
Lecture 12:
Machine Learning



Simulation + Data + Learning

• Data analytics and machine learning increasingly important 
in scientific discovery

• Event identification, correlation in high-energy physics

• Climate simulation validation using sensor data

• Determine patterns and trends from astronomical data

• Genetic sequencing

• Driving changes in 
supercomputer architecture

• Multiprecision hardware

• Specialized accelerators

• Memory at node

• The convergence of simulation, data, and learning

• current hot topic: workshops, conferences, research initiatives, funding calls



Outline of the lecture

Intro and Supervised Learning

• Machine Learning & Parallelism Intro

• Neural Network Basics

• Support Vector Machines

Unsupervised Learning

• Non-Negative Matrix Factorization

• Spectral and Markov Clustering

• Sparse Inverse Covariance Matrix Estimation



Machine Learning Classes and Tasks

Machine 
Learning

Supervised 
Learning

Classification Regression Clustering
Dimensionality 

Reduction

The central question in Machine Learning:

"How can we build computer systems that automatically improve with 
experience, and what are the fundamental laws that govern all learning 
processes?"

Unsupervised 
Learning



Machine Learning Sources of Confusion

Method vs. Task: A common confusion is between specific learning 

methods and learning tasks. 

• Example #1: Principal Component Analysis is a method for 

dimensionality reduction task

• Example #2: Support Vector Machines are methods used for 

supervised learning tasks.

Another confusion comes from optimization techniques vs. learning 

methods. 

• Example #1: Sequential Minimal Optimization is an optimization 

technique to train Support Vector Machines

• Example #2: Stochastic Gradient Descent is a popular 

optimization technique to train Neural Networks. 



Machine Learning relies a lot on Linear Algebra
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Parallelism in Machine Learning

Implicit Parallelization: Keep the overall algorithm structure (the 

sequence of operations) intact and parallelize the individual 

operations. 

Example: parallelizing the BLAS operations in previous figure

+ Often achieves exactly the same accuracy (e.g., model parallelism in DNN 

training)

- Scalability can be limited if the critical path of the algorithm is long

Explicit Parallelization: Modify the algorithm to extract more 

parallelism, such as working on individual pieces whose results can 

later be combined

Examples: CA-SVM and data parallelism in DNNs

+ Significantly better scalability can be achieved

- (Maybe) no longer the same algorithmic properties 
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Training Neural Networks

• Training is to adjust the weights (W) in the connections of the 

neural network, in order to change the function it represents. 

1

2

3

4

5

6

w1,3

w1,4

w1,5
w2,3

w2,4

w2,5

w3,6

w4,6

w5,6

A "shallow" neural network with only one hidden layer (nodes 
3,4,5), two inputs and one output. 

x1

x2

y

Only parameters are 

weights for simplicity (i.e. 

ignore bias parameters)

W: the matrix of weights 



Gradient Descent

W t+1 ¬W t -a ×ÑW f (W
t, x)

• Also called the steepest descent algorithm
• In order to minimize a function, move towards the opposite direction 

of the gradient at a rate of α.
• α is the step size (also called the learning rate)
• Used as the optimization backend of many other machine learning 

methods (example: NMF)



Stochastic Gradient Descent (SGD)

• Actually the name is a misnomer, this is not a "descent" method

• But we will stick to it anyway to avoid confusion.

• Performance and parallelism requires batch training

• Larger batch sizes hurt convergence as they get trapped easily

• SGD escapes sharp local minima due to its "noisy" gradients

Assume f (W t, x) =
1

n
fi (W

t, x)
i=1

n

å

W t+1 ¬W t -a ×ÑW fi (W
t, x)

Pure SGD: compute gradient using 1 sample

f is not going down for every iteration
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Mini-batch: compute gradient using b samples



Training Neural Networks

• Training is performed using an optimization algorithm like SGD

• SGD needs derivatives.

• The algorithm to compute derivatives on a neural network is called 

back-propagation.

• The back-propagation algorithm is not a training algorithm

• Idea: Repeated application of the chain rule from calculus

Back-propagation is just a 

special case of the reverse 

mode 

automatic/algorithmic 

differentiation



Data Parallelism #1

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information 
processing systems. 2012.

• The fetching and updating of gradients in the parameter server can be 
done either synchronously or asynchronously.

• Both has pros and cons. Over-synchronization hurts performance where 
asynchrony is not-reproducible and might hurt convergence

Parameter server is some 
sort of master process



Data Parallelism #2

Options to avoid the parameter server bottleneck

1. For synchronous SGD: Perform all-reduce over the network to 

update gradients (good old MPI_Allreduce)

2. For asynchronous SGD: Peer-to-peer gossiping
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Worker 2

Data Data

Data

Peter Jin, Forrest Iandola, Kurt Keutzer, "How to scale distributed deep learning?" NIPS ML Sys 2016



Model Parallelism

Interpretation #1: Partition your neural network into processors
Interpretation #2: Perform your matrix operations in parallel

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information 
processing systems. 2012.



SGD training of NNs as matrix operations

N = the number of outputs
M = the number of inputs
B = the size of the minibatch

Xin: inputs to this layer

Xout: outputs of this layer

The impact to parallelism:

• W is replicated to processor, so it doesn’t change

• Xin and Xout gets skinnier if we only use data parallelism, i.e. distributing 

b=B/p mini-batches per processor

• GEMM performance suffers as matrix dimensions get smaller and more 

skewed (BLAS3 vs. 2)

• Result: Data parallelism can hurt single-node performance

W: weights

N

M B
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X =



Data Parallel SGD training of NNs as matrix operations
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Model Parallel SGD training of NNs as matrix operations
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Data & Model Parallel SGD training of NNs as matrix operations

Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, Aydın Buluç. "Integrated Model, Batch and Domain Parallelism in 
Training Neural Networks." https://arxiv.org/abs/1712.04432
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Support Vector Machine

• Only the classification constraints on the support vectors are active

• Naively, leads to a giant quadratic constrained optimization (QP) problem

• Special algorithms, such as Sequential Minimal Optimization (SMO), 

decompose this giant QP to smaller (in fact minimal) QP sub-problems.
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Kernel Support Vector Machine

• Computation in the feature space can be costly because it is high 
dimensional

• The feature space is typically infinite-dimensional!
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Kernel Support Vector Machine

If we define the kernel function as follows, 

𝐾 𝑥 , 𝑦 = 𝑥𝑇𝑦 2

there is no need to carry out ϕ(.) explicitly because (kernel trick!) 
𝜙 𝑥 ⋅ 𝜙 𝑦 = 𝑥𝑇𝑦 2 = 𝐾(𝑥, 𝑦)

Figure source: 

Russell & Norvig

f(x1, x2 ) = (x1

2, x2

2, 2x1x2 )

The circular decision boundary in 2D (a) becomes a linear boundary in 3D (b) using 

the following transformation:



Major Bottleneck of Kernel SVM

• Input dataset: n-by-d matrix (n >> d)

° X1, X2, …, Xn. Xi is a vector with d features

• Generate a n-by-n Kernel matrix at runtime

° K[i][j] = exp(-r||Xi - Xj||^2), r is positive number

• O(n^3) operations and O(n^2) memory are huge!

° a small input generates a large Kernel matrix

° 357MB input (52K-by-90) = 2000GB Kernel matrix

• Solution: SMO (sequential minimal optimization)

° using iterative method, avoiding Kernel matrix

° key computation for sparse inputs: sparse matrix times 
sparse vector



Sequential Minimal Optimization

• The smallest possible optimization problem involves "two" 
Lagrange multipliers at a time

• Because just changing on multiplier would violate the equality 
constraint
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Platt, John. "Fast training of support vector machines using sequential minimal optimization." 
Advances in kernel methods. 1999.



Sequential Minimal Optimization

Repeat until convergence:

1. Select some pair αi and αj to update next (using a heuristic 
that tries to pick the two that will allow us to make the 
biggest progress towards the global maximum).

2. Re-optimize W(α) with respect to αi and αj, while holding 
all the other αk's fixed.

s.t.     0 £ ai £C,    i =1,… ,m

         aiyi = 0
i=1

m

å .

The kernel function

The equality constraint



#Iterations = O(#samples), bad Weak Scaling!

Slide: Yang You



Cascade SVM (NIPS’04)

Data is partitioned and processed by multi SVMs

Remove the non support vectors layer-by-layer

• data is the support vectors (SV) of previous layer

• pass parameters αi of SVs to next layer for a better initiation (warm start)

Slide: Yang You



Divide-and-Conquer SVM: DC-SVM (ICML’14)

•Difference between DC-SVM and Cascade

°DC-SVM passes all data layer-by-layer

°DC-SVM uses kernel k-means to partition the dataset

Slide: Yang You

Theorem #1: the set of support 
vectors from the subproblems is 
close to that of the whole problem

Theorem #2: Kernel kmeans
minimizes the difference between 
the solution of subproblems and of 
the whole problem



Combine DC-SVM with Cascade: DC-Filter

• Only pass support vectors layer-by-layer (reduce workload)

• Use kernel k-means to divide the dataset

Slide: Yang You



Bottleneck of Cascade, DC-SVM, and DC-Filter

• Occupy P machines, but bottom level uses 1 machine 

• Lower levels cost more time than top level

Slide: Yang You



CP-SVM: Cluster Partition SVM (1-level divide-and-conquer)

• Divide: K-means partitions data into P parts; P models 

• Conquer: Euclidean distance to select best model

Slide: Yang You



Why CP-SVM works?

• When ||Xi - Xj||^2 is large, exp(-r||Xi - Xj||^2) is zero

• K-means maximize different groups’ Euclidean distance

• These two matrices have similar F-norm

• Analysis assumes the Gaussian kernel: For a given sample, only 
the support vectors close to it can have an effect on the 
classification

Slide: Yang You



CP-SVM’s bottleneck: load imbalance (because of K-means)

• Machine 5, time: 0.75s, #iter: 1522, #samples: 4800

• Machine 1, time: 0.79s, #iter: 1384, #samples: 4800

• Machine 7, time: 0.94s, #iter: 1748, #samples: 4800

• Machine 6, time: 1.14s, #iter: 2337, #samples: 4800

• Machine 2, time: 1.14s, #iter: 2339, #samples: 4800

• Machine 4, time: 1.31s, #iter: 2856, #samples: 4800

• Machine 3, time: 5.48s, #iter: 6723, #samples: 9600

• Machine 3, time: 6.48s, #iter: 7915, #samples: 9600

Slide: Yang You



CA-SVM: Communication Avoiding SVM

• Design a balanced clustering to replace K-means 

• Still approximating the distance separation property of k-means 
as much as possible.



Load Balance Comparison

• Test dataset is epsilon with 128k samples on 8 machines 

Slide: Yang You



0.2% accuracy loss for 6.6x speedup

• Overall comparison for "IJCNN dataset"

• All methods use the same number of machines

You, Yang, et al. "CA-SVM: Communication-Avoiding Support Vector Machines 
on Distributed Systems", IPDPS, 2015
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Non-negative matrix factorization (NMF)

• Dimensionality reduction with non-negativity constraints

• The name "factorization" is a misnomer; NMF is just a low-rank

approximation as exact factorization is NP-hard

• NMF is a family of methods, not just one algorithm 

≈



The Alternating Updates Framework

Initialize H

Repeat until convergence:

1. For fixed H, solve 

2. For fixed W, solve 

Lots of algorithms fall into this framework.
• Multiplicative update (MU)
• Alternating least squares (ALS)
• Alternating non-negative least squares (ANLS)

Caveat emptor: This is not the only method for finding an NMF

J. Kim and H. Park. "Fast nonnegative matrix factorization: An active-set-like method and 
comparisons." SIAM Journal on Scientific Computing, 2011

Gemulla, Rainer, et al. "Large-scale matrix factorization with distributed stochastic gradient 
descent." KDD, 2011



The Alternating Updates Framework

Main computation is large-scale matrix multiplications:

1. HHT and AHT for updating W, given a fixed H

2. WTW and WTA for updating H, given a fixed W

• In general W and H are dense, but short-fat or tall-skinny

• A is often sparse but can be dense depending on application

• For increased interpretability, H or W can also be sparse

Figure: Kim and Park



The Alternating Updates Framework

Main computation is large-scale matrix multiplications 

Kannan, Ballard, Park. "MPI-FAUN: An MPI-Based Framework for Alternating-Updating 
Nonnegative Matrix Factorization". 2016.

Choose the best distribution 
and algorithm depending on:

1- the relative sizes of the 
dimensions of the matrices 

2- the number of processors

This work: Never communicate 
A, because it is asymptotically 
larger than H and W
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Clustering

Many families of methods

• Centroid based (k-means, k-medians, and variations)

• Flow based (Markov clustering)

• Spectral methods 

• Density based (DBSCAN, OPTICS)

• Agglomerative methods (single linkage clustering)

• …

- Often the right method depends on the input characteristics and 

require some domain knowledge. 

- We will talk about parallel algorithms for two: Spectral Clustering

and Markov Clustering (MCL). 



Spectral Clustering

• Input: Similarities between data points

• Many ways to compute similarity, some are domain specific: cosine, 
Jaccard index, Pearson correlation, Spearman's rho, Bhattacharyya 
distance, …

• We can represent the relationships between data points in a graph.

• Weight the edges by the similarity between points



Graph definitions

• ε-neighborhood graph
– Identify a threshold value, ε, and include edges if 

the affinity between two points is greater than ε.

• k-nearest neighbors
– Insert edges between a node and its k-nearest 

neighbors.

– Each node will be connected to (at least) k nodes.

• Fully connected
– Insert an edge between every pair of nodes.



Spectral Clustering Intuition

• The minimum cut of a graph identifies an optimal 

partitioning of the data.

• Spectral Clustering

– Recursively partition the data set

• Identify the minimum cut

• Remove edges

• Repeat until k clusters are identified

• Problem: Identifying a minimum cut is NP-hard.

• There are efficient approximations using linear algebra, 

based on the Laplacian Matrix, or graph Laplacian



The Graph Laplacian

 Graph Laplacian

◼ unnormalized graph Laplacian : 

◼ normalized graph Laplacian

◼ Example

related to random walk

Assume the weights of edges are 1.



One Spectral Clustering Algorithm

 The normalized symmetric Laplacian, as the numerical 

eigenvalue problem there is easier to solve. 

 Normalized Spectral Clustering [Ng2002]



Why does it work? One intuitive explanation

• Ideal Case

• The multiplicity of the eigenvalue 0 gives the number 
of clusters (in this ideal case: the number of connected 
components). 

• The real case is assumed to be an approximation to this 
situation.
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How to compute those smallest Eigenvectors?

• Implementation via the Lanczos Algorithm
• Workhorse is sparse-matrix-vector (SpMV) multiply
• SpMV has no/minimal data reuse, bound by communication
• To optimize sparse-matrix-vector multiply and minimize its communication, we 

graph partition (recall last lecture) 

• Alternative algorithms are possible
• Power iteration is cheaper but numerically unstable
• LOBPCG (Locally-Optimized Block Preconditioned Conjugate Gradient) uses 

sparse-matrix times multiple vectors, thus has more favorable performance profile 
due to possible data reuse.

• In the end, you probably just want to call something existing.
• ARPACK implements reverse communication eigensolvers: You implement the 

SpMV, its implements the numerical outer logic 
• PARPACK is its parallel version, The following code uses it: 

https://github.com/openbigdatagroup/pspectralclustering

https://github.com/openbigdatagroup/pspectralclustering


Philosophy of the Markov Cluster Algorithm (MCL)

The number of edges or higher-length paths between two arbitrary 
nodes in a cluster is greater than the number of paths between 
nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of  random walks through 
the graph and removes lower probability terms to form clusters



The MCL Algorithm

At each iteration:
Step 1 (Expansion): Squaring the matrix  

[corresponds to computing random walks of higher length]

Step 2 (Inflation) : Hadamard power of a matrix (taking powers entrywise)

[boost the probabilities of intra-cluster walks and demote inter-cluster walks]

Input: Adjacency matrix A (sparse & column stochastic)

Iteration 1 Iteration 2 Iteration 3Initial network



The expansion step of the MCL algorithm

❑ Goal: Compute random walks of higher length

❑ Input: A column stochastic matrix (A)

❑ Algorithm 
1. Sparse matrix-sparse matrix multiplication (SpGEMM): A2

2. Sparsify A2 by removing low probability terms

➢ Prune entries in A2 that are smaller than a threshold

➢ Recover (if overdone pruning): Keep at least R entries (column-wise 
top-K selection )

➢ Selection (if underdone pruning): Sparsify denser columns by 
keeping at most S entries (column-wise top-K selection )

❑ After sparsification at most max(R,S) (default to 1400) 
entries remains in each column of A2



A combined expansion and pruning step

❑ b: number of columns in the output constructed at once

– Smaller b: less parallelism, memory efficient (b=1 is equivalent to 
sparse matrix-sparse vector multiplication used in MCL)

– Larger b: more parallelism, memory intensive 

x =

A A2 C = Prune(A2)

b

Ab

b b



x =

A A2 C = Prune(A2)

b

Ab

b b

❑ b: number of columns in the output constructed at once

– HipMCL selects b dynamically as permitted by the available 
memory 

– The algorithm works in h=N/b phases where N is the number of 
columns (vertices in the network) in the matrix

A combined expansion and pruning step



Current sparse matrix-matrix multiply algorithm in HipMCL

❑ Sparse SUMMA algorithm.

❑ Do this for each phase. 

❑ Issue: repeated broadcast of A. 
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Other algorithmic steps of HipMCL

❑ There is more than sparse matrix multiply here.

– Parallel k-selection algorithm for each column of the 
matrix

– Parallel pruning algorithm

– Parallel connected component algorithm (to identify 
clusters after MCL is converged). 

– Parallel file I/O. 

Azad, A., Pavlopoulos, G.A., Ouzounis, C.A., Kyrpides, N.C. and Buluç, A., 2018. HipMCL: a high-performance 
parallel implementation of the Markov clustering algorithm for large-scale networks. Nucleic acids research.
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Sparse Inverse Covariance Matrix Estimation

• Precision matrix = Inverse covariance matrix

• Goal: Estimating graphical model structure 

• "The zeros of a precision matrix correspond to zero partial correlation, a 
necessary and sufficient condition for conditional independence (Lauritzen, 
1996)"

• Sparsity often enforced by regularization

• One algorithm (HP-CONCORD)’s objective function:

• Ω is the sparse inverse covariance matrix we are trying to estimate



Why do we care? Finding Direct Associations

Partial Correlation (a.k.a. sparse inverse covariance estimation): 

direct association without confounders

• Gene Regulatory Network (GRN) estimation

• Joint modeling of SNPs and GRN

• Linkage Disequilibrium (LD) estimation

• Canonical Correlation Analysis (CCA)

• Genome-wide association studies (GWAS)

Data-driven hypothesis generation!

o Computationally challenging; 



HP-CONCORD Algorithm

• Repeated use of sparse times dense matrix multiplication (SpDM3)

• SpDM3  is the bottleneck by a large margin. 

Koanantakool et al. Communication-avoiding optimization methods for distributed massive-scale 
sparse inverse covariance estimation. In AISTATS, 2018.



Sparse Matrix times Dense Matrix

Sometimes it pays off to 
communicate A instead.

How much of these ranges 
apply to real life NMF 
scenarios is open question

Koanantakool, Penporn, et al. "Communication-avoiding parallel sparse-dense matrix-matrix 
multiplication." IPDPS, 2016

Matrix Multiplication Algorithms

5Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication

A A A

B B B
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[Solomonik and 

Demmel 2011]

[Ballard et al. 2013]

*2D and 3D images 
courtesy of Grey Ballard



HP-CONCORD Advantages

• HP-CONCORD makes fewer assumptions about the data (in particular, no 
Gaussianity is assumed) compared to competitors

• Thanks to communication-avoiding matrix multiplication algorithms, 
it reaches unprecedented scales

o BigQUIC: previous state-of-
the-art

o Obs-K are the other variant 
of HP-CONCORD algorithm 
(K: number of nodes)

o Experiment is trying to 
recover a random graph 
structure.


