
Course Review



Goals 

• Goals for scientific codes: right enough, fast enough

• Hopefully after this class you

• Can reason about code performance

• By understanding hardware, software, algorithms

• Can recognize common HPC patterns

• Dense LA, Sparse LA, n-body codes, structured/unstructured grids, 
FFT, etc.

• Are aware of available software and tools for HPC



Hardware concepts
• Things that matter:

• Instruction-level parallelism (ILP)

• Memory hierarchy and cost of cache misses

• Communication costs (latency, bandwidth, flop rate)

• Synchronization overheads



Numerical concepts
• Thinking about high-performance numeric often involves:

• Tiling and blocking algorithms; building atop the BLAS

• Ideas of sparsity and locality

• Graph partitioning and communication/computation ratios

• Information propagation, bandwidth/latency tradeoffs

• Big picture view of sparse and direct iterative solvers

• Multilevel approaches



Parallel Environments
• MPI

• Portable to many implementations

• Giant legacy code base

• Still evolving

• OpenMP

• Parallelize C, Fortran codes with simple changes

• But may need more invasive changes to go fast

• CUDA, OpenCL

• Highly data-parallel kernels (e.g., for GPU)

• Other

• GAS systems (e.g., UPC)

• Shared-memory threads (e.g., pthreads, TBB)



Libraries and frameworks
• Dense LA: LAPACK, BLAS, ScaLAPACK, ...

• Sparse direct solvers: SuperLU, MUMPS, Elemental, Pardiso, ...

• FFTs: FFTW

• Graph partitioning: METIS, ParMETIS, hmetis, SCOTCH, Zoltan, ...

• Frameworks: PETSc, Trilinos

• Gigantic, a pain to compile, but does a lot

• Good starting place for ideas, library bindings



Related reading on SWE
• “Five recommended practices for computational scientists who write 

software” (Kelley, Hook, and Sanders in Computing in Science and 
Engineering, 9/09)

• “Barely sufficient software engineering: 10 practices to improve your CSE 
software” (Heroux and Willenbring)

• Best Practices for Scientific Computing (Wilson et al) 
(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.10017
45)

• Follow-up: Good Enough Practices for Scientific Computing 
(http://swcarpentry.github.io/good-enough-practices-in-scientific-
computing/)

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://swcarpentry.github.io/good-enough-practices-in-scientific-computing/)


Where we are and where we're going



Today: Hardware
• Your cell phone is a multicore machine

• Shared memory programming hasn't disappeared

• Accelerators are everywhere

• Caches keep getting more important

• A modest course cluster has 100-1000 processors

• Getting a significant fraction of peak is hard (especially for real 
applications)



Today: Software
• Lots of code is still C/C++/Fortran

• These are still evolving languages

• Increased emphasis on high-level languages (e.g., Python)

• High performance in specific domains

• Domain-specific specializations

• JIT and on-the-fly optimization are commonplace

• High productivity matters along with high performance



Today: Applications
• Still lots of "traditional" HPC computations

• Large-scale optimization
• PDE solves
• Engineering simulation

• Graph applications?
• Different properties from PDEs
• Similar applications

• Also lots of ML computations
• Often more opportunities for parallelism
• Often more data, less accuracy - I/O becomes the key
• Lots of work on frameworks for these problems
• Closer to traditional HPC over time...

• "Big data" and DB ideas
• Lots of relatively modest computations over lots of data
• Still rather different community from lots of HPC



Where we're heading
• “If you were plowing a field, which would you rather use: Two strong oxen 

or 1024 chickens?” -Seymour Cray

• Done with scaling up frequency, pipeline length

• Current hardware: multicore and manycore (GPUs, Xeon Phis)

• Often specialized parallelism

• Where current hardware lives

• Often in clusters, maybe "in the cloud"

• More embedded computing too

• Straight-line prediction: double core counts every 18 months

• Real question is still how we'll use these cores!

• Even-worse issues: deep memory, communication costs



Where we're heading
• Many dimensions of "performance"

• Time to execute a program or routine

• Energy to execute a program or routine

• Total cost of ownership/computation

• Time to write and debug programs

• Scientific computing has been driven by speed

• Other measures of performance also have influence



Where we're heading
• The first exascale machine as of June 2022

• And still an open question of how to use it

• Cloud vendors still care more about high throughput

• But accelerated cloud instances a viable path to some HPC

• Languages still advancing slowly



Your Feedback
• Topics you didn't like vs. topics you would want to see included?

• More labs/less labs?

• Focus labs on fewer topics? Broader range of topics?

• Homework instead of labs?

• Balance between hardware, software, algorithms?

• No labs/homework at all?

• Please feel free to send me your thoughts and feedback openly, anytime

• You can wait until after exam grades are finalized if you feel more 
comfortable



Final Exam
• Exam slots are 1 hour long (may not take the whole hour, depending)

• Exams will be given in person or via zoom

• An email about scheduling will be sent out during the last week of 
course instruction 



Final Exam

• You will be given a sheet with 4 topics/questions. You must choose 3 to 
address. 

• I will give you up to 15 minutes to consider the topics and write down 
whatever notes you want

• We will then go over the questions, and you will present your answers 
orally to me, making reference to your notes or using the blackboard if 
desired

• I will very likely ask you follow-up questions

• Questions will likely be very similar to practice questions, but I reserve 
the right to ask other questions not included there

• Will cover material from lectures 1-12, exercises 1-11



Oral Exam Grading
• Final Exam grading: On each question, I will score you out of 3 points:

• 0 points: not answered or incorrect answer

• 1 point: attempted to address the question, had some idea about the 
topic

• 2 points: addressed the question and demonstrated a good level of 
understanding

• 3 points: demonstrated thorough, deep understanding of the topic and 
issues, clearly gave explanation and examples

• Total grade is out of 9 points

• e.g., if you get (3,2,2), you get 7/9 or 77.7% 

• if you get (1,2,2), you get 5/9 or 55.5%

• if you get (3,3,2), you get 8/9 or 88.8%

• For translation to final course grade, see Syllabus



Topics Overview



Lecture 1: Introduction
-Moore's Law, Why computers are parallel

-Supercomputer's today

-Parallel programming challenges

-Performance measures - strong scaling vs. weak scaling



Lecture 2: Sequential Computer Architectures

• Single Processor Machines
• Idealized and actual costs in modern processors
• the memory hierarchy, caches
• parallelism within a processor

• pipelining
• SIMD

• Case study: matrix multiply. 
• Costs/computational intensity for naive version, blocked version
• Communication lower bounds for matrix multiply
• BLAS2 vs. BLAS3



Lecture 3: Parallel Architectures and Shared Memory Programming

• Parallel machines and programming models
• shared memory
• message passing/distributed memory
• data parallel
• Flynn's taxonomy

• OpenMP basics

• fork-join parallelism

• typical bugs and performance issues

• Memory consistency and cache-coherence 



Lecture 4: Sources of Parallelism and Locality

• Discrete event systems

• synchronous vs. asynchronous

• Particle systems

• external vs. nearby vs. far-field forces and computational/parallelization 
approaches for each

• Lumped variables (ODEs)

• PDEs



Lecture 5/6: Performance Modeling/MPI
-Distributed memory architectures

-properties of communication networks (diameter, bisection BW)
-network topologies

-linear, ring, mesh, torus, hypercube, tree, butterfly
-Performance models

-PRAM
-Bulk synchronous parallel (BSP)
-LogP
-alpha,beta,gamma model

-MPI 
-Basic communication in MPI
-Collective communication in MPI



Lecture 7: Dense LA
-Communication lower bounds and derivation

-Parallel data layouts for matrices

-Parallel dense matrix-vector products

-Parallel matrix multiply

-SUMMA algorithm

-Parallel LU factorization 

-best data layout

-Parallel QR factorization

-tournament pivoting idea



Lecture 8: Sparse LA
-sparse matrix formats and basic SpMV

-dependency graph, lower bounds

-sequential optimizations

-types of blocking (register, cache)

-reordering

-distributed memory optimizations

-partitioning problem

-higher level kernels

-sparse matrix multiply

-matrix powers computations

-iterative solvers

-pipelined Krylov subspace methods

-communication-avoiding Krylov subspace methods



Lecture 9: Graph Partititioning
-Definition and connection with communication

-Partitioning with nodal coordinates

-Planar separator theorem

-Inertial partitioning

-Random spheres

-Partitioning without nodal coordinates

-Breadth-first search method

-Spectral bisection

-Iterative Refinement

-Kernighjan-Lin

-Fiduccia-Mattheyses

-Multilevel acceleration

-Hypergraph models, benefit of hypergraph model



Lecture 10: Particle Methods
-Approximation of far-field forces idea

-Data structures - quad/oct trees

-Barnes-Hut algorithm

-Fast multipole methods (FMM)

-Differences between B-H and FMM (e.g., how approximation can be 
improved)

-Parallelization of Barnes-Hut and FMM

-load balancing schemes



Lecture 11: Fast Fourier Transform
-Main divide and conquer idea behind FFT

-Sequential algorithm (Cooley and Tukey)

-Lower bounds on communication

-1D FFT Parallelization approaches

-Block versus Cyclic layout

-Transpose approach

-Cost of each in terms of alpha, beta, gamma model

-Higher dimension FFTs (3D case)

-Parallelization approaches

-Packed slabs versus slabs versus pencils

-Tradeoffs in bandwidth and latency costs

-Opportunities for communication/computation overlapping



Lecture 12: ML and Data Analysis
-implicit versus explicit parallelization

-Supervised learning problems

-neural network basics

-data versus model parallelization approaches

-support vector machines

-parallelization challenges

-Unsupervised learning problems

-nonnegative matrix factorization

-parallelization approach

-spectral and markov clustering

-basic idea behind spectral clustering

-basic idea behind markov clustering (MCL)



Practice Exam 
Questions



Explain the different possibilities for distributing a matrix amongst processors. 
In the context of the distributed memory implementation of LU factorization, 
explain which distribution is best and why others are suboptimal. 

• Source: Lecture 7 (slides 50-69)

• Key points:

• Be able to explain the choices for distributing a 2D matrix

• Be able to explain what LU factorization is

• Be able to explain the distributed memory parallel algorithm for LU 
factorization (e.g., the blocked algorithm)

• BLAS2 vs. BLAS3



What is bisection bandwidth? What is the bisection bandwidth for the 
following networks: Linear, 2D mesh, 2D torus, tree, and fattree? Is bisection 
bandwidth a useful metric to describe networks topologies?

• Source: Lecture 5, slides 14-20



Give examples of deadlock and race conditions as they might occur in a 
distributed memory parallel program based on message passing.

• Source: Lecture 3,5

• Lecture 3: slide 19

• Lecture 5: slide 53

• Example: Exercises 6 (nonblocking bcast)

• Other examples possible from your experience in labs



Describe the following types of parallelism and give examples of each: task, 
data, divide and conquer, pipeline.

• Task: MIMD (Flynn's taxonomy, Lecture 3, slide 30)

• Data: SIMD/SIMT (Flynn's taxonomy, Lecture 3, slide 30; Lecture 2 slides 
35-36)

• Divide and Conquer: e.g., reductions, FFT

• Pipeline (Lecture 2, slides 32-34; Lecture 8, slides 77-83)



Explain the basics of OpenMP. Give an example of how a data race can occur 
in shared memory parallel programming. 

• Lecture 3, slides 42-92

• Data races

• Lecture 3 (slides 10-12)

• Exercises 3 (slides 16-23)



Give an overview of how algorithms like Barnes Hut and FMM speed up n-body 
calculations. What is the main difference between Barnes-Hut and FMM in terms 
of accuracy/computation tradeoffs? What other ways are BH and FMM similar 
and different?

• Source: Lecture 10
• main idea: slide 2
• differences: slide 22

• Other similarities: data structures, issues of load balance, data (re)distribution, 
similar computational structure (slide 43), similar parallelization schemes

• Key points:
• Understand key point that allows speeding up of n-body computations
• Give high-level description of BH and FMM algorithms

• Data structures used, how approximations are done
• Discuss differences and similarities



Given the DFT matrix, we wish to multiply it by a vector to transform the 
vector from the time domain into the frequency domain. Usually a matrix 
vector multiply takes O(n^2) steps. Describe how the FFT algorithm 
performs a matrix vector multiply in only O(nlogn) steps.

• Source: Lecture 11

• Divide and conquer approach: main idea, slide 19-22



State the lower bounds on the number of words moved between levels of the 
memory hierarchy and the number of messages for sequential dense matrix 
multiply. Now explain how to derive lower bounds for the parallel case. Give a 
count of the number of messages and number of words moved in the 
SUMMA algorithm. 

• Sequential and parallel case: Slides 12-19 of lecture 7

• SUMMA algorithm: Slides 35-38 of lecture 7

• Potential follow-up questions

• Explain idea behind 2.5D matrix multiply (slides 39-42 of lecture 7)



Explain how graph partitioning can be used to distribute a sparse matrix-
vector computation. Give an example that shows that minimizing the graph 
cut is not equivalent to minimizing the total number of words communicated 
between processors. Explain how this can be remedied by a hypergraph
model. Is using a hypergraph model always worth it in practice?

• Source: Lecture 9

• Slides 3-4, Slide 6

• Slides 80-89



Explain the difference between implicit and explicit parallelization. Give an 
example of an algorithm where implicit parallelization is a good approach, and 
one algorithm where it is not.

• Source: Lecture 12

• Definitions: slide 7

• Examples: from Lecture 12

• Implicit: e.g., NMF

• Explicit: e.g., SVMs

• Many examples also from other lectures (e.g., Lecture 8; see s-step Krylov
subspace methods)



Explain the difference between strong scaling and weak scaling. Why are both 
measurements important?

• Source: Lecture 1, slide 23, 68-69, 75-79

• Key points:

• How to measure strong scaling?

• Explain Amdahl's law

• How to measure weak scaling?

• Which is generally easier to attain? Good strong scaling or good weak 
scaling?

• Are there applications where strong scaling makes more sense? Where 
weak scaling makes more sense?



Define the graph partitioning problem. How would the approach you use 
differ when the nodes have associated coordinate information versus when 
they don't? Explain how "multilevel" approaches work in the context of graph 
partitioning.

• Source: Lecture 9

• Definition: slide 3

• Nodal coordinates: 13-28

• Without nodal coordinates: 30-59

• Multilevel approaches: 61-77



Explain what is meant by "collective communication" in MPI. Explain the 
following collectives: broadcast, scatter, gather, Alltoall, Reduce, Allreduce. 
Give brief explanation or pseudocode describing how you could implement a 
broadcast collective using just MPI_Send and MPI_Recv.

• Sources

• Lecture 6, slides 25-37

• Exercises 6



Which parallel benchmarks are used to rank supercomputers today? Explain 
why the HPCG benchmark gets such a small percentage of peak, even on the 
top computers, compared to the LINPACK benchmark. Can the 
computational intensity of iterative solvers like CG be improved? At what cost 
(e.g., potentially decreased accuracy)?

• Source: Lecture 1, slides 29-34

• Lecture 8, slides 11-14, 60-105



Thank you!


