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1.1 Introduction

1.1.1 Probe shapes and probe characteristics

Measurements with electric probes belong to the oldest as well as to the most often used
procedures of the low-temperature plasma diagnostics. The method has been developed by
Langmuir and his co-workers in the twenties [1]. Since then it has been subject of many ex-
tensions and of further developments in order to extend its applicability to problems with more
general conditions as those presumed by Langmuir. Such investigations proceeded continu-
ously and the research on extension of applicability of Langmuir probe diagnostics continues
in the present time, too.

The method of the Langmuir probe measurements is based on the estimation of the current-
voltage characteristics – the so-calledprobe characteristics– of a circuit consisting of two
metallic electrodes that are both immersed into the plasma under study. Two cases are of
interest:

(a) the surface areas of both the electrodes being in contact with plasma differ by several
orders of magnitude, and

(b) the surface areas of both the electrodes being in contact with plasma are very small in
comparison with the dimensions of the vessel containing plasma and approximately equal
to each other.

Case (a) is calledthe single probe method, case (b)the double probe method. Most of this
text is devoted, in accordance with the frequency of use of either method, to the single probe
method; the double probe method is discussed in section 1.10.

The Langmuir probe is usually constructed in simple geometric shapes: spherical probe,
cylindrical probe and planar (flat) probe, see Fig. 1.1. When constructing the probe we have
to take into account that not only the active metallic part, i.e., the collecting surface of the
probe, has to be small in comparison with the characteristic dimensions of the plasma vessel.
The isolated parts of the probe must fulfill the same condition since often just these passive
parts substantially influence the plasma around the probe .



2 1 Langmuir probe diagnostics of low-temperature plasmas

U �UO �U
S

SSS

Figure 1.1: Typical shapes of Langmuir probes .

A simple experimental set-up for measurements of probe characteristics is shown in Fig.
1.2. Apart from the direct current (dc) high-voltage power supply that feeds the glow discharge
and the stabilizing resistorZa (thedc supply can also work in the constant-current mode) the
experimental system consists of the following parts:

1. a dc voltage source for compensation of the potential difference between the reference
electrode (anode) and the probe,

2. a sawtooth- or staircase-like voltage generator,

3. a current measuring instrument, and

4. a computer that stores the measured current and voltage data, controls the measurement
procedure and processes the acquired data.

Let us assume that the probe potentialϕp differs from the plasma (space) potentialϕs at
the place where the probe is located byUp = ϕp−ϕs 6= 0. In such a case the electric field that
arises between the plasma and the probe surface accelerates the charged particles with one sign
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Figure 1.2: Typical probe circuit. 1dc bias voltage, 2 sawtooth or staircaseUp generator, 3 current–
voltage converter, 4Ip − Up data acquisition (computer).
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Figure 1.3: Typical course of the probe characteristicsI(ϕp) (left scale) with its second derivative
I ′′ ≡ d2I/dϕ2

p (right scale).

and repels those with the opposite sign. Since the charged particles have thermal energy that
randomizes their movement this process finishes with the creation of a space charge sheath
around the probe which shields the plasma from the electric field of the probe. A simplified
physical model of such a probe assumes that the space charge sheath has a finite thickness.
This means that the influence of the electric field extends only up to a certain distance from
the probe and that the plasma farther away from the probe is perfectly shielded. The thickness
of the probe sheath (rp − rs) is of the order of the so-called Debye length (λD). The Debye
length for the electrons can be obtained from the well known formula (see also chapter??)

λD =

√
ε0kBTe

q2
0ne

, (1.1)

whereTe is the electron temperature,ne the concentration of the electrons,ε0 the permittivity
of the vacuum,kB the Boltzmann constant, andq0 the elementary charge. The thickness of
the probe sheath at moderateUp actually is several timesλD and increases with increasingUp.
If the potential of the probe surface is changed with respect to the space potential the probe
current changes too, and finally the probe characteristics will be obtained. A typical course of
the probe characteristics is shown in Fig. 1.3.

Three regions can be clearly distinguished in the course of the probe characteristics. As-
suming that no negative ions exist in the plasma the probe current consists of the electron and
the positive ion current. The three regions of the probe characteristics are characterized by:
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I. Up ≤ 2Ufl → | Ipi/Ipe | À 1 Positive ion acceleration region

II. 2Ufl < Up < 0 → | Ipi/Ipe | ≈ 1 Transition region

III. 0 ≤ Up → | Ipi/Ipe | ¿ 1 Electron acceleration region

In the ion acceleration region (sometimes called ion saturation region since the ion current
is close to saturation) an almost pure positive ion current flows to the probe. At the floating
potential the electron and the positive ion current compensate each other and the total probe
current equals to zero. For positive probe voltages the electron current dominates the probe
current; the probe operates in the electron acceleration region. If the probe immersed into
plasma is not connected to the outer circuit, and therefore it cannot carry the current, then
the probe is negatively charged with respect to the plasma potential. This takes place since
the electrons (even at the same temperature like positive ions) have a much higher thermal
velocity due to their much lower mass (typically for argon is the square root of the mass ratio
around 300). The more negative potential of the probe, in consequence, attracts more positive
ions, and this process continues until the electron and the positive ion current components
equal each other; the floating potential is established on the probe.

The contact of the plasma and the probe surface, i.e. the contact of two basic states of
aggregation of matter causes the creation of a largely inhomogeneous transition region close
to the probe surface which is very difficult to describe. Characteristic for this transition region
are the space charges and high electric fields. The theoretical description of this region is
coupled with substantial difficulties.

With the help of a theoretical description of the relation between the probe current and the
probe voltage it is possible to determine the basic parameters of the surrounding plasma. In
such a way we can determine the density of the electronsne and of the positive ionsni, the
electron temperatureTe or the electron velocity (energy) distribution functionfe(~w,~r) as well
as the space potential at the place where the probe is located. The theory of the probe method
will actually be confronted with all the problems connected with the contact between plasma
and solid surface. The importance of the probe theory therefore reaches far behind the borders
of probe diagnostics.

1.1.2 The working regimes of the Langmuir probe

In order to characterize the different regimes of operation of the Langmuir probe we introduce
the following parameters:

• the characteristic dimensionrp of the probe,

• the mean free pathλν of a particular charged particleν = e, i (e, electron;i, ion),

• the Debye screening lengthλD (Eq. 1.1), and

• the plasmaanisothermicity parameterτ = Te/Ti, i.e. the ratio of the electron tempera-
ture to the ion temperature.
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The following part restricts at first to the presentation of the theoretical foundations of the
classicLangmuircollisionlesssingle probe theory. The adjectivecollisionlessrepresents the
assumption posed by Langmuir that the mean free path of charged particles is much greater
than the characteristic dimension of the probe:λν À rp. Assuming this three working regimes
of the probe we have to distinguish:

1. λν À rp À λD collisionless movement of charge carriers in the thin sheath,

2. λν À λD À rp collisionless movement of charge carriers in the thick sheath,

3. λD À λν À rp collision determined description of the probe current.

The case of the so-calledcontinuum probeworking regime, when the conditionλν ¿ rp is
fulfilled, shall not be discussed here.

1.1.3 Advantages and disadvantages of probe diagnostics

The most important advantages of probe diagnostics in comparison to other diagnostic meth-
ods can be found in the following attributes:

• The technical complexity of the probe method implementation is comparatively small.
Also, the necessary experimental set-up for the probe measurements is comparatively
simple.

• From the probe data it is possible to determine the time and spatial distribution of quite a
large variety of quantities characterizing the plasma under study (i.e.,ne, ni, Te, fe, ϕs,
~E, etc.).

The spatial resolution of the probe method is of the order of the magnitude of the Debye
length λD. The temporal resolution may be estimated from the plasma frequencyω of a
charged particle with massm

ω =

√
q2
0ni

ε0m
, (1.2)

it is approximately given by2π/ωi, whereω = ωi is the plasma frequency for an ion of mass
m = mi.

The disadvantages of the probe method are the following:

• The probe data processing method (aiming at the determination of the plasma parameters)
depends on the parameters being measured.

• The plasma surrounding the probe is disturbed by the drain of the charge carriers to the
probe.

• The presence of the probe in the plasma can initiate inhomogeneities in the plasma.

• The application of the probe method is difficult or even impossible in a plasma containing
fluctuations, oscillations and waves.
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• It is very difficult to assess the effect of the secondary- and photo-emission of electrons
from the probe surface as well as the effect of reflection of charge carriers from the probe
surface.

• The heavy particles can cause the creation/destruction of thin films on the probe surface
during the course of measurements which change the properties of the probe surface, this
making the interpretation of the probe data difficult or impossible.

• The fact that the probe is in direct contact with the plasma under study restricts its use
substantially to the (non-thermal or thermal) low-temperature plasma. The use of probes
for the diagnostics of plasma in high-temperature plasma devices such as tokamaks is
restricted to peripheral parts of the plasma, the so-called scrape-off layer (SOL).

1.2 The Langmuir single probe method

1.2.1 Theoretical foundations of the Langmuir probe method

The range of the conventional Langmuir probe theory covers the conditions of the collision-
less movement of charge carriers in the space charge sheath around the probe. Further it is
assumed that the sheath boundary is well-defined and that behind this boundary the plasma
is completely undisturbed by the presence of the probe. This means that the electric field
caused by the difference between the potential of the probe and the plasma potential at the
place where the probe is located is limited to the volume inside the probe sheath boundary and
does not penetrate it.

Assuming that the velocity distribution functionfν of a charged particleν (ν = e, i) at
the surface area of the probe sheath is known, we can obtain the following expression for the
number of charged particles passing the surface area elementdAs of the sheath boundary per
unit of time:

dIνs = dAsdjνs = dAsqνnνwzfν(wx, wy, wz)dwxdwydwz . (1.3)

Here qν is the charge andnν the density of the charged particleν, jνs its current density
at the sheath boundary, andwz, wx andwy are the velocity vector components perpendicular
respectively parallel to the surface area elementdAs. If the distribution functionfν is isotropic
and the surfaceAs is not concave, then the contribution of each surface element is independent
of its orientation in space. In such a case the total current can be obtained by simple integration
over the surface elementsdAs.

For a certain probe potential the fraction of particles that fall on the probe surface without
passing it can be determined by the choice of proper integration limits. In general we have

Ipν = Asqνnν

wx2∫

wx1

wy2∫

wy1

wz2∫

wz1

wzfν(wx, wy, wz) dwxdwydwz . (1.4)

In the case of the spherical probe it is advantageous to transform the cartesian velocity coor-
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dinateswx, wy, wz into spherical coordinatesw, ϑ, ϕ,

Ipν =
Asqνnν

4

w2∫

w1

4πw3 fν(w)
[
sin2 ϑ2 − sin2 ϑ1

]
dw . (1.5)

1.2.2 Probe characteristics – example of the spherical probe

1.2.2.1 Probe current atqνUp ≥ 0

As an example for the calculation of the current to a Langmuir probe the case of a spherical
probe shall be examined. Fig. 1.4 enlightens the movement of a charged particle in the
retarding field (i.e., forqνUp ≥ 0) of a spherical probe. whereϑ is the incident angle of
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Figure 1.4: Model trajectory.

the particle with respect to the surface normal,~w its incident velocity into the space charge
sheath, andrp andrs are the probe and sheath radii, respectively. It is assumed that a particle
that enters the space charge sheath moves collision-free in the central field of the probe. Its
movement is then governed by two laws of conservation, namely that of energy and that of
angular momentum. For the particles that fall on the probe surface the condition

sin ϑ ≤ rp

rs

(
1− 2qνUp

mνw2

) 1
2

(1.6)

holds, from which the following limits of integration can be derived

ϑ1 = 0 and sin ϑ2 =
rp

rs

(
1− 2qνUp

mνw2

) 1
2

≥ 0 (1.7)

and

w1 =
(

2qνUp

mν

) 1
2

and w2 = ∞ . (1.8)
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Hence the probe currentIpν of the particleν is obtained by the integral

Ipν =
Asqνnν

4

∞∫

q
2qν Up

mν

4πw3fν(w)
(

rp

rs

)2 [
1 − 2qνUp

mνw2

]
dw . (1.9)

Assuming that the velocity distribution of the charged particleν is Maxwellian this relation
after a few manipulations can be simplified to

Ipν =
Apqνnν

4
wν exp

(
− qνUp

kBTν

)
, (1.10)

where

wν =
(

8kBTν

πmν

) 1
2

(1.11)

andAp = 4πr2
p. The same equation is obtained for the planar probe and for the cylindrical

probe (in these casesAp denotes the surface area of the collecting probe plane or cylinder,
respectively).

The temperatureTν of the charged particlesν is obtained from the derivative (slope) of
the probe characteristics in the respective retarding voltage range on a semi-logarithmic scale,
i.e., as

Tν = − qν

kB

d

dUp
ln

(
Ipν

Ipν0

)
. (1.12)

The charged particle densitynν can be estimated from the probe currentIpν0 at the space
potential (Up = 0), provided the space potential is known and that it is possible to separate the
current contribution of the particleν from the total probe current. The corresponding relation
obtained from Eq. 1.10 is

Ipν0 = Apqν
nν

4
wν (1.13)

from whichnν is obtained as

nν =
4Ipν0

Apqνwν
. (1.14)

We have to keep in mind, however, that we only are able to measure the total probe current. In
the transition region II (see section 1.1.1) between the positive ion acceleration region I and the
electron acceleration region III both, electron and positive ion current, are comparable to each
other. In order to separate these contributions from each other one can use several procedures,
e.g., one can extrapolate thesaturatedpositive ion current to the space potential in a linear
manner and subtract this positive ion current component from the total probe current. ¿From
this consideration it also follows that only for electrons it is possible to estimate the particle
temperatureTν from the relation 1.12, but not for ions except under very special operating
conditions.
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1.2.2.2 Probe current atqνUp ≤ 0

In a manner similar to the procedure above we can derive, forqνUp ≤ 0 and with the help of
the energy and angular momentum conservation laws, the integration limits forϑ andw for
particles which fall on the probe surface at a given probe potential. In analogy to Eqs. 1.7 and
1.8 we get

ϑ1 = 0 and sin ϑ2 =
rp

rs

(
1− 2qνUp

mνw2

) 1
2

≤ 1 . (1.15)

With the collected particle velocities now in the rangew1 = 0 to ω2 = ∞ we can distinguish
2 cases: for0 ≤ w ≤ w∗ we getsin ϑ2 = 1, while for w ≥ w∗ expression 1.15 holds. By
substituting these limits into equation 1.5 for the probe current we obtain

Ipν =
Asnνqν

4





w∗∫

0

4πw3fν(w)dw +

∞∫

w∗

4πw3fν(w)
r2
p

r2
s

(
1− 2qνUp

mνw2

)2

dw



 , (1.16)

where

w∗ =
{−2qνUp/mν

[
r2
s/r2

p − 1
]} 1

2 . (1.17)

For the velocity interval0 ≤ w ≤ w∗ the probe acts as a collector with an effective collecting
area that is larger than the true surface areaAp of the probe. For charged particle velocities
w ≥ w∗ a part of the charged particles which entered the probe sheath passes by the probe
and is not collected by the probe (so-called orbital motion limited current, OML). Assuming
a Maxwellian velocity distributionfν(w) we obtain from (1.16)

Ipν =
nν

4
qνwνAs


1−

(
1− r2

p

r2
s

)
exp


 qνUp

kBTν

(
r2

s

r2
p
− 1

)




 . (1.18)

On condition that

−kBTν

qνUp

(
r2
s

r2
p

− 1
)
À 1 (1.19)

we get from the above relation

I(s)
pν

= qν
nν

4
wνAp

{
1− qνUp

kBTν

}
(1.20)

for the spherical probe, and

I(c)
pν

= qν
nν

4
wνAp

{
1− qνUp

kBTν

} 1
2

(1.21)

for the cylindrical probe. For the planar probe we obtain a current that is independent of the
probe potential,

I(p)
pν

= qν
nν

4
wνAp . (1.22)

While the evaluation of the relations 1.20–1.22 provides usable results for electrons, this does
not hold for ions. A more detailed analysis of the transition region between the undisturbed
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non-thermal plasma and the region of the space charge sheath was performed by Bohm [2]. He
showed that the sheath screens the electric field from the probe imperfectly, i.e., arestpotential
kBTe/(2q0) (Bohm criterion) remains. Thisrest potential is screened by the so-called pre-
sheath that spans from the probe sheath to infinite distance. For this reason the positive ions
entering the probe sheath do not have room temperature as in an undisturbed plasma, but are
accelerated in the pre-sheath, their temperature being determined by the temperature of the
electrons.

1.3 General theories of the current to a Langmuir probe

1.3.1 Starting system of equations

The general theoretical description of the current to a Langmuir probe requires the simultane-
ous solution of the following fundamental equations

• the Poisson equation

• the collision-free Boltzmann (Vlasov) equation and

• the continuity equation

with regard to the respective boundary conditions at the probe surface and in the plasma. At
a larger distance from the probe such solution must be identical to the solution which corre-
sponds to the undisturbed plasma. At the probe surface the boundary conditions are deter-
mined by complex processes of the plasma-wall interaction. The starting system of equations
reads:

div ~E =
q0

ε
(ni − ne) , (1.23)

~wνgradfν +
qν

mν

~E gradwfν = 0 , (1.24)

div(~je + ~ji) = 0 (1.25)

with the normalizing conditions
+∞∫

−∞

+∞∫

−∞

+∞∫

−∞
fν(wx, wy, wz)dwxdwydwz = nν ; ν = i, e . (1.26)

The simultaneous solution of this set of equations presents a very complicated problem which
can be solved only numerically and by using substantial computational effort. If the method
of solution takes into account the redistribution of charges induced by the change of the probe
potential and consequently of the probe current, such a solution is called self-consistent. Such
a self-consistent solution of this integro-differential system of equations was firstly stated by
Bernstein and Rabinowitz under the assumption of a monoenergetic ion energy distribution
[3]. This solution was developed further by Laframboise who assumed a Maxwellian ion
energy distribution [4]. A simplified model for the calculation of the ion current was developed
by Allen, Boyd and Reynolds [5]. Since this model is one of the most often used theories for
the interpretation of the probe data it shall be explained in more detail in the following section.
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1.3.2 Thecold ionmodel by Allen, Boyd and Reynolds (Ti/Te = 0)

The starting system of equations of this model [5] consists of the Poisson equation, the simpli-
fied ion energy balance, the Boltzmann distribution of the electron density and the continuity
equation. Assuming spherical symmetry such a system of equations can be written as:

Poisson equation :
1
r2

d

dr

(
r2 dU

dr

)
= −q0

ε
(ni − ne) , (1.27)

ion energy balance :
1
2
miw

2
r = −q0U , (1.28)

Boltzmann distribution : ne = ne0 exp
(

q0U

kBTe

)
, (1.29)

continuity equation :
1
r2

d

dr
(r2jir) = 0 with 4πr2jir = Ipi . (1.30)

It is usual to introduce dimension-less variables, i.e., variables that are normalized with re-
spect toreasonableor representativevalues of each variable. Allen, Boyd and Reynolds [5]
introduced the normalized variables as follows:

η =
q0U

kBTe
; ηp =

q0Up

kBTe
; (1.31)

ξ =
r

λD
; ξp =

rp

λD
; (1.32)

ii =
Ipi

Ini

; Ini = 4πr2
pne0q0

{
kBTe

2πmi

} 1
2

. (1.33)

Using these variables the Poisson equation 1.27 reads

d

dξ

(
ξ2 dη

dξ

)
= ξ2 exp(η)− ξp

ii
2
√−πη

. (1.34)

The solution of this equation proceeds in such a way that for largeξ it converges to the so-
called plasma solution. The plasma solution is obtained by setting the left-hand side of the
equation 1.34 equal to zero. Forη → − 1

2 the derivative increases to infinity,dη
dξ → ∞. This

result is known as the Bohm sheath criterion [2]. From the solution of the differential equation

η = η(ξ, ξp, ii) (1.35)

follows the mutual relation between the three quantitiesηp, ξp andii. The results are available
in the form of tables, graphical representations and analytical approximations. In the follow-
ing section the method of estimation of the positive ion density from the ion probe current
on the basis of the described cold ion model by Allen, Boyd and Reynolds shall shortly be
outlined. Since the normalized ion currentii depends onξp which in turn depends on the ion
density to be estimated the first possibility is the iterative procedure. For the selected pair of
valuesIpi andηp (in other words the electron temperature has to be determined first) on the

measured probe characteristics we have to estimate (the first approximation of)ξ
(1)
p . From the

dependenceii = ii(ξp, ηp) then it is possible to estimate the normalized currenti
(1)
i . Since

Ipi is already known it is possible to determine theI
(1)
ni from equation 1.33 and hence the first
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approximation of the ion densityn(1)
i . From this density value the second order approxima-

tion of ξ(2)
p is calculated, etc., until the approximationsn

(k−1)
i andn

(k)
i do not differtoo much

from each other. The convergence of this procedure is unclear and depends very much on the
first choice ofξ(1)

p .
The necessity of the iterative procedure was removed by Sonin by introducing the so-called

Sonin plot[6]. This plot relates the artificially created quantityξ2
pii to ii at a pre-selected value

of ηp, usuallyηp = ηfl − 10 [21] or ηp = −15 [18]. Sinceξ2
p is proportional toni andii

is inversely proportional toni the quantityξ2
pii does not depend onni and hence excludes the

necessity of the iterative procedure

ξp
2ii =

1
ε

{
mi

8πq0

} 1
2

(
q0

kBTe

) 3
2

Ipi . (1.36)

Analytical approximations of the relationii = ii(ξp, ηp) are available for the spherical as well
as for the cylindrical probe. For example, the approximation for the cylindrical probe can be
written as [7]

ii(ηp) = a(ηp/b)α , (1.37)

where

a = (ξp + 0.6)0.05 + 0.04 , b = 0.09
(
exp(−ξ−1

p ) + 0.08
)

, (1.38)

α = (ξp + 3.1)−0.6 . (1.39)

The radial motion theory has been further developed and tested. The relevant publications are
[8] (application of the radial motion theory in a radiofrequency (rf) discharge in argon), [9]
(review on OML theories, recent experimental work), [10] (new modern aspects together with
recent developments in experimental techniques), [11] (extension for double probe), and [12]
(small body floating in a plasma). Further the radial motion theory has been extended to the
interesting case of the so-called standard electron energy distributions [13], i.e.,

f∗(up) = const.× ε−3/2
p exp

(
− uk

p

kεk
p

)
with k ≥ 1 . (1.40)

Hereup represents the voltage equivalent of the electron energy (see the paragraph below) and
εp is the so-called effective electron temperature. Fork = 1 this distribution represents the
Maxwellian, fork = 2 the Druyvesteynian, and fork = 4 the Davydov distribution (see also
chapter??). The case of finite ion temperature values, i.e. of arbitrary ratiosTi/Te has been
treated in Ref. [14]. This theory includes the classical ABR theory (developed forTi/Te → 0)
as a special case.

1.4 The Druyvesteyn method for estimation of the electron
energy distribution function (EEDF)

One of a few procedures that permit the direct experimental determination of the electron
energy distribution function EEDF in a plasma is based on the probe measurements. In order
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to explain this procedure the investigation starts at the probe characteristics in the electron
retarding region given by equation 1.9. In order to express the variables in terms of energy
the quantitiesqν , Up andw are substituted by−qν = q0,−Up = up andw = (2q0u/me)1/2.
Then by differentiating equation 1.9 with respect tou at the pointu = up the well-known
Druyvesteyn relation follows [15]:

d2Ipe

du2
p

=
(q0

2

) 3
2

m
− 1

2
e neApf(up) , (1.41)

wheref(up) fulfills the normalizing condition

∞∫

0

f(up) u
1
2
p dup = 1 . (1.42)

Eq. 1.41 enables us to estimate the electron densityne and the mean electron energyq0um

using the relations

ne =
(

2
q0

) 3
2 m

1
2
e

Ap

∞∫

0

u
1
2
p

d2Ipe

du2
p

dup (1.43)

and

q0um =
q0

∞∫
0

u
3
2
p

d2Ipe

du2
p

dup

∞∫
0

u
1
2
p

d2Ipe

du2
p

dup

. (1.44)

It is very important to fix the origin of the energy scale for the EEDF, in other words to de-
termine the space (plasma) potential at the probe position. In accordance with the works of
Luijendijk and van Eck [16] and Herrmann and Klagge [17] the space potential is most accu-
rately determined as the probe voltage at the zero-cross of the second derivative of the total
probe current. Other methods, such as themethod of tangents, estimation from the position
of the maximum of the second derivative [25] or from the probe voltage corresponding to the
floating potential [18] etc. are less accurate and not commonly used.

Errors in the determination of the plasma potential by means of this method are related
to the phenomena at the probe surface. Among those the change of the work function over
the probe surface due to impurities on the probe surface, reflection and secondary emission of
electrons, bombardment of the probe surface by metastable atoms and photoemission may be
mentioned [19, 20]. The described phenomena round the knee of the probe characteristics in
the vicinity of the plasma potential and thus the zero-crossing point of the second derivative
does not exactly correspond to the plasma potential. In a case in which the collisions play
an important role in the collection of charged particles by the probe the effect of rounding
the knee of the probe characteristics also occurs. Klagge and Tichý [21] have specified the
conditions under which this effect can be neglected (cylindrical probe), i.e., for

Ke(Ke + 1)
(

Ke + ln
(

lp
rp

))−1

> 1 , (1.45)
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Figure 1.5: Sample of the measured second derivativeI ′′. The relation between the magnitudes of the
I ′′e andI ′′i is shown.

whereKe = λe/rp denotes the Knudsen number for electrons.
The second derivative of the electron probe current with respect to the probe potential

is usually replaced by the second derivative of the total probe current. This approximation
is valid only under the assumption that the ion probe current at higher probe potentials is
constant or is a linear function of the probe potential. However, the commonly measured
dependence of the positive ion current in a low-temperature non-thermal plasma can be fitted
in a better way by the so-called double-logarithmic approximation introduced by Nuhn and
Peter [22], i.e. by the relation (for normalized current)Ii = Ii0(1 + ηp)κ, whereIi0 andκ
are parameters to be determined from the fit to the experimentally measured dependence. The
second derivative of such dependence does not vanish, and sometimes it is a useful practice
[23] to correct the second derivative of the total probe current for the second derivative of the
positive ion current. An example of the measured second derivative of the total probe current
and its decomposition to the second derivative of the electron and of the ion probe current is
shown in Fig. 1.5.

The second derivative, necessary for the estimation of the EEDF, either can be directly
measured (on-line methods) or computed numerically from the experimental data (off-line
methods). Many experimental set-ups for on-line measurement of the second derivative of the
total probe current have been developed. They are based on

• making use of the non-linearity of the probe characteristics, i.e. the relation between
the curvatureof the characteristics and second harmonic generation [24], mixing [16],
detection of the modulated signal [25] etc.,

• direct analog differentiators using operational amplifiers and sawtooth-like probe voltage
[26],
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• analog difference amplifiers and stepwise-like probe voltage [27].

The off-line differentiating methods are either based on algorithms of the numerical analysis
[28] or on a direct numeric solution of the integral equation 1.9 [29] or on the non-recursive
digital filtering of a dependence given as a set of data. The non-recursive digital filter, also
called finite impulse response (FIR) filter is applied to a given set of data. It converts the
selected data ordinateyl to a value that is given by a linear combination of itself and of
ordinates from its adjacent neighbourhood (± m points). The resulting value characterizes
the given data in the selected interval around the data pointyl, i.e. it represents the derivative
of nth order (0 ≤ n ≤ 2m) at the abscissa corresponding toyl [30, 31]:

y
(n)
l =

1
hn

m∑

i=−m

ciyl+i . (1.46)

Equation 1.46 requires the given data to be equally spaced byh on the abscissa axis. If
this condition is not fulfilled the linear interpolation between adjacent points can be used to
make the data equally spaced prior to the calculation ofy

(n)
l . It is seen that the value ofy(n)

l

cannot be obtained at the firstm and the lastm data points in the given data set. Forn = 0
Eq. 1.46 represents a weighted smoothing operation. The usual numeric procedures for the
differentiation of the experimental data can also be regarded as digital filters since they use
formulae analogous to Eq. 1.46.

The most common procedure for differentiation of noisy experimental data is thesliding
polynomial approximation. This represents the approximation of the selected odd number
M = 2m + 1 (m = 1, 2, . . . ) adjacent data points around selectedxl by a second order
polynomialp(x) = a0 + a1x + a2x

2 (for xl − mh ≤ x ≤ xl + mh). Hence the second
derivative atxl is y

(2)
l (xl) = 2a2. Since the coefficienta2 is a weighted sum of the ordinates

yi (for l − m ≤ i ≤ l + m) this method may be regarded as digital filtering where the
weights are the filter coefficientsci/(h2). Tables of such coefficients are given by Savitzky and
Golay [32] and formulae for the evaluation of these filter coefficients in Ref. [33]. Computer
programs that make use of this procedure have already been constructed and reported Ref.
[34]. However, the variability and the noise-suppression are not always sufficient in the probe
diagnostics [35, 36].

Better signal-to-noise-ratio can be obtained if the elements of the digital filter theory are
applied. This method consists in a calculation of the second derivative by the method de-
scribed in the above paragraph and in a subsequent application of the digital filtering on the
resulting second derivative data set. The derivative is calculated e.g. by using the 3 or 5 point
method, i.e. according to the formulae

y
(2)
l =

1
h2

(yl−1 − 2yl + yl+1) or (1.47)

y
(2)
l =

1
12h2

(−yl−2 + 16yl−1 − 30yl + 16yl+1 − yl+2) . (1.48)

The derivatives calculated in this manner feature the quadratic increase of the high noise fre-
quencies in their frequency spectrum, see e.g., Ref. [36]. In order to suppress this noise
increase a smoothing filter with an attenuation increasing at higher frequencies steeper than
quadratic has to be applied. Such a filter may be obtained by the window function based filter
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design [36]. The simplest of such filters is the Hanning filter. It has a beginning stopband
attenuation of 44 dB. A design procedure for a smoothing filter with strong increasing noise
suppression having a variable beginning stopband attenuation between 27 dB and 80 dB is
given in Ref. [36].

Further discussion on the numerical differentiation of probe characteristics is given in Ref.
[37]. Here the numerical filtering of the probe data by means of B–spline approximation is
applied. Errors that can arise due to the numerical differentiation are treated in Ref. [38]. A
further novel smoothing method using the so-called Hayden numerical filtering is described
in Ref. [39]. Generally, one has to be careful in the choice of the degree of smoothness in
any of the methods mentioned above. Secondary maxima or local deficits of the EEDF due
to elementary processes characteristic of the investigated plasma that create or loose electrons
in a certain range of energies should not be suppressed. When in doubt whether a particular
irregularity on the EEDF is due to the plasma processes or due to noise the best recommenda-
tion is to process a set of data with different kinds of differentiating methods and compare the
results with theoretical expectations.

In all procedures for the estimation of the second derivative of the probe characteristics the
second derivative is estimated not from the infinitesimally small vicinity of the point where
the derivative is estimated, but from the finite voltage (energy) interval around this point. This
leads to a distortion of the estimated second derivative in comparison with the theoretical one.
It has been shown that the estimated second derivativeI

′′
(up) is related to the theoretical one

I ′′(up) via convolution with so-called apparatus functionT (up − u′p) [40]:

I
′′
(up) =

+∞∫

−∞
I ′′(u′p)T (up − u′p)du′p . (1.49)

A typical course of the apparatus function (case of the second harmonic procedure [41]) is

T (up − u′p) =
8
3π

(
1−

(
up − u′p

a

)2
) 3

2

, (1.50)

wherea is the amplitude of the applied fundamental harmonic. The functionT (up − u′p) has
non-zero values only for−1 ≤ (up − u′p)/a ≤ 1. Practice has shown that in order to get
EEDF’s that are close to reality it is a better way to enhance the signal-to-noise ratio of the
measured signal from the probe than to try to process numerically the data with a bad signal-
to-noise ratio. In any case the deconvolution is not necessary if the peak-to-peak amplitude of
the differentiating signal in volts (in the on-line as well as in the off-line case) is less than half
the electron temperature expressed in electron-volts, i.e., in our example2a < kBTe/(2q0)
[7].

On-line methods have the advantage that the experimenter is at once aware what the signal-
to-noise ratio is like and can take measures to increase it if necessary. On the other hand, on-
line methods usually do not yield absolute values (unless calibrated which requires additional
efforts). However, even if only relative data of the second derivative of the probe characteris-
tics are available it is possible to estimate the electron temperature and/or the electron mean
energy.
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On the other hand the off-line numeric methods of differentiation yield the absolute values
of the second derivative of the probe characteristics. Also, since the experimenter records
merely the probe characteristics that have a much higher amplitude than the signal of the
second derivative, it may seem that usually it takes less effort to set up the experimental
system. Yet the noise that may not be visible at first sight on the probe characteristics data
can substantially influence the second derivative results. This is easy to comprehend from
the fact that the amplitude of the second derivative is usually 2-3 orders of magnitude lower
than the amplitude of the probe characteristics. Therefore, as a rule the numeric procedures
for differentiating the probe characteristics require probe data of comparatively very good
signal-to-noise ratio.

1.5 Probe diagnostics of anisotropic plasmas

All discharge plasmas are to a larger or lesser degree anisotropic. It is possible to make the
direction-resolved diagnostics of the electron velocity distribution function (EVDF) with the
aid of a planar probe. The normal to the probe plane must be adjustable in different anglesθ to
the preferred direction (e.g. current flow). It is possible to make the analysis of the probe data
acquired in different angles to the preferred direction under the assumption that the EVDF
is symmetrical along the preferred direction. In such a case one can expand the EVDF into
a series of spherical (Legendre) polynomials with the angleθ as a parameter. In general the
expansion has the form

f(wx, wy, wz) =
∑

k

fk(w)Pk(cos θ) . (1.51)

The first three coefficients of the expansion are given byP0 = 1, P1 = cos θ, andP2 =
3
2 (cos2 θ − 1). In these relationsθ represents the angle between the preferred direction and
the instantaneous velocity~w.

Substituting the expansion 1.51 of the EVDF into the general formula 1.4 for the probe
current we obtain

Ipe = −q0ne

∫
dAs

wx2∫

wx1

wy2∫

wy1

wz2∫

wz1

wz

∑

k

fk(w)Pk(cos θ)dwxdwzdwz . (1.52)

Due to the rotational symmetry of the problem in question all surface area componentsdAs

having the same orientation to the anisotropy component of the EVDF should carry the same
current. Therefore we can integrate overdAs to getAs. Then equation 1.52 can be written in
spherical coordinates

Ipe = −q0neAs

∞∫

w∗1

2π∫

0

arccos θ∗∫

0

w3
∑

k

fk(w)Pk(cos θ(ϑ, ϕ, Φ)) cos ϑdϑdϕdw (1.53)

whereΦ is the angle between the surface normal and the anisotropy component, andw∗1 and
θ∗ are the integration limits for the electrons that fall on the probe surface. Differentiating this
expression twice with respect toup we obtain

I ′′peΦ
= I ′′pe

(f0, f1, f2,Φ) . (1.54)
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By measuring the second derivative of the probe characteristics with respect to the probe
voltage in three different orientations (0◦, 90◦, 180◦) relative to the preferred direction we
obtain a set of three equations from which we can determine the first three components in
the expansion. The exact formulae were developed by Mesentsev et al. who obtained the
following relations [42]:

1. for the electron density:

ne =
(

1
3

)
(2me)1/2q

−3/2
0 A−1

p

∞∫

0

u1/2
p (I ′′pe0 + 4I ′′pe90 + I ′′pe180)dup , (1.55)

2. for the isotropic part of the EVDF:

f0(q0up) =
(

1
3

)
(2me)1/2q

−5/2
0 n−1

e A−1
p u1/2

p (I ′′pe0 + 4I ′′pe90 + I ′′pe180) , (1.56)

3. for the first-order anisotropy of the EVDF:

f1(q0up) = (2me)1/2q
−5/2
0 n−1

e A−1
p u1/2

p g1(q0up) , (1.57)

where g1(q0up) = G1 + (2q0up)−1

∫ ∞

q0up

G1dε ,

G1 = (I ′′pe0 − I ′′pe180)
and ε = q0up ,

4. for the second-order anisotropy of the EVDF:

f2(q0up) =
(

2
3

)
(2me)1/2q

−5/2
0 n−1

e A−1
p u1/2

p g2(q0up) , (1.58)

where g2(q0up) = G2 +
(

3
2

)
(q0up)−3/2

∞∫

q0up

ε1/2G2dε

and G2 = (I ′′pe0 − 2I ′′pe90 + I ′′pe180) .

1.6 Probe diagnostics under non-collision-free conditions

The collisionless OML model has been found satisfactory by experimenters for the electron
collection by the probe over a comparatively wide range of experimental conditions. However,
the positive ion current was underestimated in this model, and this leads to an overestimation
of the positive ion density with respect to the electron density when determined from the same
probe characteristics even at conditions when the plasma could be assumed as quasi-neutral.
This has been found in non-thermal discharge plasmas, see e.g., Ref. [43], as well as in
thermal afterglow plasmas [44]. Moreover the Bernstein–Rabinowitz [3] and the Laframboise
[4] theory predict that the ion saturation current for the orbital motion limited conditions
(OML) should be independent of the Debye numberξp, if the probe potential is constant.
A comparison of the theoretical and experimental results has shown that in contrary to the
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Bernstein–Rabinowitz [3] and Laframboise [4] theory the ion saturation current depends on
the Debye numberξp at orbital motion limited (OML) conditions and that its magnitude is
larger than the theoretically predicted one.

Experimental results obtained by several authors [44, 45, 46] have been summarized by
Smith and Plumb [44]. They demonstrated that the ion densityni determined by the ion
currentIi may be expressed in terms of the electron densityne determined by the electron
currentIe by the empirical relationshipni/ne ≈ (1 + 0.07

√
mi/mH), wheremH is the

proton mass. From the quasi-neutrality of the plasma follows, however, that the electron
densityne should be equal to the positive ion densityni assuming that no negative ions are
present within the plasma. A difference betweenni andne has been observed in Ref. [44]
even in the flowing afterglow plasma where the condition for the stable space charge sheath
Ti > Te/2 (see, e.g., Ref. [47]) is satisfied. The difference betweenni andne cannot be
explained by an end-effect phenomenon, i.e. transition to a spherical-like sheath configuration
[48]. The experimental results obtained in Refs. [44, 45, 46] therefore indicate an inaccuracy
in the assumptions of the OML model of the positive ion collection for the used experimental
conditions.

It is believed that these discrepancies can be explained, at least at certain simple experi-
mental conditions, if the collisions of positive ions with neutrals in the space charge sheath
around the probe are taken into account. Monte Carlo simulations have shown that already a
small number of collisions in the sheath can destroy the orbital motion of an ion [49]. Further
discussions are therefore devoted to probe theories that take account of the ion-neutral colli-
sions in the sheath around the Langmuir probe. For the characterization of the pressure the
Knudsen numberKi = λi/rp has been introduced.

The collection of positive ions by the probe under the influence of ion-neutral colli-
sions has been studied for many years; examples of earlier papers on this subject are Refs.
[50, 51, 52, 53, 54, 55, 56]. The theories that treat the problem of the positive ion collection
by a Langmuir probe under the influence of collisions of ions with neutrals in the probe sheath
can be divided into kinetic and continuum theories; such theoretical models are usually called
collision modelsor collision theories. The kinetic theories aim at the description of the influ-
ence of the individual collision processes to the ion collection; the continuum theories use the
hydrodynamical description. The kinetic approach can be regarded as more general since it
describes the collisionless conditions too while the continuum theories require the supposition
of many collisions. The kinetic theories discussed in this review present the effect of colli-
sions in form of a correction to a collisionless ion collection model. Two collisionless models
are used: Laframboise’s model [4] that includes the classical Langmuir’s orbital motion lim-
ited model (OML) [1] and the radial motion cold ion approximation model, called ABR-Chen
[5, 57]. We shall not present the thin sheath collision models such ascontinuum plus free fall
theory[58, 59] since they require higher plasma densities than usually used in plasma-aided
technologies.

The collision probe theory of the positive ion as well as of the electron current to a cylin-
drical (spherical) probe has been presented by Chou, Talbot and Willis [60, 61]. It describes
the Langmuir probe characteristics at arbitrary Knudsen numbers0 ≤ Ki = λi/rp ≤ ∞.
The result of this theory is a reduction of the ion as well as of the electron probe current due
to elastic scattering of these particles caused by collisions with neutrals in the probe sheath.
The influence of collisions is calculated as a correctionFT to Laframboise’s collisionless ion
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currentiLi . This correction was in a shape more suitable for practical calculations presented
by Talbot and Chou [60] and by Kirchhoff, Peterson and Talbot [62].

It is to be noted that there were also other kinetic models for the description of the charged
particle collection by a Langmuir probe. Bienkowski and Chang [63] found the solution of
the Poisson and Boltzmann equation with the collision term for the limiting caseξp → ∞
while Wasserstrom et al. [64] only in the limiting caseη → 0. Both limits can be, however,
derived from the Talbot and Chou theory with the same results. Substantially simpler than the
Talbot and Chou theory is the procedure employed by Self and Shih [65] that modified the
ABR radial model (for spherical probes) [5] by introduction of thefriction term. The results
are presented as dependencies of the normalized ion current at a certain probe voltage on the
ξp and the ion-neutral collision frequencyνin. For cylindrical probes the same procedure is
applied to the ABR-Chen [5, 57] radial model in Ref. [66].

Klagge and Tich́y [21] employing the procedure of Ref. [60] carried out a set of numer-
ical calculations of the positive ion current as a function of the Knudsen numberKi at the
normalized potentialη = ηfl − 10. The difference to the original Talbot and Chou paper [60]
consisted in the fact that they used the ABR-Chen [5, 57] collisionless currentiAi in place
of iLi in the calculation ofFT . The reason was that the modeliAi describes with reasonable
accuracy the experimental results at conditions close to collision-free. The authors used their
own analytical approximation for the numerical Chen [57] currents, see section 1.3.2. The
exact step-by-step procedure described in Ref. [21] enables to set up a program that directly
calculates the correctionFT .

Zakrzewski and Kopiczynski [67] have introduced another model in which, contrasting
the Talbot and Chou theory, elastic collisions of ions with neutral particles have two conse-
quences: the destruction of the orbital motion of ions and the elastic scattering of positive
ions. The destruction of the orbital motion can lead to an increase of the positive ion current,
too. The effect of the orbital motion destruction predominates for lower pressures when the
mean free path of positive ions is bigger or comparable to the sheath thickness. The elastic
scattering of the positive ions causes a monotonous decrease of the positive ion current and
dominates for higher pressures. As a result the current peak appears at a pressure when on
the average one collision of an ion with a neutral in the space charge sheath occurs. Similar
as in the ABR-Chen and Laframboise theory and in the Talbot et al. theory [60, 61], the ion
current in the Zakrzewski and Kopiczynski theory is normalized by Eq. 1.33. The resulting
normalized dimensionless ion currentii to a cylindrical probe then isii = γ1γ2i

L
i , whereγ1

describes the rate of increase of ion current due to destruction of orbital motion, andγ2 cor-
responds to the rate of reduction of ion current due to scattering. The correction factorFZ is
given byFZ = (γ1γ2)−1. Zakrzewski and Kopiczynski have derived the coefficientγ1 under
the assumption that at the orbital motion-limited conditions the positive ion current collected
by a perfectly absorbing probe is saturated and described by the Laframboise theory. This
physical argument can be expressed analytically, assuming that the dimensionless ion current
at the sheath edgeiAi is given approximately by the Allen et al. theory [5]. In the collisionless
limit only the currentiLi predicted by Laframboise reaches the probe surface. The current
(iAi − iLi ) leaves the sheath due to the orbital motion.

When an orbiting positive ion undergoes a collision with a neutral particle in the space
charge sheath it looses energy and is attracted to the probe. An ion on the average makes
Xi = S/λi collisions in the sheath, if we denote the thickness of the sheath byS and the
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ion mean free path byλi. According to Zakrzewski and Kopiczynski the rate of increase
of the positive ion current due to the destruction of the orbital motion by elastic collision is
γ1 = 1 +

(
iAi /iLi − 1

)
S
λi

. Kopiczynski [68] determined the thickness of the sheathS on the
basis of numerical calculations carried out by Basu and Sen [69]. Zakrzewski and Kopiczynski
estimated the corresponding reduction rate of the ion current due to the elastic scatteringγ2

according to Schulz and Brown [70] and Jakubowski [71]. It should be noticed that for a given
probe potentialγ1 andγ2 are functions ofξp andKi.

For a normalized probe potentialηp = −15 Kopiczynski [68] carried out an extensive
numerical calculation of the dependence of the quantityiiξ

2
p on the ion Knudsen numberKi,

with the Debye numberξp as a parameter. David [72] and David et al. [18] extended these
calculations towards lower Knudsen numbersKi occurring in a medium pressure discharge.
The comparison of several of the already mentioned theories of the ion current collection by
the probe in the transition pressure regime has been done by David [72].

The results of Talbot and Chou and those of Zakrzewski and Kopiczynski are not in con-
tradiction with each other within the region2 ≤ ξp ≤ 3. For lowerξp(ξp < 2) the ion
current calculated by using the Zakrzewski and Kopiczynski theory [67, 68] exhibits a well
pronounced maximum atXi

∼= 1. At higher values ofXi À 1 the ion current decreases with
decreasingKi more rapidly than the ion current obtained from the theory [60, 61] in which
no current peak is observed.

Since the Chou and Talbot theory [60, 61] does not take into account the effect of the probe
current increase due to the orbital motion destruction caused by ion collisions with neutrals
within the probe sheath, the theory developed by Zakrzewski and Kopiczynski describes the
ion collection by a Langmuir probe at OML conditions in the region where not all the ions
suffer a collision with a neutral particle within the probe sheath (Xi < 1) more precisely than
the Talbot and Chou theory. On the other side for a larger number of ion collisions within the
sheath (Xi À 1) the theory developed by Zakrzewski and Kopiczynski is not applicable at
OML conditions since it uses for the evaluation of the factorFZ the formulae which have been
derived in [71] under the assumption of only a few ion collisions within the probe sheath. In
order to extend the validity of the theory developed by Zakrzewski and Kopiczynski [67, 68]
for an arbitraryKi it was suggested in Ref. [73] to apply the Talbot and Chou theory [60, 61]
for the determination of the factor (or its equivalent) describing the effect of scattering of ions
due to their collisions with neutrals within the probe sheath. The corresponding expression
following the model used by Zakrzewski and Kopiczynski isii = γ1γ

∗
2 iLi , whereγ∗2 is the

coefficient describing the effect of the ions scattering due to collisions with neutrals within
the probe sheath determined from the Talbot and Chou model [60]. The advantage of the new
model [73] of the ion collection by a cylindrical Langmuir probe mainly consists in the fact
that it is valid for anyKi, i.e. for0 ≤ Ki < ∞, as long as the condition of the OML regime
of the probe is fulfilled(ξp ≤ 3). In contrast to the calculations of theγ2 factor which have
been made by Zakrzewski and Kopiczynski the correction factorγ∗2 depends on the ratio of
the electron to ion temperatureτ = (Te/Ti). It was suggested in Ref. [73] to call this new
model themodifiedTalbot and Chou model since it refines theclassicalkinetic Chou and
Talbot theory [60, 61]. A comparison of the theory [73] with the Chen-Talbot [21] and with
the Zakrzewski-Kopiczynski [67, 68] theory has been made by Kudrna [74]. He calculated
also the dependence of the directly measurable quantityξ2

pii on Ki with ξp as a parameter.
Samples of his results are presented in Fig. 1.6. Note that in both figures the ion current
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Figure 1.6: (a) Comparison of the Chen-Talbot positive ion current model [21] with the modified Chou-
Talbot model [73]. For comparison also the collisionless current model of Laframboise [4] is shown.
(b) Comparison of the Zakrzewski-Kopiczynski positive ion current model [67] with the modified Chou-
Talbot model [73]. The collisionless current model by Laframboise [4] is also shown.

calculated according to Ref. [73] decreases at lowerKi slower than predicted by the theories
of Refs. [21, 67, 68].

Experimental assessment of the applicability of all mentioned collision theories is pre-
sented in Ref. [75]. The measurements have been done in a low-pressure flowing afterglow
system with a Langmuir probe and downstream mass analysis. Several kinds of ions have
been used for this study. Fig. 1.7 presents typical results that have been obtained with rare
gas ions Ar+ in a He carrier gas. The plot shows the numerical values of the ratio of the ion
density according to the theory of Ref. [73] to the electron densityneV pl estimated from the
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Figure 1.7: The ratio of the ion density evaluated using the theory of Ref. [73] to the electron number
densityvs.electron number density in a flowing afterglow discharge [75].

electron current at the plasma potentialvs.neV pl.
The present state of knowledge about the influence of positive ion-neutral collisions in

the probe sheath does not, however, allow to name a universally applicable theory that would
give satisfactory results in a broad range of experimental conditions; for afterglow conditions
the theory of Ref. [73] yields fairly consistent results, for an active plasma (also when the
supposition of the Maxwellian EEDF is not quite satisfied) the ABR-Chen theory with the
collision correction [21] gives the best agreement with the experiment. More general results
might bring the Monte-Carlo simulation of the ion motion in the probe vicinity. First such
steps have been made in Ref. [49].

1.7 Langmuir probe in a magnetized plasma

In many technological applications of the low-temperature plasma, for example deposition
of thin films or etching of microstructures, a magnetic field is used that confines the plasma
and increases the grow/etch rate. The magnetic field in these systems can be either non-
homogeneous (usually created by permanent magnets; one example is the planar unbalanced
magnetron) or almost homogeneous fields (created by coils) with a strength usually not reach-
ing too high values. When using the Langmuir probe as a diagnostic tool in these systems the
question arises up to what limit of the ratioB/p (magnetic field strength to the working pres-
sure; this is a similarity parameter in magnetized plasma) it is possible to use the conventional
methods for the evaluation of the basic plasma parameters such as charged particle density
and the electron energy distribution function (EEDF) from the Langmuir probe data.

The discussion of the influence of the magnetic field on the probe measurement in the
collision-free case can be, in accord with Ref. [76], divided in 4 categories in dependence on
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the parameterβ = rp/rL (rL is the radius of the cyclotron motion of a charged particle): (i)
At β ¿ 1, weakB, the influence is small and can be neglected (rare case of technologically
interesting applications), (ii) atβ ≈ 1, B is still weak, but it is sometimes necessary to in-
troduce small corrections (frequently the case in plasma-aided technologies), (iii) atβ > 1,
B is strong, but it is still possible to interpret at least a part of the Langmuir probe charac-
teristics (case of tokamak edge plasma), and (iv) atβ À 1, i.e., at very strongB, the probe
characteristics are no longer interpretable. From the definition of the parameterβ it is evi-
dent thatβ decreases with increasing charged particle velocity and mass; therefore the faster
electrons and the ions are less influenced by the magnetic field during their collection by the
probe. In other words, the part of the probe characteristics that shows the least distortion due
to the magnetic field is that for a very negative probe with respect to the plasma, see, e.g.,
Refs. [77, 78]. The changes in the probe characteristics therefore are most apparent in the
region close to the plasma potential when the probe is applied in a magnetized plasma. The
directional movement of charged particles along the magnetic field lines reduces the diffusion
of particles in the direction across the field lines. Considering the electron motion which is
mostly influenced by the magnetic field, we see that the diffusion coefficient across the field
D⊥ reduces toD⊥ = D0/(1+Ω2

eτ
2
en) with D0 = v2

thτen, whereΩe = q0B/me, τen = 1/νen

andvth are the electron cyclotron frequency, electron-neutral collision time and electron ther-
mal velocity, respectively [79]. IfΩeτen À 1 (i.e., a magnetized plasma at low pressures)
which holds for most technologically used plasmas, then the expression forD⊥ reduces to
D⊥ ≈ v2

th/Ω2
eτen = r2

L/τen. In other words in the direction perpendicular to the magnetic
field the effective mean free path of electrons is roughly equal to the radius of the cyclotron
motion. If the probe draws too much current at probe potentials close to the plasma potential
the electrons are absorbed by the probe more rapidly than they can be supplied by diffusion
from the distant regions where they are produced. Another effect concerns the change of the
effective collecting area of the probe, since the charged particles flow to the probe mostly
from the direction of the field lines reducing hence the original probe area to double of its
projection to the field direction. Finally, at higher magnetic fields, e.g., in tokamaks, the probe
is connected to its reference electrode only by thecurrent tube, which reduces the ratio of the
reference-electrode-probe surface collecting areas. All three effects then lead toblurring of
the kneeof the probe characteristics near the space potential as seen in Fig. 1.8. When for
the data analysis from such an affected probe the conventional methods are used the resulting
plasma number density is underestimated, the plasma potential shifted towards probe retard-
ing voltages and the electron temperature deduced from the slope in the electron retarding
regime is overestimated. Note that this effect not only depends on the magnetic field strength,
but rather on the ratioΩe/νen, or onB/p. The degree of anisotropy of the problem (and hence
of the influence to the probe measurements) will therefore depend also onB/p and not onB
itself. Thus the assessment of the error caused by the effect of the magnetic field to the probe
data and consequently to the accuracy of the estimated plasma parameters is most interest-
ing. Experimental assessment of this effect in weak-to-medium magnetic fields is presented
in Refs. [80, 81, 82]. The work is based on the assumption that the influence of the magnetic
field on the positive ion collection by the probe is negligible in the range of pressures and of
magnetic fields employed. Thus the comparison of the positive ion density estimated from the
ion accelerating region of the probe characteristics with the electron density estimated from
the electron current at the plasma potential (by a conventional method, i.e. without any cor-
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Figure 1.8: The normalized electron probe currentvs. ηp in dependence on the parameterβ for a
spherical probe (from Ref. [77]).

rection to the magnetic field) at lower and higherB/p should give an idea of the magnitude
of this influence. A sample of experimental results is given in Fig. 1.9. The figure is arranged
in a similar manner as Fig. 1.7. It is seen that at higherB/p the electron density estimated
from the electron current at the space potential is systematically underestimated, while at low
B/p there is an agreement between the estimated values of the ion and electron density; the
difference gives a measure for the error due to the magnetic field.

Anisotropy of the plasma in a magnetic field has been studied, e.g., in Refs. [79, 83, 84].
Aikawa [79] used for the determination of plasma anisotropy in a magnetic field two Langmuir
probes with their collecting surfaces perpendicular and parallel to the magnetic field.

Ref. [85] deals with the radial distribution of the EEDF in the positive column of a glow
discharge in neon in a magnetic field collinear with the electric field. The authors used the
conventionalsecond harmonics method to obtain the second derivative of the probe charac-
teristics from which they calculated the electron density and the electron mean energy. They
found that even at comparatively low values ofB/p of the order 10−3 T/Pa the magnetic field
influences the radial distribution of the mean electron energy in the sense that higherB/p
causes the increase of the mean electron energy at larger radii.

Arslanbekov et al. [86] discuss the EEDF measurements by a Langmuir probe at elevated
pressures and in a magnetic field. They create an analogy between the effect of an increased
pressure and the effect of the magnetic field on the probe characteristics. However in the ana-
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Figure 1.9: Comparison of the relative positive ion (–∇–, theory Ref. [21]) and electron densities (∗,
OML theory [1, 4]) estimated from the same probe data at different magnetic fields.dc cylindrical
magnetron discharge, working gas argon. Reference electron density from the electron current at plasma
potential.

lysis of the influence of the magnetic field on the cylindrical probe in a plasma the case of a
thin sheath is assumed and hence this work is not directly applicable to the low temperature
discharge plasma of technological interest since in such a case the sheath thickness is usu-
ally large or comparable to the probe radius. Measurements of the EEDF in the cylindrical
magnetron discharge have recently been published in Refs. [87] and [88].

1.8 Space and time resolved Langmuir probe method

1.8.1 Space resolved Langmuir probe measurements

In the case that the plasma is spatially inhomogeneous it is possible to use a probe that is
movable along the path of interest, e.g., radially in case of a study of the radial plasma density
and electron temperature distribution in a cylindrical discharge tube. The spatial resolution
is given byλD or by the probe dimension, whichever is bigger. Therefore it is important
that the probe dimension should be smaller than the characteristic length of the investigated
spatial change. This means that along the probe dimension the plasma parameters should
not change considerably. Since the minimum dimension of the Langmuir probe is limited
mainly by the dimension of its holder and therefore cannot be easily made smaller than some
tenths of a mm, it is almost impossible to study reliably by probes spatial changes of plasma
parameters, where the characteristic length is smaller than a few mm (e.g., in narrow plasma
jets). Much better spatial resolution can, however, be achieved, if the plasma parameters do not
change in all directions in the same manner. In case of cylindrical symmetry, e.g., where the
characteristic dimension of change in longitudinal direction is much larger than in the radial
one, a thin cylindrical Langmuir probe positioned perpendicularly to the radial direction can
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yield a spatial resolution down to some hundred microns.
Most common mechanisms for the movement of the probe in the plasma vessel are based

on thescrew-and-nutprinciple. The thread, however, should be made sufficiently lose in order
to enable the outgasing of the system by baking without the danger of seizing the mechanism
afterwards (stub acme screw thread). The transfer of the rotational movement into the plasma
vessel is made either magnetically or by using the bellow type rotational transfer (cats tail).
The simplest mechanism for moving the probe is a ferromagnetic slug inside the diamag-
netic stainless steel or glass tube that is moved by an external (electro-)magnet. The electric
lead is made either by a spiral-like wire permanently connected to the probe and the vacuum
feedthrough or by a sliding contact.

1.8.2 Time resolved Langmuir probe measurements

Often it is necessary to investigate a plasma that changes in time. Famous are the studies of
the variations of the EEDF in ionization waves (moving striations) [89, 90] or in a stationary
afterglow [44]. In addition there are many studies using probes for studying plasma in sin-
gle shot systems, such as tokamaks [91]. Last but not least there are many technologically
important applications, where plasmas are generated by means of alternating current (ac) or
radiofrequency (rf) power.

The approach to the problem differs depending on the possibility to make the studied
changes of plasma parameters periodic in time with a reasonably short period (at least sev-
eral Hz). Examples of systems, where the periodicity is realizable, are the mentioned studies
of stationary afterglow or of ionization waves, but alsoac or rf generated plasmas. Since
the Langmuir probe technique relies upon the formation of a space charge sheath around the

probe, its time resolution cannot be higher than the ion plasma frequency,ωpi =
√

q2
0ni

ε0mi
. If

the frequency of plasma variations (e.g., in case ofrf generated plasmas) is higher thanωpi,
only measurements of time-averaged values of plasma parameters are possible by the Lang-

muir probe. Another interesting frequency is the electron plasma frequency,ωpe =
√

q2
0ne

ε0me
.

With ni ≈ ne = 1016 m−3 we getωpe ≈ 1 GHz, andωpi ≈ 3.16 MHz (for argon). In the
assessment of the different working regimes of the probe diagnostics in a time-dependent dis-
charge plasma we restrict ourselves to the case that the plasma is excited by the periodically
changing electric field. For the discussion of the relations in such a discharge plasma the de-
tailed knowledge of the complex time response of the electron velocity distribution function in
dependence on the frequency of the applied electric field is of highest importance. For weakly
ionized plasmas where the Coulomb electron-electron collisions can be neglected the calcu-
lations already have been made [92]. The results presented in this work show that the time
response of the electron kinetics is given by the ratio of the field frequency to the collision
frequencies for the electron momentum (νi) and the electron energy (νε) dissipation. System-
atic investigations of the case when the Coulomb interactions cannot be neglected are to our
knowledge not yet available. In the following discussion we therefore shall use the simplified
discussion as it is known from classic books on probe technique [93].

There are 5 regions of operation for Langmuir probes as far as the frequency of plasma
generation or plasma changes is concerned:
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• ω ¿ ωpi The ions and electrons are in equilibrium with the superimposed periodically
varying electric field. The steady ion as well as the electron current increases due to the
rectification effectof the non-linear probe characteristics. This incremental increase is
independent of the frequency. Also harmonics of ion and electron currents are generated
due to the non-linearity of the probe characteristics. Time resolved measurements of
plasma parameters are possible. This range of frequencies is typical for low frequency
plasma oscillations such as ionization waves, periodically switched discharge etc.

• ω ≈ ωpi The electrons are in equilibrium with the oscillating electric field. The period of
oscillations is comparable to the transit time of ions through the space charge sheath and
therefore a small resonance peak in the incremental increase in the steady ion current is
observed. Since the resonance effects are difficult to assess it is not recommendable to
make probe measurements in this frequency range. This frequency range can be entered
when studying the frequency dependence of PECVD technologies, i.e., when the plasma
is generated not by a single frequency powerrf generator, but by a small power signal
generator followed by a power amplifier.

• ωpi < ω ¿ ωpe The electrons are in equilibrium with the oscillating electric field
whereas the ions are not. The incremental increase of electron current remains the same
as in the previous two cases, the one of the ion current vanishes. Harmonics of the elec-
tron current are generated in the same manner as in the previous cases, those of the ion
current are zero. Probe measurements of time-averaged values of plasma parameters are
possible provided that therf voltage component between the probe and the plasma is re-
moved. This frequency range is typical for single frequencyrf discharges (13.56 MHz,
27.12 MHz).

• ω ≈ ωpe The period of oscillations is comparable to an electron’s transit time through
the sheath. Therefore a small resonance peak in the incremental increase in the steady
electron current is observed. Since the resonance effects are difficult to assess it is not
recommendable to do probe measurements in this frequency range. This range of fre-
quencies is not typical for any plasma of technological interest.

• ω > ωpe Neither ions nor electrons are able to respond to the oscillating electric field.
There is neither incremental increase nor harmonics generation of the steady probe cur-
rent. The probe measurements can be done in a normal way, i.e., as in adc plasma,
provided that therf pick-up does not interfere with sensitive current measuring input of
the probe set-up. This range of frequencies is typical for magnetron generated microwave
plasmas (2.45 GHz).

The case of periodic changes withω < ωpi, where the time resolved measurements can be
done, the case ofωpi < ω ¿ ωpe, where it is possible to measure the time-averaged values of
plasma parameters and their relevance to single shot experiments, will be discussed separately.

1.8.2.1 Time resolved probe measurements in periodically changing plasmas at
ω < ωpi

Earlier studies made use of an electronic gate which allowed the passing of the signal from
the probe to the signal processing system only for a short time period that was synchronized
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with the plasma process under study. Gates were constructed differently, either the probe was
attached to the experiment permanently [89, 90] and the probe current was sampled or the
gate connected directly the bias to the probe [94, 95], i.e., for the remainder of the time period
the probe was floating. The first arrangement avoids the transitional effects that arise by ap-
plication of the square-wave-like voltage to the probe (for discussion on this effect see, e.g.,
Refs. [96, 97, 98, 99, 100]), the other one avoids the over-current to the probe if there exists
a large change of plasma potential along the studied time period, e.g., when measuring in the
periodically switched discharge. Recent application of time-resolved probe measurements in
stationary afterglow aimed at estimation of recombination rates ofH+

3 andD+
3 ions with elec-

trons is given in [101, 102]. Technologically interesting examples present the investigations
of the plasma in high-power pulsed magnetron [103, 104, 105, 106] or plasma jet operated in
pulsed regime [107].

Most of up-to-date equipment uses the multichannel scaler (either factory made, or in
the shape of an add-on card to a personal computer) in order to record the probe current
continuously and in synchronism with the plasma periodicity. The modern devices have a
time resolution around 1-2µs per channel. By recording many time dependencies of the
probe current at different probe voltages a 3-D matrix of current values at different voltages
and times can be formed in a computer memory from which it is easy to construct the probe
characteristics in dependence on time by swapping the parameter (voltage) and variable (time)
[108, 109]. In order to avoid the destruction of the probe due to the excess current care must
be taken to protect the probe if a large change of the plasma potential along the studied time
period can be expected [110, 111]. Time-resolved probe measurements in time varying plasma
with the frequency 100 kHz [112], and even up to 400 kHz [113], have been reported.

1.8.2.2 Probe measurements of time-averaged plasma parameters atωpi < ω ¿ ωpe

There is a permanent interest to study the time-averaged plasma parameters in plasmas gen-
erated by anrf single frequency generator that operates most often at 13.56 MHz. The incre-
mental increase of the electron probe current in this frequency range degrades the probe char-
acteristics in a sizeable manner making the probe measurements of even just simple plasma
parameters such as the floating potential quite useless. However, if a provision is made to re-
move theacbias voltage component which arises between the plasma and the probe inrf gen-
erated plasmas the additional electron incremental current can be made negligibly small and
decent probe measurements are possible. To remove theac component between the plasma
and the probe means toac decouple the probe from thedc current measuring circuit and let
the probe swing in phase with the plasma potential oscillations. Decoupling is usually done
for the generator frequency and its second and eventually also third harmonics by using the
parallel LC resonant circuits tuned to the appropriate frequencies (see Fig. 1.10). These de-
coupling circuits must be located in closest vicinity to the probe in order to avoid any parasitic
capacitance of the probe lead to ground. A closer analysis [26] showed that at 13.56 MHz and
Te ≈ 1eV any parasitic capacitance of the probe against ground bigger than approximately
10−2 pF can significantly distort the measured probe characteristics. The tuning of the filters
is often influenced by stray capacitances when the probe is inserted into a metallic plasma
reactor. For this reason some authors tried to place the actual tuned filter outside the vacuum
chamber and call their probe atuned probe[114].
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Figure 1.10: Passive LC filters [26].

Instead of the tuned filter the use of the low-pass broadband filter is also possible. Such
filters may be constructed of RC elements, i.e. of the resistor in series with the probe together
with the parasitic capacitance [115]. In this case the voltage drop on the series resistor must
be accounted for. Attempts of using LC broadband filters also have been made [116]. This
method uses the resistive impedance of ferrite core chokes. In other words, the choke wound
on a low cut-off frequency ferrite core presents high resistance at high frequency while keeping
negligible resistance fordc current. Therefore it is not necessary to take the voltage drop on
the choke(s) into account.

A similar effect as with the decoupling can be achieved by driving the probe by the same
voltage waveform as is the waveform of the plasma potential at the probe position. This is
a technique used to minimize the capacitance of the inner conductor against ground in a tri-
axial cable when the internal shield is driven by the amplified voltage of the inner conductor
[117]. The realization of this technique is, however, not quite simple, since the plasma po-
tential waveform is not exactly known. Two clones of this technique exist, the drive by the
voltage from an externalrf generator [118] and by the voltage from an additional probe that is
positioned close to the measuring one [119, 120]. This additional probe is sometimes isolated
from the plasma by a glass tube and is calledcapacitive probe[121]. Theacvoltage between
the plasma and the probe can be minimized by minimizing the plasma potential changes at the
probe position, i.e. by symmetric drive of the parallel-plane-electrodes plasma reactor and by
positioning the probe in the plane of symmetry between the planar electrodes [26]. A compar-
ison of the passive and the active compensation are presented in Ref. [122]. It is interesting
to note that, assuming a Maxwellian distribution and sinusoidal plasma-potential oscillation,
electron temperature can be obtained with acceptable error from therf uncompensated probe
data; see [123] and the references therein.

A useful modification of the probe method inrf plasma presents Ref. [124]. Here the
authors measure in the 13.56 MHzrf discharge the time-dependence of theac current to the
probe in dependence on thedc probe bias. From this total current they eliminate the electron
component by determining and subsequently subtracting the ion current component and the
current component corresponding to the displacement current. From the electron current com-
ponent they were able to calculate the second derivative with respect to the probe voltage and
obtained therefore the EEDF in dependence on the time over therf period. They detected the
changes in the tail of the EEDF along therf period as predicted by Winkler et al. [92]. Ref.
[124] presents therefore the only (up to our knowledge) time-resolved measurements of the
EEDF with the time resolution better than that given by1/ωpi.
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1.8.2.3 Time resolved probe measurements in single-shot experiments

In single-shot systems, e.g., in the Langmuir probe studies of the scrape-off layer (plasma in
the limiter shadow) of tokamaks the whole probe characteristics have to be acquired during a
time which is much shorter than the characteristic time of the change of plasma parameters.
The probe voltage is generated either as a sawtooth-like voltage or (simpler) as a sinusoidal
voltage with an appropriate period. Care must be taken to measure only thetrueprobe current
and not the complex (capacitive, displacement) current components that arise due to parasitic
capacitances of the probe. If the capacitive current cannot be directly avoided (e.g. due to the
indispensable long probe leads) the bridge probe circuit is recommended. The frequency of
the probe bias change must fulfill the conditionω < ωpi. The plasma density in the limiter
shadow of tokamaks is generally much higher than1016 m−3 therefore also theωpi is higher
and the admissible bias frequency ranges up to several hundreds of kHz. During the stationary
phase of a tokamak discharge which lasts up to several seconds it is therefore possible to
record several probe characteristics [125].

1.9 Probe diagnostic of chemically active plasmas

During the deposition of conducting and non-conducting layers in a plasma environment the
probe diagnostic becomes more complicated. The reason for this consists in the fact that the
similar layer as is intended to cover the substrate is deposited both on the probe and on the
reference electrode. Generally, the probe surface contamination changes the work function
resulting in a deformation of the probe characteristics and/or in hysteresis [126, 127]. If the
layer is conducting it helps to centre the probe wire in the insulating holder in such a way that
it does not touch the holder walls (see Fig. 1.11). In the case of a non-conducting layer several

Figure 1.11: Langmuir probe for the use in chemically active plasmas (from Ref. [39]).
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approaches have been developed.

• The film is regarded as a series resistance to the probe. Such model has been developed,
e.g., in Refs. [128, 129]. This model is simple but its application can be questionable in
some cases.

• The film from the probe surface is removed either by periodic ion bombardment of the
probe surface and measuring with a short sweep time [130, 131] or by its direct [7, 129,
132] or indirect [133, 134] continuous heating. The heating has the advantage that it
prevents the formation of the non-conducting layers, however, the probe construction is
more complicated. Further, the heated probe can be usually operated also as the emissive
probe that enables easy estimation of the plasma potential [135]. The directly heated
probe can also be heated periodically: only prior to the actual measurement. Smart
way is to heat the probe using ac (or half-wave ac) power and sample the probe current
only when the heating current/voltage reaches zero, see e.g. [136]. This eliminates the
uncertainty of the probe bias due to the voltage drop along the probe wire during heating.
Examples of use of the emissive probe in the technological magnetron operating in pulsed
regime can be found in [137, 138].

• If the conductive reactor wall is used as a reference for a single probe in plasma-chemical
environment, the layer on the reference electrode can complicate the measurements, too
[139, 140]. If this happens the application of the so-called triple probe method may help
[141, 142]. This method uses a floating system of 3 probes, and hence is independent
of a reference electrode. The three probes can also be heated thus preventing the layer
deposition (see Fig. 1.12). An application of such a probe system is described in Ref.
[143].

• A probe that works on another principle is used. One example is therf probe. It makes
use of the change of the plasma impedance with the plasma parameters (density, colli-
sion frequency). The plasma impedance can be measured directly by means of a vector
impedance meter [144]. Alternatively, assuming some simplifications, the conductive
part of the plasma impedance can be measured by a bridge circuit [145]. Further, the
plasma oscillation probe uses an interesting principle [146]. A beam of electrons injected
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Figure 1.12: Triple heated probe.
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into a plasma by a suitably biased hot filament generates plasma oscillations with the
plasma frequencyωpe (see section 1.8.2). This frequency can be detected by a small wire-
antenna (probe) and measured by a high-frequency spectrum analyzer. Since it is directly
coupled to the electron density the knowledge of the plasma frequency means that the
plasma density is known, too. Finally, let us mention a novel electrostatic probe method
for ion flux measurements [147]. A flat probe is biased by a square-wave-modulatedrf
voltage via a capacitor. During eachrf voltage pulse the negativedc self-bias is gener-
ated on the probe. Thisdcbias is then discharged by means of a positive ion flux coming
from the plasma. Since this ion current is almost independent of the probe voltage the
change of the probe voltage is almost linear, and from its time-derivative it is possible to
calculate the ion flux. This method is almost independent of the thickness of the layer on
the probe; however, for the method to work properly it is necessary to have a large flat
probe (in Ref. [147] the diameter of the probe was 50 mm).

Since in many technological applications oxygen is added to the plasma gas the negative
oxygen (mainly atomic) ions can present a problem in probe measurements. Accurate mea-
surements of the negative ion density can only be done with the mass-spectrometer. However,
for smaller oxygen percentage in the working gas mixture rough assessment of negative oxy-
gen ions concentration can be done using simple Langmuir probe; the method is based on the
comparison of probe characteristics measured with and without oxygen adition at otherwise
the same experimental conditions, see Ref. [148, 149]. Further discussion on applications of
Langmuir probes in a plasma-chemical environment can be found, e.g., in Refs. [150, 151].

1.10 Double probe technique

When a voltage is applied between two small electrodes immersed in plasma a current flows,
and the current-voltage characteristics resemble the ion current part of the single probe char-
acteristics in both polarities of the applied voltage (see Fig. 1.13). In fact the single probe
technique obeys the same laws, only one of the electrodes has a much larger surface area than
the other one. Therefore we speak of a double probe method only, if the surface areas of both
electrodes are small and not very different from each other. The advantage of the double probe
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Figure 1.13: (a) Basic double probe circuit. (b) Typical double probe characteristics.
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method is that it does not need the large reference electrode and therefore can be applied in
electrode-less (rf generated) plasma. The double probe technique is usually applied to mea-
sure the electric field in a discharge plasma, but it can also be applied to determine the electron
temperature and, at certain experimental conditions, the plasma density.

A usual arrangement in the double probe technique places both probes close to each other
so that it is possible to assume that the plasma parameters are the same at both probe positions.
Here the wordscloseandsmallrelate to the characteristic dimension of the change of plasma
parameters as discussed in chapter 1.8. If, moreover, both the probes have the same shape
and the same surface collecting area, the resulting current-voltage characteristic is centre-
symmetrical with respect to the point of zero current.

Just the double probe theory that was originally presented by Johnson and Malter will
shortly be described [152]. The suppositions of this theory are the same as that of the Lang-
muir theory; mainly that the charged particles do not undertake collisions neither with them-
selves nor with the neutrals in the space charge sheath around the probes. The double probe
technique for the electron temperature determination in the middle and higher pressure plasma
when the collisions of charged particles with neutrals start to be important has been studied
for various plasma conditions by Bradley and Matthews [153], Kirchhoff et al. [154], Klagge
and Tich́y [21], and Chang and Laframboise [155]. Since the total current drawn by the dou-
ble probe system from the plasma is zero (the system is floating) it is evident that the current,
carried to one probe by particles of a certain charge must be compensated by the current of
the second probe due to carriers of the opposite charge. Denoting the first and second probe
by the subscripts 1 and 2, respectively, we can write down the following equations based on
Kirchhoff’s laws:

Ipe1 + Ipi1 = −(Ipe2 + Ipi2) = Id 1st Kirchoff law (1.59)

U1 = U2 + Ud 2nd Kirchhoff law (1.60)

where

Ipe1 = Ipe1(U1) and Ipi1 = Ipi1(U1)
Ipe2 = Ipe2(U2) and Ipi2 = Ipi2(U2) .

HereU1,2 denotes the probe voltage with respect to the space potential, andUd is the voltage
between the two probes. In case of a Maxwellian EVDF it is possible to use the following
expression for the electron probe current to the first probe:

Ipe1 = Ipe(U1 = 0) exp
(
− q0U1

kBTe

)
; (1.61)

a similar expression is valid for the second probe. The current in the double probe circuit then
is given by:

Id(Ud) = Ipi1(U1) + Ipe1(U1 = 0) exp
(
− q0U1

kBTe

)

−Id(Ud) = Ipi2(U2) + Ipe2(U2 = 0) exp
(
− q0U2

kBTe

)
. (1.62)
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If we differentiate this double probe characteristics with respect toUd and take into account
that (dUd/dU)fl = 2, then we obtain the expression for the electron temperature firstly de-
rived by Johnson and Malter [152]:

kBTe

q0
=

[
2

(
dId

dUd

)

fl

− 1
2

(
dIpi1

dU
+

dIpi2

dU

)

fl

]−1

× 2(Ipi1)fl(Ipi2)fl

(Ipi1)fl + (Ipi2)fl
. (1.63)

Here(Ipi1,2)fl denotes the extrapolated dependence of the ion current onUd = 0. A modifi-
cation of this procedure is based on the estimation of the so-calledΓ-function,Γ = Ie1/Ie2,
where the electron temperatureTe is determined from the slope of the dependenceln(Γ) vs.
Ud

ln(Γ) = − q0Ud

kBTe
+ ln

(
A1

A2

)
, (1.64)

whereA1 andA2 are the surface collecting areas of the first and second probe, respectively.
The great advantage of this method is its insensitivity to the effect of collisions in the space
charge sheath around the probe. It has been shown that forKi → 0 the error of this method
does not exceed 15% [21]. Therefore (for the purpose of estimatingTe) it is sometimes ad-
vantageous to convert the single probe characteristics to those of the double probe [18]. The
procedure is based on the determination of the voltage differenceUd1 between the two points
on the single probe characteristics which correspond to the same absolute value of the chosen
probe currentId1 but with opposite signs; by choosingId1 from 0 to the maximum ion probe
current we obtain the dependenceId1 vs.Ud1 that corresponds to one half of the double probe
characteristics. The second half is centre-symmetrical with respect to the origin ofUd.

The double probe technique can also be used for the plasma density estimation provided
that the model of the positive ion collection by the probe which is suitable for the particular
experimental conditions can be applied. A fairly general model has been derived in Ref. [156].
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[23] M. Š́ıcha, Czech. J. Phys. B29 (1979) 640.

[24] G.R. Branner, E.M. Friar, G. Medicus, Rev. Sci. Instr.34 (1963) 231.

[25] N.A. Vorobjeva, J.M. Kagan, V.M. Milenin, Zhurnal tekhnicheskoi fiziki (J. Tech. Phys.
USSR)34 (1964) 2079.

[26] V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol.
1 (1992) 36.

[27] B. Saggau, Z. Angew. Physik32 (1972) 324.



References 37

[28] W.H. Press, S.A. Teukolsky, W.T. Wetterling, B.P. Flannery, Numerical Recipes in C
(The art of scientific computing), Cambridge University Press (1988, 1992).

[29] L.M. Volkova, A.M. Devyatov, G.A. Kralkina, N.N. Sedov, M.A. Sherif, Vestnik Mosk.
Univ. (fizika, astronomija)16 (1957) 502.

[30] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall
(1989).

[31] J.F. Kaiser, W.A. Reed, Rev. Sci. Instr.48 (1977) 1447.

[32] A. Savitzky, M.J.E. Golay, Anal. Chem.36 (1964) 1627.

[33] H. Madden, Anal. Chem.50 (1978) 1383.
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Phys.30 (1997) 1763.

[81] P. Kudrna, E. Passoth, Contrib. Plasma Phys.37 (1997) 417.
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[100] T. Bräuer, PhD thesis, University of Greifswald, Germany (1997).
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M. Tichý, H. Š́ıchov́a, Czech. J. Phys.56 (2006) Suppl. B (accepted).

[108] A.G. Dean, D. Smith, I. Plumb, J. Phys. E5 (1972) 776.

[109] B.M. Wunderer, J. Phys. E8 (1975) 938.
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[130] P.Špatenka, R. Studený, H. Suhr, Meas. Sci. Technol.3 (1992) 704.

[131] K. Shimizu, K. Yano, H. Oyama, H. Kokai, Proc. ISPC-9, Bari (1989), p. 831.

[132] Y. Kobayashi, T. Ohte, M. Katoh, M. Sugawara, Trans. IEE of Japan109-A (1989) 69.

[133] M. Niionomi, K. Yanagihara, ACS Symp.108(1979) 87.

[134] C. Winkler, D. Strele, S. Tscholl, R. Schrittwieser, Proc. 12th SAPP, Liptovsḱy Ján
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[139] P.Špatenka, H. Suhr, Plasma Chemistry and Plasma Processing13 (1993) 555.
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