » vs~(w~e + w~i), a condition equivalent to 
w2 » w~i(Ti/Te)(l + me/mi) and that satisfies w2 » w~i(l + Ti/Te), we 
can add the term vs~(w~e + w~i) k2 to the left-hand side of (2.29) and 
rearrange this equation in the following approximate form: 

(2.30) 

From this equation we see that in the high-frequency limit the dispersion 
relation for the longitudinal ion plasma wave is 

(2.31) 

while for the electron plasma wave the dispersion relation is 

2 2 2 y2 k2 w = wpe + wpi + se (2.32) 
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Next, for low frequencies, such that w2 « w~i(1 + TdTe), (2.28) be-
comes 

V8~ V8~ k4 + Vs~w;i (1 + Ti/Te) k2 - w2w;e = 0 (2.33) 

Multiplying this equation by -w2 /(w;e k4 ), assuming k -=f. 0, it can be 
rewritten as 

4 2 'T' 2 2 
(w) 2(Wpi)( -Li)(w) 2 2(w) k - vse w2 1 + T. k - vse vsi w2 = 0 

pe e pe 
(2.34) 

Since we are considering low frequencies and as long as ( w / k) is not much 
larger than Vsi, the last term in the left-hand side of (2.34) can be ne­
glected as compared to the second one. Therefore, (2.34) gives in the 
low-frequency limit 

(2.35) 

Using the relation (2.27), this equation can be rewritten in the form 

(2.36) 

where 

(2.37) 

which is known as the plasma :;ound speed. It can be verified that the 
other root of (2.33) gives an evanescent wave at very low frequencies. 

A plot of phase velocity versus frequency for the longitudinal waves 
is shown in Fig. 1. The longitudinal waves with phase velocities equal to 
Vse or Vsi at high frequencies represent, respectively, acoustic oscillations 
due to the electrons and the ions. The low-frequency wave traveling at the 
plasma sound speed represents an acoustic oscillation of both the electrons 
and the ions, and is usually referred to as the ion acoustic wave. 

2.3 Transverse Wave 

For the transverse mode of propagation ( Uet -=f. 0 ; Uit -=f. 0) the de­
terminant of the coefficients in the system of equations (2.19) and (2.20) 
must vanish. Neglecting collisions, we find 

(2.38) 
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(0 

Fig. 1 Phase velocity as a function of frequency for waves in 
a fully ionized isotropic (B0 = 0) warm plasma. The curves for 
the longitudinal waves also hold for propagation in the direction 
ofBo, when Bo =/= 0. 

which simplifies to 
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k2c2 = w2 - (w;e + w;i) (2.39) 

This equation is similar to the dispersion relation (16.4.12) (Eq. 4.12 in 
Chapter 16) for the propagation of transverse waves in a cold isotropic 
plasma, except that the reflection point is now (w~e + w~i) 112 as a con­
sequence of the inclusion of ion motion. A plot of phase velocity as a 
function of frequency for the dispersion relation (2.39) is also shown in 
Fig. 1. A dispersion plot in terms of w as a function of k is displayed in 
Fig. 2 for the three modes of propagation. 

In summary, there are three modes of wave propagation in a warm 
fully ionized isotropic plasma (as compared to only one mode in the case 
of cold isotropic plasma). They are the transverse electromagnetic mode 
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Fig. 2 Dispersion relation for the three modes of wave propa­
gation in a warm isotropic fully ionized plasma. 

(also present in the case of a cold plasma), the longitudinal electron plasma 
mode, and the longitudinal ion plasma mode. 

The basic equations for the analysis of wave propagation in a warm 
fully ionized magnetoplasma are (2.1), (2.2), and (2.3). Proceeding in the 
same manner as in the previous section, but now considering an externally 
applied uniform magnetostatic field B0 , we obtain, in place of (2.11), 
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z 

Bo 

y 

X 

Fig. 3 Cartesian coordinate system chosen with B0 along the 
z axis and kin the (x,z) plane. 

This equation is complemented by (2.15) and (2.16) or, equivalently, by 

w2 i w eno 
k X (k X E)+- E = --- (ui- Ue) 

c2 coc2 
(3.2) 

If we choose a Cartesian coordinate system such that the z axis is along 
Bo and k is in the (x, z) plane, as illustrated in Fig. 3, we have 

Bo = Boz 

k = k 11 + k1_ = k sin () x + k cos () z 
(3.3) 

(3.4) 

and, consequently, (3.1) and (3.2) become, respectively [see (16.5.10) and 
(16.5.5)], 

2 . Qcx B ( ...... "") v 2 k 2 ( · () W Ucx- 2W- 0 UcxyX- UcxxY - sex Slll Ucxx + 
m a: 

cos () Ucxz )(sin ()X+ cos() z) + iWVcxf3 (Ucx - Uf3 ) = iw Qcx E (3.5) 
m cx 
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ieno 
A· E = -- ( Ui - Ue) 

WEQ 
(3.6) 

where the components of the dyad A, which represents the vector operator 
[(c2 jw2 )k x (k x ... ) + ( ... )], can be arranged in matrix form as 

(3.7) 

With this matrix definition of A, the dot product in (3.6) can be thought 
of as a matrix product between A and the vector column E. Taking 
the inverse of the matrix associated with A (assuming a nonvanishing 
determinant of its elements) and multiplying (3.6) by (A)-1 , we obtain 

zeno _1 E =--(A) · (ui- Ue) 
WEQ 

(3.8) 

since (A)- 1 ·(A) = 1, where 1 is the unit dyad. 
Equation (3.8) can be used to replace E in (3.5). For the electrons 

we take a = e and (3 = i in (3.5), whereas for the ions a = i and (3 = e. 
We obtain, therefore, a system of six equations with the six unknowns Uaj 

(with j = x, y, z, and a= e, i). The requirement that the determinant of 
its coefficients be equal to zero gives the dispersion relation. 

In view of the complexity of the algebra involved, we shall initially 
consider the simple case of an electron gas immersed in an externally 
applied magnetic field, neglecting for the moment the macroscopic ion 
motion (ui = 0). 

4.1 Derivation of the Dispersion Relation 

From (3.5) we obtain for the electrons (taking ui = 0) 

. (nee ) ( ~ ~) ( vs~ k2 ) ( . () () ) ( . () ~ Ue + 'l ~ UeyX - UexY - ~ Slll Uex + COS Uez Slll X + 
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2 

cos() z) + i(~) Ue = (~2e) (A)-1 · Ue (4.1) 

Using the notation introduced in (16.5.14), (16.5.15), and (16.5.16), (4.1) 
can be rewritten in the form 

U ( ~~k2 . 2(} ·y ~~k2 . (} (} ) ...... 
Ue + -~ Sill Uex + ~ Uey - ~ Sill COS Uez X -

X (A)-1 · Ue 

Defining a dyad B through the matrix 

( 
(U - a2 sin29) 

B= -iY 
- ( a2 sin (} cos 9) 

where a2 = (V8~k2/w2 ), equation (4.2) becomes 

(4.2) 

(4.3) 

(4.4) 

A nontrivial solution of this equation (ue =/:. 0) exists only if the determi­
nant of the matrix multiplying Ue vanishes. Therefore, we must have 

(4.5) 

This condition gives the dispersion relation for wave propagation in a warm 
electron gas immersed in a magnetic field. 

In order to simplify matters, in the two following subsections we shall 
examine the dispersion relation (4.5) for the special cases of propagation 
either parallel or perpendicular to the magnetic field. 

4.2 Wave Propagation Along the Magnetic Field 

For propagation along the magnetic field (kiiBo) we have k = kz and 
(} = 0, so that (3.7) and (4.3) simplify to 

( 
(1 -1]2 ) 

A= 0 
0 

(4.6) 
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( 
U iY 

B = -iY U 
0 0 

Therefore, the determinant ( 4.5) becomes 

X 
U- (1- rP) iY 

det -iY 
X 

u- (1- ry2) 
0 0 

0 

0 

(U- a2 - X) 

(4.7) 

=0 (4.8) 

which gives the following dispersion relations for transverse waves ( Uex -=/= 0 
and Uey -=/= 0), 

X 
u - ( 1 - 'r/2) = ± y (4.9) 

and for a longitudinal wave ( Uez -=/= 0), 

U- a2 - X= 0 (4.10) 

Note that in this case the z component of (4.4) is uncoupled from the x 
and y components, so that the longitudinal mode is independent of the 
two transverse modes. 

Equation ( 4.9) yields the following expressions corresponding, respec­
tively, to the plus and minus signs, 

2 X 
T/ = 1 -U-Y (4.11) 

( 4.12) 

These dispersion relations correspond, respectively, to the right and left 
circularly polarized waves (RCP and LCP) obtained in section 6, Chapter 
16, for transverse waves in a cold plasma [refer to (16.6.6) and (16.6.8)]. 

For the longitudinal wave, sustituting U = 1+ive/w and X= w~e/w2 

in (4.10), the dispersion relation becomes 

2 . 2 v2 k2 
W + 'llJeW = Wpe + se (4.13) 

Hence, as compared to the cold plasma model, instead of the longitudinal 
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Fig. 4 Phase velocity as a function of frequency for waves 
propagating along the magnetic field in a warm electron gas. 
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oscillation at Wpe (present in the cold plasma model) there is, in this 
case, an additional mode of propagation, known as the electron plasma 
wave. Neglecting collisions, (4.13) becomes the same dispersion relation 
as obtained in section 2, given in (2.24), for waves in an isotropic warm 
plasma. Hence, for propagation along the magnetic field, the longitudinal 
electron plasma wave is not affected by the presence of the magnetic field. 

In summary, there are three modes of propagation in a warm electron 
gas for k parallel to the magnetic field. They are the transverse RCP 
and LCP waves and the longitudinal electron plasma wave. The addition 
of the pressure gradient term in the equation of motion for the electrons 
has no effect on the transverse waves. A plot of phase velocity versus 
frequency for these three modes is displayed in Fig. 4. The corresponding 
w(k) dispersion plot is shown in Fig. 5. 
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Fig. 5 Dispersion plot for waves propagating along the mag­
netic field in a warm electron gas. 

4.3 Wave Propagation Normal to the Magnetic Field 

For the case of propagation across the magnetic field (k l_ Bo) we 
have k = kx and () = 90°, so that (3. 7) and ( 4.3) simplify to 

(4.14) 

( 
(U- a2 ) 

B= -iY 
0 

( 4.15) 
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From these expressions it is clear that the z component of ( 4.4) is 
uncoupled from the x and y components. Thus, for transverse waves with 
electron motion along the z axis ( Uez =f 0) we must have from the z 
component of (4.4), 

X 
(4.16) U-1 2=0 _, 

or 
2 X (4.17) , =1--u 

which is the familiar dispersion relation for the transverse ordinary wave 
(in which the electric field of the wave oscillates in the same direction as 
B0 ) found in section 7, Chapter 16 [see equation (16.7.4)]. 

From (4.4), (4.14), and (4.15) it is clear that the equations for Uex and 
Uey are coupled. Therefore, in order to have nontrivial solutions ( longitu­
dinal wave for Uex =f 0 and transverse wave for Uey =f 0) we must require 
the determinant formed with the coefficients of the x and y components 
of (4.4) to vanish, 

(
(U- a2 - X) 

det ·y 
-'/, 

iY ) 
(U _ X ) = 0 

1-,2 

This determinant gives, neglecting collisions, 

Expanding this expression and rearranging, we get 

(4.18) 

(4.19) 

(4.20) 

This dispersion relation is quadratic in k2 , so that there will be in general 
two values of k2 as a function of w, that is, two modes of propagation. 
Since generally we have Vse « c, the first term within brackets in the 
left-hand side of (4.20) can be neglected as compared to the other one. 
With this approximation (4.20) becomes . 

c2V2 k4 - c2 (w2 - w2 - 0 2 ) k2 + (w2 - w2 ) 2 - w20 2 = 0 (4.21) se pe ce pe ce 

Although it is not difficult to obtain the exact solution of this equation, 
it is more instructive to analyze it for some special limiting cases. 
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First, let us obtain the approximate solution of ( 4.21) in the region 
where w2 » k2V8~, that is, when the term c2V8~ k4 is smaller than any of 
the others. For k2 positive, this condition implies phase velocities much 
larger than Vse and, for this reason, it will be referred to as the high-phase 
velocity limit. With this condition, ( 4.21) reduces to 

(4.22) 

or 

This equation is similar to the dispersion relation found in section 7, Chap­
ter 16 [see equation (16.7.7)], for the extraordinary wave in a cold plasma, 
except that now the condition w2 » k2V8~ must be satisfied for ( 4.23) to 
be applicable. 

Next, let us obtain the approximate solution of (4.21) in the region 
where w2 « k 2c2 . For k 2 positive, this condition implies phase velocities 
much smaller than the velocity of light and, for this reason, it will be 
referred to as the low-phase velocity limit. Thus, in this limit (4.21) reduces 
to 

(4.24) 

or 
2 2 n2 v2 k2 

W = Wpe + ~Lee + se (4.25) 

When B 0 = 0 (i.e., Oee = 0) this equation becomes identical to the dis­
persion relation for the longitudinal electron plasma wave [see equation 
(2.24)]. It is a valid solution for (4.21) only under the condition w2 « k 2c2 . 

Fig. 6 displays the phase velocity as a function of frequency for the 
transverse ordinary mode ( 4.17) and for the two modes described by ( 4.20). 
Note that, of these last two modes, one is a purely transverse extraordi­
nary wave, while the other one is partially transverse (i.e., electromagnetic 
extraordinary wave in the high-phase velocity limit) and partially longitu­
dinal (i.e., electron plasma wave in the low-phase velocity limit). In this 
last mode the transition from a basically transverse electromagnetic wave 
to a basically longitudinal electron plasma wave occurs in the frequency 
range where the phase velocity lies between c and Vse. The corresponding 
w(k) dispersion plot is shown in Fig. 7. 
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Fig. 6 Phase velocity as a function of frequency for waves prop­
agating perpendicular to the magnetic field in a warm electron 
gas. 

4.4 Wave Propagation at Arbitrary Directions 

469 

For propagation at an arbitrary direction with respect to the magnetic 
field, the dispersion relation can be obtained from (4.5), with the dyads A 
and B given by (3.7) and (4.3). For an arbitrary angle between 0° and goo, 
we expect the phase velocity versus frequency curves to lie between those 
of Figs. 4 and 6. Therefore, instead of getting involved in the cumbersome 
algebra behind (4.5), we shall present only the dispersion curves of Fig. 8, 
in which the shaded area illustrates how the transition occurs from()= 0° 
to () = goo. It can be easily verified that the only resonance that exists for 
an arbitrary angle occurs approximately at the frequency w = nee cos 0. 
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Fig. 7 Dispersion plot for waves propagating perpendicular to 
the magnetic field in a warm electron gas. 

The reflection points, for any angle of propagation, occur at the frequencies 
w01, Wpe, and Wo2. 

We shall consider now the propagation of plane waves in a fully ion­
ized warm plasma having only one ion species, immersed in an externally 
applied uniform magnetostatic field. 
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Fig. 8 Phase velocity versus frequency for wave propagation 
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5.1 Derivation of the Dispersion Relation 

The equation of motion for the electrons is, from (3.5), 

2 . () ( "' "') W U e + 'lWHce Uey X - UexY -

vs~ k2 (sin () Uex +cos () Uez )(sin ()X+ cos() z) + 

. ( ) zwe E 
'lWVei Ue- Ui = --

m e 

and for the ions, 
2 . () ( "' "') W U i - 'lWHci UiyX- UixY -

v~ k2 (sin () Uix +cos () Uiz)(sin ()X+ cos () z) + 

471 

(5.1) 
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(5.2) 

Equations (5.1) and (5.2), involving the variables ue, ui, and E, are com­
plemented by (3.6), 

(5.3) 

where the dyad A is defined according to (3.7). 
Equations (5.1) and (5.2) can be written, respectively, in compact 

form, as . . 
'le 'lVei ( ) 

Be· Ue = --- E- - Ue - Ui 
wme w 

(5.4) 

and 

(5.5) 

where the dyads Be and Bi are appropriately defined by 

(5.6) 

( 
(1 - b2sin20) -iYi -b2sin e cos e) 

Bi= iYi 1 0 
-b2sin e cos e 0 (1 - b2cos2 0) 

(5.7) 

where Ye = (!lce/w), Yi = (!lcdw), and b2 = (V8~ k2 /w2 ) . Multiplying 
(5.4) and (5.5), respectively, by the inverse matrices corresponding to Be 

and Bi, we get 

. . 
'le ( )-1 'lVei ( )-1 ( ) Ue = --- Be · E - - Be · Ue - Ui 

wme w 
(5.8) 

ie 1 ivie ( ) 1 ( ) Ui = -- ( Bi)- · E + - Bi - · Ue - Ui 
wmi w 

(5.9) 

Subtracting (5.9) from (5.8) and rearranging, yields 

[ iVei ( ) 1 ivie ( ) 1] ( ) 1 + --::;- Be - + --::;- Bi - · Ue - Ui + 

(5.10) 
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Combining (5.10) and (5.3) to eliminate the variable (ue - ui) results in 
the following equation involving only the electric field vector, 

(5.11) 

where Xe = w;e/w2 and Xi = w;dw2 • This equation is of the form 

C·E=O (5.12) 

where C stands for the matrix within braces in (5.11). As before, the 
dispersion relation is obtained by setting the determinant corresponding 
to the matrix C equal to zero, 

det (C)= 0 (5.13) 

If collisions are neglected, (5.13) simplifies to 

(5.14) 

In the following subsections, in order to simplify the algebra involved, we 
shall neglect collisions and analyze the problem using (5.14). 

5.2 Wave Propagation Along the Magnetic Field 

For(}= 0° we have from (3.7), (5.6), and (5.7), respectively, 

(5.15) 

(5.16) 

(5.17) 
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The inverses of the matrices (5.16) and (5.17) are, respectively, 

1 iYe 
(1- ye2) (1- ye2) 

0 

(Be)-1 = iYe 1 
(5.18) 

(1- Ye2) (1- Y;) 
0 

0 0 
1 

(1 - a2 ) 

1 iYi 
0 

(1- Y?) (1- Y?) 

(Bi)-1 = iYi 1 
0 (5.19) 

(1- Y?) (1- Y?) 

0 0 
1 

(1 - b2 ) 

Substituting the matrices (5.15), (5.18), and (5.19), into (5.12) and setting 
Vei = Vie = 0, we obtain 

(5.20) 

where 

(5.20a) 

iXiYi iXeYe 
a2 = - 1 - y2 + 1 - Y2 

t e 
(5.20b) 

Xi Xe 
a3 = 1 - 1 - b2 1 - a2 (5.20c) 

It is clear from this matrix equation that the longitudinal component of 
the electric field (Ez) is uncoupled from the transverse component (Ex 
and Ey)· 

Therefore, for longitudinal waves (Ez =f. 0), the coefficient of Ez in 
(5.20) must be equal to zero, which gives the following dispersion relation: 

(5.21) 

This dispersion relation can be rearranged in the following form: 

Vs~ Vs~ k4 + [w;e ~~ + w;i Vs~ - w2 (Vs~ + ~~)] k2 + 
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w2 (w2 - w2 - w2 -) = 0 pe p~ 
(5.22) 

which is identical to (2.22). Therefore, since it is a quadratic equation 
in k2 , there are in general two longitudinal modes of propagation. Note 
that these two longitudinal modes propagating along Bo are not affected 
by the magnetic field strength. This dispersion relation has already been 
analyzed in section 2, where it was shown that these two longitudinal 
modes are the electron plasma wave and the ion plasma wave. 

For transverse waves (Ex =f. 0 and Ey =f. 0) the dispersion relation, 
from (5.20), is given by 

( 1 _ 2 _ Xi _ Xe ) 2 _ ( XSi _ XeYe ) 2 = 
TJ 1 - Y 2 1 - Y 2 1 - Y 2 1 - y2 O 

~ e ~ e 

Using the notation 

and letting 

then (5.23) becomes 

R=S+D 
L=S-D 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

There are, therefore, two modes that propagate along the magnetic field 
with dispersion relations given by 

(TJ2)R = R (5.29) 

and 
(TJ2)L = L 

From the x component of (5.20) we have 

E S- TJ2 
__]!_ __ =--
Ex iD 

so that, using (5.29), we obtain 

( Ey) = i 
Ex R 

whereas, using (5.30), 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Therefore, the dispersion relation (5.29) corresponds to a right-hand cir­
cularly polarized wave and (5.30) to a left-hand circularly polarized wave. 
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Fig. 9 Phase velocity as a function of frequency for plane 
waves traveling along the magnetic field in a warm fully ionized 
magnetoplasma. 

The phase velocity as a function of frequency for propagation along 
Bo is shown in Fig. 9. The reflection points at wb1 and wb2 are not 
exactly the same ones given by equations (16.6.13) and (16.6.14), but are 
slightly different as a result of the inclusion of ion motion. Also, because 
ion motion has been taken into account, besides the resonance at nee for 
the RCP wave, there is also a resonance at nci for the LCP wave. 

In the very low frequency limit, the phase velocities of the RCP and 
LCP waves tend to VA/(1 + Vl/c2 ) 112 , instead of going to zero as in the 
case of the cold electron plasma model. This result can be seen as follows. 
For very low frequency waves such that 

(5.34) 
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we obtain, using (5.24) and (5.25), 

(5.35) 

Therefore, using the definitions of Wpe' nee, and nci, the dispersion relation 
for the RCP and LCP waves in the very low frequency limit becomes 

(5.36) 

The average mass density is Pm =no( me+ mi) ~ nomi, and since to = 
1/(p,oc2 ), (5.36) can be rewritten as 

2 
2 = 1 + c P,oPm 

TJ B2 
0 

(5.37) 

or 
c2 

TJ2 = 1 + V 2 (5.38) 
A 

where VA = (B5/ P,oPm) 112 is the Alfven velocity, defined in (15.1.4) (Eq. 
1.4 in Chapter 15). Thus, from (5.38) in the very low frequency limit the 
phase velocity of both transverse waves is given by 

w VA 
Vph = k = (1 + Vlfc2)1/2 (5.39) 

Note that, for plasmas in which Vl « c2 (weak B0 field or high density), 
(5.39) reduces to Vph =VA. This very low frequency limit corresponds to 
the Alfven wave discussed in Chapter 15. 

5.3 Wave Propagation Normal to the Magnetic Field 

Considering now()= 90°, we obtain from (3.7), (5.6), and (5.7), 

(5.40) 

(5.41) 
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B; = c ~b') -iY; D (5.42) 

Taking the inverse of the matrices in (5.41) and (5.42), we obtain for 
(5.12), neglecting collisions, 

(5.43) 

where 

(5.44) 

1- yz- a2 
e 

(5.45) 

1- yz- a2 e 
(5.46) 

(5.47) 

From (5.43) it is clear that Ez is uncoupled from the electric field compo­
nents Ex and Ey. 

Therefore, the ordinary mode (the transverse mode, which has Ez # 0 
and is not affected by the presence of the magnetostatic field) has the 
dispersion relation 

7]2 = p (5.48) 

or 
(5.49) 

which is the same expression obtained in (2.39). 
The modes involving the field components Ex and Ey (longitudinal 

for Ex # 0 and transverse for Ey # 0) are seen, from (5.43), to be coupled 
and have the following dispersion relation: 

(5.50) 

Substituting the expressions for St, Sz, and D 1 into (5.50), results in a 
cubic equation in k2 , showing that in general there are three modes of 
propagation. A detailed analysis of this dispersion relation shows that 
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these three modes of propagation are the partially transverse extraordi­
nary wave, the longitudinal electron plasma wave, and the longitudinal 
ion plasma wave. 

Fig. 10 shows the phase velocity as a function of frequency for the 
four modes of propagation in a direction normal to the magnetic field. The 
basic points to be noted in this plot are the following: ( 1) the presence of 
the reflection points at (w~e +w~i) 1 12 , wb1 and wb2 ; (2) the transition from 
a basically longitudinal (electron plasma) wave to a basically transverse 
electromagnetic (extraordinary) wave, in the frequency region where the 
phase velocity lies between Vse and c; and ( 3) in the very low frequency 
limit the phase velocity of the ion plasma wave tends to 

_ ( V] + V8~ ) 1/2 
Vph- 1 + V]jc2 (5.51) 

5.4 Wave Propagation at Arbitrary Directions 

For arbitrary directions of propagation the dispersion relation is given 
by (5.14). Since a detailed analysis of this equation is a rather complex 
and tedious affair, we shall content ourselves by merely presenting the plot 
of phase velocity versus frequency in Fig. 11, in which the shaded areas 
give an indication of how the curves evolve from () = 0° to () = 90°. 

The modes for wave propagation in a warm fully ionized plasma can 
be summarized as follows: 

(a) For B0 = 0: 
Transverse electromagnetic wave. 
Longitudinal electron plasma wave. 
Longitudinal ion plasma wave. 

(b) For kiiBo: 

Transverse right-hand circularly polarized wave. 
Transverse left-hand circularly polarized wave. 
Longitudinal electron plasma wave. 
Longitudinal ion plasma wave. 
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Fig. 10 Phase velocity as a function of frequency for waves 
propagating in a direction normal to the magnetic field in a warm 
fully ionized plasma. 

(c) Fork .1 Bo: 

Transverse ordinary wave. 
Partially transverse extraordinary wave. 
Longitudinal electron plasma wave. 
Longitudinal ion plasma wave. 

For a warm electron gas, in which the motion of the ions is ignored, 
the longitudinal ion plasma mode is absent. For a cold plasma, both 
the ion plasma and the electron plasma modes are absent. Note that for 
k .1 Bo the electron mode and the extraordinary mode are coupled. 
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Fig. 11 Phase velocity as a function of frequency for wave 
propagation in a warm fully ionized plasma. 
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17.1 Show that one of the roots of the dispersion relation (2.33), at very 
low frequencies, corresponds to an evanescent wave. 

17.2 Make a plot analogous to Fig. 8 for wave propagation in a warm 
electron gas immersed in a magnetic field, but in terms of w as a function 
of the real part of k. 
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17.3 Show that the reflection points wb1 and wb2, for the LCP and RCP 
waves propagating along the magnetic field in a fully ionized warm plasma 
(see Fig. 9) are given, respectively, by 

wb2 =!(flee- flei) +![(flee+ flei) 2 + 4w~eP;2 

Compare these expressions with (16.6.13) and (16.6.14). 

17.4 Starting from (5.12), (5.40), (5.41), and (5.42), provide all the nec­
essary steps to obtain (5.43). 

17.5 Obtain a cubic equation in k2 , from (5.50), and analyze the dis­
persion relations for these three modes of wave propagation across the 
magnetic field in a fully ionized warm plasma. 

17.6 Make plots analogous to Figs. 9, 10, and 11 for wave propagation 
in a fully ionized warm plasma, but in terms of w as a function of the real 
part of k. 

17.7 Show that the resonances in a warm fully ionized magnetoplasma, 
neglecting collisions, occur approximately at the frequencies w = flee cos (} 
and w = flei cos 0. 



WAVES IN HOT 

ISOTROPIC PLASMAS 

1. INTRODUCTI,~O~------------------------------~ 

We consider in this chapter the propagation of small-amplitude waves 
in unbounded hot plasmas that are close to equilibrium conditions, from 
the kinetic theory point of view. The problem will be examined using the 
Vlasov equation, and only electron motion will be considered. The ions, 
in view of their greater inertia, are assumed to stay immobile. A major 
point of this chapter will be to emphasize those effects that arise when 
the Vlasov equation is used and that were missing when the problem was 
treated using the cold and warm plasma models (Chapters 16 and 17). 

The treatment present here is restricted to isotropic plasmas, in the 
absence of an externally applied magnetic field. It will be shown that the 
plasma waves can be separated into three groups, the first group being the 
longitudinal plasma wave (also known as space charge wave or Langmuir 
wave), and the second and third groups being the two different polariza­
tions of the transverse electromagnetic wave. The chapter ends with a 
brief discussion of plasma instabilities that arise from the interaction of 
the plasma particles with the wave electric field. To illustrate the wave­
particle interaction phenomenon we describe one important example, the 
so-called two-stream instability. 

2. BASICEQUA~I~I~O~------------------------------~ 

The relevant equations for the kinetic theory treatment of small­
amplitude waves in a electron gas of infinite extent are the Vlasov and 
Maxwell equations. 
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The Vlasov equation satisfied by the electron distribution function 
f(r, v, t), can be written as 

Bj(~ v, t) + v. \7 J(r, v, t) + {-__!!__ [E(r, t) + v x B(r, t)] + 
t me 

Fext} - · \7vf(r, v, t) = 0 
me 

(2.1) 

where F ext denotes any force externally applied to the plasma, and E(r, t) 
and B(r, t) are the internal smoothed, self-consistent, macroscopic electric 
and magnetic induction fields associated with the distributions of charge 
density and charge current density inside the plasma. The fields E(r, t) 
and B ( r, t) satisfy Maxwell equations 

\7 · E(r, t) = p(r, t) 
Eo 

\7 · B(r, t) = 0 

" E( ) = _ 8B(r, t) 
v x r, t Bt 

1 8E(r, t) 
\7 x B(r, t) = J.LoJ(r, t) + 2 8 c t 

where the charge and current densities are given, respectively, by 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

p(r, t) = L Qana(r, t) = L Qa 1 fa(r, v, t) d3v (2.6) 
a a v 

J(r, t) = L Qana(r, t)ua(r, t) = L Qa 1 v fa(r, v, t) d3v (2.7) 
a a v 

Equations (2.1) to (2.7) form a complete self-consistent set of equations, 
which were first introduced in section 7 of Chapter 5. It is worth noting 
that even though there is no explicit collision term in the Vlasov equation 
(2.1), an important contribution to the charged particle interactions is 
included through the internal self-consistent electromagnetic fields. 
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Consider an unbounded uniform electron plasma with a fixed neu­
tralizing ion background, without any externally applied field and under 
equilibrium conditions. Suppose that at a given instant some electrons are 
slightly displaced from their equilibrium positions. As a result of this small 
space-dependent perturbation in the electron gas, some sort of oscillatory 
or wave phenomenon can be expected to arise as a consequence of the 
internal electric fields produced by charge separation. The ions, because 
of their much larger mass, can be assumed to remain nearly stationary 
during the process, since the frequencies involved will be sufficiently high. 
Since we are dealing with small deviations from equilibrium, the equat ions 
can be linearized, that is, the products of two nonequilibrium quant ities 
(which are considered to be of second order) can be neglected. 

3.1 Perturbation Charge Density and Current Density 

To describe small deviations from equilibrium we express the electron 
distribution function in the form 

f(r, v, t) = fo(v) + fl(r, v, t) (1!11 « fo) (3.1) 

where fo( v) is the equilibrium distribution function, considered to be ho­
mogeneous and isotropic, whereas fl(r , v, t) is a perturbation in the distri­
bution function, always small compared to fo(v) . Before the application 
of the perturbation, the plasma is in equilibrium so that the macroscopic 
self-consistent electric and magnetic fields, as well as the charge and cur­
rent densities, vanish throughout the plasma. The equilibrium number 
density of the electrons is everywhere the same as that of the ions, and is 
given by 

no= 1 fo(v) d3v (3.2) 

Since fl(r , v, t) is a first-order quantity, t he internal electric and mag­
netic fields that arise due to the perturbation are also small first-order 
quantities. From (2.6) the perturbation charge density is given by 

p(r, t) = eno- e 1 f(r, v , t) d3v (3.3) 
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Using (3.1) and (3.2), we obtain 

p(r, t) = -e 1 fi(r, v, t) d3v (3.4) 

The perturbation current density is obtained from (2.7), noting that the 
ions are assumed to stay immobile, 

J(r, t) = -e 1 v f(r, v, t) d3v (3.5) 

Substituting (3.1) into (3.5) and considering that the current density in 
the equilibrium state vanishes, that is, 

-e 1 v fo ( r, v, t) d3 v = 0 (3.6) 

we find 

J(r, t) = -e 1 v fi(r, v, t) d3v (3.7) 

3.2 Solution of the Linearized Vlasov Equation 

Substituting (3.1) into the Vlasov equation (2.1), without any exter­
nal fields present, we obtain 

afi(r, v, t) e a +v·\7fi(r,v,t)-- [E(r,t)+vxB(r,t)]·\7vfo(v)-
t ~e 

e 
- [E(r, t) + v X B(r, t)] · \7 v!l(r, v, t) = 0 (3.8) 
~e 

Since E(r, t), B(r, t), and f 1(r, v, t) are first-order quantities, the last 
term in the left-hand side of (3.8) involves the product of two first-order 
quantities and therefore it is of second order and can be neglected as 
compared to the remaining terms. Thus, the linearized Vlasov equation 
becomes 

a!l(r,v,t) e a +v·\7fi(r,v,t)-- [E(r,t)+vxB(r,t)]·\7vfo(v) = 0 (3.9) 
t ~e 

A convenient way to solve this equation is to use the method of inte­
gral transforms. For an initial-value problem, the equation is simplified by 
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taking its Laplace transform in the time domain and the Fourier transform 
with respect to the space variables. This method reduces the differential 
equation to an algebraic equation that can then be solved for the desired 
transform variables. Next, in order to regain the original variables, we 
have to invert the Laplace and Fourier transforms of the dependent vari­
ables. This mathematical treatment, however, involves the calculation of 
some complicated contour integrals in the complex plane, which is beyond 
the scope of this text. Therefore, in order to simplify the mathematical 
analysis of the problem, without losing the essentials of the plasma be­
havior under consideration, we shall look for periodic harmonic solutions 
for fl(r, v, t) in the space and time variables, according to 

fl(r, v, t) = fl(v) exp (ik · r- iwt) (3.10) 

where the vectors involved are referred to a Cartesian coordinate system. 
With this particular choice for fl(r, v, t) (3.4) and (3.7) become 

p(r, t) = p exp (ik · r- iwt) (3.11) 

J(r, t) = J exp (ik · r- iwt) (3.12) 

where 

p = -e 1 fl(v) d3v (3.13) 

J = -e 1 v fi(v) d3v (3.14) 

Consequently, the macroscopic self-consistent electric and magnetic fields 
have the same harmonic space and time dependence, 

E(r, t) = E exp (ik · r- iwt) 

B(r, t) = B exp (ik · r- iwt) 

(3.15) 

(3.16) 

Furthermore, since we are assuming that the equilibrium distribution func­
tion fo ( v) is a function of only the magnitude of v, we have the very useful 
identity 

V'vfo(v) = ~ dfo(v) (3.17) 
v dv 

so that, for the term involving the magnetic force in (3.9), we have 

[v X B(r, t)]. \1 vfo(v) = [v X B(r, t)]. ~ dfido(v) = 0 (3.18) 
v v 
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Substituting (3.10), (3.15), (3.16), and (3.18) into the linearized Vlasov 
equation (3.9), we get 

-iw JI(v) + ik · v JI(v)- ~ E · 'lvfo(v) = 0 

whose solution is 

me 

JI(v) = _!!!:__ E · 'lvfo(v) 
me (w- k · v) 

(3.19) 

(3.20) 

For definiteness we shall consider the direction of propagation of the 
plane waves as being the x direction, that is, k = kx. Therefore, k · v = 

k Vx and (3.20) becomes 

JI(v) = _!!!:__ E · 'lvfo(v) 
me (w- k Vx) 

(3.21) 

With this orientation chosen for the coordinate system, the longitudinal 
component of the wave electric field is E£ = Exx, whereas the transverse 
component is Et = Eyy + Ezz, as illustrated in Fig. 1. 

3.3 Expression for the Current Density 

Next we derive expressions for the Cartesian components of the charge 
current density J. Substituting (3.21) into (3.14), we obtain 

J = _ ie2 1 v [E · 'lvfo(v)] d3v 
me v (w- k Vx) 

Note that the x component of this equation in given by 

Jx = _ ie2 1 Vx [E · 'lvfo(v)] d3v 
me v (w- k Vx) 

(3.22) 

(3.23) 

where the triple integral with respect to the three variables Vx, vy, and Vz 
range from -oo to +oo. Using the identity (3.17), we note that 

1 Vx Ej Vj dfo(v) d3v = 0 
v (w- k vx) v dv 

(3.24) 

for j = y, z, since the integrand is an odd function of Vj. Consequently, 
the only contribution from the term E · 'lvfo(v) to the x component of J 
comes from the term Ex8f0 (v)f8vx, so that (3.23) can be written as 

(3.25) 
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y 

X 

EL = Ex 

z 

Fig. 1 Illustrating the relative orientations of the wave prop­
agation vector k and the wave electric field E in a Cartesian 
coordinate system. 

Similarly, t he y and z components of (3.22) are found to be given by 

489 

(3.26) 

Jz = - ie2 Ez 1 Vz ofo(v) d3v (3.27) 
me v (w- k Vx) OVz 

Note that l x, ly, and Jz are linearly related to Ex, Ey, and Ez, respec­
tively, a feature that is a consequence of the plasma isotropy, as expected 
in the absence of an external magnetic field. 

3.4 Separation into the Various Modes 

To complete the specification of the problem we use the two Maxwell 
curl equations (2.4) and (2.5), which for the fields given by (3.15) and 
(3.16) reduce to 

ikx x E = iwB (3.28) 
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~ 'tW 
ikx x B = J.toJ - 2 E 

c 
(3.29) 

In Cartesian coordinates, x x E = Eyz- EzY so that the components of 
the vector equations (3.28) and (3.29) become, respectively, 

wBx =0 (3.30) 

wBy = -kEz (3.31) 

wBz =kEy (3.32) 

and 
'tW 

J.toJx - 2 Ex = 0 
c 

(3.33) 

'tW 
(3.34) -ikBz = J.toly - 2 Ey 

c 

'tW 
(3.35) ikBy = J.toJz - 2 Ez 

c 

where the components of J are given by (3.25) to (3.27). 
An examination of these equations shows that the electromagnetic 

fields can be separated into four independent groups, each one of them 
involving the following variables: 

(a) Jx, Ex [Equation (3.33)]. 
(b) Bx [Equation (3.30)]. 
(c) Jy, Ey, Bz [Equations (3.32) and (3.34)]. 
(d) Jz, Ez, By [Equations (3.31) and (3.35)]. 

The first group contains an electric field and a current density in the 
direction of the propagation coefficent k, that is, parallel to the wave nor­
mal of the initial plane wave disturbance produced in the plasma, but 
contains no magnetic field. This group gives the longitudinal plasma wave 
mode, since the average particle velocity is also in the direction of k. The 
second group does not constitute a natural wave mode, since it has no 
current associated with it and therefore is not influenced by the collec­
tive electron motion. It only indicates that there is no magnetic field 
associated with the longitudinal plasma wave so that these waves are elec­
trostatic in character. The third and fourth groups involve electric and 
magnetic fields that are perpendicular to k. The electric current density 
and therefore the average particle velocity are also perpendicular to the 
wave normal direction. Note that E, B, and k form a mutually perpen­
dicular triad. These two groups constitute the two different polarizations 



18. WAVES IN HOT ISOTROPIC PLASMAS 491 

of the transverse electromagnetic wave mode. In the next section we shall 
discuss the characteristics of the longitudinal plasma wave. The character­
istics of the transverse electromagnetic wave will be discussed in section 5. 

~· . •. ! 
•,•·J ... ";. ... . . 
~ ... . 

4. ELECTROSTATIC LONGITUDI 
IN A HO l..L.~J~nL~LDJ.u:J.!I!L.I:.I.I!Iiiiiiii41!S...---

4.1 Development of the Dispersion Relation 

The intrinsic behavior of the longitudinal plasma wave is contained 
in the dispersion relation. This equation, which relates the variables w 
and k, determines the natural wave modes of the system. To obtain the 
dispersion relation for the longitudinal plasma wave we use (3.33) with lx 
as given by (3.25), 

W~eEx 1 Vx 8fo(v) d3v Ex=--=---
now v (k Vx- w) 8vx 

(4.1) 

Dividing this equation by Ex =f. 0, yields the dispersion relation for the 
longitudinal plasma wave: 

(4.2) 

It is convenient to simplify (4.2) by noting that 

(4.3) 

since 

1 8fi (v) 1+oo l+oo +oo 
v a:x d3v = -oo dvy -00 dvz [ fo(v) ] -oo = 0 (4.4) 

because f0 (v) vanishes at both limits. Therefore, the dispersion relation 
(4.2) becomes 

(4.5) 
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A useful alternative form of this dispersion relation can be obtained 
by an integration by parts in the Vx variable. Thus, using the relation 

1b b 1b 
a U dV = UV I a - a V dU 

for the integration with respect to Vx in (4.5), where 

U= 1 
(vx- wjk) 

V = fo(v) 

the triple integral in ( 4.5) becomes 

dvx 
dU =- (vx- wjk)2 

dV = &fo(v) dvx 
8vx 

(4.6) 

(4.7) 

J J 1+oo 8J0 (v) 1 j+oo j+oo 
8 ( _ /k) dvx dvy dvz = dvy dvz -oo Vx Vx W -oo -oo 

[ fo(v) lvx=+oo 1+oo fo(v) ] 
(vx- wjk) vx=-oo + _00 (vx- wjk)2 dvx 

1 fo(v) d3 
v (vx- wjk)2 v 

(4.8) 

Therefore, the dispersion relation ( 4.5) can also be written as 

(4.9) 

4.2 Limiting Case of a Cold Plasma 

Before proceeding further with the analysis of the dispersion relation 
(4.9), it is instructive to examine the results for the limiting case of a cold 
plasma, for which the electron velocity distribution, under equilibrium 
conditions and at rest, is given by 

(4.10) 

where 6(x) is the Dirac delta function, defined by 

6(x) = oo for x = 0 ; j_:oo 6(x) dx = 1 (4.11) 
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Substituting (4.10) into the dispersion relation (4.9) and using the follow­
ing property of the Dirac delta function 

l +oo 

-oo f(x) 8(x- xo) dx = f(x0 ) (4.12) 

we obtain 

(4.13) 

or 
(4.14) 

in agreement with the cold plasma result (section 4 of Chapter 16). 

4.3 High Phase Velocity Limit 

Another important result can be immediately obtained from the dis­
persion relation (4.9), for the limiting case in which the wave phase velocity 
w I k is very large compared to the velocity of almost all of the electrons. 
In this high phase velocity limit it is reasonable to expand (1- kvxlw)-2 

into a binomial series and retain only the first few terms, since kvx I w « 1. 

Thus, recalling that for any kl < 1 we have 

(1- E)-2 = 1 + 2E + 3E2 + 4E3 + · · · (4.15) 

the dispersion relation (4.9) becomes (for lvxl « wlk), 

1 = w~e 1 fo(v) d3v = 
now2 v (1- kvxlw)2 

W~e ( k k2 2 ) - 1 + 2 - < Vx >o +3 - < v >o + · · · w2 w w2 x (4.16) 

where the average value with the subscript 0 is calculated using the equi­
librium distribution function fo(v). Since the plasma is considered to be 
stationary, we have < Vx >o = Ux = 0, so that the second term in the 
right-hand side of ( 4.16) vanishes. To a first degree of approximation we 
obtain w2 = w~e' which is again the cold plasma result given in (4.14). For 
a small correction to the cold plasma result, we consider the next nonzero 
term in the expansion (4.16). Assuming that the equilibrium distribution 
function is isotropic and using the definition of absolute temperature, 

(4.17) 
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where Te is the temperature of the electron gas at equilibrium and kB is 
Boltzmann's constant, the dispersion relation (4.16) becomes 

(4.18) 

Since the second term in the right-hand side of (4.18) is small in the high 
phase velocity limit, we can replace w, in just this small term, by Wpe 

(which is the value of w when this term is zero) and write (4.18) as 

2 = 2 + 3k2 k B Te 
w wpe 

me 
(4.19) 

This result is known as the Bohm-Gross dispersion relation. Note that 
it is identical to the result obtained using the warm plasma model when 
collisions are neglected and when the ratio of specific heats is taken equal 
to 3. Since 1 is related to the number of degrees of freedom N by the 
relation 

(2+N) 
'Y = -'-------'--

N 
(4.20) 

we see that 1 = 3 corresponds to the case when the electron gas has one 
degree of freedom ( N = 1), so that the electrons move only in the direction 
of wave propagation. 

If additional terms are retained in the binomial series expansion of 
(4.16), additional approximations can be obtained for the dispersion re­
lation. In all these approximations we find that w remains real, so that 
the longitudinal plasma wave has a constant amplitude in time. There is 
neither temporal growth nor decay. It is usual to terminate the approxi­
mations to this dispersion relation at the stage given by (4.19). Using the 
definition of the Debye length A.v, the Bohm-Gross dispersion relation can 
be rewritten as 

(4.21) 

4.4 Dispersion Relation for Maxwellian Distribution Function 

Next we evaluate the longitudinal wave dispersion relation (4.5) for 
the important case when fo ( v) is the Maxwellian distribution function for 
a stationary equilibrium plasma, 

(4.22) 
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In this case, a careful analysis of ( 4.5) shows that w has a negative imagi­
nary part, causing a temporal damping of the electron plasma wave. This 
temporal damping, which arises in the absence of collisions, is known as 
Landau damping and will be discussed in the next subsection. 

For the moment, we evaluate the dispersion relation for the longitudi­
nal electron wave using the Maxwell-Boltzmann equilibrium distribution 
function. Substituting (4.22) into (4.5) yields 

1 = _ w;e me 1 Vxfo(v) d3v 
nok2 kBTe v (vx- wjk) 

1:00 

exp (-;:~J dvy 1:00 

exp h~:~J dv, (4.23) 

The second and third integrals are each equal to (27rkBTe/me) 112 • It is 
convenient to introduce the following dimensionless parameters, 

q = (2kBTe/me) 112 

so that the dispersion relation ( 4.23) reduces to 

Using the notation 

I( C)= _l_l+oo q exp ( -q2) dq 
7rl/2 -oo ( q - C) 

and substituting (kBTe/me) by Abw;e, (4.26) becomes 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

The evaluation of the integral J(C) is not straightforward because of 
the singularity at q = C, since for real w( k) the denominator vanishes on 
the real Vx axis. For complex w(k), which corresponds to damped waves 
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(I{w} < 0), or unstable waves (I{w} > 0), the singularity lies off the path 
of integration along the real Vx axis. However, this simplified derivation of 
the dispersion relation gives no indication of the proper integration contour 
to be chosen in the complex Vx plane. Possible contours of integration are 
shown in Fig. 2 for the cases: (a) unstable wave, with I { w} > 0; (b) real 
w( k); and (c) damped wave, with I { w} < 0. Landau was the first to treat 
this problem properly as an initial-value problem. If we are interested in 
the evaluation of the plasma behavior after an initial perturbation, then 
the causality principle demands that there should be no fields before the 
starting of the source. According to the well-known theorem of residues 
in the theory of complex variables, the value of an integral in the com­
plex domain with a closed contour of integration, such as in Fig. 2, is 
equal to 27ri times the sum of the residues within the closed path. The 
integral vanishes if there are no singularities enclosed by the integration 
path. Thus, the nature of the singularities of the integrand determines the 
behavior of the fields after the initial perturbation. The correct contour 
prescribed by Landau is along the real Vx axis, indented such as to pass 
below the singularities, and closed by an infinite semicircular path in the 
upper half of the complex Vx plane, as shown in Fig. 2. 

This technique of integration around a contour closed by an infinite 
semicircle in the upper half plane works if the contribution of the integral 
from the semicircular path vanishes as its radius goes to infinity. The 
integral J(C) given in (4.27), the way it stands, cannot be handled by 
the usual method of residues, since the integrand diverges for q = ±ioo. 
To put this integral in a form suitable for evaluation by the method of 
residues, or by any other method, note first that we can write 

q = 1+ c 
(q- C) (q- C) 

(4.29) 

so that we have 

(4.30) 

The first integral in the right-hand side of this equation is equal to unity. 
Therefore, 

C l+oo exp ( -q2) 
J(C) = 1 + 7rl/2 -oo (q- C) dq (4.31) 
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lm{q} lm{q} 
(a) (b) 

q=C 
• 

Re{q} 

lm{q} 
(c) 

Re{q} 
q=C 

Fig. 2 Contours of integration in the complex Vx plane for (a) 
I{w} > 0, (b) I{w} = 0, and (c) I{w} < 0. 

For purposes of integration it is convenient to introduce a parameter 
sin the integral of (4.31), by defining 

1 l+oo exp ( -sq2 ) 
G( C, s) = !72 ( _ C) dq 

7r -oo q 
(4.32) 

Hence, we identify the integral I(C) as 

I(C) = 1+C G(C,1) (4.33) 

so that the dispersion relation ( 4.28) becomes 

( 4.34) 

The purpose of defining G(C, s), as in (4.32), is that this relation allows 
us to evaluate G(C, 1) through a transformation of the integral into a 
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differential equation. Initially, note that the integral in ( 4.32) can also be 
written as 

1 l+oo ( q + C) 2 
G(C, 8) = 7r112 -oo (q2 _ 02) exp ( -8q ) dq (4.35) 

The first integral in the right-hand side of this equation vanishes, since 
the integrand is an odd function of q. Therefore, an alternative expression 
for G(C, 8) is 

C l+oo exp ( -8q2 ) 

G(C, 8) = 7r1/2 -oo (q2- C2) dq 

Taking the derivative of (4.36) with respect to 8, yields 

dG(C, S) = _ _!}_ l+oo q2 exp ( -8q2) dq 
d8 7r1/2 -oo (q2 - C2) 

C l+oo( 02 ) 
- 7r1/2 -oo 1 + q2 - C2 exp ( -8q2) dq 

Evaluating the first integral we obtain -C /8 112 , so that 

dG(C, 8) = _!!__ _ 02 G(C ) 
d8 81/2 '8 

(4.36) 

(4.37) 

(4.38) 

Next, we multiply this differential equation by exp (802 ) and note that 

Thus, it is possible to write ( 4.38) in the form 

d c 
d8 [G(C, 8) exp (802)] =- 8112 exp (802) (4.40) 

Upon integrating both sides of this equation from 8 = 0 to 8 = 1, gives 

11 exp (802 ) 
G(C, 1) exp (C2)- G(C, 0) =- C 112 ds 

0 8 
(4.41) 

or, rearranging, 

[ 1 exp (802 ) 
G(C, 1) = G(C, 0) exp ( -02)- C exp ( -02 ) Jo 8112 d8 (4.42) 
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The integral G(C, 0) is easily evaluated for the case of weak damping (large 
phase velocity). In this case, the pole at Vx = w I k lies near the real Vx 

axis and G( C, 0) can be evaluated as an improper integral, as follows: 

G( C 0) = _l_l+oo dq = lim [-1-lx dq J -
' 7rl/2 -oo (q- C) X-+oo 7rl/2 -X (q- C) 

(4.43) 

The integral G( C, 0) can also be evaluated by the method of residues, 
using an appropriate contour of integration in the complex q-plane, as 
shown in Fig. 2(b), which gives the same result (4.43) for the Cauchy 
principal value of the integral. Therefore, ( 4.42) becomes 

(4.44) 

The remaining integral in the right-hand side of ( 4.44) can be rewritten 
in a different form by changing the variable s to W2 I C2 . Consequently, 
dsls112 = 2dWIC and 

G( C, 1) = ;,1; 2 exp ( -C2 ) - 21° exp (W2 - C2) dW (4.45) 

Although this integral cannot be evaluated explicitly, it is now in a more 
convenient form for numerical calculation. 

Substituting ( 4.45) into ( 4.34) results in the following expression for 
the dispersion relation: 

-k" At = 1 + ;,'i2C exp ( -C") - 2C foe exp (W2 - C2) dW ( 4.46) 

The integral remaining here can be evaluated numerically, while the imag­
inary term is known as the Landau damping term. The formal procedure 
to evaluate k as a function of w (or vice versa) from this dispersion relation 
consists in choosing a given value of C, as defined in (4.24), and finding 
the corresponding value of the dispersion function from numerical calcu­
lations. Equation ( 4.46) can then be used to evaluate the propagation 
coefficient k. 
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4.5 Landau Damping 

In order to show that ( 4.46) indicates temporal damping of the lon­
gitudinal plasma wave, it is convenient to perform an approximate eval­
uation of the dispersion relation. The special case of high phase velocity 
and weak damping can be analyzed in a straightforward way and, at the 
same time, provides a partial check on the accuracy of the Bohm-Gross 
dispersion relation obtained earlier. Furthermore, an explicit expression 
is obtained for the imaginary part of w. Thus, for the limiting case of 
0 » 1, let us find an approximate expression for the dispersion function 
integal 

It = 2C i.e exp (W2 - C2 ) dW ( 4.47) 

As the first step, equation (4.47) can be rewritten by transforming the 
integration variable to E = 0 2 - W2 , which gives 

( 4.48) 

Since E is less than 0 2 over the entire range of integration, we can expand 
(1- E/02)-112 in a binomial series, 

1 X 3 X··· X (2n- 1) (_f_)n ... 
2n n! 0 2 + (4.49) 

If this expansion is substituted into ( 4.48) and each term is integrated by 
noting that 

{' (J,r exp Hl ~= ;L-
exp (-02) [1 + _!!___ + n(n -1) + ... + ~] 

02 04 02n 
(4.50) 

we find 

1 3 1 X 3 X · · · X (2n- 1) 
h = 1 + 2C2 + 404 + ... + 2n02n + ... 

(4.51) 
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where 0{ exp ( -C2)} denotes terms of order exp ( -C2). Although this is 
an asymptotic expansion and actually diverges when n-+ oo, a good esti­
mate of h can be obtained by retaining only the first few terms, provided 
Cis large. Therefore, on retaining only the first three terms of (4.51), the 
dispersion relation (4.46), in the high phase velocity limit, becomes 

(4.52) 

With the help of (4.24), which defines C, and the definition of the Debye 
length >..v, equation (4.52) can be written as 

i(7r~2~1/2 (_!::!_)3 exp [- ; 2 (_!::!_)2] 
k AD Wpe 2k AD Wpe 

( 4.53) 

In the high phase velocity limit the second term in the right-hand side 
of ( 4.53) is small as compared to the first one, whereas the third term 
is exponentially small as compared to the first one, so that in this limit 
the plasma oscillates very close to the plasma frequency Wpe· Note that 
this limit corresponds also to a long-wavelength limit. Thus, ( 4.53) can 
be further approximated as 

i(1r /2) 1 12w~e W~e 3] 
k3 (kBTe/me) 312 exp [- 2k2 (kBTe/me) - 2 (4.54) 

where in the right-hand side of (4.53) we have replaced w by Wpe' except 
in the exponential term where w2 has been replaced by the Bohm-Gross 
results (4.19). 

Note that the first two terms in (4.54) correspond to the Bohm-Gross 
result, whereas the imaginary term is new. Separating w in its real and 
imaginary parts according to w = Wr + i Wi and noting that 

we obtain (taking Wr = Wpe) 

(w2)i 
Wi=--

2 Wr 
(4.55) 
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(4.56) 

This negative imaginary term in w leads to temporal decay of the wave 
amplitude, since for a standing wave (where k is real) the waves are pro­
portional to 

exp (ikx- iwt) = exp (ikx- iwrt) exp (wit) (4.57) 

This temporal damping of the longitudinal plasma wave was first pointed 
out by L.D. Landau and, for this reason, the expression ( 4.56) is usually 
called the Landau damping factor. 

The Landau damping of the longitudinal plasma wave amplitude 
arises in the absence of dissipative mechanisms, such as collisions of the 
electrons with heavy particles. The physical mechanism responsible for 
this collisionless Landau damping is the wave-particle interaction, i.e., the 
interaction of the electrons with the wave electric field Exx cos (kx- wt). 
The electrons that initially have velocities quite close to the phase velocity 
of the wave are trapped inside the moving potential wells of the wave, and 
this trapping results in a net interchange of energy between the electrons 
and the wave. For the Maxwell-Boltzmann velocity distribution function 
we find that, for small k, the phase velocity lies far out on the distribution 
tail and the damping is negligible, but for values of k close to 11 >..v the 
phase velocity lies within the tail, as shown in Fig. 3, so that there is a 
velocity band ~v around v = wlk where there are more electrons in ~v 
moving initially slower than w I k, than moving faster than w I k. Conse­
quently, the trapping of the electrons in the wave potential troughs will 
cause a net increase in the electron energy at the expense of the wave 
energy. This happens in the region where a fol avx is negative, like the 
one shown in Fig. 3. In some cases, the initial velocity distribution of the 
electrons may be appropriately chosen in such a way that Wi becomes pos­
itive. This would indicate an unstable situation, with the wave amplitude 
growing in time. This happens when a fol avx is positive at Vx = w I k. 

It is important to note that the Landau damping factor is essentially 
due to the pole of the integrand in ( 4.31), which occurs at the value of the 
electron velocity component Vx (parallel to k) equal to the phase velocity 
of the wave ( w I k). This property is a mathematical manifestation of the 
fact that the wave-particle interaction is effective only when the velocity 
of the electrons is very close to the phase velocity of the wave. 
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Fig. 3 Equilibrium distribution function of the electrons show­
ing a velocity band .6.v around the phase velocity (wjk), in which 
there are more electrons moving slower than ( w / k) , than moving 
faster than (w/k). 

5. TRANSVER E WAV 

5.1 Development of the Dispersion Relation 
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The third and fourth independent groups of fields, consisting of Jy , 
Ey, Bz and Jz, Ez, By , respectively, constitute the two different polar­
izations of the transverse wave mode. In order to deduce the dispersion 
relation for the transverse electromagnetic wave, let us consider initially 
equations (3.26), (3.32) , and (3.34). Substituting Bz from (3.32) into 
(3.34), yields 

E- ?,W J 
Y - Eo(k2c2 - w2) Y (5.1) 

Combining this equation with (3.26), to eliminate Jy , we obtain 

E - w~ew E 1 Vy 8fo(v) d3v 
Y- no(w2 - k2c2) Y v (kvx- w) 8vy (5·2) 
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In a similar way, combining (3.27), (3.31), and (3.35) we find that the 
equation for Ez is identical to (5.2). The integral with respect to vy in 
(5.2) can be simplified by an integration by parts 

r+oo 8fo(v) ivy=+oo r+oo 
1-oo Vy 8vy dvy = Vy fo(v) vy=-oo- 1-oo fo(v) dvy (5.3) 

The first term in the right-hand side of this equation vanishes, since fo( v) 
vanishes at Vy = ±oo. Thus, we obtain from (5.2) the following dispersion 
relation for the transverse electromagnetic wave: 

(5.4) 

5.2 Cold Plasma Result 

Again, we shall examine first the limiting case of a cold plasma char­
acterized by the distribution function ( 4.10). Substituting ( 4.10) into ( 5.4) 
and using the property (4.12) of the Dirac delta function, we find 

(5.5) 

This result is identical to the one obtained in Chapter 16 using the cold 
plasma model [see (16.4.12)]. 

5.3 Dispersion Relation for Maxwellian Distribution Function 

Considering fo( v ), in (5.4), as the Maxwell-Boltzmann distribution 
function, we find, after integrating over Vy and Vz, 

k2 2 - 2 - 2 _!!__ j+oo exp ( -q2) 
c w - wpe 1/2 - C dq 

7r -00 q 
(5.6) 

where, as before, we have introduced the dimensionless parameters C and 
q, defined in (4.24) and (4.25), respectively. The integral appearing in 
(5.6) is the same as the integral G(C, s) for s = 1, defined in (4.32), so 
that we can write the dispersion relation (5.6) as 

(5.7) 
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For weak damping we can use (4.45), obtaining 

5.4 Landau Damping of the Transverse Wave 

In contrast with the Landau damping of the longitudinal plasma wave, 
the Landau damping of the transverse electromagnetic wave, which is due 
to the small negative imaginary part of w in (5.8), is negligibly small. 
For the purpose of establishing this result, it is convenient to evaluate 
approximately the dispersion relation (5.8) in the high phase velocity limit. 
In the limit when C is very large we can use (4.51). To obtain a first 
approximation to the real part of w, it is sufficient to retain only the first 
term in (4.51), so that in the high phase velocity limit (5.8) reduces to 

(5.9) 

This result is similar to the dispersion relation obtained using the cold 
plasma model without collisions, except for the Landau damping term. 

In the high phase velocity limit ( C » 1) the Landau damping factor is 
very small and can be omitted in a first approximation, with the result that 
(5.9) reduces to the cold plasma result (5.5). From (5.5) we see that for w > 
Wpe the phase velocity wlk is greater than c (the speed of electromagnetic 
waves in free space). Thus, Cis of the order of cl(2kBTelme) 112 and is 
therefore a very large number. Since Cis very large, the Landau damping 
of the transverse electromagnetic wave is negligible. 

As a matter of fact it can be argued that, for this case, the Landau 
damping term is really zero, since the integration over Vx should really ex­
tend only from -c to +c, while the phase velocity is always greater than 
c. This implies that the pole at Vx = ( w I k), or equivalently at q = C, 
lies outside the path of integration along the real axis. Therefore, the 
conditions for efficient wave-particle interaction are not met for the trans­
verse electromagnetic wave throughout the frequency range of propagation 
(since w I k is greater than c), resulting in no wave damping. On the other 
hand, for the longitudinal plasma wave there are frequencies for which 
the wave phase velocity is of the order of the electron thermal velocities, 
so that wave-particle interaction can take place efficiently, with the result 
that the Landau damping factor becomes important for the lower phase 
velocity longitudinal waves. 
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As an example of a situation in which wave-particle interaction leads 
to a growing wave amplitude, at the expense of the kinetic energy of the 
plasma particles, we consider in this section the so-called two-stream in­
stability. Although the instability arises under a wide range of beam con­
ditions, we shall consider only the simple case of two counterstreaming 
uniform beams of electrons with the same number density no/2. The first 
stream travels in the x direction with drift velocity v D = v DX and the sec­
ond stream in the opposite direction with drift velocity v D = -v DX. We 
shall assume that each particle, in each stream, has exactly the stream 
velocity, i.e., the particles are assumed to be cold, so that the electron 
distribution function can be written in terms of the Dirac delta function 
as 

fo(v) =~no [b(vx- VD) + b(vx + VD)] b(vy) b(vz) (6.1) 

This distribution function is illustrated in Fig. 4 for the Vx component 
only. 

For longitudinal plasma waves propagating in the x direction (k = kx) 
in an electron gas described by the Vlasov equation, the dispersion relation 
is, from (4.9), 

1- w~e 1 fo(v) d3v 
- nok2 v (vx- w/k) 2 

(6.2) 

Substituting (6.1) into (6.2), yields 

1 = lw2j+oo b(vx- VD) + b(vx + VD) 
2 pe (kv - w)2 dvx 

-00 X 

j
+oo j+oo 

-oo b(vy) dvy -oo b(vz) dvz (6.3) 

and integrating over each of the 6 functions, we obtain 

1 = lw2 [ 1 + __ 1_--.,.-J 
2 pe (kvD- w)2 (kvD + w)2 

(6.4) 

This is the dispersion relation for longitudinal waves (with the wave nor­
mal in the direction of the first electron stream) in a counterstreaming 
electron plasma characterized by the distribution function (6.1). We as­
sume that the propagation coefficient k of the longitudinal plasma wave 
is real (standing waves) and investigate the existence of temporal growth 
or decay of the wave amplitude. 
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Fig. 4 Illustrating the Vx component of the distribution func­
tion (6.1). 
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Equation (6.4) can be rearranged in the following polynomial form: 

where 

w4 - Bw2 + C = 0 (6.5) 

(6.6) 

(6.7) 

Note that B is always positive, whereas C can be either positive or nega­
tive, depending on whether k2v'b > w;e or k2v'b < w;e, respectively. The 
polynomial equation (6.5) has two roots for w2 , which are 

w~ = ~B + (~B2 - 0) 112 

w~ = ~B- (~B2 - 0)112 

(6.8) 

(6.9) 

In what follows we shall show that an instability can arise only when 
k2 2 2 

Vn < wpe· 
First we note that for k2v'b > w;e we have C > 0, so that both wi 

and w~ are positive real quantities and therefore there can be no temporal 
growth or decay of the wave amplitude. On the other hand, for k2v1 < w;e 
we have c < 0, so that wr is still a positive real quantity, whereas w~ 
is a negative real quantity. Therefore, w2 has two imaginary values (one 
positive and one negative). The positive imaginary value of w2 corresponds 
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to an unstable mode, since for w2 = iw2i, with w2i real and positive, we 
have exp( -iw2t) = exp(w2it). Hence the growth rate is given by 

W2i = [-~B + (~B2- C)1/2]1/2 

or, using (6.6) and (6.7), 

C< 0 

W2i = { -(~w;e + k2vb) + [(~w;e + k2vb)2 -

valid for k2vb < w~e· 

(6.10) 

(6.11) 

The maximum value of the growth rate (6.11) corresponds to the 
minimum value of w~ in (6.9), since w~i = -w~. Examining the derivative 
of w~ with respect to k, we find that the minimum value of w~ occurs 
when k2vb = (3/8)w~e and the corresponding value of w~ is -w~e/8. 
Consequently, the maximum value of the growth rate is 

(max) _ 1 
w2i - 81/2 Wpe (6.12) 

~-t ............................ . 
7.1 Longitudinal Mode 

The dispersion relation is (for k = kx) 

(4.2) 

Alternative forms for this dispersion relation are 

1 _ w~e 1 8fo(v) 1 d3v 
- nok2 v 8vx (vx- wjk) 

(4.5) 

1 = w~e 1 fo(v) d3v 
nok2 v (vx- wjk)2 

(4.9) 

When f 0 (v) is the Maxwell-Boltzmann distribution function, 

-k2 ;.,j, = 1 + i1r1/ 2C exp ( -C2)- 2C foe exp (W2 - C2 ) dW (4.46) 
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The cold plasma limit gives stationary electrostatic oscillations at the 
plasma frequency, 

(4.14) 

The high phase velocity limit gives the warm plasma model result (Bohm­
Gross dispersion relation) for the electron plasma wave, 

2 = 2 + 3k2 k B Te w wpe 
me 

(4.19) 

The Landau (temporal} damping factor is (with w = Wr + iwi) 

(4.56) 

7.2 Transverse Mode 

The dispersion relation is (for k = kx) 

(5.4) 

For f0 (v) as the Maxwell-Boltzmann distribution function, 

k2t?-- w2 = w~, [irr1i 2C exp ( -C2)- 2C J.c exp (W2 - C2 ) dW] {5.8) 

The cold and the warm plasma limits give 

(5.5) 

The high phase velocity limit gives 

(5.9) 

In this case, the Landau damping term is not relevant, since Vph 2: c. 
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18.1 Since the longitudinal plasma wave is an electrostatic oscillation, 
it is possible to derive its dispersion relation using Poisson equation, sat­
isfied by the electrostatic potential ¢( r, t), instead of Maxwell equations. 
Consider the problem of small-amplitude longitudinal waves propagating 
in the x direction in an electron gas (only electrons move in a background 
of stationary ions), in the absence of a magnetic field. Assume that 

f(r, v, t) = fo(v) + JI(v) exp (ikx- iwt) 

E(r, t) = xE exp (ikx- iwt) 

where J!II « f 0 , with fo(v) the nonperturbed equilibrium distribution 
function and where E(r, t) is the internal electric field due to the small­
amplitude perturbation in the electron gas. Using the linearized Vlasov 
equation (neglecting second-order terms) determine the expression for 
fi ( v) in terms of E = - 'V ¢ and 'V v fo. Using this result in Poisson 
equation, obtain the following dispersion relation for longitudinal waves 
propagating in the x direction 

18.2 Show that 

2C 1c exp (W2 - C2 ) dW 

oo 2nc2n 
2C2 ~( 1)n _______ _ 
~ 1 X 3 X 5 X · · · (2n- 1)(2n + 1) 

by making a series expansion of the integrand. For C « 1, that is, for 
(w/k) « (2kBTe/me) 112 , show that the dispersion relation for the longi­
tudinal plasma wave reduces to 

or 
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This result is the low-frequency limit of the result obtained from the 
macroscopic warm plasma model, using the isothermal sound speed of 
the electron gas Vse = (kBTe/me) 112 • 

18.3 (a) Show that the dispersion relation for the longitudinal plasma 
wave (with k = kx), for the case of an unbounded homogeneous plasma 
in which the motion of the electrons and the ions is taken into account, 
can be written as 

where a = e, i. Show that this dispersion relation can be recast into the 
form 

2 2 
1 - 2_ [ wpe + wpi J 

- k2 < (vx- wjk) 2 >oe < (vx- wjk) 2 >oi 

where (with a = e, i) 

(b) For the cold plasma model, for which 

show that the dispersion relation reduces to 

2 
2 2 2 noe 

w = wpe + wpi = -­
f.-lEo 

where f.1 = memd(me + mi) is the reduced mass of an electron and an 
ion. 
(c) In the high phase velocity limit, show, by making a binomial expansion, 
that the dispersion relation becomes 



512 FUNDAMENTALS OF PLASMA PHYSICS 

Show that this equation can be written as 

where Th is a hybrid temperature given by 

Th = (mTTe + m;Ti) 
(me+ mi)2 

Under what conditions does this relation reduce to the Bohm-Gross dis­
persion relation for a warm electron plasma? 
(d) Show that the dispersion relation of part (a) can be expressed as 

k2~1" [I+ i1r1/ 2C; exp ( -Cf)- 2Ci foe, exp (W2 - CJ) dW] 

where (with a= e, i) 

(wjk) 
Ca = (2kBT01 /ma)ll 2 

For weakly damped oscillations (wi « Wr) and in the low-frequency and 
low phase velocity range specified by the condition 

show that the dispersion relation reduces to 

- 1 ( . 1/2 me c2) 1- -k2)..2 1+z7r Ce- -2 . e 
De mt 

Consequently, verify that the frequency of oscillation and the Landau 
damping constant are given by 
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Note that the condition Ci » 1 » Ce is fulfilled only if Te/Ti » (1 + 
k2 >-1e), which implies a strongly nonisothermal plasma, with hot electrons 
and cold ions. Show that in the long-wave range we find 

which is essentially the same as the low-frequency ion acoustic waves that 
propagate at a sound speed determined by the ion mass and the electron 
temperature. 

18.4 A longitudinal plasma wave is set up propagating in the x direction 
(k = kx) in a plasma whose equilibrium state is characterized by the 
following so-called resonance distribution of velocities in the direction of 
the wave normal of the longitudinal plasma wave: 

where A is a constant. 
(a) Using this expression for f0 (v) in the dispersion relation for the lon­
gitudinal plasma wave, given in (4.9), obtain the result 

(b) Evaluate the integral of part (a) by closing the integration contour in 
the upper half plane (note that there is a double pole at Vx = w / k and a 
single pole at Vx = iA), to obtain the dispersion relation 

2 
wpe 1 

1 = k2 (w/k + iA) 2 

(c) Analyze this dispersion relation ( w = Wr + iwi) to show that the longi­
tudinal wave in this plasma is not unstable and determine the frequency 
of oscillation (wr) and the Landau damping constant (wi)· Compare this 
Landau damping constant with the corresponding value for a Maxwellian 
distribution of velocities, for the cases when k>.D « 1 and k>.D 2: 1. 
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18.5 Solve the linearized Vlasov equation (3.9) by the method of inte­
gral transforms, taking its Laplace transform in the time domain and the 
Fourier transform with respect to the space variables. Then, determine 
the dispersion relation for the modes of wave propagation in a hot isotropic 
plasma. 

18.6 Evaluate the integral G(C, 0), defined in (4.32) with s = 0, by the 
method of residues using the contours of integration in the complex plane 
shown in Fig. 2. 

18.7 Consider a longitudinal wave propagating along the x direction in 
a plasma whose electric field is given by 

Ex(x, t) =Eo sin (kx- wt) 

(a) Show that, for small displacements, the electrons that are moving 
with a velocity approximately equal to the phase velocity of the wave will 
oscillate with a frequency given by 

w' = (e!:k) 1/2 

(b) Establish the necessary conditions for trapping of the electrons by the 
wave. 

18.8 Consider the two-stream instability using the macroscopic cold 
plasma equations for two beams of electrons having number densities given 
by 

n1,2 = ~no+ n1,2 exp (ikx- iwt) 

and average velocities given by 

u1,2 = ±uo + u1,2 exp (ikx- iwt) 

Consider that the electric field is given by 

Ex= Eo exp (ikx- iwt) 

Determine the dispersion relation for this two-stream problem and verify 
if the oscillations with real k are stable or unstable. 



WAVES IN HOT 

MAGNETIZED PLASMAS 

The analysis of small-amplitude waves propagating in a hot plasma, 
presented in the previous chapter, is now extended to anisotropic plasmas 
immersed in an externally applied magnetic field. Emphasis is given to the 
study of plasma waves having their propagation vector k either parallel 
or perpendicular to the externally applied magnetostatic field. 

For propagation along the magnetostatic field the plasma waves sep­
arate again into three independent groups. The first group is the longitu­
dinal plasma wave, whereas the second and third groups are the left and 
the right circularly polarized transverse electromagnetic waves. 

For propagation across the magnetostatic field the plasma waves sep­
arate into two groups, which are designated as the TM (transverse mag­
netic) and the TEM (transverse electric magnetic) modes. The longitudi­
nal plasma wave does not exist independently for any orientation of the 
magnetostatic field other than parallel to k. 

The mathematical analysis of the problem of wave propagation at an 
arbitrary direction relative to the magnetostatic field in a hot magnetized 
plasma is more complicated insofar as the details are concerned and will 
not be presented here. 
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2. WAVE PROPAGATION ALONG THE 
MAGNET~~~LH~un~~~~~~--~ 

In this section we analyze the problem of wave propagation in an 
unbounded hot plasma consisting of mobile electrons in a neutralizing 
background of stationary ions, immersed in a uniform magnetostatic field 
Bo. 

In the equilibrium state, the electron number density (which is the 
same as that of the ions) is denoted by n0 . In the absence of perturbat ions, 
the homogeneous electron equilibrium distribution function has to satisfy 
the zero-order Vlasov equation 

(v X Bo). \7 vfo(v) = 0 (2.1) 

The presence of the magnetostatic field introduces an anisotropy in the 
distribution function, so that the equilibrium distribution function will be 
denoted by f0(v 11 ,v..L), where v11 and V..L represent the electron velocity in 
directions parallel and perpendicular to Bo, respectively. 

2.1 Linearized Vlasov Equation 

As before, the perturbed distribution function is assumed to consist 
of a small perturbation, fi ( r, v, t), superimposed on the equilibrium dis­
tribution function, fo(v 11 , v..L), that is, 

f(r, v , t) = fo(v 11 , v..L ) +!I (r, v, t) (2.2) 

where Iii I « fo . The electric field E(r, t) and the magnetic induction 
B(r, t) associated with the charge density and the current density inside 
the plasma, and which are related to the first-order pertubation h (r, v , t) , 
are also first-order quantities. Note, however, that E(r, t) denotes the total 
electric field inside the plasma, whereas the total magnetic field Bt ( r, t) is 
given by 

Bt(r, t) = B0 + B(r, t) (2.3) 
Substituting (2.2) and (2.3) into the Vlasov equation (18.2.1) (Eq. 2.1 
in Chapter 18), neglecting all second-order terms, and noting that the 
equilibrium distribution function is homogeneous, results in the following 
linearized Vlasov equation: 

Bh (~, v, t) + v. \7 fi (r, v, t) - _!!:___ [E(r, t) + v x B(r, t)) · 
t m e 
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e 
· 'V vfo( v11 , V1_) - - (v X Bo) · 'V vh (r, v, t) = 0 (2.4) 

me 

2.2 Solution of the Linearized Vlasov Equation 

For the purpose of investigating the characteristic of plane waves 
propagating along the magnetostatic field, we shall assume that the space­
time dependence of all physical quantities is a periodic harmonic depen­
dence according to 

E(r, t) = E exp (ik · r- iwt) 

B(r, t) = B exp (ik · r- iwt) 

JI(r, v, t) = JI(v) exp (ik · r- iwt) 

(2.5) 

(2.6) 

(2.7) 

where E, B, and JI(v) are phasor amplitudes (which in general may be 
complex quantities) independent of space and time. With this space-time 
dependence, the linearized Vlasov equation (2.4) reduces to 

-i(w- k · v) JI(v)- ~ (v x Bo) · 'Vvfi(v) 
me 

(2.8) 

In order to solve this differential equation for h ( v) in velocity space, 
we shall introduce cylindrical coordinates ( v11 , v 1_, ¢) with the vector com­
ponent v11 along the magnetostatic field, as shown in Fig. 1. Therefore, 
we have B 0 = B0z and 

Vx = Vj_ COS </J Vy = Vj_ sin¢ (2.9) 

Using these relations, we can write 

d ( ) (dvx 8 dvy 8 dvz 8 ) ( 
d</JJI v = d¢ 8vx + d¢ 8vy + d¢ 8vz h v) 

(-vy 8~x +vx 8~Y) JI(v)=-(vxz)·'Vvft(v) (2.10) 

Substituting this expression into (2.8), we obtain 

. eBo dft(v) e 
-t(w-k·v) JI(v)+- d¢ =- (E+vxB)·'Vvfo(v 11 ,v_L) (2.11) 

me me 
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Vy 

Fig. 1 Cylindrical coordinate system (v 11 , v1_, ¢) in velocity 
space, with the v 11 axis along the magnetostatic field B 0 and v 1_ 
in the (vx, vy) plane normal to Bo. 

Using the definition of the electron cyclotron frequency Oce = (eB0 / me), 
(2.11) can be rewritten as 

df~~v)- i(w ;~·v) JI(v) = me~ce (E+v x B)· 'Vvfo(v 11 ,v.l) (2.12) 

From Maxwell \7 x E equation we can express the magnetic field as 

1 
B =- (k X E) 

w 
(2.13) 

Substituting (2.13) into (2.12), and making use of the vector identity 
v x (k x E) (v · E)k - (k · v)E, we obtain for t he right-hand side 
of (2.12) 

e n (E+v X B). 'Vvfo = 
me ce 

e 
[(1 - kvu) E·'Vvfo+k(v · E) ofo] 

w w 8v 11 



19. WAVES IN HOT MAGNETIZED PLASMAS 519 

k . ajo} - [(Ex cos¢+ Ey sm ¢) V_1_ + E 11 v11 ] -a = 
W VII 

_e-::-- { [(1 - kv 11 ) aJo + kv_1_ ajo] (Ex cos¢+ Ey sin¢)+ Ell aJo} 
meDce w av_1_ w av 11 av 11 

(2.14) 
where we have taken k . v = kv 11 and k . V' v = k( a 1 av 11 ), since we are 
considering wave propagation parallel to the magnetic field. 

At this point it is convenient to express the component of the electric 
field vector in the plane perpendicular to Bo as a linear superposition of 
two, oppositely directed, circularly polarized components. Noting that 
(x + iy) I y'2 and (x - iy) I v'2 are unit complex vectors, the Cartesian 
components of the electric field vector 

can be appropriately rewritten as 

E _ E (x + iy) E (x - iy) E ~ 
- + y'2 + - y'2 + II Z 

where the following notation is used: 

(2.15) 

(2.16) 

(2.17) 

The first term in the right-hand side of (2.16) represents a circularly polar­
ized field with the electric field vector rotating in the clockwise direction, 
whereas the second term represents a circularly polarized field with the 
electric field vector rotating in the counterclockwise direction, for an ob­
server looking along B 0 . For the right (left) circularly polarized field, with 
the thumb of the right (left) hand pointing in the direction of propagation 
(z), the fingers curl in the direction of rotation of the electric field vector. 
Thus, the two linearly polarized perpendicular components of the electric 
field in the plane (x, y), normal to B 0 , can be recast as a superposition of 
two circularly polarized components with opposite directions of rotation. 
The advantage of using the two circularly polarized components is that it 
permits the final equations, involving the transverse modes of propagation, 
to be separated into two independent sets of transverse fields. 
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It is a trivial matter to verify the relation 

so that (2.12) can be rewritten as 

df~~v) _ i(w;c~vll) JI(v)= me~ce {[(1 - k~ll) ::: + 

kvl_ 8fo] ~ (E+ei¢; + E_e-i¢) +Ell 88fo} (2.19) 
w 8v11 v2 v11 

Introducing the notation 

where 

F_(v) = F_(v 11 , v1_) e-i¢; 

Fll ( v) = Fil (vII ' v j_) 

equation (2.19) becomes 

dfi ( v) _ i( w - kv11) f ( ) = F ( ) F ( ) D ( ) 
d</J Oce 1 V + V + _ V + r 11 V 

In order to solve this differential equation, let 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

where fH(v), !1-(v), and JI 11 (v) are the solutions of (2.26) corresponding, 
respectively, to F+(v), F_(v), and F 11 (v), individually, in the right-hand 
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side of (2.26). Thus, the differential equation for fi+(v), for example, can 
be written as 

_!!___ {! ( ) [- i(w- kv 11 ) A..]} = 
d¢ I+ v exp Oce <r 

(2.28) 

Integrating both sides of this equation with respect to¢, from¢= -oo to 
an arbitrary value of ¢, and noting that the exponential term vanishes at 
¢ = -oo, since w has a vanishingly small positive imaginary part, yields 

The value of fi+(v) must not change if ¢ is increased or decreased by 
integral multiples of 21r, since by physical arguments fi+(v) must be a 
single valued function of v. This requirement can be satisfied only if 
C+ = 0. Therefore, we obtain 

(2.30) 

where 

(2.31) 

In a similar way, we find 

(2.32) 

where 

and 
( ) ( ) iOce 

!1 11 v = !1 11 v 11 ,v..l = ( k ) F 11 (v 11 ,v..L) 
W- v 11 

(2.34) 

Substituting expressions (2.23), (2.24), and (2.25) into (2.31), (2.33), and 
(2.34), respectively, yields the following explicit expression for the phasor 
amplitude fi ( v) of the perturbation of the velocity distribution function, 
in terms of the equilibrium distribution function of the electrons: 
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(2.35) 

2.3 Perturbation Current Density 

Since the space-time dependence of the electromagnetic field is of the 
form exp (ik · r- iwt), we expect the current density to behave also as 

J(r, t) = J exp (ik · r- iwt) (2.36) 

where the phasor amplitude of the current density is given by 

(2.37) 

where the integration is to be performed over all of velocity space. It 
is also convenient to separate J into two, oppositely directed, circularly 
polarized components, as well as a longitudinal component along B0 . For 
this purpose, we express the electron velocity in a form analogous to (2.16), 

(x + iy) (x - iy) ~ 
V = V+ J2 + V_ J2 + ZVII (2.38) 

where 

(2.39) 

Thus, with this representation for v, we obtain the following corresponding 
components for J: 

J+ = -e 1 v+fr(v) d3v 

J_ = -e 1 v_fi(v) d3v 

(2.40) 

(2.41) 

J11 = -e 1 v 11 !I (v) d3 v (2.42) 

According to (2.27), (2.30), (2.32), and (2.34), we can replace fr (v) by 

fr(v) = fi+(v 11 ,v_1_) ei¢ + Jr_(v 11 ,vj_) e-i¢ + !I 11 (v 11 ,v_1_) (2.43) 
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Further, in view of (2.9), we also have 

so that (2.40), (2.41), and (2.42) become 

JI 11 (v 11 ,v1_)] d3 v 

e 1 .4> .4> .4> ]_ =- J2 v V1_et [fH(v 11 ,v_i) et + JI_(v 11 ,v_i) e-t + 

fi 11 ( V 11 , V j_ ) ] d3 V 

]II= -e 1 VII [fH(v 11 ,Vj_) eiif>+JI-(v 11 ,Vj_) e-i¢ + 

JI 11 (v 11 ,v_i)] d3v 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

In cylindrical coordinates we have d3v = V1_ dv1_ dv 11 d</>. Evaluating 
the integrals with respect to </>, from 0 to 21r, yields the following simple 
results: 

smce 

12• e±in¢ d¢ = 0 ; 

= 27r 

(2.48) 

(2.49) 

(2.50) 

for n = 1, 2, 3, · · · 

for n = 0 (2.51) 

From (2.31), (2.33), and (2.34), together with (2.23), (2.24), and (2.25), 
we see that J+, J_, and 1 11 depend, respectively, only onE+, E_, and E 11 . 
This result justifies the use of the method of decomposition of the vectors 
into the sum of two, oppositely directed, circularly polarized components 
in the plane normal to B 0 , and a longitudinal component along B 0 . 
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2.4 Separation into the Various Modes 

From Maxwell equations, considering the special case in which all 
field vectors vary as exp ( ik · r - iwt), with k = ki, we have 

kix E=wB 

,..__ '/,W 

ikz x B = J-loJ - 2 E 
c 

(2.52) 

(2.53) 

Noting that i X E = y Ex - xEy, (2.52) and (2.53) can be rewritten in 
component form as 

and 

wBx =-kEy 

wBy = kEx 

wBz =0 

'/,W 

-ikBy = j1oJx - 2 Ex 
c 

ikBx = j1oJy- 2~ Ey 
c 

2W 
0 = 11oJ11 - 2 Ell 

c 

Now we define, as in (2.17), 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

Multiplying (2.54) by 1/v'2, and (2.55) by ~i/v'2, and adding the resulting 
expressions, yields 

(2.61) 

Note that the signs are coupled, that is, either upper signs or lower signs 
are to be used. Similarly, combining (2.57) and (2.58), and noting that 

(2.62) 

we obtain 

(2.63) 
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From these equations it is clear that the total electromagnetic field can be 
separated into four independent groups, involving the following quantities: 

(a) J 11 , E 11 [equation (2.59)]. 
(b) Bz [equation (2.56)]. 
(c) J_, E_, B_ [equations (2.61) and (2.63), lower signs]. 
(d) J+, E+, B+ [equations (2.61) and (2.63), upper signs]. 

Note that J+, J_, and J 11 depend, respectively, only onE+, E_, and 
E 11 • The first group contains an electric field and an electric current in 
the direction of k, which, in this section, is also the direction of Bo. Fur­
ther, there is no associated magnetic field. Therefore, it represents the 
electrostatic longitudinal plasma wave. The second group does not consti­
tute a propagation mode but only shows, through (2.56), that for a wave 
propagating parallel to B0 the time-varying magnetic field in the paral­
lel direction is zero. The third and fourth groups represent, respectively, 
the left circularly polarized and the right circularly polarized transverse 
electromagnetic waves. Thus, we can separately analyze the characteris­
tics of the longitudinal plasma wave and of the two polarized transverse 
electromagnetic waves. 

2.5 Longitudinal Plasma Wave 

To deduce the dispersion relation for the longitudinal plasma wave 
propagating along the magnetostatic field B 0 , we substitute J 11 from (2.50), 
into (2.59), obtaining 

(2.64) 

From (2.34) and (2.25) we can replace !I 11 (v 11 ,v_1_) in (2.64), to obtain the 
following dispersion relation: 

2 100 J+oo a+ Wpe VII JO 
1 = -21T - v_1_ dv_1_ ( k ) (-a ) dv11 

now 0 -oo W - VII VII 
(2.65) 

This dispersion relation can be conveniently recasted as 

1 __ w;e 1 VII (afo) d3v 
- now v (w- kv 11 ) av 11 

(2.66) 

since in cylindrical coordinates d3 v = V_1_ dv_1_ dv 11 d¢ and J~7r d¢ = 21T. 
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This equation is identical to the dispersion equation (18.4.2) (Eq. 4.2 
in Chapter 18), deduced for longitudinal waves in an isotropic plasma, 
except for the fact the directions x and z are interchanged (here k is par­
allel to B0 and to z). Thus, the characteristic behavior of the longitudinal 
plasma wave propagating along the magnetostatic field is identical to the 
case of an isotropic plasma with no external magnetostatic field. The 
magnetostatic field, therefore, has no influence on the longitudinal plasma 
wave. This result is due to the fact that the magnetostatic field exerts no 
force on the charged particles moving along it, and therefore it does not 
influence the distribution of the electrons in the longitudinal direction. 
It is the perturbation in the electron velocity distribution in the longi­
tudinal direction that accounts for the characteristics of the longitudinal 
plasma wave. Recall that the longitudinal plasma wave separates out as 
an independent mode of propagation. 

2.6 Transverse Electromagnetic Waves 

Consider now the two circularly polarized transverse waves (E normal 
to the direction of propagation z). To deduce the dispersion relation for 
both waves, we first eliminate B± from (2.61) and (2.63), and express J± 
in terms of E± as 

J - zEo ( 2 k2 2) E ±-- w- c ± 
w 

(2.67) 

Substituting 1±, from (2.48) and (2.49), with fH(v 11 , v_1_) and JI_(v 11 , V_1_) 
given by (2.31) and (2.33), respectively, yields 

Eo ( 2 k2 2) E - w- c ± 
w 

(2.68) 

If (2.23) and (2.24) are used to replace F±( v11 , v_1_), we find the following 
dispersion relation for the transverse electromagnetic waves ( E± =!= 0): 

(2.69) 
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where the upper sign refers to the right circularly polarized wave and the 
lower sign to the left circularly polarized wave. 

An alternative form of this equation can be obtained integrating the 
right-hand side by parts. First, integrating over v11 by parts, we have 

1oo 1+oo k2v1_ fo 
- ( _ k 11 ) V..L dv..l dv 11 

0 -oo W VII =f ~Gee 
(2.70) 

and integrating over V..L by parts, we have 

1+oo (w- kvll) d 100 2 ( 8fo) d v 11 V..l - Vl_ 
_ 00 (w- kv 11 =f flee) o fJv..l 

100 1+oo (w- kv 11 ) fo 
-2 ( _ k 0 ) V..L dv..l dv 11 

0 -oo W VII =f ee 
(2.71) 

Since in cylindrical coordinates we have d3 v = V..L dv..l dv 11 d¢ and f0
2

1!' d¢ = 
2?T, we obtain the following alternative form of the dispersion relation 
(2.69): 

Let us investigate first the plasma behavior for the case of an isotropic 
equilibrium distribution function. Thus, we choose fo to be the Maxwell­
Boltzmann distribution function (18.4.22). Note that, in this case, the 
vector \lvfo(v) is parallel to v, so that the magnetic force term 
[v x B(r, t)] · \1 vfo(v), in the linearized Vlasov equation (2.4), vanishes. 
Consequently, for an isotropic equilibrium distribution function, the mag­
netic field B(r, t) of the wave has no influence on the plasma behavior in 
the linear approximation. Also, it can be verified that, in the isotropic 
case, all factors in the numerator of the integrands in (2.69) and (2.72), 
which contain the propagation coefficient k, vanish. The dispersion equa­
tion (2.69) then reduces to 

(2.73) 
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or, equivalently, 

(2.74) 

The alternative form of this equation, corresponding to (2.72) for the 
isotropic case, is 

(2.75) 

Substituting fo(v) from (18.4.22) and performing the integration over v..l 
and ¢, the dispersion relation (2. 75) becomes 

where the upper and the lower signs correspond to the right and the left 
circularly polarized waves, respectively. 

At this point it is convenient to introduce the following dimensionless 
parameters 

(w =F Oce)/k± 
0:± = (2kBTe/me)ll 2 

wfk± 
f3± = (2kBTe/me) 112 

(2.77) 

(2.78) 

The subscripts ( +) and (-) are used in k to denote that it corresponds ei­
ther to the right or to the left circularly polarized wave, respectively. Thus, 
f3± represents the wave phase velocity normalized to the most probable 
speed of the electrons (2kBTe/me) 112 . Setting, as in (18.4.25), 

(2.79) 

the dispersion relation (2.76) can be rewritten in the following simplified 
form: 

k!c2 = w2 + w;e f3± I( a±) 

where I(a±) denotes the integral 

(2.80) 

(2.81) 



19. WAVES IN HOT MAGNETIZED PLASMAS 529 

This integral is the same as that defined by (18.4.32) with s = 1 and 
has been calculated in section 4 of Chapter 18. Hence, with the help of 
(18.4.32) and (18.4.45), equation (2.80) can be rewritten as 

r~± 
k~c2 = w2 + i y'"i w;e /3± exp (-a;)- 2w;e /3± Jo exp (W2 - a;) dW 

(2.82) 
This is the dispersion relation for the right (upper sign) and for the left 
(lower sign) circularly polarized transverse electromagnetic waves propa­
gating along the magnetostatic field in a hot plasma, whose equilibrium 
state is characterized by the isotropic Maxwell-Boltzmann distribution 
function. 

2. 7 Temporal Damping of the 
Transverse Electromagnetic Waves 

A careful examination of (2.82) reveals that, for k± real, w has a 
negative imaginary part, indicating that the wave amplitude decays in 
time. 

To establish if this temporal damping is significant or not, let us 
evaluate the asymptotic series expansion of the integral in (2.82) for the 
case when Ia± I » 1. For this purpose, we expand the integral in (2.82) 
in inverse powers of a±. According to (18.4.51), we find that, as the first 
approximation (retaining only the leading term), 

1°± 1 
exp (W2 - a;) dW = -o 2a± (2.83) 

With this result, and making use of the definitions (2.77) and (2.78), the 
dispersion equation (2.82) simplifies to 

Furthermore, for Ia± I» 1 the exponential damping term may be omitted 
in a first approximation, so that (2.84) becomes 

k22 2 2 w 
±c = W - Wpe ( 0 ) 

W =t= .l~ce 
(2.85) 

This dispersion equation corresponds to the results obtained using the cold 
plasma model, with the upper sign for the right circularly polarized wave 



530 FUNDAMENTALS OF PLASMA PHYSICS 

and the lower sign for the left circularly polarized wave. Consequently, it 
follows that the results of the cold plasma model are valid only if I a± I » 1. 
In the case of the left circularly polarized wave, for a given real propagation 
coefficient k_, we find, from (2.85), that w is real and satisfies the condition 

1n (1n2 2 )1/2 
W > -2Hee + 4Hee + Wpe (2.86) 

The phase velocity ( w I k_) of the left circularly polarized wave is greater 
than the velocity of light c for all k_ and therefore !3- is a large number 
of the order of the ratio of c to the thermal velocity of the electrons. Since 
a_lf3- = (w + nee)lw is positive and greater than unity, it follows that 
a_ » 1 for all k_. Consequently, the Landau damping of the left circularly 
polarized wave propagating along the magnetostatic field in a hot plasma 
is always negligible. This result was also obtained for the case of transverse 
electromagnetic waves in a hot isotropic plasma. Further, as far as the 
characteristics of the left circularly polarized waves are concerned, the 
cold plasma model is a very good approximation for all real propagation 
coefficients. 

In the case of the right circularly polarized wave, for a given real 
propagation coefficient k+, it is seen, from equation (2.85), that w is real 
and satisfies the conditions 

0 < w <nee (2.87) 

1n (1n2 2 )1/2 
W > 2Hee + 4Hee + Wpe (2.88) 

An important feature associated with the right circularly polarized wave 
is the existence of two natural frequency ranges of propagation, whereas 
for the left circularly polarized wave there is only one natural frequency 
range of propagation. However, the results for w in the range specified in 
(2.87) do not strictly hold for frequencies of the order of the ion plasma 
frequency and lower, since at these low frequencies the motion of the ions 
cannot be neglected. For this reason we omit, in the following discussion, 
the very low frequency region (w < nei) of (2.87). In the frequency range 
(2.88), it is found that the phase velocity (wlk+) of the right circularly 
polarized wave is always greater than the velocity of light c, whereas in 
the frequency range (2.87) the phase velocity is less than, but of the order 
of c, except in the close neighborhood of nee. Therefore, we see that f3+ 
is a large number and, since 1 a+ 1 !3+ 1 = 1 ( w - nee) 1 w 1 is of the order of 
unity, we conclude that la+l » 1, except for w close to nee· Thus, the 
temporal damping of the right circularly polarized wave is also negligibly 
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small and the cold plasma model is a very good approximation for w not 
close to flee. 

2.8 Cyclotron Damping of the RCP Transverse Wave 

For win the close neighborhood of flee, the phase velocity (wfk+) of 
the right circularly polarized wave is of the order of the thermal velocity 
of the electrons or lower, so that !3+ .S 1. Consequently, since I a+/ !3+ I = 
l(w - flee)/wl is much less than unity, it follows that la+l « 1. This 
implies that the asymptotic series expansion in inverse powers of a±, as 
given in (2.83) and valid for Ia± I» 1, is not applicable for w close to flee· 

As a first approximation to the dispersion relation (2.82) for the lim­
iting case of la+l « 1, we can set a+ equal to zero in (2.82), to obtain 

(2.89) 

The second term in the left-hand side of (2.89) can be omitted in a first 
approximation, as compared to the first term, since (w/k)/c « 1. Hence, 
(2.89) simplifies to 

(2.90) 

Solving this equation explicity for w, gives 

(2.91) 

where 

(2.92) 

Wi = -~ k+ [(2kBTe/me) 112 c2 (flee) 2] 1/ 3 

2 7rl/2 Wpe 
(2.93) 

Since w has a negative imaginary part, it follows that the right circularly 
polarized wave, which is initially set to propagate along the magnetostatic 
field, is damped in time for w close to flee. This temporal damping is 
usually called cyclotron damping and it is similar to the Landau damping 
of the longitudinal plasma wave. 
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The cyclotron damping, however, differs from the Landau damping 
in some aspects. The most important one is the fact that the acceleration 
is perpendicular to the drift motion of the particles and, since the perpen­
dicular electric acceleration does not, in the first approximation, modify 
the parallel drift velocity, there is no tendency toward trapping. There­
fore, trapping is insignificant in cyclotron damping. The charged particles 
moving along lines of force will feel the oscillations of the perpendicular 
electric field at a frequency that differs from the plasma rest-frame fre­
quency by the Doppler shift. Since the electrons rotate about B 0 in the 
same direction as the electric field of the right circularly polarized wave 
(see Fig. 2), some of them will feel the oscillations at their own cyclotron 
frequency and they will absorb energy from the field. As a consequence 
of this wave-particle interaction at the resonance frequency w = nee, the 
electrons absorb energy from the wave electric field, causing the plasma 
wave to damp out with time. In the absence of resonant particles, there is 
no energy exchange between the wave electric field and the particles, and 
hence w is real. 

As a final point, note that in the limiting case of nee ---+ 0, that 
is, in the absence of the externally applied magnetostatic field, we have 
a± = f3± = C and (2.82) becomes identical to the dispersion relation 
(18.5.8) for transverse waves in an isotropic plasma. 

2.9 Instabilities in the RCP Transverse Wave 

We have seen that for an isotropic equilibrium distribution function 
the resonance at w = nee, between the electrons and the right circularly 
polarized wave, leads to a temporal damping of the wave amplitude. How­
ever, depending on the characteristics of the distribution function, reso­
nance can also lead to instabilities (which are associated with a positive 
imaginary part of w). 

Recall that for the case of an isotropic velocity distribution function 
the wave magnetic field has no effect on the plasma behavior in the lin­
ear approximation, since \1 vfo( v) is parallel to v and, consequently, the 
magnetic force term in the linearized Vlasov equation vanishes. However, 
when the condition of velocity isotropy is dropped, the effects that arise 
from the wave magnetic field become important and may lead to instabil­
ities. Although the wave magnetic field itself does not exchange energy 
with the particles, it exerts a force in the parallel (z) direction on the 
particles, which destroys the isotropy of the velocity distribution func­
tion in the plane perpendicular to B 0 . This effect can lead to instabilities 
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k Bo 

Fig. 2 Illustrating the resonance that occurs at w = nee 
between the electrons and the electric B.eld of the right circularly 
polarized wave propagating along Bo. 

depending on the particle distribution function. 
For the purpose of demonstrating such an instability, let us consider 

the following simple anisotropic equilibrium distribution function, 

(2.94) 

which represents cold electrons in the parallel (z) direction, but with a 
Maxwellian velocity distribution function in the plane normal to B0 . In­
serting (2.94) into the dispersion relation (2. 72) for the right circularly 
polarized wave (upper sign), gives 

k2c2 = W2- w;e [j+oo (w- kvu) <5(vu) dvll roo fo(v.l) Vj_ dv.l {21r dcp + 
no -00 (w- kvu -nee) lo lo 

l +oo <5 ( V ) 1oo 121r 
( _ k ~ n )2 dvll ~k2v1_ fo(V.i) Vj_ dv.l dcp] (2.95) 

-oo W Vu ee 0 0 

Using the following property of the Dirac delta function, 

l +oo 
-oo f(x) <5(x- xo) dx = f(xo) (2.96) 
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substituting fo(vj_) by 

(2.97) 

and performing the integrals, we obtain 

(2.98) 

This equation can be rearranged in the form 

2 w2(w- nee)2 - w~ew (w- nee) 

k = c2(w- nee)2 + W~e(kBTe/me) (2.99) 

It is a simple matter to verify that, for large values of k2 , the wave 
frequency w becomes complex. Thus, in the limit of k2 ---+ oo, the denom­
inator of (2.99) vanishes and we obtain 

2 2 W~e (kBTe/me) 
w - 2w nee + n ee + 2 = 0 

c 

The solution of this second-degree equation in w is 

n ± .Wpe(kBTe/me)112 
W = Hee z--=-------­

C 

(2.100) 

(2.101) 

which shOWS that growing modes (instabilities) can OCCur for Wr = nee· 
Choosing an anisotropic equilibrium distribution function with some 

velocity spread along the parallel (z) direction, instead of (2.94), we expect 
this instability to diminish, while turning into damping for an isotropic 
distribution function. The analysis of this statement is left as an exercise 
for the reader. 

3. WAVE P 
MAGNETOSTA~~~~La~uu~tiU~------~~~ 

We shall consider now the problem of wave propagation in a direc­
tion perpendicular to the externally applied uniform magnetostatic field 
B0 . As before, we choose the z axis along the magnetostatic field, that is, 
B 0 = B0z. The propagation coefficient k is normal to Bo and along the x 
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z 

y 

X 

Fig. 3 Decomposition of the wave electric field vector into 
components parallel and perpendicular to Bo, or in components 
longitudinal and transverse with respect to k. 

axis, that is, k = kx, as illustrated in Fig. 3, with k considered to be real. 
All field quantities are assumed to vary harmonically in space and time, 
with the phase factor exp ( ik · r - iwt). As in the previous cases, we take 

f(r, v, t) = fo(v 11 , v.L) +!I (r, v, t) I!II«fo (3.1) 

where fo( v11 , v .L) is the equilibrium distribution function of the electrons 
under the presence of the magnetostatic field, v11 = Vz is the velocity 
component of the electrons in the direction parallel to B0 , and V.L vis the 
velocity component of the electrons in the plane (x, y) normal to B0 . 

For the perturbation distribution function we take 

!1(r, v , t) = JI(v) exp (ikx - iwt) 

and for the wave electric and magnetic fields 

E(r, t) = E exp (ikx- iwt) 

B(r, t) = B exp (ikx - iwt) 

(3.2) 

(3.3) 

(3.4) 
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where h ( v), E and B are the phasor amplitudes, independent of space and 
time. As in the previous section, the purpose is to deduce the dispersion 
equation giving the functional relationship between k and w. From an 
analysis of the dispersion relation we shall determine the intrinsic behavior 
of the plasma for the case under consideration. 

3.1 Solution of the Linearized Vlasov Equation 

From the linearized Vlasov equation (2.4), replacing the differential 
operators 8/ 8t and 'V by -iw and ikx, respectively, and making use of 
relation (2.10), we obtain 

dh ( v) _ ,; ( w - k · v) !l (v) __ e • ------:-- (E + v X B) · 'V vfo( v11 , V_L) (3.5) 
d¢ nee mence 

where now k · v = kvx = kv_L cos¢. From Maxwell equation k x E = wB 
we have 

k ( .-... -") B =- Eyz-EzY 
w 

Using this expression for B, we get 

Noting that 

we obtain 

8fo =cos¢ 8fo 
8vx 8v_L 

8fo =sin¢ 8fo 
8vy 8v_L 

8fo 8fo 
8vz 8v 11 

[ k J 8fo (E+vxB)·'Vvfo= Ex+ w (vyEy+vzEz) cos¢ Bv_L + 

( 1 _ kvx) Ey sin¢ 8fo + ( 1 - kvx) Ez 8fo = 
w 8v_L w 8vz 

8Bfo (cos¢Ex+sin¢Ey)+[k (vz 8
810 -V_L 8

8
10 ) cos¢+ 8

810 ] Ez 
Vj_ W V_L Vz Vz 

(3.6) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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The linearized Vlasov equation (3.5) becomes, therefore, 

dfr ( v) _ . ( w - kv 1_ cos ¢) f ( ) _ e { a f o ( "' E . "' E ) 
d),. '1, 1'1 1 V - 1'1 a COS 'f' X + Slll 'f' y + 

'f' ~Gee me~ Gee V j_ 

[ k ( afo aJo) aJo] } - Vz --Vj_- cos¢+- Ez 
w avj_ avz avz 

(3.12) 

The integrating factor for this first-order differential equation is found to 
be 

[ . ( w ) . ( kv 1_ ) • J exp -7, nee ¢ + '1, nee sm ¢ (3.13) 

Multiplying both sides of (3.12) by the integrating factor (3.13), gives 

d~ { h ( v) exp [ -i ( ~e ) ¢ + i ( ~~ ) sin ¢ J } = 

e { aJo . [k ( afo n -a (cos¢Ex+sm¢Ey)+ - Vz -a -
me ee Vj_ W Vj_ 

Vj_ ~~:)cos¢+ ~~:J Ez} exp [-i (~e) ¢+i (~:~)sin¢ J (3.14) 

The solution for h ( v) is obtained by integrating this equation over ¢, 

h(v) = ~ exp [i (:) ¢-i (~j_) sin¢ J 1¢ {aafo (cos¢" Ex+ 
me ee Hee Hee -oo Vj_ 

. , ) [ k ( a fo a fo) , a fo ] } 
sm ¢ Ey + W Vz avj_ - Vj_ avz cos¢ + avz Ez 

exp [ -i (~e) ¢" + i ( ~~) sin¢" J d¢" (3.15) 

If the variable of integration is changed to¢'=¢-¢", (3.15) becomes 

e [ . (kVj_) . ] rXJ{ ajo 
fr(v) = menee exp -z nee sm ¢ lo avj_ [cos(¢-¢') Ex+ 

. ( ') l [ k ( a fo a fo) ( ') a fo J } sm ¢ - ¢ Ey + - Vz - - v 1_ - cos ¢ - ¢ + - Ez 
w av 1_ avz avz 
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exp [i (~e) ¢' + i (~~~) sin(¢-¢')] d¢' (3.16) 

Note that ¢ occurs only as the argument of periodic functions of period 
21r, which is in agreement with the physical requirement that JI(v) be a 
single valued function of¢. 

3.2 Current Density and the Conductivity Tensor 

The current density is given by 

J(r, t) = J exp (ikx- iwt) (3.17) 

where the phasor amplitude J is 

(3.18) 

or 

1oo 121r l+oo J = -e V_L dV_L d<j; dvz fi(v) (v1_ COS </J x+v_L sin </J y+vzz) 
0 0 -oo 

(3.19) 
For the purpose of calculating the components of J, it is appropriate to 
express J as 

J=S·E 

or in explicit form, considering a Cartesian coordinate system, 

ly = ayxEx + ayyEy + ayzEz 

Jz = azxEx + azyEy + azzEz 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

where Sis the conductivity tensor, whose components can be arranged in 
matrix form as 

( 
axx 

S = ayx 

(]' zx 

a xy a xz ) 
a yy a yz 

azy azz 

(3.24) 

If JI(v), from (3.16), is substituted into (3.19) and the resulting expression 
is compared with equations (3.21) to (3.23), we identify the components 
of the conductivity tensor as 
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axx = A1 B1(vii,Vj_,¢) (3.25) 

axy = A1 B2(v11,V1_,¢) (3.26) 

axz = A1 B3(v11,V1_,¢) (3.27) 

ayx = A2 Bl(vii,V1_,¢) (3.28) 

ayy = A2 B2(v 11 ,v1_,¢) (3.29) 

ayz = A2 B3(v 11 ,v1_,¢) (3.30) 

azx = A3 B1(vii,Vj_,¢) (3.31) 

azy = A3 B2(v 11 ,v1_,¢) (3.32) 

azz = A3 B3(v11,V1_,¢) (3.33) 

where we have used the notation 

Bl(vii,Vj_,¢) = roo aB!o cos(¢-¢') exp [gl(¢')] d¢' 
Jo Vj_ 

(3.34a) 

(3.34b) 

f 00 [k ( 8fo 8fo) , 8fo] 
B3(vii,Vj_,¢)= lo w Vz 8Vj_ -Vj_ OVz cos(¢-¢)+ avz 

exp [gi(¢')] d¢' (3.34c) 

("'') . w "'' kv 1_ . ("' "'') 91 '+' = ~ ~ '+' + i ~ sm '+' - '+' 
~Gee ~Gee 

(3.34d) 

which are to be considered as integrands of the integral operators defined 
by 

2 1oo 121r l+oo kv Al =- en vi. dVj_ cos¢ d¢ dvz exp ( -i (") j_ sin¢) 
me ee 0 0 -oo ~Gee 

(3.34e) 

e2 100 121r l+oo ( kv ) A2 =- n vi. dVj_ sin¢ d¢ dvz exp -i (") j_ sin¢ 
me ee 0 0 -00 Hee 

(3.34!) 

e2 100 121r l+oo ( kv ) A3 = - n Vj_ dvj_ d¢ Vz dvz exp -i (") j_ sin¢ 
me ee 0 0 -oo ~Gee 

(3.34g) 
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3.3 Evaluation of the Integrals 

Let us consider initially the integrals in the equation (3.25) for CTxx· In 
simplifying this expression for cr xx it is advantageous to calculate first the 
integral with respect to¢'. From (3.34a) consider, therefore, the integral 

h = 100 
cos(¢-¢') exp [gl(¢')] d¢' (3.35) 

Differentiating (3.34d) with respect to ¢', we find 

("' - "'') = ~ + . nee dgl ( ¢') 
cos '+' '+' kv j_ z kv j_ d¢' (3.36) 

Thus, (3.35) becomes 

h = kw roo exp [gl(¢')] d¢' + i knee roo d{exp [gl(¢')]} (3.37) 
Vj_ Jo Vj_ lo 

since d{exp [gl(¢')]} = exp [91(¢')] dg1(¢'). Therefore, 

w 100 
[ ("'')] d"-' . nee (. kv j_ • ) h = -k exp 91 '+' '+' - z -k exp z -;::::;----- sm ¢ 

Vj_ 0 Vj_ Hee 
(3.38) 

In order to evaluate the integral in (3.38), let us introduce the variable 

(3.39) 

and express the term exp [91 ( ¢')] in a infinite series expansion in terms of 
the Bessel functions Jn(~), 

exp (i :: ¢') exp [i ~sin(¢-¢')] 
Hee 

exp (i ~e ¢') 

+oo 

L Jn(~) exp [in(¢-¢')] 
n=-oo 

+oo 

L Jn(O exp (in¢) exp [i(wfnee- n)¢'] (3.40) 
n=-oo 
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where Jn(~) is the Bessel function of the first kind and of order n. The fac­
tor exp [i~ sin(¢-¢')] is identified with the so-called generating function 
of the Bessel functions. Substituting (3.40) into (3.38), gives 

+oo 

h = -i exp (i~ sin¢)+ k~1_ L Jn(~) exp (in¢) 
n=-oo 

100 
exp [i(w/Oce- n)¢'] d¢' (3.41) 

or 

I _ _ i ('t . A-) iw ~ Jn(~) exp (in¢) (3.42) 
1- ~ exp 'k, sm 'f' + kvl_ n~oo (w/Oce- n) 

As the next step in evaluating O'xx we shall calculate now the integral 
with respect to ¢. Substituting (3.42) into the expression (3.25) for O'xx, 

we find the integral with respect to ¢ to be 

h = r27r cos¢ [-i+ iw f Jn(~) exp (in¢- i~ sin¢)] d¢ (3.43) 
Jo ~ kv1_ n=-oo (w/Oce- n) 

The first term within square brackets in this equation integrates to zero. 
For the remaining terms note first that we can write 

. d 
cos ¢ = ~ + i d¢ (in¢ - i~ sin ¢) (3.44) 

so that the integral h becomes 

i [" d[exp (in¢- i~ sin</>)]} (3.45) 

The second integral within brackets in this equation vanishes, whereas the 
first integral can be expressed in terms of Bessel functions, according to 
the relation 

(3.46) 
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which is known as the Bessel integral. Therefore, (3.45) becomes 

I _ 27riw +Loo n J~(~) 
2 - c2nce ( ;n ) 

1:, H n=-oo W Hce - n 
(3.47) 

This result can be written in a slightly different form by noting that 

I _ 27ri f n J~(~) (w/flce- n + n) 
2 - ~2 n=-oo (w/flce- n) 

27ri ~ [ J2 (t) n2 J~(~) J 
c2 L..J n n ~, + (wjn - n) 
1:. n=-oo ce 

(3.48) 

Now, since J_n(~) = (-1)nJn(~), we have 

+oo 

L n J~(~) = 0 (3.49) 
n=-oo 

and the integral (3.48) simplifies to 

2 · +oo 2 J2(t) 
I 2 = 1r't """ n n ~:. 

~2 n~oo (w/flce- n) 
(3.50) 

From (3.25), (3.35), and (3.43), we see that the expression for rixx can be 
written as 

e2 1oo 2 l+oo 8fo 
rixx =- f! VJ_ dVJ_ -8 h dvz 

me ce 0 -oo Vj_ 

(3.51) 

Thus, the substitution of (3.50) into (3.51) yields 

f n2 J~(kv..L/flce) 
n=-oo (w/flce- n) 

(3.52) 
This expression for ri xx is valid for any cylindrically symmetric equilibrium 
distribution function fo ( v 11 , v ..L). 

However, for mathematical simplicity, in what follows, all the details 
will be restricted to the case in which the equilibrium state is characterized 
by the isotropic Maxwell-Boltzmann distribution function fo(v). Thus, we 
consider now 

(3.53) 
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for the evaluation of the integrals over V..i and Vz in (3.52). In order to 
perform the integral over v..l, it is convenient to introduce the following 
parameter: 

(3.54) 

Performing the differentiation 8f0 /8v..l and using (3.54), the expression 
(3.52) simplifies to 

inoe2 +oo n 2 100 2 ( e) 
O"xx = n -2 L: ( ;n _ ) ~ Jn(~) exp - 2_ d~ (3.55) 

me ceV n=-oo W ce n 0 V 

From the theory of Bessel functions we have the following expression, 
known as Weber's second exponential integral, 

roo 1 ( a2+b2)) Jo exp ( -p2t2) Jn(at) Jn(bt) t dt = 2p2 exp - 4p2 In(abj2p2 ) 

(3.56) 
where In(x) is the Bessel function of the second kind, which is related to 
the ordinary Bessel function with an imaginary argument, Jn ( ix), by 

(3.57) 

Substituting (3.56) into (3.55), yields 

(3.58) 

The components O"xz, O"yz, O"zx, and O"zy of the conductivity tensor 
vanish, since the integrands in (3.27), (3.30), (3.31), and (3.32) are found 
to be odd functions of Vz. Thus, performing the integrations with respect 
to Vz first, we find 

O"xz = O"yz = O"zx = O"zy = 0 (3.59) 

The component O"zz of the conductivity tensor, for the case of the 
isotropic Maxwell-Boltzmann distribution function, simplifies to 

e2 1oo 121r 1+00 

a zz = - f2 V ..l dv ..l de/> Vz dvz exp ( -i~ sin c/>) 
me ce 0 0 -oo 

100 8fi 
a 0 exp [91 ( ¢')] d¢' 

0 Vz 
(3.60) 
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The integrals appearing here can be evaluated as in the case of rJxx, yield­
ing the following result: 

(3.61) 

The components rJxy, rJyx, and rJyy of the conductivity tensor will 
not be needed here, in order to investigate the characteristics of waves 
propagating across the magnetostatic field in a hot plasma. The derivation 
of explicit expressions for these components of the tensor S will be left as 
an exercise for the reader. 

3.4 Separation into the Various Modes 

Considering the space-time dependence of the fields, as given by (3.3) 
and ( 3.4), and expressing the electric current density as J = S · E, Maxwell 
curl equations reduce to 

kx x E =wB 
. . 

~ ( ~) ~ ikx x B = p0S- 1 - · E = -- £ · E c2 c2 

where 1 denotes the unit dyad and 

't 
£=1+-S 

WEQ 

(3.62) 

(3.63) 

(3.64) 

is the relative permittivity dyad or tensor. In component form, (3.62) and 
(3.63) become, respectively, 

Bx =0 (3.65) 

w 
Ez =- k By (3.66) 

w 
Ey = k Bz (3.67) 

and w 
- kc2 ( ExxEx + ExyEy) = 0 (3.68) 

w 
- kc2 (EyxEx + EyyEy) = -Bz (3.69) 

w 
- kc2 EzzEz = By (3.70) 
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From (3.64), (3.58), and (3.61), it follows that 

2 -'ii +oo 2 J (-) 
Exx = 1 - Wpe e- L n n lJ 

wOce v n=-oo (w/Oce- n) 
(3.71) 

2 +oo ( ) 
wpe -v "'""' In v 

Ezz = 1 - wOce e n~oo (w/Oce- n) 
(3.72) 

and, from (3.59), 
Exz = Eyz = Ezx = Ezy = 0 (3.73) 

The expressions for the other components of £ will not be needed in the 
mathematical treatment that follows. 

An analysis of equations (3.65) to (3.70) shows that the waves are 
transverse magnetic (TM) with respect to the direction (x) of propagation, 
since Bx = 0. Also, we see that the remaining field components can be 
separated into two independent groups, involving the following variables 
each: 

(a) Ex, Ey, Bz [equations (3.67), (3.68), (3.69)] (TM mode) 
(b) Ez, By [equations (3.66), (3.70)] (TEM mode). 

The first group represents the TM mode, since there is no component of 
the wave magnetic field along the propagation direction (x). The second 
group represents the TEM (transverse electric magnetic) mode, since it 
has no component of either the electric or the magnetic field along the 
propagation direction (refer to Fig. 3). It can be considered as a degener­
ate case of the TM mode. Since the electric field is in the direction of B0 , 

the TEM mode is also called (in magnetoionic theory) the ordinary wave 
and it is not affected by Bo. 

3.5 Dispersion Relations 

To deduce the dispersion equation for the TM mode, we shall first 
combine (3.68) and (3.69) to eliminate Ex, obtaining 

kc2 B _ ( _ ExyEyx) E 
z- Eyy y 

W Exx 
(3.74) 

Substituting Ey from (3.67), into (3.74), yields 

k2 2 

( _c_ _ ExyEyx) B _ O 
2 Eyy + z-

W Exx 
(3.75) 
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For a nontrivial solution (i.e., for Bz # 0, as well as for Ex and Ey 

nonzero), the term within parenthesis in (3.75) must vanish, resulting 
in the following dispersion relation for the TM mode, 

2 1 
TJ = - (Exxfyy- Exyfyx) 

Exx 

where rJ = (kcjw) denotes the index of refraction. 

(3.76) 

To obtain the dispersion equation for the TEM mode, we substitute 
Ez from (3.66), into (3.70), to find 

(3.77) 

For a nontrivial solution (i.e., for By =I 0 and therefore for Ez =I 0), we 
must require that 

2 
TJ = Czz (3.78) 

which is the dispersion relation for the TEM mode. 

3.6 The Quasistatic Mode 

The TM mode corresponds to the extraordinary wave of magnetoionic 
theory in the zero-temperature limit. Since the dispersion relation (3.76), 
for the TM mode, is very complicated, in what follows we shall analyze this 
dispersion relation only for the limiting case of kc/ w tending to infinity. 
This limiting situation defines the resonance condition. 

From (3.69) we see that, for finite values of Ex and Ey, the wave 
magnetic field component Bz must be equal to zero in the limiting case 
of kc/w tending to infinity. From (3.67) it follows, therefore, that Ey 

vanishes. Consequently, for a nontrivial solution (Ex =I 0), the dispersion 
relation becomes (for kc / w ---+ oo) 

Exx = 0 (3.79) 

This equation is known as the dispersion relation for the quasistatic wave 
propagating across the magnetostatic field, since the wave magnetic field 
is negligible and the wave electric field is essentially along the propaga­
tion direction. In this limit the longitudinal wave is already uncoupled 
from the transverse wave and the dispersion relation (3.79) refers to the 
longitudinal wave (Ex =I 0). As a matter of fact, the dispersion relation 
(3.79) can be derived directly from the laws of electrostatics, instead of 
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using Maxwell equations. Thus, since the magnetic field can be omitted at 
the outset, (3.79) is also called the dispersion relation for the electrostatic 
wave. Although (3.79) is strictly correct only for kcjw ~ oo, it can be 
considered to be a reasonably good approximation for kcjw » 1. 

From ( 3. 71) the explicit expression for the dispersion relation ( 3. 79), 
for the quasistatic wave, is found to be 

2 -II +oo 2 1 (-) 
1 = wpe e- L n n l/ 

wOce l/ n=-oo (w/Oce- n) 
(3.80) 

Since I-n(v) = In(v), we have 

(3.81) 
n=-oo 

so that multiplying (3.81) by (w~efwOce) (e-11 jv) and adding it to (3.80), 
we find 

_ n~e _11 ~ n In(v) 
l/-=e ~ 

W~e n=-oo (w/Oce- n) 
(3.82) 

This equation was extensively investigated by Bernstein, who showed that 
is has solutions for both w and k real. For this reason, these solutions are 
often called the Bernstein modes. 

In order to show the absence of complex solutions for w, let us first 
write the dispersion equation (3.82) in a more convenient form. Making 
use of the expansion 

+oo 
exp (v cosy) = L In(v) exp (iny) (3.83) 

n=-oo 

and setting y = 0 in this expansion, we obtain 

+oo 
1 = e-11 L In(v) (3.84) 

n=-oo 

Adding (3.84) and (3.82), gives 

(3.85) 
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From (3.54) it is seen that v is real and positive, and therefore In(v) is 
also real and positive. Hence, writing the angular frequency as 

(3.86) 

where Wr and wi are the real and imaginary parts of w, respectively, we 
can separate (3.85) into its real and imaginary parts. From the real part 
we have 

(3.87) 

and from the imaginary part, 

(3.88) 

It can be shown that (3.88) can be satisfied only if wi = 0. This re­
sult means that the dispersion equation for the quasistatic wave has only 
real solutions for w, and therefore there is neither temporal damping nor 
instability for the quasistatic waves. 

Next we shall obtain explicit real solutions for w for two limiting cases. 
First, we consider the special case v « 1, which, as seen from (3.54), 
corresponds to the zero-temperature limit, and afterwards we analyze the 
case v » 1, which corresponds to the high-temperature limit. 

For v « 1 (zero-temperature limit), we have I±1(v) = v/2, while 
I±n(v) = O(v n). If w/Oce is not close ton, only the terms corresponding 
ton= ±1, in the infinite series on the right-hand side of (3.83), contribute 
significantly, whereas the other terms are small and can be neglected. 
Thus, (3.82) becomes, for v « 1, 

- o~e f_l (v) h (v) 
v-=- +------

w~e (w/Oce + 1) (w/Oce- 1) 
(3.89) 

which simplifies to 
w = (w2 + 02 )1/2 pe ce (3.90) 

This frequency is known as the upper hybrid resonant frequency. This 
resonant frequency is also predicted in the cold plasma model treatment 
of waves propagating across the magnetostatic field. Thus, we find that 
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the hot plasma theory confirms the results predicted by the cold plasma 
model in the zero-temperature limit. 

In addition, the hot plasma theory establishes the existence of other 
resonant frequencies not predicted by the cold plasma model. The disper­
sion equation (3.82) can also be satisfied by taking w = nOce, for n ?:: 2, 
and arranging such that only the nth term contributes, which it will if 
(w/Oce- n) = O(v n-1). Hence, in the zero-temperature limit, the hot 
plasma theory predicts resonant frequencies at each harmonic of the elec­
tron cyclotron frequency, 

w = nOce (for v « 1) (3.91) 

These resonant frequencies are not predicted by the cold plasma model. 
In the high-temperature limit (v ~ 1), we have e-1/In(v) = O(v - 112 ) 

and it is found that the dispersion relation (3.82) is satisfied for 

(for v ~ 1) (3.92) 

Therefore, in the limit v ~ 1, the resonances occur at the fundamental, 
as well as at all the harmonics of the electron cyclotron frequency. 

To obtain the resonant frequencies for intermediate values of v, equa­
tion (3.82) needs to be solved numerically. It is convenient, for numerical 
purposes, to rewrite (3.82) in the form 

( / o -) _ O~e -v ~ n2 In(v) 
F w ~~ce, v = v - 2- = 2 e ~ ( ;o )2 _ 2 

wpe n=l w ~~ce n 
(3.93) 

The function F(w/Oce, v) is plotted in Fig. 4 in terms of w/Oce, for 
v = 0.1. The intersection points of this curve with the horizontal line cor­
responding to v (O~efw;e) give the resonant frequencies in the normalized 
form w/Oce· 

In Fig. 5 we show the normalized resonant frequency, w/Oce, as a 
function of v 112 , for a specified value of Oce/Wpe· Note, from this figure, 
that below each resonant frequency curve, corresponding to frequencies 
greater than the upper hybrid resonant frequency, there is a frequency 
range in which resonance does not occur for any value of v. Also, for 
v « 1 it is verified, from Fig. 5, that the first harmonic of the electron 
cyclotron frequency is not a solution of the dispersion equation (3.82). 

An important difference between the quasistatic waves considered 
here and the longitudinal plasma waves analyzed previously is the absence 
of Landau damping for the quasistatic waves. The analysis of quasistatic 
wave propagation at an arbitrary direction with respect to B 0 is left as 
an exercise for the reader. 
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F(ro/Oce, v) 
I 

0.8 I 
I 
I 
I 

0.4 I 
I 
I 
I ro/Oce 0 

3 4 

-0.4 

-0.8 v = 0.1 

Fig. 4 Dependence of the function F(w/flce, v), given by (3.93), 
in terms of wfrlce for a fixed value ofv (here v = 0.1), for the 
quasistatic wave. 

3. 7 The TEM Mode 

From (3.78) and (3.72) the dispersion relation for the TEM mode 
propagating across the magnetostatic field in a hot plasma is given explic­
itly by 

2 +oo J (-) 
T/2 = 1- wpe e-li 2.: n l/ 

wflce n=-oo (w/flce- n) 
(3.94) 

This equation has to be analyzed numerically. However, some useful re­
sults can be obtained directly, without resorting to numerical work, for 
some special limiting cases. 

For the zero-temperature limiting case v « 1, only the term corre­
sponding to n = 0 is significant, while all other terms are small and can 
be neglected. Therefore, for v « 1, (3.94) simplifies to 

(3.95) 

where we have used the relation 10 (0) = 1. This result is just the disper­
sion relation for the ordinary (TEM) mode deduced from the cold plasma 
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Fig. 5 Curves of resonant frequencies for the quasistatic 
wave propagating across the magnetostatic field, as a function 
of (v) 112 , when (f'lce/Wpe) 2 = 0.2. The resonant frequency, de­
noted by X, is the normalized upper hybrid frequency, given by 
X = (w;e + rl~e) 1 /2 /f'lce· 
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model. Thus we find that, in the zero-temperature limit, the hot plasma 
theory agrees with the cold plasma model for the characteristics of the 
TEM mode propagating across the magnetostatic field. 

For the high-temperature limiting case v » 1, we have e-v In(v) = 
O(v -l/2) and (3.94) reduces to 

1]=1 (3.96) 

which is the dispersion relation for electromagnetic waves propagating in 
free space. Note that the condition v » 1, together with (3.54) and (3.96), 
is equivalent to 

(3.97) 

showing that the frequency must be very high. Hence, for v » 1, or for 
very high frequencies, the results of the hot plasma theory are also in 
agreement with those predicted by the cold plasma model. 
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Furthermore, according to the hot plasma theory, the TEM mode has 
resonances at the electron cyclotron frequency and at all its harmonics, 
since (3.94) shows that kcjw----+ oo for 

(3.98) 

The cold plasma model does not predict the existence of these harmonic 
resonances. 

4.1 Propagation Along B 0 in Hot Magnetoplasmas 

The dispersion relation for the longitudinal mode, considering Bo = 

B0z and k = kz, is 

(2.66) 

which is the same result obtained for the isotropic hot plasma. 
The dispersion relation for the two transverse modes, is 

j +oo (w- kv 11 )(8Jo/8v1_) + kv1_(8Jo/8v11) 
-'----::..:.......:.-,----'-----'------::-----:---'-___:--"-'- dv II 

-00 (w- kvll =f nee) 
(2.69) 

The upper sign corresponds to the right circularly polarized wave, whereas 
the lower sign corresponds to the left circularly polarized wave. An alter­
native form for this dispersion relation is 

When fo is the isotropic Maxwell-Boltzmann distribution function, 
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In the limits of the cold and warm plasma models, 

k2 2 2 2 w 
±c = w - wpe ( n ) 

W =f ~'ce 
(2.85) 

The Landau (temporal) damping is negligible, since Vph 2: c. The cyclotron 
temporal damping constant of the right circularly polarized wave, for Wr = 
nee' is given by 

(2.93) 

4.2 Propagation Across B 0 in Hot Magnetoplasmas 

The dispersion relation for the TM mode, considering Bo = Boz and 
k = kx and when fo is the isotropic Maxwell-Boltzmann distribution 
function, is 

(3.76) 

The TM mode corresponds to the extraordinary wave in magnetoionic 
theory (cold plasma). The longitudinal and transverse modes (with regard 
to E) are coupled. 

In the limit kcjw-----* oo (resonance condition), Exx = 0, so that 

(3.80) 

which is called the dispersion relation for the quasistatic mode (longitudi­
nal mode with Ex =/= 0). In the limit kcjw -----* oo the two TM modes are 
uncoupled and the equation (3.79) applies to the longitudinal mode. The 
resonances are given by 

w = (w2 + n2 )1/2 
pe ce 

in the cold plasma limit, and by the so-called Bernstein modes 

n?.l 

(for lJ « 1) 

(for lJ » 1) 

(3.90) 

(3.91) 

(3.92) 
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The dispersion relation for the TEM mode, when fo is the Maxwell­
Boltzmann distribution function, is 

(3.94) 

The TEM mode corresponds to the ordinary wave in magnetoionic theory 
(cold plasma). 

In the limit of the cold plasma model (v « 1), 

(3.95) 

In hot plasma theory the resonances are given by 

(3.98) 

19.1 Show that the first and second terms in the right-hand side of (2.16) 
represent, respectively, right and left circularly polarized wave fields. 

19.2 Derive expression (3.61) for <J'zz starting from (3.60). 

19.3 Consider plane wave disturbances propagating along the magneto­
static field B0 in a hot electron gas, whose equilibrium distribution func­
tion is homogeneous and isotropic. In spherical coordinates in velocity 
space (v,B,¢) with B0 = B0z and k along B0 , as illustrated in Fig. 6, 
show that the linearized Vlasov equation reduces to 

dfi (v) ie 
iOce d¢ + (w- k · v) JI(v) =me E · Y'vfo(v) 

Verify that this differential equation has the formal solution 

1¢ . 

fi(v) = me~ce -oo E·Y'v'fo(v) exp [0zce (w-k·v') (¢-¢')] d¢' 
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Vz 

k Bo 

r r 
Vy 

Vx 

Fig. 6 Spherical coordinates in velocity space (v, B, ¢), with k 
and B0 parallel to the third axis (Z). 

where v' is the velocity vector with components ( v, B, ¢'). Note that 

Perform the integral in this expression for !I ( v) to obtain 

ie { 1 [ ( 8 fo . 8 fo) 
!I (v) = -me n ee (A2 - 1) Ex A OVx - 2 OVy + 

Ey (A ofo +i ofo) ] + Ez ofo} 
OVy OVx A OVz 
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where A= -(w- k · v) / n ce · From Maxwell equations obtain the relation 

E - TJ E t = - v fi ( v) d v 2 ze 1 3 

WEo v 

where Et = E - Ezz is the transverse part of the electric field E. Using 
the expression for !I ( v) in this equation, show that we obtain a dispersion 
relation with three wave solutions, which are the usual Landau damped 
longitudinal waves and the left and the right circularly polarized waves 
(with Ex= ±iEy)· 
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19.4 Consider an electron gas immersed in a uniform magnetostatic field 
Bo and characterized by the following modified Maxwellian distribution 
function: 

Use this distribution function in the dispersion relation for the right cir­
cularly polarized transverse wave propagating along B0 , given in (2.69), 
and evaluate the integrals to obtain the following dispersion relation 

where 
Tl_ 

T=l--
TII 

(w- nce)/k 
a= (2kBTufme)ll2 

f3 = (wjk) 
T (2kBTl_fme)l/2 

Analyze this dispersion relation to verify the existence or not of instabil­
ities (positive imaginary part of w) and/or damping (negative imaginary 
part of w) of the wave amplitude, considering the propagation coefficient 
k = kz to be real. Determine the cyclotron damping coefficient. Analyze 
also the results considering the isotropic case for which 7!1 = T 1_. 

19.5 In problem 19.4 suppose that in the equilibrium state the velocity 
distribution function of the electrons is given by 

which corresponds to an isotropic distribution but with the electrons drift­
ing with macroscopic speed u0 along B 0 . Show that, with this choice of 
f 0 (v), the dispersion relation for the right circularly polarized wave re­
duces to 

k2 2 - 2 w~e 1 ( w - kuo) _, ( ) d3 C -W -- JO V V 
no v (w- kvll -nee) 
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For the limiting case of Te = 0, find the form of the distribution function 
fo(v) and show that the dispersion relation reduces to 

19.6 For an unbounded homogeneous electron gas, characterized by the 
following velocity distribution function, 

ao 1 
fo(v) =no 2 ( 2 + 2)2 

1r v a0 

where a0 is a constant, show that the dispersion relation for the right 
circularly polarized wave, propagating along the magnetostatic field Bo = 

B0z, is given by 
2 

k2c2 = w2- wpew 

(w + ikao- flee) 

From this result show that the cyclotron damping coefficient is given ap­
proximately by 

1 [ 2 ( n ) 2] 1/3 
Wi = - 2 k aoc w;: 

19.7 (a) Show that, starting from the Vlasov equation and the laws of elec­
trostatics, we obtain the following dispersion relation for the quasistatic 
wave propagating at an arbitrary direction with respect to an externally 
applied magnetostatic field B0 in a hot plasma, 

f!2 V k T. k 2 +oo 
2 ce. 20 = ~ (-) =- exp (-v) L (1 + v Hn) In(v) 

Wpe S~n me Wpe n=-oo 

where 
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z 

y 

X 

Fig. 7 Illustrating the relative orientation of the propagation 
vector k with respect to B0 in a Cartesian coordinate system, 
with B 0 along the z axis and kin the (x, z) plane. 

w 
w = -,------

k cos () Ve 

- Dee 
Dee =----

k COS() Ve 

The function In (v) is the Bessel function of the second kind and () is the 
angle between k and Bo, as indicated in Fig. 7. 
(b) Rewrite this dispersion relation in the form 

kBTe ( k ) 2 1= 1 + -- -- = -iw dt exp { iwt -
ffie Wpe 0 
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~[1- cos (Ocet)] (k2 Ve2 /O~e) sin20- ik2 Ve2t2cos20} 

(c) Simplify this expression for the case of a very weak magnetostatic 
field to obtain the following approximate expression for the frequency of 
oscillation 

Compare this result with the cold and warm plasma model results for both 
the cases of k parallel to Bo and k perpendicular to Bo. 

19.8 Deduce the dispersion relation for small amplitude waves propagat­
ing at an arbitrary direction with respect to an externally applied magne­
tostatic field B0 = B0z in a hot plasma. Carry through the derivation as 
far as possible for an arbitrary value of the strength of the magnetostatic 
field. Then, particularize for the special case of a very weak magnetostatic 
field. For simplicity, assume the equilibrium distribution function to be 
the isotropic Maxwell-Boltzmann distribution. You may refer to the arti­
cle Waves in a Plasma in a Magnetic Field, by Ira B. Bernstein, Physical 
Review, 109(1), 10-21, 1958. 



PARTICLE INTERACTIONS 

IN PLASMAS 

1. INTRODUCT,£IO~N~----------------------------~~ 

The fundamental properties of a plasma depend upon the interac­
tions between the plasma particles and the existing force fields. These 
fields may be externally applied or they can be internal fields associated 
with the nature and motion of the particles themselves. In this text the 
words collision and interaction are used synonymously. The notion of a 
collision as a physical contact between bodies loses its utility in the mi­
croscopic world. In the atomic level a collision between particles must be 
regarded as an interaction between the force fields associated with each of 
the interacting particles. 

Collisional phenomena can be broadly divided into two categories: 
elastic and inelastic. In elastic collisions there is conservation of mass, of 
momentum, and of energy in such a way that there are no changes in the 
internal states of the particles involved and there is neither creation nor 
annihilation of particles. In inelastic collisions the internal states of some 
or all of the particles involved are changed and particles may be created as 
well as destroyed. In inelastic collisions a charged particle may recombine 
with another to form a neutral particle or it can attach itself with a neutral 
particle to form a heavier charged particle. Also, the energy state of an 
electron in an atom may be raised and electrons can be removed from 
their atoms, resulting in ionization. 

In plasmas there is an important distinction to be made between 
charge-charge and charge-neutral interactions. Electrically charged parti­
cles interact with one another according to Coulomb's law. This coulomb 
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interaction, in view of its 1/r2 dependence, is a long-range interaction, so 
that the field of one particle interacts simultaneously with a large number 
of other particles. Therefore, it involves multiple interactions. In contrast, 
the fields associated with neutral particles are significantly strong only 
within the electronic shells of the particles. Thus, they are short-range 
fields, and a neutral particle only occasionally interacts with another par­
ticle and very rarely interacts simultaneously with more than one particle. 
Therefore, these short-range fields result primarily in binary interactions. 

The multiple-particle coulomb interaction, however, can be thought 
of as a number of simultaneous binary interactions. In fact, one way of 
dealing with multiple interactions is to consider that a series of consecu­
tive small-angle binary interactions describe the situation. The multiple 
interactions that result from the coulomb force are of essential importance 
in understanding the behavior of plasmas and underlines the validity of 
describing a plasma as the fourth state of matter. Nevertheless, binary 
collisions adequately describe plasma phenomena in the case of weakly 
ionized plasmas. In fact, we use the term weakly ionized plasma to mean 
a plasma in which multiple particle interactions can be ignored. In these 
plasmas the electrons tend to dominate the situation, since they respond 
quickly to the influence of electric and magnetic fields, in view of their low 
inertia. 

In this chapter we deal with collisional processes that are of impor­
tance in plasmas, from the point of view of classical dynamics. The results 
are valid to a good approximation, even though the internal structure of 
the particles is ignored. More important, however, the procedures to be 
developed are useful whether the mechanics is classical or quantum. 

Consider an elastic collision between two particles of mass m and m1, 

having velocities v and v 1 before collision, and v' and vi, after collision. 
This binary interaction is illustrated in Fig. 1, as seen from the laboratory 
system. In what follows, the variables indicated with a prime are after­
collision variables. 

It is convenient to adopt a coordinate system in which the particle 
having mass m is at rest and the particle having mass m 1 approaches with 
the relative velocity 

g = V1- V (2.1) 
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Fig. 1 Binary interaction between two particles having mass 
m and m1, with velocities v and v1, respectively, as seen from 
the laboratory system. 

After collision, the relative velocity is 
I I I g = v 1 - v (2.2) 

The geometry of this interaction is shown in Fig. 2. The impact parameter, 
defined as the minimum distance of approach if there were no interaction, 
is denoted by b, the scattering angle by x, and the orientation of the orbital 
plane (or collision plane), with respect to some given direction in a plane 
normal to the orbital plane, is denoted by E. 

The velocity of the center of mass of the colliding particles, before 
collision, is defined by 

(2.3) 

and, after collision, by 
1 mv1 + m1v~ 

c0 = (2.4) 
m+m1 

We can express the initial velocities in terms of c0 and g. From (2.3) 
and (2.1), which define c0 and g, respectively, we find 

f.1 v = c0 - - g ( 2. 5) 
m 
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g'=v~-v' 

.._ .._ ----- ------ ...... __ 
X 

I 
\ 
\ 
\ ' / --

Fig. 2 Geometry of a collision between a particle of mass m 
and velocity v, and a particle of mass m1 and velocity v 1, viewed 
from a coordinate system in which the first particle is at rest. 

where JL denotes the reduced mass, defined by 
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(2.6) 

(2.7) 

Similarly, from (2.4) and (2.2) we obtain, for the after-collision velocities, 

v' = c~ - !!_ g' 
m 

(2.8) 

(2.9) 

From the law of conservation of momentum for the collision event, we 
have 

(2.10) 

or, using (2.3) and (2.4) , 

(2.11) 
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Thus, we conclude that 
I 

co= Co (2.12) 

that is, the velocity of the center of mass is the same before and after the 
collision event. 

From the law of conservation of energy for elastic collisions, we have 

(2.13) 

and using (2.5), (2.6), (2.8), and (2.9) we find, by direct calculation, 

(2.14) 

~ [m(v1) 2 + m1(v~) 2 ] = ~ (m + m1) (c~) 2 + ~11 (g1) 2 (2.15) 

Now, since co= c~, we conclude that 

g = gl (2.16) 

Thus, the magnitude, but not the direction of the relative velocity is con­
served in a binary elastic collision. Equations (2.14) and (2.15) show that 
the total instantaneous kinetic energy of the two-particle system is equiv­
alent to that associated with the motion of the center of mass plus the 
motion of one particle relative to the other, but using the reduced mass. 

The angle between g and g1 is the scattering angle, or deflection angle, 
which is denoted by X· To relate the relative velocity vectors g and g1 , we 
can choose, for instance, a Cartesian coordinate system with the z axis 
along g, as shown in Fig. 3. Thus, we have 

gx = gy = 0 (2.17) 

gz = g = g I (2.18) 

g~ = g sin x cos E (2.19) 
I • • 

gy = g sm x sm E (2.20) 

g~ = g cos X (2.21) 

where E defines the relative orientation of the collision plane. Therefore, 
knowing the initial velocities and the scattering angle x we can deter­
mine the after-collision velocities. The opposite is also true, that is, if we 
know the final velocities and the scattering angle, we can find the initial 
velocities. 
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z 

X 

Fig. 3 Relative orientations of the velocities g and g' in a 
Cartesian coordinate system chosen such that g = gz. The an­
gle E defines the relative orientation of the plane containing the 
trajectory of the particle. 
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It is of interest to consider the inverse collision (refer to Fig. 1 of 
Chapter 7), in which a particle with initial velocity v' collides with another 
particle having initial velocity v~, the velocities after collision being v and 
v 1, respectively. For the inverse collision, the scattering angle x is the 
same as that for the direct collision, since the impact parameter b, the 
interparticle force law, and the relative speed g are all the same. 

The scattering angle is the only quantity appearing in the analysis 
presented in this section that depends on the details of the collision pro­
cess. For interparticle force laws that depend only on the distance between 
the interacting particles, x depends on the following quantities: 

(a) Interparticle force law; 
(b) Magnitude of the relative velocity g; 
(c) The value of the impact parameter b. 

Therefore, in order to determine x we must analyze the classical dynamics 
of binary collisions. 
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9 

b 

m 

Fig. 4 Path r(B) of the particle of mass m 1 relative to the 
particle of mass m. 

The dynamics of a binary collision is governed by the interparticle 
force law. For each impact parameter b there will be associated a given 
scattering angle x, the relation being dependent on the interparticle force 
law. This information is contained in the differential cross section, which 
we shall define in section 5. 

Consider the collision between two particles having mass m and m1, 
viewed from a reference system in which the first particle is at rest. Let r 
be the position vector of the particle of mass m 1 with respect to that of 
mass m (see Fig. 4). The force of interaction between the two particles 
is assumed to be a central force, which acts along the straight line joining 
the two particles, that is, 

F(r) = F(r) r (3.1) 

This force is related to the potential energy U ( r) of the interaction by the 
condition 

F(r) = -VU(r) =- oU(r) r 
or 

(3.2) 
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A A 

9(9) r(9) 

0 

Fig. 5 Polar coordinates (r, 0), showing that the directions of 
the unit vectors r and e depend on 0. 

For a central force the torque N = r x F(r) vanishes, because F(r) 
is parallel to r. Since the torque is the time rate of change of the angular 
momentum L, 

N=dL 
dt 

(3.3) 

we conclude that the angular momentum is a constant of the motion. 
Furthermore, since L = r x p, we see that r is always normal to the 
constant direction of L in space so that the motion lies in a plane. 

Using polar coordinates (r, 0) and noting that the unit vectors rand 
e depend on 0, as illustrated in Fig. 5, we have, for the instantaneous rela­
tive velocity, 

dr dr ..... ar dr ..... ar dO 
dt = dt r + r dt = dt r + r dO dt 

Since it can be shown that arjdO = e, we obtain 

dr dr ..... dO ..... 
dt = dt r + r dt 8 

or, using a dot over the variable to denote the time derivative, 

r=rr+rBe 

(3.4) 

(3.5) 

(3.6) 

The trajectory of the particle in the equivalent one-body problem can 
be easily found by using the laws of conservation of energy and of angular 
momentum. The kinetic energy of the relative motion is given by 

(3.7) 
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From the law of conservation of energy we can equate the kinetic plus 
potential energy, at any point, to the initial kinetic energy ~f-192 , since the 
initial potential energy is zero. Thus, we have 

(3.8) 

The angular momentum relative to the origin is given by 

(3.9) 

Setting the angular momentum, at any point, equal to its initial value, 
bf-19 (r X e), we get 

(3.10) 

From (3.8) and (3.1) we can easily obtain a differential equation for 
the orbit r(O). First, we write 

dr 
dt 

dr dO 
--
dO dt 

(3.11) 

and use (3.10) and (3.8) to eliminate dOjdt and drjdt. The resulting 
differential equation for the trajectory r(O) is found to be 

(3.12) 

Rearranging (3.12) yields the following result: 

b [ b2 2U(r)J-1/2 dO = ±- 1 - - - -- dr 
r2 r2 f-192 

(3.13) 

The choice of sign must be made on physical grounds. The coordinates of 
the position of the particle, when it is at the distance of closest approach, 
are denoted by rm and Om (refer to Fig. 4). This position is called the 
vertex of the trajectory and the line connecting the origin to the vertex is 
called the apse line. Thus, Om specifies the orientation of the apse line. 
The plus sign in (3.13) must be used when 0 is greater than Om, since for 
0 > Om we see that r increases with 0. On the other hand, for 0 < Om we 
see that r decreases as 0 increases, so that the minus sign in (3.13) must 
be used when 0 is less than Om. This result also shows that the particle 
trajectory is symmetrical about the apse line. 
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The distance of closest approach rm can be obtained from (3.12) by 
noting that drfd8 = 0 when r = rm. Thus, we have 

or 
[ 2U(rm)J -1/2 

Tm = b 1- 2 J-Lg 

(3.14) 

(3.15) 

To determine the scattering angle x, we first note, from Fig. 5, that 

X= 7r- 28m (3.16) 

In order to determine 8m we integrate (3.13) from 8m to some other angle 
8, obtaining 

1r b b2 2U(r') -1/2 ' 

8 - 8m = ± rm (r')2 [ 1 - (r')2 - J-Lg2 ] dr (3.17) 

where the plus sign is to be used when 8 > 8m and the minus sign when 
8 < 8m. When r ~ oo we have 8(-) ~ 0, while 8(+) ~28m, so that (3.17) 
gives for the orientation of the apse line, 

(3.18) 

The scattering angle is therefore given by 

100 b b2 2U(r) -1/2 
x(b, g) = 7r - 2 - [1 - - - --] dr 

rm r2 r2 J-Lg2 
(3.19) 

To compute x from this equation we must know the impact parameter 
b, the magnitude of the initial relative velocity g, and the interparticle 
potential energy function U ( r). 

4..-· 
In this section we shall present two examples of the use of (3.19) to 

determine the scattering angle x in terms of the impact parameter b and 
of the initial relative speed g. First, we will consider the collision between 
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two perfectly elastic hard spheres and afterwards the case of the coulomb 
potential interaction. 

4.1 Two Perfectly Elastic Hard Spheres 

Consider the collision between two perfectly elastic hard spheres of 
radii R1 and R2 (see Fig. 6). The potential energy of interaction is given 
by 

U(r) = 0 

(4.1) 

Forb > R1 + R2 there is no interaction and we must have rm = b, whereas 
forb< R1 + R2 the particles collide and we have rm = R1 + R2. In either 
case, however, since the spheres are impenetrable, we have r > R1 + R2, 
so that (3.19) becomes 

100 b b2 -1/2 
X = 1r - 2 - (1 - -) dr 

r2 r2 
Trn 

(4.2) 

To solve this integral it is convenient to define a new variable by y = b / r 
and write (4.2) in the form 

(4.3) 

which gives 
(4.4) 

Therefore, we find that 

X= 1r- 2 sin-1 (R1! R2) 

=0 (4.5) 

4.2 Coulomb Interaction Potential 

Let us consider now the important case of the coulomb potential field, 
whose interaction potential energy is given by 

U(r) = _1_ qq1 
4m:o r 

(4.6) 
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Fig. 6 Collision between two perfectly elastic, impenetrable 
spheres. 

where q and q1 denote the electric charge of the particles of mass m and 
m1, respectively. Substituting (4.6) into (3.19), gives 

100 b ( b2 qql ) - 1/2 
x(b, g) = 1r - 2 - 1 - - - dr 

r= r 2 r 2 27rEoj.tg2r 
(4.7) 

The distance of closest approach rm in obtained from (3.15) and (4.6) , 
and is found to be 

b2 
r - ----=-----:-

m - -bo + (b6 + b2)1/2 
(4.8) 

where, for convenience, we have introduced the notation 

bo = qq1 
47rEoJ.t92 

(4.9) 

Thus, bo represents the distance at which the electrical potential energy 
of interaction is twice the relative kinetic energy at infinity. Making the 
change of variable y = 1/ r and inserting the value for b0 , given by (4.9) , 
into ( 4. 7) , gives for the deflection angle 

t/rm 
x(b, g) = 7r- 2b lo (1- b2y2 - 2boy)-112 dy (4.10) 
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The integral appearing here is of the standard form 

J 2 -1/2 __ 1_ . -1 [ -2/X- j3 ] 
(a+ j3x +/X ) dx- vf4 sm (/32 _ 4a1 )1/ 2 (4.11) 

where, in our case, a= 1, j3 = -2b0 , and 1 = -b2 • Applying the limits of 
integration, with Tm as given by (4.8), yields for the deflection angle 

(4.12) 

This equation for x(b, g) can be written in the following alternative form: 

(4.13) 

Note that for x = 1r /2 we have b = b0 , that is, b0 is the value of the 
impact parameter for a goo deflection angle. If the signs of the two charged 
particles are the same, then bo and x will both be positive. On the other 
hand, if the signs of the two charged particles are opposite, then b0 and 
x will be negative. These two situations are illustrated in Fig. 7 for a 
deflection angle of goo. Further, we note, from (4.13), that x = 1r for 
b = 0. Also, x decreases as b increases and x = 0 only in the limit of 
b ~ oo. Therefore, scattering occurs for all (finite) values of the impact 
parameter b, so that there is no cut-off value for b. 

So far we have considered specifically only the interaction between two 
particles. Cross sections are usually defined in terms of a beam of identical 
particles incident on a center of force (target particle). Therefore, let us 
imagine a steady beam of identical particles of mass m1, uniformly spread 
out in space, incident with velocity g = v 1 - v upon the center of force 
provided by the particle of mass m, in its rest frame of reference. For 
simplicity, the incident beam of particles is assumed to be monoenergetic, 
so that all particles in the beam have the same initial relative velocity, g, 
with respect to the scattering particle. Since the particles in the incident 
beam are supposed to be identical, the interaction potential is the same 
for all particles in the beam. 

The particles incident with an impact parameter b will be scattered 
through some deflection angle x, whereas the particles incident with an 
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X = rt / 2 
q>O 

b = bo 

q>O 

q<O 

Fig. 7 Scattering in a coulomb potential field for a deflection 
angle x of 90°. 
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impact parameter b + db will be scattered through the deflection angle 
x + dx, as illustrated in Fig. 8. The number of particles scattered per 
second, between the angles x and x + dx, depends on the incident particle 
current density (particle flux) r, that is, on the number of particles in the 
incident beam crossing a unit area normal to the beam per unit time. 
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5.1 Differential Scattering Cross Section 

Let dN I dt denote the number of particles scattered per unit time into 
the differential element of solid angle dO, oriented at (x, E), as shown in 
Fig. 8. The differential scattering cross section u(x, E) (also referred to 
as the angular distribution function) is defined as the number of particles 
scattered per unit time, per unit incident flux, and per unit solid angle 
oriented at (x, E). Thus, according to this definition we have 

dN 
dt = u(x, E) r dO (5.1) 

The number of particles incident per unit time, with impact parameter 
between b and b + db, and with the orbital plane oriented between E and 
E +dE, is given by r b db dE. These same particles are scattered per unit 
time into the differential element of solid angle dO contained between x 
and x + dx, and between E and E + dE. Thus, we have 

dN = r b db dE 
dt 

(5.2) 

Comparing (5.1) and (5.2) we see that, according to the definition of the 
differential scattering cross section u(x, E), we have 

u(x, E) dO= b db dE (5.3) 

Since dO = sin x dx dE, this equation can also be written as 

u(x, E) sin x dx = b db (5.4) 

Solving for the differential scattering cross section, we obtain 

b I db I O"X E =-- --
( ' ) sin x dx 

(5.5) 

The absolute value of db I dx is used here, because x normally decreases 
when b increases, whereas the differential scattering cross section a(x, t:) 
is inherently a positive quantity, since it is associated with the number of 
particles being scattered. The quantity dbldx can be obtained from (3.19), 
which gives x(b, g) once the potential energy function U(r) is known. 

The differential cross section has dimensions of area and can be in­
terpreted, in a geometrical way, such that the number of particles scattered 
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Fig. 8 Particle scattering in a central B.eld of force. 
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into the solid angle element dO per unit time is equal to the number of 
particles crossing an area equal to a(x, E)dO (or b db dE) in the incident 
beam, per unit time. 

The form of a(x, E) depends on the interparticle force law and, if 
this force law is known, a(x, E) can be calculated. However, a quantum 
mechanical calculation is necessary for this purpose, since the quantum 
wave packets of the colliding particles necessarily overlap and the problem 
is no longer a classical one. For a collection of atoms or molecules to 
be regarded classically, with each particle having a rather well-defined 
position and momentum, it is necessary that the particles be localized wave 
packets whose extensions are small compared to the average interparticle 
distance. For a classical treatment the average de Broglie wavelength of 
each particle therefore must be much smaller than the average interparticle 
separation. 

The differential cross section is also a directly measurable quantity 
and can be obtained experimentally. For our purposes, we will consider the 
differential cross section a(x, E), which contains the nature of the collisional 
interaction, as a known quantity. 

5.2 Total Scattering Cross Section 

The total scattering cross section O"t is defined as the number of par­
ticles scattered per unit time and per unit incident flux, in all directions 
from the scattering center. It is obtained by integrating a(x, E) dO over 
the entire solid angle, 

a, = 1. a(x, <) dfl = /.2
' d< J.' a(x, <) sin x dx (5.6) 

Both a(x, E) and O"t depend on the magnitude of the relative particle ve­
locity g. 

In the special case when the interaction potential is isotropic, that is, 
when the differential scattering cross section is independent of E, we can 
immediately perform the integral over E in (5.6), to get 

(5.7) 

This is the case, for example, of the coulomb interaction potential. 
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5.3 Momentum Transfer Cross Section 

A cross section can be defined for various interaction processes. We 
shall see later that the transfer of momentum, during a collision, is the 
basic microscopic event in the transport phenomena of diffusion and mo­
bility. Hence, it is appropriate to define a cross section for the rate of 
momentum transfer O'm as the total momentum transferred per unit time 
to the scattering center, per unit incident momentum flux (momentum 
per normal unit area per unit time), 

(momentum transferred per second) 
O'm = (incident momentum flux) 

(5.8) 

The momentum of a particle in the beam, before interaction, is J..t9, where 
J..t is the reduced mass and g is the initial relative velocity. The incident 
momentum flux is therefore rJ..tg. After interaction, the momentum of a 
particle in the beam, in the direction of incidence, and which is scattered 
at an angle x, is J..t9 cos X· Therefore, the momentum transferred by this 
particle to the scattering center is J..tg(1 -cos x). The total momentum 
transferred per second to the scattering center, by all the particles scat­
tered in all directions in space, is given by the expression 

rf..tg l (1- cos x) a(x, f) dfl (5.9) 

Recall that a(x, f) can be considered as an angular distribution function. 
Since the total incident momentum flux is r J..t9, we obtain for the momen­
tum transfer cross section, 

O'm = l (1- cos x) a(x, f) dfl (5.10) 

For the special case of an isotropic interaction potential, and noting that 
dfl =sin x dx df, we can perform the integral over f, in (5.10), obtaining 

am = 21r 17r (1- cos x) a(x) sin x dx (5.11) 

Since a(x) is an angular distribution function, it can be also be con­
sidered as a weight function to calculate the mean value of any function 
F(x) of the scattering angle. The contribution to the total value of F(x), 
resulting from the particles scattered into dfl, is F(x) a(x) dfl. Since the 
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total number of particles scattered is J a(x) dO, it follows that the mean 
value of F(x), averaged over all values of x, is given by 

1 F(x) a(x) dO 
<F(x)>= nl 

a(x) dO 
n 

which may be written as 

27r 17!" < F(x) > = - F(x) a(x) sin X dx 
O"t 0 

(5.12) 

(5.13) 

According to this definition of mean values we see that (5.11) can be 
written in the form 

0" m = 0" t < 1 - COS X > (5.14) 

Thus, the cross section for momentum transfer is a weighted cross section 
in which scattering angles of zero degrees do not count at all, scattering 
of 90° count as one, and scattering of 180° count as two. This weighting 
is proportional to the amount of momentum transferred from the incident 
beam to the scattering center. 

6.1 Differential Scattering Cross Section 

To calculate a(x, t), as given in (5.5), we first obtain from (4.5), for 
b:::; R1 + R2, 

(6.1) 

and 

(6.2) 

Substituting these last two expressions into (5.5), yields for the differential 
scattering cross section 

(6.3) 



20. PARTICLE INTERACTIONS IN PLASMAS 579 

6.2 Total Scattering Cross Section 

Integrating (6.3) over the whole solid angle, we obtain 

Two special simple cases may be mentioned here. For the collision between 
an electron and a molecule of radius R, we have a = R2 /4 and at = 1r R2 . 

For molecules colliding with themselves, their diameter being D, we have 
a= D2 /4 and at= 1rD2 • 

Note that in the case of the hard sphere model there is a cut-off value 
for the impact parameter b, beyond which collisions do not occur. It is 
the existence of this cut-off value for b that leads to a finite value for the 
total scattering cross section at. This conclusion will be made clear in the 
next section. 

6.3 Momentum Transfer Cross Section 

From (6.3) and (5.11) we obtain 

~1r(R1 + R2)2 (17r sin x dx -17r cos x sin x dx) (6.5) 

Performing the integrals, yields 

(6.6) 

The average value of momentum loss per particle is found, from (5.13), 
to be given by 

27r 17r < 1-£9(1 - cos x) > = - f.-£9(1 - cos x) a(x) sin x dx 
at 0 

Using (5.11), we get 

< f.-£9(1 - cos x) > = f.-£9 am 
at 

(6.7) 

(6.8) 
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Thus, from (6.4), (6.6), and (6.8) we deduce that the average value of 
momentum loss, per particle, for the hard sphere model, is 

< p,g(1 - cos x) > = p,g (6.9) 

For collisions between electrons and neutral particles, for example, 
in a weakly ionized plasma, the mass of the electron can be neglected as 
compared to the mass of the neutral particle, so that the reduced mass 
becomes equal to the electron mass. From (6.9) it is seen, in a first approx­
imation, that the entire momentum of an electron is lost in a collision with 
a neutral particle. Assuming that the motion of the heavy particles can 
be ignored and denoting the collision frequency by v (that is, the number 
of collisions between electrons and neutral particles per second), then the 
rate of momentum loss of an average electron is vme u, where u denotes 
the electron velocity. However, in general an electron does not lose its 
entire momentum on a collision with a neutral particle. Furthermore, the 
perfectly elastic hard sphere model is not a very good representation for 
the interaction between an electron and a neutral particle. Consequently, 
the rate of loss of momentum is written as Venmeu, where Ven represents 
an effective collision frequency for momentum transfer between electrons 
and neutral particles. This is the term used in the Langevin equation, in­
troduced in Chapter 10, to represent the time rate of momentum transfer 
due to collisions. 

7.1 Differential Scattering Cross Section 

Differentiating ( 4.13) we find 

I db I b2 

dx = 2bo cos2 (x/2) 
(7.1) 

Thus, the differential scattering cross section, given in (5.5), becomes 

b3 

a(x) = 2bo sin x cos2 (x/2) (7.2) 

Using (4.13) this equation can be rearranged as 

(7.3) 
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This equation is known as the Rutherford scattering formula. Since we 
have 2 sin2 (x/2) = (1- cos x), it can also be written as 

b2 
O"(X) - o 

- (1- cos x) 2 
(7.4) 

The Rutherford scattering formula shows that the differential scattering 
cross section is equal to b5/4 for the deflection angle X = 1r, increases 
monotonically as x is decreased, and tends to infinity as x tends to zero. 

7.2 Total Scattering Cross Section 

Since the differential scattering cross section increases rapidly to in­
finity as x goes to zero, it turns out that the total scattering cross section 
O"t becomes infinite. From (5.7) and (7.4), we obtain 

! 11' !11' sin X 
O"t = 21r . O"(X) sin x dx = 21rb6 . (1 _cos )2 dx 

Xmtn Xmtn X 
(7.5) 

where Xmin = 0. The lower limit has been written implicitly for reasons 
that will become apparent in what follows. Evaluating the integral in 
(7.5), yields 

2 [ 1 ] O"t = 1rb0 . 2 - 1 
sm (Xmin/2) 

(7.6) 

which clearly gives O"t = oo for Xmin = 0. The particles with very small 
deflection angles contribute to make O"t infinite. 

7.3 Momentum Transfer Cross Section 

The substitution of (7.4) into (5.11) gives the following expression for 
the momentum transfer cross section 

! 11' !11' sin X 
O"m = 21r (1 -cos x) O"(X) sin x dx = 21rb6 ( ) dx 

v . v . 1- cos X 
A..1ntn A:rntn 

(7.7) 
where, again, Xmin = 0. Evaluating the integral we find 

O"m = 47rb6 ln [ . ( 1 . / 2) J 
Sill Xmm 

(7.8) 
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Setting Xmin = 0 we also find that am = oo. Thus, the coulomb potential 
gives infinite values for both at and am, the particles with very small 
deflection angles being responsible for this infinite result. 

The infinite results for at and am, obtained in the previous section, 
may be interpreted as due to the absence of a cut-off value for the impact 
parameter b. Note that small values of x correspond to large values of 
b, and that for Xmin = 0 we must have, from (4.13), bmax = oo. In 
order to obtain finite and meaningful values for at and am, it is necessary 
to modify the basis of the treatment of interactions between individual 
charged particles and introduce, on some plausible grounds, a cut-off value 
b = be for the impact parameter. 

From (5.3) and (5.6) we have for the total scattering cross section 
(considering a independent of E) 

{be 
at = 21r Jo b db (8.1) 

where a cut-off value b = be has been introduced for the impact parameter. 
With this cut-off, at for the coulomb potential is found to be 

at= 1r b~ (8.2) 

The introduction of a cut-off value for b corresponds to the assumption 
that, for charged particles incident with b greater than be there will be 
no interaction, whereas for charged particles incident with b less than be 
there will be a coulomb-type interaction with the target particle. 

The deflections that yield scattering angles between 1r /2 and 1r, and 
which are associated with values of b between 0 and b0 , are usually called 
large-angle deflections, or close encounters. If only the large-angle deflec­
tions are taken into account, we obtain 

at, large = 7r b5 (1r/2<x<1r) (8.3) 

with b0 as given by (4.9). 
For a charged particle situated inside a plasma we know that it will 

be surrounded by a shielding cloud of particles of opposite sign. The scale 
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length for an effective shielding of the charged particle under consideration 
is the Debye length defined by 

AD = (EokT) 1/2 

noe2 
(8.4) 

The sphere of radius AD, surrounding the charged particle under consid­
eration, is called the Debye sphere. We have seen in Chapter 11 that 
the charged particles lying within the Debye sphere shield the coulomb 
potential due to the charged particle under consideration, reducing signif­
icantly its effect on the particles lying outside its Debye sphere. Taking 
this screening effect into account, we find that the interaction potential 
energy is given by 

1 qq1 ( r ) U(r) = -- exp --
47rf.o r AD 

(8.5) 

Thus, when r «AD the Debye potential, as given by (8.5), is very nearly 
equal to the coulomb potential, whereas when r »AD the Debye potential 
is nearly equal to zero. 

The analysis required for calculating Ut, using the Debye potential, 
is excessively complicated and it must be done numerically. However, an 
alternative simple approach can be used that leads to results in very good 
agreement with those obtained numerically using the Debye potential. It 
consists in assuming that the interaction potential is exactly equal to the 
coulomb potential for r < AD and is equal to zero for r > AD, as illustrated 
in Fig. 9. Therefore, it is convenient and more legitimate to introduce the 
cut-off in the impact parameter at be= AD and not at be= b0 . In general, 
we have 

AD» bo (8.6) 

It is usual to denominate the deflections corresponding to b0 < b < AD, 
leading to x < 1r /2, as small-angle deflections. The contribution to the 
total scattering cross section from the small-angle deflections is found to 
be given by 

1>.v 
O't, small = 27r b db= 7r(At - b~) 

bo 
(8.7) 
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............... ..... ___ _ 
0 r 

Fig. 9 The approximation used to obtain at = 1r A't consists 
in assuming that for r < AD the shielding effect is completely 
omitted so that the particles interact according to the coulomb 
potential, whereas for r > AD the shielding of the target particle 
is complete so that there is no interaction. 

Therefore, it follows from (8.3) and (8. 7) that 

at, large 
(8.8) 

since AD » b0 . This result shows that the large number of particles 
interacting mildly with the target particle, and therefore producing only 
small-angle deflections, are much more important than the small number 
of particles interacting strongly with the target particle and producing 
large-angle deflections. Therefore, if the impact parameter is cutoff at 
be= AD we obtain, from (8.1), the following result for the total scattering 
cross section: 

(8.9) 
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For the momentum transfer cross section, introducing the cut-off at 
be = An, we obtain from (7.8), 

2 ( Ab) am = 21rb0 ln 1 + b2 
0 

since from (4.12), letting X= Xe forb= be, we have 

Using the notation 

( b2)-1/2 
sin (~Xe) = 1 + b~ 

0 

A= An 
bo 

and noting that in general A» 1, (8.10) becomes 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

It can be shown that for am, as well as for at, the large number of particle 
producing small-angle deflections are much more important than the small 
number of particles producing large-angle deflections. 

The function ln A varies very slowly over a large range of variation of 
the parameters on which A depends. For most laboratory plasmas .en A 
lies between 10 and 20. In order to calculate A it is usual to make some 
approximations. For this purpose consider the interaction between an 
electron gas (charge q = -e) and a singly charged ion gas ( q1 = e, Z = 1). 
Let n 0 denote the number density of both the electrons and the ions in 
the gas, which we assume to constitute a plasma, and let the temperature 
of both species be equal toT. If we further assume that the electron and 
ion velocities have a Maxwellian equilibrium distribution function with no 
drift velocity, then we find, by direct calculation, 

__!__ 1 fe (3kT + v2) d3v = 3kT 
no v mi J.-l 

(8.14) 

where k is Boltzmann's constant and 1-l is the reduced mass. Replacing 
g2 , in (4.9), by its average value, we find (for q1 = -q =e) 

e2 
bo=-----

47rEoJ.-l < g2 > 127rEokT 
(8.15) 
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TABLE 1 

VALUES OF ln A FOR Z = 1 
AS A FUNCTION OF T(K) AND ne (cm-3) 

T / lle 103 106 I 109 I 1012 I 1015 I 1018 I 1021 

102 12.8 9.43 5.97 
103 16.3 12.8 9.43 5.97 
104 19.7 16.3 12.8 9.43 5.97 
105 23.2 19.7 16.3 12.8 9.43 5.97 
106 26.3 22.8 19.3 15.9 12.4 8.96 5.54 
107 28.5 25.1 21.6 18.1 14.7 11.2 7.85 
108 30.9 27.4 24.0 20.5 17.0 13.6 10.1 

Substituting this result into the expression (8.12), with An as given by 
(8.4), gives 

127rtokT 3 
A= 2 An= 127rnoAn = 9Nn 

e 
(8.16) 

where N n denotes the number of electrons in a De bye sphere. Table 1 
presents values for ln A, for various values of the electron number density 
ne and the electron temperature T. 

20.1 For a differential scattering cross section with an angular dependence 
given by 

where a0 is a constant, calculate the total cross section and the momentum 
transfer cross section. 

20.2 Consider a collision between two particles of mass m and m 1 , in 
which the particle of mass m 1 is initially at rest. Denote the scattering 
angle in the center of mass coordinate system by X and in the laboratory 
coordinate system (as seen by an observer at rest) by XL. 

(a) Show that 
sin x 

tan XL=-----,-----,-
cos X+ (m/m1) 

I 
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(b) Show that the relationship between the differential scattering cross sec­
tion in the laboratory system a L (XL) and in the center of mass coordinate 
system a(x) is given by 

Note that when m1 = oo we have XL =X and aL(XL) = a(x). 
(c) Verify that when m = m1 we obtain XL = x/2 and aL(xL) 
4 cos (x/2) a(x). 

20.3 Consider two particles whose interaction is governed by the following 
rectangular-well potential: 

U(r) = 0 

U(r) = -Uo 

for r >a 

for r ::; a 

(a) Calculate the differential scattering cross section a(x) and show that 
it is given by (considering b < a) 

where 

p2a2 [p cos (x/2)- 1] [p- cos (x/2)] 
a(x) = 4 cos (x/2) [1 - 2p cos (x/2) + p2]2 

( 2Uo)l/2 
p= 1+-

f.-t92 

(b) Show that the total scattering cross section is given by 

20.4 Consider a general inverse-power interparticle force of the form 

K 
F(r) =-

rP 

where K is a constant and p is a positive integer number. 
(a) Determine expressions for the scattering angle x, for the differential 
scattering cross section a(x, E), for the total scattering cross section at, 
and for the momentum transfer cross section am. 
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(b) Calculate x, CT(X, E), O"t, and O"m for the case of Maxwell molecules, 
for which p = 5. 

20.5 From the expression for O"m, obtained in part (a) of problem 20.4, 
verify that for p = 2 the momentum transfer cross section is given by 

(K)2 1 
O"m = 27r A1 (2) --; 94 

where A1(2) is given by (with£= 1 and p = 2) 

Ac(p) = fooo (1- coscx) vo dv0 

(J.L92) 1/(p-1) 
vo = b K 

Consequently, the velocity-dependent collision frequency, defined by 

l!r(g) = nO"m9 

varies as g-3 . This inverse dependence on g accounts for the so-called 
electron runaway effect. This implies that in the presence of a sufficiently 
large electric field E, some electrons will gain enough kinetic energy be­
tween collisions so as to decrease their cross section and the collision fre­
quency, which in turn allows them to pick up more energy from the field 
and decrease even further their cross section and collision frequency. If E 
is large enough, the collision frequency may fall so fast that these electrons 
will form an accelerated beam of runaway electrons. 

20.6 Show that for the case of coulomb interactions (p = 2) we have 

2 2 

A1(2) = (J.Li ) b6 ln (1 + A2) 

( J.L9 2 
) 
2 2 [ 2 A 2 ] A2 (2) = k 2b0 ln (1 +A ) - (1 + A2) 

where b0 = qql/(47rEoJ.L92 ), Ac(p) is as defined in problem 20.5, and A= 
An/bo. For A» 1 verify that 

(J.L92)2 
A1 (2) = K 2b6 ln A = 2 ln A 

2 2 
A2 (2) = ( J.L: ) 2b6 (2 ln A- 1) = 2 (2 ln A- 1) 

Note that, since K = qql/(47rEo) for the coulomb interaction potential, we 
have (J.Lg2 / K) 2 b5 = 1. 



THE BOLTZMANN AND THE 

FOKKER-PLANCK EQUATIONS 

1. INTRODUCTION -------~~----------' 

When the Boltzmann equation was first introduced in Chapter 5, the 
collisional effects were incorporated in its right-hand side [see equation 
(5.5.27)] through a general collision term (6fa)6t)call still to be specified. 
We present now a derivation of the Boltzmann collision term, which takes 
into account only binary collisions. This collision term involves integrals 
over the particle velocities, so that the Boltzmann equation turns out to 
be an integra-differential equation. The fact that the Boltzmann collision 
integral takes into account only binary collisions limits considerably its 
applicability for a plasma, where each charged particle interacts simulta­
neously with a large number of neighboring charged particles. Although 
these multiple coulomb collisions are very important for a plasma, there 
are some cases (as in weakly ionized plasmas) where the binary charge­
neutral collisions play a dominant role. 

The collision term originally proposed by Boltzmann applies to a low 
density gas, in which only binary elastic collisions are important. These 
binary collisions may involve neutral atoms or molecules in a dilute gas, 
or charged and neutral particles in a plasma. We have seen that in a 
plasma these are not the only particle interactions of importance. The 
multiple coulomb interactions need to be taken into account and in most 
cases are much more important than the binary collisions. Nevertheless, 
the Boltzmann collision term can in some cases be used for a plasma, but 
the results obtained have to be interpreted cautiously. 
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Furthermore, the Fokker-Planck collision term, which applies to 
charged particle interactions, can be derived from the Boltzmann colli­
sion term by considering the charged particle encounters as a series of 
consecutive weak (small deflection angle) binary collisions. 

2.1 Derivation of the Boltzmann Collision Integral 

The collision term ( t5 fa/ t5t) call represents the rate of change of the dis­
tribution function fa(r, v, t) as a result of collisions. Some of the particles 
of type a originally situated inside the volume element d3r d3v at (r, v) 
in phase space may leave this volume element, whereas some particles of 
type a originally situated outside this volume element may end inside it, 
as a result of collisions during the time interval dt. Let ~Na denote this 
net gain or loss of particles of type a in d3r d3v at (r, v) during dt, that 
is, 

(2.1) 

It is convenient to separate !::iNa into two parts 

(2.2) 

where ~N;t represents the gain term due to collisions in which a particle 
of type a situated inside d3r about r has, after collision, a velocity lying 
within d3v about v, and ~N;; represents the loss term due to collisions in 
which a particle of type a situated inside d3r about r has, before collision, 
a velocity lying within d3v about v. We proceed now to determinte ~Na, 
defined in (2.1), by calculating initially ~N;; and afterwards ~N;t. 

To calculate ~N;; we consider the particles of type a situated within 
the volume element d3r at r, whose velocities lie within d3v about v, and 
which are scattered out of this velocity range, as a result of collisions with 
particles of some type (which may or may not be type a particles) lying 
in the same volume element d3r at r and having some velocity within 
d3v1 about v 1 . Let us focus attention on a single particle of type a sit­
uated within the phase space volume element d3r d3v at the coordinates 
(r, v). The particles of type f3 inside d3r d3v1 at (r, v1) may be viewed 
as constituting a particle flux incident on this type a particle. Noting 
that ff3(r, v 1 , t) d3v1 is the number of type f3 particles per unit volume, 
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with velocities within d3vi about VI, the flux of this incident beam can 
be expressed as 

Consider the type f3 particles that approach with an impact parameter 
between b and b +db, in a collision plane lying between the angles E and 
E + dE. The average number of interactions of these type f3 particles with 
the type a particle, occurring in the time interval dt, is equal to the number 
of particles crossing the element of area b db dE during dt. This number 
can be obtained by multiplying the flux of type f3 particles, given in (2.3), 
by the element of area b db dE and by the time interval dt, 

This expression is just the number of particles of type f3 with velocities 
lying within d3vi about VI and situated inside the elementary cylindrical 
volume of length g dt and cross-sectional area b db dE, as shown in Fig. 
1, and whose volume is g b db dE dt. It is assumed here that dt is large 
compared to the time of interaction of the colliding particles. To determine 
the number of collisions between the type f3 particles indicated in (2.4), 
with all the type a particles lying within d3r d3v at (r, v), during dt, 
we multiply (2.4) by fa(r, v, t) d3r d3v, which is the number of type a 
particles lying within this phase space volume element, obtaining 

In deducing this expression it has been assumed that the number of 
collisions between the particles of the types a and /3, with velocities in 
d3v about v, and in d3vi about VI, respectively, lying in the same volume 
element d3r about r, is proportional to the product fa(r, v, t) ff3(r, VI, t). 
However, in a system of interacting particles the existence of a particle 
within a given volume element d3r at r, with a given velocity v, affects 
the probability that another particle be found with a specified velocity VI 

in the same volume element, at the same time. Thus, in expression (2.5) 
we are neglecting any possible correlation that may exist between the 
velocity of a particle and its position. This approximation, known as the 
molecular chaos assumption, is introduced as a mathematical convenience, 
but although it may represent a possible condition for a system of particles, 
it is not a general condition. 

The total number of particles of type a in d3 r about r that are scat­
tered out of the velocity space element d3v about v, during dt, is obtained 
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integrating expression (2.5) over all possible values of b, E, and v1, and 
summing over all species (3, 

where the triple integral over v 1 is represented again by a single integral 
sign. 

To determine the gain term D..N;t, we proceed in a way similar to 
the determination of D..N;;, by considering the inverse collision, in which 
a particle of type a with initial velocity in d3v' about v', collides with 
a particle of type (3 having initial velocity in d3vi about vi, resulting in 
the particle of type a scattered into the velocity element d3v about v, 
the event occurring inside the volume element d3r about r. The average 
number of interactions between a single particle of type a, inside the 
volume element of phase space d3r d3v' at (r, v'), with the particles of 
type (3 inside d3r d3vi at (r, vi), which approach with an impact parameter 
between b and b + db, and with the collision plane oriented between the 
angles E and E + dE, is given by 

(2.7) 

To take into account all collisions occurring within d3r, at r, during the 
time interval dt, between the particles of type a and (3, which scatter the 
particles of type a into the volume element d3v, about v, we must multiply 
(2. 7) by the number of particles of type a that lie initially inside d3r d3v', 
that is, by fa(r, v', t) d3r d3v', integrate the result over all possible values 
of b, E, and vi, and sum over all species (3, 

D..N;t = fa(r,v',t) d3r d3v' dt L1, fjff3(r,v~,t) d3v~ g' b db dE 
(3 v 1 }b € 

(2.8) 
We have seen that g' = g = lv1 - vi and from the theory of Jacobians 

(2.9) 

We will show in the following subsection that for this transformation of 
velocities we have IJI = 1, so that 

(2.10) 
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Fig. 1 The volume element of height g dt and cross-sectional 
area b db dt, with sides lying between band b +db, and between 
f. and f. + dt. 

Consequently, (2.8) becomes 

~N;t = fo:(r, v', t) d3r d3v dt L 1 fjff3(r, v~, t) d3v1 g b db dt 
(3 V1 Jb E 

(2.11) 
If we now combine the expressions for ~N;; and ~N;t, and substitute 
b db dt by a(!1) dO, we obtain the following expression for the Boltzmann 
collision integral, 

(2.12) 

where we have introduced the notation 
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I~= la(r, V 1, t) 

lh1 = lf3(r, v~, t) 
Ia = la(r, v, t) 

lf31 = lf3(r, v1, t) 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

In explicit form, the Boltzmann equation can finally be written as 

aala + v. \1 Ia +a. \1 via = L 1 r (!~ 1h1 - Ia lf31) d3v1 g u(O) dO 
t f3 v1 ln 

(2.14) 
The Boltzmann equation is therefore an integro-differential equation, in­
volving integrals and partial derivatives of the distribution function. The 
external force F = maa, in the case of a plasma, includes also the elec­
tromagnetic Lorentz force F = Qa (E + v x B) due to externally applied 
fields. 

For a system consisting of various different species of particles, there 
is one equation for each species. For an ionized gas composed of electrons, 
one type of positive ions, and one type of neutral particles, for example, 
we have a system of three Boltzmann equations coupled through the col­
lision term. In the Boltzmann equation for the electrons, for example, 
the collision term contains the distribution function for the electrons le, 
the distribution function for the ions /i, and the distribution function 
for the neutral particles In· Since the collision term involves products 
of the distribution functions, the Boltzmann equation is also nonlinear. 
For a system consisting of only one type of particles, the summation over 
the type f3 particles disappears and the collision term involves only the 
product of distribution functions of the same particle species. 

2.2 Jacobian of the Transformation 

The relation between the velocity elements d3v d3v1 and d3v 1 d3vi is 
given by 

(2.15) 

where J is the Jacobian of the transformation from the velocity variables 
(v, v 1) to (v1, vi) and can be expressed as 

a( I I ) 8( I I I I I I ) J- v 'v1 - vx, vy, vz, v1x' v1Y' V1z 

- 8(v, V1) - 8(vx, Vy, Vz, V1x, V1y, V1z) 
(2.16) 
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which corresponds to the determinant of the matrix 

8v' X 
8v' y av~z 

8vx 8vx 8vx 
8v' 

X 
8v' _Y av~z 

(J) = 
8vy 8vy 8vy 

(2.17) 

8v' X 
8v' _Y_ av~z 

avlz avlz avlz 

Using (20.2.5) and (20.2.6) (Eqs. 2.5 and 2.6 in Chapter 20) we can express 
d3v and d3v1 in terms of d3co and d3g, 

(2.18) 

where lc denotes the Jacobian of the transformation indicated in equations 
(20.2.5) and (20.2.6). Let us consider initially only the x component of 
(2.18), 

(2.19) 

From (20.2.5) and (20.2.6) we can calculate the determinant of the 2 x 2 
matrix indicated in (2.19), obtaining 

(2.20) 

Taking the product of three such terms, corresponding to the components 
x, y, and z, gives 

d3v d3v1 = d3co d3g (2.21) 

In a similar way, using (20.2.8) and (20.2.9) we find 

(2.22) 

We have seen that co = c~. Furthermore, g and g' differ only in direction, 
having the same magnitude, and since volume elements are not changed by 
a simple rotation of coordinates, we must have d3 g = d3 g'. Consequently, 
(2.21) and (2.22) yields 

(2.23) 
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2.3 Assumptions in the Derivation of the 
Boltzmann Collision Integral 

The derivation of the Boltzmann collision integral presented here in­
volves four basic assumptions: 

(a) The distribution function does not vary appreciably over a distance of 
the order of the range of the interparticle force law, as well as over time 
scales of the order of the interaction time. 
(b) Effects of the external force, on the magnitude of the collision cross 
section, are ignored. 
(c) Only binary collisions are taken into account. 
(d) The velocities of the interacting particles, before collision, are assumed 
to be uncorrelated. 

The first assumption is quite reasonable and is incorporated in the 
calculation of (8fa/8t)coll when we evaluate all the distribution functions 
at the position r and at the instant t. The element of volume d3r is 
considered to be large compared to the range of the interparticle forces 
and the time interval dt is taken to be large compared to the time of 
interaction. On the other hand, as far as variations in the distribution 
functions are concerned, the elements d3r and dt must be infinitesimally 
small quantities. 

Next, the external force was assumed to have a negligible effect on 
the two-body collision problem. This is valid if the external force is negli­
gibly small compared to the interaction force between the particles. When 
external forces of magnitude comparable to the short-range interparticle 
forces are present, the collision process is modified. The constancy of the 
relative speed g = lv1 - vi is strictly valid only in the absence of external 
forces. 

The assumption of binary collisions is justified for a dilute gas, whose 
molecules interact through short-range forces. However, it is not valid for 
the coulomb interactions in a plasma. Because of the long-range char­
acteristic of the coulomb force, a charged particle in a plasma interacts 
simultaneously with all the charged particles inside its Debye sphere. Since 
there is a large number of charged particles inside a Debye sphere, each 
charged particle in the plasma does not move freely, as does a neutral par­
ticle between collisions, but interacts continuously with a large number of 
charged particles. However, the Boltzmann collision integral may also be 
used as a starting point in the derivation of the Fokker-Plamck collision 
term for a plasma, under the assumption that each long-range individual 
interaction results only in a small deflection in the particle trajectory and 
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since each individual interaction is relatively weak, the collective effect of 
many simultaneous interactions can be considered as a cumulative succes­
sion of weak binary collisions. Thus, in general, the Boltzmann collision 
term is not strictly valid for a plasma and the results obtained for the case 
of charge-neutral particle interactions in weakly ionized plasmas must be 
interpreted cautiously. 

Assumption (d) is known as the molecular chaos assumption. It is 
justified for a gas in which the density is sufficiently small, so that the mean 
free path is much larger than the characteristic range of the interparticle 
forces. This is certainly not a general situation for a plasma, in view of 
the long-range characteristic of the coulomb force. Generally, the joint 
probability of having, at the position r and at the instant t, a particle 
of type a with velocity v and a particle of type (3 with velocity VI is 
proportional to 

fa(r, v, t) ff3(r, VI, t) [1 + 'l/Ja{3(v, VI, r, t)] (2.24) 

where '¢af3(v, vi, r, t) is known as the correlation function. In the deriva­
tion of the Boltzmann collision integral we have neglected the correlation 
effects and we have taken this joint probability as being proportional to 
the product fa(r, v, t) ff3(r, VI, t). The irreversible character of the Boltz­
mann equation, to be discussed in the next section, is a consequence of 
the molecular chaos assumption. In order to avoid this approximation the 
only alternative is to work with the reversible equations of the BBGKY 
{Bogoliubov, Born, Green, Kirkwood, and Yvon} hierarchy. This kinetic 
treatment, however, is beyond the scope of this text. 

For gaseous systems in which the characteristic interaction length is 
much less than the average interparticle distance and where temporal and 
spatial gradients are not very large, the Boltzmann equation is nevertheless 
very well verified experimentally and, in this respect, constitutes one of 
the basic relations of the kinetic theory of gases. 

2.4 Rate of Change of a Physical Quantity 
as a Result of Collisions 

In section 2 of Chapter 8 we have denoted the time rate of change of 
a physical quantity x(v) per unit volume, for the particles of type a, due 
to collisions with the other particles in the plasma, by 

[o(na <X >a)] = 1x (ofa) d3v 
Ot call v ot call 

(2.25) 
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Using the Boltzmann collision integral, 

(2.26) 

we obtain the following expression for (2.25): 

[8(na <X >a)] = L r 11u~ f~l- fa ff31) X g 0"(0) dO d3v d3vl 
8t call (3 Jn VI v 

(2.27) 
Recall that for each direct collision there is a corresponding inverse colli­
sion with the same cross section. Hence, the integrals over v and v 1 can 
be replaced by integrals over v' and v~, respectively, without altering the 
result. Therefore, the first group of integrals in (2.27) may be written as 

(2.28) 

where we have replaced d3v' d3v~ by d3v d3v1. Using this expression, we 
obtain the following alternative form for the collision term in (2.27), 

[<5(na ~X >a)] = L r 11 fa ff31 (x'- x) g 0"(0) dO d3v d3vl 
t call a Jn vi v 

(2.29) 
Note that the property x(v) is associated with the particles of type a 

and that x' denotes x(v'). Note also that only the quantity x' on the 
right-hand side of (2.29) is a function of the after-collision velocity v'. 
Recall that the result just derived applies to the special case of binary 
elastic collisions in a dilute gas, when processes of particle creation and 
disappearance, as well as radiation losses are unimportant. 

An important characteristic of the Boltzmann collision term is that 
it drives the distribution function towards the equilibrium state in an ir­
reversible way. This irreversible characteristic of the Boltzmann collision 
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term, as mentioned before, is a consequence of the molecular chaos as­
sumption, which neglects the correlation effects between the particles. 

In order to investigate this aspect of the Boltzmann collision term, 
we introduce now the Boltzmann's function H(t). For simplicity we will 
consider a gas consisting of only one particle species, with the particles 
uniformly distributed in space (having no density gradients) and isolated 
from the action of external forces. The distribution function, therefore, is 
independent of rand can be denoted by f(v, t). We define, according to 
Boltzmann, the function H ( t) by 

H(t) = 1 f(v, t) In [f(v, t)] d3v (3.1) 

For problems involving spatial gradients, the function H(t), defined in 
(3.1), corresponds to Htotal(t) per unit volume, where 

Htotal(t) = 11 f(r, v, t) In [f(r, v, t)] d3r d3v (3.2) 

The function H(t) is proportional to the entropy per unit volume of 
the system according to 

s 
-=-kH v (3.3) 

where S denotes the total entropy, V is the volume of the system, and 
k is Boltzmann's constant. More generally, for systems in which spatial 
gradients are present we have 

S =- k Htotal (3.4) 

3.1 Boltzmann's H Theorem 

The Boltzmann's H theorem states that if f(v, t) is a solution of the 
Boltzmann equation, that is, if 

8f(v,t) 11 a = [f(v', t) f(v~, t)- f(v, t) f(vb t)] g a(n) dn d3vl (3.5) 
t n v1 

then 
8H(t) < O 

8t - (3.6) 
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To prove this theorem let us take the derivative of (3.1) with respect 
to time, which gives 

(3.7) 

Substituting (3.5) into (3. 7) gives 

where the notation ff = f ( v~, t), and so on, has been used. The variables 
of integration v and v 1 are dummy variables and can be interchanged in 
the integrand of (3.8) without changing the value of the integral, since 
J(!1) and g = /v1 - v/ are also invariants. Thus, (3.8) can be written as 

Adding equations (3.8) and (3.9), and dividing by 2, gives 

In this equation we can replace the velocities before collision, v and v 1 , by 
the velocities after collision, v' and v~, respectively, without altering the 
value of the integral, since for each direct collision there exists an inverse 
collision with the same differential cross section J(n). We have already 
seen that d3v' d3 v~ = d3v d3v1 and g = g'. Consequently, (3.10) may be 
written as 

We now combine (3.10) and (3.11) to obtain 

In this expression it is clear that if f' f{ > f !I then ln (f fd f' ff) < 0 
and, consequently, (8Hj8t) < 0, since all other factors appearing in the 
right-hand side of (3.12) are positive. On the other hand, if f' f{ < f !I 



21. BOLTZMANN AND FOKKER-PLANCK EQUATIONS 601 

then ln (ffdf'f{) > 0 and, again, (8Hf8t) < 0. When f'f{ = Jh, both 
factors are zero and ( 8H / 8t) = 0, which corresponds to the equilibrium 
state. 

This result proves the H theorem, showing that when f satisfies the 
Boltzmann equation, the functional H ( t) always decreases monotonically 
in time until it reaches a limiting value, which occurs when there is no 
further change with time in the system. This limiting value is reached 
only when 

!'!{ = fh (3.13) 

so that this condition is necessary for (8Hj8t) = 0 and, consequently, it 
is also a necessary condition for the equilibrium state. According to the 
Boltzmann equation (3.5), the equilibrium distribution function satisfies 
the following integral equation, 

(3.14) 

so that the condition (3.13) is also a sufficient condition for the equilibrium 
state. 

It is instructive to note that (3.13) can be considered as an example 
of the general principle of detailed balance of statistical mechanics, as dis­
cussed in section 1 of Chapter 7, where it was used to derive the Maxwell­
Boltzmann equilibrium distribution function. An important conclusion 
that can be drawn from (3.13) is that the equilibrium distribution function 
is independent of the differential collision cross section u(O), considered to 
be nonzero. The Maxwell-Boltzmann distribution function, therefore, is 
the only distribution for the equilibrium state that can exist in a uniform 
gas in the absence of external forces. 

3.2 Analysis of Boltzmann's H Theorem 

According to (3.3), the H theorem states that the entropy of a given 
isolated system always increases with time until it reaches the equilibrium 
state. Although this irreversible behavior is compatible with the laws of 
thermodynamics, it is nevertheless in disagreement with the laws of me­
chanics, which are reversible. If, at a given instant of time, the velocities 
of all the particles in a system were reversed, the laws of mechanics pre­
dict that each particle would describe, in the opposite sense, its previous 
trajectory. However, we have seen that the Boltzmann collision term leads 
to a irreversible temporal evolution of the distribution function and of the 
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function H(t). The existence of this paradox has its origin in the molec­
ular chaos assumption that was used in the derivation of the Boltzmann 
collision term. 

Recall that the molecular chaos assumption considers that, if f(r, v, t) 
is proportional to the probability of finding in a given volume element 
d3r, about r, a particle with velocity v, at the instant t, then the joint 
probability of simultaneously finding in the same volume element d3r, 
about r, a particle with velocity v and another particle with velocity VI, 

at the instant t, is proportional to the product f(r, v, t) f(r, VI, t). Thus, 
it neglects any possible correlation that may exist between the particle 
velocities. Generally, the state of the gas may or may not satisfy the 
molecular chaos assumption and consequently the distribution function 
describing the gas may or may not satisfy the Boltzmann equation. The 
distribution function, which characterizes the state of the gas, will obey 
the Boltzmann equation only at the instants of time when the molecular 
chaos assumption holds true for the gas. The H theorem, therefore, is also 
valid only when this condition is satisfied. 

We shall show now that at the instants of time when the state of the 
gas satisfies the molecular chaos assumption, the function H(t) is at a local 
maximum. For this purpose consider a gas not in equilibrium, which is in 
the state of molecular chaos at the instant t = t0 . The H theorem implies 
that at the instant t0 + dt we have (8Hj8t) :::; 0. Consider a second gas 
that at the instant t = t 0 is exactly identical to the first one, except that 
the velocities of all the particles have directions opposite to the velocities 
of the first one, has the same function H(t) as the first one, and is in a 
state of molecular chaos at t = t0 . Consequently, at the instant to+ dt we 
must have (8Hj8t) :::; 0, according to the H theorem. On the other hand, 
due to the invariance of the equations of motion under time reversal, the 
time evolution of the second gas corresponds to the past of the first. This 
means that for the first gas we must have 

~~ :::; 0 at t =to+ dt (3.15a) 

8H >O 
at - at t = t0 - dt (3.15b) 

which shows that, at the instant when the condition of molecular chaos 
is satisfied, the function H ( t) is at a local maximum. This situation is 
illustrated in Fig. 2 at the instant t = t0 indicated by the number (2). At 
the instants when H ( t) does not present a local maximum, as for exam­
ple at the instants indicated by the numbers (1) and (3) in Fig. 2, the gas is 
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H(t) 

2 

1/i\3 
I 
I 
I 
I 

to t 

Fig. 2 When the gas satisfies the molecular chaos condition, 
the function H(t) is at a local maximum, indicated here by the 
point denoted (2). 

not in a state of molecular chaos. Note that (8Hj8t) need not necessarily 
be a continuous function of time and may change abruptly as a result of 
collisions. 

The time evolution of H(t) is governed by the collisional interactions 
between the particles, which occur at random and which can establish 
as well as destroy the state of molecular chaos as time passes. Fig. 3 
illustrates how H(t) may vary in time. Some of the instants when the 
condition of molecular chaos is satisfied are indicated by dots in the curve 
of H(t). If the condition of molecular chaos prevails during most of the 
time, as in a dilute gas for example, H(t) will be at a local maximum 
most of the time. Due to the random characteristic of the sequence of 
collisions, these instants of molecular chaos will probably be distributed 
in time in an almost uniform way. On the other hand, the time variation of 
H(t), obtained using the distribution function that satisfies the Boltzmann 
equation, is represented by a smooth curve of negative slope which tries to 
fit, with a minimum deviation, all the points (instants) of the real curve 
of H(t) in which the condition of molecular chaos is satisfied, as shown by 
the dashed line of Fig. 3. The state of molecular chaos, therefore, can be 
considered as a convenient mathematical model to describe a state not in 
equilibrium. 

The Boltzmann equation, although strictly valid only at the instants 
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H(t) 

t 

Fig. 3 The time evolution of H(t) for a gas, initially not 
in an equilibrium state, is indicated by the solid curve. The 
dashed curve represents the time variation of H ( t) predicted by 
the Boltzmann equation. The dots indicate some of the instants 
when the condition of molecular chaos is satisned. 

when the gas is in the state of molecular chaos, nevertheless can be con­
sidered generally valid in a statistical sense at any instant, and the same 
applies for the H theorem. 

3.3 Maximum Entropy or Minimum H Approach 
for Deriving the Equilibrium Distribution Function 

The Maxwell-Boltzmann equilibrium distribution function can also 
be derived by performing a variational calculation on the function H(t). 
We have seen that, under equilibrium conditions, H(t) is a minimum, so 
that for a one-component uniform gas we must have, at equilibrium, 

(3.16) 

where the symbol 8, before a given quantity, indicates a variation in this 
quantity as a result of a small change in the distribution function. Carrying 
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out the variation indicated in (3.16) in a formal way, we have 

(3.17) 

There are, however, certain macroscopic constraints imposed on the sys­
tem. When we vary f slightly, we cannot violate the basic laws of conser­
vation of mass, of momentum, and of energy for the system as a whole. 
Therefore, the variational integral (3.17) is subjected to the constraints 
that the total mass, momentum, and energy densities of the uniform gas 
remain constant under the variation in f. The constancy of the mass 
density, under a small change of in f, requires that 

(3.18) 

Similarly, for the constancy of the momentum density, 

(3.19) 

and for the energy density, 

(3.20) 

We can now solve the variational integral in (3.17), subjected to the 
constraints expressed by (3.18), (3.19), and (3.20), using the method of the 
Langrange multipliers. Multiplying (3.18) by the Lagrange multiplier a1 , 

the ith component of (3.19) by the Lagrange multiplier a2i (fori= x, y, z), 
(3.20) by the Lagrange multiplier a3 , and adding the resulting equations 
together with (3.17), yields 

m 1 (1 + ln f + al + a2. v + ~a3v2 ) of d3v = 0 (3.21) 

where we have used the notation a2 · v = a2xVx + a2yVy + a2zVz. The 
variation in f is now completely arbitrary, since all the constraints imposed 
on the system have been taken into account in (3.21). Thus, this integral 
can be equal to zero if and only if 

(3.22) 
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This equation is identical to (7.1.9), which we solved in Chapter 7 to 
obtain the Maxwell-Boltzmann distribution function. Hence, it leads in 
identical fashion to the equilibrium distribution function 

( m )3/2 ( mc2) 
f = n 21rkT exp - 2kT (3.23) 

with c = v- u. 
The Maxwellian distribution function, besides being the equilibrium 

solution of the Boltzmann equation, is therefore also the most probable 
distribution consistent with the specified macroscopic parameters n, u, 
and T of the system. 

3.4 Mixture of Various Particle Species 

For the case of a mixture containing different species of particles, 
each species having a given number density na, average velocity Ua, and 
temperature Ta, we can still perform a variational calculation to determine 
the most probable distribution subjected to the constraints provided by the 
set of macroscopic parameters n0 , U 0 , and T0 , for each species. Note that 
this is not an equilibrium situation unless the temperatures and mean 
velocities of all species are equal. 

In order to determine the most probable distribution function for this 
nonequilibrium gas mixture (each species having its own number density, 
mean velocity, and temperature), we independently minimize each Hco 

(3.24) 

This also minimizes H for the mixture, since 

(3.25) 

For the species of type a, when Ha is at its minimum, we must have 
8Ha = 0 for a small variation 8fa in fa· The macroscopic parameters 
n 0 , u0 , and Ta must all remain fixed when fa is varied. The problem is 
completely analogous to the one we solved in the previous subsection for 
a one-component gas and leads, in identical fashion, to equation (3.23) 
for each species. Therefore, each particle species has a Maxwellian dis­
tribution function, but with its own number density, mean velocity, and 
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temperature. Although this it not an equilibrium situation for the whole 

gas (unless the mean velocities and temperatures of all species are the 
same), it is nevertheless the most probable distribution function for this 
system under the specified constraints. 

4. BOLTZMANN COLLISION TERM 
FOR A WEAK._..L...._Y_._,IO~N~I .... Z-E-D ......... ~.........,..__---------___. 

In this section we shall derive, from the Boltzmann equation, an ap­
proximate expression for the collision term for a weakly ionized plasma, in 
which the collisions between electrons and neutral particles play a domi­
nant role. The distribution function for the neutral particles is assumed 
to be homogeneous and isotropic. The external force acting on the elec­
trons is assumed to be small, so that the electrons are not very far from 
the equilibrium state. Consequently, the spatial inhomogeneity and the 
anisotropy of the nonequilibrium distribution function for the electrons 
are very small, since the nonequilibrium state is only slightly perturbed 
from the equilibrium state. Under equilibrium conditions the electrons 
are assumed to have no drift velocity and their distribution function is 
isotropic and homogeneous. 

4.1 Spherical Harmonic Expansion 
of the Distribution Function 

Let ( v, (), ¢) denote spherical coordinates in velocity space, as shown 
in Fig. 4. Since the anisotropy of the nonequilibrium distribution function 
is very small, the dependence of f(r, v , t) on() and¢ is very small. Hence, 
it is appropriate to expand f ( r, v, t) in terms of the velocity space angular 
variables () and ¢, and retain only the first few terms of this expansion. 
Since ¢ varies between 0 and 21r, we can expand f ( r, v, t) in a Fourier 
series in¢. Furthermore, () varies between 0 and 1r, and consequently cos() 
varies between + 1 and -1, which means that we can expand f ( r, v , t) in a 
series of Legendre polynomials in cos (). Therefore, we can make a spherical 
harmonic expansion of the distribution function, as follows , 

00 00 

f(r.v, t) = L L P:(cos 8) 
m=On=O 

[fmn(r, v, t) cos (m¢) + 9mn(r, v, t) sin (m¢)] (4.1) 
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Vz 

Vy 

Vx 

Fig. 4 Spherical coordinates (v, 0, ¢) in velocity space. 

where the functions P:- (cos 0) represent the associated Legendre polyno­
mials and the functions f mn and 9mn can be considered as coefficients of 
the expansion. 

The first term in the expansion ( 4.1) corresponds to m = 0 and 
n = 0, and since P8(cos 0) = 1, it follows that it is given by foo(r, v, t). 
This leading term is the isotropic distribution function corresponding to 
the equilibrium state of the electrons. The term corresponding to m = 1 
and n = 0 vanishes, since PJ (cos 0) = 0. The next highest order term in 
( 4.1) corresponds to m = 0 and n = 1, and since Pr (cos 0) = cos 0, it is 
given by f 01 (r, v, t) cos 0. Therefore, retaining only the first two nonzero 
terms of the spherical harmonic expansion ( 4.1), in view of the fact that 
the anisotropy is assumed to be small, we obtain 

,..._ 
V ·Vz 

f(r, v, t) = foo(r, v, t) + -- fm(r, v, t) 
v 

(4.2) 

where we have replaced cos () by ( v · v z) / v (see Fig. 4). The second term 
in the right-hand side of ( 4.2) corresponds to the small anisotropy due to 
the spatial inhomogeneity and the external forces on the electrons. 
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4.2 Approximate Expression for the 
Boltzmann Collision Term 

The Boltzmann collision integral, given in (2.12), can be written for 
the case of binary electron-neutral collisions as 

where we have replaced u(S1) dO by b db df.. Here fe represents the 
nonequilibrium distribution function for the electrons and f n is the iso­
tropic equilibrium function for the neutral particles. 

In a first approximation we may assume the neutral particles to be 
stationary and not affected by collisions with the electrons, since the mass 
of a neutral particle is much larger than that of an electron. Hence, we 
assume that 

Therefore, ( 4.3) becomes 

v1 = v~ = 0 

fnl = f~1 

Since the number density of the neutral particles is given by 

nn = 1 fnl d3v1 
VI 

we can write (4.6) as 

8f 127r 100 (T) = nn df. (!~ - fe) g b db 
ut coll 0 0 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Further, from ( 4.2) the distribution function for the electrons, before 
collision, is given by 

,.._ 
V·Vz 

fe = fe(r, v, t) = foo(r, v, t) + -- fm (r, v, t) (4.9) 
v 

and, after collision, by 
I ,.._ 

I ( I ) ( 1 ) V 'Vz ( 1 ) fe = fe r, v , t = foo r, v , t + 1 fm r, v , t 
v 
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v' · v 
foo(r, v, t) + z !01 (r, v, t) 

v 
(4.10) 

In this last equation we have considered v' = v, in view of the fact that 
the electrons do not lose energy on collisions, since the neutrals are much 
more massive and considered at rest in a first approximation. This means 
that v = g and v' = g' [see equation ( 4.4)], and since g = g' [see equation 
(20.2.16) (Eq. 2.16 in Chapter 20)] we have v = v'. Note, however, that 
v =f. v'. Therefore, from (4.9) and (4.10), we have 

1 (v'- v) · Vz 
fe- fe = f01(r,v,t) 

v 
(4.11) 

Without any loss of generality we can choose the Vz axis as being parallel 
to the initial relative velocity g of the electron. Therefore, 

(v'- v) · Vz = (g'- g)· Vz = g(cos X- 1) = v(cos X- 1) (4.12) 

where x denotes the scattering angle (the angle between g and g', as 
indicated in Fig. 3 of Chapter 20). Substituting (4.12) into (4.11), we 
obtain 

~~- fe = -(1- cos x) fol (r, v, t) 

Plugging this result into ( 4.8), yields 

8f, 1211" 100 
( _. e ) = - nn g f 01 ( r, v, t) dE ( 1 - cos X) b db 

ut call 0 0 

(4.13) 

(4.14) 

Since the momentum transfer cross section am for collisions between elec­
trons and neutral particles is defined by [see (20.5.10)] 

<'m = L (1- cos x) <'(n) dn = [' d< fooo {1- cos x) b db {4.15) 

we can write ( 4.14) as 

( 8fe) = -nn g O"m fm (r, v, t) 
ut call 

(4.16) 

If we substitute f01 (r, v, t) in (4.16), using (4.9), and noting that for this 
case (v · Vz)/v = (g · vz)/g = 1, we obtain 

( bfe) = -nn V O"m (fe- feo) = -vr(v) Ue- feo) (4.17) 
ut call 
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where we have introduced the velocity-dependent relaxation collision fre­
quency vr(v) = nn v CJm and where foo (which characterizes the isotropic 
equilibrium state of the electrons) has been replaced by !eo, in accor­
dance with the notation used previously. Expression ( 4.17) is similar to 
the relaxation model (or Krook model) for the collision term introduced 
in section 6 of Chapter 5, except for the velocity-dependent collision fre­
quency. Once the interaction force between the electrons and the neutral 
particles has been specified, the momentum transfer cross section am and, 
consequently, the relaxation collision frequency Vr ( v) can be determined 
as functions of velocity. 

4.3 Rate of Change of Momentum Due to Collisions 

The time rate of change of momentum per unit volume of the electron 
gas, due to collisions with neutral particles, is given, from (8.4.3), by 

(4.18) 

Substituting ( 4.17) into ( 4.18), we obtain 

(4.19) 

If we assume that the relaxation collision frequency Vr does not depend 
on velocity and if we consider that the electron gas has no drift velocity 
in the equilibrium state, that is, 

Ueo = - v !eo d v = 0 1 1 3 
ne v 

(4.20) 

then (4.19) becomes 

(4.21) 

where Ue is the average velocity of the electrons in the nonequilibrium 
state. Equation ( 4.21) corresponds to the expression used in the Langevin 
equation for the time rate of change of momentum per unit volume, as a 
result of collisions, in which a constant collisions frequency Vc was intro­
duced phenomenologically. 



612 FUNDAMENTALS OF PLASMA PHYSICS 

In this section we shall present a derivation of the Fokker-Planck 
equation, in which the collision term takes into account the simultane­
ous Coulomb interactions between the charged particles. For this purpose 
we assume that the large-angle deflection of a charged particle, in a mul­
tiple Coulomb interaction, can be considered as a series of consecutive 
weak binary collisions (or grazing collisions), that is, as a succession of 
small-angle scatterings. Therefore, the Fokker-Planck collision term can 
be derived directly from the Boltzmann collision integral, which is valid 
for binary collisions, under the assumption that a series of consecutive 
weak (small-angle deflection) binary collisions is a valid representation for 
the multiple Coulomb interaction. In the derivation that follows, we will 
consider collisions between species of particles represented by the indices 
a and {3. 

5.1 Derivation of the Fokker-Planck Collision Term 

If x(v) is some arbitrary function of velocity associated with the par­
ticles of type a, then, according to (2.27) and (2.29), the time rate of 
change of the quantity x(v) per unit volume, as a result of collision be­
tween particles of type a and those of type {3, can be expressed as 

1 x(v) ( 8!a) d3v = { 11(!~!~1 - fafrn) X g u(O) dO d3v1 d3v = 
V ut coll 1 f! Vl V 

{ 11 !aff31 (x'- x) g u(O) dO d3v1 d3v (5.1) 
ln v1 v 

where x' denotes x(v'). In this last expression only the quantity x' is a 
function of the after-collision velocity v'. 

For weak binary collisions (or grazing collisions), we can write 

v' =v+~v (5.2) 

where the change ~v, due to collision, is assumed to be small. Since 

x' = x(v') = x(v + ~v) (5.3) 

we can expand x' in a Taylor series about the velocity v, as 

~ox 1 ~ 82x 
X(V + ~V) = X(V) + L....J -0 . ~Vi+ 2 L....J f) . f) . ~Vi ~Vj + · · · (5.4) 

. Vz . . Vz v3 z ~ 
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Substituting (5.4) into (5.1) we obtain 

where the higher order terms have been neglected. 
The next step is to factor out the arbitrary function x(v) from (5.5). 

This can be accomplished by integrating the first group of integrals in­
volving axj avi by parts once and the second group of integrals involving 
a2xj(avi avj) by parts twice. For example, for the X component of the 
first group of integrals involving axj avi, we have 

11 [1 ax(v) 1 
dvy dvz a dvx (vx- Vx) 

n VI v Vx 

!a(v) g a(O) do] ff3(vl) d3v1 

For the term within brackets we can take 

and 

dV = ax(v) dvx 
avx 

U = (v~- vx) fcx(v) g a(O) dO 

and perform the integral over Vx by parts to obtain 

1 ax(v) 1 
a dvx (vx- Vx) fcx(v) g a(O) dO -

Vx Vx 

(5.6) 

(5.7) 

(5.8) 

where the integrated term is equal to zero, since f must vanish at ±oo. 
Therefore, we find for the integral in (5.6), 
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-L L f. x( v) ~X [ f>vx fa (v) 9 <7(!1) d!1 l f p( v,) d3v, d3v (5.10) 

Performing the other integrals in (5.5) by parts, in a similar way, we obtain 
the following expression for the collision term: 

f. X [! L. 8v~Ov; (fa 1. L l>v; f>v; 9 <7(!1) d!1 fp1 d3v1) ] d3v 
ZJ 

(5.11) 
We now define the quantities 

and 

which are modified averages over the scattering angle and the velocity 
distribution function of the scatterers. Using this notation, (5.11) becomes 
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Since this equation holds for any arbitrary function of velocity x(v), it 
follows that for x = 1 we must have 

( 8fa) --"!_(f A ) - L- Jo; < Ll.Vi >av + 8t coll . 8vi 
~ 

(5.15) 

This is the collision term of the Fokker-Planck equation. The average 
quantitites < ~Vi >av and < ~Vi ~Vj >av are known as the Fokker­
Planck coefficients of dynamic friction and of diffusion in velocity space, 
respectively. They give the mean rate at which ~vi and ~vi ~Vj are 
changed due to many consecutive weak coulomb collisions. 

Note that the Fokker-Planck collision term (5.15) includes two terms 
having opposite sign, which may result in no net change in fa as a result 
of collisions. A dimensional analysis of (5.12) shows that the Fokker­
Planck coefficient < ~vi >av has dimensions of force per unit mass and 
tends to accelerate or decelerate the particles until they reach the average 
equilibrium velocity. This process is usually called dynamic friction. On 
the other hand, the Fokker-Planck coefficient < ~Vi ~Vj >av represents 
diffusion in velocity space, until equilibrium is reached. Under equilibrium 
conditions, diffusion in velocity space is balanced by dynamic friction and 
there is no net change in fa as a result of collisions, so that the collision 
term in (5.15) vanishes. Fig. 5 illustrates schematically the effect of these 
processes on the distribution function. 

In principle, the expansion procedure used to obtain the Fokker­
Planck collision term can be extended to any number of terms. However, 
in practice only the first two terms of the expansion shown in (5.15) are 
ever used, so that (5.15) can be considered as a reasonable approximation 
to the collision term when ~ v = ( v' - v) is small for most collisions. 
This is generally considered to be the case for the long-range coulomb 
force. Recall that, in section 8 of Chapter 20, we have shown that the 
large number of particles interacting mildly with the target particle ( re­
sulting in small-angle deflections) are much more important than the small 
number of particles interacting strongly with the target particle (resulting 
in large-angle deflections) and have a dominant contribution to the total 
scattering cross section. 



616 

f(v) 

0 

FUNDAMENTALS OF PLASMA PHYSICS 

... DYNAMIC 
FRICTION .. 

v 

Fig. 5 Schematic illustration of the processes of dynamic 
friction and of diffusion in velocity space, associated with the 
Fokker-Planck coefficients. 

5.2 The Fokker-Planck Coefficients for Coulomb Interactions 

We shall evaluate now the coefficients of dynamic friction < tlvi >av 
and of diffusion in velocity space < tlvi tlvj >av, which appear in the 
Fokker-Planck collision term (5.15). It is convenient to perform first the 
integral over the solid angle n, since it does not require knowledge of the 
distribution function ff3(vl)· For this purpose let us write 

< flvi >av = 1 {tlvi} ff31 d3v1 
V1 

(5.16) 

and 

< flvi flvj >av = 1 {tlvi flvj} ff31 d3v1 
Vl 

(5.17) 

where the curly bracket notation has been introduced to represent the 
following integrals over solid angle: 

(5.18) 
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and 

(5.19) 

In order to calculate these integrals over the solid angle, recall first 
that in the center of mass coordinate system we have, from (20.2.5) and 
(20.2.8), 

v = co - ( ma + m,a) g (5.20) 

I m,a I 

v = Co - ( ma + m,a) g (5.21) 

so that 
~v = v 1 - v = ( 7 ) (g- g1

) 
ma m,a 

(5.22) 

In a Cartesian coordinate system in which the vector g is along the z axis 
(as shown in Fig. 3 of Chapter 20), we have 

9 z = 9 ; 9x = 9y = 0 

and 
g~ = g sin x cos E 

g~ = g sin x sin E 

g~ = g cos X 

Plugging equations (5.23) to (5.26) into (5.22) gives 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

~V = ( m,a ) g [(1-cos X) Z-sin X (cos E x+sin E y)j (5.27) 
ma + m,a 

The differential scattering cross section for the coulomb potential was 
calculated in section 7 of Chapter 20 and was found to be given by 

(1- cos x) 2 
(5.28) 

where bo is defined in (20.4.9). 
Proceeding in the evaluation of {~vi} for i = x, y, z, let us first 

calculate {~vz}· From (5.18), (5.27), and (5.28), we have 

{ A } - m,a 2b2 d sm X d 121!" !1!" . 
UVz - g 0 E X 

(ma + m,a) 0 Xrnin (1- COS X) 
(5.29) 
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where the lower limit of the integral in X was taken to be X min, in order to 
avoid the divergence of the integral that would result if we take zero as the 
lower limit. As we have seen, the charged particles in the plasma that are 
separated by distances greater than the Debye length AD are effectively 
shielded from one another. Therefore, in order to avoid an infinite result 
for the integral in (5.29), we take the lower limit Xmin to be the value of 
the scattering angle corresponding to an impact parameter b equal to AD. 

With reference to (20.4.13) let us introduce the new variable 

from which we obtain 

and 

du =- dx 
(1- cos x) 

. 2u 
sm X= (1 + u2) 

(5.30) 

(5.31) 

(5.32) 

With this change of variable and introducing the cut-off value for the 
impact paramter at AD, that is, at 

we obtain for (5.29), 

AD 
Uc=-=A 

bo 

m/3 2 21o 2u 
{llvz} = 211" ( ) g b0 ( 2 ) (-du) 

ffi0 +m13 A 1 + U 

211" m/3 g2 b6 ln (1 + A2 ) 
(ma + m13) 

(5.33) 

(5.34) 

In general A» 1, so that ln (1 + A2 ) c:::: 2 ln A and (5.34) simplifies to 

(5.35) 

where we have substituted b0 by the expression given in (20.4.9). Intro­
ducing the notation 

(5.36) 
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we can write (5.35) as 

mf3 8 
{Avz} = ( ) 2 mcx + mf3 g 

(5.37) 

Next let us consider the quantities {Avx} and {Avy}· From (5.18) 
and (5.27) we see that these quantities involve integrals of either cos E or 
sin E from 0 to 27r, which are clearly equal to zero. Therefore, 

(5.38) 

In a similar way it can be shown, from (5.19) and (5.27), that 

(5.39) 

since the integrals over E from 0 to 27r vanish. 
To evaluate {Avz Avz} = {Av~}, we use (5.19), (5.27), and (5.28), 

which yield 

(5.40) 

Changing variables according to (5.30), we obtain 

{ 2} m~ 3 21A 4u 
Avz = 27r ( )2 g b0 (1 2 ) 2 du -

m 0 + mf3 0 + u 

m~ 3 2 A2 
47r (ma + mf3)2 g bo (1 + A2) (5.41) 

Since A» 1, (5.41) simplifies to 

or, using the notation introduced in (5.36), 

(5.43) 
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In a similar way, we can calculate { .6. v;} and { .6. v~} from ( 5.19), 
(5.27), and (5.28), which give 

m~ 1271" !11" sin3x 
{.6.v~} = ( )2 g3b6 sin2 E dE (1 )2 dx 

mo. + mf3 0 Xmm - cos X 
(5.45) 

Therefore, evaluating the integral over E, we find 

2 !71" . 3 2 2 mf3 3 2 sm X 
{ .6.vx} = { .6.vy} = 1T ( ) 2 g b0 ( ) 2 dx 

mo. + mf3 x . 1 - cos x mtn 

(5.46) 

If we change variables according to (5.30), we readily find 

m~ 3 2 [ 2 A2 J 
271' (mo.+ mf3) 2 g b0 ln (1 +A ) - (1 + A2 ) (5.47) 

Since A» 1 and replacing b0 using (20.4.9), we obtain finally 

The next step in the evaluation of the Fokker-Planck coefficients 
consists in integrating the expressions for { .6. vi} and { .6. vi .6. v j}, for 
i, j = x, y, z, over the distribution function of the particles that consti­
tute the scattering centers. Thus, using the results we have just calculated, 
we find 

(5.49) 

(5.50) 

(5.51) 

All other coefficients vanish. 
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5.3 Application to Electron-Ion Collisions 

Let us calculate the Fokker-Planck coefficients for the case of electron­
ion collisions. For simplicity we shall assume that the electron is colliding 
with a field of heavy stationary positive ions. This assumption is reason­
able, since on the average the electron velocities are much larger than the 
ion velocities ( < vf > = 3kTi/mi while < v; > = 3kTe/me and generally 
Te/me ~ Ti/mi)· Thus, assuming that the positive ions are motionless, 
we can represent their velocity distribution function by the Dirac delta 
function 

(5.52) 

In addition, because mi ~me, we can take (me+ mi) ~ mi and fJ ~me. 
Substituting (5.52) into equations (5.49) through (5.51), we obtain at once 

no e 
< ~Vz >av = - 2-

g 

2 no e 
< ~Vz >av = g ln A 

2 2 no e < ~Vx >av =< ~Vy >av = -­
g 

(5.53) 

(5.54) 

(5.55) 

where 8 is defined according to (5.36). Note that v z is along the direc­
tion of the initial relative velocities, whereas v x and vy are in the plane 
perpendicular to the initial relative velocities. 

21.1 Consider a system consisting of a mixture of two types of particles 
having masses m and M, and subjected to an external force F. Denote 
the corresponding distribution functions by f and g, respectively. Write 
down the set of coupled Boltzmann transport equations for the system. 

21.2 Consider a plasma in which the electrons and the ions are charac­
terized, respectively, by the following distribution functions: 

( me ) 3/2 [ me(v- Ue)2] 
fe =no 27rkTe exp - 2kTe 

.- (__!!3:i:_) 3/2 [-mi(v-ui?J 
fz - no 27rkTi exp 2kTi 

(a) Calculate the difference (f~fi1 - fefil)· 
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(b) Show that this plasma of electrons and ions will be in the equilibrium 
state, that is, the difference (f~f{1 - fe!il) will vanish if and only if Ue = ui 

and Te = Ti. 

21.3 Use a Lagrange multiplier technique to show that for a system 
characterized by the following modified Maxwell-Boltzmann distribution 
function 

( m )3/2 ( mv2) 
f(r, v) = n(r) 21rkT exp - 2kT 

where Tis constant, the entropy S, defined by 

is a maximum when the density n is constant, independent of r. Con­
sider that the system has a total of N particles in a fixed volume V at a 
temperature T. 

21.4 Consider the case of Maxwell molecules, for which the interparticle 
force is of the form 

F(r) = ~ r 
r 

where K is a constant. 
(a) Without specifying the form of the distribution functions fa(v) and 
j13(v1) for the particles of type a and /3, show that the time rate of change 
of momentum for the particles of type a per unit volume, due to collisions, 
is given by 

where llaf3 is the collision frequency for momentum transfer, given explicity 
by 

where A1(5) is a dimensionless number (of order unity) defined by (with 
p = 5 and £ = 1) 
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with 

Also, 

( J-£92) 1/(p-1) 
vo=b -

K 

na = 1 fa d3v 

n13 = 1 !131 d3v1 
V! 

1 1 3 Ua =- V fad V 
na v 

(b) For the same case, show that the time rate of change of energy for the 
particles of type a per unit volume, due to collisions, is given by 

where 

21.5 Consider a gas mixture of two types of particles (a = 1, 2), each 
one characterized by a Maxwellian distribution function 

with its own mass, density, and temperature. 
(a) Make the following transformation of velocity variables, 

I -
V2 = Vc- M1g 

where v~ is a velocity similar to the center of mass velocity, g is the relative 
velocity between the two species (g = v 1 - v2), and 
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M 2 = m2/T2 
ml/T1 +m2/T2 

Show that the Jacobian of this transformation, 

satisfies IJI = 1, so that d3v~ d3g = d3v1 d3v 2 . 

(b) The relative speed between the two species, g = lv1 - v2l, when 
averaged over both their velocity distribution functions, is given by 

Transform the variables of integration v 1 and v2 to v~ and g, and perform 
the integrals over v~ and g to show that 

( 8k)1/2(T1 T2 )1/2 <g>= - --+-
7r m1 m2 

(c) If only one kind of particle is present, so that m1 = m2 = m, T1 = 
T2 = T, and n 1 = n2 = n, show that 

( 8kT) 1/2 
< g > = J2 < v > = 7rJ-L 

where < v > = (8kTj1rm) 1l 2 is the average speed and J-L = m/2 is the 
reduced mass. If the mutual scattering cross section is a, show that the 
collision frequency in a homogeneous Maxwellian gas is given by 

( kT) 1/2 
v = na < g > = 4na 1rm 

21.6 Consider the following expressions that define the Fokker-Planck 
coefficients of dynamic friction and of diffusion in velocity space: 
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(a) With reference to Fig. 6, verify that 

mf3 
~Vx =- g sm X cos E 

(ma + m{3) 

mf3 
~ vy = - g sin x sin E 

(ma + m{3) 

~Vz = ( m{3 ) 9 (1 - COS X) 
ma +m{3 

For a general inverse-power interparticle force of the form 

F(r) = K r 
rP 

where K is a constant and pis a positive integer number, show that [see 
(5.18)] 

where J-l is the reduced mass and am is the momentum transfer cross 
section given by 

( K )2/(p-1) 
(J' m = 27r 1-"92 Al (p) 

where 

Verify also that [see (5.19)] 
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z 

y 

X 

Fig. 6 Coordinate system showing the relative orientations of 
the velocity vectors g and g'. 

(b) For the case of Maxwell molecules (p = 5), where the results are 
independent of !131, show that the Fokker-Planck coefficients are given by 

< ~Vx > av =< ~Vy >av = 0 

< ~Vi ~Vj >av = 0 for i =/= j 

2 2 J.L A2(5) 2 
< ~Vx >av =< ~Vy >av = 2ma A1(5) lla(3 < g >(3 

where 

(i = 1, 2) 
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(c) Calculate the Fokker-Planck coefficients for the case of the coulomb 
interaction (p = 2) using the results of part (a) and of problem 20.6, in 
terms of integrals over ff3 1 , and compare with the results derived in sub­
section 5.2. 
(d) Calculate the Fokker-Planck coefficients for electron-electron interac­
tions, when ff3 1 is the Maxwellian distribution function. Refer to (5.49), 
(5.50), and (5.51). 



TRANSPORT PROCESSES 

IN PLASMAS 

1. INTRODUCTIO~--------------------------------~ 

Transport phenomena in plasmas can be promoted by external and 
by internal forces. In a spatially homogeneous plasma under the influence 
of external forces a drifting of the electrons can occur. This motion in­
duced by external forces is referred to as mobility. Since the electrons 
have mass and electric charge, their motion implies t ransport of mass and 
conduction of electricity when acted upon by an external electric field. 
On the other hand, in a spatially inhomogeneous plasma, collisions cause 
the electrons to drift from the high-pressure to the low-pressure regions. 
The existence of pressure gradients is associated with the existence of ei­
ther density gradients or temperature gradients, or both. This motion of 
the electrons, induced by internal pressure gradients, is called diffusion. 

Since the electrons also have kinetic energy associated with their random 
thermal motion, their drift implies the transport of thermal energy and 
therefore heat conduction. When the plasma is spatially inhomogeneous 
and is also acted upon by external forces, then the particle flux is due to 
both diffusion and mobility. 

In this chapter we shall analyze the basic transport phenomena of 
electric conduction, particle diffusion, and thermal energy flux in a weakly 
ionized plasma, using the Boltzmann equation with the relaxation model 
for the collision term and considering a velocity-dependent collision fre­
quency. 
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Initially we shall derive an expression for the AC conductivity of a 
weakly ionized plasma taking into account only the electron-neutral colli­
sions. We will consider that the spatial inhomogeneity and the anisotropy 
of the electron nonequilibrium distribution function are both very small, 
so that we can apply the results derived in section 4 of Chapter 21. Thus, 
according to (21.4.17) (Eq. 4.17 in Chapter 21) we have 

[8f(rd v, t)J = -vr(v) [f(r, v, t)- fo(v)] (2.1) 
t call 

where fo(v) denotes the homogeneous isotropic equilibrium distribution 
function of the electrons and Vr ( v) is the velocity-dependent relaxation 
collision frequency. Expression (2.1) assumes that the neutral particles 
are stationary and do not recoil as they collide with the electrons, in view 
of their much larger mass. 

2.1 Solution of Boltzmann Equation 

Assuming that the electron distribution function J(r, v, t) deviates 
only slightly from the equilibrium distribution function f 0 (v), we can take 

f(r, v, t) = fo(v) + JI(r, v, t) lhl « fo (2.2) 

where h ( r, v, t) corresponds to the small anisotropy and spatial inhomo­
geneity of the electrons in the nonequilibrium state. Using (2.2) and the 
relaxation model (2.1), the collision term in the Boltzmann equation be-
comes 

[8f(r, v, t)J ( ) ( ) 
8 = -Vr V h r, v, t 
t call 

(2.3) 

Substituting (2.2) and (2.3) into the Boltzmann equation and neglecting 
second-order quantities, we obtain 

8fi(r, v, t) e a + (v · V')fi(r, v, t)-- E(r, t) · \1 vfo(v) 
t ~e 

-vr(v) JI(r,v,t) (2.4) 

where we have considered the electric field E(r, t) as the only field exter­
nally applied to the plasma. 
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For the purpose of evaluating the electric conductivity, the perturba­
tion JI(r, v, t) in the velocity distribution function can be assumed to be 
essentially independent of the position coordinate r and therefore can be 
denoted by !I ( v, t), since the main effect associated with a spatial gra­
dient is the diffusion of particles and, for the moment, we are primarily 
interested in the particle current density induced by an externally applied 
electric field. The electric field is considered to vary harmonically in time 
at a frequency w, according to 

E(r, t) = E(r) exp ( -iwt) (2.5) 

Consequently, we assume that !I ( v, t) has also the same time variation, 

fi (v, t) = JI(v) exp ( -iwt) (2.6) 

Therefore, for the phasor amplitudes, the Boltzmann equation (2.4) sim­
plifies to 

. e 
-zwfi(v)-- E(r) · \lvfo(v) = -vr(v) JI(v) (2.7) 

me 

Using the following identity, given in (18.3.17), 

\lvfo(v) = ~ dfo(v) 
v dv 

(2.8) 

we obtain, from (2.7), 

!I v = ~ E(r) · v dfo(v) 
() mev [w+ivr(v)] dv 

(2.9) 

2.2 Electric Current Density and Conductivity 

The electric current density is given by 

J(r, t) = -ene < v >e = -e 1 v f(r, v, t) d3v (2.10) 

Using (2.2), (2.6), and (2.9), we find that 

J(r, t) = J(r) exp ( -iwt) (2.11) 
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Vz 

Vy 

Vx 

Fig. 1 Spherical coordinates (v, (), ¢) in velocity space. 

where 

J(r) = -elv fr(v) d3v =- ie21 v [E(~) ·v] df~~v) d3v (2.12) 
v me v v [w + 'Zllr(v)] 

In this result we have assumed that the electrons have no average flow 
velocity in the equilibrium state, that is, 

uo = - v fo(v) d v = 0 1 1 3 
no v 

(2.13) 

In spherical coordinates ( v, (), ¢) in velocity space (refer to Fig. 1), we 
have d3v = v2 dv sin() d() d¢, so that (2.12) can be rewritten as 

ie2 100 v dv dfi (v) 111" 1 211" J(r) = -- [ . ( )] ~ sin() d() v [E(r) ·v] d¢ 
me 0 w + 'Zllr v v 0 0 

(2.14) 
Using the following orthogonality relation, 

(2.15) 



632 FUNDAMENTALS OF PLASMA PHYSICS 

with i, j = x, y, z, we obtain 

11r 127r 47r 
sin(} d(} v [E(r) · v] d¢ = - v2E(r) 

0 0 3 
(2.16) 

Consequently, (2.14) becomes 

J(r) =- 47rie2 E(r) roo v3 dfo(v) dv 
3me Jo [w+ivr(v)] dv 

(2.17) 

From the relation J = (]' E for isotropic plasmas, we identify the fol­
lowing expression for the electric conductivity: 

(]' = - 47rie2 roo v3 dfo ( v) dv 
3me Jo [w+ivr(v)] dv 

(2.18) 

An alternative expression for the electric conductivity can be obtained by 
integrating (2.18) by parts: 

47rie2 { v3 fo(v) }joo 
(]' =- 3me [w + ivr(v)] o + 

47rie2100 d { v3 } -- fo v - dv 
3me o ( ) dv [w + ivr(v)] 

(2.19) 

The integrated-out term on the right-hand side of this expression vanishes, 
since f 0 ( v) goes to zero faster than v3 goes to infinity, as v approaches 
infinity [the isotropic equilibrium distribution function f 0 (v) decreases ex­
ponentially as v goes to infinity]. 

The integrals that appear in expressions (2.18) and (2.19) can be cal­
culated explicitly only after specifying fo( v) and vr( v ). The functional 
dependence of the collision frequency on v is generally determined exper­
imentally from cross-section measurements. 

If we assume that the collision frequency is independent of velocity, 
then we obtain from (2.19), for any f 0 (v), 

- 47rie2 1oo + ( ) 3 2 d - inoe2 
(]' - J 0 v v v - ---,-------,--

3me(w+ivr) o me(w+ivr) 

(2.20) 
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where no denotes the electron number density at equilibrium, 

(2.21) 

The result (2.20) is identical to the one obtained in section 5 of Chapter 
10 [see equation (10.5.5)], for the longitudinal conductivity. 

2.3 Conductivity for Maxwellian Distribution Function 

Let us consider now that the equilibrium state distribution function 
fo(v) is given by the Maxwellian distribution, 

( me )3/2 ( mev2) 
fo(v) =no 27rkT exp - 2kT 

Defining a dimensionless variable by 

( me )1/2 
~ = 2kT v 

we have 

v3 dfo(v) dv = --2- no ~4 exp (-e) d~ 
dv 7r3/2 

Substituting this expression into (2.18) and rationalizing, we find 

iw rXJ ~4 exp (-e) d~J 
} 0 v;(~) + w2 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

This equation can be used to calculate the electric conductivity of a weakly 
ionized plasma when the equilibrium distribution function of the electrons 
is the Maxwell-Boltzmann distribution, for any velocity dependence of 
the collision frequency Vr ( v). In particular, if the collision frequency is 
independent of velocity, it can be easily verified that (2.25) reduces directly 
to the result (2.20). 
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We consider now a weakly ionized plasma immersed in an externally 
applied magnetostatic field B0 . As in the previous section, we assume 
that the distribution function of the electrons in the nonequilibrium state 
is only slightly perturbed from the equilibrium function. For purposes of 
calculating the conductivity, it can also be assumed that the plasma is 
spatially homogeneous. Therefore, we can write 

f(v, t) = fo(v) + JI(v, t) Iii I« fo (3.1) 

Suppose that an AC electric field is applied to the plasma, having a har­
monic time dependence according to 

E(r, t) = E(r) exp ( -iwt) (3.2) 

Consequently, we also have 

h (v, t) = h (v) exp ( -iwt) (3.3) 

The total magnetic field will be denoted by 

Bt(r, t) = Bo + B(r) exp ( -iwt) (3.4) 

where B0 is the externally field and B(r, t) is a first-order quantity that 
has the same harmonic time dependence as the electric field. 

3.1 Solution of Boltzmann Equation 

The Boltzmann equation satisfied by the homogeneous distribution 
function of the electrons can be written as 

8JI(v,t) e 
8 -- [E(r, t) + v X Bt(r, t)]· Vv[fo(v) + JI(v, t)] 

t me 

-vr(v) h (v, t) (3.5) 

where we have used the relaxation model (2.3) for the collision term. From 
the identity (2.8) we see that the term (v x Bt) · Vvfo(v) vanishes, since 
it involves the dot product of two mutually orthogonal vector functions. 
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Vz 

Vy 

Vx 

Fig. 2 Cylindrical coordinates ( v .l, v11 , </>) in velocity space. 

Neglecting second-order terms, the linearized Boltzmann equation for the 
phasor amplitudes becomes 

. e e 
[vr(v)- 2w] fi(v)-- (v X Bo) · 'Vvfi(v) =- E · 'Vvfo(v) (3.6) 

me me 

In cylindrical coordinates ( v .l, v 11 , </>) in velocity space (refer to Fig. 2) , 
with the v 11 vector along the magnetostatic field B0 , we have, from equa­
tion (19.2.10) (Eq. 2.10 in Chapter 19), 

dfi(v) 
(v X Bo) · 'Vvfi(v) =- d¢ 

Substituting (3.7) into (3.6) and using the identity (2.8) , we obtain 

(3.7) 

dfi(v) + vr(v)- iw JI(v) = e E. ~ dfo(v) (3.8) 
d¢ nee meflee v dv 

where we have used the notation nee = eBo/me, which represents the 
electron cyclotron frequency. Notice that the speed v does not depend on 
,./,. . 2 2 2 
'~-'' smce v = v .l + v11 • 
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It is convenient to decompose the electric field vector into right circu­
larly polarized ( E+), left circularly polarized ( E_), and longitudinal ( E 11 ) 

components, that is, 

where 

E _ (x + iy) E (x - iy) E E ~ 
- J2 + + J2 - + II Z 

Similarly, we can also decompose the electron velocity as 

where 

(3.9) 

(3.10) 

(3.11) 

V± = ~(vx =f ivy)= ~ V_i exp (=fi¢) (3.12) 

since Vx = V_i cos ¢, Vy = Vj_ sin ¢, and exp (±i¢) = cos ¢ ± i sin ¢. 
Thus, using (3.9) and (3.11), we have 

Substituting this expression into the Boltzmann equation (3.8), we obtain 

dfi(v) vr(v)- iw f ( ) _ 
d¢ + nee 1 v -

(3.14) 

As in subsection 2.2 of Chapter 19, we now introduce the notation 

(3.15) 

F_(v) = e V_i e-i¢ dfo(v) E 
me!lce J2 v dv -

(3.16) 

F(v)= e ~ dk(v) E 
II me0ce V dv II 

(3.17) 
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which allows (3.14) to be written as 

dfi ( v) Vr ( v) - iw f ( ) _ F ( ) F ( ) v ( ) + n 1 V - + V + _ V + r 11 V 
d¢ Hee 

(3.18) 

This differential equation is similar to (19.2.26), replacing the term -kv 11 

by ivr ( v). Therefore, its solution can be obtained by inspection of the 
corresponding results contained in subsection 2.2 of Chapter 19. Hence, 
using equations (19.2.27) to (19.2.34), we obtain 

iDee iDee ( ) 
JI(v) = . ( ) D F+(v) + . ( ) D F_ v + 

W + ~llr V - ee W + ~llr V + ee 

iDee F (v) 
w + ivr(v) 11 

(3.19) 

or substituting (3.15), (3.16), and (3.17) into (3.19), 

JI(v) = 3!:_ ! dfo(v) { V_1_ [ E+ ei¢ E_ e-i¢ J + 
me v dv J2 w + ivr(v)- Dee + W + ivr(v) +Dee 

(3.20) 

3.2 Electric Current Density and Conductivity 

Assuming that the electron gas has no average flow velocity in the 
equilibrium state (u0 = 0), we can write for the electric current density, 

(3.21) 

As in equations (3.9) to (3.12), we can also decompose the current density 
vector into three components, according to 

(3.22) 

(3.23) 
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J 11 = -e 1 v11 JI(v) d3v (3.24) 

For purposes of calculating the conductivity, it is convenient to use spher­
ical coordinates ( v, (}, ¢) in velocity space (refer to Fig. 1), so that v 1_ = 
v sin B, v11 = v cos B, and d3v = v2 dv sin(} dB d¢. Plugging !I (v), from 
(3.20), into the expressions for J+, J_, and J 11 , given in (3.22), (3.23), and 
(3.24), respectively, transforming to spherical coordinates and performing 
the integrals over¢, making use of (19.5.21), we find 

(3.25) 

27rie2 17r 2 . 1oo v3 dfo ( v) 
J 11 = --- E 11 cos (} sm (} dB . ( ) -d- dv 

me 0 0 w + 'lVr v v 
(3.26) 

Note that in (3.25) either upper signs or lower signs are to be used. Car­
rying out the integrations over (} in these last two equations, yields 

(3.27) 

J = _ 47rie2 E roo v3 dfo(v) dv 
11 3me 11 

} 0 w + ivr(v) dv 
(3.28) 

The advantage of using the right and left circularly polarized compo­
nents in the plane normal to B 0 is that the corresponding equations for 
J+ and]_ are uncoupled such that J+ depends only onE+, whereas J_ 
depends only onE_ . Therefore, writing J = S · E, where S denotes the 
conductivity tensor of an anisotropic plasma, we obtain, from (3.27) and 
(3.28), 

( ~~) = (ao+ ao_ ~) (~~) 
Jll 0 0 (JII Ell 

(3.29) 

with the following expressions for the elements of the conductivity tensor: 

CJ± =- 47rie2 roo v3 dfo(v) dv 
3me lo w + ivr(v) =f nee dv 

(3.30) 

(3.31) 
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Note that the longitudinal conductivity 0" 11 is the same as that for the case 
of a nonmagnetized plasma, deduced in the previous section. 

The elements of the conductivity tensor, expressed in Cartesian coor­
dinates with the z axis along B0 , can be obtained as follows. From (3.9) 
and (3.10) we can write in matrix form 

(E+) = _1 (1 E_ J2 1 
E 11 0 

(3.32) 

Using a matrix relation analogous to (3.32) for the current density J and 
inverting it, we obtain 

1 

J2 
(3.33) 

Substituting (3.29) into (3.33) and combining the resulting expression with 
(3.32), we find that 

where 
O"j_ = ~(0"+ + ()_) 

O"H = ~ i (0"+- lJ_) 

with O"+, O"-, and 0" 11 as given in (3.30) and (3.31). 

(3.34) 

(3.35) 

(3.36) 

The integrals over v can only be evaluated after specifying the depen­
dence of vr on v. In general, when the collision frequency is an arbitrary 
function of velocity, the elements of the conductivity tensor have to be de­
termined by a numerical procedure. In cases when the collision frequency 
can be expressed as a polynominal in v, it is possible to obtain simple 
expressions for the conductivities in the limiting cases of very high and 
very low collision frequencies. In particular, for the special case when Vr is 
independent of v, the integrals over v in (3.30) and (3.31) can be explicitly 
evaluated, yielding 

inoe2 
0"± = --------------

me(w + ivr =f nee) 
(3.37) 
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inoe2 
0" = (3.38) 

11 me(w + ivr) 

If these expressions are substituted into (3.35) and (3.36), we obtain the 
following results for the Cartesian components a .L and a H of the conduc­
tivity tensor: 

0" .L = me[(w + illr )2 - n~el 
noe2 flce 

(3.39) 

(3.40) 

These are the same results deduced in section 5 of Chapter 10, which 
were calculated using the macroscopic transport equations with a constant 
collision frequency. 

In this section we derive an expression for the free diffusion coeffi­
cient of a weakly ionized plasma, considering a velocity-dependent relax­
ation collision frequency llr ( v). For the analysis of diffusion phenomena 
let us consider specifically a spatial inhomogeneity in the electron density. 
Hence, we assume that the equilibrium velocity distribution function of 
the electrons has a spatial inhomogeneity, but is isotropic in velocity space, 
so that it will be denoted by f 0 (r, v ). Since we are interested in calculating 
the electron flux due to diffusion only, we also assume that there are no ex­
ternal electromagnetic fields applied to the plasma. Furthermore, we shall 
analyze the free diffusion problem only under steady-state conditions, in 
which all physical parameters are time-independent. 

4.1 Perturbation Distribution Function 

We assume that, under diffusion, the actual distribution function of 
the electrons f(r, v) deviates only slightly from the equilibrium function 
fo(r, v), so that we can write 

f(r, v) = fo(r, v) + JI(r, v) (4.1) 

where h(r, v) is a first-order quantity such that 1111 « fo. Under steady­
state conditions in the absence of external forces and using the relaxation 
model for the collision term, the Boltzmann equation simplifies to 

v · V' fo(r, v) = -vr(v) JI(r, v) (4.2) 
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where only the first-order terms have been retained. Thus, we obtain 
directly for the perturbation distribution function 

1 
!1 (r, v) = --(-) v · '\1 fo(r, v) 

Vr V 
(4.3) 

4.2 Particle Flux 

The expression for the particle current density (or flux) for the elec­
trons, considering uo = 0, is 

(4.4) 

Substituting ( 4.3) into ( 4.4), gives 

r e = -1 ____!____( ) v [v. '\1 fo(r, v)] d3v 
v Vr V 

(4.5) 

In spherical coordinates ( v, (), ¢) in velocity space (refer to Fig. 1) we have 
d3v = v2 sin() dv dOd¢ and using the result contained in (2.16) we obtain 

rw ,~ k 
Jo sin 0 d() Jo v [v · '\lfo(r,v)] d¢ = 3 v2 '\lfo(r,v) (4.6) 

Therefore, the electron flux vector ( 4.5) can be written as 

4rr 1oo v4 r e = -- -(-) '\1 fo(r, v) dv 
3 0 Vr V 

(4.7) 

4.3 Free Diffusion Coefficient 

The distribution function fo(r, v) is in general a function of the elec­
tron number density ne, the electron speed v, and the electron temperature 
Te, so that it can generally be written in the form 

fo(r, v) = ne F(v, Te) (4.8) 

since the number density appears only as a result of normalization of the 
distribution function. Usually the function f 0 (r,v) is a local Maxwellian 
distribution. 



642 FUNDAMENTALS OF PLASMA PHYSICS 

For the purpose of calculating the electron free diffusion coefficient, 
we will assume that the electron temperature has no spatial variation, so 
that 

'\lfo(r,v) = "Vne(r) F(v,Te) (4.9) 

or, using (4.8), 
fo(r,v) 

'\1 fo(r, v) = "Vne(r) ( ) 
ne r 

(4.10) 

Substituting (4.10) into (4.7), we obtain 

471" "Vne(r) 100 v4 

r e = --3 ( ) -(-) fo(r, v) dv 
ne r 0 Vr V 

(4.11) 

Defining the electron free diffusion coefficient De by the relation 

(4.12) 

we deduce the following expression for De, by inspection of (4.11), 

471" 1 1oo v4 
De = -3 -(-) -(-) fo(r, v) dv ne r 0 Vr v 

(4.13) 

Note that this expression for De is constant, independent of r and v, in 
view of (4.8) and (4.9). 

If we consider fo(r, v) as being a local Maxwellian distribution func­
tion given by 

( me )3/2 ( mev2 ) 
fo(r, v) = ne(r) 27rkTe exp - 2kTe (4.14) 

then (4.13) becomes 

471" ( me ) 3/2100 v4 ( mev2 ) De=- --exp --- dv 
3 27rkTe o Vr(v) 2kTe 

(4.15) 

Furthermore, if the relaxation collision frequency is taken to be constant, 
independent of v, then the integral in (4.15) can be explicitly evaluated 
[see (7.4.22) (Eq. 4.22 in Chapter 7)], yielding 

(4.16) 
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This is the same result obtained in section 8 of Chapter 10 [see (10.8.9)], 
which was deduced using the macroscopic transport equations for a warm 
plasma, with a constant collision frequency . 

... 
In this section we will analyze the problem of electron diffusion in 

a weakly ionized plasma, including the presence of an externally applied 
magnetostatic field B0 . We shall consider the same assumptions made 
in the previous section, except for the inclusion of the external magnetic 
field. 

5.1 Solution of Boltzmann Equation 

Retaining only the first-order terms, the linearized Boltzmann equa­
tion is now 

e 
v · "V fo(r, v)- - (v x Bo) · "V v!I (r, v) = -vr(v) !I (r, v) (5.1) 

me 

Note that in view of the velocity isotropy of f0 (r, v) we can use the identity 
(2.8), so that 

(v x Bo) · "V vfo(r, v) = 0 (5.2) 

In cylindrical coordinates ( v ..l, v 11 , </>) in velocity space (refer to Fig. 2) we 
have, from (3.7), 

dfi(r, v) 
(v X Bo) · "V v!I (r, v) = - d</> (5.3) 

Choosing the unit vector z along the magnetic field B0 , we can write 

v · "V fo(r, v) = ( V1_ cos </> :x + V1_ sin </> :y + v 11 :z) fo(r, v) (5.4) 

Substituting (5.4) and (5.3) into (5.1), and rearranging, yields 

[ d Vr( V)] 
d</> + Dee fi ( r' V) = 

~e ( v ..l cos </> :x + v ..l sin </> :y + v 11 :z) f o ( r, v) ( 5. 5) 
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In order to solve this linear differential equation let 

(5.6) 

where F1 , F2 , and F3 are the solutions of (5.5) corresponding, respectively, 
to only the first, the second, and the third terms within parentheses in the 
right-hand side of (5.5), that is, 

[ _!!___ vr(v)J F ( ) ___ 1 A. afo(r,v) 
drp + nee 1 r, V - nee Vj_ COS 'f' ax (5.7) 

[ _!!___ vr(v)J D ( ) ___ 1 . A. aJo(r,v) 
d + n r 2 r' v - n v ..l sm 'f' a ¢ ~~~ ~~~ y 

(5.8) 

[ _!!___ vr(v)J F ( ) ___ 1 aJo(r,v) 
drp+ nee 3 r,v- nee VII az (5.9) 

To solve (5.7) let us first rewrite it in the form 

[ d l!r ( V)] [ l!r ( V) ] - + -- F1(r, v) exp --- ¢ 
d¢ nee nee 

d { [vr(v) J} 1 aJo(r, v) 
d¢ F1 (r, v) exp nee ¢ = -nee Vj_ cos ¢ ax (5.10) 

The solution of this differential equation is given by 

F ( ) _ V..L aJo(r, v) [ vr(v) A.] 1¢ A.' [vr(v) A.'] dA-' 
1 r v - -- exp --- 'f' cos 'f' exp -- 'f' 'f' 

' nee ax nee -00 nee 

aJo(r, v) llr(v) cos¢+ nee sin¢ 
= -v..l a 2( ) 2 

X l/T V +nee 
(5.11) 

Note that F1(r, v) is a periodic function of¢, with period 21r. 
In a similar way, the solutions of (5.8) and (5.9) are given, respectively, 

by 

( ) _ _ aJo(r, v) llr(v) sin¢- Oce cos¢ 
F2 r, v - Vj_ a 2( ) 1'12 

Y liT V + Hee 
(5.12) 

aJo(r, v) 1 
F3(r, v) =-VII a -(-) Z l!r V 

(5.13) 

Adding expressions (5.11), (5.12), and (5.13), gives the solution for h (r, v) 
in terms of fo(r, v) and vr(v). 
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5.2 Particle Flux and Diffusion Coefficients 

From ( 4.4) the expression for the x component of the electron flux 
vector is found to be 

(5.14) 

In cylindrical coordinates (refer to Fig. 2) in velocity space we have d3v = 
v ..L dv ..L dv 11 d¢ and Vx = v ..L cos ¢. Therefore, 

1
oo 121!" l+oo 

rex= dv..L d¢ dvu vi cos¢ JI(r, v) 
0 0 -oo 

(5.15) 

Using (5.6), (5.11), (5.12), and (5.13), and performing the integration over 
¢,we obtain 

1
00 l+oo vi [ aJo(r,v) aJo(r,v)J 

rex= -7r dV..L dvll 2 ( ) 02 Vr(v) a Oee a 
0 -oo Vr V + ee X Y 

(5.16) 
To perform the integrals in (5.16) it is convenient to use spherical co­
ordinates ( v, (), ¢) in velocity space (Fig. 1). Transforming to spherical 
coordinates, (5.16) becomes 

r = _ 1ood 11l"d() v4 sin30 [ () aJo(r,v) _£""\ aj0 (r,v)J 
ex 7r V 2( ) £""\2 Vr V a ~Gee a 

0 0 Vr V + Hee X Y 
(5.17) 

Carrying out the integration over 0, we obtain 

r -- 47r 1 00 v4vr(v) afo(r,v) d -
ex - 3 2 ( ) £""\2 a v 

0 Vr V + Hee X 

47r { 00 v40ee ajo(r, v) d 
3 lo v;(v) + n~e ay v 

(5.18) 

This equation can be written in the form 

where the electron diffusion coefficients D ..L and D H are given by 

47r 1 100 v4vr(v) 
D..L = -3 -(-) 2 ( ) 02 fo(r,v) dv 

ne r 0 vr v + ee 
(5.20) 
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471" 1 1oo v4f2ce 
DH = -3 -(-) 2 ( ) 02 fo(r,v) dv 

ne r 0 lJr v + ce 
(5.21) 

Along similar lines, we obtain for the y component of the electron 
flux vector, 

a a 
r ey = -ax [D H ne ( r) l - ay [ D j_ ne ( r) l (5.22) 

and for the z component 

(5.23) 

where 
471" 1 1oo v4 

Du = -3 -(-) -(-) fo(r, v) dv 
ne r 0 Vr V 

(5.24) 

Equations (5.19), (5.22), and (5.23) can be written in a succinct vector 
form as 

re = -\7 · [V ne(r)] (5.25) 

where V denotes the dyadic coefficient for electron diffusion in a magnetic 
field. In matrix form, considering a Cartesian coordinate system with the 
z axis along B 0 , it can be written as 

(5.26) 

The diffusion coefficient D 11 is the same as that obtained in the absence 
of a magnetostatic field (D 11 = De)· Therefore, the diffusion of particles 
along the magnetic field is the same as when there is no field present, 
whereas the diffusion in the plane perpendicular to B0 is inhibited by the 
magnetic field, since D _!_ < D 11 , as can be verified from (5.20) and (5.24). 

For the special case in which fo(r, v) is given by a local Maxwellian 
distribution function, as in (4.14), and when the collision frequency is 
independent of velocity, the integrals in (5.20), (5.21), and (5.24) can be 
evaluated directly, yielding 

(5.27) 

D - Vr nee D 
H- 2 + n2 e 

lJr Hce 
(5.28) 
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(5.29) 

which are the same results obtained in section 9 of Chapter 10, deduced 
from the macroscopic transport equations for a warm plasma [see equa­
tions (10.9.4) to (10.9. 7) ]. 

We shall now derive expressions for the heat flow vector qe and for 
the thermal conductivity Ke, due to the random motion of the electrons 
in a weakly ionized plasma. As in the previous sections, we will calculate 
the nonequilibrium distribution function f(r, v), under steady-state con­
ditions, by applying a perturbation technique to the Boltzmann equation, 
using the relaxation model for the collision term. To simplify matters we 
assume that there are no externally applied electromagnetic fields. The 
analysis of heat flow in weakly ionized plasmas under the presence of ex­
ternally applied electromagnetic fields will be left as an exercise for the 
reader and is included in the problems at the end of this chapter. 

Using (4.1) we find that the Boltzmann equation for this case is the 
same as that given by (4.2). Therefore, as in subsection 4.1, we have 

1 
h(r, v) = --(-) v · V'fo(r,v) 

Vr V 
(6.1) 

6.1 General Expression for the Heat Flow Vector 

The expression for the heat flow vector due to the thermal motion of 
the electrons, considering u0 = 0, is 

qe =~me 1 v2 v h(r, v) d3v (6.2) 

Substituting (6.1) into (6.2), yields 

qe =-~me 1 v(2 ) v [v · V' fo(r, v)] d3v 
v Vr V 

(6.3) 

In spherical coordinates in velocity space and using ( 4.6), we obtain 

27T' roo v6 

qe = -3 me Jo Vr(v) V' fo(r, v) dv (6.4) 
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This expression gives the electron heat flow vector in terms of the distri­
bution function fo ( r, v) and the relaxation collision frequency Vr ( v). 

6.2 Thermal Conductivity for a Constant Kinetic Pressure 

We shall next evaluate (6.4) for the case when j 0 (r, v) is given by a 
local Maxwellian distribution function, 

[ me ]3/2 [ mev2 J 
fo(r, v) = ne(r) 27rkTe(r) exp - 2kTe(r) (6.5) 

in which both ne and Te may have a spatial variation, but such that the 
electron kinetic pressure stays constant, that is, 

Pe = ne(r) k Te(r) =constant (6.6) 

From (6.6) we have 

(6.7) 

and calculating the gradient of (6.5) we find 

[ 5 mev2 J Y'Te(r) 
V' fo(r, v) = -2 + 2k Te(r) Te(r) fo(r, v) (6.8) 

Substituting (6.8) into (6.4), gives 

27r Y'Te(r) roo v6 [ 5 mev2 ] 

Qe = -3 me Te(r) Jo vr(v) -2 + 2k Te(r) fo(r, v) dv (6.9) 

This equation can be written in the form 

(6.10) 

where Ke is the thermal conductivity coefficient, given by 

27r me roo v6 [ 5 mev2 ] 

Ke = 3 Te(r) Jo vr(v) -2 + 2k Te(r) fo(r,v) dv (6.11) 

In the special case when the collision frequency is independent of 
velocity, we can write (6.11) as 
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It can be easily verified that 

100 6 1 ( ) d _ 15 k Te(r) Pe v JO r,v v- 4 2 
o 1rme 

(6.13) 

100 8 1 ( ) d _ 105 k2 T;(r) Pe 
v JO r, v v- 4 3 

0 1rme 
(6.14) 

Consequently, substituting (6.13) and (6.14) into (6.12) and simplifying, 
we obtain the following expression for the thermal conductivity, when Vr 

is constant: 

(6.15) 

6.3 Thermal Conductivity for the Adiabatic Case 

We consider now the case when the electron kinetic pressure is not 
constant, but obeys the adiabatic law 

Pe(r) [ne(r)t'Y =constant (6.16) 

where 1 is the adiabatic constant, defined as the ratio of the specific heats 
at constant pressure and at constant volume, which may be expressed as 

2+N 
'"'(= 

N 
(6.17) 

where N denotes the number of degrees of freedom. Equation (6.16) can 
also be written as 

ne(r) [Te(r)] 1/(l--y) =constant (6.18) 

Taking the gradient of the local Maxwellian distribution function ( 6.5) 
and making use of (6.18), we obtain 

[ 1 3 mev2 J V'Te(r) 
V' fo(r, v) = 1- 1 - 2 + 2k Te(r) Te(r) fo(r, v) (6.19) 

Now we substitute (6.19) into (6.4), which yields the following expression 
for the heat flow vector: 

27r V'Te(r) { 00 v6 [ 1 3 mev2 ] 
qe = -3 me Te(r) Jo Vr(v) 1- 1 - 2 + 2k Te(r) fo(r, v) dv 

(6.20) 
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With reference to (6.10) we identify the following expression for the ther­
mal conductivity: 

27r me rX) v6 [ 1 3 me v2 ] 

Ke = 3 Te(r) Jo Vr(v) 1- 1 - 2 + 2k Te(r) fo(r, v) dv (6.21) 

For the special case in which the collision frequency does not depend 
on velocity, we can use the results given in (6.13) and (6.14), so that (6.21) 
simplifies to 

(6.22) 

If three degrees of freedom corresponding to the three-dimensional trans­
lational motion are considered, we have 1 = 5/3, so that 

(6.23) 

When the plasma is immersed in an externally applied magnetostatic 
field B0 , an anisotropy is introduced in the thermal energy flux, so that 
the thermal conductivity coefficient is replaced by a thermal conductivity 
dyadIC, according to 

Qe = -JC · VTe(r) (6.24) 

Expressions for the components of the thermal conductivity dyad can be 
deduced along lines similar to the calculations presented for the diffusion 
coefficient dyad in section 5 of this chapter. The derivation of explicit 
expressions for the components of IC in a magnetized plasma will be left 
as an exercise for the reader. 

22.1 In Cartesian coordinates in velocity space (refer to Fig. 1), with the 
components expressed in spherical coordinates ( v, (), ¢), we have 

v = vv = v(sin ()cos¢ Vx +sin() sin¢ Vy +cos() Vz) 

(a) Show that the dyad (vv)/v2 can be written in matrix form as 

( 
(sin20 cos2¢) 

(sin20 sin¢ cos¢) 
(sin () cos () cos ¢) 

(sin20 sin ¢ cos ¢) 
(sin?() sin2¢) 

(sin () cos () sin ¢) 

(sin () cos () cos ¢)) 
(sin () cos () sin ¢) 

( cos20) 
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(b) Prove the following orthogonality relations 

r1r f 21r 

Jo Jo sin () d() d¢ = 471" 

r1r f 21r 

Jo Jo sin () d() d¢ vi = 0 

1" i'" sin 8 df! d</J V; Vj Vk = 0 

with i, j, k = x, y, z and where bij is the Kronecker delta. 

22.2 Using the Maxwell-Boltzmann distribution function (2.22) and the 
definition (2.23), verify equation (2.24). 

22.3 Show that, when the collision frequency is independent of velocity, 
equation (2.25) reduces to (2.20). 

22.4 Consider equation (2.25), which gives the AC electric conductivity 
of a weakly ionized plasma for a velocity-dependent collision frequency 
Vr(v). 
(a) Show that in the high-frequency limit (w2 » v;), we have 

where 

8 100 
vc = r:;; vr(~) ~4 exp (-e) d~ 

3y 71" 0 

(b) Show that in the low-frequency limit (w2 « v;), we have 

[ 1 iw J 
v~ + (vc" )2 

where 
1 8 100 1 4 2 1 = - - ~ exp ( -~ ) d~ 

l/c 3yfii 0 Vr(~) 
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(c) For intermediate frequencies, show that 

where 

8 1 100 
[ v;(e) v!(e) ] 4 2 K2 = - - 1- -- + -- + · · · e exp ( -e ) de 3-JIT w2 o w2 w4 

and where Vc is the same quantity defined in part (a) for the high-frequency 
limit. 

22.5 If we define an effective collision frequency VeJ(w) such that the 
longitudinal electric conductivity is given by 

then, by comparison with (2.18), we find that 

(a) Show that in the low-frequency limit (w « Vef) we have 

_1_ =- 47r ~ roo~ dfo(v) dv 
Vef 3 no }0 vr(v) dv 

(b) Show that in the high-frequency limit (w » Vef) we have 

Vef =- 47r ~ roo V3 Vr(v) dfo(v) dv 
3 no }0 dv 

Thus, in both limits Vef is independent of w. 
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22.6 In the expression deduced for Vef in part (b) of the previous problem 
(high-frequency limit), consider that fo is the Maxwell-Boltzmann distri­
bution function and that Vr ( v) = v0 vn, where v0 is a constant and n is 
an integer. 
(a) Show that in this case we have 

Ve = 4vo (2kT)n/2 r(n + 5) 
1 3fo m 2 

where r(z) is the gamma function defined by 

(b) Calculate the average value of the collision frequency < vr(v) >0 , 

using the Maxwell-Boltzmann distribution function and show that 

Vef 
< Vr(v) >o = 1 +n/3 

22.7 Derive (3.34), from equations (3.29) to (3.33). 

22.8 Show that (3.30) and (3.31) yield, respectively, (3.37) and (3.38), 
when Vr is independent of v for any fo ( v). 

22.9 Deduce (5.22) and (5.23) starting from the definition of the electron 
flux vector and the expression for fi (r, v) given by (5.6), (5.11), (5.12), 
and (5.13). 

22.10 Analyze the heat flow problem in a weakly ionized plasma immersed 
in an externally applied magnetostatic field B0 and derive expressions for 
the heat flow vector Qe and for the components of the thermal conduc­
tivity dyad IC, considering a velocity-dependent collision frequency Vr ( v). 
Analyze the problem for the adiabatic case and for the case of a constant 
kinetic pressure. 



APPENDIX 

USEFUL VECTOR RELATIONS 

In the following relations, A, B , C , and D represent vector functions , 
whereas ¢ and '1/J represent scalar functions: 

...... ...... ...... 
X y Z 

A X B = -B X A= Ax Ay Az = 
Ex By Bz 

(AyBz- AzBy)x + (AxBz- AzBx)Y + (AyBx- AxBy)z (2) 

A· (B x C) = (A x B)· C = (C x A)· B (3) 

A X (B X C)= (A. C)B- (A. B)C (4) 

(A X B) X c = (A. C)B- (B. C)A (5) 

(A x B)· (C x D) = (A· C) (B ·D) - (A· D) (B · C) (6) 

(A X B) X (C X D)= [A. (B X D)] c- [A. (B X C)] D (7) 

'V(¢'1/J) = ¢'\7'1/J + '1/J'V¢ (8) 

'V·(¢A) =¢'V · A+A ·'V¢ (9) 

'V X (¢A)= ¢('V X A)+ ('V¢) X A (10) 
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V ·(Ax B) = B · (V x A)- A· (V x B) (11) 

V(A. B)= (A. V)B +(B. V)A +A X (V X B)+ B X (V X A) (12) 

V x (A x B) = A(V ·B)+ (B · V)A- B(V ·A)- (A· V)B (13) 

V x (V x A)= V(V ·A)- (V · V)A 

v. (V X A)= 0 

V X (V¢) = 0 

(V · V)¢ = V2¢ 

(14) 

(15) 

(16) 

(17) 

If r is the radius vector, of magnitude r, drawn from the origin of a 
coordinate system to a general point ( x, y, z), then 

V·r=3 (18) 

V xr=O (19) 

r 
(20) Vr=-

r 

v(~)=-~ 
r r3 

(21) 

v. (~) = -v2 (~) = 41r 8(r) (22) 

In the following integral relations, V is the volume bounded by the 
closed surface s and n is a unit vector drawn outwardly to the closed 
surface 8: 

(23) 

Gauss's divergence theorem: 

fs A · n dS = i (V · A) dV (24) 

t (n X A) dS = [ (V x A) dV (25) 
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Green's first identity: 

i ¢ ('V'Ij;) · ii dS = j)¢('V2 '1j;) + ('V¢) · ('V'Ij;)] dV (26) 

Green's second identity or Green's theorem: 

Vector version of Green's theorem: 

i [B X ('V X A) - A X ('V X B) . ii dS 

i {A· ['V x ('V X B)]- B · ['V x ('V x A)]} dV (28) 

If S is an open surface bounded by the closed contour C, of which 
the vector line element is dl, then 

i ¢ dl = Is ii X ('V ¢) dS 

Stokes's theorem: 

£A. dl = fs ('V x A). n. dS 

If V denotes a dyad or a second-order tensor, then 

'V · (¢V) = ¢('V · V) + ('V¢) · V 

i V · ii dS = i ('V · V) dV 

(29) 

(30) 

(31) 

(32) 



APPENDIX 

USEFUL RELATIONS IN CARTESIAN 
AND IN CURVILINEAR COORDINATES 

1. Cartesian Coordinates 

Orthogonal unit vectors: 
_,..._ _,..._ _,..._ 

x, y , z 

Orthogonal line elements: 

dx, dy, dz 

Components of gradient of a scalar function '1/J: 

(\1'1/J)x = o'ljJ 
ox 

(\1'1/J) = o'l/J 
y oy 

(\1'1/J)z = o'ljJ 
oz 

Divergence of a vector function A: 

\! . A = oAx + oAy + oAz 
ox oy oz 

Components of curl of a vector function A: 

(\! X A)x = oAz - oAy 
oy oz 

(\! X A) = oAx - oAz 
y oz ox 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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(\7 X A)z = 8Ay _ 8Ax (9) 
8x 8y 

Laplacian of a scalar function 'lj;: 

Components of divergence of a dyad or tensor V: 

(\7. V)x = 8Dxx + 8Dyx + 8Dzx 
8x 8y 8z 

(\7. V) = 8Dxy + 8Dyy + 8Dzy 
Y 8x 8y 8z 

(\7. V)z = 8Dxz + 8Dyz + 8Dzz 
8x 8y 8z 

2. Cylindrical Coordinates 

Orthogonal unit vectors: 
~ 

p, t/>, z 
Orthogonal line elements: 

dp, p dcp, dz 

Components of gradient of a scalar function 'lj;: 

(\7'1/J) = 8'1/J 
p 8p 

(\7'1/J) = ~ 8'1/J 
¢ p 8¢ 

(\7'1/J)z = 8'1/J 
8z 

Divergence of a vector function A: 

\7. A=~ 8(pAp) + ~ 8A¢ + 8Az 
p 8p p 8¢ 8z 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



660 FUNDAMENTALS OF PLASMA PHYSICS 

Components of curl of a vector function A: 

(V' X A) = ~ 8Az _ 8A¢ 
P p 8¢ 8z 

(20) 

(V' X A)¢ = 8Ap _ 8Az 
8z 8p 

(21) 

(Y' x A)z = ~ 8(pA¢) _ ~ 8Ap 
p 8p p 8¢ 

(22) 

Laplacian of a scalar function 'lj;: 

(23) 

Components of divergence of a dyad or tensor V: 

(V' ·'D) = ~ 8(pDpp) + ~ 8D¢p + 8Dzp _ ~ D (24) 
P p 8p p 8¢ 8z p ¢¢ 

(V' ·'D) = ~ 8(pDp¢) + ~ 8D¢¢ + 8Dz¢ + ~ D (25) 
¢ p &p p &¢ &z p ¢P 

(V' ·'D)z = ~ 8(pDpz) + ~ 8D¢z + 8Dzz (26) 
p &p p 8¢ 8z 

3. Spherical Coordinates 

Orthogonal unit vectors: 

Orthogonal line elements: 

dr, r dO, r sin (} d¢ 

Components of gradient of a scalar function 'lj;: 

(V''Ij;)r = 8'1j; 
&r 

(Y''Ij;)o = ~ 8'1j; 
r 8(} 

(27) 

(28) 

(29) 

(30) 
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('\1'1/J) = 1 B'lj; (31) 
4> r sin(} B¢ 

Divergence of a vector function A: 

V'. A= 2._ B(r2 Ar) + 1 B(sin (} Ae) + 1 BA4> (32) 
r 2 Br r sin (} BO r sin (} B¢ 

Components of curl of a vector function A: 

(V' X A)r = 1 B(sin (} A4>) 
r sin (} BO 

1 BAe 
r sin(} B¢ 

(V' x A)e = ~ BAr _ ~ B(r A4>) 
r sm (} B¢ r Br 

(V' x A) = ~ B(rAe) _ ~ BAr 
4> r Br r BO 

Laplacian of a scalar function 'lj;: 

Components of divergence of a dyad or tensor V: 

(V' . V)r = 2._ B(r2 Drr) + ~ B(sin (} Der) 
r 2 Br r sm (} BO + 

1 BD4>r 1 
r sin(} 8¢ - :; (Dee+ Dt/>4>) 

(V' . V)e = 2._ B(r2 Dre) + ~ 
r 2 Br r sm (} 

B(sin (} Dee) 
B(} + 

(33) 

(34) 

(35) 

(37) 

1 BD4>e 1 
-B"' + -r (Der- cot (} D4>4>) (38) 

r sin (} 'f' 

(V' ·'D) = 2._ B(r2 Drtj>) + 1 B(sin (} Detj>) + 
4> r 2 Br r sin (} B(} 

1 BD4>4> 1 
-B"' + -r (Dtj>r +cot(} Dtj>e) (39) 

r sin (} 'f' 



ao 
amu 
c 
e 
g 

G 
h 
k 
me 
mn 
mp 
mp/me 
NA 
NL 
R 
re 
Vo 
Eo 
J-to 

APPENDIX 

PHYSICAL CONSTANTS 

(MKSA) 

Bohr radius 5.292 x 10-11 m 
Unified atomic mass unit 1.661 X 10-27 kg 
Speed of light in vacuum 2.998 x 108 m/s 
Electron charge (absolute value) 1.602 x 10-19 coulomb 
Standard acceleration of gravity 9.807 m/s2 

Gravitational constant 6.671 x 10-11 newton m2 /kg2 

Planck's constant 6.626 x 10-34 joule · s 
Boltzmann's constant 1.381 x 10-23 joule/K 
Rest mass of electron 9.109 X 10-31 kg 
Rest mass of neutron 1.675 X 10-27 kg 
Rest mass of proton 1.673 X 10-27 kg 
Proton/ electron mass ratio 1.836 X 103 

Avogadro's number 6.022 x 1023 mol- 1 

Loschmidt's number 2.687 x 1025 m-3 

Gas constant ( N A k) 8.314 joule/ (K mol) 
Classical electron radius 2.818 x 10-15 m 
Molar volume at STP 22.4 x 10-3 m3 /mol 
Permittivity of vacuum 8.854 x 10-12 farad/m 
Permeability of vacuum 47r x 10-7 henry /m 

The MKSA system of units is based on four primary quantities: length, 

mass, time , and current. Its name derives from the units meter (m), kilo­

gram (kg), second (s), and ampere (A). 



Capacitance: 
Charge: 
Conductivity: 
Current: 
Electric field: 
Energy: 

Force: 
Magnetic field: 
Magnetic flux: 

APPENDIX 

CoNVERSION FACTORS 

FOR PHYSICAL UNITS 

1 farad = (2.998) 2 x 1011 em 
1 coulomb= 2.998 x 109 statcoulomb 
1 mho/m = (2.998) 2 x 109 s- 1 

1 ampere 1 coulomb/s = 2.998 x 109 statampere 
1 volt/m = (2.998 x 104)-1 statvolt/cm 
1 joule = 107 erg 
1 electron volt ( e V) = 1. 602 x 10-19 joule 
1 eV = kT (forT= 1.160 x 104 K) 
(where k is Boltzmann's constant) 
1 rydberg = 13.61 eV 
1 newton= 105 dyne 

Magnetic induction: 

1 ampere.turnjm = 47r X 10-3 oersted 
1 weber= 108 gauss· cm2 (or maxwells) 
1 weber /m2 - 1 tesla = 104 gauss 

Potential: 
Power: 
Pressure: 

Resistance: 

1 volt = (2.998 x 102)-1 statvolt 
1 watt= 1 joule/s = 102 erg/s 
1 newton/m2 = 10 dyne/cm2 

1 atm = 760 mm Hg = 1.013 x 105 newtonjm2 

1 torr = 1 mm Hg 
1 ohm= (2.998)-2 X 10-11 sjcm 



APPENDIX 

SoME IMPORTANT 

PlASMA PARAMETERS 

1. Electron plasma frequency 

- ( nee2 ) 1/2 - 56 5 1/2 Wpe- - . ne 
m e Eo 

(in rad/ s) 

(with ne expressed in m-3 ) 

2. Ion plasma frequency 

3. Debye length 

( EokT)1 /2 ( T )1/2 A.v = --2 = 69.0 - (in m) 
n ee ne 

(with n e in m- 3 and Tin degrees K) 

4. Electron cyclotron frequency 

eB 11 
fl ee = - = 1.76 x 10 B (in rad/ s) 

m e 

(with B expressed in tesla) 

(1) 

(2) 

(3) 

(4) 
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5. Ion cyclotron frequency 

(5) 

6. Particle magnetic moment 

= _ W_1_ B = _ (mv1J/2 B 
m B2 B2 (6) 

7. Electron cyclotron radius 

Vel_ ffieVe_l_ 
rce =- = --

Oce eB 
(7) 

8. Ion cyclotron radius 

Vi_i ffiiVi_l 

rei= Oci = ZeB (8) 

9. Number of electrons in a Debye sphere 

(9) 

(with Tin degrees K and ne in m-3 ) 

10. Alfven velocity 

(10) 

11. DC conductivity 

(11) 

12. Electron free diffusion coefficient 

(12) 
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13. Ambipolar diffusion coefficient 

Da = k(Te + Ti) 
(mellen+ mil/in) 

14. Magnetic pressure 

15. Magnetic viscosity 

B2 
0 Pm=-

2J-Lo 

1 
f/m = -­

J-Loao 

16. Magnetic Reynolds number 

R _ uL 
m-

'r/m 

17. Coulomb cut-off parameter 

r3/2 
A= 12 7r ne >..1 = 9 Nv = 1.23 x 107 ~ 

ne 

(with Tin degrees K and ne in m-3 ) 

18. Electron collision frequencies for momentum transfer 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(with Tin degrees K and ni,n expressed in m-3 . The parameter a denotes 
the sum of the radii of the colliding particles and is of the order of 10-10 m, 
whereas ln A is typically about 10.) 



APPENDIX 

APPROXIMATE MAGNITUDES 
IN SOME TYPICAL PLASMAS 

PLASMA TYPE no T I Wpe I AD 

Interstellar gas 106 10-1 6 X 104 1 
Interplanetary gas 108 1 6 X 105 1 

Solar corona 1012 102 6 X 107 10-1 

Solar atmosphere 1020 1 6 X 1011 10-6 

Ionosphere 1012 10-1 6 X 107 10- 3 

Gas discharge 1020 1 6 X 1011 10-6 

Hot plasma 1020 102 6 X 1011 10- 5 

Diffuse hot plasma 1018 102 6 X 1010 10-4 

Dense hot plasma 1022 102 6 X 1012 10-6 

Thermonuclear 1022 104 6 X 1012 10-5 

I noA1 

106 
108 
109 

102 
104 

102 

105 
106 

104 

107 

(Values of n0 expressed in m-3 , Tin eV, Wpe in s-1 , and AD in m). 

I 



INDEX 

Adiabatic gas law, 208, 212, 299 
cylindrical compression, 305 
linear compression, 305 
spherical compression, 306 

Adiabatic invariants, 75, 81, 108 
longitudinal, 81-84 
magnetic flux, 75, 88, 111 
magnetic moment, 75-77, 111 

Adiabatic sound speed, 209, 376 
Alfven approximation, 60 
Alfven velocity, 377, 381 
Alfven waves, 376, 383, 391 

compressional, 383 
oblique, 387 
pure, 386 
shear, 384 

Ambipolar diffusion, 5, 256-260 
Angular momentum, 39, 568 
Anomalous dispersion, 369 
Appleton-Hartree equation, 418 
Apse line, 568 
Archimede's spiral, 13, 14 
Atmospheric whistlers, 439-442 
Attachment, 200 
Average values, 141, 142 

B BGKY hierarchy, 597 
Bennett pinch, 332-335 
Bernstein modes, 546-550 
Bessel function, 540-543 

of first kind, 541 
of second kind, 543 

Beta parameter, 321 
Binary collisions, 162, 561-569 
Blackbody radiation, 6 
Bohm criterion, 288 
Bohm diffusion, 5, 262 
Bohm-Gross dispersion relation, 456 
Boltzmann collision term, 590-598 

assumptions involved, 596, 597 
weakly ionized plasma, 607-611 

Boltzmann equation, 
129-136, 590-598 

conditions for validity, 596, 597 
derivation of, 128-134, 590-594 
integra-differential 

equation, 594 
Boltzmann factor, 181-183 
Boltzmann's constant, 662 
Boltzmann's H theorem, 599-601 
Bouncing phenomenon, 340 
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Bound-bound transitions, 6 
Boundary layer, 279-288 

between wall and plasma, 279 
Bremsstrahlung radiation, 6 

Carrier frequency, 368 
Causality principle, 496 
Center of mass, 562 
Central force, 566 
Centrifugal force, 85-87 
Characteristic plasma 

parameters, 12 
Charge density, 137, 198, 220 
Charged particle orbits, 33-121 
Chew-Goldberger-Low 

equations, 302-304 
Circular polarization, 102,360 
Circularly polarized 

wave, 102, 360, 419 
Coefficient of viscosity, 297, 310 
Cold plasma model, 210 
Collision, 162, 561-569 

binary, 162, 561 
direct, 162 
elastic, 560 
inelastic, 560 
inverse, 162 

Collision frequency, 135, 203, 588 
Collisionless Boltzmann 

equation, 129 
Collisionless damping, 5, 500-503 
Conductivity, 242-250, 629-640 

for constant collision 
frequency, 245 

electric, 243, 245 
thermal, 268, 648-650 
for velocity-dependent 

collision frequency, 638 
Configuration space, 123 

Confinement of plasmas, 18-22, 319 
Confinement schemes, 18 
Confinement time, 21 
Constitutive relations, 32, 250 
Continuity equation, 197, 222 
Contour of integration, 496 
Controlled thermonuclear fusion, 18 
Conversion factors, 663 
Correlation, 597 
Coulomb collisions, 570 
Coulomb cross section, 580 
Coulomb force, 561, 570 
Counterstreaming plasmas, 506, 514 
Cross section, 572-578 

differential, 57 4 
momentum transfer, 577 
total, 576 

Current density, 137, 146, 198, 220 
electric, 137, 198, 220 
mass, 147, 220 

Curvature drift, 84, 87 
Cusp field, 34 7 
Cut-off frequency, 406 
Cycloidal trajectory, 52 
Cyclotron damping, 531 
Cyclotron frequency, 37, 39 
Cyclotron heating, 108 
Cyclotron motion, 37-44 
Cyclotron radiation, 6 
Cyclotron resonance, 106 
Cyclotron waves, 422, 452 

Dam ping, 394, 406, 500 
collisional, 406 
collisionless, 5, 500-503 
of MHD waves, 394 

Debye length, 7 
Debye potential, 276, 292 
Debye shielding, 7, 273, 278 
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Debye sphere, 8 
Deflection angle, 562, 564 
Degeneracy factor, 184 
Delta function, 367, 506 
Detailed balance principle, 162, 601 
Dielectric constant, 251 
Differential cross section, 57 4 
Diffusion coefficient, 

251-255, 640-647 
ambipolar diffusion, 256 
for constant collision 

frequency, 254 
free diffusion, 251 
for velocity-dependent 

collision frequency, 645, 646 
Diffusion current density, 254 
Diffusion equation, 253, 255 
Diffusion time constant, 253 
Diffusion in velocity space, 615, 616 
Dipole moment, magnetic, 44 
Dirac's delta function, 367, 506 
Dispersion relations, 414, 457 

471, 494, 525, 545 
definition of, 367 
for electrostatic plasma 

waves, 494 
for propagation across 

B field, 545 
for propagation along 

B field, 525 
Dispersive medium, 369 
Distribution function, 126, 127 

definition of, 126 
local Maxwellian, 169 
loss-cone, 138 
Maxwell-Boltzmann, 165 
modified Maxwellian, 1169 
properties of, 126, 127 

Doppler shift, 190, 532 
Double adiabatic equations, 302 

Drift velocity, 52, 115 
curvature of B, 84 
electromagnetic, 52 
external force, 55 
gradient of B, 7 4 
polarization, 97 
summary, 115 

Dynamic pinch, 335 

Earth's magnetic field, 14, 80 
Einstein relation, 255 
Electric charge density, 

137, 198, 219 
Electric conductivity, 242-250 
Electric current density, 

137, 198, 220 
Electric permittivity of vacuum, 662 
Electrokinetic pressure dyad, 230 
Electromagnetic stress dyad, 213 
Electromagnetic waves, 

351, 515, 552 
circularly polarized, 360 
in free space, 351-374 
group velocity of, 368 
in hot isotropic plasma, 503 
phase velocity of, 354 
propagation across B in a 

hot plasma, 534 
propagation along B in a 

hot plasma, 516 
Electron gas, 240, 242 
Electron plasma frequency, 9, 10 
Electron plasma oscillations, 269 
Electron plasma waves, 456, 490 
Electron runaway effect, 588 
Electrostatic mode, 491 
Electrostatic potential, 7 
Electrostatic shielding, 7, 273 
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Energy conservation equation, 
204, 226 

Energy density, 204, 226 
Energy distribution function, 178 
Energy flow in electromagnetic 

waves, 363 
Energy integral, 307 
Entropy, 189, 599 
Entropy-maximum principle, 

170, 604 
Equation of charge conservation, 

31, 228 
Equation of continuity, 197, 222 
Equation of motion, 33, 200, 223 

for conducting fluids, 223 
for Lorentz force, 33 
for multispecies plasma, 202 

Equation of state, 153, 209 
Equilibrium, 161-192 

distribution function, 165 
pinch, 326 
solution of Boltzmann 

equation, 161 
Error function, 294 
Evanescent wave, 406 
Extraordinary mode, 424, 546, 553 

Faraday rotation, 444 
Fermi's acceleration, 84 
First adiabatic invariant, 75-77 
First-order orbit theory, 60 
Fluid models, 193-237 

cold plasma, 210 
warm plasma, 211 

Flux, 143-146 
definition of, 143 
energy, 155 
heat, 154 
momentum, 147 

particle, 146 
Fokker-Planck coefficients, 614, 615 
Fokker-Planck equation, 612 
Fourier integral, 366 
Fourth state of matter, 1 
Free diffusion, 251, 640 
Free diffusion coefficient, 253, 641 
Free-bound transition, 6 
Free-free transition, 6 
Frozen field lines, 312 
Fusion, thermonuclear, 18 
Fusion cross sections, 19 
Fusion reactions, 18 

Gas discharges, 3 
Gauss's theorem, 151, 656 
Generalized Ohm's law, 229 
Gradient drift, 74 
Gradient of magnetic field, 64 
Gravitational constant, 662 
Gravitational force, 55 
Group velocity, 368 
Guiding center, 38, 39 
Gyrofrequency, 37-40 
Gyromagnetic resonance, 104 
Gyroperiod, 45 
Gyroradius, 40 

H-theorem, 599 
Hall conductivity, 246 
Hall current, 52, 246 
Hall effect term, 235 
Hard sphere collisions, 578 
Heat conduction coefficient, 

208, 268, 650 
Heat conduction equation, 

208, 268, 650 
Heat flux triad, 154 
Heat flux vector, 154 
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Helical orbit in B field, 39 field, 13, 14 
Helicon, 442 Interplanetary plasma, 13 
Hierarchy of moments of Boltzmann Inverse collisions, 162 

equation, 193 Ion acoustic wave, 458 
High-frequency plasma Ion cyclotron damping, 531 

oscillations, 9, 269 Ion cyclotron resonance, 420 
High-frequency waves, 400-452 Ion plasma frequency, 664 

propagating across B in Ion plasma mode, 456 
cold plasmas, 423 Ionization, 2, 200 

propagating along B in Ionization energy, 184 
cold plasmas, 419 Ionization by photons, 2 

Hydrodynamic derivative, 202 Ionosphere, 16 
Hydrodynamic viscosity, 310 Irreversibility, 601 
Hydromagnetic equations, 235, 299 Isobaric surfaces, 318 
Hydromagnetic waves, 375-399 Isothermal atmosphere, 191 

Alfven, 376, 383, 386 Isothermal compression, 305 
fast, 387, 391 Isothermal sound speed, 209 
magnetosonic, 377, 383 Isotropic pressure tensor, 153 
slow, 387, 391 

Hydrostatic pressure, 148, 152 

Ideal gas law, 153 
Impact parameter, 562 

cut-off value, 583 
definition of, 562 

Index of refraction, 415 
Inelastic collisions, 560 
Inertial confinement, 21 
Infinite conductivity limit, 236 
Inner radiation belt, 14, 15 
Instabilities, 341, 506, 532 

configuration space, 341 
growth rate, 534 
kink, 345 
sausage, 342 
in two plasma streams, 506 
velocity space, 532 

Interaction potential, 566 
Interplanetary magnetic 

Jacobian of coordinate 
transformation, 132, 594 

Joint probability function, 597 
Joule heating, 227 

Kinematic viscosity, 310 
Kinetic energy density, 156 
Kinetic pressure, 152, 221 
Kinetic temperature, 152 
Kronecker delta, 152 
Krook collision model, 134 

Lagrange multipliers, 605 
Lagrangian of charged 

particle, 35, 36 
Landau damping, 500-505 

descriptive account, 502 
electromagnetic wave, 505 
longitudinal wave, 500-503 

Landau damping constant, 502 

673 
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Langevin equation, 238-242 
Langmuir oscillation, 269-273 
Laplace equation, 273 
Laplacian operator, 658-661 
Larmor period, 45 
Larmor radius, 40 
Lawson criterion, 22 
Left circular polarization, 361 
Left circularly polarized 

wave, 361 
Legendre polynomial, 607 
Linearly polarized wave, 358 
Liouville's theorem, 131 
Longitudinal adiabatic 

invariant, 81-84 
Longitudinal pinch, 325 
Longitudinal plasma wave, 456, 491 
Long-range force, 561 
Lorentz factor, 34 
Lorentz force, 33 
Lorentz gas, 240 
Loss cone, 79, 80 
Loss-cone distribution, 138 
Lower hybrid resonance, 427 
Lumped macroscopic variables, 219 

Macroinstabilities, 341 
Macroscopic equations, 193-237 

for cold plasma, 210 
for conducting fluid, 219 
for warm plasma, 211 

Magnetic axis, 319 
Magnetic bottle, 77 
Magnetic compression, 112 
Magnetic cusp field, 34 7 
Magnetic energy density, 32, 214 
Magnetic field geometry, 61-66 

curvature terms, 64 
divergence terms, 62 

gradient terms, 64 
shear terms, 65 

Magnetic flux tube, 312 
Magnetic force term, 34 
Magnetic heating, 113 
Magnetic mirror effect, 77 
Magnetic moment, 44 
Magnetic permeability of 

vacuum, 662 
Magnetic pressure, 316 
Magnetic pumping, 113 
Magnetic Reynolds number, 309 
Magnetic rigidity, 40 
Magnetic scalar potential, 273 
Magnetic stress dyad, 316 
Magnetic surfaces, 318 
Magnetic susceptibility, 49 
Magnetic tension, 317 
Magnetic viscosity, 309 
Magnetically trapped 

particles, 14, 77 
Magnetization current 

density, 48 
Magnetization vector, 4 7 
Magnetohydrodynamic 

equations, 234 
Magnetohydrodynamic 

waves, 375-399 
fast wave, 383, 387 
for propagation across 

B field, 382 
for propagation along 

B field, 383 
for propagation at arbitrary 

directions, 384 
slow wave, 384, 387 

Magnetohydrostatics, 316 
Magnetoionic medium, 401 
Magnetoionic theory, 400 
Magnetopause, 14, 15 



INDEX 675 

~agnetosheath, 15 
~agnetosonic wave, 377, 383 
~agnetosphere, 14, 15 
~ass conservation 

equation, 197, 222 
~ass density, 219 
~ass of electron, 662 
~ass flux, 147 
~ass of proton, 662 
~axwell-Boltzmann distribution 

function, 165 
~axwell equations, 26, 32 
~axwell molecules, 622, 626 
~axwell stress tensor, 213 
~axwellian distribution (same as 

~axwell-Boltzmann 

distribution) 
~ean free path, 624 
~ean velocity, 128 
~HD approximations, 234 
~HD generator, 22 
~irror loss cone, 79, 80 
~irror ratio, 77 
~obility, 105, 242, 247 
~olecular chaos, 591 
~oments of Boltzmann 

equation, 193 
~oments of distribution 

function, 157 
~omentum conservation 

equation, 200, 223 
~omentum flux, 147 
~ost probable energy, 189 
~ost probable speed, 177 

Nabla (V) operator, 131, 658-661 
in configuration space, 131 
in velocity space, 131 

Natural coordinates, 

102-104, 519, 638 
Navier-Stokes equation, 310 
Newton's law of motion, 33 
Nuclear fusion devices, 18 
Number density, 128, 142 

Ohm's law, 229 
generalyzed, 229 
simplified, 233 

One-fluid theory, 219-236 
Orbital magnetic moment, 44 
Ordinary mode, 424, 545, 550 
Outer radiation belt, 14, 15 

Parallel conductivity, 246 
Parker momentum equation, 300 
Particle current density, 146, 220 
Particle drifts, 115 
Particle interactions, 560-588 
Peculiar velocity, 142 
Pedersen conductivity, 246 
Perfect ambipolar diffusion, 259 
Perfect gas, 153 
Permeability of free space, 662 
Permittivity of free space, 662 
Perpendicular conductivity, 246 
Phase space, 123 
Phase velocity, 354 
Phase velocity diagrams, 388, 432 
Physical constants, 662 
Photoionization, 2 
Pinch effect, 325-350 

Bennett pinch, 332 
dynamic pinch, 335 
equilibrium pinch, 326 
sheath current model, 330 
snowplow model, 336 

Pitch angle, 39 
Planck's constant, 662 
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Plane waves, 352 
Plasma, 1-32 

applications, 17 
definition, 1, 6 
general properties, 1 
macroscopic phenomena, 4 
naturally occurring, 11 
physical parameters, 12, 664 
quantitative criteria for 

definition, 6 
Plasma angular frequency, 9, 271 

for electrons, 10, 664 
for ions, 664 

Plasma behavior, 4 
Plasma confinement, 18, 319 
Plasma dynamics, 25 

self-consistent formulation, 25 
Plasma heating, 108, 112 

by electromagnetic wave, 108 
by magnetic compression, 112 

Plasma oscillations, 9, 269 
Plasma parameter g, 9 
Plasma probe, 288 
Plasma production, 2 
Plasma propulsion, 23 
Plasma sheath, 279 
Plasma sound speed, 458 
Plasma wave, 457 
Poisson equation, 292, 510 
Polarization current 

density, 97 
Polarization drift, 95, 97 
Polarization of waves, 358 
Poles in contour 

integration, 496 
Potential, electric, 35 

Debye, 276 
magnetic, 35 

Potential at a wall, 281 
Poynting vector, 363 

Poynting's theorem, 32 
Pressure, definition, 148 

dyad, 149 
magnetic, 316 
scalar, 152 

Pressure force, 149 
Propagation bands, 410, 422, 427 
Propagation vector, 354 

Quantum effects, 24, 184 
Quasistatic mode, 546, 553 

Radiation, 6 
blackbody, 6 
bremsstrahlung, 6 
cyclotron, 6 

Radio communication, 24 
Radius of gyration, 40 
Random velocity, 142 
Ratio of specific heats, 208 
Recoil angle, 564 
Recombination, 3, 200 
Reduced mass, 563 
Reentry plasma sheath, 24 
Reflection by magnetic 

mirror, 77 
Reflection points, 430, 476 

cold plasma, 430, 431 
warm plasma, 4 76 

Relative permittivity, 98, 251 
Relative velocity, 561 
Relaxation collision 

frequency, 135 
Relaxation model, 135 
Relaxation time, 135 
Residue of integrand, 496 
Resonance, 430, 476 

cold plasma, 430, 431 
cyclotron, 106 
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upper hybrid, 426, 427 
warm plasma, 4 76 

Resonance distribution 
function, 513 

Reversibility paradox, 598 
Reynolds number, 309 

kinematic, 311 
magnetic, 310 

Right circularly polarized 
waves, 361 

Root mean square velocity, 173 
Runaway effect, 588 
Rutherford scattering, 581 

Saha equation, 184 
Scalar potential, 35, 273 

electrostatic, 35 
magnetic, 273 

Scalar pressure, 152, 221 
Scattering, 569 

by coulomb force, 580 
large angle, 582 
small angle, 583 

Scattering angle, 564 
Scattering cross section, 572-582 

differential, 57 4 
momentum transfer, 5 77 
total, 576 

Semiconductor, 25 
Shear force, 150 
Shear stress, 150 
Shielding, 7, 273, 278 
Short-range force, 4, 622, 626 
Simple pole singularity, 496, 513 
Single-particle distribution 

function, 126 
Skin depth, 398 
Snow-plow model, 336 
Solar wind, 13 

Solid-state plasma, 24 
Sound speed, 375, 454 

electron gas, 456 
fluid, 375 
plasma, 458 

Sound wave, 375 
Space charge wave, 273, 456 
Space physics, 11-17 
Speed distribution 

function, 17 4 
Speed of light, 662 
Spherical harmonic 

expansion, 607 
Stable equilibrium, 34 7 
Standing waves, 411 
Statistical mechanics, 122, 184 
Stellarator, 19 
Stokes's theorem, 657 
Summation invariants, 164 

TEM wave mode (same as 
ordinary mode), 425, 554 

cold plasma, 425 
hot plasma, 545, 550, 554 
warm plasma, 4 78 

Temperature, 152 
Test particle, 273 
Thermal conductivity, 268, 647-650 

scalar, 648, 650 
tensor, 268, 650 

Thermal energy, 154, 222 
density, 222 
flux, 154 

Thermal velocity, 142 
Thermionic energy converter, 24 
Thermodynamic 

equilibrium, 161-192 
Thermonuclear process, 18 
Theta pinch, 21, 321 
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TM wave mode (extraordinary 
mode), 424, 545 

cold plasma, 424, 554 
hot plasma, 545, 553 
warm plasma, 468 

Tokamak, 19 
Toroidal magnetic field, 19, 91 
Total time derivative, 202 

in configuration space, 202 
in phase space, 131 

Transmission through 
plasma slab, 44 7 

Transmission at vacuum-plasma 
interface, 44 7 

Transport coefficients, 238, 628 
diffusion, 254, 646 
electric conductivity, 245, 638 
thermal conductivity, 268, 648 
viscosity, 297 

Trapping process, 502 
Traveling waves, 410 
Triad, heat flux, 154 

total energy flux, 155 
Truncation of moment 

equations, 194 
Tunneling effect, 410, 449 
Two-body collisions, 561 
Two-stream instability, 506, 514 

Ultraviolet radiation, 16 
Uncertainty principle, 372, 373 
Unit dyad, 121 
Upper hybrid resonance, 427 

Van Allen radiation belts, 14, 15 
Variational technique, 604 
Vector potential, 35 
Velocity distribution 

function, 126, 127 
Velocity space, 123 
Velocity of whole fluid, 220 
Viscosity, 310 

kinematic, 310 
magnetic, 310 

Viscous-stress equation, 217 
Vlasov equation, 136 

Warm plasma model, 211 
Wave energy, 363 
Wave-normal plane, 352 
Wave number, 354 
Wave packet, 366 
Wave-particle interaction, 502, 532 
Wavelength, 354 
Weakly ionized plasma, 4 
Whistler waves, 439 
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