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Abstract
Six decades-worth of published information has shown irrefutably that null-hypothesis significance 
tests (NHSTs) provide no information about the reliability of research outcomes. Nevertheless, 
they are still the core of editorial decision-making in Psychology. Two reasons appear to contribute 
to the continuing practice. One, survey information suggests that a majority of psychological 
researchers incorrectly believe that p values provide information about reliability of results. Two, 
a position sometimes taken is that using them to make decisions has been essentially benign. The 
mistaken belief has been pointed out many times, so it is briefly covered because of the apparent 
persistence of the misunderstanding. The idea that NHSTs have been benign is challenged by 
seven “side-effects” that continue to retard effective development of psychological science. The 
article concludes with both a few suggestions about possible alternatives and a challenge to 
psychological researchers to develop new methods that actually assess the reliability of research 
findings.
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For over six decades irrefutable confirmations have been available showing that p values 
emanating from Null Hypothesis Significance Tests (NHSTs) do not provide probabilis-
tic information about the reliability of research findings (e.g., Bakan, 1966; Carver, 
1978; Cohen, 1994; Falk & Greenbaum, 1995; Gelman, Carlin, Stern, & Rubin, 1995; 
Gigerenzer, 1993; Greenwald, 1975; Kline, 2004; Lambdin, 2012; Nickerson, 2000; 
Oakes, 1986; Sohn, 1998; Thompson, 1999). Despite that, statistical significance 
remains, in most cases, a pre-requisite for publication in the psychological sciences. That 
is likely due to the fact that most practicing researchers in the psychological sciences 
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believe, mistakenly, that p values do provide such information. The depth of the problem 
is illustrated by a survey conducted by Haller and Krauss (2002) using six questions 
developed by Oakes (1986). (See also, Kalinowski, Fidler, & Cumming, 2008; Mittag & 
Thompson, 2000.) Specifically, given a scenario in which a t-test has yielded p < .01, 
those surveyed were asked to state whether each of the following six statements was true 
or false: (a) you have disproved the null hypothesis (that there is no difference between 
the means); (b) you have found the probability (i.e., .01) of the null hypothesis being 
true; (c) you have proved your experimental hypothesis (that there is a difference between 
the population means); (d) you can deduce the probability of the experimental hypothesis 
being true; (e) you know, if you decide to reject the null hypothesis, the probability of 
making the wrong decision; and (f) you have a reliable experimental finding in the sense 
that if, hypothetically, the experiment were repeated a great number of times, you would 
obtain a significant result on 99% of the occasions. All of those statements are false. (For 
explanation of why, see below.) Haller and Krauss’s (2002) survey included 30 academic 
psychologists who taught statistical methodology, and 80% of them got at least one of 
the items wrong! Among practicing psychologists in general over 90% of those queried 
got at least one wrong. It cannot be healthy for a field of investigation if its major crite-
rion for publication is misunderstood by a majority of its practicing scientists.

Among some who understand that p values are not an indication of the probability of 
replication nor of the probability that results are due to chance or sampling error, a posi-
tion is that at the very least their use is benign (e.g., Mulaik, Raju, & Harshman, 1997; 
Nickerson, 2000). In this paper, I argue that continued reliance on NHST has not been, 
nor does it continue to be, without harm. In this endeavor I echo the plea of Jones and 
Matloff (1986) who suggested that, “at its worst, the results of statistical hypothesis test-
ing can be seriously misleading, and at its best it offers no informational advantage over 
its alternatives; in fact it offers less” (p. 1156). NHSTs are associated with what I shall 
term deleterious “side effects” that have contributed to the lack of cumulative, refined, 
and integrated development of psychological science. One of the side effects that has not 
been discussed previously is that their use leads to conflation of two separable, but 
related, subject matters (described in detail below), and, in so doing, has undermined the 
field’s goal of understanding behavior or mind. In addition, acceptance of NHSTs has led 
to general neglect of the development of methods that actually assess the reliability of 
research results. (Although see Branch & Pennypacker, 2012; Johnston & Pennypacker, 
2009; Sidman, 1960, for presentations of alternative approaches.)

Before discussing the side effects, however, it is necessary to review briefly the core 
reasons that p values do not provide quantitative information on whether research results 
will be replicable (that is, that the results are not a fluke), because of the apparent con-
tinuing widespread misunderstanding of what p values represent. They are, in fact, the 
probability of observing particular kinds of results given that the null hypothesis is true, 
that is, P(Data|H0; or more precisely, P[T≥t|H0] where T is a value of a test statistic, and 
t is a criterion value). That is distinct from, and, more importantly, unrelated to the prob-
ability that the null hypothesis is true given the data, P(H0|Data). That can be confirmed 
by taking any pair of conditional probabilities and reversing the conditionality. For 
example, P(Hanged|Dead) ≠ P(Dead|Hanged) or P(Raining|Cloudy) ≠ P(Cloudy|Raining; 
cf. Carver, 1978). An excellent example showing that P(positive mammogram|breast 
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cancer) ≠ P(breast cancer|positive mammogram) is provided by Gigerenzer, Gaissmeyer, 
Kurz-Milcke, Schwartz, and Woloshin (2008). (The reader is invited to try any reversible 
pair of conditional probabilities to confirm that the examples here are not unique.) As 
Falk and Greenbaum (1995) make clear, failure to understand that distinction leads to the 
illogic that too often accompanies NHSTs. As they note, the usual tactic is to believe that 
if a particular set of data is unlikely to occur if the null hypothesis is assumed, one can 
conclude that that is evidence that the null hypothesis is probably untrue. Or, stated more 
precisely, when the associated probability of p is smaller than the criterion adopted, 
chance is deemed unlikely to have produced the result obtained. The imprudence of that 
conclusion, even if the p value is very small, is made evident from the following applica-
tion of exactly that logic. If the next person I meet is an American, it is very unlikely that 
it will be President Obama (P[Meet Obama|Meet an American] < .000000003). I just met 
Obama. Therefore it is unlikely I met an American (cf. Cohen, 1994; Falk & Greenbaum, 
1995). This fallacy has been exposed for a long period. For example, Berkson (1942) 
noted,

Consider [the argument] in syllogistic form. It says, “If A is true, B will happen sometimes 
[emphasis added]; therefore if B has been found to happen, A can be considered disproved.” 
There is no [emphasis added] logical warrant for considering an event known to occur in a 
given hypothesis, even if infrequently [emphasis added], as disproving the hypothesis. (p. 326)

It is worth noting that this error does not depend on the characteristics of underlying 
distributions, random sampling, or other statistical issues. It is an error of logic. If a p 
value were P(H0|Data) then it would provide information about the truth of the null 
hypothesis. But, as the foregoing (and many other treatises) makes perfectly clear, that is 
not what a p value is. Knowing P(Data|H0) provides no information about p(H0|Data). 
This, of course, means that the phrase “statistically reliable” is a non-sequitur. The dis-
piriting fact is that most practicing psychologists apparently believe otherwise. We are 
left with a situation in which, even though a p value provides no information about the 
truth of the null hypothesis, it is used to make a judgment about its truth! As noted above, 
it has been argued that despite the fact that p values provide very little information, they 
are not necessarily completely without meaning (if, and only if, the null hypothesis is 
actually true, but see side-effect 4 below) and therefore do little harm (e.g., Nickerson, 
2000), even though they dominate editorial review. In what follows, I present seven ways 
in which their use has been and continues to be deleterious. It should be noted at the 
outset that much of the information summarized below has been presented before. 
Nevertheless, presenting the problems en masse may help to initiate a reconsideration of 
the primary role NHSTs currently hold. Also, the list of side effects is not presumed to be 
exhaustive. For example, it does not include a discussion of how the misuse of statistical 
significance can compromise (and has compromised) the analysis of weighting parame-
ters in multiple-regression analyses (see Ziliak & McCloskey, 2008). The seven are cho-
sen because of the generality of their importance to the field of Psychological Science.

The main avenue by which the side effects work their negative effects into Psychology 
is via editorial practices. One of my goals in presenting this summary, therefore, is to 
convince editorial reviewers that reliance on statistical significance as any sort of 
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criterion for publication is a mistake. As Abelson (1997) noted, “Whatever else is done 
about null-hypothesis tests, let us stop viewing statistical analysis as a sanctification 
process … there are no objective procedures [emphasis added] that avoid human judg-
ment and guarantee correct interpretations of results” (p. 13).

The side effects

Side effect 1: NHST promotes aimless, non-cumulative, non-integrated 
science

Meehl (1967, 1978, 1990) was the first, to my knowledge, to identify this issue. It arises 
from the common practice of pitting a null hypothesis, usually that there is no effect 
(what Cohen, 1994, dubbed the “nil” hypothesis), against an alternative hypothesis, 
which is usually what the scientist actually believes might be the case. NHSTs provide a 
p value, on the basis of which the scientist decides whether to argue that the null hypoth-
esis is not the true state of affairs. If p is small enough, the null hypothesis is rejected, and 
the alternative hypothesis “gains support.” It is not proven, of course, because there are 
infinitely many possible alternative hypotheses.

Meehl noted that p is determined by a test statistic, like a t or F value, that is computed 
by dividing variance attributable to the independent variable(s) under consideration by 
so-called error variance, variance attributable to other influences like measurement error 
or effects of uncontrolled variables (i.e., “chance”). That is,

 Test statistic  effect variance error variance= / .

As the value of the statistic increases, p decreases (as long as effect variance is not 
precisely zero). One of the goals of any scientific experiment is to minimize error, mainly 
by improving experimental methods. As methods improve, error variance is decreased, 
and therefore the value of the statistic is increased. That leads to a smaller p, and a greater 
likelihood that the null hypothesis will be rejected. Thus, better methods make it easier 
to meet the criterion for rejecting the null hypothesis, and thus to give support to the 
alternative hypothesis, no matter what the alternative hypothesis is! That is surely not a 
recipe for cumulative, integrative advancement in science, yet it has been the standard 
method of hypothesis evaluation in Psychology for more than 60 years.

This problem is exacerbated by the fact that in much actual practice deciding to reject 
the null hypothesis often might as well be based on the flip of a coin rather than collect-
ing and analyzing any data at all (Cohen, 1994; Miller, 2009). If decisions between null 
and other hypotheses often approximate coin flipping, and it does not matter what the 
“alternative” hypothesis is, it is difficult to see how a science can advance (cf. Schmidt, 
1996; Zakzanis, 1998, for evidence of the lack of cumulative, integrated knowledge in 
psychology).

Meehl suggested an alternative approach, one that has much in common with some 
methods of assessing goodness of fit of theoretical functions to data. Specifically, he 
recommended that instead of the null hypothesis being set at no difference or no effect, 
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the scientist’s predicted effect should be set as the null. (There is no mandate that a null 
hypothesis has to be no effect or no relation.) In that case, if a result is determined to be 
statistically significant, what gets rejected is the prediction of the scientist’s theory, a 
result likely to lead to theory modification, or perhaps even rejection. Thus, as experi-
mental rigor and methods are improved, the predictions of a scientist’s theory are sub-
jected to an ever more rigorous test. This approach is clearly more in line with Popperian 
(Popper, 1959) falsification than is the standard, nil-hypothesis, approach of NHSTs.

This approach, however, arranges what might be an unfortunate contingency (J. 
Shepperd, personal communication, September 13, 2011). Specifically, if a scientist is 
invested in a theory, it is in the scientist’s interest for a lack of statistical significance to 
be the result of the analysis, so that the theory’s prediction is not rejected. Such a contin-
gency might encourage less rigorous control with resulting larger error-variance values.

Meehl’s suggested alternative approach does not avoid the fundamental logical prob-
lem outlined earlier (and another one to be described later). Nevertheless it is a step in a 
direction toward emphasizing the magnitudes of effects, which would help remedy the 
second side effect to be considered.

Side effect 2: NHST promotes “sizeless” science

As recently and exhaustively illustrated by Ziliak and McCloskey (2008), as typically 
employed NHSTs say nothing about the magnitudes of effects. They note that it is com-
mon, in reports of economics research, that no information whatsoever about effect mag-
nitudes is presented. Regrettably, that is also true of much research in Psychology, 
although there seems to be a modest increasing trend in efforts to consider effect sizes in 
some sub disciplines. Given that any size of effect may be found to be statistically sig-
nificant (see below, side-effect 4), ignoring the magnitudes of effects serves to retard the 
development of a science. Knowing the magnitude of any effect is essential to determin-
ing its likely importance, both practically and scientifically. For example, it might be of 
little interest to discover a variable that produces a 0.1% increase in respiration rate, but 
of great interest to find a 0.1% increase in the incidence of a fatal disease.

An important issue here is what is meant by effect size. There are statistical effect 
sizes, usually measured in units that vary from experiment to experiment, for example, 
mean differences in terms of variance or standard-error units (e.g., Cohen’s d; Cohen, 
1988). Although those measures are certainly an improvement over reporting whether a 
difference is statistically significant, they may not be sizes of effects of real significance. 
Effect sizes in a cumulative, effective science are directly measured in absolute units. 
Interest should be less in whether means differ by 0.5 or 3 units of standard error, and 
more in whether means are, for example, two correct math answers or ten, or a latency is 
300 ms or 500 ms. That is not to say, of course, that the variability, either within subject 
or between subjects, is not important information, but I shall have much more to say 
about that later (Side effect 5).

Kline (2004) points out another aspect of the sizeless-science problem. When tests of 
low power are conducted (a common situation in Psychology; Cohen, 1962, 1990), and 
only statistically significant results merit publication, the effect sizes estimated from the 
published results are necessarily overestimates of the population effect sizes. Specifically, 
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to obtain a statistically significant result when there is low power the sample-effect size 
has to be larger than the population-effect size (see Kline’s Table 3.2, 2004, p. 74, and 
Schmidt, 1996, for examples). This, of course, contaminates meta-analyses of the pub-
lished literature. Schmidt (1996) noted this inaccurate estimation of effect sizes and 
argued that a cumulative science cannot develop from such data. Meta-analysis cannot 
solve the problem if only experiments that yield statistically significant results are ana-
lyzed. Thus, basing publication on statistical significance is likely to result in inaccurate 
estimates of population-effect sizes. That surely cannot be good for accurate, refined, 
cumulative knowledge.

Side effect 3: NHST blunts social processes that underlie successful 
science

In essence, science is the behavior of scientists, and one thing that sets science apart as a 
way of knowing from everyday approaches is that scientific knowledge is subject to 
empirical checking. The checking is what underlies the self-corrective characteristic of 
scientific knowledge. The main method of checking is via replication. If a result cannot 
be replicated (see cold fusion: Beaudette, 2002; Taubes, 1993), then it is placed on hold 
as something to be considered, or perhaps even ignored as failures to replicate mount. As 
noted earlier, statistical significance is silent with respect to whether a result should be 
considered replicable so when it is mistakenly thought to provide that information, 
claims of statistical significance replace actual replication.

The main point being made here, however, is that p values provide social safety for a 
scientist. For example, suppose a scientist conducts an experiment and obtains and 
reports a statistically significant result. Suppose in addition that sometime later someone 
else (or even the original scientist) repeats the experiment and does not replicate the 
statistical significance of the effect. Under the misunderstood rules of significance test-
ing, the scientist who made the original report is “off the hook” with respect to being 
responsible for the error. That is, there are no negative social consequences of the errone-
ous initial report. The researcher can claim, “I played by the rules of significance testing 
that allow for a low probability of a Type I error; this must be one of those cases, so I bear 
no responsibility for the error.” Contrast that with what prevailed before the advent of 
significance testing when a scientist’s reputation rested to a significant extent on the reli-
ability of what the researcher claimed. It is likely that such social pressure has a positive 
effect on science, in that when one’s reputation rests on the reliability of what one reports, 
it will be less likely that unreliable results will be communicated. In essence, a scientist 
would perform and report on research that convinces the scientist her or himself that the 
results are “not a fluke.” The goal would then be to convince reviewers that the results 
are reliable (ways to do that are discussed below).

Another important negative outcome is that requiring statistical significance be a pre-
requisite for publication makes difficult the publication of experiments that reveal the 
failure to replicate (the “File-drawer problem”). Given the pivotal role that replication 
plays in the evolution of scientific knowledge, it borders on unconscionable that failures 
to replicate be more difficult to publish than original reports.
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Side effect 4: NHST is essentially a fool’s errand

As noted by many accomplished statisticians, any sized difference can be found to be 
statistically significant (e.g., Hays, 1981; Meehl, 1978; Tukey, 1991) by increasing the 
number (N) of observations. Surprisingly, even this widely announced fact is apparently 
known by only about half of practicing researchers (Mittag & Thompson, 2000). One 
consequence of this fact is, as noted by Meehl, “As I believe is generally recognized by 
statisticians today and by thoughtful social scientists, the null hypothesis, taken literally, 
is always false” (1978, p. 822). The good news from this point of view is that the prob-
ability of a Type I error is essentially zero, so one need not worry about making one.

The fact that any point null can be rejected if N is large enough is another reason that 
Meehl’s (1967) suggested remedy to the aimless-science problem is not fully satisfac-
tory. If N is big enough, the point prediction of a scientist’s theory will invariably be 
rejected. Here again, the sizeless-science problem rears its head. Whether or not a result 
is statistically significant is essentially a useless piece of information.

The fact that the probability that the null hypothesis is true is essentially zero 
undermines Nickerson’s (2000; in the context of an outstanding and thorough review 
of the issues surrounding p values) main defense of the utility of p values. He shows 
(see his Table 3, p. 252) formally, based on Bayes Theorem, that if it is assumed that 
the prior probability of the null hypothesis and alternative hypothesis are equal, then 
a p value comes ever closer to the probability that the null hypothesis is true, given 
the data, as the true probability of the data given the alternative hypothesis approaches 
1.0. The dubious assumption here is that P(H0) is the same as P(HA), which, even if 
true, leaves unexplained the infinite number of possible other values for the two prob-
abilities. That notwithstanding, that the probability of the null hypothesis is essen-
tially zero means that for Nickerson’s analysis to have merit, the probability of the 
alternative hypothesis would have to be essentially zero, too. If they are both zero, 
then the entire approach becomes untenable because Bayes Theorem, from which 
Nickerson’s calculations are derived, is indeterminate, with both the numerator and 
denominator approaching zero.

The reader may also have deduced another consequence of the fact that the null 
hypothesis is false, namely P(Data|H0) is meaningless because the “given” is not true. In 
the usual case, therefore, the p value is not only imprecise, it is invalid. It is difficult to 
justify using what is usually a meaningless number to make decisions about data. That is, 
expending scientific effort to answer the question, “Should I believe the null hypothesis 
true?” is a waste of time, time that could be more profitably spent developing methods 
and engaging in data analyses that actually get at the questions of reliability and magni-
tudes of results. Some of these are suggested later.

Finally, a little-discussed issue emanating from the fact that a point null hypothesis is 
always false, is the growing role of power analyses when NHSTs are employed. The 
adoption of such analyses has the admirable motivation to make tests sufficiently power-
ful to avoid problems associated with underpowered tests, such as those outlined by 
Cohen (1990). A standard approach is to determine the minimum N needed to result in a 
20% or less chance of making a Type 2 error, given a specified effect size (often 0.5 
standard-error units). The 20% criterion is what should be at issue. Why not a 1% chance, 
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or even less? The view that there are no Type 1 errors (i.e., the null hypothesis is always 
false) means that the only possible error is of the Type 2 sort.

Side effect 5: NHST promotes confusion of actuarial and behavioral 
science

This is the most subtle of the side effects, and to my knowledge has not been discussed 
before. Consequently, it is the one to which most attention will be directed in this review 
because consideration of it reveals not only a common confusion, but also points to ways 
of making psychology a cumulative and more effective science.

The popularity of NHSTs may rest to some degree on the fact that in most instances 
group means are compared. The means are from random samples from a population, and 
once a sample mean and its variance have been computed, inferences can be made about 
the population mean. What could be more general than something that applies to an 
entire population? That apparent generality is illusory, however, at least for a psycholo-
gist who is interested in understanding mind or behavior. As just noted, the mean from a 
sample provides an estimate of the mean of the entire population from which the sample 
is drawn, and that estimate can be bounded by confidence intervals that provide informa-
tion—not the probability that another sample mean will fall in that interval (Cumming & 
Maillardet, 2006; Smithson, 2003)—as Nickerson (2000) states clearly, “A common 
misinterpretation of a confidence interval of x% around a statistic (e.g., sample mean) is 
that the probability is x that the parameter of interest (e.g., population mean) lies within 
the interval” (p. 279). To clarify, suppose 1000 iterations of a two-condition comparison 
were conducted yielding 1000 differences in means, and each provides a 95% confidence 
interval (CI). The population difference is not a random variable, so it is either within or 
outside any particular CI. A common misconception is that a single CI (e.g., the first one 
computed) is the range in which about 950 of the next 1000 sample-mean differences 
would fall. The correct interpretation is that the population mean would be captured by 
about 950 of the intervals. The sample mean, nevertheless, provides information about a 
parameter that applies to the entire population, so generality appears maximized. This 
raises two important issues.

First, there is the question of representativeness of the means with respect to the indi-
vidual values that are used to compute the mean. Specifically, identical or similar means 
can result from substantially different distributions of scores. Two examples that illus-
trate this fact are given in Figures 1 and 2.

In Figure 1 (from Cleveland, 1994), four distributions of 20 scores are arrayed hori-
zontally in the upper panel. The four plots in the lower panel show, with the top plot 
corresponding to the top distribution in the upper panel, and so on, the means (solid 
points) and standard deviations (bars) of the four distributions. The graphs show that 
identical means and standard deviations, the bases of most inferential statistics, can be 
obtained from very different distributions of values. This implies that when dealing with 
averages of measures, or averages across individuals, attention ought to be paid to the 
representativeness of the mean, not just its value and standard deviation (or standard 
error). Figure 2 contains what is known as Anscombe’s Quartet (Anscombe, 1973), and 
it provides an even more dramatic illustration of how focusing only on the averages of 



264 Theory & Psychology 24(2)

sets of numbers can lead one to miss important features of that set. The four graphs in 
Figure 2 show plots of 11 values in x/y coordinates, and also show the best fit (via the 
method of least squares) straight line. The distributions of points are quite different in the 
four sets. Yet the means for the x values are all the same, as are their standard deviations. 
The same is true for the y values (yielding eight instances of the sort shown in Figure 1). 
In addition, the slopes and intercepts of the straight lines are identical for all four sets, as 
are the sums of squared errors and sums of squared residuals, and all four yield the same 
correlation coefficient describing the relation between x and y. They are essentially iden-
tical in terms of common statistical analyses, but our eyes tell us otherwise.

The point of these illustrations is to indicate that a sample mean is not necessarily a 
good indicator of the generality across measures from individuals, which presumably is 
often the sort of generality in which a psychologist is actually interested. When the meas-
ures come from individual people (or other kinds of animals), it follows that the average 
from the group may not reveal, and may well conceal, much about individuals. Sample 
means from a group of individuals permit inferences about the population average, but 
these means do not permit inferences to individuals unless it is demonstrated that the 
mean is, in fact, representative of individuals. Surprisingly, it is rare in psychology to see 
the issue of representativeness of an average even mentioned, although recently, in the 
domain of randomized clinical trials in medicine, the limitations attendant to group aver-
ages have been gaining increased mention (e.g., Goodman, 1999; Kent & Hayward, 
2007a, 2007b; Morgan & Morgan, 2001; Penston, 2005; Williams, 2010).

Figure 1. Upper panel:  Four horizontal dot plots of 20 values.  Lower panel: The 
corresponding means and standard deviations of the dot-plot distributions. (Reprinted from 
Cleveland, 1994, p. 215, with permission).
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The apparent generality promoted by group averages is an illusion because population 
means are, for lack of a better term, actuarial, not psychological, data. In psychology 
they are derived from behavioral data, but unless they are shown to be representative 
they can be quite misleading about generality across individuals. A confusion may arise 
here, occasioned by the use of the word “representativeness.” In statistical analyses, a 
sample is representative of some population or subpopulation if it was randomly drawn 
from that population. That is not the meaning intended here where it refers to the degree 
to which a mean is depictive of individual measures summarized by the mean.

Therefore, widespread application of NHSTs has led to a field with two separable 
subject matters, behavior or mind and actuarial prediction (i.e., a science of population 
parameters). The argument here rests on the view that mind and behavior have meaning 
only at the level of an individual, not at the level of a group mean. It is meaningless (or 
at least boggles the imagination) to speak of group, or shared, mind. Your mind is yours, 
and it does not leak into anyone else’s.

There are instances in which the difference between a population parameter, like the 
population average, and the activity of an individual is obvious. For example, suppose 
the average rate of pregnancy in women between 20 and 30 years of age is 5%. That, of 
course, is a useful statistic that can be used to predict how many women in that age cat-
egory will be pregnant. More important for present purposes, however, is that the value, 

Figure 2. Anscombe’s quartet.  Each of the four graphs shows 11 x-y pairs and the best 
fitting straight line through the points.  All standard statistical indicators, e.g., slope, intercept, 
distribution means and variances, etc. are identical for the four. (Reproduced from Anscombe, 
1973, pp. 19-20, with permission). 
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5%, applies to no individual woman. That is, no woman is 5% pregnant. A woman is 
either pregnant or she isn’t.

But what of situations in which an average is representative of the behavior of indi-
viduals? For example, suppose that a particular teaching technique results in a 10% 
increase in performance on an examination, and that the improvement is at or near 10% 
for every individual. Is that not a case in which a group average would permit estimation 
of a population mean that is, in fact, a good descriptor of the effect of the training for 
individuals, and because it applies to the population, has wide generality? The answer is 
yes and no.

It is “yes” because the representativeness (that is, the degree to which the average is a 
good description of what an individual will do) of the mean has been established, some-
thing that can be accomplished only by examining the data from the individuals. It may 
also be “no” for a more subtle reason that will be elaborated with an example. Consider 
a situation (modeled after one described by Sidman, 1960) in which a scientist is trying 
to determine the relation between amount of practice at solving 2-digit multiplication 
problems and subsequent speed of solving 3-digit problems in third-graders. Suppose 
that no practice, 10, 50, and 100 problems of practice, are to be compared. After the 
practice, children who have never previously solved 3-digit problems are given fifty 
3-digit problems to solve, and the time-to-complete and accuracy are recorded. Because 
total practice might be a determinant of speed and accuracy, the scientist opts to use a 
between-groups design, with each group being exposed to one of the practice regimens. 
The hope is to extract the seemingly pure relation between amount of practice and later 
speed, uncontaminated by prior relevant practice. The scientist then averages the data 
from each group and uses those means to describe the function relating amount of prac-
tice to speed of solving the new, presumably more difficult, problems. In an actual case, 
there likely would be variability among individuals within each group, so a first issue 
would be how representative the average is of each member of each group. For our 
example, however, assume that the average is perfectly representative (i.e., every subject 
in a group gives exactly the same value). The scientist has generated a function, probably 
one that describes an increase in speed of correctly solving 3-digit multiplication prob-
lems as a function of amount of immediately prior practice. That function allows us to 
predict exactly what an individual would do if exposed to a certain amount of practice. 
Even though the means for each group are representative and therefore permit prediction 
about individual behavior, an important point is that the function has no meaning for an 
individual. That is, that function does not describe something that would occur for an 
individual because no individual can be exposed to different amounts of practice for the 
first time. The function is an actuarial account, not a description of a behavioral process. 
It is, of course, especially to the extent that the means are representative, a useful finding. 
It just is not descriptive of a behavioral/cognitive process in an individual. To examine 
the same issue at the level of an individual would require investigation of sequences of 
amounts of practice, and that examination would have to include experiments that factor 
in the role of repeated practice. Obviously, such an endeavor is considerably more com-
plicated than the study that generated the actuarial curve, but it is the only way to develop 
a science of individual mind or behavior. The ontogenetic roots of mind or behavior 
cumulate over a lifetime.



Branch 267

The point here is not to diminish the value of actuarial, or population-parameter, 
data, nor to suggest that psychologists abandon the collection and analysis of such data. 
If means are highly representative, such data can offer predictions at the individual-
subject level. Even if the means are not particularly representative, organizations like 
insurance companies and governments can and do make important use of such informa-
tion in determining appropriate shared risk or regulatory policy, respectively. Using 
health policy as an example, even though the vast majority of people who smoke ciga-
rettes do not get lung cancer, the incidence of lung cancer, on a relative basis, is substan-
tially greater, on average, in that group. Because the group is large, even a low incidence 
rate yields a substantial number of actual lung-cancer cases, so it is in the government’s, 
and the population’s, interest to reduce the number of people who smoke cigarettes. Be 
that as it may, the point being made here is that in trying to establish a cumulative, ever-
more-accurate science of Psychology that can be effectively applied to individuals it 
will be important to distinguish mental/behavioral accounts from group-mean (actuar-
ial) accounts. The two subject matters are related, but not the same. Some may argue 
that a science of actuarial effects is the best we can do because of the complexity of 
behavior, but subscribing to such an approach, an approach that is almost automatically 
the result of using NHSTs, guarantees that an advance from actuarial to individual pre-
diction will be retarded.

The distinction being drawn between actuarial and psychological data should not be 
confused with the distinction between nomothetic and idiographic analyses (Allport, 
1937), at least as usually conceptualized. Nomothetic processes are those that apply uni-
versally, and many such processes have been discovered using data obtained from indi-
viduals. Examples include developmental sequences (Piaget, 1928), classical-conditioning 
processes (Pavlov, 1927), operant-conditioning processes (Skinner, 1938), and aspects of 
memory (Ebbinghaus, 1885), and many perceptual processes, among others, so there is 
clear evidence that such an approach is not only possible, but can be highly fruitful and 
of considerable generality (Morgan & Morgan, 2001). Many applications of psychologi-
cal knowledge, for example psychotherapy, involve individuals, so the field will be most 
effective practically if findings that apply to individuals serve as the basis for those kinds 
of applications. There are presumably also nomothetic processes that apply to actuarial 
data, but they refer to group-average effects, not necessarily to effects at the individual-
subject level.

How is generality identified if group averages are not the focus? Easy; each studied 
participant in a research project is treated as a separate experiment, that is, an attempt at 
replication (more on this below). The consistency of effects across individuals in each 
condition, and of differences between individuals in differing conditions of a study, obvi-
ously provides direct information on reliability of effects that NHSTs cannot.

Side effect 6: NHST impedes the publication of “negative” results

Although this side effect is related to side effect 3, it is serious enough to merit its own 
treatment. Sometimes this problem is described as biasing the literature. If only effects 
that reach some criterion of statistical significance are published, much important 
research may go unreported. This issue, of course, is related to the NHST’s negative 
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effects on publishing failures to replicate. But it can be a deeper problem. There are 
instances in which so-called negative effects can be vitally important to the growth of a 
science. A classic example is the famous Michelson–Morley experiment (Michelson & 
Morley, 1887). The experiment was conducted to validate the existence of the 
“Luminiferous ether.” Because light had been shown to have wave properties, it was 
assumed that the waves needed a medium, just as water and air provide a medium for 
wave travel, and thus the idea of the luminiferous ether was that there exists in the uni-
verse this medium for light waves. It was reasoned therefore that the speed of light, 
because it is a wave, would differ depending on whether the light was traveling 
“upstream” or “downstream” with respect to the ether. It was also known that the earth is 
traveling at a high speed relative to space, so light traveling in the direction the earth is 
moving would be going upstream as the earth pierced the ether, and downstream in the 
other direction. The main result of the Michelson–Morley experiment is that the speed of 
light was the same no matter what direction it was traveling, that is, a null hypothesis that 
there is no difference in light speed could not be rejected. It turns out this is one of the 
most important discoveries in the history of physics. The fact that the speed of light is 
independent of its inertial frame is the foundation of special relativity theory. Any data-
analysis method that makes difficult the possibility of reporting so-called negative results 
is not good for a science.

Some traditionalists might argue that it is a violation of Fisherian logic to publish a 
result that is not a statistically significant effect, because by that logic the null hypothesis 
cannot be accepted, only rejected. Therefore, not publishing a failure to achieve statisti-
cal significance is justified. That traditionalist must answer the question, then, how does 
one get such a failure published?

If statistical significance is not the criterion, what replaces it? A good, and non-fright-
ening, answer is simple: expert, informed judgment. Failures to replicate and reports of 
“no-effect” need to be evaluated for experimental adequacy. How faithful is the replica-
tion attempt with respect to conditions of the original experiment. Are there any con-
founds? Is the experiment sufficiently rigorous to reduce variability? Does the attempt to 
replicate include internal replications? That is, exactly the same considerations that 
should go into evaluating any study should be applied. Some will balk. By what rules do 
we decide? The answer is also not frightening; it is that there are no fixed, generally 
applicable rules. Relying on expert judgment and experience served science well for 
centuries, and, as noted above, brings the appropriate social influences to bear. There is 
no reason that it cannot be so again for Psychology. Given that significance testing has 
provided no real advantages, and has yielded several important disadvantages (the “side 
effects”), a return to methods that rely on demonstrations of rigor and replication surely 
would not retard the development of psychological knowledge. Slavish adherence to a 
fixed, but deeply flawed, set of rules and conventions can only continue the problems.

Side effect 7: NHST inhibits the range of experimentation

This last side effect seems modest in scope, but it is insidious. In standard practice, 
NHSTs require that experiments be based on more or less formal hypotheses. That is too 
restrictive. There are many very good reasons to conduct experiments other than to test 
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hypotheses. Among them are examining the boundary conditions for a phenomenon, 
developing a new method, seeing if a phenomenon exists, characterizing the parameters 
of a phenomenon (e.g., determining if the relation between an independent and depend-
ent variable is linear or logarithmic, information that could be crucial for theory genera-
tion), as well as testing hypotheses. Shoe-horning all experiments into a hypothesis-testing 
framework can limit the range of experimentation and therefore retard the advancement 
of science. Of course, some pay only lip service to the requirement for a hypothesis. 
Most have read papers that make it clear that the hypotheses were generated after the 
results had been obtained. Nevertheless, even hypotheses invented post hoc may serve to 
constrain thinking about the ramifications of research results.

It is not uncommon to see a grant application criticized because of a lack of hypoth-
eses. That is, there is a trained generation of scientists who think that hypotheses are 
essential to good experimentation. It is difficult to believe, given that the history of great 
science is filled with experiments that were not based on hypotheses, that training in 
NHST has not contributed to the narrow view.

Some of the most important experiments in science have come from the “I wonder 
what would happen if …” approach. Some have even christened this approach “curiosity 
driven” science to contrast it with “hypothesis driven” science (e.g., Committee on 
CMMP 2010, 2007, p. 51). Reasons to conduct useful research therefore abound. It is 
well to remember the dictum, “Hypotheses non fingo” (I hold no hypotheses). That was 
the advice of Isaac Newton, perhaps anticipating research on experimenter bias 
(Rosenthal, 1966; Rosenthal & Fode, 1963). Most would agree that Newton was a scien-
tist with more than a modicum of success.

Some recommendations for change

What can be done to rectify the many problems associated with NHSTs? Some have been 
mentioned in the foregoing, but the key locus for effecting changes lies in journal and 
grant reviewing. Peer review is one of the most important functions in science, so it cer-
tainly should not be grounded in a misconception. Editors could (and should) make it 
clear to reviewers that results need not be analyzed by conventional NHST methods to 
merit publication. Clear and tellingly tragic examples of the requirement of statistical 
significance exist in the health-care literature, where indications of lethal side effects of 
drugs, indications that did not reach statistical significance, have been ignored (exhibit-
ing an all too common practice of equating lack of statistical significance with lack of 
effect; see for example, Nieuwenhuis, Forstmann, & Wagenmakers, 2011) only later to 
have been discovered to be real effects that resulted in numerous deaths (Ziliak & 
McCloskey, 2008). A fundamental issue to which reviewers should therefore direct ini-
tial attention is whether there is direct evidence that the effects seen are reliable. As noted 
by Thompson (1996) “If science is the business of discovering replicable effects, because 
statistical significance tests do not evaluate result replicability, then researchers should 
use and report strategies that do evaluate the replicability of the results” (p. 29). How 
compelling those indicators are, of course, will be influenced by what reviewers see as 
the rigor, importance, novelty, etc., of the research, as well as the sizes and consistency 
(across individuals) of effects. Nevertheless, it can be judged if the methods are suitably 
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rigorous and effects are of sufficient absolute, or statistical, magnitude to be worthy of 
additional consideration. It is completely clear that p values from NHSTs provide no 
information on these counts that cannot be determined from the data themselves, so 
reviewers will be asked to render expert judgment about whether the data provided indi-
cate that the results are likely reliable (either at the individual or group-mean level, 
depending on whether research is cognitive/behavioral or actuarial), or worth getting 
into the literature so that replications will be attempted. What the requisite evidence will 
be will presumably vary depending on the phenomenon under study, thus making it espe-
cially important that reviewers have expertise in the relevant research domain. If signifi-
cance tests were not used, researchers could report results that they consider important, 
and no one would automatically assume, on the basis of flawed logic, that the result had 
some probability of being reliable. That might very well lead, if others were also inter-
ested, in attempts to replicate the effect, thus achieving what significance testing cannot, 
an assessment of replicability. Focusing directly on reliability, therefore, would lead to 
more attempts to assess it within studies and across studies. It is hard to see how that 
could be bad for science.

In some cases, such as within-subject baseline-reversal (aka ABA) designs, repli-
cations are built in (see Branch & Pennypacker, 2012, for examples). In others, where 
a range of values of an independent variable is examined, orderliness of the relation-
ship between independent and dependent variables provides evidence about the likeli-
hood of successful replications. In most cases, nevertheless, expert judgment about 
the quality of the research, distributional characteristics of the data, and other factors 
will need to be weighed. Statistical significance can be thought of as a crutch used by 
editors and reviewers, but as the foregoing indicates, that crutch is a sham with respect 
to identifying the so-called reality of effects. The apparent, also illusory, objectivity 
of NHST (Berger & Berry, 1988) is outweighed by the misdirection that results from 
its use.

A second avenue should come from those who write introductory texts that are used 
to teach about NHSTs. Berger and Selke (1987) noted over two decades ago that “we 
know of no elementary textbooks that teach that p = .05 is at best [emphasis added] very 
weak evidence against H0.” (p. 114). It is regrettable that this is still the case (although 
some authors are getting closer to revealing the illogic, e.g., Motulsky, 2010).

What of value is likely to be lost if reviewers focus on reliability rather than statistical 
significance as an initial criterion? Most likely, nothing. Will there be an increase in 
publication of unreplicable results? Almost certainly not. Cohen (1990, 1994), Hung, 
O’Neill, Bauer, and Kohne, (1997), and Ioannidis (2005) have shown very high rates of 
publication of unreplicable work. It is hard to imagine that expert, informed judgment 
could do worse.

Some might argue that at least NHSTs provide for an objective approach, and, there-
fore, any replacement needs to be equally objective. It might be “objective” and “stand-
ardized,” but is the production of a usually meaningless number, p, worth the costs? 
Some might argue that any replacement must include use of fixed rules or practices 
based on measures like effect sizes, but that too is unworkable. What constitutes an 
important effect size is going to depend on what the effect is. There is no practicable, 
cookie-cutter approach to deciding about data. Informed judgment is required.
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The lack of replicability of statistically significant effects is increasingly being recog-
nized as a clear negative effect of NHSTs in medical research (Ioannidis, 2005). A shift 
to a focus on evaluating the quality of an experiment, and on direct evidence of reliabil-
ity, would likely result in less unreplicable work being published, not more.

What is also likely to be gained is a re-invigoration of psychological science to its 
stated primary goal, the understanding of mind and behavior of individuals, not being 
limited to the characteristics of population-level phenomena. If NHSTs are abandoned, 
or at least de-emphasized, as a gateway to publication, emphasis will likely be given to 
developing research designs and data-analysis methods that examine reliability directly.

Other useful methods to assess reliability have been suggested by Thompson (1993, 
1994) and Loftus (1996), and they involve examining aspects of the data set. An example 
of that can be provided by performing some thought experiments with the data shown in 
Figure 1. Suppose that 10 is added to each value in the top row, and then the two sets of 
values are compared via a t-test. Ten is the standard deviation of the original distribution, 
so Cohen’s d is 1.0, a so-called large effect. The resulting p value is less than .005, so the 
difference is statistically significant by most standards. What can be concluded, however, 
about how replicable the result is at the level of the individual? One way to do that is 
make all the possible individual comparisons. There are 20 scores in each of the two 
distributions, yielding 400 possible individual comparisons. For our example, the com-
parison will be simply of which of the two scores is larger. The result is that for 235 of 
the 400 comparisons a score taken from the second distribution is larger than a score 
from the original distribution. That is, at the individual level, the direction of the mean 
result is replicated 59% of the time. For that sample, therefore, 59% is a direct estimate 
of replicability of direction of effect at the individual level. (To get 100% replicability, 
about 30 would have to be added to each score.) Additional research on whatever topic 
generated the data could then use that number (59%) for comparison. Other comparisons 
can also be made. For example, the number of comparisons that meet or exceed a differ-
ence of 10 (the mean difference) could be computed relatively easily. That would provide 
an estimate of the representativeness of the mean difference. Note that in this example all 
the features of the distributions are identical, just displaced by one standard deviation.

To illustrate what can occur as a result of differences in distributions, consider what 
happens if we add 10 to each score in the bottom distribution and compare it to the top 
one. Again, all the standard statistical data are exactly the same: a mean difference of 1 
SD, and p < .005. In this case, however, the 400 individual comparisons reveal that a 
score taken from the bottom (remember, shifted +10 to the right) distribution is larger 
than one from the top distribution 173/400 times. Here, individual comparisons show 
that the mean result is replicated only 43% of the time! That is, at the individual level, 
you are more likely not to replicate the mean effect than you are to reproduce it, despite 
the so-called large mean effect of 1 SD. Surely this kind of information is more likely to 
lead to accurate predictions at the individual level than are reports of means and statisti-
cal significance.

A practical issue arises when experiments involve many studied participants. Even 
though the goal is to understand generality across individuals, it is frequently impractical 
to show data from every participant studied. That is not as large a problem as it may 
seem. There are excellent methods for displaying and comparing data from distributions 
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in a minimum of space. For example, Tukey’s (1977) stem-and-leaf plots and box-and-
whisker plots are good examples. With some aggregation, quantile–quantile plots (e.g., 
Cleveland, 1994) can provide for illuminating comparisons. In addition, showing data 
from representative individuals is a time-honored tradition in the biological sciences, of 
which psychology is one. (Some might object that this could lead to so-called cherry 
picking, but that can be minimized by provision of criteria for selection.)

Another thorny, practical issue is that for many investigations in psychology it is dif-
ficult, if not impossible, to decide whether an effect size is worth pursuing. That occurs 
because the dependent variable has no fixed standards against which to judge it. 
Common among these kinds of measures are scores from rating scales or psychological 
tests, both of which are ubiquitous in psychology. For example, without NHSTs how is 
one to judge whether a rating of 5.2 on a 7-point Likert scale is scientifically or practi-
cally significantly different from 4.8? There are several approaches that can be used, 
depending on from where the two ratings came. Determining reliability is straightfor-
ward. If they are from two different items on a set of ratings, or from the same item on 
multiple occasions (e.g., before and after a treatment) then the first issue would be how 
representative the scores, and the difference between them, are for the several to many 
studied participants in the research, both with respect to absolute value and direction of 
the difference. Note that both of these indicators of reliability refer to activity at the 
level of the individual. If the ratings are from different groups, standard methods of 
comparing the distributions (e.g., like those developed by Tukey, 1977) can be employed 
to examine reliability at the group level. Once the reliability of the effect has been 
assessed and deemed convincing enough for further evaluation the problem gets more 
difficult, however. The meaning of the ratings needs to be assessed in some manner. For 
some psychological tests, a degree of meaning has been determined empirically. For 
example, certain scores on the Beck Depression Inventory have been related to the like-
lihood of attempted suicide (Brown, Beck, Steer, & Grisham, 2000; although only at the 
group-mean level). Suicide attempts are a countable entity, so the score can be related 
to (at least on average) countable episodes. For rating-scale data to be interpreted scien-
tifically, they need to be related to real psychological outcomes (Baumeister, Vohs, & 
Funder, 2007). That is, they have to have size.

Final observations

A final argument for the retention of NHST is that it provides for uniformity of commu-
nication across experiments, research domains, and disciplines. That would be a logical 
defense if it were not for the fact that ordinarily what gets communicated is misinforma-
tion, most commonly about presumed reliability of findings. But, as has been made 
abundantly clear many times, p values do not provide information about reliability. That 
fact, coupled with the side effects summarized in this paper, argues strongly against the 
idea that a common language, based on NHSTs, provides a benefit to science. Science 
should be based on accurate information, not misinformation or what is at best relatively 
useless information.

Psychology as a scientific discipline can be seen as wallowing, perhaps slowly disin-
tegrating. The American Psychological Association currently has 59 divisions, most of 
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which are completely independent of one another scientifically. They share no core of 
knowledge (except, ironically, how to employ NHSTs), the kind of knowledge that is 
generated by cumulative, evolving science. The typical introductory text has about 20–
25 chapters, each of which can be read pretty much independently of any of the others. 
The order of topics, which is dictated more by tradition than logic (if the organization 
mimicked that of other, more mature and integrated sciences, it is likely that the basic 
psychological phenomena would appear first, and the reductionistic analyses of them 
would occur later), does not generally reflect any accumulation, refinement, or integra-
tion of knowledge. Instead, a student comes away with the view that there are many 
interesting things that psychologists study, but that they are pretty much unrelated. In my 
own department, which I believe to be typical in its training of students, there is not a 
single, substantive psychological fact or set of facts that every graduate student must 
know. A student can complete our graduate program without learning anything at all 
about basic learning processes, or basic sensory and perceptual processes, or memorial 
and other cognitive processes, or developmental processes, or social processes, or 
approaches to personality, and so on. Students, as in most graduate programs, can pick 
and choose among a few courses on those (and other) topics to provide them presumed 
breadth. But the only training every student must have is in NHST. I sometimes like to 
say, only partly in jest, that current graduate training in Psychology emphasizes learning 
a set of methods from which no basic facts (that is, facts that every psychologist should 
know) have emerged!

I am arguing that this state of affairs has developed because of the reliance on NHSTs 
as the dominant method for analyzing data and for deciding if results merit publication, 
thus retarding the development of cumulative, evolving, integrated knowledge. NHSTs 
have assumed this role in research to a large degree because their results are misunder-
stood by a majority of practicing psychologists, who mistakenly presume that statistical 
significance provides a quantitatively precise estimate and therefore protection against 
error. NHST simply does not do that, and, as emphasized in this treatise, it has led to 
practices that have retarded the development of the field of Psychology. For Psychology 
to progress, NHSTs will have to be de-emphasized and replaced by methods for assess-
ing reliability and significance directly. As noted earlier, that has to start with editorial 
practices. Those who appreciate the negative impact of NHSTs and who also ascend to 
editorships can exercise top-down influence by urging their cadres of reviewers to de-
emphasize NHSTs. Those who serve as reviewers can exert bottom-up, so-called grass-
roots, influence by suggesting that authors provide direct information about reliability, 
for example by illustrating the representativeness of group-averages. Combination bar 
and dot plots (replacing the ubiquitous standard error of the mean, which provides infor-
mation about the population mean) are an excellent first step in providing evidence of 
reliability across subjects.

Using statistical significance as a pre-requisite for publication is simply a scientifi-
cally destructive ritual. It is time to move toward evidence-based methods, given that the 
evidence about the scientific irrelevance, and counter-productiveness, of NHSTs is clear, 
even to the lay press (e.g., Siegfried, 2010). Once editorial approaches are altered, it will 
likely be easier to implement instruction in data analysis to emphasize use of and devel-
opment of methods that illuminate reliability, representativeness at the level of the 
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individual, and absolute magnitudes of effects. Failing to do so will permit the current 
trajectory of the disintegration of the field to continue.
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