
Rotational selection rules
For a heteronuclear diatomic molecule a transition between two states with the
absorption or emission of electromagnetic radiation can only occur between cer-
tain two states ψJ′M ′ , ψJ′′M ′′ , for which the matrix element 〈ψJ′M ′ |µ|ψJ′′M ′′〉 of
electric dipole moment operator is not zero. Derive the rotational selection rules
∆J = J ′ − J ′′ = ±1 and ∆M = M ′ −M ′′ = 0,±1 in the rigid rotor approxi-
mation, where the rotational wavefunction in spherical coordinates has the form

ψJM (θ, φ) = YJ,M (θ, φ) =
1√
2π
PMJ (cos θ)eiMφ,

where YJM (θ, φ) are spherical harmonics functions and PMJ are associate Le-
gendre polynomials.

Utilize both methods suggested below.

Method 1: Express dipole moment in spherical coordinates and utilize the
following identities for goniometric functions and for associated Legendre poly-
nomials:

cosφ =
eiφ + e−iφ

2

sinφ =
eiφ − e−iφ

2i

(2J + 1)zPMJ (z) = (J +M)PMJ−1(z) + (J −M + 1)PMJ−1(z)

√
1− z2PMJ (z) =

1

2J + 1
[(J −M + 1)(J −M + 2)PM−1J+1 (z)− (J +M − 1)(J +M)PM−1J−1 (z)]

√
1− z2PMJ (z) =

−1

2J + 1
[PM+1
J+1 (z)− PM+1

J−1 (z)]

Method 2: The components of the dipole moment can be written as functi-
ons of the spherical harmonics:

µx = µ0 sin θ cosφ = −1

2

(
8π

3

)0.5

µ0(Y1,+1 − Y1,−1)

µy = µ0 sin θ sinφ = i
1

2

(
8π

3

)0.5

µ0(Y1,+1 + Y1,−1)
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µz = µ0 cos θ =

(
4π

3

)0.5

µ0Y1,0.

YJ,M is a member of the basis that spans the irreducible representation Γ(J) of
the full rotation group. Find the selection rules for ∆J and ∆M for which the
integrand in the term 〈ψJ′M ′ |µ|ψJ′′M ′′〉 spans the completely symmetric irredu-
cible representation.

Solution 1: Components of the electric dipole moment can be expressed in
spherical coordinates as follows

µx = µ0 sin θ cosφ,

µy = µ0 sin θ sinφ,

µz = µ0 cos θ.

Spherical harmonics YJ,M (θ, φ) can be written as a product of two functions
which depend only on one of the angles θ, or φ

YJ,M (θ, φ) =
1√
2π
PMJ (cos θ)eiMφ

which means that the matrix elements can be separated into two independent
integrals over θ and over φ for each of the dipole moment components.

For µz, the matrix element can be expressed as

〈ψJ′,M ′ |µz|ψJ,M 〉 =

∫ 2π

0

∫ π

0

Y ∗J′,M ′(θ, φ) µ0 cos θ YJ,M (θ, φ) sin θdθdφ =

=
µ0

2π

∫ 2π

0

ei(M−M
′)φdφ

∫ π

0

PM
′

J′ (cosθ) cos θPMJ (cosθ) sin θdθ

The first integral will only be non-zero for M = M ′ and using the substitution
z = cos θ will allow us to use the following identity for associate Legendre
polynomials

(2J + 1)zPMJ (z) = (J −M + 1)PMJ+1(z) + (J +M)PMJ−1(z).

If we further use the orthogonality condition for associate Legendre polynomials
for fixed M ∫ 1

−1
PMJ′ (z)PMJ (z)dz =

2(J +M)!

(2J + 1)(J −M)!
δJ,J ′

we will be able to fully evaluate the matrix element for µz.
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〈ψJ′,M ′ |µz|ψJ,M 〉 =
µ0

2π
2πδM,M ′

∫ 1

−1
PMJ′ (z)zPMJ (z)dz =

= µ0δM,M ′

∫ 1

−1
PMJ′ (z)

1

2J + 1

[
(J −M + 1)PMJ+1(z) + (J +M)PMJ−1(z)

]
dz

= µ0
(J −M + 1)

(2J + 1)

2(J + 1 +M)!

(2J + 3)(J + 1−M)!
δJ+1,J′δM,M ′

+ µ0
(J +M)

(2J + 1)

2(J − 1 +M)!

(2J − 1)(J − 1−M)!
δJ−1,J′δM,M ′

From the expression above, it is clear that the matrix element for µz can be
non-zero only for transitions for which M = M ′ and J = J ′ ± 1 or rather when
∆M = 0 and ∆J = ±1.

The matrix elements for µx and µy can be evaluated similarly with the
exception that dipole moment components in x and y directions depend on the
angle φ too. However expressing the cosine and sine of φ in terms of exponential
functions

cosφ =
eiφ + e−iφ

2

sinφ =
eiφ − e−iφ

2i

will allow us to follow a similar procedure as we did for µz.
For µx, we will get

〈ψJ′,M ′ |µx|ψJ,M 〉 =
µ0

2π

∫ 2π

0

ei(M−M
′)φ cosφdφ

∫ π

0

PM
′

J′ (cosθ) sin θPMJ (cosθ) sin θdθ

=
µ0

2π

1

2

∫ 2π

0

ei(M−M
′+1)φdφ

∫ 1

−1
PM

′

J′ (z)
√

1− z2PMJ (z)dz

+
µ0

2π

1

2

∫ 2π

0

ei(M−M
′−1)φdφ

∫ 1

−1
PM

′

J′ (z)
√

1− z2PMJ (z)dz

It is clear that the first integral over φ will be non-zero only for M = M ′ − 1
and the second for M = M ′ + 1. Using this and the identities√

1− z2PMJ (z) =
−1

2J + 1

[
PM+1
J+1 (z)− PM+1

J−1 (z)
]

√
1− z2PMJ (z) =

1

2J + 1

[
(J −M + 1)(J −M + 2)PM−1J+1 (z)− (J +M + 1)(J +M)PM−1J−1 (z)

]
will allow us to use the orthogonality condition for associate Legendre polyno-
mials for fixed M again.

3



〈ψJ′,M ′ |µx|ψJ,M 〉 =
µ0

2
δM,M ′−1

∫ 1

−1
PM+1
J′ (z)

−1

2J + 1

[
PM+1
J+1 (z)− PM+1

J−1 (z)
]
dz

+
µ0

2
δM,M ′+1

∫ 1

−1
PM−1J′ (z)

1

2J + 1

[
(J −M + 1)(J −M + 2)PM−1J+1 (z)

− (J +M + 1)(J +M)PM−1J−1 (z)
]
dz

=
µ0

2
δM,M ′−1δJ′,J+1

−1

2J + 1

2(J +M + 2)!

(2J + 3)(J −M)!

+
µ0

2
δM,M ′−1δJ′,J−1

1

2J + 1

2(J +M)!

(2J − 1)(J −M − 2)!

+
µ0

2
δM,M ′+1δJ′,J+1

(J −M + 1)(J −M + 2)

2J + 1

2(J +M)!

(2J + 3)(J −M + 2)!

+
µ0

2
δM,M ′+1δJ′,J−1

(−1)(J +M + 1)(J +M)

2J + 1

2(J +M − 2)!

(2J − 1)(J −M)!

The matrix element for µy can be evaluated in the same way, only now it
depends on sinφ which changes the prefactor by 1/i and the sign for the second
two terms

〈ψJ′,M ′ |µy|ψJ,M 〉 =
µ0

2i
δM,M ′−1δJ′,J+1

−1

2J + 1

2(J +M + 2)!

(2J + 3)(J −M)!

+
µ0

2i
δM,M ′−1δJ′,J−1

1

2J + 1

2(J +M)!

(2J − 1)(J −M − 2)!

− µ0

2i
δM,M ′+1δJ′,J+1

(J −M + 1)(J −M + 2)

2J + 1

2(J +M)!

(2J + 3)(J −M + 2)!

− µ0

2i
δM,M ′+1δJ′,J−1

(−1)(J +M + 1)(J +M)

2J + 1

2(J +M − 2)!

(2J − 1)(J −M)!
.

In summary, the matrix elements for µx and µy will only be non-zero for
∆M = ±1 and ∆J = ±1 and the matrix element for µz can be non-zero for
∆M = 0 and ∆J = ±1.
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Solution 2: Spherical harmonics YJ,M are members of the basis that span
the irreducible representation Γ(J) of the full rotation group.

Rotations around any axis going through the origin by an angle α are conju-
gate to each other and together they form a class of the full rotation group which
means that, if we want to count the character of the irreducible representation
Γ(J), we can do so by considering any of the axis going through the origin and
the result will be the same.

For simplicity, I will consider rotations around the z-axis, denoted by R̂α.
Applying this rotation to spherical harmonics simply yields

R̂αYJ,M = e−iMαYJ,M .

The character of the irreducible representation Γ(J) can then be expressed as a
sum

χJ(R̂α) =

M=J∑
M=−J

e−iMα.

Since the components of the electric dipole moment can be expressed in
terms of the spherical harmonics

µx = −1

2

√
8π

3
µ0(Y1,1 − Y1,−1)

µy = i
1

2

√
8π

3
µ0(Y1,1 + Y1,−1)

µz =

√
4π

3
µ0Y1,0,

I will be further interested in the product Y1,mYJ,M . This product will be a
member of a basis that spans a new representation Γnew which is generally
reducible.

To express this new representation in terms of the irreducible representations
it is convenient to consider its characters, which will be equal to the product of
χJ(R̂α) and χ1(R̂α) characters

χnew(R̂α) =

(
m=1∑
m=−1

e−imα

)(
M=J∑
M=−J

e−iMα

)

To make the result clear, I will write down the first sum explicitly and for
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m = ±1 separate parts with negative and positive exponents

χnew(R̂α) =

(
M=J∑
M=−J

e−i(M+1)α

)
+

(
M=J∑
M=−J

e−iMα

)
+

(
M=J∑
M=−J

e−i(M−1)α

)

=

(
M=−2∑
M=−J

e−i(M+1)α +

M=J∑
M=−1

e−i(M+1)α

)
+

(
M=J∑
M=−J

e−iMα

)

+

(
M=0∑
M=−J

e−i(M−1)α +

M=J∑
M=1

e−i(M−1)α

)
= χJ−1(R̂α) + χJ(R̂α) + χJ+1(R̂α).

It is therefore obvious that our new representation can be written in terms of
irreducible representations as follows

Γ(new) = Γ(1) ⊗ Γ(J) = Γ(J−1) ⊕ Γ(J) ⊕ Γ(J+1).

The matrix element 〈ψJ′M ′ |µ|ψJM 〉 can be non-zero only if the direct pro-
duct [Γ(J′)]∗ ⊗ Γ(1) ⊗ Γ(J) contains the completely symmetric irreducible repre-
sentation Γ(0). Since we know that Γ(0) ⊂ [Γ(a)]∗ ⊗ Γ(a), we can also say that
the matrix element can be non-zero only if

Γ(1) ⊗ Γ(J) ⊃ ΓJ
′
.

And as we have already expressed Γ(1) ⊗ Γ(J) in terms of irreducible represen-
tations we can immediately say that the matrix element can be non-zero only
when J = J ′ or J = J ′ ± 1, or rather when ∆J = 0,±1. In this case, the inte-
grand in the term 〈ψJ′,M ′ |µ|ψJ,M 〉 spans the completely symmetric irreducible
representation Γ(0).

The allowed transitions are further restricted by parity. The parity of sphe-
rical harmonics is known to be

P̂ YJ,M = (−1)JYJ,M (1)

which means that the matrix element can be non-zero only when J ′ + 1 + J
is an even number. Combining this result with the previously derived selection
rule for ∆J gives us a new, more strict selection rule, which is ∆J = ±1.

To derive the selection rule for ∆M , it is convenient to realise that all the
matrix elements will be proportional to 〈J ′,M ′|1,m; J,M〉.

We can use the fact that vectors |1,m; J,M〉 form a basis on the 1⊗J space,
meaning that

11⊗J =

1∑
m1=−1

J∑
M2=−J

|1,m1; J,M2〉〈1,m1; J,M2|.
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Any vector from this space |J ′,M ′〉 can be then written as

|J ′,M ′〉 =

1∑
m1=−1

J∑
M2=−J

|1,m1; J,M2〉〈1,m1; J,M2|J ′,M ′〉. (2)

Since we know the eigenvalues of the total angular momentum in the z-direction
Ĵz to be Ĵz|J,M〉 = ~M |J,M〉, applying the operator Ĵz to both sides of the
equation results in

~M ′|J ′,M ′〉 =

1∑
m1=−1

J∑
M2=−J

~(m1 +M2)|1,m1; J,M2〉〈1,m1; J,M2|J ′,M ′〉.

If we know multiply the equation by the bra-vector 〈1,m; J,M | and use the
orthogonality relation for spherical harmonics, we will get

~M ′〈1,m; J,M |J ′,M ′〉 =

1∑
m1=−1

J∑
M2=−J

~(m1 +M2)δm1,mδM2,M 〈1,m1; J,M2|J ′,M ′〉

~M ′〈1,m; J,M |J ′,M ′〉 = ~(m+M)〈1,m; J,M |J ′,M ′〉

Meaning that for non-zero 〈1,m; J,M |J ′,M ′〉 = 〈J ′,M ′|1,m; J,M〉∗ it must
hold that M ′ = m + M , or rather ∆M = m. The selection rule for the matrix
element µz is then ∆M = 0 and for µx and µy it is ∆M = ±1.
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