Rotational selection rules

For a heteronuclear diatomic molecule a transition between two states with the absorption or emission of electromagnetic radiation can only occur between certain two states $\psi_{J^{\prime} M^{\prime}}, \psi_{J^{\prime \prime} M^{\prime \prime}}$, for which the matrix element $\left\langle\psi_{J^{\prime} M^{\prime}}\right| \mu\left|\psi_{J^{\prime \prime} M^{\prime \prime}}\right\rangle$ of electric dipole moment operator is not zero. Derive the rotational selection rules $\Delta J=J^{\prime}-J^{\prime \prime}= \pm 1$ and $\Delta M=M^{\prime}-M^{\prime \prime}=0, \pm 1$ in the rigid rotor approximation, where the rotational wavefunction in spherical coordinates has the form

$$
\psi_{J M}(\theta, \phi)=Y_{J, M}(\theta, \phi)=\frac{1}{\sqrt{2 \pi}} P_{J}^{M}(\cos \theta) \mathrm{e}^{i M \phi}
$$

where $Y_{J M}(\theta, \phi)$ are spherical harmonics functions and P_{J}^{M} are associate Legendre polynomials.

Utilize both methods suggested below.
Method 1: Express dipole moment in spherical coordinates and utilize the following identities for goniometric functions and for associated Legendre polynomials:

$$
\begin{aligned}
& \cos \phi=\frac{\mathrm{e}^{i \phi}+\mathrm{e}^{-i \phi}}{2} \\
& \sin \phi=\frac{\mathrm{e}^{i \phi}-\mathrm{e}^{-i \phi}}{2 i}
\end{aligned}
$$

$$
(2 J+1) z P_{J}^{M}(z)=(J+M) P_{J-1}^{M}(z)+(J-M+1) P_{J-1}^{M}(z)
$$

$\sqrt{1-z^{2}} P_{J}^{M}(z)=\frac{1}{2 J+1}\left[(J-M+1)(J-M+2) P_{J+1}^{M-1}(z)-(J+M-1)(J+M) P_{J-1}^{M-1}(z)\right]$

$$
\sqrt{1-z^{2}} P_{J}^{M}(z)=\frac{-1}{2 J+1}\left[P_{J+1}^{M+1}(z)-P_{J-1}^{M+1}(z)\right]
$$

Method 2: The components of the dipole moment can be written as functions of the spherical harmonics:

$$
\begin{aligned}
\mu_{x} & =\mu_{0} \sin \theta \cos \phi=-\frac{1}{2}\left(\frac{8 \pi}{3}\right)^{0.5} \mu_{0}\left(Y_{1,+1}-Y_{1,-1}\right) \\
\mu_{y} & =\mu_{0} \sin \theta \sin \phi=i \frac{1}{2}\left(\frac{8 \pi}{3}\right)^{0.5} \mu_{0}\left(Y_{1,+1}+Y_{1,-1}\right)
\end{aligned}
$$

$$
\mu_{z}=\mu_{0} \cos \theta=\left(\frac{4 \pi}{3}\right)^{0.5} \mu_{0} Y_{1,0}
$$

$Y_{J, M}$ is a member of the basis that spans the irreducible representation $\Gamma^{(J)}$ of the full rotation group. Find the selection rules for ΔJ and ΔM for which the integrand in the term $\left\langle\psi_{J^{\prime} M^{\prime}}\right| \mu\left|\psi_{J^{\prime \prime} M^{\prime \prime}}\right\rangle$ spans the completely symmetric irreducible representation.

Solution 1: Components of the electric dipole moment can be expressed in spherical coordinates as follows

$$
\begin{aligned}
& \mu_{x}=\mu_{0} \sin \theta \cos \phi, \\
& \mu_{y}=\mu_{0} \sin \theta \sin \phi, \\
& \mu_{z}=\mu_{0} \cos \theta
\end{aligned}
$$

Spherical harmonics $Y_{J, M}(\theta, \phi)$ can be written as a product of two functions which depend only on one of the angles θ, or ϕ

$$
Y_{J, M}(\theta, \phi)=\frac{1}{\sqrt{2 \pi}} P_{J}^{M}(\cos \theta) e^{i M \phi}
$$

which means that the matrix elements can be separated into two independent integrals over θ and over ϕ for each of the dipole moment components.

For μ_{z}, the matrix element can be expressed as

$$
\begin{aligned}
\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu_{z}\left|\psi_{J, M}\right\rangle & =\int_{0}^{2 \pi} \int_{0}^{\pi} Y_{J^{\prime}, M^{\prime}}^{*}(\theta, \phi) \mu_{0} \cos \theta Y_{J, M}(\theta, \phi) \sin \theta d \theta d \phi= \\
& =\frac{\mu_{0}}{2 \pi} \int_{0}^{2 \pi} e^{i\left(M-M^{\prime}\right) \phi} d \phi \int_{0}^{\pi} P_{J^{\prime}}^{M^{\prime}}(\cos \theta) \cos \theta P_{J}^{M}(\cos \theta) \sin \theta d \theta
\end{aligned}
$$

The first integral will only be non-zero for $M=M^{\prime}$ and using the substitution $z=\cos \theta$ will allow us to use the following identity for associate Legendre polynomials

$$
(2 J+1) z P_{J}^{M}(z)=(J-M+1) P_{J+1}^{M}(z)+(J+M) P_{J-1}^{M}(z) .
$$

If we further use the orthogonality condition for associate Legendre polynomials for fixed M

$$
\int_{-1}^{1} P_{J^{\prime}}^{M}(z) P_{J}^{M}(z) d z=\frac{2(J+M)!}{(2 J+1)(J-M)!} \delta_{J, J^{\prime}}
$$

we will be able to fully evaluate the matrix element for μ_{z}.

$$
\begin{aligned}
\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu_{z}\left|\psi_{J, M}\right\rangle & =\frac{\mu_{0}}{2 \pi} 2 \pi \delta_{M, M^{\prime}} \int_{-1}^{1} P_{J^{\prime}}^{M}(z) z P_{J}^{M}(z) d z= \\
& =\mu_{0} \delta_{M, M^{\prime}} \int_{-1}^{1} P_{J^{\prime}}^{M}(z) \frac{1}{2 J+1}\left[(J-M+1) P_{J+1}^{M}(z)+(J+M) P_{J-1}^{M}(z)\right] d z \\
& =\mu_{0} \frac{(J-M+1)}{(2 J+1)} \frac{2(J+1+M)!}{(2 J+3)(J+1-M)!} \delta_{J+1, J^{\prime}} \delta_{M, M^{\prime}} \\
& +\mu_{0} \frac{(J+M)}{(2 J+1)} \frac{2(J-1+M)!}{(2 J-1)(J-1-M)!} \delta_{J-1, J^{\prime}} \delta_{M, M^{\prime}}
\end{aligned}
$$

From the expression above, it is clear that the matrix element for μ_{z} can be non-zero only for transitions for which $M=M^{\prime}$ and $J=J^{\prime} \pm 1$ or rather when $\Delta M=0$ and $\Delta J= \pm 1$.

The matrix elements for μ_{x} and μ_{y} can be evaluated similarly with the exception that dipole moment components in x and y directions depend on the angle ϕ too. However expressing the cosine and sine of ϕ in terms of exponential functions

$$
\begin{aligned}
\cos \phi & =\frac{e^{i \phi}+e^{-i \phi}}{2} \\
\sin \phi & =\frac{e^{i \phi}-e^{-i \phi}}{2 i}
\end{aligned}
$$

will allow us to follow a similar procedure as we did for μ_{z}.
For μ_{x}, we will get

$$
\begin{aligned}
\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu_{x}\left|\psi_{J, M}\right\rangle & =\frac{\mu_{0}}{2 \pi} \int_{0}^{2 \pi} e^{i\left(M-M^{\prime}\right) \phi} \cos \phi d \phi \int_{0}^{\pi} P_{J^{\prime}}^{M^{\prime}}(\cos \theta) \sin \theta P_{J}^{M}(\cos \theta) \sin \theta d \theta \\
& =\frac{\mu_{0}}{2 \pi} \frac{1}{2} \int_{0}^{2 \pi} e^{i\left(M-M^{\prime}+1\right) \phi} d \phi \int_{-1}^{1} P_{J^{\prime}}^{M^{\prime}}(z) \sqrt{1-z^{2}} P_{J}^{M}(z) d z \\
& +\frac{\mu_{0}}{2 \pi} \frac{1}{2} \int_{0}^{2 \pi} e^{i\left(M-M^{\prime}-1\right) \phi} d \phi \int_{-1}^{1} P_{J^{\prime}}^{M^{\prime}}(z) \sqrt{1-z^{2}} P_{J}^{M}(z) d z
\end{aligned}
$$

It is clear that the first integral over ϕ will be non-zero only for $M=M^{\prime}-1$ and the second for $M=M^{\prime}+1$. Using this and the identities

$$
\begin{aligned}
& \sqrt{1-z^{2}} P_{J}^{M}(z)=\frac{-1}{2 J+1}\left[P_{J+1}^{M+1}(z)-P_{J-1}^{M+1}(z)\right] \\
& \sqrt{1-z^{2}} P_{J}^{M}(z)=\frac{1}{2 J+1}\left[(J-M+1)(J-M+2) P_{J+1}^{M-1}(z)-(J+M+1)(J+M) P_{J-1}^{M-1}(z)\right]
\end{aligned}
$$

will allow us to use the orthogonality condition for associate Legendre polynomials for fixed M again.

$$
\begin{aligned}
\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu_{x}\left|\psi_{J, M}\right\rangle & =\frac{\mu_{0}}{2} \delta_{M, M^{\prime}-1} \int_{-1}^{1} P_{J^{\prime}}^{M+1}(z) \frac{-1}{2 J+1}\left[P_{J+1}^{M+1}(z)-P_{J-1}^{M+1}(z)\right] d z \\
& +\frac{\mu_{0}}{2} \delta_{M, M^{\prime}+1} \int_{-1}^{1} P_{J^{\prime}}^{M-1}(z) \frac{1}{2 J+1}\left[(J-M+1)(J-M+2) P_{J+1}^{M-1}(z)\right. \\
& \left.-(J+M+1)(J+M) P_{J-1}^{M-1}(z)\right] d z \\
& =\frac{\mu_{0}}{2} \delta_{M, M^{\prime}-1} \delta_{J^{\prime}, J+1} \frac{-1}{2 J+1} \frac{2(J+M+2)!}{(2 J+3)(J-M)!} \\
& +\frac{\mu_{0}}{2} \delta_{M, M^{\prime}-1} \delta_{J^{\prime}, J-1} \frac{1}{2 J+1} \frac{2(J+M)!}{(2 J-1)(J-M-2)!} \\
& +\frac{\mu_{0}}{2} \delta_{M, M^{\prime}+1} \delta_{J^{\prime}, J+1} \frac{(J-M+1)(J-M+2)}{2 J+1} \frac{2(J+M)!}{(2 J+3)(J-M+2)!} \\
& +\frac{\mu_{0}}{2} \delta_{M, M^{\prime}+1} \delta_{J^{\prime}, J-1} \frac{(-1)(J+M+1)(J+M)}{2 J+1} \frac{2(J+M-2)!}{(2 J-1)(J-M)!}
\end{aligned}
$$

The matrix element for μ_{y} can be evaluated in the same way, only now it depends on $\sin \phi$ which changes the prefactor by $1 / i$ and the sign for the second two terms

$$
\begin{aligned}
\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu_{y}\left|\psi_{J, M}\right\rangle & =\frac{\mu_{0}}{2 i} \delta_{M, M^{\prime}-1} \delta_{J^{\prime}, J+1} \frac{-1}{2 J+1} \frac{2(J+M+2)!}{(2 J+3)(J-M)!} \\
& +\frac{\mu_{0}}{2 i} \delta_{M, M^{\prime}-1} \delta_{J^{\prime}, J-1} \frac{1}{2 J+1} \frac{2(J+M)!}{(2 J-1)(J-M-2)!} \\
& -\frac{\mu_{0}}{2 i} \delta_{M, M^{\prime}+1} \delta_{J^{\prime}, J+1} \frac{(J-M+1)(J-M+2)}{2 J+1} \frac{2(J+M)!}{(2 J+3)(J-M+2)!} \\
& -\frac{\mu_{0}}{2 i} \delta_{M, M^{\prime}+1} \delta_{J^{\prime}, J-1} \frac{(-1)(J+M+1)(J+M)}{2 J+1} \frac{2(J+M-2)!}{(2 J-1)(J-M)!} .
\end{aligned}
$$

In summary, the matrix elements for μ_{x} and μ_{y} will only be non-zero for $\Delta M= \pm 1$ and $\Delta J= \pm 1$ and the matrix element for μ_{z} can be non-zero for $\Delta M=0$ and $\Delta J= \pm 1$.

Solution 2: Spherical harmonics $Y_{J, M}$ are members of the basis that span the irreducible representation $\Gamma^{(J)}$ of the full rotation group.

Rotations around any axis going through the origin by an angle α are conjugate to each other and together they form a class of the full rotation group which means that, if we want to count the character of the irreducible representation $\Gamma^{(J)}$, we can do so by considering any of the axis going through the origin and the result will be the same.

For simplicity, I will consider rotations around the z-axis, denoted by \hat{R}_{α}. Applying this rotation to spherical harmonics simply yields

$$
\hat{R}_{\alpha} Y_{J, M}=e^{-i M \alpha} Y_{J, M} .
$$

The character of the irreducible representation $\Gamma^{(J)}$ can then be expressed as a sum

$$
\chi^{J}\left(\hat{R}_{\alpha}\right)=\sum_{M=-J}^{M=J} e^{-i M \alpha} .
$$

Since the components of the electric dipole moment can be expressed in terms of the spherical harmonics

$$
\begin{aligned}
& \mu_{x}=-\frac{1}{2} \sqrt{\frac{8 \pi}{3}} \mu_{0}\left(Y_{1,1}-Y_{1,-1}\right) \\
& \mu_{y}=i \frac{1}{2} \sqrt{\frac{8 \pi}{3}} \mu_{0}\left(Y_{1,1}+Y_{1,-1}\right) \\
& \mu_{z}=\sqrt{\frac{4 \pi}{3}} \mu_{0} Y_{1,0}
\end{aligned}
$$

I will be further interested in the product $Y_{1, m} Y_{J, M}$. This product will be a member of a basis that spans a new representation $\Gamma^{\text {new }}$ which is generally reducible.

To express this new representation in terms of the irreducible representations it is convenient to consider its characters, which will be equal to the product of $\chi^{J}\left(\hat{R_{\alpha}}\right)$ and $\chi^{1}\left(\hat{R_{\alpha}}\right)$ characters

$$
\chi^{\text {new }}\left(\hat{R}_{\alpha}\right)=\left(\sum_{m=-1}^{m=1} e^{-i m \alpha}\right)\left(\sum_{M=-J}^{M=J} e^{-i M \alpha}\right)
$$

To make the result clear, I will write down the first sum explicitly and for
$m= \pm 1$ separate parts with negative and positive exponents

$$
\begin{aligned}
\chi^{\text {new }}\left(\hat{R}_{\alpha}\right) & =\left(\sum_{M=-J}^{M=J} e^{-i(M+1) \alpha}\right)+\left(\sum_{M=-J}^{M=J} e^{-i M \alpha}\right)+\left(\sum_{M=-J}^{M=J} e^{-i(M-1) \alpha}\right) \\
& =\left(\sum_{M=-J}^{M=-2} e^{-i(M+1) \alpha}+\sum_{M=-1}^{M=J} e^{-i(M+1) \alpha}\right)+\left(\sum_{M=-J}^{M=J} e^{-i M \alpha}\right) \\
& +\left(\sum_{M=-J}^{M=0} e^{-i(M-1) \alpha}+\sum_{M=1}^{M=J} e^{-i(M-1) \alpha}\right) \\
& =\chi^{J-1}\left(\hat{R_{\alpha}}\right)+\chi^{J}\left(\hat{R_{\alpha}}\right)+\chi^{J+1}\left(\hat{R_{\alpha}}\right) .
\end{aligned}
$$

It is therefore obvious that our new representation can be written in terms of irreducible representations as follows

$$
\Gamma^{(n e w)}=\Gamma^{(1)} \otimes \Gamma^{(J)}=\Gamma^{(J-1)} \oplus \Gamma^{(J)} \oplus \Gamma^{(J+1)} .
$$

The matrix element $\left\langle\psi_{J^{\prime} M^{\prime}}\right| \mu\left|\psi_{J M}\right\rangle$ can be non-zero only if the direct product $\left[\Gamma^{\left(J^{\prime}\right)}\right]^{*} \otimes \Gamma^{(1)} \otimes \Gamma^{(J)}$ contains the completely symmetric irreducible representation $\Gamma^{(0)}$. Since we know that $\Gamma^{(0)} \subset\left[\Gamma^{(a)}\right]^{*} \otimes \Gamma^{(a)}$, we can also say that the matrix element can be non-zero only if

$$
\Gamma^{(1)} \otimes \Gamma^{(J)} \supset \Gamma^{J^{\prime}} .
$$

And as we have already expressed $\Gamma^{(1)} \otimes \Gamma^{(J)}$ in terms of irreducible representations we can immediately say that the matrix element can be non-zero only when $J=J^{\prime}$ or $J=J^{\prime} \pm 1$, or rather when $\Delta J=0, \pm 1$. In this case, the integrand in the term $\left\langle\psi_{J^{\prime}, M^{\prime}}\right| \mu\left|\psi_{J, M}\right\rangle$ spans the completely symmetric irreducible representation $\Gamma^{(0)}$.

The allowed transitions are further restricted by parity. The parity of spherical harmonics is known to be

$$
\begin{equation*}
\hat{P} Y_{J, M}=(-1)^{J} Y_{J, M} \tag{1}
\end{equation*}
$$

which means that the matrix element can be non-zero only when $J^{\prime}+1+J$ is an even number. Combining this result with the previously derived selection rule for ΔJ gives us a new, more strict selection rule, which is $\Delta J= \pm 1$.

To derive the selection rule for ΔM, it is convenient to realise that all the matrix elements will be proportional to $\left\langle J^{\prime}, M^{\prime} \mid 1, m ; J, M\right\rangle$.

We can use the fact that vectors $|1, m ; J, M\rangle$ form a basis on the $1 \otimes J$ space, meaning that

$$
\mathbb{1}_{1 \otimes J}=\sum_{m_{1}=-1}^{1} \sum_{M_{2}=-J}^{J}\left|1, m_{1} ; J, M_{2}\right\rangle\left\langle 1, m_{1} ; J, M_{2}\right| .
$$

Any vector from this space $\left|J^{\prime}, M^{\prime}\right\rangle$ can be then written as

$$
\begin{equation*}
\left|J^{\prime}, M^{\prime}\right\rangle=\sum_{m_{1}=-1}^{1} \sum_{M_{2}=-J}^{J}\left|1, m_{1} ; J, M_{2}\right\rangle\left\langle 1, m_{1} ; J, M_{2} \mid J^{\prime}, M^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

Since we know the eigenvalues of the total angular momentum in the z-direction \hat{J}_{z} to be $\hat{J}_{z}|J, M\rangle=\hbar M|J, M\rangle$, applying the operator \hat{J}_{z} to both sides of the equation results in

$$
\hbar M^{\prime}\left|J^{\prime}, M^{\prime}\right\rangle=\sum_{m_{1}=-1}^{1} \sum_{M_{2}=-J}^{J} \hbar\left(m_{1}+M_{2}\right)\left|1, m_{1} ; J, M_{2}\right\rangle\left\langle 1, m_{1} ; J, M_{2} \mid J^{\prime}, M^{\prime}\right\rangle
$$

If we know multiply the equation by the bra-vector $\langle 1, m ; J, M|$ and use the orthogonality relation for spherical harmonics, we will get
$\hbar M^{\prime}\left\langle 1, m ; J, M \mid J^{\prime}, M^{\prime}\right\rangle=\sum_{m_{1}=-1}^{1} \sum_{M_{2}=-J}^{J} \hbar\left(m_{1}+M_{2}\right) \delta_{m_{1}, m} \delta_{M_{2}, M}\left\langle 1, m_{1} ; J, M_{2} \mid J^{\prime}, M^{\prime}\right\rangle$
$\hbar M^{\prime}\left\langle 1, m ; J, M \mid J^{\prime}, M^{\prime}\right\rangle=\hbar(m+M)\left\langle 1, m ; J, M \mid J^{\prime}, M^{\prime}\right\rangle$
Meaning that for non-zero $\left\langle 1, m ; J, M \mid J^{\prime}, M^{\prime}\right\rangle=\left\langle J^{\prime}, M^{\prime} \mid 1, m ; J, M\right\rangle^{*}$ it must hold that $M^{\prime}=m+M$, or rather $\Delta M=m$. The selection rule for the matrix element μ_{z} is then $\Delta M=0$ and for μ_{x} and μ_{y} it is $\Delta M= \pm 1$.

